Dirichlet Boundary Conditions for FFT-Based Micromechanics of Bicontinuous Stochastic Microstructures
Computational homogenization may be used to evaluate effective properties of microstructured materials. As digital imaging techniques generally generate microstructure information on a regular grid, a common approach to compute the effective properties of the microstructured materials is to use fast Fourier transform (FFT)-based methods. Traditionally, this approach involves periodic boundary conditions. However, for certain microstructure types, nonperiodic boundary conditions are of interest. In this work, we show how to efficiently impose Dirichlet boundary conditions for FFT-based micromechanics on stochastic bicontinuous microstructures in combinations with a linear conjugate gradient (CG) solver. Consequently, we compute the effective properties of bicontinuous stochastic microstructures and compare the results to values reported in the literature computed by a finite element (FE) code.
Vorschau
Zitieren
Zitierform:
Risthaus, Lennart/Schneider, Matti (2024): Dirichlet Boundary Conditions for FFT-Based Micromechanics of Bicontinuous Stochastic Microstructures. In: BeyondRVE: Beyond Representative Volume Elements for Random Heterogeneous Materials. Online unter: https://nbn-resolving.org/urn:nbn:de:hbz:465-20250224-142742-8.
Zitierform konnte nicht geladen werden.
Rechte
Rechteinhaber:
© The Author(s) 2024
Nutzung und Vervielfältigung:
Dieses Werk kann unter einer
genutzt werden.