Transient simulation and analysis of a supercritical CO2 heat removal system under different abnormal operation conditions

Affiliation
University of Stuttgart – Stuttgart, Germany
Hofer, Markus;
Affiliation
Simulator Centre of KSG - GfS
Hecker, Frieder;
GND
139315411
Affiliation
University of Stuttgart – Stuttgart, Germany
Buck, Michael;
GND
115849254
Affiliation
University of Stuttgart – Stuttgart, Germany
Starflinger, Jörg

The supercritical carbon dioxide (sCO21) heat removal system, which is based on multiple closed Brayton cycles with sCO2 as the working fluid, is an innovative, self-propelling and modular heat removal system for existing and future nuclear power plants. Previous studies analysed its design, layout, control and operation. In addition, this novel study considers different sudden failures during the accident progress, e.g. failure of single sCO2 cycles, control systems and valves. These abnormal conditions were investigated with the thermalhydraulic system code ATHLET for a generic Konvoi pressurized water reactor. In most cases, the failure of a single sCO2 cycle can be compensated. On the one hand, failure of the fans of the gas cooler leads to a pressure increase which may be mitigated by an inventory control system or cycle shutdown. On the other hand, unintended fan speed-up may cause compressor surge without adequate countermeasures. Furthermore, the system can operate under the cyclic blow-off from the steam generator safety valves when the relief valves are not available. Finally, the unintended closure of the valve which controls the steam flow through the compact heat exchanger triggers a fast cycle shutdown but a subsequent restart might be possible.

Zur Startseite

Cite

Citation style:
Could not load citation form.

Rights

Use and reproduction:
This work may be used under a
CC BY 4.0 LogoCreative Commons Attribution 4.0 License (CC BY 4.0)
.