Artificial Weathering Mechanisms of Uncoated Structural Polyethylene Terephthalate Fabrics with Focus on Tensile Strength Degradation

In the past five decades, reinforced coated textile membranes have been used increasingly as building materials, which are environmentally exposed. Thus, their weathering degradation over the service life must be taken into account in design, fabrication, and construction. Regarding such structural membranes, PVC (polyvinylchloride)-coated PET (polyethylene terephthalate) fabric is one of the most common commercially available types. This paper focuses on the backbone of it, i.e., the woven PET fabric. Herein, weathering of uncoated PET, as the load-bearing component of the composite PET-PVC, was studied. This study assessed the uniaxial tensile strength degradation mechanisms of uncoated PET fabric during artificial accelerated weathering tests. For this purpose, exploratory data analysis was carried out to analyze the chemical and physical changes which were traced by Fourier transform infrared spectroscopy and molecular weight measurements. Finally, with the help of degradation mechanisms determined from the aforementioned evaluations, a degradation pathway network model was constructed. With that, the relationship between applied stress, mechanistic variables, structural changes, and performance level responses (tensile strength degradation) was assessed.

Cite

Citation style:
Asadi, H., Uhlemann, J., Stranghoener, N., Ulbricht, M., 2021. Artificial Weathering Mechanisms of Uncoated Structural Polyethylene Terephthalate Fabrics with Focus on Tensile Strength Degradation. https://doi.org/10.3390/ma14030618
Could not load citation form.

Rights

Use and reproduction:
This work may be used under a
CC BY 4.0 LogoCreative Commons Attribution 4.0 License (CC BY 4.0)
.

Export