Spinning round : High-Performance Computing für maßgeschneiderte Materialien für die Informationstechnologie
Mit Hilfe der Dichtefunktionaltheorie sind wir in der Lage, den Zusammenhang zwischen der atomaren Struktur und den Eigenschaften eines Materials zu erforschen, ohne dass empirisch gewonnene Kenntnisse als Ausgangspunkt benötigt werden. Der Einsatz von High-Performance Computing ermöglicht es uns, diesen parameterfreien wissenschaftlichen Zugang sogar auf komplexe Systeme, zum Beispiel Grenzflächen zwischen zwei Materialien, auszudehnen.
Density functional theory puts us in
position to investigate the relationship
structure-propertty in materials
without having to rely on empirical
input. The usage of high performance
computing enables us to
extend this parameter-free approach
to complex atomic structures that are
encountered for instance at interfaces
between two materials. We are thus
in position to carry out computeraided
explorative studies of diverse
materials combinations, and to tailor
the materials properties to specific
envisaged applications. Several such
applications from the field of spintronics
have been presented:
For the spin transistor, a magnetic
material compatible with silicon is
sought for, and we managed to identify
manganese silicide as one candidate.
For the spin valve and for thermal
spin injection, we explored ferromagnetic
half metals and identified
double layer structures of Heusler
alloys as promising. As a future goal,
we aim at enhancing the predictive
power of our approach by including
dynamical materials properties into
our modelling. Examples are oscillations
of the atoms around their equilibrium
positions as well as spin
waves in magnetic materials, both of
which have an impact on the temperature
dependence of the electrical
resistivity.