Supraleiter und Mathematik : Ohne elektrischen Widerstand auf dem Weg zur Energieversorgung von morgen
Elektromobilität wird Ballungsgebiete vor erhebliche infrastrukturelle Probleme stellen: Mit mehr Elektroautos auf den Straßen wird auch der Stromverbrauch in den Wohngebieten und Innenstädten rasant steigen. Welche Antworten die Physik bietet und inwiefern die moderne Mathematik zu einem besseren Verständnis dieser hochkomplexen Phänomene verhelfen kann, möchten wir in diesem Artikel diskutieren.
If a superconductor is cooled down below a certain critical temperature, it loses its electrical resistivity. Based on this property, a superconductor can transfer an electric current without dissipation. Moreover, the second underlying property of superconductivity is the Meissner-Ochsenfeld effect: If a weak external magnetic field is applied to a superconductor below its critical temperature, the magnetic flux is completely expelled from the material. Nowadays, many modern technological applications rely on superconductors including Magnetic
Resonance Imaging (MRI), magnetic confinement fusion technologies and magnetic levitation technologies. Thus, theoretical understanding of this topic is of high academic
interest. From a mathematical point of view, this phenomenon is described by Maxwell’s equations combined with a set of additional assumptions, which make the mathematical analysis very challenging and require deep knowledge in the field of computational electromagnetism. As a result, our research revolves around hyperbolic (quasi-)variational inequalities governed by
the evolutionary Maxwell’s equations. We use regularization techniques as well as finite element methods to present a rigorous analysis and applicable numerical results.