An EMSR-based approach for revenue management with integrated upgrade decisions
We consider the revenue management problem of capacity control with integrated upgrade decision-making. The dynamic programming formulation of this problem is hard to solve to optimality, even in the single-leg case, because multiple hierarchical resource types must be considered simultaneously. Therefore, in this paper, we propose a new heuristic approach that generalizes the idea behind the well-known single-leg EMSR-a procedure to multiple resource types. Similar to EMSR-a, our approach is based on the computation of protection levels, but additionally allows for the integrated consideration of upgrades. In addition, we derive control policies for typical demand arrival patterns. As an extension, we propose a generalization of our approach that allows for arbitrarily ordered prices with respect to the upgrade hierarchy. Furthermore, we perform a number of computational experiments to investigate the performance of the new approach compared to other capacity control methods that incorporate upgrades. We consider typical airlines’ single-leg scenarios with 10 (re)optimizations throughout the booking horizon. The results show that our approach can significantly outperform existing methods in terms of the total achieved revenue, including dynamic programming decomposition approaches that are proposed in literature, as well as successive planning approaches that are widely used in commercial revenue management systems.
Vorschau
Zitieren
Zitierform:
Zitierform konnte nicht geladen werden.
Rechte
Nutzung und Vervielfältigung:
Dieses Werk kann unter einerCreative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 Lizenz (CC BY-NC-ND 4.0)
genutzt werden.