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Abstract

We consider the revenue management problem of capacity control with integrated upgrade deci-

sion-making. The dynamic programming formulation  of  this problem is hard to solve to optimali-

ty,  even  in  the  single-leg  case,  because  multiple  hierarchical  resource  types  must  be  considered 

simultaneously. Therefore, in this paper, we propose a new heuristic approach that generalizes the

idea  behind  the  well-known  single-leg  EMSR-a  procedure to  multiple  resource  types.  Similar  to

EMSR-a,  our  approach  is  based  on  the  computation  of  protection  levels,  but  additionally  allows

for  the  integrated  consideration  of  upgrades.  In  addition,  we  derive  control  policies  for  typical

demand arrival patterns. As an extension, we propose a generalization of our approach that  allows

for  arbitrarily  ordered  prices  with  respect  to  the  upgrade  hierarchy.  Furthermore,  we  perform  a

number  of  computational  experiments  to  investigate  the  performance  of  the  new  approach  com-

pared  to  other  capacity  control  methods  that  incorporate  upgrades.  We  consider  typical  airlines’

single-leg  scenarios  with 10 (re)optimizations throughout the booking horizon. The results  show

that  our  approach  can  significantly  outperform  existing  methods  in  terms  of  the  total  achieved

revenue,  including  dynamic  programming  decomposition  approaches  that  are  proposed  in  litera-

ture, as well as successive planning approaches that are widely used in commercial revenue man-

agement  systems.
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1 Introduction 

Originating from the deregulation of the U.S. airline industry in the 1970s, reve-

nue management has become one of the most successful fields where operations 

research methods are applied. The main task of revenue management is capacity 

control, which can be described as maximizing net revenue by optimally control-

ling the availability of products defined on a fixed, scarce capacity of perishable 

resources within a given selling horizon. In the scientific literature, a large number 

of different operations research models have been proposed that allow for the au-

tomation of capacity control (see e.g. [1], Chapters 2 and 3 for an overview of the 

standard models for capacity control). Many of these models have been success-

fully implemented in commercial software systems.  

A relatively new aspect of scientific research is incorporating upgrades into capac-

ity control. Following the definition of Gallego and Stefanescu [2], a customer 

receives an upgrade when the selling firm fulfills a product request with a more 

desirable substitute from a pre-specified set of alternative resource types. This 

substitution is offered at the original product’s price. In practice, upgrades have 

already been used for a long time. In fact, the product portfolios of service indus-

try firms are often based on several types of resources which are substitutable, so 

that upgrading is potentially beneficial. Prominent examples include airlines that 

offer economy, business, and first class compartments, hotels that have different 

room types, and various car categories at car rental companies. Because traditional 

capacity control models do not consider different resource types simultaneously, 

practice implementations often take upgrades into account by a successive plan-

ning approach. More precisely, upgrade contingents are estimated first, and based 

on the resulting new virtual capacities, traditional capacity control approaches are 

applied afterward for each resource type separately. 

In the scientific literature, a few authors investigate the revenue potential when 

upgrades are explicitly accounted for by capacity control mechanisms. Alstrup et 

al. [3] as well as Karaesmen and van Ryzin [4] address overbooking problems 

with upgrades and downgrades. Geraghty and Johnson [5] mention that they use a 
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modified standard heuristic with upgrades in the car rental industry, without giv-

ing any insight into the mathematical models. Shumsky and Zhang [6] develop an 

integrated approach of capacity control and upgrading that is based on protection 

limits. However, their assumptions regarding demand as well as cost structure are 

not in line with the traditional revenue management setting. To the best of our 

knowledge, Gallego and Stefanescu [2] are the first to integrate upgrades into the 

traditional dynamic programming model for network capacity control with inde-

pendent demand (see e.g. [1], Chapter 3.2 for the standard dynamic program).  

However, the resulting dynamic programming model is computationally intracta-

ble for larger problem sizes because of the multidimensional state space that must 

be considered. As opposed to traditional revenue management without upgrades, 

this is even true for the single-leg setting without any network structure, because 

the different resource types must still be considered simultaneously. Therefore, it 

is necessary to rely on some type of approximation of the dynamic programming 

model. In this context, Gallego and Stefanescu [2] present a deterministic linear 

approximation that incorporates upgrades, which is basically an extension of the 

well-known Deterministic Linear Programming model (DLP; see e.g. [1], Chapter 

3.3.1). Steinhardt and Gönsch [7] also build on the dynamic programming model 

of Gallego and Stefanescu [2] and derive dynamic programming decomposition 

approaches for network capacity control with upgrades. One of their approxima-

tion approaches, called Dynamic Programming Single Resource Decomposition 

(DPD-S), is also suitable for the single-leg case. 

In this paper, we propose a new approximation of the dynamic programming for-

mulation for capacity control with integrated upgrades. Our approach focuses on 

the single-leg case and builds on the well-known EMSR-a heuristic (see [8] and 

[9]) whose name is derived from the Expected Marginal Seat Revenue (EMSR). 

Similar to EMSR-a, the approach is based on the computation of protection levels 

but also allows for the integrated consideration of upgrades. In addition, we derive 

control policies for low-before-high and arbitrarily ordered demand, and we con-

sider arbitrarily ordered prices with respect to the upgrade hierarchy. Furthermore, 
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we perform an extensive computational study that considers typical airlines’ sin-

gle-leg scenarios with 10 (re)optimizations throughout the booking horizon. In 

terms of the total achieved revenue, the new approach can outperform methods 

that are based on the extended DLP-model, DPD-S, and other models that are 

modified to integrate upgrade decisions. Furthermore, the new approach performs 

better than the successive planning approach that is mostly used in revenue man-

agement practice. 

The remainder of this paper is structured as follows: Section 2 provides the basics 

of EMSR-a. Based on that, we develop the new heuristic for integrated upgrade 

and capacity control in Section 3. In Section 4, we present the insights obtained 

from our computational study. Section 5 discusses the approach and the numerical 

results from a broader perspective. We conclude with a summary of the main re-

sults and an outlook on future research in Section 6. 

2 EMSR-a heuristic in traditional revenue manage-

ment 

The traditional revenue management model setting and the resulting decision 

problem can be described as follows: As a result of price discrimination, a firm 

offers differently priced products, each of which needs one unit of a single homo-

geneous resource with fixed capacity. Product requests arrive in a stochastic man-

ner successively over time before service provision. There are no group requests; 

each request is for one unit of one of the offered products, and there are no cancel-

lations of accepted requests or no-shows. Overbooking of the given resource’s 

capacity is not allowed. For each incoming request, the firm can decide to accept 

or reject it. The firm aims at maximizing total overall revenue, as variable costs 

are assumed to be negligible.  

EMSR is a class of heuristics developed by Belobaba [8, 9, 10] that have evolved 

to the most prominent methods for solving the decision problem described above. 

The heuristics are used to calculate protection levels under the additional model 

assumption that product requests arrive in the order of non-decreasing prices 
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(low-before-high). The idea behind protection levels is to preserve a precalculated 

number of resource capacity units for later booking requests that ask for higher-

value products. More recently, several authors extended the traditional EMSR 

heuristics, including additional aspects (see e.g. [11] for customer diversion; [12] 

for risk aversion; [13] for choice-based methods). Furthermore, there are exten-

sions that generalize the idea of EMSR to procedures that are applicable in net-

work settings (see e.g. [1], Chapter 3.4.2 for a generic procedure called prorated 

EMSR as well as [14], Chapter 5.2 for an extension to a multiple resources setting 

with a specific multi-stage production structure arising in steel production). 

We now summarize the basics of EMSR-a (see e.g. [8], [9], or [1], Chapter 2.2.4.1 

for more details). This heuristic is a generalization of Littlewood’s rule ([15], see 

also e.g. [1], Chapter 2.2.1) which, as additional assumptions to the setting de-

scribed above, assumes that (1) the firm offers just two products and (2) demand 

arrives in low-before-high order. The two products are denoted by 1 2j ,  with 

associated prices jp and 1 2p p . The total stochastic demand for product j  is 

given by jD , with the distribution  jF  . The optimal decision policy, which is 

Littlewood’s rule, can then intuitively be derived as follows: Suppose the firm has 

x  units of capacity remaining and that it receives a request for product 2. If the 

request is accepted, the firm collects revenue of 2p . If it is not accepted, the firm 

will sell the -x th  unit at 1p  later, but only if the demand for product 1 is suffi-

ciently high, which means if and only if 1D x . Thus, the expected gain from 

reserving the -x th  unit for product 1 is  1 1p P D x  . Therefore, the optimal de-

cision rule throughout the selling horizon is to accept requests for product 2 as 

long as this latter term is less than or equal to 2p . Because of its origin in the air-

line industry where the capacity units are seats, this term is also widely referred to 

as the EMSR. If demand is modeled using a continuous distribution  1F x , the 

optimal protection level 12

*s  is given by  2 1 1 12

*p p P D s   , which is equivalent 

to 
1 2

12 1

1

1* p
s F

p

  
  

 
.  

EMSR-a generalizes Littlewood’s rule to

 

2n 

 

products, while it keeps the as-

sumption that requests arrive in low-before-high order. The products are given by 

 1, ,n . The price of each product j  is given by jp , and its stochastic 
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demand is denoted by jD . As before, the products are indexed by non-increasing 

prices.  

The basic idea of EMSR-a is to appropriately aggregate the pair-wise protection 

levels that are obtained from applying Littlewood’s rule to all the pairs of prod-

ucts, in isolation. In the first step, the pair-wise protection levels *

kjs  are calculated 

for all the pairs of products k, j  with k j , denoting how much capacity 

should be protected from product j  and set aside for product k : 

 

1 1
j*

kj k

k

p
s F

p

  
  

 
   (1) 

In a second step, these pair-wise protection levels are added up to obtain js , 

which is the amount of capacity to protect from product j  for all the higher-value 

products, and requests for product j  are rejected if 1 jx s  . Obviously, the pro-

tection level js  cannot exceed the remaining capacity: 

 *

j kj

k j

s min s ,x


 
  

 
 .   (2) 

3 EMSR-a heuristic with integrated upgrade deci-

sions 

In this section, we propose a new integrated approach for capacity control with 

planned upgrades that builds upon a generalization of the idea behind EMSR-a. In 

Section 3.1, we introduce some notation. In Section 3.2, we present the basic ver-

sion of the approach in which we restrict ourselves to quality-consistent prices in 

order to introduce the core concepts more clearly. Prices are quality-consistent if 

and only if higher quality products are never cheaper than lower quality products. 

This means that prices are always non-decreasing when moving up the upgrade 

hierarchy (see [2] for a formal definition). In Section 3.3, we formulate two con-

trol mechanisms that can be used to decide on the acceptance of arriving booking 

requests using the heuristic proposed. The first mechanism is static and can be 

used for low-before-high arrival order. The second mechanism is dynamic and 

allows for arbitrary arrival orders. In Section 3.4, we relax the restriction on quali-
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ty-consistent prices and present a general algorithm for computing protection lev-

els with arbitrarily ordered prices. 

3.1 Setting and notation 

In line with the traditional revenue management setting and the notation intro-

duced in Section 2, we consider a firm that offers products  1,...,n  at a point 

in time t , where jp  denotes the price of a product j . The products are in-

dexed in the order of non-increasing prices, that is, 1 2 np p p   . jtD  is 

again the demand random variable – with an additional index t – which refers to 

the demand-to-come of a product j  from time t  onwards. 

In addition to the traditional setting, there is no longer just one homogeneous re-

source, but the firm now disposes of several different resources  1, ,m , 

where a higher number indicates a higher-value resource with respect to the up-

grade hierarchy. To provide product j , the firm can either use one unit of the 

corresponding resource jr   or upgrade the request. That is, instead of provid-

ing jr , the firm can assign the request to any resource r  with jr r . In this 

context, we assume that customers always accept upgrading. The vector of re-

maining capacity is  1 mx ,...,xx . Apart from that, the other standard assump-

tions introduced in Section 2 apply. In what follows, the symbols j , k , and l  

refer to products, and r  refers to resources. 

 

1

2

3

4

1

3

2

Booking classes Compartments
 

Figure 1 Illustration of the relationship between products and resources 
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Example. We illustrate the setting described above using the airline industry, 

where one resource corresponds to one compartment (Figure 1). In the example, 

four different booking classes are offered (products  1 2 3 4, , , ), which make 

use of the three compartments economy, business, and first class (resources 

 1 2 3, , ). Product 1 is a first class ticket ( 1 3r  ) and, hence, can consume 

capacity only in first class (resource 3). Product 2 is a business class ticket 

( 2 2r  ) and can consume capacity in either business (resource 2) or first class 

(resource 3). Products 3 and 4 are economy class tickets ( 3 4 1r r  ) and can 

consume capacity in either of the three compartments.  

Note that throughout this paper, we assume that the considered firm decides on 

upgrading an accepted request immediately after the time of sale, that is, it per-

forms ad hoc upgrading. More precisely, accepted requests are immediately as-

signed to the lowest available resource type in the upgrade hierarchy that is equal 

or higher to the one that the sold product requires. It may seem natural to suppose 

that the firm could improve its revenue by postponing the decision on the assign-

ment of requests to a later point in time before the end of the booking horizon. 

However, it is not possible to obtain higher revenues this way; as shown for the 

deterministic setting in [2] and the general stochastic setting in [7], which applies 

to our work here, both ad hoc and postponed upgrading lead to the same ac-

ceptance decisions and revenues. Moreover, it is optimal to immediately assign a 

request to the lowest possible resource in the upgrade hierarchy; if a request for 

product j  is accepted, it can immediately be assigned to resource 

 0*

j rr min r : r r x    . Thus, the firm can easily track what capacity is nec-

essary to serve already accepted requests and what is still available for future re-

quests. Note that ad hoc upgrading does not imply that one immediately has to 

decide or communicate which customer will get which upgrade. It is only fixed 

how many customers will be upgraded. For an airline setting, this means, for ex-

ample, that at the end of the booking horizon, it is only fixed how many passen-

gers from economy class need to be upgraded to for example business class, while 

the individual assignment can be performed just before boarding.  
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3.2 Heuristic for quality-consistent prices 

In this subsection, we show how the basic idea underlying the EMSR-a heuristic 

can be transferred to the revenue management problem with upgrades when prices 

are quality-consistent.  

As in classical EMSR-a, the pair-wise protection levels for all the products calcu-

lated by Littlewood's rule (1) are the starting point of our considerations. The goal 

is to aggregate them to obtain protection levels js , which indicate for every prod-

uct j  how much capacity should be reserved for requests for higher-value prod-

ucts that potentially arrive later in the booking horizon. Because any resource 

jr r  can be used to provide product j , these protection levels now must be 

related to the sum of the capacity of these resources. That means that requests for 

j  are rejected if 1
j

r j

r r

x s


  .  

However, when aggregating the protection levels 
*

kjs  to obtain the amount of ca-

pacity js  to protect for higher-value products k j , it is now necessary to con-

sider that usually not all products k j  can be provided using any arbitrary re-

source jr r , because some of these products might need higher resources than 

jr . Thus, if we just summed up the pair-wise protection levels k j  and con-

strained this sum to the remaining capacity of the resources jr r  as in EMSR-a 

(see Equation (2)), we might end up protecting capacity for one or more higher-

value products on resources that, in fact, cannot be used to provide these products. 

Therefore, the idea behind our approach is to consider the capacity of each of 

these resources before summing up. This leads to reduced (adjusted) pair-wise 

protection levels kjs . In particular, any pair-wise protection level kjs  must never 

exceed the sum of the available capacity of the resources kr r  – which is the 

maximum of the capacity units that could potentially be used for product j  re-

quests at all – minus the capacity units that should be protected for later arriving 

higher-value requests for products l k . The complete algorithm for computing 

a certain protection level js  that reserves capacity for all higher-value products 

can be stated as follows: 
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Algorithm 1: Computing a protection level with quality-consistent prices 

Preconditions: Product j  to consider, remaining capacities x  

1. Compute pair-wise protection levels *

kjs k j   by Equation (1). 

2. Set : 1k  . 

3. While k j : 

3.1 Compute adjusted pair-wise protection levels 
k

*

kj kj r lj

r r l k

s min s , x s
 

 
  

 
  . 

3.2 Increment : 1k k   and go to Step 3. 

4. Compute protection level j kj

k j

s s


 . 

Note that, from this reservation procedure, it follows that *

kj kjs s k  . 

As in classical EMSR-a, the algorithm calculates the pair-wise protection levels 

*

kjs  for all the products k j  using Equation (1) in Step 1. Then, beginning with 

product 1k   (Step 2), all the products k j  are considered in Step 3 and the 

pair-wise protection levels 
*

kjs  are adjusted. The adjusted pair-wise protection 

level kjs  represents the capacity to protect for product k  from product j  on re-

sources jr r . This protection level is calculated as the minimum of the pair-wise 

protection level 
*

kjs  given by Littlewood's rule and the capacity that can be used 

for product j  minus the sum of the adjusted pair-wise protection levels ljs  for 

products l k  that are higher-valued than k . Finally, in Step 4, the adjusted pair-

wise protection levels kjs  are summed up to obtain js . 

Example. Figure 2 illustrates how to apply the above Algorithm 1, using the ex-

ample introduced in Section 3.1 to derive the protection level 4s  for product 4, the 

cheapest economy class ticket. The figure extends the standard way of illustrating 

EMSR-a that Belobaba [9] introduced. The vertical axis represents the EMSR and 

the horizontal axis the seats of the plane. First class seats are depicted in dark grey 

on the left ( 3x ), business class seats ( 2x ) are depicted in the middle (normal 

grey), and economy class ( 1x ) are on the right (light grey). The fact that the three 

compartments share one axis reflects the basic idea to perform an integrated 

EMSR approach over all compartments. As usual, the curves represent the ex-
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pected marginal seat revenues of products 4k   as functions of the number of 

seats protected for them. 

1p

2p

4p

3p

14

*s

24

*s

34

*s

4s

14s 24s
34s

3x 2x 1x

EMSR

seats

EMSR 

product 1

EMSR 

product 2

EMSR 

product 3

 

Figure 2 Computing a protection level by EMSR-a with upgrades and quality-consistent prices 

Determining the protection level 4s  first requires the computation of the pair-wise 

protection levels 14

*s , 24

*s , and 34

*s  by Littlewood’s rule (Equation (1)) (Step 1). As 

usual, these pair-wise protection levels are at the intersection of the respective 

EMSR curve with the price 4p . Then, beginning with the highest value product 

: 1k   (Step 2), the adjusted pair-wise protection levels 14s , 24s , and 34s  are calcu-

lated in the order of decreasing prices, that is, of increasing product indexes (the 

loop is defined by Steps 3 and 3.2), virtually going from left to right in Figure 2. 

This is accomplished as follows (Step 3.1): 

 Iteration 1: As product 1 is a first class ticket, it can only use seats in first 

class ( 3x ), but the pair-wise protection level 14

*s  exceeds 3x . Therefore, 

the adjusted pair-wise protection level is set to the maximum capacity that 
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is available for product 1, that is, the number of seats in first class: 

 14 14 3 3

*s min s ,x x  . 

 Iteration 2: The business class ticket (product 2) can use seats in first class 

( 3x ) or business class ( 2x ). Thus, for this product, we can reserve seats in 

first or business class, but only the ones that are not already reserved for 

product 1, that is, 2 3 14x x s  . This is depicted in the graph by aligning the 

EMSR curve of product 2 to the adjusted pair-wise protection level of 

product 1 ( 14s ). It is important to note that this is left of Littlewood’s pro-

tection level 14

*s , where product 2’s curve would be aligned in traditional 

EMSR without considering compartment restrictions. Because combined 

first and business class capacity minus the number of seats protected for 

product 1 does not exceed the pair-wise protection level 

( 24 2 3 14

*s x x s   ), we succeed in protecting all the seats demanded by 

Littlewood’s rule:  24 24 2 3 14 24

* *s min s ,x x s s    . 

 Iteration 3: The economy class ticket (product 3) can use seats in all three 

compartments, which are not reserved for products 1 or product 2 : 

1 2 3 14 24x x x s s    . Thus, product 3’s EMSR curve is aligned just right 

of the adjusted pair-wise protection level of the preceding product 2, 24s . 

Note that this is now in business class: Product 3’s curve goes over two 

compartments (business and economy) and some seats in business class 

are “earmarked” for upgrades from economy class. Again, the number of 

seats not yet protected does not exceed Littlewood’s pair-wise protection 

level ( 34 1 2 3 14 24

*s x x x s s     ), and we obtain 34 34 1 2

*s min s ,x x  
 

3 14 24 34

*x s s s   . 

Finally, we compute the total protection level 4 14 24 34s s s s    by adding up the 

adjusted pair-wise protection levels (Step 4). In the figure, this corresponds to all 

seats from the vertical axis to the right end of the adjusted pair-wise protection 

level of product 3 ( 34s ), that is, until the point where we would align the next 

curve. 
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Note that technically and with respect to the interdependencies between the re-

sources, the EMSR-based approach that Rehkopf [14] describes for a multistage 

production setting can be seen as a special case of the approach we have proposed 

above. While Rehkopf [14] also considers multiple resources, he does not incor-

porate upgrades. In particular, he addresses a setting with excess demand and suf-

ficiently high contribution margins for products requiring higher-level resources 

with respect to a potential hierarchy. This enables him to successively apply tradi-

tional EMSR procedures over the different stages in an isolated way without the 

need to modify the procedure itself as in our case (see Rehkopf [14], Chapter 

5.2.3, in particular Figure 5.3). 

3.3 Control mechanisms 

In this subsection, we propose appropriate control mechanisms that define how 

the model developed in Section 3.2 is applied throughout the booking horizon. In 

our first control mechanism, we continue to follow the classical assumption of 

low-before-high demand. In line with traditional EMSR heuristics, a static control 

policy can then be used. That is, the protection levels for all the products can be 

computed once and used throughout the booking horizon. The resulting mecha-

nism, which is given by Algorithm 2, is very similar to a mechanism for EMSR 

without upgrades. The difference is in Step 1, in which the resource 
*r  used in the 

case of acceptance of the request for product k  on hand is determined as de-

scribed above. Step 2 actually decides on the acceptance of the request. If the ca-

pacity is available, that is if 
*r  exists, and the remaining capacity exceeds the 

protection level by at least one unit, the request is accepted. The request is as-

signed to 
*r , and this resource's remaining capacity is reduced accordingly (Step 

3). 

Algorithm 2: Control mechanism for low-before-high ordered demand 

Preconditions: Incoming request for product k , remaining capacities x , protec-

tion levels js j  

1. Identify resource  0*

k rr min r : r r x    . 
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2. If 
*r  exists and 1

k

k r

r r

s x


  , accept request for k . Otherwise, reject it. 

3. In the case of acceptance, assign k  to 
*r  and reduce the remaining capacity 

: 1* *r r
x x  . 

Even though static approaches are widely used in industry (see e.g. [13]) because 

of their simplicity, in reality – as opposed to the low-before-high assumption 

made when calculating the protection levels – the demand almost never arrives 

strictly in low-before-high order. However, it is still possible to apply the ap-

proaches and to partially compensate for the shortcomings of the low-before-high 

assumption in these cases by recalculating the protection levels throughout the 

booking horizon. An algorithm that recalculates all the protection levels with up-

dated demand and capacity information at every point in time t  will not depend 

on the low-before-high assumption at all. However, this will be computationally 

intensive for real-time bookings and an uncommon procedure in practice. Instead, 

various approaches for adjusting the protection levels if the low-before-high as-

sumption does not appear to be appropriate are used. The basic difference of the 

most popular approaches can be summarized as follows (see e.g. [1], Chapter 

2.1.1.3 or [16] for a detailed description). Theft Nesting assumes that the demand 

is low-before-high in principle and that requests for higher-value products that 

arrive between requests for lower-value products must be considered as extraordi-

nary, additional demand. In contrast, Standard Nesting assumes that requests ar-

rive in an arbitrary order. Therefore, a request for a certain product arriving today 

reduces the expectation of demand-to-come. 

To design a control mechanism for demand arriving in an arbitrary order, we fol-

low the latter point of view. The resulting Algorithm 3 is equal to Algorithm 2 up 

to Step 3.1. In Step 3.2, we follow the idea behind Standard Nesting. After a re-

quest for product k  has been accepted, we reduce the pair-wise protection levels 

*

kjs  for lower-value products j k  by one, because we expect one request less for 

k . Afterwards (Step 3.3), only the protection levels js  of these products j  are 

recalculated, using Algorithm 1 with the new *

kjs  and updated capacity. This pro-

cedure accounts for arbitrarily ordered demand and reduces the computational 
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load by avoiding the recalculation of pair-wise protection levels using Equation 

(1). 

Algorithm 3: Control mechanism for arbitrarily ordered demand 

Preconditions: Incoming request for product k , remaining capacities x , protec-

tion levels js j , individual protection levels *

ljs l, j  with l j  

1. Identify resource type  0*

k rr min r : r r x    . 

2. If 
*r  exists and 1

k

k r

r r

s x


  , accept the request for k . Otherwise, reject it. 

3. In case of acceptance: 

3.1 Assign k  to 
*r  and reduce the remaining capacity : 1* *r r

x x  . 

3.2 Decrement  : 1 0* *

kj kjs max s , j k    . 

3.3 Recalculate js j k   by the use of Algorithm 1 starting from Step 2. 

3.4 Heuristic for products with arbitrarily ordered prices 

In this subsection, we develop an extended version of Algorithm 1 that does not 

depend on the assumption of quality-consistent prices but instead works with arbi-

trary orders of prices. Non-quality-consistent pricing is quite common and is usu-

ally the result of additional restrictions that products are linked with and that are 

used to perform additional price differentiation. In the airline industry, there are a 

number of different tickets in each compartment so that a standard economy class 

ticket could be more expensive than a special ticket in business class. The latter 

will, for example, be linked to additional advance purchase restrictions or a re-

striction regarding the cancellation options. Other examples include capacity con-

trol problems faced by hotels, car rental firms, and railroad companies. Further-

more, the assumption of quality-consistent prices usually does not hold for single-

leg problems derived by breaking up network problem and splitting up revenue of 

a multi-leg flight to the legs concerned using some proration scheme (see e.g. [1], 

Chapter 3.4.2).  
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As in Section 3.2, the pair-wise protection levels *

kjs k j   obtained from Lit-

tlewood's rule (see Equation (1)) are the basis for calculating the protection level 

js  of product j . Again, our main goal is to set aside *

kjs  units of capacity for eve-

ry higher-value product k j . However, a higher-value product k  can now even-

tually consume capacity on a resource that is lower in the upgrade hierarchy than 

j , that is, k jr r . In this case, it would make sense to allocate as much capacity 

as possible on resources as low as possible in the upgrade hierarchy to *

kjs  and, 

thus, as little as possible on resources jr r , that can also be used by j . Obvious-

ly, only allocating capacity on resources jr r  increases js , the amount of capaci-

ty to protect from j  for higher-value products, because the resources jr r  can-

not be used by product j  anyway. Moreover, allocating capacity on lower re-

sources enables us to allocate more capacity for the pair-wise protection levels 

that are considered later on. The complete algorithm for computing js , which 

works for arbitrary prices, can be stated as follows: 

Algorithm 4: Computing a protection level with arbitrarily ordered prices 

Preconditions: Product j  to consider, remaining capacities x  

1. Compute pair-wise protection levels *

kjs k j   by Equation (1). 

2. Set unreserved capacity :r ry x r  . 

3. Set : 1k  . 

4. While k j : 

4.1 Set : 0kjs  , : kr r  and :* *

kj kjh s  (capacity to reserve). 

4.2 Compute reduction  *

r kjz min y ,h . 

4.3 Reduce unreserved capacity :r ry y z  . 

4.4 Reduce capacity to reserve :* *

kj kjh h z  . 

4.5 If jr r , increase adjusted pair-wise protection level :kj kjs s z  . 

4.6 If 0*

kjh 
 
or r m , determine kjs , increment : 1k k  and go to Step 4. 

Otherwise, increment resource type : 1r r   and go to Step 4.2. 
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5. Compute protection level j kj

k j

s s


 . 

The main difference compared to Algorithm 1 is that throughout the algorithm we 

now explicitly reserve capacity of the different resources for the different prod-

ucts’ protection levels. In Step 1, the pair-wise protection limits are calculated 

using Littlewood's rule. Step 2 introduces a variable ry  for every resource r  that 

denotes the resource's capacity that has not (yet) been reserved for higher-value 

products. Initially, this variable equals the resource's remaining capacity 

( :r ry x r  ). To reserve capacity, we begin with the highest-value product 

: 1k   (Step 3) and repeat the following for every product k j  (Step 4). Steps 

4.1 to 4.6 realize the idea outlined above; we reserve as much capacity as possible 

up to *

kjs  on resources as low as possible. Step 4.1 performs some initializations. 

The adjusted pair-wise protection level is initialized ( : 0kjs  ). We begin with the 

lowest resource that can be used to provide product k  ( : kr r ), and the number of 

capacity units *

kjh  that still must be reserved equals the pair-wise protection level 

*

kjs  ( :* *

kj kjh s ). Step 4.2 computes how many capacity units can be reserved for *

kjs  

on the current resource r  and the unreserved capacity on r  (Step 4.3) as well as 

the number of capacity units that still must be reserved (Step 4.4) are reduced ac-

cordingly. Finally, in Step 4.5, the consideration of product k  and resource r  is 

completed. The adjusted pair-wise protection level kjs  is increased, if the capacity 

on a resource that can be used by j  ( jr r ) was reserved. Step 4.6 continues with 

the next lower-value product 1k   if either no more capacity must be reserved for 

*

kjs  ( 0*

kjh  ) or no more capacity can be reserved because we already considered 

the highest resource m . Otherwise, we attempt to reserve capacity for *

kjs  on the 

next higher resource 1r  . In the end, we again add all the adjusted pair-wise pro-

tection levels to obtain js  (Step 5). 

In line with EMSR approaches in traditional revenue management settings, the 

protection levels resulting from Algorithm 1 and Algorithm 4 are nested with re-

spect to the product hierarchy, that is 1 1 0n ns s ... s    . This nesting is main-

tained when conducting either of the two control mechanisms presented in the 
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previous subsection. Note that both algorithms are equivalent when the prices are 

quality-consistent. 

4 Computational results 

In this section, we present the main results of an extensive simulation study that 

demonstrates the applicability and performance of the EMSR-a–based approaches 

developed in Section 3. All the algorithms were implemented in C# running on 

the Microsoft .NET Framework 3.5 SP 1 and linked to the ILOG CPLEX 12.1 64-

Bit optimization routines. The simulations were conducted on an Intel Xeon pro-

cessor-based server (Xeon 5450 CPU, 16 GB RAM, operating system Microsoft 

Windows Server 2008 Enterprise 64-Bit SP2). In Section 4.1, we describe the 

implemented control mechanisms and the basic setting. On this basis, Section 4.2 

provides the results of the performance analysis of our approaches. Subsequently 

in Section 4.3, we relax the basic assumptions and investigate a broader range of 

experimental settings. 

4.1 Control mechanisms and basic setting 

In the simulation study, we compare the new EMSR-based approaches to several 

other control mechanisms. The following mechanisms are considered:  

 EMSR denotes the control mechanisms from the algorithms in Section 3.3. 

When demand arrives in low-before-high order, we apply Algorithm 2, 

whereas Algorithm 3 is used for arbitrary arrival orders.  

 DPD-S implements the single-leg dynamic programming decomposition 

incorporating upgrades that was proposed by Steinhardt and Gönsch [7]. 

The decomposition is conducted by resource types.  

 DLP uses the dual variables from the DLP-model that incorporates up-

grades (see e.g. [17] for the well-known standard DLP without upgrades as 

well as [2] for the corresponding formulation including upgrades). Re-

quests for a specific product are accepted if the net revenue exceeds the 
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corresponding bid price. If there are several upgrade possibilities for a re-

quest, an upgrade is made to the available resource with the lowest bid 

price. 

 RLP is similar to DLP but instead calculates the bid prices from a corre-

sponding randomized linear program (RLP) with a sample size of 25. Pre-

liminary testing showed that the performance of this approach did not im-

prove with larger sample sizes, a result that is in line with the literature 

(see e.g. [18] in the context of the standard RLP without upgrades). 

 SuccPl mimics a successive planning control as it is widely used in com-

mercial revenue management systems to handle upgrades. In a first step, 

virtual capacities are determined for each resource type. For this purpose, 

the capacities are adjusted according to the optimal values of the decision 

variables from the primal solution of the DLP that incorporates upgrades. 

In a second step, an EMSR-a–based protection level control mechanism 

without upgrades similar to Algorithm 3 of Section 3.3 is conducted while 

applying the new virtual capacities.  

 DP refers to the full single-leg dynamic program simultaneously consider-

ing multiple resource types and incorporating upgrades (see e.g. [2] for the 

corresponding network formulation). Note that this mechanism gives the 

optimal policy in terms of expected revenue and can therefore be consid-

ered to be an upper bound for the other approaches. However, it is compu-

tationally complex to calculate because of the multidimensional state 

space that results from the different resource types to be considered. 

As is common in revenue management simulation studies considering stochastic 

demands, we state the method’s obtained revenues relative to the perfect hindsight 

optimal revenue that would be obtained under complete demand information 

(ExPost). 

In our experiments, we consider an airline controlling a single-leg flight that en-

compasses three disjoint resource types, which are the compartments economy 

class, business class, and first class with initial capacities of 140, 40, and 20 seats, 
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respectively. In each compartment, the airline offers one discounted and one full 

fare product, namely, (M, Y) in economy, (D, C) in business, and (A, F) in first 

class. The fares are quality-consistent and fixed at 400, 800, 1200, 1600, 2000, 

and 2400 for the products M, Y, D, C, A, and F, respectively. Full cascading up-

grades are allowed. 

Regarding the demand generation, we start with a given value for the total ex-

pected demand. We assume that 45%, 35%, 10%, 5%, 3%, and 2% of this total 

expected demand is for the products M, Y, D, C, A, and F, respectively. We simu-

late five demand intensities  1.0,1.1,1.2,1.3,1.4 . The intensity 1   corre-

sponds to the case that the total expected demand equals the initial capacity. For 

1 2.  , for example, we multiply the total expected demand by 1.2 before split-

ting it into the demands for the different products. With respect to the demand 

arrival process over time, requests are assumed to arrive in non-overlapping, time-

homogeneous intervals. Therefore, we further split the expected demand for each 

product according to one of the following three representative arrival patterns: 

low-before-high, flat, and mixed arrival order. Under the low-before-high arrival 

order, the demand arrives in the order of non-increasing product prices such that 

in each interval only requests for one specific product arrive. Under the flat arrival 

order, the requests for all the products arrive homogeneously in one joint interval. 

The mixed arrival order is a compromise of these two arrival paradigms. It defines 

three intervals and in every interval, demand for all products arrives. Whereas the 

majority of demand for low-value products arrives in the earliest interval, the ma-

jority of high-value requests arrive in the last one. Thus, requests at least tend to 

arrive in a low-before-high order. See Appendix A.1 for a detailed description of 

the arrival patterns. To obtain a discrete stochastic demand process, each interval 

is further divided into micro periods, in each of which at most one product’s re-

quest arrives with a given probability. The number of micro periods and the arri-

val probabilities are calculated such that the expected demand for each product 

sums up to the value given for the interval considered (see e.g. [19]).  
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Overall, we consider five demand intensities with three arrival patterns, so that in 

total we have 15 scenarios. For each scenario, we generate 200 customer streams 

and use these identical streams to evaluate the different control mechanisms in the 

scenario.  

4.2 Performance evaluation  

In this subsection, we evaluate the new EMSR-a–based approaches by comparing 

them to the other methods introduced in Section 4.1. First, note that most of the 

models underlying the investigated methods are static in the sense that they are 

solved once and that their output does not adapt automatically to the realization of 

stochastic demand over time. An exception is DP, because it simultaneously cal-

culates the optimal policy for all possible future demand realizations. To mitigate 

the aforementioned drawback, it is common practice to recalculate the static reve-

nue management models at several points in time throughout the booking horizon, 

using the current capacity situation and the forecasted demand-to-come as input. 

Therefore, in our computational study, we first determine an appropriate frequen-

cy of such reoptimizations. We have measured the revenue improvements result-

ing from additional reoptimizations by resolving the underlying models for the 15 

scenarios in Section 4.1. Because the picture is quite similar each time, we exem-

plify the effect of reoptimizations for two examples. Figure 3 shows the typical 

average revenue of the control mechanisms relative to ExPost while performing 1, 

3, 10, and 20 (re)optimizations.  

When the demand is low-before-high (the left graph in Figure 3), it is sufficient to 

apply EMSR using Algorithm 2. Note that reoptimizations are not required in this 

case, because by construction the protection levels of the higher-value products, 

for which the requests strictly arrive later on, will not change anyway (remember 

that EMSR heuristics were initially proposed for low-before-high demand set-

tings, see Section 2). Here, the performance of EMSR almost matches that of the 

optimal policy from DP (see e.g. [1], Chapter 2.2.4.3 and [20] for similar results). 
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Figure 3 Relative revenue performance subject to (re)optimizations for low-before-high ( 1 2.  ) 

and mixed ( 1 3.  ) arrival orders 

When the requests do not arrive in low-before-high order (the right graph in Fig-

ure 3), we apply EMSR using Algorithm 3, which considers the dynamics of the 

arrival process by updating the protection levels after accepting a request. Addi-

tional reoptimizations of EMSR can potentially improve the calculated protection 

levels. This can be explained as follows: A reoptimization on the basis of the cur-

rent forecast of demand-to-come in Step 1 of Algorithm 1 will typically yield bet-

ter protection levels than the decrease performed by Algorithm 3 after accepting a 

request. This is mainly because only reoptimizations can free up capacity for low-

er-value products that is protected for more expensive ones if less than expected 

demand for these expensive products has arrived in the elapsed time of the book-

ing horizon. As this is irrelevant when demand is low-before-high, it is not sur-

prising that the revenue gap between EMSR and DP is bigger here than in the low-

before-high scenario depicted in the left graph. However, the simulations show 

that, thanks to Algorithm 3, the performance of EMSR remains relatively constant 

with and without reoptimizations. Average revenues are constantly over 97% of 

ExPost and quite close to the upper bound DP. Improvements through reoptimiza-

tions range only from 1 to 2 percentage points. This is because Algorithm 3 al-
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ready considers the number of accepted requests which provides an estimate on 

the lapse of time and, hence, future demand-to-come.  

Regarding the other control methods, we jointly discuss both examples because 

the core results are similar. SuccPl is hardly dependent on the number of reopti-

mizations. This is because the acceptance and rejection decisions are made with 

an EMSR-a–based control mechanism that includes protection level adjustments 

that are analogous to those of Algorithm 3. Nevertheless, reoptimizations improve 

the average revenue by 2 to 3 percentage points, because the virtual capacities are 

updated more often. When using a bid price control mechanism, there is no ad-

justment between reoptimizations comparable to Algorithm 2 or Algorithm 3. All 

requests for a certain product are either accepted if the revenue exceeds the bid 

price as long as capacity is sufficient, or all are rejected. Between two 

(re)optimizations, requests that exceed a given bid price are accepted in a first-

come-first-served manner. This shortcoming is particularly apparent in case of 

low-before-high demand because capacity is filled up with lower-value requests in 

the first place. Accordingly, our results show that, regarding DLP and RLP, the 

benefits from resolving the method are much more evident. The same is true for 

DPD-S, because in each of the dynamic programs resulting from the decomposi-

tion, it also incorporates bid prices from a DLP which suffer from the same draw-

back. The theoretical considerations are confirmed by an in-depth analysis of our 

demand streams and the mechanisms’ decisions. It shows that these methods tend 

to accept too much low-value demand at the beginning of the booking horizon 

when performing only a few reoptimizations. Consequentially, too many upgrades 

are offered. 

Intuitively, a higher (re)optimization frequency improves the performance of all 

methods, in particular of the bid price controls. Whereas this improvement de-

creases with additional reoptimizations, the computational burden increases line-

arly. In view of this trade-off and in line with typical reoptimization frequencies 

occurring in practice, ten re(optimizations) seem reasonable and in what follows, 

all the methods are (re)optimized at ten predetermined points in time during the 
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booking horizon. Only when the demand is low-before-high, we continue to use 

EMSR without reoptimizations because the reoptimizations do not change the re-

sulting protection levels. As there are slight improvements for more than ten 

(re)optimizations, we additionally conducted preliminary tests considering reop-

timizations for every incoming request, which even indicated the superiority of 

EMSR independently of the number of reoptimizations. 

We now tested whether the advantage of EMSR over other methods is significant 

for the given number of 10 (re)optimizations. Table 1 shows the percentage reve-

nue gain of EMSR over the other methods, together with the corresponding 99% 

confidence interval. Because DP is not applicable in practice, we do not report 

results from it here. We calculate the revenue difference on a per stream basis and 

use the average over all 200 demand streams together with the empirical standard 

deviation in a standard paired t-test. If the confidence interval does not include 

zero, the gain (or loss) is significant. Throughout the paper, we continue to use the 

term significant only with regard to significance at the 99% level of confidence, 

even if we do not explicitly mention this.  

Overall, it turns out that the EMSR-a–based approach is the best heuristic in 13 

out of 15 scenarios, given the number of reoptimizations. Remarkably, EMSR 

significantly outperforms the successive planning method in all 15 scenarios. Fur-

thermore, it significantly outperforms DLP as well as DPD-S and RLP whenever 

demand is low-before-high. In the remaining 10 scenarios, EMSR outperforms 

DLP as well as DPD-S 8 times and RLP 5 times. Overall, average benefits are 

3.33, 2.03, and 1.30 percentage points, respectively. As an additional information 

(not given in the table), note that while the methods yield average revenues that 

are between 87.51% and 99.68% relative to ExPost, the revenues obtained by 

EMSR are constantly between 98% and 99.5% of ExPost, regardless of demand 

intensity or arrival pattern. 

Only in the case of low demand intensities, the benchmark methods can keep up 

with EMSR. This is because, when the capacity is not scarce, capacity control 

does not really matter. Even using a simple first-come-first-served approach 
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would do quite well. Thus, especially when the expected demand equals the ca-

pacity ( 1  ), all the mechanisms yield almost the same revenue as ExPost. 

Low-before-high arrival order

SuccPl 0.45 ± 0.23 0.93 ± 0.24 0.75 ± 0.22 0.64 ± 0.20 0.58 ± 0.20

DLP 2.03 ± 0.73 7.40 ± 0.96 5.55 ± 0.98 10.64 ± 1.15 7.62 ± 1.01

RLP 1.78 ± 0.68 4.93 ± 0.91 4.35 ± 0.81 2.00 ± 0.70 4.60 ± 0.70

DPD-S 1.44 ± 0.58 5.51 ± 0.77 3.96 ± 0.73 6.71 ± 0.70 5.48 ± 0.80

Flat arrival order

SuccPl 1.23 ± 0.25 0.64 ± 0.17 0.93 ± 0.17 1.00 ± 0.17 0.66 ± 0.15

DLP -0.10 ± 0.15 1.54 ± 0.30 1.94 ± 0.32 2.13 ± 0.36 1.96 ± 0.36

RLP -0.20 ± 0.12 0.16 ± 0.19 0.38 ± 0.22 0.27 ± 0.22 0.16 ± 0.19

DPD-S -0.30 ± 0.13 0.45 ± 0.20 0.93 ± 0.23 1.27 ± 0.32 0.80 ± 0.27

Mixed arrival order

SuccPl 0.94 ± 0.19 0.91 ± 0.20 1.26 ± 0.24 1.20 ± 0.22 0.88 ± 0.20

DLP 0.12 ± 0.24 1.66 ± 0.40 2.37 ± 0.44 2.77 ± 0.47 2.26 ± 0.40

RLP -0.22 ± 0.17 0.07 ± 0.26 0.39 ± 0.25 0.45 ± 0.27 0.33 ± 0.24

DPD-S -0.26 ± 0.16 0.71 ± 0.30 1.32 ± 0.32 1.47 ± 0.34 1.04 ± 0.36

Demand intensity

1 1.1 1.2 1.3 1.4

 

Table 1 Relative revenue gains of EMSR in the basic setting with 10 (re)optimizations 

In case of higher demand intensities 1  , the differences between the mecha-

nisms become relevant. When the demand arrives in a low-before-high manner, 

the revenue gains over DLP, RLP, and DPD-S are much more pronounced. As 

already mentioned, those controls use fixed bid prices over a certain time interval, 

whereas EMSR together with Algorithm 3 allows the simple adjustment of protec-

tion levels when time passes and requests are accepted. Similarly, SuccPl does not 

suffer from the drawback of bid prices and is the second best heuristic after EMSR 

for low-before-high demand. Regarding the other two arrival patterns, EMSR 

again is the overall best method, followed by RLP. This is because, except for 

EMSR, all methods involve solving a static linear program which does not explic-

itly account for uncertainty. RLP seeks to compensate for this shortcoming by ex-

ante simulating several demand scenarios, while DPD-S uses single-resource dy-

namic programs to capture stochasticity. Consequently, both approaches perform 

better than DLP, which is based solely on expected values. When analyzing the 

demand streams in detail, these theoretical considerations are confirmed. More 

precisely, EMSR preserves more capacity for higher-value products, whereas the 
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bid price controls and DPD-S have the tendency to provide too many upgrades. 

Thus, revenues from those tend to decrease when the demand intensity increases. 

4.3 Variations of the basic setting 

In this subsection, we vary the basic setting from Section 4.1 and study several 

additional settings. For simplicity, we refer to the basic setting as BS in this sub-

section. 

First, we investigate the impact of relative price distances on the revenue perfor-

mance. In BS, fares are evenly distributed in the interval 400 to 2400. Similarly, 

we spread the fares evenly in two further intervals, 400 to 1800, leading to small 

price distances (QCS), and 400 to 3000, for large price distances (QCL). In both 

of these new settings, all the prices are still quality-consistent. 

Second, we examine whether the results are similar when considering non-

quality-consistent prices. We study three corresponding pricing schemes for 

which Algorithm 4 (Section 3.4) must be used. We consider settings with small 

(NQCS), medium (NQCM), and large (NQCL) price distances. Table 5 in Appen-

dix A.2 provides the details of all the tested pricing schemes.  

Third, we analyze two additional assignments of expected demand to the com-

partments. In the basic setting BS (Section 4.1), 80% of the total expected demand 

is for economy class products, while only 70% of the seats are in this compart-

ment. Hence, we have a mismatch of capacity and expected demand. We define 

an additional setting DS1 in which the expected product demand equals the corre-

sponding compartment's share of the capacity, whereas we assume that there is a 

larger mismatch in DS2 (Table 2). In both settings, we assume that the prices are 

the same quality-consistent prices as in BS. 

M Y D C A F

DS1 0.4 0.3 0.13 0.07 0.06 0.04

BS 0.45 0.35 0.1 0.05 0.03 0.02

DS2 0.5 0.4 0.05 0.02 0.02 0.01

Products

 

Table 2 Demand shares of the six products in BS, DS1, and DS2 
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For each of the seven settings described above, we have conducted an analysis 

similar to the analysis for the basic setting described in Section 4.2. For each set-

ting, we again consider 15 scenarios that have been created by combining the five 

demand intensities with the three arrival patterns described in Section 4.1. This 

analysis results in seven tables analogous to Table 1, which are not given here for 

the sake of brevity. Instead, the results are aggregated in Table 3, which shows the 

average revenue gain of EMSR over each other control mechanism in percentage 

points with 10 reoptimizations. BS appears twice in the table, once as a reference 

for price variations and once as a reference for variations of the demand shares. 

Regarding the different demand arrival patterns, it shows that EMSR’s advantage 

is biggest when demand is low-before-high (up to 6.5 %); it decreases when de-

mand becomes mixed and flat and even becomes negative in very few experi-

ments in which upgrades are not necessary. The improvement over SuccPl is in-

dependent of the arrival pattern around 1%. Only when demand is such that there 

is no need for upgrades, the improvement becomes negligible. Overall, compared 

to the other methods, EMSR’s performance is quite robust regarding the arrival 

patterns.  

QCS BS QCL NQCS NQCM NQCL DS1 BS DS2

Low-before-high arrival order

SuccPl 0.60 0.67 0.73 0.95 0.96 0.96 0.00 0.67 0.72

DLP 5.24 6.65 7.71 3.91 4.84 5.51 2.48 6.65 6.38

RLP 2.76 3.53 3.80 2.32 2.85 3.16 1.75 3.53 2.31

DPD-S 3.57 4.62 5.38 3.59 4.34 4.88 -0.05 4.62 5.03

Flat arrival order

SuccPl 0.83 0.89 0.95 0.95 0.99 0.99 0.11 0.89 1.01

DLP 1.05 1.49 1.82 1.46 1.92 2.22 0.70 1.49 1.67

RLP -0.01 0.15 0.29 0.19 0.38 0.51 -0.18 0.15 0.20

DPD-S 0.31 0.63 0.87 0.69 1.09 1.30 -0.75 0.63 0.48

Mixed arrival order

SuccPl 0.99 1.04 1.01 1.16 1.19 1.11 0.12 1.04 1.15

DLP 1.37 1.84 2.54 1.58 2.04 2.31 0.81 1.84 2.02

RLP 0.07 0.20 0.38 0.24 0.43 0.51 0.09 0.20 0.21

DPD-S 0.55 0.85 1.29 1.02 1.47 1.64 -0.89 0.85 0.78

Relative price distances Demand shares

 

Table 3 Experimental results for the variations of the basic setting with 10 (re)optimizations (av-

erage relative revenue gains of EMSR over all demand intensities) 
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Given the number of 10 reoptimizations, the following insights can be derived 

from Table 3:  

First, it can be stated that the impact of the relative price distances on the revenue 

performance is comparatively small. Out of 45 experiments regarding quality-

consistently priced products (QCS, RC, QCL), EMSR yields the highest average 

revenue 38 times. The larger the price distances are, the more frequently EMSR is 

the best method. Analyzing the simulation results in detail also shows that the 

benefits from applying EMSR increase with the price distances. This result is in 

line with former EMSR-a research, which indicates that protection level estima-

tions are more accurate when the relative price distances increase (see e.g. [1], 

Chapter 2.2.4.1 and [20]). 

Second, the findings discussed in Section 4.2 basically also apply to the scenarios 

with non-quality-consistent prices (NQCS, NQCM, NQCL). EMSR is the best heu-

ristic in 39 out of 45 scenarios. The simulation results hardly differ from the cor-

responding quality-consistent experiments. Nevertheless, an in-depth analysis of 

the simulation results shows that EMSR often performs even better than the other 

approaches when the prices are not quality-consistent.  

Third, concerning the evaluated demand shares (DS1, RC, DS2), the revenue per-

formance of EMSR is constantly good. The results range from 97.63% to 99.38% 

of ExPost in DS1 and from 98.04% to 99.43% in DS3. Nonetheless, EMSR is the 

best method only in 27 out of 45 relevant scenarios. This result occurs because the 

other methods perform considerably better in DS1 than for the other demand 

shares. In particular, DPD-S and in some settings also RLP are slightly better in 

DS1 than EMSR. This is because, in line with the results of Section 4.2, the inte-

grated upgrade consideration of EMSR results in conservative protection levels 

and, thus, preserves more capacity for later-booking higher-value products, to 

avoid offering too many upgrades to lower-value demands. However, this behav-

ior is not required in DS1, while it improves the revenue performance in BS and 

even more in DS2. Note that the revenues of EMSR and SuccPl are almost equal 

in DS1, because the upgrade consideration is less important, and both methods 
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result in almost the same control policy. There are major benefits of EMSR over 

DLP regarding all arrival schemes, and additionally over RLP and DPD-S when 

demand is low-before-high. This is again due to the bid price shortcomings al-

ready discussed. 

5 Discussion 

After analyzing the numerical results in detail in the previous section, we now 

discuss the relevance and managerial implications of our new EMSR approach.  

Overall, we were able to show that the EMSR-a–based approach we propose does 

not suffer from the drawbacks of many other heuristics leading to the fact that it 

performs very well in our computational experiments. In particular, we derive the 

following managerial implications from our work: 

First, in our setting with 10 (re)optimizations, the new EMSR-based approach is 

superior to existing approaches, including RLP, DLP, DPD-S, and SuccPl. In par-

ticular, there are impressive gains of up to more than 6 % when demand follows 

the low-before-high assumption. In case of other patterns regarding demand, the 

revenue performance of our approach seems to be quite robust. In particular, in-

dependent from the scenario, good results are obtained, while the other proce-

dures’ performance is more volatile with the setting under consideration.  

Second, the results of our approach are not so dependent on the number of reop-

timizations. Analogous to the original EMSR-a approach, constant protection lev-

els can be used when demand is low-before-high, whereas the other mechanisms 

already depend on (re)optimizations in this case. For scenarios where demand is 

not low-before-high, Algorithm 3 adjusts protection levels after accepting a re-

quest. Hence, even in this case, the new approach only slightly depends on 

(re)optimizations. This dependence is because the adjustment basically relies on 

the (Standard Nesting) assumption that total demand is fixed and only the arrival 

time of requests varies. But, by contrast, future expected demand-to-come used in 

an optimization does not depend on the past, which is not only technically correct 

for the standard revenue management setting used here, but also widely consid-

ered more natural. The results we present are based on 10 (re)optimizations for all 

tested control procedures. It is well-known that more reoptimizations usually lead 
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to higher revenues, and there are often at least very small increases for high num-

bers of optimizations. These revenue improvements make a higher number of re-

optimizations desirable. However, we did some preliminary testing allowing the 

methods to reoptimize for every single incoming request. This showed that EMSR 

is still the best method, but in the mixed arrival pattern essentially on par with 

RLP. Unfortunately, more reoptimizations clearly increase the computational bur-

den. To reasonably handle the trade-off between computation time and revenue, in 

our study, we choose the number of reoptimizations such that additional ones only 

have a small impact, but less would clearly decrease revenues. Moreover, not only 

the computational burden renders very frequent reoptimizations impossible in 

practice. For example, at major airlines, updated forecast data is available only for 

around 10 to 15 pre-defined data collection points, and the models are thus only 

resolved at these points in time. 

Third, depending on the order of arrivals and the number of reoptimizations which 

is possible in the specific setting, the advantage of the new procedure over other 

procedures, like the RLP-based one, could become insignificant. For example, if 

demand is time-homogeneous, that is, flat, our results indicate that a bid price 

approach with an appropriate (large) number of reoptimizations based on a (modi-

fied) RLP formulation, can also be used, leading to comparable results. The same 

could be true for dynamic bid price approaches when adapted to this setting (see 

our research outlook in Section 6). However, our experiments from Section 4 as 

well as the preliminary investigations of reoptimizing the other procedures even 

for every incoming request show that EMSR almost never performs worse than the 

other approaches; a result we consider quite impressive.  

Finally, on the one hand, our new procedure is a remarkable improvement over 

the current state in practice. In the considered case of 10 (re)optimizations, it sig-

nificantly outperforms SuccPl, which mimics the successive planning approach 

currently used in commercial revenue management systems, in all the scenarios 

we have tested at the 99% level. The average relative revenue improvements are 

up to 1.3 percent. Note that, as it is widely acknowledged in the literature on reve-

nue management, revenue improvements in this range have a big impact, as the 

absolute value of revenue improvement usually directly contributes to the overall 

profit. Thus, a 1% improvement in revenue can realistically imply an improve-
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ment of dozens of percentage points in profit. On the other hand, as already stated 

before, EMSR components are right available, quite common (e.g. as part of a 

successive planning EMSR-approach), and well approved in most revenue man-

agement software systems in practice. Thus, these components could easily be 

used in order to apply the proposed approach and end up with significantly better 

results in terms of achieved revenue. Opposed to that, for example in the airline 

industry, linear programming based approaches are not so common so far. 

6 Conclusion and future research 

In this paper, we propose a new approach for the single-leg capacity control prob-

lem with multiple resource types and integrated upgrade decision-making. This 

approach generalizes the well-known EMSR-a procedure for single-resource ca-

pacity control, which is based on the calculation of protection limits. Our compu-

tational study indicates that the new approach has several advantages over other 

control mechanisms that have integrated upgrade considerations. First, as opposed 

to bid price-oriented control mechanisms that are based, for example, on exten-

sions of the well-known DLP model and the RLP model, our approach depends 

much less on the number of (re)optimizations throughout the booking horizon. 

This is true even if the requests do not arrive in low-before-high order. Second, in 

terms of revenue, given an industry-like reoptimization frequency, the new ap-

proach outperforms all other approaches that are known in the scientific literature 

such as the dynamic programming decomposition approach that has recently been 

proposed by Steinhardt and Gönsch [7], in most of the investigated scenarios. 

Third, our approach consistently outperforms a standard method that is based on 

successive planning and that is widely used to incorporate upgrades in current 

commercial revenue management systems. 

The results of the computational study are quite promising and encourage future 

work on this topic. First, future research could include the further generalization 

of the proposed approach to network problems, that is, to problems that simulta-

neously consider several legs, each of which in turn consists of several resource 

types. In this context, the proposed control mechanisms can surely be incorpo-
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rated into any type of decomposition scheme, such as proration. Second, the ap-

proach could potentially be adapted to settings that do not assume that strictly 

fenced independent demands exist for the products and that instead use a choice-

based demand model. Third, one could think of finding comparable adaptations of 

other EMSR heuristics for the capacity control problem with integrated upgrades. 

As our approach relies on EMSR-a, a closer investigation of EMSR-b, which is 

the second procedure that has been proposed by Belobaba (see e.g. [10]), could be 

of particular interest. This could also be helpful for those commercial revenue 

management systems that only implement EMSR-b, because existing routines 

could potentially be reused to a certain extent. However, we do not see an ap-

proach that would keep the intuitive appeal of the original procedure as our exten-

sion does with respect to EMSR-a. This is because EMSR-b is based on aggregat-

ing demand rather than aggregating protection levels. This makes aggregation 

particularly difficult in the upgrade setting ending up with quite complex random 

variables which would inherently have to incorporate the resource types’ capacity 

limitations. Fourth, our results indicate that, adapted linear programming-based 

bid price approaches, especially those that are RLP-based, can also yield a good 

revenue performance, at least when demand is not low-before-high. However, bid 

price approaches heavily depend on a high reoptimization frequency. This has 

also been confirmed in this paper. While not yet available in commercial revenue 

management software packages, in the scientific literature, there are publications 

that propose dynamic bid price approaches relaxing the assumption of static bid 

prices and thus overcoming the shortcomings of a traditional bid price control (see 

e.g. [21], [22], and [23]). Therefore, we think that it could be promising for future 

research to adapt and apply these approaches to the upgrade setting, if possible, 

and compare them to the already existing approaches like the one presented in the 

paper. In this context, we also think that it would be of particular practical rele-

vance to thoroughly analyze the performance in the presence of systematic fore-

cast errors.  

The results in this paper also have direct implications to future practical consid-

erations. Instead of resorting to successive planning approaches to manage up-
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grade decisions, firms could implement the approach developed in this paper and 

profit from a tighter integration of capacity control and upgrading. The proposed 

control mechanisms are quite intuitive, are straightforward to implement, and are 

computationally easy to solve even for large problem instances that occur in prac-

tical applications. In addition, many software systems already include EMSR 

components that could potentially be easily modified to implement the approach 

developed in this paper. 
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Appendix 

A.1. Experimental arrival patterns 

In Section 4, we study three arrival patterns: low-before-high, flat, and mixed. 

Each arrival pattern consists of a fixed number of intervals that are indexed back-

wards in time. For each product, the total expected demand is divided and as-

signed to the intervals in Table 4. The products are indexed in the order of non-

increasing prices. Each row in Table 4 corresponds to a product and indicates how 

the total expected demand for this product is divided.  

Regarding the low-before-high arrival order (the left part of Table 4), the demand 

arrives strictly in the order of non-increasing product prices, in such a way that, in 

each of six given intervals, requests for only one specific product arrive. Regard-

ing the flat arrival order (the center part of Table 4), requests for all the products 

arrive homogeneously in one joint interval. The mixed arrival pattern (the right 

part of Table 4) defines three intervals with mixed demand proportions decreasing 
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over time for lower-value products and increasing for higher-value products. 

Thus, requests tend to arrive in a low-before-high order. For example, 60%, 30%, 

and 10% of the lowest-value demand arrive in intervals 3, 2, and 1, respectively. 

Flat

6 5 4 3 2 1 1 3 2 1

6 1 1 0.6 0.3 0.1

5 1 1 0.5 0.3 0.2

4 1 1 0.4 0.3 0.3

3 1 1 0.3 0.3 0.4

2 1 1 0.2 0.3 0.5

1 1 1 0.1 0.3 0.6

Intervals of arrival patterns

Low-before-high Mixed

P
ro

d
u

ct
s

 

Table 4 Experimental arrival patterns 

A.2. Experimental price settings 

M Y D C A F

Q uality-consistent prices

QCS 400 680 960 1,240 1,520 1,800

BS 400 800 1,200 1,600 2,000 2,400

QCL 400 920 1,440 1,960 2,480 3,000

Non-quality-consistent prices

NQCS 400 960 820 1,660 1,450 1,800

NQCM 400 1,200 1,000 2,200 1,900 2,400

NQCL 400 1,440 1,180 2,740 2,350 3,000

Products

 

Table 5 Experimental price settings 
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