Probabilistic technique for solving computational problem : application of Ant Colony Optimization (ACO) to find the best sCO2 Brayton cycle configuration

Zugehörige Organisation
EDF R&D, Chatou, France
Mecheri, Mounir;
Zugehörige Organisation
EDF R&D, Chatou, France
Qiao, Zhaohui
This papers studies the potential of a probabilistic technique to solve complex problems such as thermodynamic cycle layout optimization. The Ant Colony Optimization (ACO) algorithm has been used to find an optimal configuration of a supercritical CO2 Brayton Cycle (sCO2-BC) for a specified application (coal power plant). This optimization is done by coupling an existing process simulation software (ProSimPlus) and an existing optimization solver (MIDACO). In this study, more than a 1000 cycle configurations have been analyzed regarding performance, costs and the value of the Levelized Cost Of Electricity (LCOE). Main results show that the optimal sCO2-BC configuration depends on the optimization criteria (objective function).
Zur Startseite

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung:
Dieses Werk kann unter einer
CC BY 4.0 LogoCreative Commons Namensnennung 4.0 Lizenz (CC BY 4.0)
genutzt werden.