Multi-Objective Control Strategies and Prognostic-Based Lifetime Extension of Utility-Scale Wind Turbines
Windenergie wird zunehmend als erneuerbare Energiequellen attraktiv, da Wind
nachhaltig genutzt werden kann. In vielen Ländern gibt es umfangreiche Anstrengungen,
die Produktion von elektrischer Energie aus Wind zu steigern. Im Vergleich
zu anderen erneuerbaren Energiequellen wie Sonne, Gezeiten, Wasserkraft
o.ä. ist die Energiegewinnung aus Wind technologisch ausgereifter. Daher ist die
Energiegewinnung aus Wind stärker gewachsen ist als andere Technologien. Windkraft
verursacht weniger nachteilige Auswirkungen auf die Umwelt als konventionelle
Energiequellen. Aufgrund der vergleichsweise hohen Investitions-, Betriebs- und
Wartungskosten sind trotz einer weltweit starken Verbreitung von Windenergieanlagen
die Produktionskosten von Windenergie im Vergleich mit anderen alternativen
Energiequellen hoch.
Um die wachsende Nachfrage nachWindkraft zu befriedigen, werdenWindkraftanlagen
in Größe und Leistung zunehmend skaliert. Bei zunehmender Größe dominieren
die strukturellen Lasten der Turbine. Dies führt vermehrt zu Materialermüdung
und Ausfällen. Ein weiterer Schwerpunkt in der Entwicklung von Windtechologie
ist die Forderung nach Senkung der Produktionskosten, um einen Wettbewerbsvorteil
gegenüber anderen alternativen Energiequellen zu schaffen. Im Bereich der
Steuerung können niedrigere Produktionskosten durch den Betrieb der Windturbine
am/oder in der Nähe der optimalen Energieeffizienz im Teillastbetrieb erreicht
werden. Dies erhöht die Zuverlässigkeit durch Verringerung des Verschleißes und
die erzeugte Nennleistung auf ihrem Nennwert im hohen Windregime. Häufig ist
es schwierig, einen Steueralgorithmus zu realisieren, der sowohl Effizienz als auch
Zuverlässigkeit gewährleistet, da diese beiden Ziele widersprechen.
In dieser Arbeit werden Mehrzielsteuerungsstrategien sowohl für den Teillastbereich
als auch für hohe Windgeschwindigkeits bereiche vorgestellt. Im Bereich geringer
Windgeschwindigkeiten ist eine Steuerungsstrategie so zu konzipieren, dass die Stromerzeugung
sowie die strukturelle Belastung im Sinne einer Balance zwischen maximalen
Stromproduktion und verlängerter Lebensdauer der Windturbine optimal ist.
Für den Bereich hoher Windgeschwindigkeiten wird ein multivariates Steuerungsverfahren
vorgeschlagen, um das Verhältnis von Leistung/Geschwindigkeit und struktureller
Lastreduzierung zu optimieren. Es wird ein Regler zur Einzelblattverstellung
entworfen, um sowohl die unausgewogene Strukturlasten als auch durch die Variation
des Windgeschwindigkeit verursachte Rotorscheibe, vertikale Windscherung
und Gierversatz fehler zu reduzieren.
Um die Zuverlässigkeit derWindturbine zu gewährleisten, ist ein Online-Schadensbewertungsmodell
in den Hauptwindturbinenregelkreis integriert, so dass die Windturbine
entsprechend ihres aktuellen Verschleißzustandes betrieben wird. In Abhängigkeit
von der akkumulierten Schadenshöhe werden Regler zur Einzelblattverstellung
mit unterschiedlichen Lastreduktionen und Kompromissen bei der Stromerzeugung eingesetzt, um zwischen den beiden Zielen verlängerte Lebensdauer und Leistungsregelung
einen geeigneten Kompromiss zu erzielten. Aufgrund der Herausforderungen
die mit Offshore-Windpark Standorten verbunden sind, ist diese Art von prognose-basierter
Regelung im Windturbinenbetrieb vor allem im Offshore-Einsatz vorteilhaft.
Insbesondere im Kontext output-basierter Vertragsformen z.B. power purchase
agreement (PPA) kann dieser Ansatz zur Optimierung der Wartungsplanung genutzt
werden.
Die Ergebnisse zeigen, dass die vorgeschlagenen Strategien die Auflast auf Windturbinen
reduzieren kann ohne sich auf andere Ziele wie die Leistungsoptimierung
und Leistung/Drehzahlregelung auszuwirken. Es konnte außerdem gezeigt werden,
dass eine prognostisch basierte Steuerung effektiv die Lebensdauer von Windenergieanalagen
verlängern kann, ohne das Ziel der Leistungsregelung einzuschränken.
Wind energy is one of the rapidly growing renewable sources of energy due to the
fact that wind is abundantly available and unlikely to be exhausted like fossil fuel.
Additionally, there are deliberate effort to sensitize many countries to develop polices
that support production of electrical power from wind. Maturity of wind energy
technology has made power production from wind grow significantly compared to
other renewable energy sources such as solar, tidal, hydro among others. Like many
other renewable energy sources, production of power from wind has less adverse
effects on the environment. Despite the growth of global cumulative installed wind
capacity, its cost of production is still higher compared to other alternative energy
sources due to high initial investment cost and high operation and maintenance
(O&M) costs.
To meet the growing demand of wind power, wind turbines are being scaled up both
in size and power rating. However, as the size increases, the structural loads of
the turbine become more dominant, causing increased fatigue stress on the turbine
components and consequent loss of functionality before the end of lifetime. Another
area of focus in wind power production is lowering its production cost; hence, making
it more competitive compared to other alternative power sources. From the control
point of view, low production cost of wind energy can be achieved by operating
wind turbine at/or near the optimum power efficiency during partial load regime,
regulating generated power to its rated value in the high wind regime as well as
mitigating structural loads so as to guarantee extended lifetime. Often, it is difficult
to realize a control algorithm that can effectively guarantee both efficiency and
reliability because these two aspects involve conflicting objective. Therefore, it is
important to optimize the trade-off between these competing control objectives.
In this thesis, multi-objective control strategies for both the partial load region and
high wind speed region are presented. During low wind speed, a control strategy
that optimizes power production as well as mitigating structural load is designed
to balance between power production maximization and extended lifetime of wind
turbine. On the other hand, a multivariate control method to balance between
power/speed regulation and structural load reduction is proposed for high wind
speed region. More specifically, an individual blade pitch controller is designed to
eliminate the unbalanced deterministic structural loads across rotor disc caused by
variation in wind speed, vertical wind shear, and yaw misalignment error.
To guarantee reliability in wind turbine, an online damage evaluation model is also
integrated into the main wind turbine control loop such that wind turbine is operated
accordance to its structural health status in order to tolerate fault or to extend
its service lifetime by a given period of time. Depending on the accumulated damage
level, individual pitch controllers with different degrees of load reduction and
power production compromise are employed to balance between extended lifetime and power regulation objective. This kind of prognostic-based control is useful in
wind turbine operation, especially in offshore application due to challenges associated
with offshore wind farm sites. Additionally, in wind farms that are managed
through output-based contracts such as power purchase agreement (PPA), this approach
can be utilized to optimize maintenance scheduling to avoid unscheduled
downtime.
The results demonstrated that the proposed multi-objective control strategies can
reduce structural load on wind turbine without adversely affecting other objectives
of power optimization and power/speed regulation. It has also be shown that a
prognostic-based control can be effectively used to extend the lifetime of wind turbine
without sacrificing the objective of power regulation.
Preview
Cite
Citation style:
Could not load citation form.