On the optimum binding energy for the hydrogen evolution reaction : How do experiments contribute?

Binding energies of reaction intermediates are largely used to comprehend activity trends in a class of electrode materials. For a two-electron process, such as the hydrogen evolution reaction (HER), it is a well-established paradigm that the optimum electrocatalyst binds adsorbed hydrogen thermoneutrally at zero overpotential. While this picture was challenged recently by means of density functional theory (DFT) calculations and microkinetic considerations, reporting a shift of the optimum binding energy to strong or weak bonding with increasing overpotential, now experiments show further evidence for this theory. This perspective article juxtaposes the different views of the optimum binding energy for the HER by means of the Sabatier principle, microkinetic considerations, DFT calculations, and experiments, and provides an outlook of potential future investigations by the combination of experiments with DFT aiming at sustainable materials development for the hydrogen electrocatalysis.

Cite

Citation style:
Could not load citation form.

Rights

Use and reproduction:
This work may be used under a
CC BY 4.0 LogoCreative Commons Attribution 4.0 License (CC BY 4.0)
.