Analytical solution of the cylindrical torsion problem for the relaxed micromorphic continuum and other generalized continua (including full derivations)

ORCID
0000-0002-5967-5403
Affiliation
GEOMAS, INSA-Lyon, Université de Lyon, Villeurbanne cedex, France
Rizzi, Gianluca;
GND
1041241844
Affiliation
Institute of Mechanics and Fluid Dynamics, Technische Universität Bergakademie Freiberg, Freiberg, Germany
Hütter, Geralf;
GND
1252330901
Affiliation
Fakultät für Mathematik, Universität Duisburg-Essen, Essen, Germany
Khan, Hassam;
ORCID
0000-0002-8466-8010
Affiliation
Department of Mathematics, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
Ghiba, Ionel-Dumitrel;
GND
1111904383
Affiliation
GEOMAS, INSA-Lyon, Université de Lyon, Villeurbanne cedex, France
Madeo, Angela;
GND
122258886
ORCID
0000-0002-1615-8879
LSF
13332
Affiliation
Fakultät für Mathematik, Universität Duisburg-Essen, Essen, Germany
Neff, Patrizio
We solve the St. Venant torsion problem for an infinite cylindrical rod whose behaviour is described by a family of isotropic generalized continua, including the relaxed micromorphic and classical micromorphic model. The results can be used to determine the material parameters of these models. Special attention is given to the possible nonphysical stiffness singularity for a vanishing rod diameter, because slender specimens are, in general, described as stiffer.

Cite

Citation style:
Could not load citation form.

Rights

License Holder:

© The Author(s) 2021 / © 2022 SAGE Publications

Use and reproduction:
All rights reserved