Removal of Trace Organic Contaminants by Parallel Operation of Reverse Osmosis and Granular Activated Carbon for Drinking Water Treatment
In response to increasingly stringent restrictions for drinkingwater quality, a parallel operation of two common technologies, low-pressure reverse osmosis (LPRO) and activated carbon filtration (ACF), was investigated in a comprehensive five-month pilot study for the removal of 32 typical trace organic contaminants (TrOCs) from Rhine bank filtrates employing a semi- technical plant. TrOCs have been divided into three groups: polyfluorinated aliphatic compounds; pharmaceuticals, pesticides and metabolites; in addition to volatiles, nitrosamines and aminopolycarboxylic acids, which were also examined. The net pressure behavior, normalized salt passage and rejection of TrOCs by LPRO were investigated and compared with ACF operation. In addition, autopsies from the leading and last membrane modules were performed using adenosine triphosphate (ATP), total organic carbon (TOC),
ICP-OES and SEM-EDX techniques. Generally, rather stable LPRO membrane performance with limited membrane fouling was observed. TrOCs with a molecular weight of 150 Da were completely retained by LPRO, while the rejection of di- and trichloro compounds improved as the filtration progressed. ACF also showed significant removal for most of the TrOCs, but without desalination. Accordingly, the ACF and LPRO can be operated in parallel such that the LPRO permeate and the ACF-treated bypass can be mixed to produce drinking water with adjustable hardness and significantly reduced TrOCs.
ICP-OES and SEM-EDX techniques. Generally, rather stable LPRO membrane performance with limited membrane fouling was observed. TrOCs with a molecular weight of 150 Da were completely retained by LPRO, while the rejection of di- and trichloro compounds improved as the filtration progressed. ACF also showed significant removal for most of the TrOCs, but without desalination. Accordingly, the ACF and LPRO can be operated in parallel such that the LPRO permeate and the ACF-treated bypass can be mixed to produce drinking water with adjustable hardness and significantly reduced TrOCs.
Vorschau
Zitieren
Zitierform:
Zitierform konnte nicht geladen werden.
Rechte
Nutzung und Vervielfältigung:
Dieses Werk kann unter einerCreative Commons Namensnennung 4.0 Lizenz (CC BY 4.0)
genutzt werden.