Wo schwache Kräfte sinnvoll walten : Von der Bedeutung und gezielten Anwendung nichtkovalenter Wechselwirkungen zwischen Molekülen
Die supramolekulare Chemie beschäftigt sich mit intermolekularen Wechselwirkungen. Diese sogenannten nichtkovalenten Interaktionen sind einzeln gesehen sehr schwach, können jedoch gezielt miteinander kombiniert werden, um eine Anwendung zu ermöglichen. Das Verständnis über die Nutzung dieser Wechselwirkungen bildet die Basis für das hochaktuelle und interdisziplinäre Forschungsfeld der supramolekularen Chemie.
Non-covalent forces are weak when they act individually; however, in a well-orchestrated interplay of dozens, they become relevant and can yield astonishing results. The understanding and use of non-cova-lent forces for the creation of func-tional entities is the playground of supramolecular chemistry – a highly interdisciplinary and timely field of research. Herein we summarize the research efforts of the three junior research groups in the department of Organic Chemistry at the University of Duisburg-Essen. The three groups focus on different aspects of supra-molecular chemistry ranging from materials science (AG Giese), to bio-medical research (AG Voskuhl), to the development of functional enti-ties connected via mechanical bonds (AG Niemeyer). After a short intro-duction to the world of non-covalent forces, the recent research efforts of the Giese group towards a modular design for smart materials are pre-sented. Like the colourful toy bricks from Denmark, a series of molecular building blocks allows the creation of a plethora of structures, which can reversibly change their orienta-tion. The properties of the resulting materials can be switched by irradia-tion with light, temperature changes or the exposure to chemical com-pounds. The research of the Voskuhl group focuses on biomedical applica-tions and uses a complex interplay of non-covalent forces to infiltrate biological cells with fluorescent molecules – a technique which is interesting as a diagnosis tool as well as for therapeutic applications. The Niemeyer group creates novel cata-lytic entities through the employ-ment of mechanical bonds. Thereby, the mechanical bond supports the cooperativity of the sub-components and increases the efficiency of cata-lytical systems – a first step towards a new design for catalysts.