A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and phenotyping of breast cancer
Methods: A total of 98 treatment-naïve patients (mean 59.7 years, range 28.0-89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats.
Results: Predictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading.
Conclusion: Our preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.
Vorschau
Zitieren
Rechte
Nutzung und Vervielfältigung:
Dieses Werk kann unter einerCreative Commons Namensnennung 4.0 Lizenz (CC BY 4.0)
genutzt werden.