A force-induced directional switch of a molecular motor enables parallel microtubule bundle formation

Zugehörige Organisation
Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
Molodtsov, Maxim I.;
Zugehörige Organisation
Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
Mieck, Christine;
Zugehörige Organisation
Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
Dobbelaere, Jeroen;
ORCID
0000-0002-1251-0978
Zugehörige Organisation
Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
Dammermann, Alexander;
GND
123695961
LSF
57732
Zugehörige Organisation
Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Department of Molecular Genetics, University of Duisburg-Essen, 45117 Essen, Germany. Electronic address: stefan.westermann@uni-due.de.
Westermann, Stefan;
Zugehörige Organisation
Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; The Rockefeller University, 1230 York Avenue New York, NY 10065, USA. Electronic address: vaziri@rockefeller.edu.
Vaziri, Alipasha

Microtubule-organizing centers (MTOCs) nucleate microtubules that can grow autonomously in any direction. To generate bundles of parallel microtubules originating from a single MTOC, the growth of multiple microtubules needs to coordinated, but the underlying mechanism is unknown. Here, we show that a conserved two-component system consisting of the plus-end tracker EB1 and the minus-end-directed molecular motor Kinesin-14 is sufficient to promote parallel microtubule growth. The underlying mechanism relies on the ability of Kinesin-14 to guide growing plus ends along existing microtubules. The generality of this finding is supported by yeast, Drosophila, and human EB1/Kinesin-14 pairs. We demonstrate that plus-end guiding involves a directional switch of the motor due to a force applied via a growing microtubule end. The described mechanism can account for the generation of parallel microtubule networks required for a broad range of cellular functions such as spindle assembly or cell polarization.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung:
Dieses Werk kann unter einer
CC BY-NC-ND 4.0 LogoCreative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 Lizenz (CC BY-NC-ND 4.0)
genutzt werden.