Human DNA-binding peptidyl-prolyl cis/trans isomerase Par14 is cell cycle dependently expressed and associates with chromatin in vivo
Background
Par14, a member of the parvulin family of peptidyl-prolyl cis-trans isomerases that is involved in rRNA processing, microtubule formation and the glucose metabolism and has been suggested to play a role in chromatin remodeling on basis of sequence and structural identities to HMG proteins. Par14 is enriched in the nucleus and binds to double-stranded DNA in vitro.
Results
By means of sub-nuclear biochemical fractionations, we demonstrate that cellular Par14 is associated with chromatin 3-fold higher than with the nuclear matrix in vivo. Par14 is released from the chromatin fraction after treatment with DNase I and elutes at high NaCl concentrations from the nucleic acid-binding fraction. Using qRT-PCR and western blotting we demonstrate that Par14 is up-regulated during the S and G2/M phases in synchronised human foreskin fibroblasts cells.
Conclusion
In the light of our results, Par14 can be described as an endogenous non-histone chromatin protein, which binds DNA in vivo. We propose that Par14 is involved in a DNA-dependent activity such as transcription.
Par14, a member of the parvulin family of peptidyl-prolyl cis-trans isomerases that is involved in rRNA processing, microtubule formation and the glucose metabolism and has been suggested to play a role in chromatin remodeling on basis of sequence and structural identities to HMG proteins. Par14 is enriched in the nucleus and binds to double-stranded DNA in vitro.
Results
By means of sub-nuclear biochemical fractionations, we demonstrate that cellular Par14 is associated with chromatin 3-fold higher than with the nuclear matrix in vivo. Par14 is released from the chromatin fraction after treatment with DNase I and elutes at high NaCl concentrations from the nucleic acid-binding fraction. Using qRT-PCR and western blotting we demonstrate that Par14 is up-regulated during the S and G2/M phases in synchronised human foreskin fibroblasts cells.
Conclusion
In the light of our results, Par14 can be described as an endogenous non-histone chromatin protein, which binds DNA in vivo. We propose that Par14 is involved in a DNA-dependent activity such as transcription.
Preview
Cite
Citation style:
Could not load citation form.
Rights
Use and reproduction:
This work may be used under a![CC BY 4.0 Logo](https://duepublico2.uni-due.de/licensebuttons/by/4.0/88x31.png)
.