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Abstract: Lane changing behavior (LCB) prediction is a crucial functionality of advanced driver-
assistance systems and autonomous vehicles. Predicting whether or not the driver of a considered
ego vehicle is likely to change lanes in the near future plays an important role in improving road
safety and traffic efficiency. Understanding the underlying intentions behind the driver’s behavior
is an important factor for the effectiveness of assistance and monitoring systems. Machine learning
(ML) algorithms have been broadly used to predict this behavior by analyzing datasets of traffic
and driving data related to the considered ego vehicle. However, this technology has not yet been
widely adopted in commercial products. Further improvements in these algorithms are necessary
to enhance their robustness and reliability. In some domains, receiver operating characteristic and
precision-recall curves are commonly used to evaluate ML algorithms, not considering the effects of
process parameters in the evaluation, while it might be necessary to access the performance of these
algorithms with respect to such parameters. This paper proposes the use of deep autoencoders to
extract multi-level features from datasets, which can then be used to train an ensemble of classifiers.
This allows for taking advantage of high feature-extraction capabilities of deep learning models and
improving the final result using ensemble learning techniques. The concept of probability of detection
is used in combination with the networks employed here to evaluate which classifiers can detect the
correct LCB better in a statistical sense. Applications on data acquired from a driving simulator show
that the proposed method can be adopted to improve the reliability of the classifiers, and ensemble
ANNs perform best in predicting the upcoming human behavior in this dynamical context earlier
than 3 s before the event itself.

Keywords: lane changing behavior prediction; machine learning; performance evaluation; probability
of detection

1. Introduction and Motivation

Every year, millions of people are killed or injured worldwide in traffic accidents that
are mostly caused by human errors [1,2]. Advancements in vehicle, computer, and sensing
technologies during the last decades have set the scene for emerging research on advanced
driver-assistance systems (ADASs) and autonomous vehicles (AVs), aiming to provide
safety and efficiency in traffic [3]. The development of AVs is still in the early stages, but
it has the potential to significantly increase road safety by supporting the role of human
drivers or assisting them to make better decisions [4,5]. Lane changing is a common driving
behavior whose prediction is crucial for ADASs and AVs. Lane changing is deemed to be a
complicated task that requires speed adjustment, finding an appropriate gap in the target
lane, informing other drivers of lane changing intention, and controlling the dynamics
of the vehicle at the same time. Drivers’ lane changing behavior is closely linked to their
driving style [6]. This behavior often negatively impacts traffic flow, leading to congestion,
stop-and-go waves, and bottlenecks [7,8]. It is also a significant safety concern, with unsafe
lane changes responsible for nearly 5% of all accidents worldwide [9]. Understanding and
predicting lane changing behaviors (LCBs) is crucial for improving driver assistance and

Automation 2024, 5, 310–323. https://doi.org/10.3390/automation5030019 https://www.mdpi.com/journal/automation

https://doi.org/10.3390/automation5030019
https://doi.org/10.3390/automation5030019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/automation
https://www.mdpi.com
https://orcid.org/0000-0001-8299-101X
https://doi.org/10.3390/automation5030019
https://www.mdpi.com/journal/automation
https://www.mdpi.com/article/10.3390/automation5030019?type=check_update&version=1


Automation 2024, 5 311

warning strategies, thereby implicitly enhancing traffic safety. If the upcoming LCB can be
predicted by ADASs, drivers can be guided accordingly to evaluate dangerous decisions
and avoid unsafe behaviors [10]. Additionally, LCB prediction and modeling are essential
in microsimulation to forecast how AVs impact urban network efficiency and road safety,
emphasizing their important role in guiding AV deployment strategies [11,12].

Various mathematical approaches to LCB prediction have been proposed in the litera-
ture [13–17]. Recently, LCB prediction is usually performed using machine learning (ML)
algorithms, which leads to developing more intelligent prediction models [18,19]. Among
these algorithms, artificial neural networks (ANNs) support vector machines (SVMs), and
hidden Markov models (HMMs) are commonly used to predict LCB [18]. Sharma et al. [20]
combined an SVM and an HMM in a two-layer hierarchical model to predict LCB on high-
ways. An SVM was used in the first layer to distinguish lane changing and lane keeping
behavior; then, in the second layer, a continuous HMM incorporated with a Gaussian
matrix model was employed to classify the output of the SVM to lane changing to left
(LCL) or lane changing to right (LCR). Li et al. [21] introduced a combined neural network
model for LCB prediction, employing gradient boosting decision trees to mine driving rules,
convolutional neural networks to find spatial features, and long short-term memory net-
works to capture temporal features. Simulation results demonstrated enhanced prediction
accuracy. Deng and Söffker [22] presented a strategy for improving the reliability of ML
algorithms utilized in LCB prediction. Input features were selected using a prefilter. The
parameters that are conventionally set manually prior to training ML models, as well as the
prefilter thresholds, could be determined using nondominated sorting genetic algorithm II
to enhance the performance of ML algorithms. Dou et al. [23] developed a model based on
a combination of SVMs and ANNs to predict whether it is feasible and suitable to change
lanes considering certain environmental conditions. It was shown that the developed
model is more accurate as compared with Bayes classifiers and decision trees. In a study
conducted by Zheng et al. [24], an ANN was developed to predict lane changing decisions
utilizing trajectory data collected on a highway using video cameras. A sensitivity analysis
was performed to assess the effect of highway vehicles on LCB. The findings indicated that
ANNs demonstrated satisfactory performance in terms of accuracy, while also providing
a quantitative assessment of the influence of heavy vehicles on lane changing decisions
made by car drivers. More details on ML-based models concerning the prediction and
recognition of lane changing behavior are given in ref. [18].

While the potential of driver intention recognition technology is acknowledged, not
many commercial products have been developed using this technology in practice. The
performance of ML algorithms needs to be further improved to increase their robustness
and reliability [25]. Additionally, there is a requirement for appropriate approaches to
assess ML algorithms’ performance effectively, allowing ongoing improvement. Ensemble
learning is one of the most successful techniques for model improvement that can enhance
the overall robustness by combining multiple light models [25]. For example, Zhang and Fu
[26] proposed an ensemble K-nearest neighbor algorithm for recognizing vehicle behavior
that was about 8% more accurate than the base classifier in similar conditions. Additionally,
using suitable features as inputs to ML models is essential to guarantee successful network
operation. Furthermore, it is crucial to select an optimal set of hyperparameters for ML
networks, as they directly impact the networks’ performance [27].

To ensure the reliability of ML-based approaches, different metrics have been used
for model validation. For instance, Sharma et al. [20] and Wang et al. [28] validated their
proposed models according to their accuracy. Dang et al. [29] used a modified F-score as
the evaluation metric. Receiver operating characteristic (ROC) and precision-recall (PR)
curves are commonly used for evaluating ML algorithms [30]. For example, in a study
conducted by Mozaffari et al. [31], ROC curves were employed to validate the proposed
ML-based LCB prediction algorithm. These curves might lead to a wrong performance
evaluation when used with unbalanced datasets; PR curves are alternatively used to tackle
this problem [32,33].
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None of the above-mentioned techniques consider the effects of process parameters
in evaluation directly. Process parameters (different from a network’s hyperparameters)
are the parameters of the task that influence the recognizability and the final result, such
as the size of the damage in a damage detection task. Despite their importance, such
effects have not been given enough attention in assessing ML-based approaches [34].
Ameyaw et al. [35] used the probability of detection (POD) approach to evaluate and
compare the reliabilities of ML models utilized for LCB prediction, considering the time
remaining until the lane changing event as the process parameter. The considered classifiers
are ANNs, SVMs, HMMs, random forests (RFs), and improved versions of these algorithms
(developed in ref. [22]). A noise analysis was adopted to include false-positive values in
the comparison of classifiers.

This paper uses deep neural networks to extract features required for training ML
algorithms popularly used for LCB prediction. A deep autoencoder (DAE) is used for
feature extraction from a dataset consisting of traffic and driving data related to an ego
vehicle. Multi-level features extracted from different layers of the DAE are used to train
an ensemble of classifiers of one kind. Features from each layer might contain useful
information about the data and their hidden patterns and the likelihood of lane changing;
therefore, the final result is obtained considering both high-level and low-level features.
Genetic algorithms (GAs) are employed to tune the hyperparameters of the models. The
idea proposed here is to use the previously developed POD-based approach to assess
the performance of the classifiers, taking the effects of process parameters into account
for evaluation. To compare the results with those obtained from a study conducted by
Ameyaw et al. [35], the same process parameter and classifiers (ANNs, SVMs, HMMs, and
RFs) are considered here. Applications on data from a driving simulator, including three
classes of LCB (LCL, LCR, and lane keeping), show that the combination of multi-level
features, ensemble learning, and hyperparameter optimization enhances the ability of the
classifiers to predict the true LCB, and ensemble ANNs perform best in predicting the
upcoming human behavior in this dynamical context earlier than 3 s before the event itself.

This paper is organized as follows: After the brief introduction, a concise overview of
the utilized algorithms and the POD approach is presented in Section 2. In Section 3, the
proposed methodology for LCB prediction and model evaluation is explained. The results
of applying this methodology are presented and discussed in Section 4. Finally, in Section 5,
the proposed approach and the main findings are summarized, and conclusions are drawn.

2. Theoretical Background

As mentioned previously, among various ML algorithms, ANN-, SVM-, and HMM-
based approaches are frequently employed for LCB prediction. Unlike well-known ANN
and SVM approaches, HMMs capture dependencies between data points over time, and
are specialized to deal with sequential data [36]. Hidden Markov models are statistical
models that analyze sequences of observable data (here, driving data) that are associated
with underlying hidden states. The hidden states are not directly observable; for example,
in the present task, hidden states are the correct LCBs. The goal of an HMM is to predict
the most probable sequence of hidden states that lead to the observed data [37].

Ensemble learning is a technique in ML that tries to achieve a more accurate and robust
result by combining the results obtained from multiple base models to enhance the overall
performance. Various methods can be taken to merge individual model outputs. Voting,
averaging, stacking, and winner-take-all are examples of commonly used strategies [38].
Random forest is a popular ensemble classifier that fuses the outputs of several decision
trees through a voting process for classification tasks. A decision tree is a model consisting
of a root node that initiates the tree, internal nodes that are decision points leading to splits,
and leaf nodes distinguishing different classes in classification problems [39].

The performance of all of the applied approaches (ANNs, SVMs, HMMs, and RFs)
highly depends on the set of features used for training. The quality and relevance of
these features significantly influence the efficacy of the models. Autoencoders can be used
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effectively to extract features needed for training traditional ML algorithms. These networks
are a type of unsupervised ANN, mainly used for data compression and consisting of an
encoder part that reduces the size of the input data and a decoder part that rebuilds the
input data using the compressed output of the encoder. The network learns to keep only
the main features of the input data in the output layer of the encoder trying to rebuild the
data in the decoder part.

Genetic algorithms can be employed to select the most suitable combination of hyper-
parameters for ML networks. It is a curtail task as these parameters have a direct influence
on the performance of the networks. Considering this, GAs simulate the process of natural
selection by evolving a population of potential solutions (here, hyperparameter sets) across
generations. During this process, the algorithm explores a large search space and finds the
near-optimal solution for the considered problem.

The POD approach was initially developed to validate nondestructive evaluation
(NDE) methods. It can be utilized to evaluate the effectiveness of detection systems consid-
ering the inherent variability and uncertainty associated with the detection process [40].
This approach is gaining interest in other domains where it was previously less commonly
applied, such as the structural health monitoring field and the nuclear industry [41]. The
POD evaluation results in a so-called POD curve. In the field of NDE, such a curve depicts
the likelihood of detecting a defect as a function of defect size [42,43]. Here, the outputs
of the ensemble classifiers are used to obtain POD curves, showing the probability of
detecting the correct LCB as a function of the time remaining until the event (as process
parameter) [35]. The data utilized to generate POD curves include either binary statements
indicating the presence or absence of a target (hit/miss) or signal response data, providing
a continuous quantitative assessment of a target (â versus a) [43,44]. Continuous data will
be used for producing POD curves in this paper.

3. Methodology

The methodology suggested for predicting LCB and evaluating models is outlined
in this section. The proposed approach when employing binary ANNs as classifiers to
predict lane changing to right or left is depicted in Figure 1. The first step in the proposed
method is to extract the features needed as inputs to ML algorithms using an autoencoder.
Data including information regarding nearby vehicles and the condition of the considered
ego vehicle, recorded every 0.05 s, are normalized between 0 and 1 and used to train the
autoencoder. The utilized dataset is described further in Section 4. The encoder part of the
autoencoder comprises an input layer with 34 neurons and 4 hidden layers with 24, 16, 8,
and 4 neurons, respectively. The decoder layers are the inverse of the encoder layers. All
layers use a Rectified Linear Unit (ReLU) activation function, with the exception of the final
one, which employs the Sigmoid function. Mean Square Error (MSE) is selected as the loss
function and minimized via an Adam optimizer. Genetic algorithm is used to obtain optimal
values of batch size, epoch, and learning rate that minimizes the reconstruction error.

Multi-level features extracted from the four dense layers of the encoder are input
to the ML algorithms. Three classes of LCB are regarded: LCL, LCR, and lane keeping.
Considering ANN as an example, features from each layer are utilized to train two ANNs,
each one considering LCL or LCR as the positive class and the two other classes as the
negative ones. The same is done for the three other algorithms, resulting in a total of
32 trained models. Hyperparameters of the models are selected using GA to minimize the
objective function

f = (1 − ACC) + (1 − DR) + FAR, (1)

where ACC, DR, and FAR denote the accuracy, detection rate, and false alarm rate, re-
spectively. By combining these three conflicting aspects, the GA is guided to define an
optimal solution between high ACC/DR and false alarms, which is crucial for an effective
model performance.
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Figure 1. Lane changing behavior prediction using binary ANNs as classifiers.

The performance of the trained models in LCB prediction given test data is evaluated
using the POD approach. The mh1823 POD software (version 7.3.4) [45] is used for this
purpose. Features extracted from test data are fed to the trained models, and the probability
that each sample of the data belongs to the positive class is extracted from the models.
Time periods from 7 s prior to the lane change until the moment the event occurs are taken
into account for evaluation, and the average of the obtained probabilities at each time
point during this 7 s period is used as the response value for the POD-based performance
assessment. The process for obtaining a POD is comprehensively explained in Military
Handbook 1823A (MIL-HKBK-1823A) [43]. The main stages of this process for the purpose
outlined in this paper are shown in Figure 2. As the first step in the POD-based evaluation
of each classifier, the predicted probabilities (â) are plotted as a function of time (a). Four
possible combinations of logarithmic and Cartesian â and a axes are considered. The graph
best satisfying the following criteria is chosen:

1. The data should seem to be well described by a straight line.
2. The variance must be uniform about the regression line.
3. The observations must the uncorrelated.
Regression analysis is conducted on data from the best graph using the maximum

likelihood method (Figure 2a). Considering the â vs. a case, a line describing the data can
be obtained as

â = b + ma + ϵ, (2)

where b and m are the regression coefficients of the model and ϵ ∼ N(0, τ) is the corre-
sponding error term following a normal distribution with a zero mean and a standard
deviation equal to τ. To obtain the likelihood of reliable LCB prediction at each time
point, the probability that the classifier will produce a response value above an arbitrary
threshold, known as decision threshold (âth), must be determined. This probability with
50% confidence is equal to the area under the probability density function (PDF) obtained
from the distribution of the error term in equation 2 and centered around the regression
line, above âth (the shaded area in Figure 2b). This probability at each time point is obtained
as [43,46]

POD(a) = P(â > âth) = 1 − P(â ≤ âth) = 1 − ϕ(
âth − (b + ma)

τ
), (3)
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where ϕ is the cumulative standard normal distribution function. To account for the uncer-
tainty associated with estimating the parameters of the regression line, the Wald method is
used to construct the 95 percentile POD curve. This curve represents the boundary beneath
which 95% of the average POD curves would lie, if the study was repeated numerous times.
A POD curve and its 95% lower confidence bound are shown in Figure 2c. In this figure, a90
and a90/95 show time points when the POD and the associated 95% lower bound reach 90%.

Figure 2. The main stages in the POD-based performance evaluation of the classifiers: (a) fitting a line
to the data through regression analysis, (b) obtaining the POD at each time point with 50% confidence,
(c) generating the POD curve and its 95% lower confidence bound, and (d) analyzing noise and
computing false alarm probability.

As part of the POD-based evaluation, noise analysis is conducted to account for the
probability of false alarm (PFA). Noise in this context is defined as response values that
are random with respect to the process parameter and contain no useful target characteri-
zation information. In this study, the noise can be effectively represented by a Gaussian
distribution. The PFA for each classifier is equal to the area under the noise PDF above
âth as

PFA = P(ânoise > âth). (4)

A target-response model with PDFs used for obtaining the POD curve and the PFA
are shown in Figure 2d. Reducing âth enhances the POD curve, but inevitably results in an
increase in the PFA. The âth for each classifier is chosen considering the trade-off between
the POD and the PFA.

A winner-take-all ensemble strategy is applied to performance evaluation results from
classifiers of one type having the same task. According to this strategy, multiple classifiers
compete against each other; the ensemble output is finally taken from the classifier that
achieves the best classification performance. For example, the final a90/95 result of using
ANN to predict LCR will be equal to the result from the fastest network among the four
ANNs trained on features from different autoencoder layers (the lowest a90/95), when
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associated false alarm probabilities are equal. According to evaluation results, the most
reliable model for an LCB prediction task can be specified.

4. Application and Results

The methodology is applied for LCB prediction using data acquired from a SCANeR™
studio driving simulator (Figure 3), also described in previous publications [30,35]. The
simulator employs virtual sensors like cameras, radar, and lasers to gather data, enabling
a thorough comprehension of the vehicle’s surrounding. The driving environment is a
highway with two lanes in each direction and simulated traffic conditions. Three drivers
aged between 25 and 38, all possessing valid drivers’ licenses, were recruited to gather
the required data. Each participant drove for about 40 min to obtain the training dataset.
Another 10 min of driving data were also recorded for the test phase. During driving,
participants were allowed to overtake the preceding vehicle when it drove slowly, with
the option to return to the initial lane afterward. The driving environment and lane
changing/keeping behaviors are illustrated in Figure 4. In the driving simulation, the
vehicle’s lane is identified by the position of its center point. Lane changing is detected
when this lane value shifts. The onset of a lane changing event is marked by the last notable
change in the steering wheel angle. The interval between this steering adjustment and the
moment when the lane value shifts is defined as the lane changing period.

Figure 3. SCANeR™ studio, Chair of Dynamics and Control, University of Duisburg–Essen, Germany.

Figure 4. The driving environment and lane changing/keeping behaviors. In the considered 7 s
period before a lane changing event, the earlier an algorithm predicts the LCB (at time t1 as compared
with t2), the better the performance.

Samples of training and test datasets were recorded every 0.05 s and consisted of
26 observation variables, including the velocity of the considered ego vehicle and the
surrounding vehicles, the distance between the ego vehicle and the surrounding vehicles,
the time to collision to surrounding vehicles, the lane number, the turn signal indicator’s
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state, the engaged gear, the steering wheel angle, the heading angle, the accelerator pedal
position, and the brake pedal pressure related to the ego vehicle. Categorical variables
without intrinsic order were one-hot-encoded to prevent potential misinterpretation of
ordinal relationships by algorithms. No data preprocessing was undertaken prior to feeding
samples to the autoencoder.

The acquired data are used to train the autoencoder described in Section 3, and the
multi-level features extracted from this network are input to ANN, SVM, HMM, and RF
models. For each task (LCL or LCR prediction), four models of each type are trained, each
one on features from a different autoencoder layer. Performance evaluation is conducted
using test data, and the best model among the four is selected for the specified task (winner-
take-all ensemble strategy). POD-based performance evaluation results in a90/95 and PFA
values. To compare the algorithms and specify the most suitable one for all of the considered
models, the decision threshold (âth) is chosen so that the resulting PFA is less than 1%.
The less the a90/95 value, the earlier the algorithm predicts the LCB, and the better the
performance. For example, in Figure 4, in the considered 7 s period before a lane changing
event, the ML algorithm capable of predicting the LCB at time t1 outperforms an approach
predicting the LCB at time t2. As shown later in this section, in the best case, the correct
LCB is predicted about 7 s before the event (a90/95 = 0.542 s, so the algorithm predicts the
LCB 7 − 0.542 = 6.458 s before the event). Therefore, 7 s periods were chosen to show the
results of the performance evaluation.

Considering the HMM trained on features from the second autoencoder layer for
LCL prediction when fed with features from the first driver’s test data as an example,
the graphically illustrated results of the four combinations of logarithmic and Cartesian â
(predicted probabilities belonging to LCL class for test data samples) and a (time points in
the considered 7 s period) axes are depicted in Figure 5. In this example,the graph shown
in Figure 5b meets the criteria mentioned in the previous section the best and, therefore, is
chosen for conducting regression analysis.

Figure 5. (a) â vs. a, (b) â vs. log(a), (c) log(â) vs. a, and (d) log(â) vs. log(a) models for LCL
prediction using the HMM trained on features from the second autoencoder layer and test data from
the first driver.
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The obtained regression line is shown in Figure 6a. The decision threshold is set
to 0.02, which results in a PFA equal to 0 (Figure 6b). The final POD curve and its 95%
lower confidence bound are depicted in Figure 6c. According to this figure, a90/95 for the
considered HMM model is equal to 1.752 s.

Figure 6. Performance evaluation for the HMM trained on features from the second autoencoder
layer to predict LCL when fed with test data from the first driver: (a) the regression line, (b) the noise
analysis result, and (c) the POD curve and its lower confidence bound.

Hidden Markov model performance evaluation results when trained on features from
different layers and tested on the first driver’s 10 min test data (different from the data used
in the training phase) are given in Table 1. Using a winner-take-all ensemble strategy, the
final a90/95 result is 1.752 s, which is obtained from the HMM trained on the second layer
features. This example shows that the best outcomes are not necessarily achieved from
high-level features; therefore, employing multi-level features to obtain the most favorable
result can be beneficial.

Table 1. Hidden Markov model performance evaluation results using the first driver’s test data.

Related Encoder Layer No. a90/95 [S]

1 >7
2 1.752
3 1.87
4 1.786

The a90/95 values from the considered models when trained to predict LCL/LCR
and tested on data from the three drivers separately are presented in Tables 2 and 3. The
related autoencoder layers are also included in the tables. Additionally, the overall FARs
(independent from POD analysis) are given in these tables, showing that the algorithms
perform well outside the considered 7 s periods and do not misclassify many samples of
lane keeping data as LCL/LCR. The lowest a90/95 values for LCL prediction are 1.22 s,
1.968 s, and 2.905 s for drivers 1, 2, and 3, respectively. These values are obtained from SVM
for driver 1 and ANN for drivers 2 and 3. Additionally, the lowest a90/95 values for LCR
prediction are obtained from ANN for drivers 1 and 2 and SVM for driver 3 and are equal
to 2.823 s, 3.211 s, and 4.355 s, respectively. It can be concluded that, among the considered
models, ANNs are the most reliable algorithms for LCB prediction, followed by SVMs.
Furthermore, in almost all cases, the best ANN results are achieved using features from the
third autoencoder layer.
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Table 2. Performance evaluation for LCL prediction.

Algorithm Driver No. a90/95 (s) Related Layer Overall FAR

ANN
1 1.558 3

0.032 1.968 * 3
3 2.905 * 4

SVM
1 1.22 * 4

0.0252 2.069 3
3 2.971 3

HMM
1 1.752 2

0.0522 2.701 2
3 3.533 2

RF
1 5.702 2

02 3.471 1
3 2.975 3

* The best a90/95 value for each driver.

Table 3. Performance evaluation for LCR prediction.

Algorithm Driver No. a90/95 (s) Related Layer Overall FAR

ANN
1 2.823 * 3

0.0652 3.211 * 3
3 4.752 3

SVM
1 4.889 1

0.0212 3.361 1
3 4.355 * 2

HMM
1 4.166 3

0.0372 3.839 3
3 4.746 2

RF
1 5.843 4

0.00352 4.445 4
3 5.339 4

* The best a90/95 value for each driver.

To compare the reliability of the methodology presented here with that of the improved
ANN, SVM, HMM, and RF developed in ref. [22], the a90/95 values are calculated again, this
time considering the DR at each time step as the response value in a POD-based evaluation.
Just as before, decision thresholds are selected so that the noise analysis results in PFA
values of less than 1%. For an appropriate comparison, the results presented in ref. [35]
are also recalculated to set false alarm probabilities to less than 1%. The new results are
presented in Tables 4 and 5 for LCL and LCR prediction. According to these tables, in
almost all cases, the method proposed here improves the reliability of the classifiers. In only
three cases, the new methodology yields a90/95 values about 4 s greater than the values
obtained from the previous models (shown in red in Table 4). Again, ANNs have the
best performance among the considered algorithms, achieving the best results in four of
six cases.

Comparing the results presented in Tables 2 and 3 with those presented in Tables 4 and 5,
it can be seen that, in general, using DR as the response value results in higher a90/95 amounts
and can be considered as a more conservative way of POD-based evaluation. However, using
the probabilities extracted from the algorithms directly provides more unaffected results. The
POD curves obtained for ANNs trained on third autoencoder layer features, when using test
data from the three drivers together, is shown in Figure 7. Accordingly, a90/95 is less than
4 s for these networks, so ANNs can reliably predict LCBs earlier than 7 − 4 = 3 s before
the event.
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Table 4. Comparison between the performance of the method proposed here and that of the method
presented in previous studies [22] for LCL prediction.

Algorithm Driver No. Current a90/95 (s) Previous a90/95 (s)

ANN
1 0.542 * 6.676
2 1.749 * 6.62
3 4.849 * 5.72

SVM
1 2.541 6.183
2 2.36 5.389
3 6.527 >7

HMM
1 1.655 6.231
2 2.661 3.473
3 5.725 ** 1.248

RF
1 6.879 ** 3.181
2 4.712 6.005
3 >7 ** 5.631

* The best a90/95 value for each driver, ** worse performance as compared with the previous models.

Table 5. Comparison between the performance of the method proposed here and that of the method
presented in previous studies [22] for LCR prediction.

Algorithm Driver No. Current a90/95 (s) Previous a90/95 (s)

ANN
1 3.162 * 6.347
2 4.711 5.823
3 4.777 6.039

SVM
1 5.081 6.24
2 4.393 5.006
3 4.369 * 6.404

HMM
1 4.219 5.644
2 4.001 * 5.908
3 4.764 6.006

RF
1 6.138 6.942
2 4.786 5.07
3 5.524 6.298

* The best a90/95 value for each driver.

Figure 7. Probability of detection curves related to ANNs trained on third autoencoder layer features,
when using test data from all drivers together, for (a) LCL and (b) LCR prediction and the obtained
a90/95 values.

5. Summary, Conclusions, and Outlook

This paper introduces a method aimed at improving the reliability and robustness of
ML algorithms used to predict the LCB of the driver of a considered ego vehicle and the
appropriate performance evaluation. The method utilizes multi-level features extracted
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from various layers of a DAE to train an ensemble of classifiers of the same type. The
resulting output for each type of classifier is determined by considering both high-level and
low-level features using a winner-take-all ensemble strategy. Artificial neural networks,
SVMs, HMMs, and RFs are employed as classifiers. The hyperparameters of all models are
optimized using GAs.

The performance of the classifiers is evaluated using a POD-based approach. Unlike
classical performance evaluation metrics (e.g., DR and ACC), as well as ROC and PR
curves, which are commonly used for evaluating ML algorithms, the POD-based approach
takes the effects of process parameters into account for the evaluation and provides new
insights into the reliability of ML algorithms. The process parameter considered here is the
remaining time until the lane changing event, and the classifiers’ capability in predicting
the correct intended driver behavior is evaluated relative to the remaining time before the
event occurs.

The proposed methodology is validated using data from a driving simulator, including
three classes of LCB: LCL, LCR, and lane keeping. A comparison with previous studies
demonstrates that the combination of multi-level features, ensemble learning, and hyperpa-
rameter optimization improves the classifiers’ performance and ensemble ANNs perform
best, predicting the true LCB earlier than 3 s before the event occurs.

In future research, the hit/miss version of the POD approach could be applied and
modified by taking into account the probability of hit and miss data acquired from ML
algorithms, depending on the process parameter. Additionally, exploring the potential
of optimizing the hyperparameters of ML algorithms to enhance their performance by
minimizing the results of POD analysis could be investigated.
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