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Introduction: Perihilar cholangiocarcinoma (PHCC) is a rare malignancy with limited survival prediction accuracy.

Artificial intelligence (AI) and digital pathology advancements have shown promise in predicting outcomes in cancer.
We aimed to improve prognosis prediction for PHCC by combining AI-based histopathological slide analysis with clin-
ical factors.
Methods: We retrospectively analyzed 317 surgically treated PHCC patients (January 2009–December 2018) at the
University Hospital of Essen. Clinical data, surgical details, pathology, and outcomes were collected. Convolutional
neural networks (CNN) analyzed whole-slide images. Survival models incorporated clinical and histological features.
Results: Among 142 eligible patients, independent survival predictors were tumor grade (G), tumor size (T), and intra-
operative transfusion requirement. The CNN-based model combining clinical and histopathological features demon-
strates proof of concept in prognosis prediction, limited by histopathological complexity and feature extraction
challenges. However, the CNN-based model generated heatmaps assisting pathologists in identifying areas of interest.
Conclusion:AI-based digital pathology showed potential in PHCC prognosis prediction, though refinement is necessary
for clinical relevance. Future research should focus on enhancing AI models and exploring novel approaches to
improve PHCC patient prognosis prediction.
Introduction

Perihilar cholangiocarcinomas (PHCC), also known as Klatskin carci-
noma, are rare with an incidence of 1–2 cases per 100 000 in the western
world. It is characterized by late diagnosis, complex surgical treatment,
and a severely limited prognosis: dismal 5-year survival rates between
13.5% and 42% have been reported even for surgically curatively treated
cases.1–4 Individual, prognosis-driving factors besides tumor characteristics
are hardly known. Several studies have evaluated predictive models for an
individual survival prognosis of the patients.5–11 Unfortunately, individual
prognosis prediction is difficult with the current level of knowledge
available.
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In the recent past, artificial intelligence-based digital pathology analysis
demonstrated outstanding results for the prediction of survival in several
oncological entities.12–14 Applying this new technology to perihilar cholan-
giocarcinoma yields the promise to identify histological features that can be
correlatedwith the clinical outcome. The identification of subtypes is a spe-
cific goal to allow an improved prognosis prediction on an individual basis
in the context of the overall low survival rate for the Klatskin carcinoma
population.

Therefore, we aimed to identify predictive clinical factors in a
monocenter cohort of patients with perihilar cholangiocarcinoma and com-
bine thesewith results of AI-based analysis of histopathological slides for an
improved prediction of prognosis.
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Material and methods

Study design

We performed a retrospective analysis of all patients who underwent
surgical treatment for perihilar cholangiocarcinomas between January
2009 andDecember 2018 at the University Hospital of Essen. Data of all pa-
tients (n=317) with the diagnosis of a perihilar cholangiocarcinomawere
extracted from the digital hospital information system. Two independent
investigators verified each patient's diagnosis. Only patients treated surgi-
cally with complete histopathological investigation were included in this
study.

This retrospective study was approved by the local ethics committee
(19-8681-BO) and followed the Declaration of Helsinki.

Data

The following data were extracted for each patient from the digital hos-
pital information system:

Preoperative clinical data: Age, sex, BMI, preoperative biliary stenting,
preoperative cholangitis, preoperative laboratory values (bilirubin, INR,
creatinine, platelets, gGT, and CA19-9), and preoperative MELD score.

Surgery: Type of resection, operative time, blood transfusion, portal
vein reconstruction, and hepatic artery reconstruction.

Postoperative pathology: TNM classification (including lymph node
count, lymph node status, and perineural invasion), Union for International
Cancer Control (UICC) classification, tumor size, and histological subtype.

Postoperative clinical data: Duration of ICU stay, duration of hospital
stay, in-hospital mortality, laboratory values on postoperative day (POD)
5 (bilirubin, International Normalized Ratio (INR)), postoperative compli-
cations (hepatic failure, biliary leakage, abscess, bleeding, relaparotomy,
and kidney failure), and overall survival.

We did not include adjuvant treatments (radiotherapy, chemotherapy)
in the data because the period under investigation lies mostly before the
publication of the BILCAP15 study when adjuvant treatments were not rou-
tinely established after the resection of biliary tract cancers. All patients
were postoperatively discussed in the interdisciplinary tumor board giving
recommendations on the further clinical pathway. As such, patients pre-
sumably had fairly uniform recommendations leading to uniform postoper-
ative treatments. However, patients were followed at several different
oncological treatment centers, which led to data incompleteness on
adjuvant therapies.

Definitions

MELD score
The MELD score16 (Model for End-stage Liver Disease) indicates the se-

verity of liver disease. The MELD score is calculated from bilirubin, creati-
nine, and INR (International Normalized Ratio) as follows:

9:57� lnðserum creatinine ½mg=dL�Þ þ 3:78� lnðtotal bilirubin ½mg=dL�Þ
þ 11:2� lnðINRÞ þ 6:43

If dialysis was performed within the week before the examination, the
creatinine value was set to 4.0.

Postoperative liver failure
The International StudyGroup of Liver Surgery (ISGLS) defined PHLF as

a postoperative acquired deterioration in the ability of the liver tomaintain
its synthetic, excretory, and detoxifying functions, which are characterized
by an increased INR and concomitant hyperbilirubinemia on or after
POD 5.17

Surgery

Most patients underwent preoperative biliary drainage with the goal of
reducing cholestasis to a serum total bilirubin level below 5 mg/dL.
2

Surgical treatment consisted of resection of the extrahepatic bile duct,
intraoperative histopathology by frozen biopsies, and eventual extension
of the resection as a pancreatoduodenectomy and/or liver resection. Liver
resections were usually carried out as (extended) hemihepatectomy. All
lymphatic and soft tissues were resected within the ligamentum
hepatoduodenale. Few patients underwent portal vein or hepatic artery
reconstruction due to cancer infiltration.

Digital pathology

All clinical slides were reviewed by an experienced hepatobiliary pa-
thologist. Hematoxylin and eosin stained slides were scanned using the
Scanner Aperio® AT2 (Leica Biosystems, Wetzlar, Germany). Whole-Slide
Imaging (WSI) was performed using a 40× objective lens with a maximal
scanning resolution of 0.25 μ/pixel. Scanned images in the SVS file format
were re-reviewed by an experienced hepatobiliary pathologist on a high-
definition resolution screen (1930 × 1080 pixels). Images and data were
stored and exported to an external storage device.

In every slide all tumor islands, nodules, and nests with at least 2 tumor
cells were marked with the software QuPath.18 Areas of necrosis, crush
artifacts, or irregular H&E staining were excluded.

CNN-based slide analysis

The annotated WSIs were postprocessed to set the annotated areas to
“tumor” and the non-annotated areas to “non-tumor”, resulting in a binary
representation of the WSI. To make the WSIs easier to process, they were
converted into patches. To ensure the usage of meaningful patches, an
Otsu thresholding was performed, and only patches containing less than
50% background were selected.

A double pathway EfficientNetB119 convolutional neural network
(CNN)was employed for the analysis of histopathology images. For training,
a dataset of 85whole-slide images (WSI) and converted into patches using 2
different resolutions (20× and 5×), resulting in 112 443 20× patches and
112 443 respective 5× patches. The network was designed to obtain a high
and a low resolution patch as input corresponding to the same area, emulat-
ing the pathologist's approach, who assesses both cell morphology and sur-
rounding structures. Data augmentation techniques such as horizontal and
vertical flips, rotation, brightness, and contrast adjustments were used on
the patches to improve the generalizability of the network. The patches
were processed through 2 distinct EfficientNetB1 networks, concatenated,
and converted into a segmentation mask of typical Klatskin tumor areas,
as presented in Fig. 1. The output of the model is a mask of probabilities,
and a threshold of 0.5 was used to consider a pixel as tumor.

During training, the model was first initialized with pre-trained
ImageNet20 weights and then fine-tuned on this dataset. Since 80% of the
ground-truth pixels were classified as non-tumor, class weights were used
to account for the imbalanced nature of the dataset. The Adam optimizer
was used with a learning rate of 0.0001 that decayed over time. The
model was trained for 11 epochs during transfer learning and 120 epochs
during fine-tuning together with early stopping technique to prevent
overfitting. The training was performed using 5-fold cross-validation and
each training run had 68 WSI for training and 17 WSI for validation. The
number of patches per cross validation fold was however different:
30 974 for the first fold, 22 942 for the second, 15 388 for the third,
17 500 for the fourth and 25 639 for the fifth.

The preprocessing was computed with an in-house extension of the py-
wsi package.21 The models were built using Python 3.8 and TensorFlow
2.6.2.22

Survival model

In the survival prediction analysis, a total of 142 WSI (142 patients)
were used. A held-out test set of 27 patients was used to evaluate the
model, while the remaining 115 patients were used for training and valida-
tion with bootstrapping. The trained CNN network was utilized to evaluate



Fig. 1. Preprocessing and training process. Each whole-slide image is first preprocessed by removing the background and by patching. The patches are used to train a double-
pathway convolutional neural networkusing ahigh resolutionpatch as focus and a context patch. Themodel is trained to compute a segmentationof typical Klatskin tumor areas.

Fig. 2. Process to generate risk scores for survival analysis. Eachwhole-slide image (WSI) is processed through the 5 cross-validation (CV)models, and features are extracted.
The features are clustered using k-means clustering into 500 clusters, each feature is assigned to a cluster and the result is normalized using the term frequency-inverse term
frequency (TF-IDF) method. The features from the 5 models are collected into a single feature vector for each WSI. Finally, feature reduction is applied, and the resulting
features are used for training a gradient-boosted regression tree. Either the deep learning features are either used, or the clinical features, or a combination of both.
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and extract CNN features from patches that were identified as tumor by the
pathologist. The features were extracted after the concatenation layer of
each cross-validation model, resulting in 2560 features per cross-validation
model, for a total of 12 800 features per patch. Given the potential for re-
dundancy in these features, a data reduction step was implemented. The
features were grouped using k-means clustering23 (using Rapids cuml24
3

version 22.02) with 500 clusters and normalized using the term
frequency-inverse document frequency (TF-IDF) method.25 Different num-
bers of clusters (5, 10, 50, 100, 200, 500, 1000, 2000, 3000, and 5000)
were tested using the Elbow method,26 and 500 was found to be the most
appropriate in terms of computational speed and inertia. This resulted in
obtaining a feature vector of length 2500 for each WSI. To reduce the
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dimensionality of the feature vectors, the non-negative matrix factorization
method27 from scikit-learn (version 1.0.2)28 was employed, which resulted
in 5 final features. Finally, the resulting features were used to train a
gradient-boosted regression tree with Cox loss from scikit-survival29 (ver-
sion 0.17.2). To ensure the statistical validity of the results, the process
was repeated with 1000 rounds of bootstrapping.

For the machine learning survival analysis, 2 different evaluations were
conducted: 1with clinical features, and 1with a combination of clinical and
deep learning features (see Fig. 2). The risk scores for each model were av-
eraged over 1000 rounds of bootstrapping to improve statistical validity.
For each model a hyperparameter optimization was run with optuna (ver-
sion 2.10.0)30 and the hyperparameters with the best average concordance
index were chosen.

Imputation was performed for missing values in the clinical features,
Table S1 of the supplementary material reports both the variables subject
to imputation and the corresponding count of missing data points. The
data points were missing at random. The median was taken for variables
such as CA199, LDH, weight, height, and days between first diagnosis
and operation. Variables such as performed biliary stent, perineural inva-
sion, UICC stadium, spread to the blood vessels, spread to the lymphatic
vessels, and T grading were substituted with 0, while the G grading was
substituted with 2, which is the most common grading for this tumor.

Statistics

Normality was tested using the Shapiro–Wilk test. Survival analysis was
performed by Kaplan–Meier statistics and compared by log-rank tests. We
performed univariable cox regression analysis to identify predictors of pa-
tient survival. All factors with statistical significancewere included in amul-
tivariable cox regressionmodel (conditional backwards selection). AP-value
Fig. 3. Flowchart of the cases. After the exclusion of PHCC cases without surgical thera
performed on 142 cases that had clinical data, WSIs, and corresponding segmentations
to train a general CNN network for the generation of Klatskin heatmaps.

4

of <.05 was considered statistically significant. Data were analyzed using
SPSS 27.0 software (IBM Inc., Armonk NY, USA). Data are given as mean
values with standard deviation or with median and range as appropriate.

The CNNmodelswere evaluated using accuracy, specificity, sensitivity/
recall, precision, and F1-score. 95% confidence intervals were computed
using the Clopper–Pearson exact method. The survival models were evalu-
ated by taking the average risk scores and splitting them at the median. The
2 groups were used to build Kaplan–Meier plots and compared by log-rank
tests. The concordance index was also computed for each model. Addition-
ally, the impurity-based feature importance31 of the clinical features was
analyzed.

Results

Study population

We treated 317 patients for Klatskin carcinoma at our department dur-
ing the study period. Several patients were excluded: surgical therapies
were not applied in 11 patients, 111 patients were explored and found to
be unresectable. In total, 142 cases qualified for whole-slide image analysis
and had sufficient clinical data. Therefore, these cases were utilized for sur-
vival analysis. Of the other patients, 85 had aWSI with a segmentation that
could be used, but did not have sufficient clinical data to be included in the
survival analysis. The flowchart of the cases is presented in Fig. 3.

Demographics

In total, 142 patients data qualified for survival analysis and are charac-
terized here. At the timeof surgery, themean agewas 66.5±9.2 years. The
age of patients undergoing surgery for Klatskin tumor ranged from 36 to 82
py, only those with explorative surgery were considered. The survival analysis was
. Additionally, 85 WSI scans collected during exploratory surgery could be utilized



Table 1
Preoperative laboratory values. For each laboratory value, the median and the range was given, as all values were non-normally distributed according to the Shapiro–Wilk nor-
mality test. The standard values and the number of patients with non-standard values are also reported. The CA19-9 (U/l) laboratory value was only available for 63 patients.

Laboratory value Median Range Standard values Number and percentage of patients
with non-standard values

Bilirubin (mg/dL) 1.2 0.2–20.6 ≤1.1 mg/dL 73 (51.41%)
gGT (U/L) 393 13–3094 (m) ≤55 U/L

(f) ≤38 U/L
(m) 99 (99%)
(f) 38 (90.48%)

Creatinine (mg/dL) 1.01 0.47–2.85 (m) ≤1.1 mg/dL
(f) ≤0.9 mg/dL

(m) 76 (76%)
(f) 7 (16.67%)

INR 1 0.83–2.3 0.7–1.2 4 (2.82%)
Platelets (/nL) 294 16–714 130–280 /nL 80 (56.34%)
CA19-9 (U/L) 86.9 1–24 734 ≤37 U/L 45 (71.42%)
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years. Patients were predominantly male (100 (70.4%)), with a mean body
height of 172 ± 8.8 cm and a mean body weight of 77.8 ± 15 kg. The re-
sulting BMI was 26.02 ± 4.1 kg/m2 (range 15–40 kg/m2). The diagnosis
was specified median 29 (7–174) days before surgery. Most patients (102
(71.8%)) were treated by preoperative biliary drainage. Themajority of pa-
tients had comorbidities with preoperative ASA-Stage 3 in 60 (42.3%) pa-
tients and ASA-Stage 2 in 34 (23.9%) patients. Preoperative laboratory
values are given in Table 1.

Surgery

The goal of surgery was an R0 resection. 37 (26.1%) patients were
treated by en bloc resection of extrahepatic bile ducts. Additional (left or
right) hemihepatectomy was performed in 50 (35.2%) patients and ex-
tended (left or right) hemihepatectomy in 29 (20.4%) patients. Pancreato-
duodenectomy was performed in 26 (18.3%) patients. Portal vein or
hepatic artery reconstruction was necessary in 15 (10.6%) patients and 1
(0.7%) patient, respectively. Transfusion of packed RBCs was performed in
14 (9.9%) patients. The median duration of surgery was 292 (98–567) min.

Postoperative tumor characteristics

All resected specimens were sent to pathology and classified according
to TNM and UICC classification. All UICC stages were reviewed and re-
Table 2
Tumor characteristics (TNM classification) for 142 patients. T1–4 represents the T
stadium, which was available for 139 patients (3 missing). G1–3 represents the tu-
mor grading, which was available for 137 patients (5 missing). N−/+ represents
whether the tumor spreaded to the lymphnodes. L0/1 represents whether the tumor
spreaded to the lymphatic vessels, whichwas available for 133 patients (9missing).
V0/1 represents whether the tumor invaded the blood vessels, which was available
for 132 patients (10missing). Pn0/1 represents whether the tumor invaded the peri-
neural sheath, which was available for 101 patients (41 missing). R0–2 represents
the resection status, which was available for 130 patients (12 missing).

TNM classification Number of patients Percentage of patients (%)

T1 13 9.2
T2 82 57.7
T3 41 28.9
T4 3 2.1
G1 5 3.5
G2 98 69
G3 34 23.9
N− 59 41.5
N+ 83 58.5
L0 109 76.8
L1 24 16.9
V0 121 85.2
V1 11 7.7
Pn0 19 13.4
Pn1 82 57.7
R0 77 54.2
R1 48 33.8
R2 5 3.5

5

classified according to the current classification (8th edition) for better
comparability. All tumor characteristics are given in Tables 2 and 3.

Postoperative complications & survival

Postoperatively, 59 (41.5%) patients developed liver failure as defined
by the ISGLS. The following complications were recorded: bile leakage
was observed in 23 (16.2%) cases, postoperative bleeding in 5 (3.5%)
cases, and superinfected fluid collections/abscesses requiring treatment in
17 (12%) cases. Overall, 32 (22.5%) patients needed relaparotomy as part
of the complication management strategy. During the initial postoperative
hospital stay for surgery for Klatskin carcinoma, 25 (17.6%) patients died.
The overall survival for patients undergoing resection for Klatskin carci-
noma was 60.3%, 19.4%, and 7.8% after 1, 3, and 5 years, respectively.
After censoring for in-hospital mortality and unsuccessful resections
(R2-resection), the 1-, 3-, and 5-year survival rates were 75.4%, 24.3%,
and 11.1%, respectively.

Digital pathology

On the test set of 142 whole-slide images, the CNN network achieved a
specificity of 0.921 (95% CI 0.921, 0.922), sensitivity/recall of 0.534 (95%
CI 0.533, 0.534), precision of 0.547 (95% CI 0.547, 0.548), and accuracy of
0.863 (95% CI 0.863, 0.863). In Fig. 4, the distribution of these metrics ac-
cording to the WSIs is presented. Due to the imbalance in the data with a
majority of negative examples, the accuracy and the specificity metrics
may not accurately reflect the performance of the model. In spite of these
clearly limited metrics, heatmaps were generated from the probability out-
put of the CNN network with the general intention to support the patholo-
gist in the diagnosis of this challenging diagnosis. In Fig. 5, an example of
the best- and worst-performing WSI is shown. The obvious limitations of
these heatmaps challenge clinical application. The current model would
need intense review by an experienced pathologist and could only serve
as a subtle guide during diagnosis. However, to improve the utility of the
heatmaps, a new training in a larger dataset with accurate tumor cell label-
ing seems necessary.

Predictors of postoperative survival

Predictive factors of postoperative survival were studied by uni- and
multivariable cox regression analysis. We identified the transfusion
Table 3
UICC stage classification (8th Edition) for 112 patients, for the remaining 30 patients
the UICC stadium was not available.

UICC stage classification
(8th Edition)

Number of
patients

Percentage of patients
(%)

1 4 2.8
2 34 23.9
3 71 50
4 3 2.1



Fig. 4. Distribution of accuracy, specificity, sensitivity/recall, precision, and F1-score for each slide image and ROC-AUC curve for all predictions together.
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requirement during surgery, aswell as T- andG grading as independent pre-
dictors of survival after surgical resection (Tables 4 and 5).

Predictors of postoperative survival by clinical and histological (AI based)
features

The risk scores obtained from themachine learningmodelswere used to
perform survival analysis on the validation and test sets. For the validation,
the clinical features alone reached a rather low concordance index of 0.559
(log-rank P-value of .06385). When combined with deep learning features,
the concordance index minimally increased to 0.575 (log-rank P-value of
.00091). On the other hand, for the test set, the clinical features alone
Fig. 5. Example of heatmaps. In A–C, a whole-slide image (WSI) with the worst F1-score
WSI as annotated by the pathologist, in B and E, the prediction of the model where the p
(low) to red (high) scale, with the ground-truth superimposed in green.

6

gave a concordance index of 0.466 (log-rank P-value of .97889). When
combined with deep learning features, the concordance index increased
to 0.534 (log-rank P-value of .38208). The Kaplan–Meier plots are shown
in Figs. 6 and 7 for the validation and test set, respectively. Furthermore,
the concordance indices of the clinical features computed during the
bootstrapping had an average of 0.583 (95% CI: 0.580, 0.587) for the vali-
dation set and 0.498 (95% CI: 0.495, 0.500) for the test set. The average
concordance index for the clinical features combined with deep learning
features model was 0.580 (95% CI: 0.576, 0.583) for the validation set
and 0.537 (95% CI: 0.534, 0.541) for the test set. In addition, we also com-
puted the feature importance of the clinical features for the machine learn-
ing models. The top 3 most important clinical features for predicting
of 0.0 and in D–F, aWSI with the best F1-score of 0.94. A and D are the ground-truth
robabilities are greater than or equal to 0.5, and in C and F, the heatmap in a white



Table 4
Results of univariable cox regression analysis for patient survival (without IHM).

Clinical parameter P-value Risk
ratio

Lower 95%
CI

Upper 95%
CI

Duration from diagnosis to surgery .08 1.01 0.99 1.01
Age .38 0.99 0.97 1.01
Sex .45 1.21 0.74 1.98
Weight .11 0.99 0.97 1.01
Height .57 0.99 0.96 1.02
BMI .12 0.96 0.91 1.01
ASA Classification .39 1.28 0.73 2.23
Preoperative Stenting .74 1.11 0.61 1.99
ASS medication .12 1.48 0.91 2.39
CA 19-9 preoperatively .72 1 1 1
Bilirubin preoperatively .29 1.04 0.97 1.10
Creatinine preoperatively .99 0.99 0.52 1.89
INR preoperatively .61 1.62 0.39 6.73
Platelets preoperatively .47 0.99 0.99 1.001
gGT preoperatively .09 1 0.99 1
MELD score preoperatively .18 1.05 0.98 1.12
Duration of surgery .57 1.001 0.99 1.003
RBC Transfusion .01 2.76 1.25 6.09
Portal reconstruction .26 1.62 0.69 3.76
T .03 1.5 1.03 2.18
G .001 2.3 1.45 3.66
Lymph node status positive .065 1.1 0.43 2.41
Lymph node count .49 1.02 0.97 1.07
L .88 1.05 0.59 1.85
V .35 1.42 0.68 2.97
Pn .02 2.38 1.15 4.89
R .58 1.11 0.77 1.61
R0 (negative resection margin) .35 1.25 0.79 1.98
R0 & negative lymph node status .11 1.48 0.92 2.39
Liver failure (ISGLS) .32 1.26 0.8 1.98
Re-laparotomy for complications .58 1.18 0.66 2.09
Bile leak .08 1.78 0.93 3.38
Postoperative fluid collection/abscess .73 1.14 0.55 2.37
Postoperative bleeding .98 1.02 0.25 4.16
Postoperative kidney failure .76 1.2 0.38 3.81
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survival were weight, days from diagnosis to operation, and gGT level,
which can be reviewed in Fig. 8. This stands in contrast to the cox regres-
sion analysis, where these parameters are not significantly associated
with the patient survival. Due to the “black-box” nature of CNNs, such dif-
ference is not easily explained and resembles different methodological ap-
proaches.

Discussion

Weaimed to identify predictive clinical factors in patientswith perihilar
cholangiocarcinoma and combine these with AI-based histopathological
slide analysis for an improved prediction of prognosis.

The present analysis demonstrated as independent predictive factors for
the patient survival the T type, grading of the tumor aswell as requirements
for transfusion during surgery. Both clinical factors have been described be-
fore by several studies.32–34 It is not surprising that tumor biology as repre-
sented by the grading of the tumor is a dominant prognosis defining factor.
The transfusion requirement, which must be seen in the context of a low
transfusion rate of only 10% in the cohort under investigation, also appears
to impact outcomes. Usually, intraoperative transfusions may be surrogates
for more complex surgery and therefore advanced disease. Interestingly,
other studies suggested transfusion-related immunomodulation (TRIM) as
Table 5
Results of multivariable cox regression analysis for patient survival (without IHM).

Clinical parameter P-value Risk ratio Lower 95% CI Upper 95% CI

Transfusion .003 3.85 1.56 9.38
T .007 1.85 1.19 2.89
G .001 3.89 2.13 7.1

7

a factor compromising immune surveillance, resulting in the elusion of
micrometastases.35,36

Unfortunately, the results of this clinical part of our study are represen-
tative for other studies37–39 in that they have a limited ability to predict the
individual prognosis.

As such, we aimed to utilize the latest developments in artificial intelli-
gence and digital pathology for a better prediction of prognosis. Digital pa-
thology, fueled by advances in artificial intelligence and computer vision
technologies, has emerged in recent years and has already demonstrated
the capability of superb prognosis prediction in other tumor entities.12–14

In the present study, a CNNwas trained for whole-slide analysis after mark-
ing tumor nests by an experienced hepatobiliary pathologist. Features ex-
tracted by the CNN were used for survival analysis after a feature
reduction step to ensure the removal of redundant features. This approach
was chosen to allow a comparative analysis between the use of solely clin-
ical features and a hybrid of both feature sets. This methodological choice
allows for a meaningful comparison between the different feature sources.
The comparison of survival prediction by clinical features or combination
of both demonstrated that the combination of clinical and histopathological
features does not improve survival prediction by the present model (Fig. 6).
Unfortunately, the change of the concordance indexwas small without clin-
ical relevance, as the concordance index of 0.559 (log-rank P-value of .064)
changed to 0.575 (log-rank P-value of .001). From a clinical point of view,
the current presentedmodel fails to improve the prediction of the prognosis
on an individual basis by digital pathology in perihilar cholangiocarcinoma
patients. On the other hand, the presented data demonstrate a first proof of
concept that the combination of clinical factors with histopathological fea-
tures is possible. The very small numerical rise in prognosis prediction
might be due to several factors: First, perihilar cholangiocarcinoma present
a challenging and variable histopathological morphology, which makes a
feature extraction by a CNN challenging, especially with a limited number
of slides as in the present study. Second, presumably most important, the
current model utilized a marking of tumor areas and tumor nests and not
precise marking of tumor cells for the foundation of the CNN-based digital
histopathological analysis. As such, feature extraction might have included
parts of the slides not containing tumor glands but peritumoral tissue. Fur-
thermore, it is important to acknowledge that the used CNN models inher-
ently lack interpretability,40 making it challenging to pinpoint the exact
causes of the observed outcomes. To successfully rebuild a model for histo-
pathological-based prognosis prediction in perihilar cholangiocarcinoma,
we thrive for a multicenter approach with a precise marking of tumor
cells for the foundation of the CNN-based digital histopathologic analysis.

Interestingly, the feature importance of the clinical factors included in
the machine learning models disagrees with the classical survival analysis
by uni-/multivariable cox proportional hazards. Due to the nature of
thesemodels (e.g., black box nature and layer dependency), it remains chal-
lenging to explain such differences.

The trained CNN was utilized to generate heatmaps to identify areas of
interest in histopathological examinations and hint the pathologists with
areas of possible carcinoma cells. In Fig. 5 an example of the best- and
worst performing heatmap WSI is shown, demonstrating the applicability
and limitations of themodel. In the optimal setting all tumor nests are iden-
tified andmarked up. On the other hand, in some cases, tumor nests are not
marked as suspicious, resembling false-negative results, by the CNN, requir-
ing an experienced and attentive pathologist to make the correct diagnosis.
Indeed, this is the dominant and clinically relevant limitation: In such cases,
a pathologist might be misled and guided to a false feeling of confidence,
that nothing is present on the slide, with potentially huge clinical relevance.
Accuracy, specificity, recall, precision, and F1 scores, as appropriatemetrics
to describe the capability of this model, demonstrate that the generated
heatmaps are up to now at the most a subtle guiding instrument during
the visual exploration of the slides. Beginners in hepatobiliary pathology
may benefit from a visual heatmap. Again, we demonstrate a proof of con-
cept, that visual heatmaps are possible for perihilar cholangiocarcinoma,
but a clinical application cannot be recommended in the present form. A fu-
ture redo in a larger dataset with accurately labeled tumor cells hopefully



Fig. 6. Kaplan–Meier plots for the validation dataset (n= 115). The average risk scores produced by the gradient-boosted model are split at the median and divided into a
low- and high-risk group. A shows the Kaplan–Meier curves produced with clinical features only, while B shows the curves produced with both deep learning and clinical
features.
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demonstrates better metrics of the models and therefore heatmaps, which a
clinical pathologist can rely on.

Of note, this model is not suitable as a stand-alone fully automatic tool
for the histopathological diagnosis of cholangiocarcinoma and does not re-
place the expertise of an experienced hepatobiliary pathologist.

Limitations of the present study include the limited number of patients
and the monocentric design. Moreover, the chosen methodological ap-
proach to mark all tumor nests, but not single tumor cells seems to prevent
Fig. 7. Kaplan–Meier plots for the held-out test dataset (n=27). The average risk score
low- and high-risk group. A shows the Kaplan–Meier curves produced with clinical feat
features.
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a more precise feature extraction for prediction purposes and even more
precise heatmap generation.

To overcome these limitations, future investigations should explore al-
ternative methodological approaches for both the annotation process and
model development. Potential model improvements include incorporating
more sophisticated data augmentation41,42 and normalization43,44 tech-
niques, as well as the pretraining of the CNN on a wider range of histology
images45 to enhance its ability to capture general structures. Furthermore,
s produced by the gradient-boosted model are split at the median and divided into a
ures only, while B shows the curves produced with both deep learning and clinical



Fig. 8. Violin plot of the feature importances of the clinical features. Higher numbers indicate higher importance. The distribution represents the feature importance of the
clinical features in the 1000 bootstrapping models. The white dot represents the median.
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due to the low incidence of the disease, multicentric studies are essential for
more robust results and generalizability. The knowledge and experience ac-
quired in the course of this study can serve not only as a foundation for our
future research but also as a valuable resource for the broader research
community engaged in studying this condition.

Conclusion

In conclusion, our study demonstrates the proof of concept to utilize AI-
based digital pathology for prognosis prediction in perihilar cholangiocarci-
noma, but so far without clinical relevance. Based on the present
9

methodology, AI-based slide analysis depicts another blind end in the prog-
nosis prediction, hence, alternative methodology should be utilized in fu-
ture works. Moreover, the presented model might serve as a subtle
heatmap builder for a beginner hepatobiliary pathologist, so far without
recommendation for regular clinical application.
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