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Highlights Impact and implications

� HBsAg accumulation induces ER stress and hep-

atocarcinogenesis in vivo.

� After HBsAg challenge, ATF4 and ATF6 down-
regulate the expression of LAMP2.

� Reduced LAMP2 worsens ER stress-related auto-
phagic flux and promotes proliferation.

� ER stress inhibitors reverse HBsAg-reduced LAMP2
and suppress proliferation.
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Factors and mechanisms involved in hepatocarcino-
genesis driven by hepatitis B surface antigen (HBsAg)
are poorly defined, hindering the development of
effective therapeutic strategies. This study showed
that HBsAg-induced endoplasmic reticulum stress
suppressed LAMP2, thereby mediating autophagic
injury. The present data suggest that restoring LAMP2
function in chronic HBV infection may have both
antiviral and anti-cancer effects. This study has pro-
vided insights into the role of HBsAg-mediated intra-
cellular events in carcinogenesis and thereby has
relevance for future drug development.
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Background & Aims: Hepatitis B surface antigen (HBsAg) drives hepatocarcinogenesis. Factors and mechanisms involved in
this progression remain poorly defined, hindering the development of effective therapeutic strategies. Therefore, the
mechanisms involved in the HBsAg-induced transformation of normal liver into hepatocellular carcinoma (HCC) were
investigated.
Methods: Hemizygous Tg(Alb1HBV)44Bri/J mice were examined for HBsAg-induced carcinogenic events. Gene set-
enrichment analysis identified significant signatures in HBsAg-transgenic mice that correlated with endoplasmic reticulum
(ER) stress, unfolded protein response, autophagy and proliferation. These events were investigated by western blotting,
immunohistochemical and immunocytochemical staining in 2-, 8- and 12-month-old HBsAg-transgenic mice. The results
were verified in HBsAg-overexpressing Hepa1-6 cells and validated in human HBV-related HCC samples.
Results: Increased BiP expression in HBsAg-transgenic mice indicated induction of the unfolded protein response. In addition,
early-phase autophagy was enhanced (increased BECN1 and LC3B) and late-phase autophagy blocked (increased p62) in
HBsAg-transgenic mice. Finally, HBsAg altered lysosomal acidification via ATF4- and ATF6-mediated downregulation of
lysosome-associated membrane protein 2 (LAMP2) expression. In patients, HBV-related HCC and adjacent tissues showed
increased BiP, p62 and downregulated LAMP2 compared to uninfected controls. In vitro, the use of ER stress inhibitors
reversed the HBsAg-related suppression of LAMP2. Furthermore, HBsAg promoted hepatocellular proliferation as indicated by
Ki67, cleaved caspase-3 and AFP staining in paraffin-embedded liver sections from HBsAg-transgenic mice. These results were
further verified by colony formation assays in HBsAg-expressing Hepa1-6 cells. Interestingly, inhibition of ER stress in HBsAg-
overexpressing Hepa1-6 cells suppressed HBsAg-mediated cell proliferation.
Conclusions: These data showed that HBsAg directly induces ER stress, impairs autophagy and promotes proliferation,
thereby driving hepatocarcinogenesis. In addition, this study expanded the understanding of HBsAg-mediated intracellular
events in carcinogenesis.
Impact and implications: Factors and mechanisms involved in hepatocarcinogenesis driven by hepatitis B surface antigen
(HBsAg) are poorly defined, hindering the development of effective therapeutic strategies. This study showed that HBsAg-
induced endoplasmic reticulum stress suppressed LAMP2, thereby mediating autophagic injury. The present data suggest
that restoring LAMP2 function in chronic HBV infection may have both antiviral and anti-cancer effects. This study has
provided insights into the role of HBsAg-mediated intracellular events in carcinogenesis and thereby has relevance for future
drug development.
© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Liver cancer is the sixth most common cancer worldwide and is
characterised by a high degree of malignancy, aggressive
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metastasis and insidious presentation.1 HBV infection is the
leading risk factor for HCC, accounting for approximately 60% of
HCC cases in Asia and Africa and 20% in the West.1 Hepatitis B
surface antigen (HBsAg) continues to be generated and accu-
mulates in hepatocytes during long-term chronic HBV infection,
culminating in the classic histological finding of “ground glass”
hepatocytes.2 Studies have shown a positive correlation between
HBsAg levels and the incidence of HCC in patients.3 The risk of
HCC is 2.46-fold higher in patients with residual HBsAg titres
greater than 1,000 IU/ml.4 However, the mechanisms driving

https://doi.org/10.1016/j.jhepr.2024.101012
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HBsAg-induced hepatocarcinogenesis remain unclear, thus hin-
dering the development of new drugs for the treatment of HCC.

HBV encodes three surface proteins, the large, medium and
small HBsAg (PreS1, PreS2 and S, respectively). All HBsAg pro-
teins are synthesised at the ER, the largest membranous organ-
elle, which plays a major role in the processing and secretion of
at least one-third of all proteins.5,6 Disruption of ER homeostasis
leads to an abnormal accumulation of unfolded or misfolded
proteins, causing ER stress, which in turn activates an adaptive
mechanism called the unfolded protein response (UPR) to repair
and restore the ER to a steady state.7 BiP is the key chaperone
and regulator of ER homeostasis and binds to the UPR sensors
IRE1, PERK and ATF6 to keep them inactive.7,8 However, because
it has a higher affinity for proteins that are misfolded or
unfolded, BiP dissociates from the ER stress sensors, releasing
them to activate their downstream signalling.9

Autophagy plays a critical protective role in the clearance of
misfolded proteins and protein aggregates during ER stress.10

Early autophagy is characterised by phagocytosis of cytoplasmic
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Fig. 1. ER stress is induced in HBsAg-tg mice. (A) Clustering heat map of GSE84
mice. (B) Gene set enrichment analysis of GSE84429 for ER localization, ER stress
show (C) HBsAg and (D) BiP expression in livers of WT and Alb-HBs mice at differe
integrated optical density of two randomly selected areas of each mouse (mean±
unequal variances t-test) ****p <0.0001. ER, endoplasmic reticulum; HBsAg, hepati
score; UPR, unfolded protein response; WT, wild-type.
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components and the formation of autophagosomes. Late auto-
phagy is characterised by the formation of autolysosomes by
fusion of autophagosomes with lysosomes and subsequent
degradation of cargo by lysosomal hydrolases.11 Both up- and
down-regulation of autophagy have been found in human ma-
lignancies, suggesting that autophagy plays a complex role in
tumour initiation and progression.12 Studies have shown that, in
the healthy liver, autophagy primarily has a tumour suppressive
function, but the detailed role of autophagy in hepatocarcino-
genesis is unclear.13 In this study, the role of HBsAg in inducing ER
stress and autophagic injury in hepatocytes was investigated,
providing insights into the underlying mechanisms of HBsAg-
induced carcinogenesis.
Materials and methods
See supplementary materials and supplementary CTAT table for
details regarding mouse experiments, primary mouse hepato-
cyte isolation, human HCC tissue samples, Hepa1-6 cell culture,
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HBsAg overexpression, western blot, autophagosome staining,
lysosomal tracking, acridine orange staining, dual-luciferase re-
porter assay, immunofluorescent and immunohistochemical
staining, cell proliferation assay, colony formation assay and data
mining.
Statistical analysis
The GraphPad Prism version 9 (GraphPad Software, La Jolla, CA)
was used to create graphs and perform statistical analysis.
Representative data expressed as mean ± SD. Two groups were
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Fig. 2. UPR is induced in HBsAg-transgenic mice. Western blot was performed
isolated fromWT and Alb-HBs mice (4-6-months-old). Western blot visualised (C)
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compared between HBV-associated HCC tissues and normal tissues (The Cancer G
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compared using unpaired t-test, F-test and unequal variances t-
test (Welsh’s t-test). Statistical significance was determined by p
values less than 0.05.
Results
HBsAg induces the UPR in HBsAg-transgenic mice
To determine whether HBsAg affects ER stress and thereby alters
a number of HCC-related intracellular events, public microarray
data (GSE84429),14 generated from liver samples of wild type
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and HBsAg-transgenic mice, were reanalysed by gene set-
enrichment analysis (GSEA). This analysis revealed the poten-
tial candidate signatures of intracellular events driven by HBsAg
accumulation. ER stress and UPR signatures were significantly
enriched in HBsAg-transgenic mice (Fig. 1A and B). These events
were investigated in 2-, 8- and 12-month-old HBsAg-transgenic
male mice (Tg(Alb1HBV)44Bri/J, Alb-HBs), representing non-
HCC, early HCC and HCC stages, respectively.15,16 Immunohisto-
chemical staining showed that large amounts of HBsAg already
accumulated in hepatocytes of at least 2-month-old HBsAg-
transgenic mice (Fig. 1C). To determine whether HBsAg triggers
the UPR in these transgenic mice, BiP was visualised as a master
regulator of the UPR. Immunohistochemical (IHC) staining of
paraffin sections showed that BiP expression was significantly
upregulated in 2-, 8- and 12-month-old transgenic mice (Fig. 1D).
Western blot was performed to examine UPR markers in primary
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murine hepatocytes (PMHs) of wild-type and HBsAg-transgenic
mice. HBsAg (Fig. 2A) significantly upregulated the abundance
of BiP, PERK, p-PERK, p-eIF2a, ATF4 and p-IRE1a in PMHs
(Fig. 2B), indicating that the UPR is activated. Notably, increased
ATF6 (Fig. 2B) but no cleaved ATF6 was observed in HBsAg-
transgenic mice, suggesting that ATF6 may not be involved in
the HBsAg-mediated UPR.

To mimic the HBsAg-mediated activation of the UPR in vitro,
HBsAg was overexpressed in Hepa1-6 cells using the large
HBsAg-coding plasmid17 (Fig. 2C). Western blot showed
increased levels of BiP, p-PERK, p-eIF2a, ATF4 and p-IRE1a in the
HBsAg-transfected cells (Fig. 2D). In contrast to the animal
model, a slight decrease in total ATF6 protein expression was
observed. To confirm HBsAg-mediated effects on ER conditions,
HBV-associated HCC samples were examined by re-analysis of
TCGA (The Cancer Genome Atlas) data, including 50 normal
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Fig. 4. Autophagy signalling is abnormal in HBsAg-tg mice. (A) Clustering heat map of GSE84429 was acquired for hepatic autophagy signature comparing
HBsAg-tg and WT mice. (B) Gene set-enrichment analysis of GSE84429 for autophagy, autophagy positive regulation and autophagy negative regulation
distinguished HBsAg-tg and WT livers. Immunohistochemical staining shows (C) BECN1 and (D) p62 expression in Alb-HBs and WT mouse livers at different ages
(2-, 8-, 12-months-old, group sizes n = 3). BECN1 and p62 were quantified (mean±SD) by counting the positive hepatocytes from two randomly selected areas for
each mouse (n = 3). Scale bars: blue bar = 20 lm, black bar = 100 lm; white bar = 10 lm; p values (unpaired t-test, unequal variances t-test), ***p <0.001, ****p
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tissues and 60 HCC samples from HBV-positive patients
(excluding hepatitis C virus coinfection). In tumour samples,
expression of HSPA5 (encoding BiP protein), DDIT3 (encoding
CHOP protein), ATF4 and ATF6 was significantly upregulated
compared to non-tumour samples (Fig. 2E). These data showed
that UPR-related genes were induced in HBV-associated HCC
tissue, demonstrating the relevance of our previous findings.
Accumulation of autophagosomes is observed in HBsAg-
transgenic mice
Next, whether HBsAg promotes autophagosomes in hepatocytes
was investigated. The microarray dataset (GSE84429) was re-
analysed by GSEA. Genes associated with autophagosomes (phag-
ophore assembly) were significantly enriched in HBsAg-transgenic
mice (Fig. 3A). LC3B is often used to monitor autophagy, as LC3B-II
levels are closely correlatedwith the numberof autophagosomes.18

Increased expression of LC3B was demonstrated by IHC staining in
8- and 12-month-old transgenic mice (Fig. 3B), whereas immuno-
fluorescence (IF) stainingalso showed increased LC3B inPMHsof 4-
JHEP Reports 2024
to 6-month-old transgenic mice (Fig. 3C). Western blot analysis
further showed increased expression of LC3B-II in HBsAg-
transgenic mouse livers and HBsAg-expressing Hepa1-6 cells
(Fig. 3E). Phagophore assembly was confirmed by the CYTO-ID®

AutophagyDetectionKit 2.0,whichvisualisedan increasednumber
of autophagosomes in PMHs fromHBsAg-transgenicmice (Fig. 3D),
similar to thatobserved in thepositive control, representedbywild-
type PMHs stimulatedwith rapamycin and chloroquine. These data
showed a clear accumulation of autophagosomes in HBsAg-
transgenic mice.
HBsAg impairs autophagic flux in HBsAg-transgenic mice
Whether HBsAg promotes autophagy in hepatocytes was further
investigated. First, the microarray dataset (GSE84429) was
reanalysed. Autophagy signalling, including positive and nega-
tive regulation, were significantly enriched in HBsAg-transgenic
mice (Fig. 4A and B). BECN119 and p6220 are known as markers
of early and late autophagy activation, repectively. To investigate
the effect of HBsAg on autophagy in transgenic mice, IHC was
5vol. 6 j 101012
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performed and indicated a clear upregulation of both BECN1 and
p62 in HBsAg-transgenic mice (Fig. 4C and D), suggesting that
autophagy might be enhanced in the early stage and impaired in
the late stage in HBsAg-transgenic mice.

To confirm the enhanced early and impaired late autophagy,
western blot was performed to examine autophagy markers in
PMHs (wild-type and Alb-HBs) and HBsAg-expressing Hepa1-6
cells. Western blot analysis showed that HBsAg significantly
increased the expression of LC3B-II and p62 (Fig. 3E), suggesting
that autophagic degradation may be impaired in hepatocytes. IF
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staining was performed and the results clearly confirmed
increased p62 in PMHs from HBsAg-transgenic mice (Fig. 5A).

The autophagic flux was investigated by assessing lysosomal
activity, using LysoTrackerTM Red DND-99. Chloroquine is known
to inhibit acidification of the lysosomal compartment, thereby
preventing the degradation of cargo in lysosomes.21 As a positive
control, wild-type PMHs were treated with 10 lM of chloroquine
for 24 h in vitro. The results showed that the fluorescence in-
tensity of LysoTrackerTM staining was clearly reduced in PMHs
isolated from HBsAg-transgenic mice, compared to PMHs from
B
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wild-type mice (Fig. 5B), suggesting compromised autophagy
and reduced cargo degradation. Fusion between the autopha-
gosome and lysosome depends on normal lysosomal activity,
which is related to pH. Acridine orange is a dye that can stain
acidic bodies such as lysosomes. By emitting red light after
excitation and blue light under low pH conditions, it can be used
to assess lysosomal pH.22 Acridine orange staining of PMHs
(wild-type and Alb-HBs) showed that the red fluorescence was
clearly reduced in the HBsAg-transgenic PMHs, similar to the
chloroquine-treated controls, indicating abnormal lysosomal
acidification due to HBsAg expression (Fig. 5C). These results
were confirmed in HBsAg-expressing Hepa1-6 cells (Fig. 5D).
Thus, the autophagic flux seemed to be impaired in the presence
of HBsAg accumulation.

Again, analysis of TCGA expression data from HBV-associated
HCC (n = 60) and control tissues (n = 50) indicated increased
gene expression of BECN1, MAP1LC3B2 (encoding LC3B protein)
and SQSTM1 (encoding p62 protein) in tumour samples,
compared to non-tumour controls (Fig. 5E). Thus genes related to
incomplete autophagy were induced in HBV-associated HCC
tissue.

LAMP2 expression is reduced in HBsAg-transgenic mice due to
HBsAg accumulation
Re-analysis of the microarray dataset (GSE84429) indicated that
the lysosome gene signature was significantly enriched in
HBsAg-transgenic mice compared to wild-type mice (Fig. 6A and
B). The role of lysosome-associated membrane proteins 1 and 2
(LAMP1 and LAMP2) in abnormal lysosomal acidification was
analysed in HBsAg-transgenic mice by western blot. In particular,
LAMP2 is an important regulator of the successful maturation of
autophagosomes and phagosomes.23 As shown in Fig. 6C, LAMP2
but not LAMP1 expression was significantly decreased in PMHs
isolated from HBsAg-transgenic mice. IF staining confirmed the
reduced LAMP2 expression in HBsAg-transgenic mice (Fig. 6D).
Suppression of LAMP2 was also observed in Hepa1-6 cells tran-
siently expressing HBsAg (Fig. 6E), suggesting that HBsAg ap-
pears to directly inhibit LAMP2 expression.

To determine whether the HBsAg-induced UPR contributes to
the reduction of LAMP2, western blotting was performed in
PMHs (wild-type and Alb-HBs) treated with the ER stress in-
hibitor tauroursodeoxycholic acid (TUDCA) in vitro. Interestingly,
the results showed that LAMP2 expression was partially restored
in PMHs treated with 1 mM TUDCA for 48 h (Fig. 6F). In addition,
the decrease in p62 level in TUDCA-treated PMHs indirectly
indicated that the corresponding autophagic flux was restored
and improved to some extent with the normalisation of LAMP2
(Fig. 6F). As shown in Fig. 2B and D, the phosphorylation of eIF2a
was induced by HBsAg expression in transgenic mice and
transfected cells. To determine whether HBsAg-induced activa-
tion of PERK-eIF2a signalling was involved in decreased LAMP2
expression, the selective PERK inhibitor GSK2606414 was
applied. GSK2606414 partially restored LAMP2 expression levels
in HBsAg-transgenic mice (Fig. 6G). These results suggest that
HBsAg-mediated activation of PERK-eIF2a signalling is involved
in the reduction of LAMP2 expression in HBsAg-transgenic mice.
Since ATF4 and ATF6 were upregulated in Alb-HBs mice (Fig. 2B)
and ATF4 was induced in HBsAg-expressing Hepa1-6 cells
(Fig. 2E), the role of ATF4 and ATF6 in LAMP2 expression was
analysed. Dual-luciferase reporter assays determined the effect
of ATF4 and ATF6 overexpression on LAMP2 promoter activity.
Transfection with higher doses of ATF4- or ATF6-encoding
JHEP Reports 2024
plasmids (80 ng/reaction) significantly suppressed luciferase
activity. Functionality of the assay was confirmed by over-
expression of PafA. These data highlight a potential role for ATF4
and ATF6 in HBsAg-mediated suppression of LAMP2.

HBsAg contributes to proliferation and drives
hepatocarcinogenesis
Intracellular homeostasis, cell fate and tumourigenesis are often
associated with ER stress and impaired autophagy.7 Herein, it
was found that gene signatures related to proliferation and liver
cancer were significantly enriched in HBsAg-transgenic mice
(Fig. 7A). In contrast, no significant enrichment of signatures
related to apoptosis was observed. IHC staining for Ki67, a well-
accepted marker of proliferation and a potential prognostic or
predictive marker in malignant diseases, was performed to
further investigate whether HBsAg induces proliferation in
transgenic mice (2-, 8- and 12-month-old). Ki67-positive hepa-
tocytes were observed in 8- and 12-month-old HBsAg-transgenic
mice (Fig. 7B), suggesting increased hepatocyte proliferation due
to HBsAg accumulation. IHC staining detected cleaved caspase-3,
a critical executioner of apoptosis,24 in HBsAg-transgenic mice
(Fig. 7C), indirectly indicating apoptotic events due to HBsAg
expression. Uncontrolled aggressive proliferation usually leads to
tumourigenesis; alpha-fetoprotein (AFP), a well-known HCC
marker, was investigated by IHC, indicating that AFP expression
was massively increased in the older groups of HBsAg-transgenic
mice (Fig. 7D). These results suggest that ER stress and impaired
autophagic flux occurred in HBsAg-transgenic mice, coinciding
with cell proliferation and subsequent tumourigenesis.

Colony formation was studied in Hepa1-6 cells over-
expressing HBsAg, demonstrating the ability of individual cells to
proliferate and form colonies (Fig. 7E). HBsAg-expressing Hepa1-
6 cells showed a significant increase in cell colony formation. The
relationship between ER stress and proliferation in HBsAg-
transfected Hepa1-6 cells was analysed following TUDCA and
GSK2606414 treatment for 24 h. ER stress inhibition significantly
reduced HBsAg-induced cell proliferation, determined by a CCK8
assay (Fig. 7F). Thus, HBsAg appears to promote cell proliferation
by inducing ER stress.

LAMP2 levels are suppressed in HBV-associated HCC and
adjacent tissue
ER stress and autophagy impairment was analysed by IHC
staining of HCC and adjacent tissue from HBV-infected (n = 5)
and non-infected (n = 5) patients. The expression of HBsAg, BiP,
p62, and LAMP2 (Fig. 8A) as well as BECN1 and LC3B (Fig. S1) was
evaluated. The observed HBsAg signals were lower in HCC tissues
compared to adjacent tissue controls, in agreement with other
studies.25,26 Consistent with our previous findings, the expres-
sion of BiP, LC3B, p62 was increased, whereas the expression of
LAMP2 was decreased in HBV-related HCC and adjacent tissues
compared to uninfected controls. In contrast, staining for BECN1
showed overall high expression in HCC and adjacent tissues
(Fig. S1). These differences, except for BECN1, appeared to be
significant when the integrated optical density was compared in
five randomly selected areas from each patient. Finally, the in-
tegrated optical density of HBsAg negatively correlated with that
of LAMP2 in HCC (r = −0.5095, p = 0.0093) and adjacent tissue (r =
-0.5651, p = 0.0001) from HBV-infected patients (Fig. 8B). Thus,
there appears to be a close relationship between HBsAg accu-
mulation, hyperactivation of ER stress and LAMP2 decline-driven
impaired autophagic flux in HBV-related HCC samples.
7vol. 6 j 101012
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Discussion
An imbalance in protein homeostasis can lead to abnormal
protein accumulation, disrupting normal cellular function and is
associated with a variety of diseases, including cancer.27 This
study demonstrated that HBsAg accumulation induced ER stress,
JHEP Reports 2024
impaired autophagic flux and promoted proliferation in HBsAg-
transgenic mice in vivo and in HBsAg-expressing cells in vitro.
Mechanistically, HBsAg-induced ATF4 and ATF6 expression were
identified to suppress LAMP2 promoter activity. This led to a
suppressed fusion of autophagosomes and lysosomes. Notably,
9vol. 6 j 101012
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Fig. 8. HBsAg accumulation induces ER stress-associated autophagy impairment by suppressing LAMP2 in patients with HCC and HBV infection. (A)
Expression of HBsAg, BiP, p62 and LAMP2 was verified by immunohistochemical staining in paraffin-embedded HCC specimens with (n = 5) or without (n = 5)
HBV infection. Tumour and AT were analysed. Quantitative analysis of HBsAg, BiP, p62 and LAMP2 based on integrated optical density of five randomly selected
areas for each patient. (B) Spearman’s rank correlation was applied to the integrated optical density values of HBsAg and LAMP2. Scale bar, 100 lm. p values
(unpaired t-test, unequal variances t-test) *p <0.05; **p <0.01; ***p <0.001; ****p <0.0001; n.s., not significant. AT, adjacent tissue; ER, endoplasmic reticulum;
HBsAg, hepatitis B surface antigen; HCC, hepatocellular carcinoma.
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treatment with ER stress inhibitors partially restored LAMP2
expression, thereby normalising autophagic and proliferative
activities. These findings provide a rational explanation for how
HBsAg impairs autophagic flux in liver tumourigenesis.
JHEP Reports 2024
Due to the complex and error-prone nature of protein folding,
the capacity of the ER to fold proteins can be easily overwhelmed
following physiological or pathological insults.7 Therefore, the
continuous accumulation of HBsAg in the ER induces ER stress,
10vol. 6 j 101012



thereby causing a series of intracellular events. Previous studies
have demonstrated that ER stress plays a key role in liver disease
progression.28,29 PreS1 and PreS2 mutations have been shown to
induce ER stress, associated with DNA damage, centrosome
overduplication, and genomic instability.28,30 In the present
study, wild-type HBsAg was shown to induce sustained ER stress,
thereby activating the UPR as in PreS mutation models.28,30 Here,
HBsAg-transgenic mice and HBsAg-transduced cells expressed
all three HBsAg proteins (large, medium and small), with
maximum levels for the L-HBsAg. However, expression of PreS1
(large), PreS2 (medium) and S (small) genes likely depends on
cellular conditions and may differ in distinct settings. Possible
differential effects of the different HBsAg versions on ER stress
and autophagy were not investigated in this study. In conclusion,
excessive ER stress and subsequent UPR can lead to hepatic
inflammation, tissue damage and fibrosis, including cellular
malignant transformation, ultimately contributing to various
liver diseases.

Previous reports have shown that HBV can increase the
autophagic process in hepatoma cells without increasing lyso-
somal protein degradation by HBsAg-mediated LC3-1 lip-
idation.31 In the present study, an additional mechanism was
described. LAMP1 and LAMP2 are essential components of the
lysosome;32 a recent study showed that LAMP2 reduction is
associated with impaired autophagic flux in response to oxygen
or nutrient deprivation therapy. A significant increase in auto-
phagic flux is observed when LAMP2 is overexpressed.33 It has
been reported that ER stress can reduce autophagic flux by
inhibiting LAMP expression, although the mechanism remains
unclear.34 The results of the present study led to the suggestion
that HBsAg alters lysosomal pH by downregulating LAMP2
expression, thereby impairing autophagic flux in a transgenic
mouse model. A previous study also showed that HCC tissues
expressed significantly less LAMP2 than adjacent tissues, and its
expression level correlated with HCC metastasis.35 Their results
are consistent with ours, but they did not explain the reason for
the decrease in LAMP2, which is thought to be influenced by
HBsAg expression. In this study, HBsAg-induced ATF4 and ATF6
were identified as negative transcriptional regulators of LAMP2.
A related mechanism has been described for free fatty acid-
induced ER stress in alcohol-related liver disease, where ATF4
represses LAMP2 expression and thereby impairs autophagy
flux.36 Another recent study further indicated that LAMP2A
expression was downregulated in human HCC biopsies, and
showed that HCC and human hepatocyte cell lines were more
proliferative and migratory when LAMP2A expression was
JHEP Reports 2024
inhibited.37 LAMP2A represents 25% of rat liver lysosomal
LAMP2.38 Their conclusion clearly supports our findings that
LAMP2 downregulation due to long-term HBsAg accumulation
induces incomplete autophagic flux, promotes proliferation and
supports tumourigenesis. In this study, inhibition of HBsAg-
induced UPR or PERK-eIF2a signalling partially restored LAMP2
protein expression. This finding further suggests that reducing
ER stress or maintaining the autophagic flux may be effective
strategies for inhibiting HBsAg-induced hepatocarcinogenesis.
Further investigation is required to determine the specific mo-
lecular mechanisms by which large, medium and small HBsAg
activate the PERK-eIF2a axis.

The role of autophagy in the degradation of HBsAg has pre-
viously been investigated, indicating that HBsAg is primarily
degraded by autophagy.11 Thus, impaired autophagic flux leads
to accumulation of HBsAg. Interestingly, HBV uses distinct host
trafficking machinery to assemble and release its particle types,
including the endosomal sorting complexes required for the
transport pathway and the autophagy process.39 Therefore,
HBsAg-induced suppression of LAMP2 may be a mechanism to
protect viral particles from degradation while occupying multi-
vesicular and autophagic processes. This study suggests
that HBsAg inhibits autophagic flux by downregulating
autophagosome-lysosome fusion, which in turn leads to a
further imbalance in cellular homeostasis, which determines cell
fate. The relationship between autophagy and cell fate is com-
plex. The link between impaired autophagic flux and prolifera-
tion needs to be further validated.

Although the HBsAg-transgenic mouse model is widely used
to study the mechanism by which high HBsAg expression in-
duces HCC in chronic HBV infection, its limitations should be
carefully considered. The Alb-HBs model clarified the pathogenic
properties of HBsAg, but the intracellular accumulation did not
fully reflect the natural distribution of HBsAg. Finally, as proof of
principle, a small number of HCC samples confirmed the role of
ER stress and impaired autophagy in HBV-associated HCC.
However, a larger sample size and multicentre analysis of clinical
samples are needed to develop a potential targeted therapeutic
strategy.

In conclusion, this study demonstrated that HBsAg induced
UPR and impaired autophagy not only in HBsAg-transgenic mice
and HBsAg-overexpressing Hepa1-6 cells but also in patients
with HBV-related HCC. These findings help to explain the intra-
cellular events mediated by HBsAg. The present data suggest that
restoring LAMP2 function in chronic HBV infection may have
both antiviral and anti-cancer effects.
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