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Abstract
This dissertation analyzes a nonlinear hyperbolic PDE-constrained optimization problem.
Motivated by applications in Full Waveform Inversion, our central goal is to reconstruct
the wave speed parameter entering the acoustic wave equation in the coefficient of the
second-order time derivative of the acoustic pressure. Starting with the first- and second-
order analysis, we prove the well-definedness of the problem and establish corresponding
necessary and sufficient optimality conditions. These findings lay the foundation for inves-
tigating the application of the Sequential Quadratic Programming method. Here, a broad
extension of the parabolic techniques is required due to the hyperbolicity and the bilinear
character of the underlying partial differential equation. Based on a two-step estima-
tion process, we show the well-posedness and R-superlinear convergence of the algorithm.
Furthermore, the present thesis includes the numerical analysis of a fully discrete approxi-
mation of the optimization problem, consisting of a Finite Element discretization in space
and a leapfrog time-stepping. Building upon a stability analysis, we prove a convergence
result regarding first-order necessary optimality conditions. Moreover, we demonstrate
that for every local minimizer of the original problem that satisfies a reasonable growth
condition, there is a sequence of locally optimal solutions to the discrete problems that
converges to this minimizer. The document concludes with numerical experiments based
on synthetic configurations with nonsmooth data, which illustrate the performance and
effectiveness of the presented approach.

Zusammenfassung
Diese Dissertation analysiert ein nichtlineares hyperbolisches Optimalsteuerungsproblem.
Motiviert durch Anwendungen in der Full Waveform Inversion ist das Ziel, die Wellen-
geschwindigkeit zu rekonstruieren, welche als Koeffizient der zweiten Zeitableitung des
Schalldrucks in die akustische Wellengleichung eingeht. Zunächst beweisen wir die Wohl-
definiertheit des Problems, sowie zugehörige notwendige und hinreichende Optimalitäts-
bedingungen. Diese bilden die Grundlage für die Untersuchung des Verfahrens der
Sequentiellen Quadratischen Programmierung. Aufgrund der Hyperbolizität und des
bilinearen Charakters der zugrundeliegenden Differentialgleichung erfordert die Analyse
eine umfangreiche Erweiterung des parabolischen Falls. Basierend auf einem zweistufigen
Abschätzungsverfahren wird die Wohlgestelltheit und R-superlineare Konvergenz des Al-
gorithmus gezeigt. Im Anschluss daran befasst sich die Arbeit mit der numerischen Ana-
lyse einer vollständig diskreten Approximation für das Optimalsteuerungsproblem, die aus
einer Finite-Elemente-Diskretisierung im Raum und einem Leapfrog-Zeitschrittverfahren
besteht. Basierend auf geeigneten Stabilitätsresultaten beweisen wir zunächst ein Konver-
genzresultat bezüglich notwendiger Optimalitätsbedingungen erster Ordnung. Darüber
hinaus zeigen wir, dass gegen jede lokal optimale Lösung des Ursprungsproblems, die
eine geeignete Wachstumsbedingung erfüllt, eine Folge lokal optimaler Lösungen der
diskreten Probleme konvergiert. Schließlich demonstrieren numerische Experimente, die
auf synthetischen Konfigurationen mit nichtglatten Daten basieren, die Effektivität des
vorgestellten Ansatzes.
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INTRODUCTION 1

To myself, I am only a child playing
on the beach, while vast oceans of
truth lie undiscovered before me.

Isaac Newton

Primarily, due to its inaccessibility, the Earth’s subterranean nature is largely unex-
plored. In general, observations can only be made indirectly and from a far distance. Nat-
ural scientists use measurements of permanent movements and vibrations of our planet
to estimate the subsurface structure. This is the basic concept for seismic tomography,
whose development stems from a long history of exploration that probably began with
observations made by J. Michell in 1760. Michell’s pioneering work identified earthquakes
with waves traveling through the Earth’s crust, a concept later underpinned by the de-
velopment of the elasticity theory by scientists like A. L. Cauchy and S. D. Poisson. This
theoretical framework still forms the basis of modern seismological applications [35].

Traditional seismic tomography models, developed since the mid-20th century, have
relied heavily on simplifications such as ray theory, which assumes seismic waves travel
along predetermined paths. These methods, constrained by the limited computational
resources of their time, often only utilized basic data like travel times and phase velocities,
leading to significant limitations in resolution and accuracy. However, the landscape of
seismic exploration has dramatically changed with advances in computational power and
mathematical modeling. These developments have allowed for the implementation of
more sophisticated techniques that can incorporate the full complexity of seismic waves.
Among these, Full Waveform Inversion (FWI) has emerged as one of the leading methods
due to its ability to utilize the entire waveform content of seismic data, facilitating high-
resolution imaging critical for geological exploration and industrial applications [74].

Applied mathematics serves as a bridge between theoretical concepts and applications in
various scientific disciplines, including geophysics. From a mathematical point of view, the
inversion of the wave propagation can be formulated as a minimization problem governed
by an appropriate wave equation. The investigation of such a model is the central focus
of this thesis.

In the present dissertation, our goal is to reconstruct the wave speed parameter entering
the acoustic wave equation by minimizing the misfit between synthetic and observed
seismic data. Understanding the wave speed within an observed domain allows us to
reconstruct the domain’s overall structure since waves travel at different speeds through
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1 - Introduction

different materials. To set the stage for our discussion, we consider the following damped
acoustic wave equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p −∆p + η∂tp = f in I ×Ω

∂np = 0 on I × ΓN
p = 0 on I × ΓD
p(0, ⋅) = p0 in Ω
∂tp(0, ⋅) = p1 in Ω.

(1.1)

In this context, Ω ⊂ RN (N = 2,3) is a bounded spatial domain, and I = [0, T ] ⊂ R is a finite
time interval. Here, the computational domain Ω can represent a segment or a slice of a
segment of the full physical domain, for instance, the Earth. The boundary of Ω consists
of the Neumann boundary part ΓN ⊂ ∂Ω, capable of modeling the Earth’s free surface
constraining the domain Ω, and the (artificial) Dirichlet boundary part ΓD = ∂Ω ∖ ΓN .
Furthermore, the scalar function p∶ I×Ω→ R denotes the acoustic pressure with the initial
value p0∶Ω → R (resp. p1∶Ω → R for the first order time derivative ∂tp). The parameter
ν∶Ω → R denotes square slowness, i.e., ν ∶= c−2 with c∶Ω → R being the acoustic wave
speed in the potentially heterogeneous domain Ω. The coefficient η∶Ω → R is a given
damping term employed to absorb and prevent undesired reflections of the wave on the
artificial boundary part ΓD. Given a source term f ∶ I × Ω → R, we aim to minimize the
sum of the misfit functionals:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inf J (ν, p) ∶= 1
2

m

∑
i=1
∫
I
∫

Ω
ai(p − pobi )2 dxdt + λ2 ∥ν∥

2
L2(Ω)

s.t. (1.1) and ν−(x) ≤ ν(x) ≤ ν+(x) for a.e. x ∈ Ω.
(1.2)

Here, ν−∶Ω → R (resp. ν+∶Ω → R) denotes the lower (resp. upper) bound for ν. Fur-
thermore, for each i = 1, . . . ,m, the function pobi ∶ I ×Ω→ R describes given observed wave
information that is induced by the signal source f and recorded at receivers modeled
through the weight functions ai∶ I ×Ω → R. The receivers ai may be characteristic func-
tions of a small region around some receiving points xk ∈ Ω. The source term f usually
has a small support in space near the Neumann boundary of the domain, representing
an external force applied to the domain. More details and examples are included in the
remainder of this work. Under a suitable choice of the regularization parameter λ, the
first component ν of a solution (ν, p) to (1.2) approximates the underlying true square
slowness corresponding to the induced true wave information pobi .

We note that the minimization problem (1.2) falls into the class of hyperbolic optimal
control problems or hyperbolic PDE-constrained optimization problems. In this field,
various similar problems to (1.2) have been studied in the literature. We refer to related
publications in the following chapters. The main difficulties in the investigation of (1.2) lie
in (i) the hyperbolicity of the underlying PDE system (1.1) and (ii) the bilinear character
ν∂2

t p consisting of the product of the square slowness and the second-order time derivative
of the acoustic pressure. Both, (i) and (ii), lead to various challenges throughout the whole
(numerical) analysis of (1.2).
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1.1 Outline

Question arising from real-world applications

Derivation of a mathematical model

First- and second-order analysis:
Well-definedness and optimality conditions

Algorithm:
Sequential Quadratic Programming

Fully discrete approximation:
Finite Elements and leapfrog time-stepping

Implementation and numerical example

Figure 1.1: Systematic outline

1.1 Outline
In this thesis, the investigation of (1.2) follows the outline in Figure 1.1. More precisely,
it is divided into the following chapters:

• In Chapter 2, we provide preparations that pave the way for our later analysis. In
the first part, we discuss the derivation of our model formulation (1.2). We deduce
the acoustic wave equation (1.1) as a special case of the elastic wave equation that
is obtained from classical physics principles. Furthermore, Dirichlet and Neumann
boundary conditions are introduced from an applied perspective, justifying their
incorporation into our PDE model for real-world seismic applications. Finally, the
minimization problem (1.2) is obtained as a capable strategy for reconstructing
the true wave speed from observed wave information. The chapter’s second part
introduces required functional analytical foundations. First, we discuss Lebesgue
and Sobolev spaces with and without (partially) vanishing trace conditions. Then,
we define the Bochner function spaces which are crucial for the weak solution theory
for time-dependent problems such as parabolic and hyperbolic PDEs. At the end
of the chapter, we introduce semigroups as a useful concept for solving evolution
equations, and in particular, time-dependent PDEs.

• Chapter 3 is devoted to the first- and second-order analysis of (1.2). We develop
a novel technique accounting for an auxiliary first-order system. In contrast to the
original state equation, the underlying control parameter appears in the auxiliary
system not only as the coefficient of the time derivative but also as the initial data
under the image of the solution operator for a specific elliptic problem. On this
basis, we construct an adjoint state explicitly using the corresponding dual semi-
group. This approach leads to necessary optimality conditions with a low adjoint
regularity such that no Sobolev smoothing effect occurs in the optimal solution.
The final part of the chapter is devoted to the second-order analysis of the optimal
control approach. We provide sufficient second-order optimality conditions leading
to strict local optimality and a quadratic growth condition. Here, the application of

3



1 - Introduction

Stampacchia’s method to the hyperbolic case is essential to handle the nonlinearity
ν∂2

t p. Note that this chapter is largely based on the author’s publication [5].

• In Chapter 4, the Sequential Quadratic Programming (SQP) method is considered.
This famous algorithm has been successfully applied to various nonlinear optimiza-
tion problems in the literature. However, in the application to our model problem
(1.2), the aforementioned involved hyperbolic character and second-order bilinear
structure lead to undesired effects of regularity loss in the SQP iteration. There-
fore, the investigation of the SQP method requires a substantial extension of the
developed parabolic techniques. We propose and analyze a novel strategy for the
well-posedness and convergence analysis using a smooth-in-time initial condition, a
tailored self-mapping operator, and a two-step estimation process along with Stam-
pacchia’s method for hyperbolic equations. The chapter’s final theoretical result is
the SQP method’s R-superlinear convergence. Note that the content of this chapter
is published in the author’s preprint [6].

• In Chapter 5, we explore a fully discrete approximation technique for (1.2). Based on
the auxiliary first-order system from Chapter 3, the approximation for (1.1) consists
of a Finite Element discretization in space and a leapfrog (Yee) time-stepping. For
a fully discrete optimal control problem in finite dimension (Ph), we show its well-
definedness and establish corresponding first-order necessary optimality conditions.
Building upon a stability analysis of the fully discrete scheme, we demonstrate
that the interpolations of solutions to the first-order optimality condition for (Ph)
converge up to a subsequence towards a solution satisfying a first-order optimality
condition for (1.2). Finally, given a locally optimal solution to (1.2) that satisfies a
reasonable growth condition, we verify that there exists a sequence of locally optimal
solutions to (Ph) that converges to the locally optimal solution to (1.2). Note that
the content of this chapter is published in the author’s preprint [7]

• In the final chapter, that is Chapter 6, we discuss the computational implementation
of the SQP method from Chapter 4. First, we discuss solving the linear quadratic
SQP subproblems using a projected gradient method. Second, using the fully dis-
crete approximation technique from Chapter 5, we present numerical experiments
based on synthetic configurations with nonsmooth data. Our algorithm success-
fully reconstructs the true wave speed parameter from a deterministic noise model.
Consequently, the numerical results validate the effectiveness of our methodology,
particularly for FWI applications.
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BACKGROUND 2

2.1 Derivation of the Model Formulation
In this section, we discuss a formal derivation of the essential PDE-constrained opti-
mization problem considered in this dissertation. In the following, we predicate that all
quantities are supposed to be sufficiently smooth. We do not delve into detailed discus-
sions of each physical quantity. Instead, our focus is on their relationships, which are
crucial for inferring the desired equations. For a more in-depth view, we refer to the
literature (cf. [21, 27,28,35,48]). Notably, we follow the derivation in Dörfler et al. [29].

Elastic and Acoustic Wave Equation

A central goal in continuum mechanics is to have a better understanding of the relationship
between stress and deformation. Here, the elastic wave equation provides a realistic
model to express how mechanical waves, particularly longitudinal and transverse waves,
propagate through solid media when internal stresses and external forces are present.
We consider an isotropic material, meaning that physical properties behave uniformly in
all directions. For instance, those include mechanical properties, thermal conductivity,
and electrical conductivity. Furthermore, let the material be linearly elastic, meaning it
responds linearly and reversibly to applied stress. This is valid for most solid materials if
the applied stress is in a certain corresponding elastic range.

Let Ω ⊂ R3 be a given spatial domain and let I = [0, T ] ⊂ R be a finite time interval.
We consider an elastic body inside Ω that underlies some stress. Its deformation is then
described by the displacement field u∶ I × Ω → R3. Further, we define the velocity field
v ∶= ∂tu, the strain tensor ϵ(u) ∶= 1

2((∇u)T + ∇u), and analogously the strain rate ϵ(v).
We begin our derivation, noting that the considered materials follow Hooke’s Law, which
describes the linear-elastic behavior between stress and strain. In three dimensions, the
generalized version can mathematically be expressed in the constitutive relation

σ = Cϵ(u), (2.1)

where σ∶ I × Ω → R3×3 denotes the stress tensor and C ∶Ω → L(R3×3,R3×3) denotes the
elasticity tensor, also known as Hooke’s tensor. On the other hand, Newton’s Second
Law of Motion states that the time rate of change of the momentum equals the applied
force that acts on the medium. Given the mass density ρ∶Ω → (0,∞), the momentum is
given by ρv, the internal stress is given by ∇ ⋅ σ, and the external force is given by some
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2 - Background

vector-valued function f ∶ I ×Ω→ R3. Then, the principle above leads to

ρ∂tv = ∇ ⋅ σ + f . (2.2)

Along with the time derivation and changing of the order of derivatives in (2.1), we obtain
the following velocity-stress formulation of the elastic wave equation:

{
ρ∂tv −∇ ⋅ σ = f in I ×Ω
∂tσ −Cϵ(v) = 0 in I ×Ω.

(2.3)

This fundamental equation plays an important role across a spectrum of disciplines within
physics and engineering. Since it gives a realistic model for wave propagation phenomena
in elastic materials, it also lays a crucial groundwork for methodologies in seismology,
solid mechanics, and material science. Notably, its acoustic approximation is commonly
embraced for its pragmatic simplicity and favorable analytical properties. We take this
as a motivation to discuss its derivation.

To begin with, we take a closer look at the elasticity tensor C. In isotropic media, it
can be expressed with only two independent parameters, the Lamé parameters, µ, and λ.
Here, µ denotes the shear modulus, and λ is given by λ = κ − 2

3µ for the bulk modulus κ.
Then, it holds that

Cϵ(u) = 2µϵ(u) + λ tr(ϵ(u))Id = 2µϵ(u) + λdiv uId, (2.4)

where tr denotes the trace and Id is the identity matrix. If we now consider the medium
to be a fluid, i.e., a liquid or a gas, the shear modulus µ is essentially zero, such that the
constitutive relation (2.1) along with (2.4) leads to

σ = κdiv uId. (2.5)

By introducing the pressure p ∶= 1
3 tr(σ), we obtain the exact function that we want to

use to describe the acoustic wave propagation in a single scalar-valued equation. Using
the above representation (2.5) of the stress tensor σ, it holds that

p = κdiv u.

Accordingly, the first-order time derivative of p is given by ∂tp = κdiv v and the gradient
is computed by

∇p = ∇ ⋅ (pId) = ∇ ⋅ (κdiv uId) = ∇ ⋅ σ.
Along with the first line of the elastic wave equation (2.3), we obtain the first-order
formulation of the acoustic wave equation, that is

{
ρ∂tv −∇p = f in I ×Ω
∂tp − κdiv v = 0 in I ×Ω.

(2.6)

After time derivation of the second equation in (2.6) and changing the order of derivatives,
we obtain that

∂2
t p = κdiv∂tv = κdiv(ρ−1(∇p + f)).

6



2.1 Derivation of the Model Formulation

For simplicity, we assume that the change in density is much smaller than the change in
pressure and the external force to obtain the acoustic wave equation in its second-order
formulation:

∂2
t p − c2∆p = c2 div f , (2.7)

where c ∶=
√

κ
ρ is the wave speed and ∆ = div(∇⋅) is the Laplace operator. Even though,

we considered a vanishing shear modulus η, which is only strictly valid in fluid media, the
acoustic wave equation is widely used to describe wave propagation phenomena beyond
that restriction. For instance, as an approximation of the elastic wave equation, it is a
favorable choice for many propagation models of seismic waves inside the Earth [35].

Boundary Conditions and Sponge Layer

In many wave models, the computational domain is usually restricted to a bounded region
of the true physical domain. The boundary may be given by some free surface, such as
the Earth’s surface, but it may also consist of other (artificial) boundary parts.

We denote the boundary of the spatial domain Ω by ∂Ω and begin considering a subset
ΓN ⊂ ∂Ω. A suitable choice for modeling free surfaces is given by the Neumann boundary
condition. It is typically applied to the derivative of the corresponding field variable
concerning the normal direction of the boundary. This represents the flux of the field
variable across the boundary. Considering the absence of mass or energy transfer through
the surface, the condition becomes homogenous. In the case of the acoustic wave equation,
this is reflected in the orthogonality of the gradient of pressure ∇p to the normal vector
n, i.e.,

∂np ∶= ∇p ⋅ n = 0 on ΓN . (2.8)

When the computational domain is not fully surrounded by a free surface, from a mathe-
matical point of view, it is favorable to consider the Dirichlet boundary condition on the
remaining boundary part ΓD = ∂Ω ∖ ΓN , that is

p = 0 on ΓD. (2.9)

Unfortunately, this condition is artificial and physically unnatural. Its treatment is chal-
lenging since an inadequate approach typically causes unfavorable wave reflections in the
modeling. Several strategies exist to deal with this issue. Besides absorbing boundary con-
ditions, such as Perfectly Matched Layers (PMLs), Convolutional PMLs, and Stretched
Coordinate PMLs, another widely employed approach incorporates an additional absorb-
ing boundary layer, a so-called sponge layer. We choose the latter technique because of
its relatively straightforward implementation. In the following, we briefly discuss how it
can effectively be designed, such that (2.9) does not cause wave reflections, polluting the
solution in the modeling. For better illustration, we consider a two-dimensional rectangu-
lar domain, where the upper edge is a free surface and the Neumann boundary condition
(2.8) applied. The rest of the boundary is some artificial restriction of the true physical
domain. Here, we consider the Dirichlet boundary condition (2.9). Then, in a narrow
area ω around that boundary part, we define some scalar-valued damping term η that
increases in the direction towards the boundary (see Figure 2.1). A precise example of
a suitable implementation can be found in Chapter 6 (or in Münch [64]). The damping

7



2 - Background
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Figure 2.1: Illustration of the damping term η

term is then added to the acoustic wave equation (2.7) as the coefficient for a first-order
time derivative, i.e.,

∂2
t p − c2∆p + ηc2∂tp = c2 div f . (2.10)

Along with the Dirichlet and Neumann boundary conditions from above and some arbi-
trary initial value functions p0, p1∶Ω → R, we arrive at the following hyperbolic second-
order PDE with mixed boundary condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p −∆p + η∂tp = f in I ×Ω

∂np = 0 on I × ΓN
p = 0 on I × ΓD
p(0, ⋅) = p0 in Ω
∂tp(0, ⋅) = p1 in Ω,

(2.11)

where ν ∶= c−2 denotes the square slowness and f ∶= div f .

PDE-Constrained Optimization Problem

With knowledge of the true physical parameters, such as ν and f , the solution p to (2.11)
gives realistic information of the true acoustic pressure inside the domain Ω. However,
in many real-world applications, such as seismic tomography, we are interested in the
following inverse problem: Given true pressure information, for instance, through mea-
surements, we aim to identify the unknown true square slowness ν. In this scenario,
the PDE-model of the acoustic wave equation (2.11) alone is insufficient for the deter-
mination of the unknown variable ν. Therefore, we need a more sophisticated model.
For i = 1, . . . ,m and some m ∈ N, we denote with ai some observation patches model-
ing receivers. These receivers are usually placed at various positions in order to catch
sufficient deflections and reflections of the wave caused by material discontinuities inside
the domain. A possible configuration of the receiver positions is presented in Figure 2.2.
Furthermore, suppose that pobi are (typically noisy) wave information corresponding to

8



2.2 Underlying Function Spaces and Evolution Equations

wave

signalreceivers

receivers

Figure 2.2: Possible configuration for the receiver positions. The grey rectangle represents
a material with a smaller wave speed.

the true wave speed νd in the domain Ω. Our goal is to compute a suitable pair (ν, p)
such that (2.11) is valid and such that the misfit between the synthetic data p and the
observation data pobi is minimized at the receivers ai. Incorporating a regularization term
with a (small) regularization parameter λ > 0 and some lower (resp. upper) bound ν+
(resp. ν−) for ν, we obtain the following minimization problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inf J (ν, p) ∶= 1
2

m

∑
i=1
∫
I
∫

Ω
ai(p − pobi )2 dxdt + λ2 ∥ν∥

2
L2(Ω)

s.t. (2.11) and ν−(x) ≤ ν(x) ≤ ν+(x) for a.e. x ∈ Ω.
(2.12)

This PDE-constrained optimization problem serves as our strategy for reconstructing the
true wave speed parameter νd and is the main subject of the present thesis.

2.2 Underlying Function Spaces and Evolution Equations
In this section, we introduce the underlying function spaces that are essential for this
thesis. Furthermore, we discuss some fundamental basics of semigroups and evolution
equations. We underline that the following introduction does not claim completeness but
rather repeats some selected concepts and definitions for the convenience of the reader.
For a more extensive overview, we refer to the literature (cf. [13,26,32,34,36,66]). In the
following, let N ∈ N be fixed and let Ω ⊂ RN be an open set.

Lebesgue Spaces

For some p ∈ [1,∞), we denote the space of all equivalence classes of Lebesgue measurable
and Lebesgue p-power integrable R-valued functions by

Lp(Ω) ∶= {f ∣ f ∶Ω→ R measurable,∫
Ω
∣f ∣p dx < ∞} .

Here, two functions belong to the same equivalence class if they only differ on a set with
Lebesgue measure 0. Note that we simply write f instead of [f] where the distinction

9



2 - Background

between an equivalence class and a representant results from the respective context. Fur-
thermore, for conciseness, the variable of integration x is usually omitted in our notation.
The space of all equivalence classes of essentially bounded functions is denoted by

L∞(Ω) ∶= {f ∣ f ∶Ω→ R measurable, ess sup
x∈Ω

∣f(x)∣ < ∞} ,

where ess sup denotes the essential supremum. Endowed with the norm

∥f∥Lp(Ω) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
Ω
∣f ∣p dx)

1
p

if p ∈ [1,∞)

ess sup
x∈Ω

∣f(x)∣ if p = ∞
∀f ∈ Lp(Ω),

the space Lp(Ω) is a Banach space. For p = 2, the space L2(Ω), endowed with the scalar
product

(f, g)L2(Ω) ∶= ∫
Ω
fg dx ∀f, g ∈ L2(Ω),

is a Hilbert space. We indicate functions and function spaces that are RN -valued with
bold letters. In this way, we define L2(Ω) ∶= L2(Ω)N which is, endowed with the scalar
product

(f ,g)L2(Ω) ∶= ∫
Ω

f ⋅ g dx ∀f ,g ∈ L2(Ω),

also a Hilbert space. Lastly, the space of locally Lebesgue integrable functions is defined
by

L1
loc(Ω) ∶= {f ∶Ω→ R measurable ∣ ∫

U
∣f ∣ < ∞ ∀U ⊂ Ω open with U ⊂ Ω} .

Sobolev Spaces

The famous Sobolev spaces provide a fundamental framework for studying the smoothness
of functions, particularly those involved in the solutions of PDEs. Let C∞0 (Ω) (resp.
C∞0 (Ω)) denote the set containing all infinitely differentiable R-valued (resp. RN -valued)
functions with compact support in Ω. Now, given a multi-index α and a function f ∈
L1

loc(Ω), another function g ∈ L1
loc(Ω) is called α-weak derivative of f if and only if

∫
Ω
fDαϕdx = (−1)∣α∣∫

Ω
gϕdx ∀ϕ ∈ C∞0 (Ω).

In this case, we write Dαf = g. In the special case where α = ei for a unit vector ei ∈ RN ,
we write Dif ∶= Deif for the i-th partial weak derivative. For p ∈ [1,∞] and k ∈ N, we
define the Sobolev space

W k,p(Ω) ∶= {f ∈ Lp(Ω) ∣Dαf ∈ Lp(Ω) ∀∣α∣ ≤ k},

where the derivative Dα is understood in the above weak sense. The corresponding norm
is defined by

∥f∥Wk,p(Ω) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ ∑∣α∣≤k

∥Dαf∥p
Lp(Ω)

⎞
⎠

1
p

if p ∈ [1,∞)

max
∣α∣≤k
∥Dαf∥L∞(Ω) if p = ∞

∀f ∈W k,p(Ω),

10



2.2 Underlying Function Spaces and Evolution Equations

which makes W k,p(Ω) a Banach space. In the case p = 2, we set Hk(Ω) ∶=W k,2(Ω) and in
the particular case k = 1, we endow H1(Ω) with the scalar product

(f, g)H1(Ω) ∶= (f, g)L2(Ω) + (∇f,∇g)L2(Ω) ∀f, g ∈H1(Ω),

which makes H1(Ω) a Hilbert space1. Here, ∇ = (D1, . . . ,DN) denotes the weak gradient
operator. For a given f ∈ L2(Ω), we call g ∈ L2(Ω) the weak divergence of f , if and only
if

∫
Ω

f ⋅ ∇ϕdx = −∫
Ω
gϕdx ∀ϕ ∈ C∞0 (Ω).

In that case, we write div f ∶= g. The corresponding Hilbert space

H(div,Ω) ∶= {f ∈ L2(Ω) ∣ div f ∈ L2(Ω)}

is endowed with the scalar product

(f ,g)H(div,Ω) ∶= (f ,g)L2(Ω) + (div f ,div g)L2(Ω) ∀f ,g ∈H(div,Ω)

and the induced norm ∥ ⋅ ∥H(div,Ω). Lastly, we define the Banach space

D(∆) ∶= {f ∈H1(Ω) ∣∇f ∈H(div,Ω)},

that is endowed with the norm ∥ ⋅ ∥D(∆) ∶= (∥ ⋅ ∥2H1(Ω) + ∥∆ ⋅ ∥2L2(Ω))
1/2 where ∆∶D(∆) →

L2(Ω), ∆ ∶= div∇.

(Partially) Vanishing Boundary Conditions

In view of the discussion on boundary conditions from the previous Section 2.1, we define
related function spaces, incorporating the Dirichlet and Neumann boundary conditions.
The topological closure of C∞0 (Ω) with respect to the H1(Ω)-norm is denoted by H1

0(Ω),
i.e.,

H1
0(Ω) ∶= C∞0 (Ω)

∥⋅∥H1(Ω)

and the topological closure of C∞0 (Ω) with respect to the H(div,Ω)-norm is denoted by
H0(div,Ω), i.e.,

H0(div,Ω) ∶=C∞0 (Ω)
∥⋅∥H(div,Ω)

.

If we additionally consider Ω to be a bounded Lipschitz domain, trace operators become
available. In that case, H1

0(Ω) coincides with the set of all H1(Ω)-functions with vanishing
trace, that is

H1
0(Ω) = {f ∈H1(Ω) ∣ τf = 0},

where τ ∶H1(Ω) → L2(∂Ω) denotes the trace operator. Analogously, H0(div,Ω) coincides
with the set of all H(div,Ω)-functions with vanishing normal trace, that is

H0(div,Ω) = {f ∈H(div,Ω) ∣γnf = 0}
= {f ∈H(div,Ω) ∣ (div f , ϕ)L2(Ω) = −(f ,∇ϕ)L2(Ω)∀ϕ ∈H1(Ω)}

1Analoguesly, higher order spaces, Hk
(Ω) for k ∈ N, are Hilbert spaces when endowed with suitable

scalar products.
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where γn∶H(div,Ω) → H−1/2(∂Ω) denotes the normal trace operator and H−1/2(∂Ω) is
the dual space of the image of τ (cf. [62]). On the one hand, these spaces serve as a
generalizing concept, since the trace operator τ generalizes boundary values via τf = f ∣∂Ω
for every f ∈ H1(Ω) ∩C(Ω), and the normal trace operator γn generalizes orthogonality
conditions on the boundary via γnf = f ∣∂Ω ⋅n for every f ∈ C1(Ω). On the other hand,
they give rise to an intuitive way of incorporating partially vanishing boundary conditions
into suitable function spaces. For some subset ΓD ⊂ ∂Ω, let us define

H1
D(Ω) = C∞D (Ω)

∥⋅∥H1(Ω) where C∞D (Ω) ∶= {v∣Ω ∶ v ∈ C∞(RN),dist(supp(v),ΓD) > 0}
(2.13)

and

HN(div,Ω) ∶= {f ∈H(div,Ω) ∣ (div f , ϕ)L2(Ω) = −(f ,∇ϕ)L2(Ω)∀ϕ ∈H1
D(Ω)}. (2.14)

Lastly, we define
D(∆D,N) ∶= {ϕ ∈H1

D(Ω) ∣∇ϕ ∈HN(div,Ω)}.

Abtract Functions

In this subsection, we elaborate on functions having values in a Banach space, so-called
abstract functions (or vector-valued functions). In the following, let X be a Banach space
and I ⊂ R be a finite time interval. An abstract function f ∶ I →X is called a step function
if there exists {αi}mi=1 ⊂ X for some m ∈ N and Lebesgue measurable pairwise disjunct
subsets Mi ⊂ I for i = 1, . . . ,m such that

I = ⋃
i=1,...,m

Mi and f(t) =
m

∑
i=1
αiχMi

(t) ∀t ∈ I.

Our goal is to define an integrability concept for abstract functions. For a step function,
as above, the Bochner integral is given by

∫
I
f(t)dt ∶=

m

∑
i=1
fi∣Mi∣.

Furthermore, an abstract function f ∶ I →X is called

(i) Bochner measurable if there exists a sequence {fk}∞k=1 of step functions fk∶ I → X,
such that

lim
k→∞
∥fk(t) − f(t)∥X for a.e. t ∈ I,

(ii) Bochner integrable if there exists a sequence {fk}∞k=1 of step functions fk∶ I → X,
such that

lim
k→∞
∥fk(t) − f(t)∥X for a.e. t ∈ I and lim

k→∞∫I ∥fk(t) − f(t)∥X dt = 0.

In that case, we write
∫
I
f(t)dt ∶= lim

k→∞∫I fk(t)dt.

12



2.2 Underlying Function Spaces and Evolution Equations

Instead of finding a suitable sequence of step functions for proving the Bochner integra-
bility, there exists another useful equivalent criterion: A Bochner measurable abstract
function f ∶ I →X is Bochner integrable if and only if

∫
I
∥f(t)∥X dt < ∞.

Furthermore, in that case, it holds that

∥∫
I
f(t)dt∥

X

≤ ∫
I
∥f(t)∥X dt.

For some p ∈ [1,∞], we define the following Bochner spaces:

Lp(I,X) ∶= {f ∶ I →X ∣ ∥f∥Lp(I,X) ∶= (∫
I
∥f(t)∥pX dt)

1
p

< ∞} if p ∈ [1,∞),

L∞(I,X) ∶= {f ∶ I →X ∣ ∥f∥L∞(I,X) ∶= ess sup
t∈I
∥f(t)∥X < ∞} ,

L1
loc(I,X) ∶= {f ∶ I →X ∣ f ∈ L1((a, b),X) for all (a, b) ⊂ (0, T ) such that [a, b] ⊂ (0, T )} .

As in the definition of the Lebesgue and Sobolev spaces, the Bochner spaces are also
sets of equivalence classes of abstract functions where two abstract functions belong to
the same equivalence class if they differ on a set of Lebesgue measure 0. Nevertheless,
again, we write f instead of [f] where the distinction between an equivalence class and a
representant results from the context. The notions of continuity and (strong and weak)
differentiability can be introduced for abstract functions as well: We call f ∶ I → X con-
tinuous in t ∈ I if

lim
h→t
∥f(h) − f(t)∥X = 0,

and we call f continuous if it is continuous in every t ∈ I. We call f (strongly) differentiable
in t ∈ I if the limit

∂tf(t) ∶= lim
h→0

f(t + h) − f(t)
h

∈X

exists, and we call f differentiable if it is differentiable in every t ∈ I. Then, we define the
Banach spaces

C(I,X) = C0(I,X) ∶= {f ∶ I →X ∣ f is continuous}
Ck(I,X) ∶= {f ∶ I →X ∣∂ltf is differentiable for every

l = 0, . . . , k − 1 and ∂kt f is continuous} ∀k ∈ N

with the corresponding norms

∥f∥Ck(I,X) ∶=
k

∑
l=0

max
t∈I
∥∂ltf(t)∥X ∀f ∈ Ck(I,X), k ∈ N ∪ {0}.

Furthermore, let
C∞(I,X) ∶=

∞
⋃
k=1

Ck(I,X).

13
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For l ∈ N, we call an abstract function f ∈ L1
loc(I,X) l-times weakly differentiable with

l-th weak derivative ∂ltf = g if

∫
I
f(t)∂ltϕ(t)dt = (−1)l ∫

I
g(t)ϕ(t)dt ∀ϕ ∈ C∞0 (I).

In the vector-valued case, the Sobolev spaces are generalized as follows: For every p ∈
[1,∞] and k ∈ N, we define

W k,p(I,X) ∶= {f ∈ Lp(I,X) ∣∂ltf ∈ Lp(I,X) for every l = 1, . . . , k}

where ∂lt is understood in the above weak sense. Endowed with the norm

∥f∥Wk,p(I,X) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
k

∑
l=0
∥∂ltf∥pLp(I,X))

1
p

if p ∈ [1,∞)

max
l=0,...,k

∥∂ltf∥L∞(I,X) if p = ∞
∀f ∈W k,p(I,X)

the space W k,p(I,X) is a Banach space. If X = H is a Hilbert space, the Bochner space
Hk(I,H) ∶=W k,2(I,H) is also a Hilbert space when endowed with the scalar product

(f, g)Hk(I,H) ∶=
k

∑
l=0
∫
I
(∂ltf(t), ∂ltg(t))H dt ∀f, g ∈Hk(I,H).

Evolution Equations and Semigroups

Considering a real Banach space X and a time interval I = [0, T ] ⊂ R, we aim to find a
solution u∶ I →X to the evolution equation given by the abstract Cauchy problem

{
∂tu(t) −Au(t) = F (t) ∀t ∈ I
u(0) = u0

(2.15)

for a linear operator A∶D(A) ⊂X →X, an abstract function F ∶ I →X, and some u0 ∈X.
In the case where X = R, Ax = ax for some a ∈ R and for all x ∈ R, and F ∈ C(I), the
solution is given by

u∶ I → R, t↦ u0e
at + ∫

t

0
ea(t−s)F (s)ds.

This motivates the concept of semigroups as a generalization of the exponential function
in the context of abstract functions.
Definition 2.1. Let X be a real Banach space and let {T(t)}t≥0 ⊂ L(X) be a familiy
of linear and bounded operators. Then, {T(t)}t≥0 is called a semigroup if T(0) = Id
and T(t + s) = T(t)T(s) for all t, s ≥ 0. Furthermore, the semigroup is called strongly
continuous if limt↘0 T(t)x = x for all x ∈ X. The strongly continuous semigroup is called
a contraction semigroup if ∥T(t)∥L(X) ≤ 1 for every t ≥ 0.
Definition 2.2. Let X be a real Banach space and let {T(t)}t≥0 ⊂ L(X) be a semigroup.
Then, the linear operator A∶D(A) →X, where

Ax ∶= lim
t↘0

T(t)x − x
t

∀x ∈D(A) ∶= {x ∈X ∶ lim
t↘0

T(t)x − x
t

exists}

is called the (infinitesimal) generator of {T(t)}t≥0 ⊂ L(X).

14



2.2 Underlying Function Spaces and Evolution Equations

The concept of semigroups is particularly tailored for solving the abstract Cauchy prob-
lem (2.15) for suitable operators A, more precisely, for those that generate an appropriate
semigroup. Suppose that the strongly continuous semigroup {T(t)}t≥0 ⊂ L(X) and its
corresponding generator A is given. Then, the following properties hold (cf. [32, Chapter
II, Lemma 1.3]):

(i) T(t)x ∈D(A) for every x ∈D(A) and t ≥ 0,

(ii) ∂tT(t)x = T(t)Ax = AT(t)x for every x ∈D(A) and t ≥ 0.

From the property (ii) along with T(0) = Id, we obtain that u∶ I → X, t ↦ T(t)u0 solves
the Cauchy problem (2.15) for F ≡ 0 and u0 ∈ D(A). In the presence of a source term
F ∈W 1,1(I,X), the (classical) solution is given by

u∶ I →X, t↦ T(t)u0 + ∫
t

0
T(t − s)F (s)ds (2.16)

(cf. [32, Corollary 7.6]). Typically, when considering a problem of the type (2.15), only
the operator A is known. Therefore, it is of primary interest whether A is a generator
of some unknown semigroup {T(t)}t≥0. The famous Lumer-Phillips theorem provides a
satisfactory answer (cf. [66, Chapter 1, Theorem 4.3]):

Theorem 2.3 (Lumer–Phillips). Let X be a real Banach space, D(A) ⊂X be dense, and
A∶D(A) →X be a linear operator. Furthermore, let A be dissipative, i.e.,

∀x ∈D(A) ∃x∗ ∈ {x∗ ∈X∗ ∶ x∗(x) = ∥x∥2X = ∥x∗∥2X∗} ∶ x∗(Ax) ≤ 0

and let R(λI − A) = X for some λ > 0. Then, A is the infinitesimal generator of a
contraction semigroup.

Suppose that an operator A satisfies the assumptions of Theorem 2.3, F ∈W 1,1(I,X)
and u0 ∈D(A). Then, the formula (2.16) provides a solution to the corresponding Cauchy
problem (2.15) where {T(t)}t≥0 is the contraction semigroup generated by A. However, the
solution is only implicitly given by (2.16) since typically no explicit representation of the
semigroup is {T(t)}t≥0 is available. Nevertheless, Theorem 2.3 provides the existence of a
solution, and from the formula (2.16), useful properties of the solution can be extracted.
Note that, in the case where X =H is a Hilbert space, a linear operator A∶D(A) ⊂H →H
is dissipative if (Ax,x)H ≤ 0 for all x ∈D(A). We refer to the remainder of this thesis for
an application.
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ANALYSIS OF THE OPTIMAL
CONTROL PROBLEM 3

This chapter is devoted to the first- and second-order analysis of (1.2). We develop a
novel strategy for (1.2) based on the use of an auxiliary first-order hyperbolic system (3.9),
which is shown to be well-posed and serves as the mild notion for the state equation (1.1)
(see Theorem 3.5). However, compared with the original system (1.1), (3.9) features a
more involved control-to-state structure: The parameter ν appears in (3.9) not only as the
coefficient of the time-derivative but also as initial data under the image of the solution op-
erator Φ∶L∞(Ω) →HN(div,Ω) for a specific elliptic variational problem (see (3.4)-(3.6)).
Taking this distinctive control-to-state character into account, we develop necessary opti-
mality conditions for the weak form of (1.2) based on adjoint techniques (see Lemma 3.10
and Theorem 3.12). It is possible to perform a direct analysis of the optimal control based
on the original second-order formulation (1.1). This ansatz, however, calls for a higher
regularity assumption on the initial values and the right-hand side of (1.1). First, to guar-
antee the existence of a unique solution p ∈ C2(I,L2(Ω)) ∩C1(I,H1

D(Ω)) to (1.1), we re-
quire the higher regularity condition: p1 ∈H1

D(Ω), p0 ∈D(∆D,N), and f ∈W 1,1(I,L2(Ω)).
Furthermore, the regularity property ∑mi=1 ∫I ∫Ω ai(p − pobi ) ∈ W 1,1(I,L2(Ω)) with p being
the optimal state is also required for the well-posedness of the corresponding second-order
adjoint equation. These regularity assumptions are not needed for the derivation of nec-
essary optimality conditions based on the proposed first-order auxiliary system (3.9). Our
first-order analysis relies solely on a lower regularity requirement (see Assumption 3.1).
Moreover, as a further advantage, our approach leads to the low adjoint state regularity
q ∈ C(I,L2(Ω)) such that no higher Sobolev regularity can be extracted for the optimal
solution ν from the corresponding projection formula (Remark 3.13). Nevertheless, assum-
ing the above-mentioned higher regularity conditions, we also follow first-order necessary
optimality conditions based on the second-order formulation (1.2) as a direct consequence
of the one based on the auxiliary first-order formulation (see Corollary 3.14).

The final goal of this chapter is to establish second-order sufficient optimality conditions
for (1.2). Our second-order analysis is performed based on the Lagrangian functional
(3.101) involving the non-reduced objective functional and the first-order auxiliary system
(3.9). By the control-to-state structure in (3.9), the Lagrangian (3.101) contains the term
(ν∂tp, q)L2(I,L2(Ω)), i.e., the product of three quantities related to the control, the adjoint
state, and the time-derivative of the state. The treatment of this term turns out to
be rather challenging. In the author’s paper [5], this issue is tackled by restricting the
second-order analysis to the case where the reconstruction is considered only in an open
set strictly contained in the hold-all domain Ω. More precisely, the existence of an open
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set ω ⊂ Ω such that ω ⊂ Ω and ν−(x) = ν+(x) for a.e. x ∈ Ω ∖ ω is assumed. In this case,
the reconstruction process is reduced to the subregion ω. Further, the application of an
elliptic inner regularity result provides a crucial Lipschitz C2(I,C(ω))-regularity result
(see [5, Lemma 4.3]). However, in this chapter, we present an extension of the results in [5].
It turns out that the inner regularity ansatz can be improved by applying Stampacchia’s
method to the hyperbolic case. In this way, global essential boundedness can be obtained
for the corresponding state. Furthermore, in the two- and three-dimensional case, under
some additional regularity and compatibility assumption on the data (Assumption 3.18),
we establish a Lipschitz C2(I,L∞(Ω))-regularity result (Lemma 3.19). With Lemma 3.19
at hand, we manage to extend the contradiction argument from [18] (cf. [19, 20]) to our
case and derive a second-order sufficient optimality condition (SSC) in the form of the
positivity of the second-order derivative of the quadratic Lagrangian functional involving
the strongly active set (Theorem 3.22). The corresponding SSC yields a quadratic growth
condition and local optimality in an L2-neighborhood. We follow the SSC result based
on the original second-order formulation (1.2) as a direct consequence from Theorem 3.22
(see Corollary 3.25).

Let us provide a brief overview of existing contributions related to this chapter. Optimal
control approaches for time-domain FWI have been recently discussed and explored in
Boehm and Ulbrich [11] and Clason et al. [24]. Our approach is based on the first-order
auxiliary system (3.9) and is quite different from the aforementioned contributions. In
particular, we solely apply the L2-penalty for the Tikhonov regularization in (1.2), which
is based on the proposed first-order approach readily sufficient for establishing existence
theory (Theorem 3.7) and optimality conditions (Theorem 3.12). We refer to Kirsch and
Rieder [52–54] for the mathematical analysis of inverse problems related to time-domain
FWI. Moreover, level set-based and shape optimization approaches for time-domain FWI
have been quite recently proposed and analyzed in Albuquerque et al. [1]. Last but
not least, we mention [46, 61, 68, 80, 83] for previous contributions towards FWI in the
frequency domain based on Helmholtz and eddy current equation.

The rest of the chapter is organized as follows. We start with presenting our notation
and the mathematical assumptions for the data involved in (1.2), including the weak
formulation for (1.1). In Section 3.1, we propose and analyze the first-order auxiliary
system (3.9), leading to an existence result for (1.2). Based on the developed results
for (3.9), we derive our main results regarding the first-order necessary and second-order
sufficient optimality conditions for (1.2), respectively, in Section 3.3 and Section 3.5.

Most content of this chapter is available in the author’s [5]. Consequently, direct quo-
tations from this work will not be explicitly highlighted.

Assumption 3.1. Let Ω ⊂ RN (N ≥ 2) be a bounded domain with a Lipschitz boundary
∂Ω = ΓD∪ΓN with ΓN ⊊ ∂Ω satisfying ∣ΓN ∣ ≠ 0 and ΓD ⊂ ∂Ω beeing closed. Let p0 ∈H1

D(Ω),
p1 ∈ L2(Ω), pobi ∈ L2(I,L2(Ω)) for all i = 1, . . . ,m, and f ∈ L1(I,L2(Ω)) be given data
for some m ∈ N. The coefficients ai ∈ L∞(I × Ω) and η ∈ L∞(Ω) are also given data
and assumed to be nonnegative for all i = 1, . . . ,m. Furthermore, let νmax, νmin > 0 and
ν−, ν+ ∈ L∞(Ω) satisfy νmin < ν−(x) < ν+(x) < νmax for a.e. x ∈ Ω.

Associated with (1.2), we introduce the admissible set

Vad = {ν ∈ L2(Ω) ∶ ν−(x) ≤ ν(x) ≤ ν+(x) for a.e. x ∈ Ω}. (3.1)
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3.1 Auxiliary First-Order System

For later use, we also introduce a larger and open set

V ∶= {ν ∈ L∞(Ω) ∶ νmin < ν(x) for a.e. x ∈ Ω} ⊃ Vad. (3.2)

Definition 3.2. Let Assumption 3.1 be satisfied and let ν ∈ V be given. Then, a function
p ∈ C1(I,L2(Ω)) ∩ C(I,H1

D(Ω)) is called a mild solution to (1.1) if the mapping t ↦
(ν∂tp(t), ϕ)L2(Ω) is for every ϕ ∈H1

D(Ω) absolutely continuous in I and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t∫
Ω
ν∂tp(t)ϕdx + ∫

Ω
∇p(t) ⋅ ∇ϕ + η∂tp(t)ϕ dx = ∫

Ω
f(t)ϕ dx

∀ϕ ∈H1
D(Ω) and a.e. t ∈ I

p(0) = p0 a.e. in Ω
∂tp(0) = p1 a.e. in Ω.

(3.3)

3.1 Auxiliary First-Order System
In this section, we propose and analyze an auxiliary first-order system serving as an
equivalent formulation of (1.1). The proposed first-order system is the key fundament for
our optimal control approach, in particular for the derivation of the adjoint system. Let
us begin by considering the following elliptic variational problem: Given ν ∈ L∞(Ω), find
y ∈H1

D(Ω) such that

∫
Ω
∇y ⋅ ∇ϕdx = ∫

Ω
(ηp0 + νp1)ϕdx ∀ϕ ∈H1

D(Ω). (3.4)

Thanks to the Lax-Milgram lemma, the variational problem (3.4) admits for every ν ∈
L∞(Ω) a unique solution y ∈ H1

D(Ω). Furthermore, as C∞0 (Ω) ⊂ H1
D(Ω), the definition of

the weak divergence applied to (3.4) implies that the solution satisfies

div(∇y) = −ηp0 − νp1 ⇒®
(3.4)
∫

Ω
∇y ⋅ ∇ϕdx = −∫

Ω
div(∇y)ϕdx ∀ϕ ∈H1

D(Ω) (3.5)

⇒®
(2.14)

∇y ∈HN(div,Ω).

For this reason, the solution operator associated with (3.4)

Φ ∶ L∞(Ω) →HN(div,Ω), ν ↦ ∇y (3.6)

is well-defined, affine linear, and continuous. In particular, Φ fulfils the properties

{
∥Φ(ν)∥L2(Ω) ≤ cP ∥ηp0 + νp1∥L2(Ω) ∀ν ∈ L∞(Ω)

∥Φ(ν1) −Φ(ν2)∥L2(Ω) ≤ cP ∥p1(ν1 − ν2)∥L2(Ω) ∀ν1, ν2 ∈ L∞(Ω)
(3.7)

for a Poincaré constant cP > 0. Here, (3.7) is immediately obtained by inserting ϕ = y in
(3.4) along with the generalized Poincaré inequality [72, Lemma 2.5]. Now, introducing
the antiderivative

F ∈W 1,1(I,L2(Ω)), F (t) ∶= ∫
t

0
f(s)ds ∀t ∈ I, (3.8)
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we propose for a given ν ∈ V the following first-order system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp + div u + ηp = F in I ×Ω
∂tu +∇p = 0 in I ×Ω
p = 0 on I × ΓD
u ⋅n = 0 on I × ΓN
(p,u)(0) = (p0,Φ(ν)) in Ω.

(3.9)

We underline that the parameter ν appears in (3.9) not only as the coefficient for the
time-derivative ∂tp but also as the initial value for u given by the image of ν under the
operator Φ. The upcoming theorem proves the well-posedness of the auxiliary system
(3.9) and its equivalence to the second-order system (1.1). The proof is based on the
semigroup theory (cf. [30, 84] recent works on nonlinear optimal control problems based
on the semigroup theory). In the following, for each ν ∈ V , we introduce the Hilbert space

Xν ∶= L2
ν(Ω) ×L2(Ω),

endowed with the weighted scalar product

((q,v), (ψ,z))Xν
∶= (q,ψ)L2

ν(Ω) +(v,z)L2(Ω) = (νq,ψ)L2(Ω) +(v,z)L2(Ω) ∀(q,v), (ψ,z) ∈Xν

(3.10)
and the induced norm

∥(q,v)∥Xν
∶=
√
∥ν1/2q∥2

L2(Ω) + ∥v∥2L2(Ω) ∀(q,v) ∈Xν . (3.11)

Note that, since ν ∈ V , the norm in (3.11) is equivalent to the norm

∥(q,v)∥L2(Ω)×L2(Ω) ∶= (∥q∥2L2(Ω) + ∥v∥2L2(Ω))1/2,

since by virtue of (3.2) it holds for all ν ∈ V that

min {1,√νmin} ∥(q, v)∥L2(Ω)×L2(Ω) ≤ ∥(q, v)∥Xν (3.12)

≤max{1,
√
∥ν∥L∞(Ω)}∥(q, v)∥L2(Ω)×L2(Ω).

Introducing the unbounded linear operator Aν ∶D(Aν) ⊂Xν →Xν , defined by

D(Aν) ∶=H1
D(Ω) ×HN(div,Ω), Aν(p,u) ∶= −(ν−1ηp + ν−1 div u,∇p), (3.13)

the first-order system (3.9) can be equivalently formulated as the following Cauchy prob-
lem:

{
∂t(p,u)(t) −Aν(p,u)(t) = (ν−1F (t),0) ∀t ∈ I
(p,u)(0) = (p0,Φ(ν)).

(3.14)

Lemma 3.3. Let Assumption 3.1 hold. Then, for every ν ∈ V, the operator Aν ∶D(Aν) ⊂
Xν →Xν, defined in (3.13), generates a contraction semigroup {Tν(t)}t≥0.
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Proof. At first, we show that Aν ∶ D(Aν) ⊂ Xν → Xν is dissipative. Indeed, according to
(3.13) and (3.10), it holds that

(Aν(p,uuu), (p,uuu))Xν = −∫
Ω
ηp2 + divuuup dx − ∫

Ω
∇p ⋅uuu dx =®

(2.14)

−∫
Ω
ηp2 dx ≤ 0

for all (p,uuu) ∈ D(Aν). Since Xν is a Hilbert space, this proves the dissipativity of Aν .
Now let (q,vvv) ∈ Xν . The Lax-Milgram lemma yields the existence of a unique solution
p ∈H1

D(Ω) to

∫
Ω
(ν + η)pϕ +∇p ⋅ ∇ϕ dx = ∫

Ω
vvv ⋅ ∇ϕ + νqϕ dx ∀ϕ ∈H1

D(Ω). (3.15)

Letting uuu ∶= vvv −∇p, it follows from (3.15) that

∫
Ω
((ν + η)p − νq)ϕ dx = ∫

Ω
(vvv −∇p) ⋅ ∇ϕ dx = ∫

Ω
uuu ⋅ ∇ϕ dx ∀ϕ ∈H1

D(Ω). (3.16)

Considering (3.16), the definition of the weak divergence implies that

divuuu = νq − (ν + η)p. (3.17)

By the definition (2.14), applying (3.17) to (3.16) ensures that u ∈ HHHN(div,Ω). Alto-
gether, in view of (3.17) and (3.13), we conclude that

∀(q,vvv) ∈Xν ∃(p,uuu) ∈D(Aν) ∶ (I −Aν)(p,uuu) = (q,vvv) ⇒ R(I −Aν) =Xν .

Along with the dissipativity of Aν ∶D(Aν) ⊂Xν →Xν , due to the Lumer-Phillips theorem
(see Theorem 2.3 or [32, Corollary 3.17]), Aν generates a contraction semigroup {T(t)}t≥0.

Lemma 3.4. Let Assumption 3.1 hold and let ν ∈ V, (p,u)0,0 ∈ L2(Ω) × L2(Ω), and
G ∈ L1(I,L2(Ω)). Further, let {Tν(t)}t≥0 denote the contraction semigroup generated by
Aν. Then, the mild solution (p,u) ∈ C(I,L2(Ω) ×L2(Ω)) to the Cauchy problem

{
∂t(p,u)(t) −Aν(p,u)(t) = (G(t),0) ∀t ∈ I
(p,u)(0) = (p,u)0,0

(3.18)

defined by
(p,u)(t) ∶= Tν(t)(p,u)0,0 + ∫

t

0
Tν(t − s)(G(s),0)ds ∀t ∈ I (3.19)

satisfies

∥(p,u)(t)∥L2(Ω)×L2(Ω) ≤ c(∥(p,u)0,0∥L2(Ω)×L2(Ω) + ∥G∥L1(I,L2(Ω))) ∀t ∈ I (3.20)

with c ∶= max{√νmax,1}
min{√νmin,1} . If additionally G ∈ W k,1(I,L2(Ω)) with k ∈ N, (p,u)0,0 ∈ H1

D(Ω) ×
HN(div,Ω), and

(p,u)0,l ∶= Aν(p,u)0,l−1 + (∂l−1
t G(0),0) ∈H1

D(Ω) ×HN(div,Ω) ∀l = 1, . . . , k − 1,
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3 - Analysis of the Optimal Control Problem

then (p,u) ∈ Ck(I,L2(Ω) × L2(Ω)) ∩ Ck−1(I,H1
D(Ω) ×HN(div,Ω)) solves (3.18) in the

classical sense and satisfies

∥∂lt(p,u)(t)∥L2(Ω)×L2(Ω) ≤ c(∥(p,u)0,l∥L2(Ω)×L2(Ω) + ∥∂ltG∥L1(I,L2(Ω))) (3.21)
∀t ∈ I ∀l ∈ {0, . . . , k},

where (p,u)0,k ∶= Aν(p,u)0,k−1 + ∂k−1
t (G(0),0).

Proof. Let (p,u) ∈ C(I,L2(Ω) ×L2(Ω)) denote the mild solution to (3.18) in the sense
of (3.19). Since {Tν(t)}t≥0 is a contraction semigroup, along with the norm equivalence
(3.12), the estimate (3.20) is directly obtained from (3.19). Now, let additionally G ∈
W k,1(I,L2(Ω)) for some k ∈ N and (p,u)0,l ∈ H1

D(Ω) ×HN(div,Ω) for all l = 0, . . . , k − 1.
We show inductively that (p,u) ∈ Ck(I,L2(Ω) ×L2(Ω)) with

∂lt(p,u)(t) = Tν(t)(p,u)0,l + ∫
t

0
Tν(t − s)(∂ltG(s),0)ds ∀l = 0, . . . , k, t ∈ I. (3.22)

The case k = 0 follows from the definition (3.19). Let the claim hold for some fixed
l ∈ {0, . . . , k − 1}. Then, it follows that

∂l+1
t (p,u)(t) = ∂t (Tν(t)(p,u)0,l + ∫

t

0
Tν(t − s)(∂ltG(s),0)ds)

= AνTν(t)(p,u)0,l +Tν(t)(∂ltG(0),0) + ∫
t

0
T(t − s)(∂l+1

t G(s),0)ds

= Tν(t)(Aν(p,u)0,l + (∂ltG(0),0)) + ∫
t

0
T(t − s)(∂l+1

t G(s),0)ds

= Tν(t)(p,u)0,l+1 + ∫
t

0
Tν(t − s)(∂l+1

t G(s),0)ds,

particularly leading to ∂l+1
t (p,u) ∈ C(I,L2(Ω)×L2(Ω)). This finalizes the induction proof.

From (3.22), we obtain for every l ∈ {0, . . . , k − 1}, t ∈ I, and h > 0 such that t + h ∈ I that

∂lt(p,u)(t + h) − ∂lt(p,u)(t)
h

= Tν(h) − Id
h

Tν(t)(p,u)0,l +
1
h ∫

t+h

t
Tν(t + h − s)(∂ltG(s),0)ds

+ Tν(h) − Id
h ∫

t

0
Tν(t − s)(∂ltG(s),0)ds

= Tν(h) − Id
h

(∂lt(p,u)(t)) +
1
h ∫

t+h

t
Tν(t + h − s)(∂ltG(s),0)ds.

Since the left-hand side and the second term on the right-hand side converges as h → 0,
due the definition of the generator Aν , it follows for every l ∈ {0, . . . , k − 1} and t ∈ I that
∂lt(p,u)(t) ∈D(Aν) and

∂l+1
t (p,u)(t) = Aν(∂lt(p,u)(t)) + (∂ltG(t),0).

Thus, (p,u) ∈ Ck−1(I,H1
D(Ω) ×HN(div,Ω)) and (3.18) is satisfied. Note that (3.21)

follows from (3.22) along with the contraction semigroup property of {Tν(t)}t≥0 and the
norm equivalence (3.12).
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Theorem 3.5. Let Assumption 3.1 hold. Then, for every ν ∈ V, the first-order system
(3.9) admits a unique solution (p,u) ∈ C1(I,L2(Ω)×L2(Ω))∩C(I,H1

D(Ω)×HN(div,Ω))
given by

(p,u)(t) = Tν(t)(p0,Φ(ν)) + ∫
t

0
Tν(t − s)(ν−1F (s),0) ds ∀t ∈ I, (3.23)

where {Tν(t)}t≥0 denotes the contraction semigroup generated by Aν. The first component
p ∈ C1(I,L2(Ω))∩C(I,H1

D(Ω)) of (3.23) is exactly the unique mild solution to the forward
system (1.1) in the sense of Definition 3.2.

Proof. Let ν ∈ V be fixed. Since ν−1F ∈ W 1,1(I,L2(Ω)) and (p0,Φ(ν)) ∈ H1
D(Ω) ×

HN(div,Ω), Lemma 3.4 implies that (3.14) admits a unique solution (p,u) ∈ C1(I,L2(Ω)×
L2(Ω))∩C(I,H1

D(Ω)×HN(div,Ω)) given by the formula of variation of constants (3.19)
with G ∶= ν−1F . It remains to prove that p ∈ C1(I,L2(Ω)) ∩ C(I,H1

D(Ω)) is the unique
mild solution to the forward system (1.1) in the sense of Definition 3.2. First, in view of
(3.8), applying [32, Lemma 1.3] to (3.19) yields

∂t(p,u)(t) = Tν(t)Aν(p0,Φ(ν)) + ∫
t

0
Tν(t − s)(ν−1f(s),0)ds ∀t ∈ I. (3.24)

Then, making use of [9], it follows from (3.24) that ∂t(p,u) satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t (∂t(p,u)(t), (ϕ,w))Xν
− (∂t(p,u)(t),A∗ν(ϕ,w))Xν = ((ν−1f(t),0), (ϕ,w))Xν

∀(ϕ,w) ∈D(A∗ν) =D(Aν) and a.e. t ∈ I
∂t(p,u)(0) = Aν(p0,Φ(ν)),

(3.25)

and the mapping t↦ (∂t(p,u), (ϕ,w)) is absolutely continuous for every (ϕ,w) ∈D(Aν).
Here, the adjoint operator A∗ν ∶D(Aν) ⊂Xν →Xν is given by

A∗ν(ϕ,w) = (−ν−1ηϕ + ν−1 div w,∇ϕ) ∀(ϕ,w) ∈D(Aν). (3.26)

Applying (3.26) and (3.10) to (3.25), we obtain by inserting w = 0 that

∂t∫
Ω
ν∂tp(t)ϕdx + ∫

Ω
∂tp(t)ηϕ − ∂tu(t) ⋅ ∇ϕ dx = ∫

Ω
f(t)ϕdx

⇒®
(3.9)

∂t∫
Ω
ν∂tp(t)ϕdx + ∫

Ω
∇p(t) ⋅ ∇ϕ + η∂tp(t)ϕ dx = ∫

Ω
f(t)ϕ dx (3.27)

for all ϕ ∈H1
D(Ω) and a.e. t ∈ I. Further, the initial condition in (3.25) and the definition

(3.13) yield

∂tp(0) = −ν−1ηp0 − ν−1 div(Φ(ν)) =®
(3.5)

−ν−1ηp0 + ν−1ηp0 + p1 = p1. (3.28)

By (3.14), (3.27), and (3.28), we conclude that p ∈ C1(I,L2(Ω)) ∩C(I,H1
D(Ω)) is a mild

solution to the forward system (1.1) in the sense of Definition 3.2. Now, for the proof of
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uniqueness, we assume that p̂ ∈ C1(I,L2(Ω)) ∩ C(I,H1
D(Ω)) is another mild solution to

(1.1). Then, the difference p̃ ∶= p − p̂ satisfies

0 = ∂t∫
Ω
ν∂tp̃(t)p̃(t)dx + ∫

Ω
∇p̃(t) ⋅ ∇p̃(t) + η∂tp̃(t)p̃(t)dx (3.29)

for a.e. t ∈ I and p̃(0) = ∂tp̃(0) = 0 a.e. in Ω. Consequently, integrating (3.29) over the
time interval [0, t] for an arbitrarily fixed t ∈ I yields

0 = ∫
Ω
ν∂tp̃(t)p̃(t) dx + ∫

t

0
∫

Ω
∇p̃(s) ⋅ ∇p̃(s) + η∂tp̃(s)p̃(s) dx ds

= 1
2∂t∥
√
νp̃(t)∥2L2(Ω) + ∫

t

0
∥∇p̃(s)∥2L2(Ω) ds + 1

2∥
√
ηp̃(t)∥2L2(Ω)

⇒ 1
2∂t∥
√
νp̃(t)∥2L2(Ω) ≤ 0,

and so, together with p̃(0) = 0 and ν(x) > νmin > 0 a.e. in Ω, it follows that p̃(t) = 0.

Corollary 3.6. Let Assumption 3.1 be satisfied. Furthermore, let f ∈ W 1,1(I,L2(Ω)),
p1 ∈ H1

D(Ω), and p0 ∈ D(∆D,N). Then, for every ν ∈ V, the first component p of (3.23)
satisfies p ∈ C2(I,L2(Ω)) ∩C1(I,H1

D(Ω)) ∩C(I,D(∆D,N)) and is the unique solution to
the second-order wave equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂ttp −∆p + η∂tp = f in I ×Ω
∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (p0, p1) in Ω.

(3.30)

Proof. Due to Theorem 3.5, p is the first component of the unique solution (p,u) ∈
C2(I,L2(Ω)×L2(Ω))∩C1(I,H1

D(Ω)×HN(div,Ω)) to (3.9). According to the second line
in (3.9), it holds that

∇p = −∂tu ∈ C(I,HN(div,Ω)) ⇒ p ∈ C(I,D(∆N,D)).

Furthermore, by time derivation of the first line in (3.9), we obtain that

ν∂2
t p − div(∂tu) + η∂tp = ∂tF in I ×Ω.

Making use of the second line in (3.9) and the definition of F (see (3.8)), we obtain the
first line in (3.30). The last line in (3.30) follows since p is the unique mild solution to (1.1)
in the sense of Definition 3.2 due to Theorem 3.5. The uniqueness of the mild solution to
(3.30) (see Theorem 3.5) implies the uniqueness of the classical solution to (3.30).

3.2 Existence of Optimal Solutions
Let us introduce the solution operator associated with the first-order system (3.9) by

S∶ V → C1(I,L2(Ω) ×L2(Ω)) ∩C(I,H1
D(Ω) ×HN(div,Ω)), ν ↦ (p,u), (3.31)
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that assigns to every parameter ν ∈ V the unique solution (p,u) ∈ C1(I,L2(Ω)×L2(Ω))∩
C(I,H1

D(Ω) ×HN(div,Ω)) to (3.9). Denoting the first component of the above mapping
by

Sp∶ V → C1(I,L2(Ω)) ∩C(I,H1
D(Ω)), ν ↦ p,

Theorem 3.5 allows us to formulate the mild (weak) form of the optimal control problem
(1.2) as

min
ν∈Vad

J(ν) ∶= J (ν,Sp(ν)) =
1
2

m

∑
i=1
∫
I
∫

Ω
ai(Sp(ν) − pobi )2 dxdt + λ2 ∥ν∥

2
L2(Ω). (P)

Theorem 3.7. Let Assumption 3.1 hold. Then, the minimization problem (P) admits a
solution ν ∈ Vad.

Proof. As the functional J is positive, there exists a sequence {νn}∞n=1 ⊂ Vad such that

lim
n→∞

J(νn) = inf
ν∈Vad

J(ν) ≥ 0.

Moreover, Vad is bounded, closed, and convex in L2(Ω), and consequently Vad is weakly
compact in L2(Ω). Therefore, {νn}∞n=1 has a subsequence, still denoted by {νn}∞n=1, such
that

νn ⇀ ν weakly in L2(Ω) as n→∞ (3.32)
for some ν ∈ Vad. For every n ∈ N, let us set (pn,un) ∶= S(νn). By virtue of Lemma 3.4, it
holds

∥(pn,un)∥L2(I,L2(Ω)×L2(Ω)) ≤®
(3.20)

ĉ(∥(p0,Φ(νn))∥L2(Ω)×L2(Ω) + ν−1
min∥F ∥L1(I,L2(Ω))) (3.33)

with ĉ ∶=
√
T

max{√νmax,1}
min{√νmin,1} for every n ∈ N. Thanks to the boundedness of Φ and the defini-

tion of Vad (see (3.7) and (3.1)), (3.33) implies that the sequences {pn}∞n=1 ⊂ L2(I,L2(Ω))
and {un}∞n=1 ⊂ L2(I,L2(Ω)) are bounded. Furthermore, from (3.13) and (3.5), we derive

Aνn(p0,Φ(νn)) = −(ν−1
n ηp0 + ν−1

n div(Φ(νn)),∇p0) (3.34)
= −(ν−1

n ηp0 + ν−1
n (−ηp0 − νnp1),∇p0) = (p1,−∇p0).

In view of the above identity, Lemma 3.4 along with G(0) = ν−1F (0) = 0 (see (3.8)) yields
for every n ∈ N that

∥∂t(pn,un)∥L2(I,L2(Ω)×L2(Ω)) ≤®
(3.21)

ĉ (∥Aνn(p0,Φ(νn))∥L2(Ω)×L2(Ω) + ν−1
min∥f∥L1(I,L2(Ω)))

=®
(3.34)

ĉ (∥(p1,−∇p0)∥L2(Ω)×L2(Ω) + ν−1
min∥f∥L1(I,L2(Ω))) . (3.35)

Thus, {∂tpn}∞n=1 ⊂ L2(I,L2(Ω)) and {∂tun}∞n=1 ⊂ L2(I,L2(Ω)) are bounded. As (pn,un)
solves the Cauchy problem (3.14) associated with νn, respectively for every n ∈ N, it
follows that {div un}∞n=1 ⊂ L2(I,L2(Ω)) and {∇pn}∞n=1 ⊂ L2(I,L2(Ω)) are bounded as
well. Altogether, introducing the Hilbert spaces

Wp ∶=H1(I,L2(Ω)) ∩L2(I,H1
D(Ω)) (3.36)
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Wu ∶=H1(I,L2(Ω)) ∩L2(I,HN(div,Ω)),

we can choose subsequences (still denoted by the same symbol) such that

pn ⇀ p weakly in Wp as n→∞ (3.37)
un ⇀ u weakly in Wu as n→∞ (3.38)

for some p ∈ Wp and some u ∈ Wu. By the Aubin–Lions lemma, the embedding Wp ↪
L2(I,L2(Ω)) is compact, and so

pn → p in L2(I,L2(Ω)) as n→∞. (3.39)

Let us now prove that {νn∂tpn}∞n=1 converges weakly in L2(I,L2(Ω)) to ν∂tp. By (3.32),
(3.39), and since {νn}∞n=1 is bounded in L∞(Ω), we obtain the weak convergence of the
product {pnνn}∞n=1 to pν in L2(I,L2(Ω)). This yields for every φ ∈ C∞0 (I,L2(Ω)) that

∫
I
(νn∂tpn(t), φ(t))L2(Ω) dt = −∫

I
(νnpn(t), ∂tφ(t))L2(Ω) dt

→ −∫
I
(νp(t), ∂tφ(t))L2(Ω) dt = ∫

I
(ν∂tp(t), φ(t))L2(Ω) dt as n→∞, (3.40)

where we used the integration by parts formula for H1(I,L2(Ω))-functions [36, Proposi-
tion 2.2.34]. Now, let ϵ̃ > 0 and v ∈ L2(I,L2(Ω)). Due to the boundedness of {νn∂tpn}∞n=1,
it holds that

c ∶= sup
n∈N
∥νn∂tpn − ν∂tp∥L2(I,L2(Ω)) < ∞. (3.41)

As C∞0 (I,L2(Ω)) is dense in L2(I,L2(Ω)), we find φϵ̃ ∈ C∞0 (I,L2(Ω)) such that

∥v − φϵ̃∥L2(I,L2(Ω)) <
ϵ̃

2c
−1.

On the other hand, (3.40) implies the existence of n0 ∈ N such that

∣∫
I
(νn∂tpn(t) − ν∂tp(t), φϵ̃(t))L2(Ω) dt∣ <

ϵ̃

2 ∀n ≥ n0.

Combining these two inequalities leads to

∣∫
I
(νn∂tpn(t) − ν∂tp(t), v(t))L2(Ω) dt∣

≤®
(3.41)

c∥v − φϵ̃∥L2(I,L2(Ω)) + ∣∫
I
(νn∂tpn(t) − ν∂tp(t), φϵ̃(t))L2(Ω) dt∣ < ϵ̃ ∀n ≥ n0.

Therefore, {νn∂tpn}∞n=1 converges weakly to ν∂tp in L2(I,L2(Ω)), and hence, together
with (3.37)-(3.38), it follows that

νn∂tpn + div un + ηpn ⇀ ν∂tp + div u + ηp weakly in L2(I,L2(Ω))
∂tun +∇pn ⇀ ∂tu +∇p weakly in L2(I,L2(Ω))
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3.3 First-Order Necessary Optimality Conditions

as n→∞. In conclusion, it holds that

{
ν∂tp + div u + ηp = F in I ×Ω
∂tu +∇p = 0 in I ×Ω.

It remains to prove that (p,u) satisfies the desired initial value conditions. We choose an
arbitrarily fixed w ∈ L2(Ω) and some ξ ∈ C∞(I) such that ξ(T ) = 0 and ξ(0) = 1. Then,
we define [wξ] ∈ C∞(I,L2(Ω)) by [wξ](t)(x) = w(x)ξ(t) for all t ∈ I and a.e. x ∈ Ω. By
the integration by parts formula, we obtain that

Ln ∶= ∫
I
(pn(t),w)L2(Ω)∂tξ(t)dt = −∫

I
(∂tpn(t),w)L2(Ω)ξ(t)dt − (p0,w)L2(Ω) =∶ Rn.

In view of (3.37), it holds that

lim
n→∞

Ln = ∫
I
(p(t),w)L2(Ω)∂tξ(t)dt = −∫

I
(∂tp(t),w)L2(Ω)ξ(t)dt − (p(0),w)L2(Ω)

lim
n→∞

Rn = −∫
I
(∂tp(t),w)L2(Ω)ξ(t)dt − (p0,w)L2(Ω).

As a consequence,

(p(0),w)L2(Ω) = (p0,w)L2(Ω) ∀w ∈ L2(Ω) ⇒ p(0) = p0.

Similarly, we show u(0) = Φ(ν). Therefore, (p,u) ∈ Wp ×Wu is the (strong) solution to
(3.9) associated with ν. By well-known results (cf. [66, section 4.2]), the strong solution is
also a mild solution, which is uniquely given by the formula (3.23). Thus, (p,u) coincides
with unique (classical) solution to (3.9) according to Theorem 3.5, i.e., (p,u) = S(ν) ∈
C1(I,L2(Ω)×L2(Ω))∩C(I,H1

D(Ω)×HN(div,Ω)) and p = Sp(ν). Finally, as the objective
function J ∶ L2(Ω) × L2(I,L2(Ω)) → R is continuous and convex, the weak convergence
properties (3.32) and (3.37) imply that ν is a solution to (P).

3.3 First-Order Necessary Optimality Conditions
This section develops an adjoint technique via (3.9) and eventually first-order necessary
optimality conditions for (P) based on the auxiliary system (3.9). By the explicit use of
the dual semigroup {T∗ν(t)}t≥0 of {Tν(t)}t≥0 from Lemma 3.3, we propose the notion of
adjoint states for (P) as follows:

Definition 3.8. Let Assumption 3.1 hold. Further, let ν ∈ V, and let {Tν(t)}t≥0 denote
the contraction semigroup generated by Aν according to Lemma 3.3. For every t ≥ 0, let
T∗ν(t) ∶ Xν → Xν denote the adjoint operator associated with Tν(t), respectively. Then,
the function (q,v) ∈ C(I,L2(Ω) ×L2(Ω)), defined by

(q,v)(t) ∶=
m

∑
i=1
∫

T

t
T∗ν(s − t)(ν−1ai(s)(pobi (s) − Sp(ν)(s)),0)ds (3.42)

for all t ∈ I, is called the adjoint state associated with ν.
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Recalling from (3.26), for a given ν ∈ V , the adjoint operator of Aν ∶ D(Aν) ⊂ Xν → Xν

is given by

A∗ν ∶D(A∗ν) =D(Aν) ⊂Xν →Xν , (ϕ,w) ↦ (−ν−1ηϕ + ν−1 div w,∇ϕ).

Similarly to Lemma 3.3, the adjoint operator A∗ν ∶ D(Aν) ⊂ Xν → Xν is dissipative and
fulfils R(I − A∗ν) = Xν , and so the Lumer–Phillips theorem (see Theorem 2.3) implies
that A∗ν generates a contraction semigroup {Sν(t)}t≥0. For this reason, a well-known
result [32, chapter II, section 2.5] implies that T∗ν(t) = Sν(t) holds for all t ≥ 0. In other
words, the adjoint operator A∗ν is precisely the infinitesimal generator of the contraction
semigroup {T∗ν(t)}t≥0. Introducing

g ∈ L1(I,L2(Ω)), g(t) ∶=
m

∑
i=1
ai(t)(pobi (t) − Sp(ν)(t)) ∀t ∈ I, (3.43)

we note that (q̃, ṽ) ∶= (q,v)(T − ⋅), where (q,v) is defined by (3.42), satisfies

(q̃, ṽ)(t) = ∫
T

T−t
T∗ν(s − T + t)(ν−1g(s))ds = ∫

t

0
T∗ν(t − s)(ν−1g(T − s))ds ∀t ∈ I.

In other words, (q̃, ṽ) is the mild solution to

{
∂t(q̃, ṽ)(t) −A∗ν(q̃, ṽ)(t) = (ν−1g(T − t),0) ∀t ∈ I
(q̃, ṽ)(0) = (0,0). (3.44)

Therefore, by the time transformation, the strong PDE formulation for (q,v) is obtained
as follows:

{
∂t(q,v)(t) +A∗ν(q,v)(t) = (−ν−1g(t),0) ∀t ∈ I
(q,v)(T ) = (0,0), (3.45)

that is nothing but

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tq + div v − ηq =
m

∑
i=1
ai(Sp(ν) − pobi ) in I ×Ω

∂tv +∇q = 0 in I ×Ω
q = 0 on I × ΓD
v ⋅n = 0 on I × ΓN
(q,v)(T ) = (0,0) in Ω.

(3.46)

Our goal now is to deduce necessary optimality conditions for (P) based on Definition 3.8.
To this aim, let us first examine the continuity and differentiability properties for the
solution operator S ∶ L∞(Ω) ⊃ V → C(I,L2(Ω) ×L2(Ω)).

Lemma 3.9. Let Assumption 3.1 hold. Then, the solution operator S ∶ L∞(Ω) ⊃ V →
C1(I,L2(Ω) ×L2(Ω)) is continuous.

Proof. The claim is obtained by following the argumentation in [53, Theorem 3.5]. Let
ν ∈ V and h ∈ L∞(Ω) such that ν+h ∈ V . Further, let (ph,uh) ∶= S(ν+h) and (p,u) ∶= S(ν).
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3.3 First-Order Necessary Optimality Conditions

As Q ∶=D(∆D,N)×H1
D(Ω)× {F ∈W 2,1(I,L2(Ω)) ∶ F (0) = 0} is dense in H1

D(Ω)×L2(Ω)×
{F ∈W 1,1(I,L2(Ω)) ∶ F (0) = 0}, there exists a sequence {pn0 , pn1 , F n}∞n=1 ⊂ Q such that

(pn0 , pn1 , F n) → (p0, p1, F ) in H1(Ω) ×L2(Ω) ×W 1,1(I,L2(Ω)) as n→∞. (3.47)

Now, let n ∈ N be arbitrarily fixed. With (pnh,un
h) ∈ C2(I,L2(Ω)×L2(Ω))∩C1(I,H1

D(Ω)×
HN(div,Ω)), we denote the solution to (3.9) associated with the parameter ν + h, the
initial value (pn0 ,Φn(ν + h)), and the source term F n. With (pn,un) ∈ C2(I,L2(Ω) ×
L2(Ω)) ∩ C1(I,H1

D(Ω) ×HN(div,Ω)), we denote the solution to (3.9) associated with
the parameter ν, the initial value (pn0 ,Φn(ν)), and the source term F n. Here, Φn is
defined analogously to (3.6), but we replace (p0, p1) with (pn0 , pn1). Now, let ϵ > 0. Then,
applying Lemma 3.4 to the difference of the corresponding Cauchy problems of (pnh,un

h)
and (ph,uh), it follows that

∥(pnh − ph,un
h −uh)∥C1(I,L2(Ω)×L2(Ω))

≤ c(∥(pn0 − p0,Φn(ν + h) −Φ(ν + h))∥L2(Ω)×L2(Ω)

+ ∥Aν+h(pn0 − p0,Φn(ν + h) −Φ(ν + h))∥L2(Ω)×L2(Ω) + ν−1
min∥F n − F ∥W 1,1(I,L2(Ω)))

≤ c(∥pn0 − p0∥L2(Ω) + ∥Φn(ν + h) −Φ(ν + h)∥L2(Ω) + ∥pn1 − p1∥L2(Ω) + ∥∇(pn0 − p0)∥L2(Ω)

+ ν−1
min∥F n − F ∥W 1,1(I,L2(Ω))),

(3.48)
where c ∶= max{√νmax,1}

min{√νmin,1} . Due to the definition (3.6) of Φ and Φn (with (pn0 , pn1) instead of
(p0, p1)) and the generalized Poincaré inequality, it holds that

∥Φn(ν+h)−Φ(ν+h)∥L2(Ω) ≤ cP (∥η∥L∞(Ω)∥pn0−p0∥L2(Ω)+(∥ν∥L∞(Ω)+∥h∥L∞(Ω))∥pn1−p1∥L2(Ω)).
(3.49)

Therefore, by (3.47), (3.48), and (3.49), we obtain the existence of an n0 ∈ N such that

∥(pn0
h − ph,u

n0
h −uh)∥C1(I,L2(Ω)×L2(Ω)) <

ϵ

3 (3.50)

for every h ∈ L∞(Ω) such that ν + h ∈ V and ∥h∥L∞(Ω) < 1. Analogously, eventually by
increasing n0,

∥(pn0 − p,un0 −u)∥C1(I,L2(Ω)×L2(Ω)) <
ϵ

3 . (3.51)

Further, (pn0
h − pn0 ,un0

h −un0) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂t(pn0
h − pn0) + div(un0

h −un0) + η(pn0
h − pn0) = −h∂tpn0

h in I ×Ω
∂t(un0

h −un0) + ∇(pn0
h − pn0) = 0 in I ×Ω

pn0
h − pn0 = 0 on I × ΓD
(un0

h −un0) ⋅n = 0 on I × ΓN
(pn0

h − pn0 ,un0
h −un0)(0) = (0,Φn0(ν + h) −Φn0(ν)) in Ω.

(3.52)

Applying Lemma 3.4 to (3.52) yields that

∥(pn0
h − pn0 ,un0

h −un0)∥C1(I,L2(Ω)×L2(Ω)) (3.53)
≤ c(∥Φn0(ν + h) −Φn0(ν)∥L2(Ω)
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+ ∥Aν(0,Φn0(ν + h) −Φn0(ν)) − (ν−1h∂tp
n0
h (0),0)∥L2(Ω)×L2(Ω)

+ ν−1
min∥h∥L∞(Ω)∥∂tpn0

h ∥W 1,1(I,L2(Ω))).

Due to the property (3.7) of Φn0 (with pn0
1 instead of p1), it holds that

∥Φn0(ν + h) −Φn0(ν)∥L2(Ω) ≤ cP ∥h∥L∞(Ω)∥pn0
1 ∥L2(Ω) (3.54)

for a Poincaré constant cP > 0. As in the proof of Theorem 3.5, we have that ∂tpn0
h (0) = p

n0
1

a.e. in Ω. By the definition of Aν (see (3.13)) and the definition of Φn0 (see (3.6) with
(pn0

0 , p
n0
1 ) instead of (p0, p1)), this yields

Aν(0,Φn0(ν+h)−Φn0(ν))−(ν−1h∂tp
n0
h (0),0) = (ν−1hpn0

1 −ν−1h∂tp
n0
h (0),0) = (0,0). (3.55)

Furthermore, by Lemma 3.4, it holds that

∥∂tpn0
h ∥L1(I,L2(Ω)) ≤ Tc(∥Aν+h(pn0

0 ,Φn0(ν + h))∥L2(Ω)×L2(Ω) + ∥(ν + h)−1∂tF
n0∥L1(I,L2(Ω)))

≤ Tc(∥(pn0
1 ,−∇pn0

0 )∥L2(Ω)×L2(Ω) + ν−1
min∥∂tF n0∥L1(I,L2(Ω))) (3.56)

and

∥∂2
t p

n0
h ∥L1(I,L2(Ω)) (3.57)

≤ Tc(∥Aν+h(pn0
1 ,−∇pn0

0 ) + ((ν + h)−1∂tF
n0(0),0)∥L2(Ω)×L2(Ω) + ∥(ν + h)−1∂2

t F
n∥L1(I,L2(Ω)))

≤ Tc(∥((ν + h)−1(∆pn0
0 − ηpn0

1 ),−∇pn0
1 ) + ((ν + h)−1∂tF

n0(0),0)∥L2(Ω)×L2(Ω)

+ ν−1
min∥∂2

t F
n∥L1(I,L2(Ω)))

≤ Tc(ν−1
min∥∆pn0

0 − ηpn0
1 ∥L2(Ω) + ∥∇pn0

1 ∥L2(Ω) + ν−1
min∥∂tF n0(0)∥L2(Ω) + ν−1

min∥∂2
t F

n∥L1(I,L2(Ω))).

Since the right-hand sides in (3.56) and (3.57) are independent of h > 0, there exists a
constat c̃ > 0 such that

∥∂tpn0
h ∥W 1,1(I,L2(Ω)) ≤ c̃ (3.58)

for all h ∈ L∞(Ω) such that ν + h ∈ V . Thus, (3.53) to (3.55) and (3.58) yield that

∥(pn0
h − pn0 ,un0

h −un0)∥C1(I,L2(Ω)×L2(Ω)) < c(cP ∥pn0
1 ∥L2(Ω) + ν−1

minc̃)∥h∥L∞(Ω).

Then, defining δ ∶=min{ϵ(3c(cP (∥pn0
1 ∥L2(Ω)) + ν−1

minc̃))−1,1}, it holds that

∥(pn0
h − pn0 ,un0

h −un0)∥C1(I,L2(Ω)×L2(Ω)) <
ϵ

3 (3.59)

for all h ∈ L∞(Ω) such that ∥h∥L∞(Ω) < δ and ν + h ∈ V . Together with (3.50), (3.51), and
(3.59), we conclude that

∥(ph − p,uh −u)∥C1(I,L2(Ω)×L2(Ω)) ≤ ∥(ph − pn0
h ,uh −un0

h )∥C1(I,L2(Ω)×L2(Ω))

+ ∥(pn0
h − pn0 ,un0

h −un0)∥C1(I,L2(Ω)×L2(Ω)) + ∥(pn0 − p,un0 −u)∥C1(I,L2(Ω)×L2(Ω)) < ϵ

for all h ∈ L∞(Ω) with ∥h∥L∞(Ω) < δ and ν + h ∈ V .
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Lemma 3.10. Let Assumption 3.1 hold. Then, the solution operator S ∶ L∞(Ω) ⊃ V →
C(I,L2(Ω) ×L2(Ω)) is Fréchet differentiable. For all ν ∈ V and h ∈ L∞(Ω), it holds that

[S′(ν)h](t) = Tν(t)(0,Φ′(ν)h) − ∫
t

0
Tν(t − s)(ν−1h∂tSp(ν)(s),0)ds ∀t ∈ I, (3.60)

where {Tν(t)}t≥0 denotes the contraction semigroup generated by Aν.

Proof. Let ν ∈ V and h ∈ L∞(Ω) such that ν + h ∈ V , and we define S′(ν)h as in (3.60).
Firstly, note that the mapping h↦ S′(ν)h is linear and continuous. Further, by subtract-
ing the corresponding Cauchy problems of (ph,uh) ∶= S(ν + h) and (p,u) ∶= S(ν), the
difference (ph − p,uh −u) ∈ C1(I,L2(Ω) ×L2(Ω)) ∩C(I,H1

D(Ω) ×HN(div,Ω)) satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂t(ph − p) + div(uh −u) + η(ph − p) = −h∂tph in I ×Ω
∂t(uh −u) + ∇(ph − p) = 0 in I ×Ω
ph − p = 0 on I × ΓD
(uh −u) ⋅n = 0 on I × ΓN
(ph − p,uh −u)(0) = (0,Φ(ν + h) −Φ(ν)) in Ω.

Therefore, S(ν + h) − S(ν) reads as

S(ν + h)(t) − S(ν)(t) (3.61)

= Tν(0,Φ(ν + h) −Φ(ν)) − ∫
t

0
Tν(t − s)(ν−1h∂tSp(ν + h)(s),0)ds ∀t ∈ I.

Together with the affine linearity of Φ, it follows that
1

∥h∥L∞(Ω)
∥S(ν + h)(t) − S(ν)(t) − [S′(ν)h](t)∥L2(Ω)×L2(Ω)

=®
(3.60),(3.61)

1
∥h∥L∞(Ω)

∥∫
t

0
Tν(t − s)(ν−1h(∂tSp(ν + h)(s) − ∂tSp(ν)(s)),0)ds∥

L2(Ω)×L2(Ω)

≤ Tcν−1
min∥∂tSp(ν + h) − ∂tSp(ν)∥C(I,L2(Ω)) ∀t ∈ I,

where c ∶= max{√νmax,1}
min{√νmin,1} . Thus, applying Lemma 3.9, the assertion holds.

Remark 3.11. In view of Lemma 3.10 along with Lemma 3.4, the Fréchet derivative
S′(ν)h = (p̃, ũ) is the mild solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp̃ + div ũ + ηp̃ = −h∂tSp(ν) in I ×Ω
∂tũ +∇p̃ = 0 in I ×Ω
p̃ = 0 on I × ΓD
ũ ⋅n = 0 on I × ΓN
(p̃, ũ)(0) = (0,Φ′(ν)h) in Ω.

Theorem 3.12. Let Assumption 3.1 hold. Further, let ν ∈ Vad be a minimizer to (P),
and let (q,v) be the adjoint state associated with ν given by Definition 3.8. Then, the
following variational inequality holds:

(∫
I
(∂tSp(ν)(t) − p1)q(t)dt + λν, ν − ν)

L2(Ω)
≥ 0 ∀ν ∈ Vad. (3.62)
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Proof. By standard arguments, we only need to show that (3.62) is equivalent to

J ′(ν)(ν − ν) ≥ 0 ∀ν ∈ Vad. (3.63)

Let ν ∈ Vad be arbitrarily fixed. Due to the Fréchet differentiability of S (Lemma 3.10),
we have

J ′(ν)(ν − ν) (3.64)

=
m

∑
i=1
∫
I
((ν−1ai(t)(Sp(ν)(t) − pobi (t)),0), S′(ν)(ν − ν)(t))Xν

dt + λ(ν, ν − ν)L2(Ω).

By means of definition of the adjoint state (q,v) associated with ν (see Definition 3.8),
and with the function g from (3.43), we get

m

∑
i=1
∫
I
((ν−1ai(t)(Sp(ν)(t) − pobi (t),0), S′(ν)(ν − ν)(t))Xν

dt (3.65)

=®
(3.43),(3.60)

−∫
I
((ν−1g(t),0),Tν(t)(0,Φ′(ν)(ν − ν))

− ∫
t

0
Tν(t − s)(ν−1(ν − ν)∂tSp(ν)(s),0)ds)

Xν

dt

= −(∫
I
T∗ν(t)(ν−1g(t),0)dt, (0,Φ′(ν)(ν − ν)))

Xν

+ ∫
I
(∫

T

s
T∗ν(t − s)(ν−1g(t),0)dt, (ν−1(ν − ν)∂tSp(ν)(s),0))

Xν

ds

=®
(3.42),(3.43)

−(v(0),Φ′(ν)(ν − ν))L2(Ω) + ∫
I
(q(s), (ν − ν)∂tSp(ν)(s))L2(Ω) ds.

As W 1,1(I,L2(Ω)) lies dense in L1(I,L2(Ω)), we can choose {gn}∞n=1 ⊂ W 1,1(I,L2(Ω))
such that

gn → g in L1(I,L2(Ω)) as n→∞. (3.66)
Now, let {(qn,vn)}∞n=1 ⊂ C1(I,L2(Ω) ×L2(Ω)) ∩C(I,H1

D(Ω) ×HN(div,Ω)) be defined by

(qn,vn)(t) ∶= ∫
T

t
T∗ν(s − t)(gn(s),0)ds ∀t ∈ I, n ∈ N. (3.67)

Subtracting (3.67) from the definition of the adjoint state (3.42) implies

∥(qn − q,vn − v)∥C(I,L2(Ω)×L2(Ω)) ≤ c∥gn − g∥L1(I,L2(Ω)) → 0 as n→∞, (3.68)

where c ∶= max{√νmax,1}
min{√νmin,1} . Further, due to the higher regularity properties of the source

terms gn, by Lemma 3.4, the functions (qn,vn) solve corresponding PDEs (3.45) where g
is replaced with gn, respectively for every n ∈ N. Therefore, by the property (3.5) of Φ it
holds that

(vn(0),Φ′(ν)(ν − ν))L2(Ω) = −(∫
I
∂tvn(t)dt,Φ′(ν)(ν − ν))

L2(Ω)
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= (∫
I
∇qn(t)dt,Φ′(ν)(ν − ν))

L2(Ω)
=®

(3.5),(3.6)
∫
I
(qn(t), (ν − ν)p1)L2(Ω) dt ∀n ∈ N,

and together with (3.66) and (3.68) this yields

(v(0),Φ′(ν)(ν − ν))L2(Ω) = ∫
I
(q(t), (ν − ν)p1)L2(Ω) dt. (3.69)

Applying (3.65) and (3.69) to (3.64), we conclude the equivalence of (3.62) and (3.63).
Remark 3.13. By well-known arguments, the optimality condition (3.62) is valid if and
only if the projection formula

ν(x) = P[ν−(x),ν+(x)] [−
1
λ ∫I(∂tSp(ν)(t, x) − p1(x))q(t, x)dt] (3.70)

holds true for a.e. x ∈ Ω (cf. [72, section 2.8]). Let us also note that ∂tSp(ν) and q are of
class C(I,L2(Ω)). Therefore, their product is only well-defined in C(I,L1(Ω)), and we
cannot extract any Sobolev regularity property for the optimal solution ν ∈ L∞(Ω) from
the projection formula (3.70).

As mentioned above, under higher regularity assumptions, we also obtain necessary
first-order conditions based on the second-order formulation of Theorem 3.12:
Corollary 3.14. Let Assumption 3.1 hold, f ∈ W 1,1(I,L2(Ω)), p1 ∈ H1

D(Ω), and p0 ∈
D(∆D,N). Furthermore, let ν ∈ Vad be an minimizer to (P) with corresponding solution
p ∈ C2(I,L2(Ω)) ∩ C1(I,H1

D(Ω)) ∩ C(I,D(∆D,N)) to (1.1) such that ∑mi=1 ai(p − pobi ) ∈
W 1,1(I,L2(Ω)). Then, it holds the variational inequality

(∫
I
(∂tp(t) − p1)∂tq(t)dt + λν, ν − ν)

L2(Ω)
≥ 0 ∀ν ∈ Vad, (3.71)

where q ∈ C2(I,L2(Ω))∩C1(I,H1
D(Ω))∩C(I,D(∆D,N)) satisfies the second-order adjoint

equation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t q −∆q − η∂tq =

m

∑
i=1
ai(p − pobi ) in I ×Ω

∂nq = 0 on I × ΓN
q = 0 on I × ΓD
(q, ∂tq)(T ) = (0,0) in Ω.

(3.72)

Remark 3.15. According to Corollary 3.6, the solution p to (3.30) associated with ν
exists, is unique, and satisfies p ∈ C2(I,L2(Ω)). Thus, the assumption ∑mi=1 ai(p − pobi ) ∈
W 1,1(I,L2(Ω)) is realistic for suitable ai and pobi for all i = 1, . . . ,m.
Proof. Due to Lemma 3.4, there exists a unique solution (q̂, v̂) ∈ C2(I,L2(Ω) ×L2(Ω)) ∩
C1(I,H1

D(Ω) ×HN(div,Ω)) to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tq̂ + div(v̂) + ηq̂ = G in I ×Ω
∂tv̂ +∇p̂ = 0 in I ×Ω
q̂ = 0 on I × ΓD
v̂ ⋅n = 0 on I × ΓN
(q̂, v̂)(0) = (0,0) in Ω.
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where G ∈ W 2,1(I,L2(Ω)) is given by G(t) ∶= ∫
t

0 ∑
m
i=1 ai(T − s)(p − pobi )(T − s)ds for all

t ∈ I. Similar to the proof of Corollary 3.6, it follows that q̂ ∈ C(I,D(∆N,D)) and

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t q̂ −∆q̂ + η∂tq̂ = ∂tG in I ×Ω

∂nq̂ = 0 on I × ΓN
q̂ = 0 on I × ΓD
(q̂, ∂tq̂)(0) = (0,0) in Ω.

Thus, q ∶= q̂(T − ⋅) satisfies (3.72). Now, we define q ∶= ∂tq and v ∶= ∇q. Then, due to
(3.72), (q,v) is the unique solution to the first-order adjoint equation (3.46) associated
with ν. Therefore, (q,v) ∈ C1(I,L2(Ω) ×L2(Ω)) ∩ C(I,H1

D(Ω) ×HN(div,Ω)) coincides
with the adjoint state associated with ν in the sense of Definition 3.8 by the uniqueness
of the solution to (3.46). Consequently, the variational inequality (3.62) in Theorem 3.12
implies (3.71).

3.4 Stampacchia’s Method for Hyperbolic PDEs
In order to handle the bilinear character ν∂2

t p in the second-order analysis of (P), we apply
Stampacchia’s method to the hyperbolic case. As a preparation, in the following lemma,
we present the global L∞(Ω)-boundedness of the solution to the Poisson equation with
mixed boundary conditions. Note that the proof follows closely the well-known arguments
of Stampacchia’s method (cf. [72, Theorem 4.5]). However, we provide the proof for the
reader’s convenience.

Lemma 3.16. Let g ∈ Lr(Ω) for some r > N
2 . Then, the weak solution y ∈H1

D(Ω) to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆y = g in Ω
∂ny = 0 on ΓN
y = 0 on ΓD

(3.73)

is in L∞(Ω) and satisfies
∥y∥L∞(Ω) ≤ c̃∥g∥Lr(Ω)

for a constant c̃ > 0 depending on r, N , and Ω.

Proof. For an arbitrarily fixed k > 0, we define

vk∶Ω→ R, x↦max{y(x) − k,0} +min{y(x) + k,0} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y(x) − k if y(x) ≥ k
0 if ∣y(x)∣ = k
y(x) + k in y(x) ≤ −k.

Since v ∈H1
D(Ω) if and only ∣v∣ ∈H1

D(Ω) (cf. [31, Corollary 2.4]), and max{v,0} = ∣v∣+v2 for
every v ∈H1

D(Ω), it holds that vk ∈H1
D(Ω). The weak formulation of (3.73) reads as

(∇y,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈H1
D(Ω).
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Testing with vk leads to

(f, vk)L2(Ω) = (∇y,∇vk)L2(Ω) = (∇y,∇vk)L2(Ω(k)) = (∇vk,∇vk)L2(Ω(k)) = (∇vk,∇vk)L2(Ω).

Let us define

Ω(k) ∶= {x ∈ Ω ∶ ∣y(x)∣ > k}, ΓD(k) ∶= {x ∈ ΓD ∶ ∣y(x)∣ > k}.

Then, along with Hölder’s and Young’s inequality, we obtain that

(f, vk)L2(Ω) ≤ ∥f∥Lr(Ω)∥vk∥Lr′(Ω)

≤ ∥f∥Lr(Ω) ((∫
Ω(k)
∣vk∣2r

′ dx)
1
2
(∫

Ω(k)
1 dx)

1
2
)

1
r′

= ∥f∥Lr(Ω)∥vk∥L2r′(Ω)∣Ω(k)∣
1

2r′ ,

where 1
r + 1

r′ = 1. Since
2r′ = 2

1 − 1
r

< 2
1 − 2

N

= 2N
N − 2 ,

the embedding H1(Ω) ↪ L2r′(Ω) is continuous and it follows that

(f, vk)L2(Ω) ≤ c∥f∥Lr(Ω)∥vk∥H1(Ω)∣Ω(k)∣
1

2r′

for a constant c > 0. Along with the generalized Poincaré inequality [72, Lemma 2.5], we
obtain that

∥vk∥2H1(Ω) ≤ cp∥∇vk∥2L2(Ω) = cp(f, vk)L2(Ω) ≤ cpc∥f∥Lr(Ω)∥vk∥H1(Ω)∣Ω(k)∣
1

2r′

⇒ ∥vk∥H1(Ω) ≤ cpc∥f∥Lr(Ω)∣Ω(k)∣
1

2r′ .

Now, for every h > k, it holds that Ω(h) ⊂ Ω(k). Since, ∣v∣ = ∣y∣ − k a.e. in Ω, with the
definition of vk, for every p ∈ (2r′, 2N

N−2), it follows that

(h − k)2∣Ω(h)∣
2
p = (∫

Ω(h)
(h − k)p dx)

2
p

≤ (∫
Ω(h)
(∣y∣ − k)p dx)

2
p

≤ (∫
Ω(k)
(∣y∣ − k)p dx)

2
p

= ∥vk∥2Lp(Ω) ∀h > k.

Since the embedding H1(Ω) ↪ Lp(Ω) is also continuous, there exists another constant
ĉ > 0 such that

(h − k)∣Ω(h)∣
1
p ≤ ĉ∥vk∥Lp(Ω) ≤ ĉcpc∥f∥Lr(Ω)∣Ω(k)∣

1
2r′ ∀h > k.

This can be written as
ϕ(h) ≤ C

(h − k)aϕ(k)
b ∀h > k

where

ϕ(h) = ∣Ω(h)∣
1
p , a = 1,
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C = ĉcpc∥f∥Lr(Ω), b = p

2r′ .

Now, Stampacchia’s auxiliary result (cf. [72, Lemma 7.5]) provides that ϕ(δ) = 0 where

δ ∶= Cϕb−12 ab
b−1 = ĉcpc∥f∥Lr(Ω)∣Ω∣

p−2r′
2r′ 2

p
p−2r′ .

That means y ∈ L∞(Ω) and

∣y(x)∣ ≤ δ for a.e. x ∈ Ω.

Lemma 3.17. Let Assumption 3.1 hold, N ≤ 3, and ν ∈ Vad. Furthermore, let G ∈
W k+1,1(I,L2(Ω)) with k ∈ N, (p,u)0,0 ∈H1

D(Ω) ×HN(div,Ω), and

(p,u)0,l ∶= Aν(p,u)0,l−1 + ∂l−1
t (G(0),0) ∈H1

D(Ω) ×HN(div,Ω) ∀l = 1, . . . , k.

Then, the first component p of the unique solution (p,u) ∈ Ck+1(I,L2(Ω) × L2(Ω)) ∩
Ck(I,H1

D(Ω) ×HN(div,Ω)) to

{
∂t(p,u)(t) −Aν(p,u)(t) = (G(t),0) ∀t ∈ I
(p,u)(0) = (p,u)0,0

(3.74)

satisfies p ∈ Ck−1(I,L∞(Ω)) and there exists a constant ĉ > 0 such that

∥∂ltp∥L2(I,L∞(Ω)) ≤ ĉ(∥(p,u)0,l+1∥L2(Ω)×L2(Ω) + ∥∂l+1
t G∥L2(I,L2(Ω)) + ∥(p,u)0,l+2∥L2(Ω)×L2(Ω)

+ ∥∂l+2
t G∥L1(I,L2(Ω))) ∀l = 0, . . . , k − 1 (3.75)

∥∂ltp∥C(I,L∞(Ω)) ≤ ĉ(∥(p,u)0,l+1∥L2(Ω)×L2(Ω) + ∥∂l+1
t G∥C(I,L2(Ω)) + ∥(p,u)0,l+2∥L2(Ω)×L2(Ω)

+ ∥∂l+2
t G∥L1(I,L2(Ω))) ∀l = 0, . . . , k − 1. (3.76)

Proof. By Lemma 3.4, the system (3.74) admits a unique solution (p,u) ∈ Ck+1(I,L2(Ω)×
L2(Ω)) ∩Ck(I,H1

D(Ω) ×HN(div,Ω)). Furthermore, by the definition of Aν (see (3.13)),
the system (3.74) is nothing but

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp + div(u) + ηp = νG in I ×Ω
∂tu +∇p = 0 in I ×Ω
p = 0 on I × ΓD
u ⋅n = 0 on I × ΓN
(p,u)(0) = (p,u)0,0 in Ω.

(3.77)

By differentiating the first equation in (3.77) in time and inserting the second equation,
it follows for all t ∈ I and l = 0, . . . , k − 1 that

−∆∂ltp(t) = ν∂l+1
t G(t) − ν∂l+2

t p(t) − η∂l+1
t p(t) in Ω, (3.78)

∂n(∂ltp(t)) = 0 on ΓN , τ(∂ltp(t)) = 0 on ΓD.

Therefore, by Lemma 3.16, we obtain that

∥∂ltp(t)∥L∞(Ω) ≤ c̃∥ν∂l+1
t G(t)−ν∂l+2

t p(t)−η∂l+1
t p(t)∥L2(Ω) ∀t ∈ I ∀l = 0, . . . , k−1. (3.79)
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Let us prove that p ∈ Ck−1(I,L∞(Ω)). To this aim, let l ∈ {0, . . . , k − 1} and {tn}∞n=1 ⊂ I
with limn→∞ tn = t. Applying the superposition principle to (3.78) yields that

−∆∂lt(p(t) − p(tn))=ν∂l+1
t (G(t)−G(tn))−ν∂l+2

t (p(t)−p(tn)) − η∂l+1
t (p(t) − p(tn)) in Ω,

∂n(∂lt(p(t) − p(tn)))=0 on ΓN , τ(∂lt(p(t) − p(tn))) = 0 on ΓD.

Then, using again Lemma 3.16, it follows that

∥∂lt(p(t) − p(tn))∥L∞(Ω) (3.80)
≤ c̃(∥ν∂l+1

t (G(t) −G(tn))∥L2(Ω) + ∥ν∂l+2
t (p(t) − p(tn))∥L2(Ω) + ∥η∂l+1

t (p(t) − p(tn))∥L2(Ω)).

Since ∂l+1
t G,∂ltp, ∂

l+1
t p ∈ C(I,L2(Ω)), the right-hand side in (3.80) vanishes as n →∞. In

conlusion, the regularity property p ∈ Ck−1(I,L∞(Ω)) is valid. Now, we integrate (3.79)
and make use of Lemma 3.4, to deduce for every l = 0, . . . , k − 1 that

∥∂ltp∥L2(I,L∞(Ω))

≤ c̃∥ν∂l+1
t G − ν∂l+2

t p − η∂l+1
t p∥L2(I,L2(Ω))

≤ c̃(νmax∥∂l+1
t G∥L2(I,L2(Ω)) + cνmax(∥(p,u)0,l+2∥L2(Ω)×L2(Ω) + ∥∂l+2

t G∥L1(I,L2(Ω)))
+ c∥η∥L∞(∥(p,u)0,l+1∥L2(Ω)×L2(Ω) + ∥∂l+1

t G∥L1(I,L2(Ω))))

with c = ν−1
min

max{√νmax,1}
min{√νmin,1} . This leads to the desired estimate (3.75) with ĉ > 0 depending

on c̃, T , νmin, νmax, and η. To obtain (3.76), we take the supremum on both sides of (3.79)
and again make use of Lemma 3.4. Then, it follows for every l = 0, . . . , k − 1 that

∥∂ltp∥C(I,L∞(Ω))
≤ c̃∥∂l+1

t G − ν∂l+2
t p − η∂l+1

t p∥C(I,L2(Ω))

≤ c̃(∥∂l+1
t G∥C(I,L2(Ω)) + cνmax(∥(p,u)0,l+2∥L2(Ω)×L2(Ω) + ∥∂l+2

t G∥L1(I,L2(Ω)))
+ c∥η∥L∞(∥(p,u)0,l+1∥L2(Ω)×L2(Ω) + ∥∂l+1

t G∥L1(I,L2(Ω))))
≤ ĉ(∥(p,u)0,l+1∥L2(Ω)×L2(Ω) + ∥∂l+1

t G∥C(I,L2(Ω)) + ∥(p,u)0,l+2∥L2(Ω)×L2(Ω)

+ ∥∂l+2
t G∥L1(I,L2(Ω)))

with ĉ > 0 depending on c̃, T , νmin, νmax, and η.

3.5 Second-Order Sufficient Optimality Conditions
Assumption 3.18. Let Assumption 3.1 and N ≤ 3 hold. Furthermore, let ν ∈ Vad satisfy
the variational inequality (3.62) with the corresponding state (p,u) ∶= S(ν) and the adjoint
state (q,v) ((3.42) for ν = ν). We assume the higher regularity property

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f ∈W 6,1(I,L2(Ω))
p0, p1 ∈D(∆D,N)
m

∑
i=1
ai(p − pobi ) ∈W 2,1(I,L2(Ω)),

(3.81)
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and the compatibility assumption

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f(0) = −∆p0 + ηp1

∂tf(0) = −∆p1

∂ltf(0) = 0 for l = 2,3,4
ai(T ) = 0 for i = 1, . . . ,m.

(3.82)

In view of Assumption 3.1, (3.6), and (3.81), the following quantities for any given
ν ∈ Vad belong to H1

D(Ω) ×HN(div,Ω):

(p,u)0,0 ∶= (p0,Φ(ν)) (3.83)
(p,u)0,1 ∶= Aν((p,u)0,0) + (ν−1F (0),0) =®

(3.13),(3.8)

(p1,−∇p0)

(p,u)0,2 ∶= Aν((p,u)0,1) + (ν−1∂tF (0),0) =®
(3.13),(3.8)

(ν−1(∆p0 − ηp1 + f(0)),−∇p1) =®
(3.82)

(0,−∇p1)

(p,u)0,3 ∶= Aν((p,u)0,2) + (ν−1∂2
t F (0),0) =®

(3.13),(3.8)

(ν−1(∆p1 + ∂tf(0)),0) =®
(3.82)

(0,0)

(p,u)0,l ∶= Aν((p,u)0,l−1) + (ν−1∂l−1
t F (0),0) =®

(3.13),(3.8)

(ν−1∂l−2
t f(0),0) =®

(3.82)

(0,0) for l = 4,5,6

Along with F ∈W 7,1(I,L2(Ω)) (by (3.8) and f ∈W 6,1(I,L2(Ω)) due to (3.81)), Lemma 3.4
implies that

S(ν) ∈ C7(I,L2(Ω) ×L2(Ω)) ∩C6(I,H1
D(Ω) ×HN(div,Ω)) ∀ν ∈ Vad (3.84)

and

∥S(ν)∥C(I,L2(Ω)×L2(Ω)) ≤ c(∥(p0,Φ(ν))∥L2(Ω)×L2(Ω) + ∥ν−1F ∥L1(I,L2(Ω))) (3.85)
≤ c((1 + cP ∥η∥L∞(Ω))∥p0∥L2(Ω) + cPνmax∥p1∥L2(Ω)

+ ν−1
min∥F ∥L1(I,L2(Ω)))

∥∂tS(ν)∥C(I,L2(Ω)×L2(Ω)) ≤ c(∥(p1,−∇p0)∥L2(Ω)×L2(Ω) + ν−1
min∥f∥L1(I,L2(Ω)))

∥∂2
t S(ν)∥C(I,L2(Ω)×L2(Ω)) ≤ c(∥∇p1∥L2(Ω) + ν−1

min∥∂2
t f∥L1(I,L2(Ω)))

∥∂ltS(ν)∥C(I,L2(Ω)×L2(Ω)) ≤ cν−1
min∥∂ltf∥L1(I,L2(Ω)) for l = 3, . . . ,7

for all ν ∈ Vad with c ∶= max{√νmax,1}
min{√νmin,1} . Note that the compatibility assumption (3.82)

guarantees that no additional regularity property has to be assumed for the control space
Vad to ensure that all quantities in (3.83) belong to H1

D(Ω) ×HN(div,Ω). Moreover, by
Lemma 3.17, the first component of S(ν) satisfies

Sp(ν) ∈ C5(I,L∞(Ω))

and

∥Sp(ν)∥C(I,L∞(Ω)) ≤ ĉ(∥(p1,−∇p0)∥L2(Ω)×L2(Ω) + ν−1
min∥f∥C(I,L2(Ω)) + ∥∇p1∥L2(Ω)
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+ ν−1
min∥∂tf∥L1(I,L2(Ω)))

∥∂tSp(ν)∥C(I,L∞(Ω)) ≤ ĉ(∥∇p1∥L2(Ω) + ν−1
min∥∂tf∥C(I,L2(Ω)) + ν−1

min∥∂2
t f∥L1(I,L2(Ω)))

∥∂ltSp(ν)∥C(I,L∞(Ω)) ≤ ĉν−1
min(∥∂ltf∥C(I,L2(Ω)) + ∥∂l+1

t f∥L1(I,L2(Ω))) ∀l = 2, . . . ,5.

In view of Lemma 3.4, both the last properties in (3.81) and (3.82) imply for the adjoint
state that

(q,v) ∈ C2(I,L2(Ω) ×L2(Ω)) ∩C1(I,H1
D(Ω) ×HN(div,Ω)) (3.86)

and (q,v) solves the adjoint equation in the classical sense:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tq + div v − ηq =
m

∑
i=1
ai(p − pobi ) in I ×Ω

∂tv +∇q = 0 in I ×Ω
q = 0 on I × ΓD
v ⋅n = 0 on I × ΓN
(q,v)(T ) = (0,0) in Ω.

(3.87)

Lemma 3.19. Let Assumption 3.18 hold. Then, there exists a constant L > 0 such that

∥S(ν) − S(ν̂)∥C4(I,L2(Ω)×L2(Ω)) ≤ L∥ν − ν̂∥L2(Ω) ∀ν, ν̂ ∈ Vad (3.88)
∥Sp(ν) − Sp(ν̂)∥C2(I,L∞(Ω)) ≤ L∥ν − ν̂∥L2(Ω) ∀ν, ν̂ ∈ Vad. (3.89)

Proof. Let ν, ν̂ ∈ Vad be arbitrarily fixed, (p,u) ∶= S(ν), and (p̂, û) ∶= S(ν̂). As discussed
above, we obtain the regularity properties p, p̂ ∈ C5(I,L∞(Ω)). In particular, there exists
a constant c̃ > 0, independent of ν and p, such that

∥∂ltp∥C(I,L∞(Ω)) ≤ c̃ for l = 0, . . . ,5. (3.90)

Now, subtracting the corresponding Cauchy problems of (p,u) and (p̂, û) (see (3.9))
provides that (p − p̂,u − û) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν̂∂t(p − p̂) + div(u − û) + η(p − p̂) = −(ν − ν̂)∂tp in I ×Ω
∂t(u − û) + ∇(p − p̂) = 0 in I ×Ω
p − p̂ = 0 on I × ΓD
(u − û) ⋅n = 0 on I × ΓN
(p − p̂,u − û)(0) = (0,Φ(ν) −Φ(ν̂)) in Ω.

(3.91)

Note that (ν − ν̂)∂tp ∈ C6(I,L2(Ω)) (see (3.84)) and

(p − p̂,u − û)0,0 ∶= (0,Φ(ν) −Φ(ν̂)) (3.92)
(p − p̂,u − û)0,1 ∶= Aν̂(p − p̂,u − û)0,0 − (ν̂−1(ν − ν̂)∂tp(0),0) (3.93)

=®
(3.5),(3.13)

(ν̂−1(ν − ν̂)(p1 − ∂tp(0)),0) =®
(3.28)

(0,0)

(p − p̂,u − û)0,2 ∶= Aν̂(p − p̂,u − û)0,1 − (ν̂−1(ν − ν̂)∂2
t p(0),0) (3.94)

= (ν−1ν̂−1(ν − ν̂)(∆p0 − ηp1 + f(0)),0) =®
(3.82)

(0,0)
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(p − p̂,u − û)0,3 ∶= Aν̂(p − p̂,u − û)0,2 − (ν̂−1(ν − ν̂)∂3
t p(0),0) (3.95)

=®
(3.28)

(ν−1ν̂−1(ν − ν̂)(∆p1 − η∂2
t p(0) + ∂tf(0)),0) =®

(3.94),(3.82)

(0,0)

(p − p̂,u − û)0,4 ∶= Aν̂(p − p̂,u − û)0,3 − (ν̂−1(ν − ν̂)∂4
t p(0),0) = −(ν̂−1(ν − ν̂)∂4

t p(0),0).
(3.96)

Applying Lemma 3.4 to (3.91), we obtain that

∥(p − p̂,u − û)∥C(I,L2(Ω)×L2(Ω)) (3.97)
≤ c(∥Φ(ν) −Φ(ν̂)∥L2(Ω) + ∥ν̂−1(ν − ν̂)∂tp∥L1(I,L2(Ω)))
≤®

(3.7)

c(cP ∥p1(ν − ν̂)∥L2(Ω) + ν−1
min∥∂tp∥L1(I,L∞(Ω))∥ν − ν̂∥L2(Ω))

≤®
(3.90)

c(cP ∥p1∥L∞(Ω) + ν−1
minT c̃)∥ν − ν̂∥L2(Ω),

where the regularity property p1 ∈ L∞(Ω) is satisfied due to (3.82) and Lemma 3.16.
Analogously, taking the initial conditions (3.93)-(3.96) into account, applying Lemma 3.4
to (3.91) implies that

∥∂lt(p − p̂,u − û)∥C(I,L2(Ω)×L2(Ω)) ≤ c∥ν̂−1(ν − ν̂)∂l+1
t p∥L1(I,L2(Ω))

≤ cν−1
min∥∂l+1

t p∥L1(I,L∞(Ω))∥ν − ν̂∥L2(Ω) ≤®
(3.90)

cν−1
minT c̃∥ν − ν̂∥L2(Ω) for l = 1,2,3, (3.98)

and

∥∂4
t (p − p̂,u − û)∥C(I,L2(Ω)×L2(Ω)) (3.99)
≤ c(∥ν̂−1(ν − ν̂)∂4

t p(0)∥L2(Ω) + ∥ν̂−1(ν − ν̂)∂5
t p∥L1(I,L2(Ω)))

≤ cν−1
min(∥∂4

t p(0)∥L∞(Ω) + ∥∂5
t p∥L1(I,L∞(Ω)))∥ν − ν̂∥L2(Ω) ≤®

(3.90)

cν−1
min(1 + T )c̃∥ν − ν̂∥L2(Ω).

Combining (3.97), (3.98), and (3.99), we find a constant C > 0, independent of p, p̂, u, û,
ν, and ν̂, such that

∥∂lt(p − p̂,u − û)∥C(I,L2(Ω)×L2(Ω)) ≤ C∥ν − ν̂∥L2(Ω) for l = 0, . . . ,4. (3.100)

Therefore, the Lipschitz property (3.88) is a direct consequence of (3.100). Applying
Lemma 3.17 to (3.91), we complete the proof by

∥∂ltp − p̂∥C(I,L∞(Ω)) ≤ ĉ(∥(ν − ν̂)∂l+2
t p∥C(I,L2(Ω)) + ∥(ν − ν̂)∂l+3

t p∥L1(I,L2(Ω)))
≤®

(3.90)

ĉ(1 + T )∥ν − ν̂∥L2(Ω) for l = 0,1,2.

Let us define the Lagrangian functional associated with (P) by L∶L∞(Ω) ×Wp ×Wu ×
C(I,L2(Ω)) ×C(I,L2(Ω)) → R where

L(ν, p,u, q,v) ∶= J (ν, p) + (ν∂tp + div u + ηp − F, q)L2(I,L2(Ω))

+ (∂tu +∇p,v)L2(I,L2(Ω)) + (p(0) − p0, q(0))L2(Ω) + (u(0) −Φ(ν),v(0))L2(Ω). (3.101)

Here, Wp and Wu are defined as in (3.36), and J denotes the objective function (1.2).
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Lemma 3.20. Let Assumption 3.1 hold and let ν ∈ Vad satisfy the variational inequality
(3.62) with the corresponding state (p,u) = S(ν) and the adjoint state (q,v) (see Defini-
tion 3.8). Additionally, we assume that ∑mi=1 ai(p−pobi ) ∈W 2,1(I,L2(Ω)). Then, for every
ν ∈ Vad with the corresponding state (p,u) = S(ν), it holds that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L(ν, p,u, q,v) = J (ν, p)
DνL(ν, p,u, q,v)(ν − ν) ≥ 0

D(p,u)L(ν, p,u, q,v)(p − p,u −u) = 0.
(3.102)

Proof. Let ν ∈ Vad be arbitrarily given, and (p,u) ∶= S(ν). Then, since (p,u) solves the
state equation (3.9), the first assertion in (3.102) is immediately obtained as follows:

L(ν, p,u, q,v) =®
(3.101)

J (ν, p) + (ν∂tp + div u + ηp − F
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0 by (3.9)

, q)L2(I,L2(Ω))

+ (∂tu +∇p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by (3.9)

,v)L2(I,L2(Ω)) + (p(0) − p0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by (3.9)

, q(0))L2(Ω) + (u(0) −Φ(ν)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by (3.9)

,v(0))L2(Ω).

Furthermore, for the first-order derivative of L with respect to ν, we conclude that

DνL(ν, p,u, q,v)(ν − ν) (3.103)
=®

(3.101)

DνJ (ν, p)(ν − ν) + ((ν − ν)∂tp, q)L2(I,L2(Ω)) − (Φ′(ν)(ν − ν),v(0))L2(Ω)

=®
(3.69)

λ(ν, ν − ν) + ((ν − ν)∂tp, q)L2(I,L2(Ω)) − ((ν − ν)p1, q)L2(I,L2(Ω))

= (∫
I
(∂tp(t) − p1)q(t)dt + λν, ν − ν)

L2(Ω)
≥®

(3.62)

0.

Making use of (3.86)-(3.87), for the derivative of L with respect to (p,u), we obtain that

D(p,u)L(ν, p,u, q,v)(p − p,u −u)
=®

(3.101)

DpJ (ν, p)(p − p) + (ν∂t(p − p) + div(u −u) + η(p − p), q)L2(I,L2(Ω))

+ ((p − p)(0), q(0))L2(Ω) + (∂t(u −u) + ∇(p − p),v)L2(I,L2(Ω))

+ ((u −u)(0),v(0))L2(Ω)

=
m

∑
i=1
(ai(p − p), p − pobi )L2(I,L2(Ω)) + (p − p,−ν∂tq − div v + ηq))L2(I,L2(Ω))

+ (ν(p − p)(T ), q(T )
±

=0 by (3.87)

)L2(Ω) + (u −u,−∂tv −∇q)L2(I,L2(Ω))

+ ((u −u)(T ),v(T )
²
=0 by (3.87)

)L2(Ω)

= (p − p,
m

∑
i=1
ai(p − pobi ) − ν∂tq − div v + ηq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by (3.87)

)L2(I,L2(Ω)) + (u −u,−∂tv −∇q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by (3.87)

)L2(I,L2(Ω))

= 0.
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Under Assumption 3.18, for h ∈ L2(Ω), we introduce the linearized state equation at
(ν, p) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp̃ + div ũ + ηp̃ = −h∂tp in I ×Ω
∂tũ +∇p̃ = 0 in I ×Ω
p̃ = 0 on I × ΓD
ũ ⋅n = 0 on I × ΓN
(p̃, ũ)(0) = (0,Φ′(ν)h) in Ω.

(3.104)

Remark 3.21. Thanks to Assumption 3.18, Lemma 3.17 implies that, for h ∈ L2(Ω), the
right-hand side of (3.104) satisfies

h∂tp ∈ C1(I,L2(Ω)). (3.105)

On the other hand, in view of (3.6), Φ′(ν)h is well-defined in HN(div,Ω) for any h ∈
L∞(Ω). Nevertheless, as p1 ∈ L∞(Ω) holds due to (3.82) and Lemma 3.16, the elliptic
variational problem (3.4) also admits a unique solution for every ν ∈ L2(Ω). Thus, we can
expand the domain of Φ as follows:

Φ∶L2(Ω) →HN(div,Ω), ν ↦ ∇y,

where y ∈ H1
D(Ω) denotes the unique solution to (3.4). The extended operator Φ re-

mains well-defined, affine linear, and continuous. In particular, it holds that Φ′(ν)h ∈
HN(div,Ω) for every h ∈ L2(Ω). For this reason, along with (3.105), Lemma 3.4 yields the
existence of a unique solution (p̃, ũ) ∈ C1(I,L2(Ω) ×L2(Ω)) ∩C(I,H1

D(Ω) ×HN(div,Ω))
to the linearised state equation (3.104).

Motivated by the necessary optimality condition (Theorem 3.12), we introduce the set
of strongly active constraints

A0(ν) ∶= {x ∈ Ω∶φν(x) ≠ 0} , (3.106)

where

φν ∈ L1(Ω), φν(x) ∶= ∫
I
(∂tSp(ν)(t, x) − p1(x))q(t, x)dt + λν(x) a.e. in Ω. (3.107)

The associated critical cone is denoted by

Cν ∶= {h ∈ L2(Ω)∶h∣A0(ν) ≡ 0 and for a.e. x ∈ Ω it holds that (3.108)
h(x) ≥ 0 if ν(x) = ν−(x) and h(x) ≤ 0 if ν(x) = ν+(x)}.

Theorem 3.22. Let Assumption 3.18 hold. Further, assume that

D2
(ν,p,u)L(ν, p,u, q,v)(h, p̃, ũ)2 > 0 (SSC)

holds for every h ∈ Cν/{0} where (p̃, ũ)∈C1(I,L2(Ω)×L2(Ω))∩C(I,H1
D(Ω)×HN(div,Ω))

denotes the unique solution to the linearized state equation (3.104) associated with h.
Then, there exist σ > 0 and δ > 0 such that the quadratic growth condition

J(ν) ≥ J(ν) + δ∥ν − ν∥2L2(Ω) (3.109)

holds true for every ν ∈ Vad with ∥ν − ν∥L2(Ω) ≤ σ. In particular, ν is a locally optimal
solution to (P).
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Proof. We prove the claim by a careful combination of Lemma 3.19 and the contradiction
argument [18, Theorem 2.3]. Assume that there exists a sequence {νn}∞n=1 ⊂ Vad such that

J(ν) + 1
n
∥νn − ν∥2L2(Ω) > J(νn) ∀n ∈ N and lim

n→∞
∥νn − ν∥L2(Ω) = 0. (3.110)

We define
hn ∶=

1
αn
(νn − ν) with αn ∶= ∥νn − ν∥L2(Ω) ∀n ∈ N. (3.111)

Since ∥hn∥L2(Ω) = 1 for all n ∈ N, the corresponding sequence {hn}∞n=1 is bounded in L2(Ω)
and thus admits a weakly converging subsequence (still denoted by {hn}∞n=1), i.e.,

∃ h ∈ L2(Ω) ∶ hn ⇀ h weakly in L2(Ω) as n→∞. (3.112)

Let us first show that h lies inside the critical cone Cν defined as in (3.108). The set

C̃ν ∶= {h ∈ L2(Ω)∶For a.e. x ∈ Ω it holds that
h(x) ≥ 0 if ν(x) = ν−(x) and h(x) ≤ 0 if ν(x) = ν+(x)}

is closed and convex and consequently weakly sequentially closed in L2(Ω). Therefore,
the weak limit h of {hn}∞n=1 ⊂ C̃ν lies in C̃ν . By the inclusion Cν ⊂ C̃ν , it remains to show
that h∣

A0(ν)
≡ 0. To this aim, we first note that applying (3.84) and (3.86) to (3.107)

implies that φν ∈ L2(Ω) as defined in (3.107). As a consequence, we obtain that

∫
Ω
φνhdx =®

(3.112)

lim
n→∞∫Ω

φνhn dx =®
(3.103),(3.107)

lim
n→∞

DνL(ν, p,u, q,v)(hn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0 by Lemma 3.20

≥ 0. (3.113)

Let us set (pn,un) ∶= S(νn) for all n ∈ N. The second-order Taylor expansion

L(νn, pn,un, q,v) = L(ν, p,u, q,v) +D(ν,p,u)L(ν, p,u, q,v)(νn − ν, pn − p,un −u) (3.114)

+ 1
2D

2
(ν,p,u)L(ν, p,u, q,v)(νn − ν, pn − p,un −u)2

is exact due to the quadratic structure of L with respect to ν, p,u. Rearranging (3.114)
and dividing by αn yields that

DνL(ν, p,u, q,v)(hn) =®
(3.111)

1
αn
DνL(ν, p,u, q,v)(νn − ν) (3.115)

=®
(3.114)

− 1
αn

D(p,u)L(ν, p,u, q,v)(pn − p,un −u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0 by Lemma 3.20

+ 1
αn
(L(νn, pn,un, q,v) − L(ν, p,u, q,v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
< 1

n
∥νn−ν∥2

L2(Ω) by (3.110) and Lemma 3.20

)

− 1
2αn

D2
(ν,p,u)L(ν, p,u, q,v)(νn − ν, pn − p,un −u)2

< 1
n
∥νn − ν∥L2(Ω) +

1
2αn
∣D2
(ν,p,u)L(ν, p,u, q,v)(νn − ν, pn − p,un −u)2∣ .
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We examine the second term on the right-hand side of (3.115) as follows: By the definition
of the Lagrangian (3.101), it holds that

∣D2
(ν,p,u)L(ν, p,u, q,v)(νn − ν, pn − p,un −u)2∣ (3.116)

= ∣
m

∑
i=1
∫
I
∫

Ω
ai(pn − p)2 dxdt + λ∥νn − ν∥2L2(Ω) + 2((νn − ν)∂t(pn − p), q)L2(I,L2(Ω))∣

≤®
(3.86)

m

∑
i=1
∥ai∥L∞(I×Ω)∥pn − p∥2L2(I,L2(Ω)) + λ∥νn − ν∥2L2(Ω)

+ 2∥νn − ν∥L2(Ω)∥∂t(pn − p)∥L2(I,L∞(Ω))∥q∥L2(I,L2(Ω)).

By virtue of Lemma 3.19 and (3.110), the right-hand side in (3.115) converges to 0, which
implies that

0 ≤®
(3.113)

∫
Ω
φνhdx = lim

n→∞∫Ω
φνhn dx = lim

n→∞
DνL(ν, p,u, q,v)(hn) ≤®

(3.115)

0 (3.117)

⇒ ∫
Ω
φνhdx = 0.

On the other hand, since ν satisfies the variational inequality (3.62) and h ∈ C̃ν , it holds
that

φνh ≥ 0 a.e. in Ω ⇒®
(3.117)

φνh = 0 a.e. in Ω ⇒®
h∈C̃ν

h ∈ Cν .

The next goal is to show that it holds h = 0 a.e. in Ω. To this aim, let (p̃, ũ) ∈ C1(I,L2(Ω)×
L2(Ω)) ∩C(I,H1

D(Ω) ×HN(div,Ω)) denote the solution of the linearized state equation
(3.104) with h replaced by h. In view of (SSC), we obtain that h = 0 if we can show that

D2
(ν,p,u)L(ν, p,u, q,v)(h, p̃, ũ)2 ≤ 0.

To verify this, we first introduce

(p̃n, ũn) ∶=
1
αn
(pn − p,un −u) ∀n ∈ N

and demonstrate the following convergence:

p̃n ⇀ p̃ weakly in C1(I,L2(Ω)) ∩C(I,H1(Ω)) as n→∞. (3.118)

In Remark 3.23, we explain how (3.118) implies that the remainder term related to the
linearization of Sp at ν in the direction νn − ν vanishes as n → ∞. We consider the
second-order Taylor expansion (3.114) of the Lagrangian and divide it by α2

n to get

1
2D

2
(ν,p,u)L(ν, p,u, q,v)(hn, p̃n, ũn)2 (3.119)

=®
(3.116)

1
2α2

n

D2
(ν,p,u)L(ν, p,u, q,v)(νn − ν, pn − p,un −u)2
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=®
(3.114)

1
α2
n

(L(νn, pn,un, q,v) − L(ν, p,u, q,v))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
< 1

n
∥νn−ν∥2

L2(Ω) by Lemma 3.20 & (3.110)

− 1
α2
n

D(ν,p,u)L(ν, p,u, q,v)(νn − ν, pn − p,un −u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0 by Lemma 3.20

≤ 1
n
.

Subtracting the corresponding Cauchy-problems of (pn,un) and (p,u) yields that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂t(pn − p) + div(un −u) + η(pn − p) = −(νn − ν)∂tpn in I ×Ω
∂t(un −u) + ∇(pn − p) = 0 in I ×Ω
pn − p = 0 on I × ΓD
(un −u) ⋅n = 0 on I × ΓN
(pn − p,un −u)(0) = (0,Φ(νn) −Φ(ν)) in Ω.

(3.120)

Dividing (3.120) by αn shows that (p̃n, ũn) = 1
αn
(pn − p,un −u) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp̃n + div ũn + ηp̃n = −hn∂tpn in I ×Ω
∂tũn +∇p̃n = 0 in I ×Ω
p̃n = 0 on I × ΓD
ũ ⋅n = 0 on I × ΓN
(p̃n, ũn)(0) = α−1

n (0,Φ(νn) −Φ(ν)) = (0,Φ′(ν)hn) in Ω.

(3.121)

Substracting the linearized state equation (3.104) (with h replaced by h) from (3.121)
yields that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂t(p̃n − p̃) + div(ũn − ũ) + η(p̃n − p̃) = −(hn∂tpn − h∂tp) in I ×Ω
∂t(ũn − ũ) + ∇(p̃n − p̃) = 0 in I ×Ω
p̃n − p̃ = 0 on I × ΓD
(ũn − ũ) ⋅n = 0 on I × ΓN
(p̃n − p̃, ũn − ũ)(0) = (0,Φ′(ν)(hn − h)) in Ω.

(3.122)

In view of Lemma 3.19, there exists a constant L > 0, independent of n ∈ N, such that

∥pn − p∥C2(I,L∞(Ω)) ≤ L∥νn − ν∥L2(Ω) ∀n ∈ N. (3.123)

Consequently, we obtain for every ϕ ∈H1(I,L2(Ω)) that

∣(hn∂tpn − h∂tp, ϕ)H1(I,L2(Ω))∣
= ∣(hn∂tpn − hn∂tp, ϕ)H1(I,L2(Ω)) + (hn∂tp − h∂tp, ϕ)H1(I,L2(Ω))∣

= ∣(hn∂tpn − hn∂tp, ϕ)H1(I,L2(Ω)) + (hn − h,∫
I
∂tpϕ + ∂2

t p∂tϕdt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ψ∈L2(Ω)

)L2(Ω)∣

≤ sup
n∈N
∥hn∥L2(Ω)∥∂tpn − ∂tp∥H1(I,L∞(Ω))∥ϕ∥H1(I,L2(Ω)) + ∣(hn − h,ψ)L2(Ω)∣
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3 - Analysis of the Optimal Control Problem

→®
(3.110),(3.112),(3.123)

0.

This implies the following weak convergence:

hn∂tpn ⇀ h∂tp weakly in H1(I,L2(Ω)). (3.124)

Let us introduce the mapping Gp∶L2(Ω)×W 1,1(I,L2(Ω)) → C1(I,L2(Ω))∩C(I,H1(Ω)),
(ĥ, F̂ ) ↦ p̂, where (p̂, û) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp̂ + div(û) + ηp̂ = F̂ in I ×Ω
∂tû +∇p̂ = 0 in I ×Ω
p̂ = 0 on I × ΓD
û ⋅n = 0 on I × ΓN
(p̂, û)(0) = (0,Φ′(ν)ĥ) in Ω.

(3.125)

Recalling from the proof of Lemma 3.19, p1 ∈ L∞(Ω) is satisfied due to (3.82) and
Lemma 3.16. Thus, applying Lemma 3.4 to (3.125) yields for all (ĥ, F̂ ) ∈ L2(Ω) ×
W 1,1(I,L2(Ω)) that

∥(p̂, û)∥C(I,L2(Ω)×L2(Ω)) ≤ c(∥Φ′(ν)ĥ∥L2(Ω) + ∥ν−1F̂ ∥L1(I,L2(Ω)))
≤®

(3.7)

c(cP ∥p1∥L∞(Ω)∥ĥ∥L2(Ω) + ν−1
min∥F̂ ∥L1(I,L2(Ω)))

and

∥∂t(p̂, û)∥C(I,L2(Ω)×L2(Ω))

≤ c(∥Aν(0,Φ′(ν)ĥ) + (ν−1F̂ (0),0)∥L2(Ω)×L2(Ω) + ∥ν−1∂̂tF ∥L1(I,L2(Ω)))
=®

(3.13)

c(∥ν−1(F̂ (0) − div(Φ′(ν)ĥ))∥L2(Ω) + ∥ν−1∂tF̂ ∥L1(I,L2(Ω)))

≤®
(3.5)

cν−1
min(∥p1∥L∞(Ω)∥ĥ∥L2(Ω) + ∥F̂ (0)∥L2(Ω) + ∥∂tF̂ ∥L1(I,L2(Ω)))

with c ∶= max{√νmax,1}
min{√νmin,1} . As a consequence, the mapping Gp is linear and continuous. Thus,

it is sequentially weakly continuous, and since (3.122) implies

p̃n − p̃ = Gp(hn − h,−hn∂tpn + h∂tp) ∀n ∈ N,

the desired convergence (3.118) is obtained from (3.112) and (3.124). By the Aubin–Lions
lemma and since dim(Ω) ≤ 3, the embedding C1(I,L2(Ω)) ∩C(I,H1(Ω)) ↪ C(I,L3(Ω))
is compact. For this reason,

p̃n → p̃ in C(I,L3(Ω)) as n→∞ (3.126)
⇒®

(3.112)

hnp̃n ⇀ hp̃ weakly in L2(I,L6/5(Ω)) as n→∞. (3.127)
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3.5 Second-Order Sufficient Optimality Conditions

Furthermore, as the embedding H1(Ω) ↪ L6(Ω) is continuous (again due to dim(Ω) ≤ 3),
we obtain from (3.86) that ∂tq ∈ C(I,L6(Ω)). Thus, from (3.127), it follows that

(hnp̃n, ∂tq)L2(I,L2(Ω)) → (hp̃, ∂tq)L2(I,L2(Ω)) as n→∞. (3.128)

Along with the weak lower semicontinuity of the squared norms, by (3.112), (3.126), and
(3.128), we conclude that

D2
(ν,p,u)L(ν, p,u, q,v)(h, p̃, ũ)2 (3.129)

=
m

∑
i=1
∫
I
∫

Ω
aip̃

2 dxdt + λ∥h∥2L2(Ω) − 2(hp̃, ∂tq)L2(I,L2(Ω))

≤ lim inf
n→∞

(
m

∑
i=1
∫
I
∫

Ω
aip̃

2
n dxdt + λ∥hn∥2L2(Ω) − 2(hnp̃n, ∂tq)L2(I,L2(Ω)))

= lim inf
n→∞

D2
(ν,p,u)L(ν, p,u, q,v)(hn, p̃n, ũn)2 ≤®

(3.119)

0.

By (SSC), we obtain that h(x) = 0 for a.e. x ∈ Ω, which implies in view of (3.104) that
(p̃, ũ) = (0,0). As a consequence,

0 < λ = λ lim sup
n→∞

∥hn∥2L2(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1 by (3.110)

= lim sup
n→∞

(D2
(ν,p,u)L(ν, p,u, q,v)(hn, p̃n, ũn)2 −

m

∑
i=1
∫
I
∫

Ω
ai(p̃n)2 dxdt

− 2(hnp̃n, ∂tq)L2(I,L2(Ω)))

≤®
(3.119),(3.126),(3.128)

−
m

∑
i=1
∫
I
∫

Ω
aip̃

2 dxdt − 2(hp̃, ∂tq)L2(I,L2(Ω)) = 0,

which is a contradiction.
Remark 3.23. In the construction of the above proof, we have that

p̃n =
1
αn
(pn − p) =

Sp(νn) − Sp(ν)
∥νn − ν∥L2(Ω)

∀n ∈ N.

Therefore, the convergence property (3.118) is nothing but
Sp(νn) − Sp(ν)
∥νn − ν∥L2(Ω)

⇀ p̃ weakly in C1(I,L2(Ω)) ∩C(I,H1(Ω)) as n→∞. (3.130)

Here, p̃ denotes the first component of the unique solution (p̃, ũ) ∈ C1(I,L2(Ω)×L2(Ω))∩
C(I,H1

D(Ω) ×HN(div,Ω)) to the linearized equation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp̃ + div ũ + ηp̃ = −h∂tp in I ×Ω
∂tũ +∇p̃ = 0 in I ×Ω
p̃ = 0 on I × ΓD
ũ ⋅n = 0 on I × ΓN
(p̃, ũ)(0) = (0,Φ′(ν)h) in Ω.

(3.131)
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3 - Analysis of the Optimal Control Problem

Let us now consider the remainder term for the linearization of the control-to-state oper-
ator Sp at ν in the direction νn − ν that is given by

r(ν, νn − ν) ∶= Sp(νn) − Sp(ν) − ϱn ∀n ∈ N, (3.132)

where, for every n ∈ N, ϱn denotes the first component of the unique solution (ϱn,σn) ∈
C1(I,L2(Ω) ×L2(Ω)) ∩C(I,H1

D(Ω) ×HN(div,Ω)) to the associated linearized problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tϱn + div σn + ηϱn = −(νn − ν)∂tp in I ×Ω
∂tσn +∇ϱn = 0 in I ×Ω
ϱn = 0 on I × ΓD
σn ⋅n = 0 on I × ΓN
(ϱn,σn)(0) = (0,Φ′(ν)(νn − ν)) in Ω.

(3.133)

Now, since
νn − ν

∥νn − ν∥L2(Ω)
= hn ⇀ h weakly in L2(Ω) as n→∞,

we obtain by dividing (3.133) by ∥νn − ν∥L2(Ω) and subtracting the resulting system from
(3.131) that

ϱn
∥νn − ν∥L2(Ω)

⇀ p̃ weakly in C1(I,L2(Ω)) ∩C(I,H1(Ω)) as n→∞. (3.134)

Combining (3.130), (3.132) and (3.134), it follows that
r(ν, νn − ν)
∥νn − ν∥L2(Ω)

⇀ 0 weakly in C1(I,L2(Ω)) ∩C(I,H1(Ω)) as n→∞.

In particular, the Aubin–Lions lemma implies the strong convergence

lim
n→∞

r(ν, νn − ν)
∥νn − ν∥L2(Ω)

= 0 in C(I,Lξ(Ω)) for any ξ ∈ [2,6).

As for the first-order necessary optimality condition (see Theorem 3.12), we also derive
the second-order formulation for the second-order sufficient optimality condition.
Assumption 3.24. Let Assumption 3.1 and dim(Ω) ≤ 3 hold. Furthermore, let (ν, p, q)
satisfy the first-order optimality system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p −∆p + η∂tp = f in I ×Ω

∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (0,0) in Ω

ν∂2
t q −∆q − η∂tq =

m

∑
i=1
ai(p − pobi ) in I ×Ω

∂nq = 0 on I × ΓN
q = 0 on I × ΓD
(q, ∂tq)(T ) = (0,0) in Ω

(∫
I
(∂tp(t) − p1)q(t)dt + λν, ν − ν)

L2(Ω)
≥ 0 ∀ν ∈ Vad,

(3.135)
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3.5 Second-Order Sufficient Optimality Conditions

and let the regularity assumptions (3.81) and the compatibility assumption (3.82) hold.

Corollary 3.25. Let Assumption 3.24 hold. We assume that for the (second-order) La-
grangian

L(ν, p, q) ∶= J (ν, p) − (ν∂2
t p −∇p + η∂tp − f, q)L2(I,L2(Ω)) − (p(0) − p0, q(0))L2(Ω) (3.136)

− (∂tp − p1, ∂tq)L2(Ω),

it holds that
D2
(ν,p)L(ν, p, q)(h, p̃)2 > 0 ∀h ∈ Cν ∖ {0} (ŜSC)

where p̃ ∈ C2(I,L2(Ω))∩C1(I,H1
D(Ω)) denotes the solution to the linearized state equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p̃ −∆p̃ + η∂tp̃ = −h∂2

t p in I ×Ω
∂np̃ = 0 on I × ΓN
p̃ = 0 on I × ΓD
(p̃, ∂tp̃)(0) = (0,0) in Ω.

(3.137)

Then, there exist σ > 0 and δ > 0 such that the quadratic growth condition

J(ν) ≥ J(ν) + δ∥ν − ν∥2L2(Ω) (3.138)

holds for every ν ∈ Vad with ∥ν − ν∥L2(Ω) ≤ σ. In particular, ν is a locally optimal solution
to (P).

Remark 3.26. In contrast to the first-order necessary optimality conditions in its second-
order formulation (see Corollary 3.14), the second-order sufficient optimality conditions in
its second-order formulation do not rely on stronger assumptions on the data than its first-
order formulation (see Theorem 3.22). Furthermore, it turns out that conditions (SSC)
and ŜSC are equivalent. However, the availability of both the first-order and second-order
formulations allows for a highly flexible application.

Proof. Let (q,v) ∶= (∂tq,∇q). Then, as in the proof of Corollary 3.14, (q,v) is the unique
solution to the (first-order) adjoint equation (3.46) associated with ν. In particular (q,v)
is the adjoint state in the sense of Definition 3.8 associated with ν. Furthermore, (3.135),
implies that (3.62) is valid where q is replaced with q. Therefore, due to Theorem 3.22,
in order to obtain (3.138), it remains to show that (ŜSC) implies (SSC) where (q,v)
is replaced with (q,v). For this purpose, let h ∈ Cν ∖ {0}. Then, due to Lemma 3.4,
the unique solution (p̃, ũ) to the linearized (first-order) state equation (3.104) enjoys the
higher regularity property (p̃, ũ) ∈ C2(I,L2(Ω) × L2(Ω)) ∩ C1(I,H1

D(Ω) ×HN(div,Ω))
since h∂tp ∈W 2,1(I,L2(Ω)) and

(p̃, ũ)0,0 = (0,Φ′(ν)h) ∈H1
D(Ω) ×HN(div,Ω)

(p̃, ũ)0,1 = Aν(0,Φ′(ν)h) − (ν−1h∂tp(0),0) =®
(3.13)

(−ν−1 div(Φ′(ν)h) − ν−1h∂tp(0),0)

=®
(3.5)

(νh(p1 − ∂tp(0)),0) = (0,0) ∈H1
D(Ω) ×HN(div,Ω).
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3 - Analysis of the Optimal Control Problem

Therefore, by time derivation of the first line in (3.104) and inserting the second line in
(3.104), we obtain that p̃ satisfies the first line in (3.137). Furthermore, it holds that

∂tp̃(0) =®
(3.104)

ν−1(−h∂tp(0) − div(ũ(0)) − ηp̃(0)) =®
(3.3),(3.104)

ν−1(−hp1 − div(Φ′(ν)h)) =®
(3.5)

0.

In conclusion, p̃ solves the (second-order) linearised state equation (3.137). Therefore, we
have that

D2
(ν,p,u)L(ν, p,u, q̂, v̂)(h, p,u)2

=
m

∑
i=1
∫
I
∫

Ω
aip̃

2 dxdt + λ∥h∥2L2(Ω) + 2(h∂tp, q̂)L2(I,L2(Ω))

=
m

∑
i=1
∫
I
∫

Ω
aip̃

2 dxdt + λ∥h∥2L2(Ω) + 2(h∂tp̃, ∂tq)L2(I,L2(Ω))

=
m

∑
i=1
∫
I
∫

Ω
aip̃

2 dxdt + λ∥h∥2L2(Ω) − 2(h∂2
t p̃, q)L2(I,L2(Ω))

=D2
(ν,p)L(ν, p, q)(h, p̃)2 >®

(ŜSC)

0.

Therefore, (SSC) is satisfied and the claim follows from Theorem 3.22.
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SEQUENTIAL QUADRATIC
PROGRAMMING 4

The SQP method is a celebrated technique in finite and infinite dimensional optimiza-
tion, particularly in the context of optimal control problems. We refer to the earlier
contributions by Alt [2, 3] and Alt, Sontag, and Tröltzsch [4] for SQP methods of opti-
mization problems with ODE or integral equations constraints. From among many other
related works in the context of PDE-constrained problems, we mention the contributions
by Ito and Kunisch [50,51], Tröltzsch et al. [37,42,70,71,73], Heinkenschloss [41], Hinter-
müller and Hinze [44,45], Volkwein [75], Wachsmuth [77], Griesse et al. [39,40], Hinze and
Kunisch [47], and Hoppe and Neitzel [49]. Even though the investigations of SQP methods
are highly problem-specified, they mainly follow the same methodology: Reformulation of
the SQP method as a generalized Newton method and exploitation of Robinson’s concept
of strong regularity [69]. This unified ansatz leads to well-posedness and quadratic con-
vergence of SQP iterations. Eventually, one verifies the strong regularity condition using
suitable second-order sufficient optimality conditions.

Note that the works mentioned above only focus on elliptic and parabolic PDEs. To the
best of the author’s knowledge, there is no contribution to the analysis of SQP methods in
hyperbolic PDE-constrained optimization, apart from the author’s preprint [6]. For our
model problem (P), the SQP analysis results in a challenging task due to the underlying
hyperbolicity and the second-order bilinear structure ν∂2

t p. This character leads to an
undesired effect of loss of regularity in the SQP method (see Algorithm 1) causing two
substantial difficulties (see Remark 4.6):

(i) In general, Algorithm 1 is only executable for a limited number of iterations, i.e.,
the well-definedness of Algorithm 1 may fail.

(ii) The ansatz through the notion of strong regularity, as done in the parabolic case (cf.
[70]), cannot be directly transferred to our case and requires a substantial extension.

This chapter develops a strategy for analyzing Algorithm 1 and consists of three primary
steps. First of all, we propose the use of a smooth-in-time initial guess for the state p0
and the adjoint state q0 satisfying ∂ltp0(0) = ∂ltq0(T ) = 0 for all l ∈ N (Assumption 4.7).
Under these regularity conditions, we manage to prove the well-definedness of Algorithm 1
(see Proposition 4.3). As the second step, for every given SQP iteration (νk, pk, qk),
we construct a suitable self-mapping operator (4.44). Based on a perturbation analysis
(see Theorem 4.4) using Stampacchia’s method (see Lemma 3.17), it turns out that the
contraction principle can be applied to the operator (4.44) (see Proposition 4.14). The
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4 - Sequential Quadratic Programming

resulting fixed point νk+1 is exactly the control component of the solution to the SQP
iteration (Pk) (see Proposition 4.16). The final step comprises a two-step estimation
process: We estimate ∥νk+1 − ν∥L2(Ω) by the total error of the previous step ∥νk − ν∥L2(Ω),
∥pk − p∥L2(I,L2(Ω)), and ∥qk − q∥L2(I,L2(Ω)). Then, the error in the state ∥pk − p∥L2(I,L2(Ω))
and adjoint state ∥qk − q∥L2(I,L2(Ω)) are estimated towards ∥νk−1 − ν∥L2(Ω). This process
results in the quadratic two-step estimation

∥νk+1 − ν∥L2(Ω) ≤ δ(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))2,

which eventually allows us to prove our main result on the R-superlinear convergence of
Algorithm 1 (see Theorem 4.17).

The content of this chapter is available in the author’s preprint [6]. Consequently, direct
quotations from this work will not be explicitly highlighted.

4.1 Perturbed Optimality System
This section is devoted to the analysis of perturbed and linearized optimality systems
associated with (P), which play an essential role in the analysis of the SQP method (see
Section 4.2). We want the sufficient second-order optimality result (see Corollary 3.25)
to be available. For simplicity, we assume in this chapter that the initial values p0 and p1
vanish. Therefore, the standing assumptions for this chapter read as follows:

Assumption 4.1. Let Assumption 3.24 hold with p0 = p1 = 0. Furthermore, let pobi ∈
W 4,1(I,L2(Ω)), and let ai ∈ C4(I,L∞(Ω)) assumed to be nonnegative with ∂ltai(T ) = 0 for
all i = 1, . . . ,m and l = 0,1,2,3.

To begin with, recalling Lemma 3.4 and Lemma 3.17, we deduce the following lemma:

Lemma 4.2. Let Assumption 4.1 hold and let ν ∈ Vad. Further, let g ∈ W k,1(I,L2(Ω))
for some k ∈ N and ∂ltg(0) = 0 for l = 0, . . . , k − 1. Then, there exists a unique solution
p ∈ Ck+1(I,L2(Ω)) ∩Ck(I,H1

D(Ω)) ∩Ck−1(I,D(∆D,N)) ∩Ck−1(I,L∞(Ω)) to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p −∆p + η∂tp = g in I ×Ω

∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (0,0) in Ω.

(4.1)

Furthermore, it holds that

∥p(t)∥L2(Ω) ≤ c∥G∥L1(I,L2(Ω)) ∀t ∈ I
∥∂ltp(t)∥L2(Ω) ≤ c∥∂l−1

t g∥L1(I,L2(Ω)) ∀t ∈ I ∀l = 1, . . . , k + 1
∥∂ltp∥L2(I,L∞(Ω)) ≤ ĉ∥∂ltg∥L2(I,L2(Ω)) + ∥∂l+1

t g∥L2(I,L2(Ω)) ∀t ∈ I ∀l = 0, . . . , k − 1

with c ∶= ν−1
min

max{√νmax,1}
min{√νmin,1} , G(t) ∶= ∫

t

0 g(s)ds for all t ∈ I, and for a constant ĉ > 0.
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Proof. Writing G(t) = ν−1 ∫
t

0 g(s)ds for all t ∈ I, due to Lemma 3.4, the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp + div u + ηp = G in I ×Ω
∂tu +∇p = 0 in I ×Ω
p = 0 on I × ΓD
u ⋅n = 0 on I × ΓN
(p,u)(0) = (0,0) in Ω

(4.2)

admits a unique solution (p,u) ∈ Ck+1(I,L2(Ω) ×L2(Ω)) ∩Ck(I,H1
D(Ω) ×HN(div,Ω)).

According to (4.2), we have that

∇p = −∂tu ∈ Ck−1(I,HN(div,Ω)) ⇒ p ∈ Ck−1(I,D(∆D,N)).

Therefore, taking the time derivative of the first equation in (4.2), and inserting the
second equation in (4.2), it follows that p satisfies the first equation (4.1). The initial
value conditions follow as in the proof of Theorem 3.5. The first two estimates follow from
Lemma 3.4. Furthermore, Lemma 3.17 implies the regularity property p ∈ Ck−1(I,L∞(Ω))
and the last desired estimate.

Given some perturbation term (ρV I , ρst, ρadj) ∈ L∞(Ω) ×H1(I,L2(Ω)) ×H1(I,L2(Ω))
with ρst(0) = ρadj(T ) = 0, we consider the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p −∆p + η∂tp = f − (ν − ν)∂2

t p + ρst in I ×Ω
∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (0,0) in Ω

ν∂2
t q −∆q − η∂tq =

m

∑
i=1
ai(p − pobi ) − (ν − ν)∂2

t q + ρadj in I ×Ω

∂nq = 0 on I × ΓN
q = 0 on I × ΓD
(q, ∂tq)(T ) = (0,0) in Ω

(−∫
I
∂2
t p(t)q(t) + ∂2

t (p(t) − p(t))q(t)dt + λν, ν̃ − ν)L2(Ω)

≥ (ρV I , ν̃ − ν)L2(Ω) for all ν̃ ∈ Vad.

(OS)

Sufficient second-order optimality conditions for (P) are the main ingredients for the
analysis of (OS). Unfortunately, the proposed (ŜSC) in Corollary 3.25 is too weak for our
purposes, as the involved critical cone C0

ν ∖ {0} is too restrictive. Thus, for a fixed τ > 0,
we introduce the enlarged critical cone

Cτ
ν ∶= {h ∈ L2(Ω) ∶ h(x) = 0 for a.e. x ∈ Aτ(ν)}, (4.3)

where the set of τ -uniform strongly active constraints is given by

Aτ(ν) ∶= {x ∈ Ω ∶ ∣−∫
T

0
∂2
t p(t, x)q(t, x)dt + λν(x)∣ > τ} . (4.4)
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Then, the strengthened sufficient second-order optimality condition reads as follows:

⎧⎪⎪⎨⎪⎪⎩

There exists α > 0 such that D2
(ν,p)L(ν, p, q)(h, p̃)2 ≥ α∥h∥2L2(Ω) for every h ∈ Cτ

ν

where p̃ ∈ C2(I,L2(Ω)) ∩C1(I,H1
D(Ω)) ∩C(I,D(∆D,N)) solves (3.104).

(SSCτ )

Note that Aτ(ν) ⊂ A0(ν) (compare (3.106) and (4.4)) and therefore the new critical
cone Cτ

ν is in fact enlarged, i.e., C0
ν ⊂ Cτ

ν (compare (3.108) and (4.3)). Therefore, the
strengthened sufficient second-order condition (SSCτ ) particularly implies the original
condition (ŜSC). As a consequence, it also guarantees the optimality of ν along with
the quadratic growth condition (3.138) under the same assumptions as in Corollary 3.25.
Still, with the strengthened condition (SSCτ ) the following difficulty appears: Given two
controls ν1, ν2 ∈ Vad, the difference h = ν − ν for ν ∈ Vad does not belong to the enlarged
critical cone Cτ

ν . Therefore, it does not satisfy the assumptions of (SSCτ ). To circumvent
this difficulty, we extend well-known techniques (see [49,70,75,77]) to our hyperbolic case.
We consider an auxiliary problem by replacing the admissible set Vad with

Vτad ∶= {ν ∈ Vad ∣ ν = ν a.e. in Aτ(ν)}. (4.5)

Now, given two controls ν, ν̃ ∈ Vτad, the difference h = ν − ν̃ fullfils h ∈ Cτ
ν . We define the

following modification of the perturbed linearized optimality system (OS):

(OS) where Vad is replaced with Vτad. (OSτ )

Proposition 4.3. Let Assumption 4.1 and (SSCτ ) hold. Then, for all (ρst, ρadj, ρV I) ∈
H1(I,L2(Ω)) ×H1(I,L2(Ω)) ×L2(Ω) with ρst(0) = ρadj(T ) = 0, the system (OSτ ) admits
a unique solution (ν, p, q) ∈ Vτad × (C2(I,L2(Ω)) ∩C1(I,H1

D(Ω)) ∩C(I,D(∆D,N)))2.

Proof. Let (ρst, ρadj, ρV I) ∈H1(I,L2(Ω))×H1(I,L2(Ω))×L2(Ω) with ρst(0) = ρadj(T ) = 0
be given. Thanks to (3.84), Lemma 4.2 implies that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p −∆p + η∂tp = f − (ν − ν)∂2

t p + ρst in I ×Ω
∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (0,0) in Ω

(4.6)

admits a unique solution p ∈ C2(I,L2(Ω)) ∩ C1(I,H1
D(Ω)) ∩ C(I,D(∆D,N)) for every

ν ∈ L2(Ω). Denoting by Sρ∶L2(Ω) → C2(I,L2(Ω)) ∩C1(I,H1
D(Ω)), ν ↦ p the affine linear

and continuous solution operator to (4.6), we consider the minimization problem

min
ν∈Vτ

ad

Jρ(ν) ∶= J (ν,Sρ(ν)) + (−∫
I
∂2
t (Sρ(ν) − p)q dt − ρV I , ν − ν)

L2(Ω)
(4.7)

+ (ρadj, Sρ(ν))L2(I,L2(Ω)),

where J is defined as in (P). By the quadratic structure of Jρ, we have that

Jρ(ν̃) = Jρ(ν) + J ′ρ(ν)(ν̃ − ν) +
1
2J
′′
ρ (ν)(ν̃ − ν)2 ∀ν, ν̃ ∈ Vτad. (4.8)
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Further, for any ν, ν̃ ∈ Vτad with ν̃ ≠ ν, it holds that h ∶= ν̃ − ν ∈ Cτ
ν ∖ {0} (see (4.3)) and

p̃ ∶= Sρ(ν̃)−Sρ(ν) solves the linearized state equation (3.104) such that (SSCτ ) yields that

0 <D2
(ν,p)L(ν, p, q)(h, p̃)2 =®

(3.136)

m

∑
i=1
(aip̃, p̃)L2(I,L2(Ω)) + λ∥h∥2L2(Ω) − 2(h∂2

t p̃, q)L2(I,L2(Ω))

=®
(4.7)

J ′′ρ (ν)h2.

Thus, for every t ∈ (0,1), we have that

Jρ(ν̃ + t(ν − ν̃)) =®
(4.8)

Jρ(ν) + J ′ρ(ν)((1 − t)(ν̃ − ν)) +
1
2J
′′
ρ (ν)((1 − t)ν̃ − ν)2

= tJρ(ν) + (1 − t)(Jρ(ν) + J ′ρ(ν)(ν̃ − ν) +
(1 − t)

2 J ′′ρ (ν)(ν̃ − ν)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

)

< tJρ(ν) + (1 − t)(Jρ(ν) + J ′ρ(ν)(ν̃ − ν) +
1
2J
′′
ρ (ν)(ν̃ − ν)2)

=®
(4.8)

tJρ(ν) + (1 − t)Jρ(ν̃).

Therefore, Jρ in Vτad is strictly convex. In conclusion, together with the continuity of
Jρ∶L2(Ω) → R, (4.7) admits a unique solution ν ∈ Vτad. Moreover, the necessary and
sufficient optimality condition for (4.7) is given by J ′ρ(ν)(ν̃ − ν) ≥ 0 for every ν̃ ∈ Vτad,
which is equivalent to (OSτ ) due to standard arguments. Thus, the claim is valid.

Theorem 4.4 provides the crucial stability result for the solution to (OSτ ) regarding
the perturbation terms. In the proof, we extend known ideas incorporating the first- and
second-order optimality conditions (cf. [73, 75]) to our given case.

Theorem 4.4. Let Assumption 4.1 and (SSCτ ) hold. Then, there exist constants L >
0, Lp > 0, and Lq > 0 such that for all perturbation terms (ρst, ρadj, ρV I), (ρ̃st, ρ̃adj, ρ̃V I) ∈
H1(I,L2(Ω)) × H1(I,L2(Ω)) × L2(Ω) with ρst(0) = ρ̃st(0) = ρadj(T ) = ρ̃adj(T ) = 0, the
corresponding solutions (νρ, pρ, qρ) and (νρ̃, pρ̃, qρ̃) to (OSτ ) satisfy

∥νρ − νρ̃∥L2(Ω) ≤ L(∥ρst − ρ̃st∥L2(I,L2(Ω)) + ∥ρadj − ρ̃adj∥L2(I,L2(Ω)) + ∥ρV I − ρ̃V I∥L2(Ω)) (4.9)
∥pρ − p∥L2(I,L∞(Ω)) ≤ Lp(∥ρst∥H1(I,L2(Ω)) + ∥ρadj∥L2(I,L2(Ω)) + ∥ρV I∥L2(Ω)) (4.10)
∥qρ − q∥L2(I,L∞(Ω)) ≤ Lq(∥ρst∥H1(I,L2(Ω)) + ∥ρadj∥H1(I,L2(Ω)) + ∥ρV I∥L2(Ω)). (4.11)

Proof. Let (νρ, pρ, qρ), (νρ̃, pρ̃, qρ̃) ∈ Vτad×(C2(I,L2(Ω))∩C1(I,H1
D(Ω))∩C(I,D(∆D,N)))2

denote the unique solutions to (OSτ ) with respect to (ρst, ρadj, ρV I) and (ρ̃V I , ρ̃st, ρ̃adj)
according to Proposition 4.3. Subtracting the corresponding PDE-systems (see (OS)), we
obtain that
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t (pρ − pρ̃) −∆(pρ − pρ̃) + η∂t(pρ − pρ̃) = −(νρ − νρ̃)∂2

t p + ρst − ρ̃st

∂n(pρ − pρ̃) = 0
pρ − pρ̃ = 0
(pρ − pρ̃, ∂t(pρ − pρ̃))(0) = (0,0)

in I ×Ω
on I × ΓN
on I × ΓD
in Ω

(4.12)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t (qρ − qρ̃) −∆(qρ − qρ̃) − η∂t(qρ − qρ̃)

=
m

∑
i=1
ai(pρ − pρ̃) − (νρ − νρ̃)∂2

t q + ρadj − ρ̃adj

∂n(qρ − qρ̃) = 0
qρ − qρ̃ = 0
(qρ − qρ̃, ∂t(qρ − qρ̃))(T ) = (0,0)

in I ×Ω

on I × ΓN
on I × ΓD
in Ω.

(4.13)

We begin by elaborating on the control parameter. By the construction of Vτad (see (4.3)),
the quantity h ∶= νρ − νρ̃ lies in the critical cone Cτ

ν , and pρ − pρ̃ − p̂ρ,ρ̃ solves the associated
linearized state equation (3.104) where p̂ρ,ρ̃ denotes the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p̂ρ,ρ̃ −∆p̂ρ,ρ̃ + η∂tp̂ρ,ρ̃ = ρst − ρ̃st in I ×Ω

∂np̂ρ,ρ̃ = 0 on I × ΓN
p̂ρ,ρ̃ = 0 on I × ΓD
(p̂ρ,ρ̃, ∂tp̂ρ,ρ̃)(0) = (0,0) in Ω.

(4.14)

Thus, (SSCτ ) yields that

α∥νρ − νρ̃∥2L2(Ω) ≤D2
(ν,p)L(ν, p, q)(νρ − νρ̃, pρ − pρ̃ − p̂ρ,ρ̃)2 (4.15)

=®
(3.136)

m

∑
i=1
(ai(pρ − pρ̃), pρ − pρ̃)L2(I,L2(Ω)) + λ∥νρ − νρ̃∥2L2(Ω)

− 2((νρ − νρ̃)∂2
t (pρ − pρ̃), q)L2(I,L2(Ω)) +

m

∑
i=1
(aip̂ρ,ρ̃, p̂ρ,ρ̃)L2(I,L2(Ω))

− 2
m

∑
i=1
(aip̂ρ,ρ̃, (pρ − pρ̃))L2(I,L2(Ω)) + 2((νρ − νρ̃)p̂ρ,ρ̃, ∂2

t q)L2(I,L2(Ω)). (4.16)

For the first term on the right-hand side of (4.15), it holds that
m

∑
i=1
(ai(pρ − pρ̃), pρ − pρ̃)L2(I,L2(Ω))

=®
(4.13)

(ν∂2
t (qρ − qρ̃) −∆(qρ − qρ̃) − η∂t(qρ − qρ̃) + (νρ − νρ̃)∂2

t q − ρadj + ρ̃adj, pρ − pρ̃)L2(I,L2(Ω))

= (qρ − qρ̃, ν∂2
t (pρ − pρ̃) −∆(pρ − pρ̃) + η∂t(pρ − pρ̃))L2(I,L2(Ω))

+ (q, (νρ − νρ̃)∂2
t (pρ − pρ̃))L2(I,L2(Ω)) − (ρadj − ρ̃adj, pρ − pρ̃)L2(I,L2(Ω))

=®
(4.12)

(qρ − qρ̃,−(νρ − νρ̃)∂2
t p + ρst − ρ̃st) + (q, (νρ − νρ̃)∂2

t (pρ − pρ̃))L2(I,L2(Ω))

− (ρadj − ρ̃adj, pρ − pρ̃)L2(I,L2(Ω)).

Applying this identity to (4.15), we obtain that

α∥νρ − νρ̃∥2L2(Ω) (4.17)
≤ −((νρ − νρ̃)∂2

t p, qρ − qρ̃)L2(I,L2(Ω)) + (qρ − qρ̃, ρst − ρ̃st)L2(I,L2(Ω))

− (ρadj − ρ̃adj, pρ − pρ̃)L2(I,L2(Ω)) + λ∥νρ − νρ̃∥2L2(Ω) − ((νρ − νρ̃)∂2
t (pρ − pρ̃), q)L2(I,L2(Ω))
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+
m

∑
i=1
(aip̂ρ,ρ̃, p̂ρ,ρ̃)L2(I,L2(Ω)) − 2

m

∑
i=1
(aip̂ρ,ρ̃, (pρ − pρ̃))L2(I,L2(Ω))

+ 2((νρ − νρ̃)p̂ρ,ρ̃, ∂2
t q)L2(I,L2(Ω)).

Testing the variational inequality in (OSτ ) for (νρ, pρ, qρ) (resp. (νρ̃, pρ̃, qρ̃)) with ν̃ = νρ̃
(resp. ν̃ = νρ) and adding the resulting two inequalites leads to

(−∫
I
∂2
t p(t)(qρ(t) − qρ̃(t)) + ∂2

t (pρ(t) − pρ̃(t))q(t)dt + λ(νρ − νρ̃), νρ̃ − νρ)
L2(Ω)

≥ (ρV I − ρ̃V I , νρ̃ − νρ)L2(Ω).

Rearranging yields that

λ∥νρ − νρ̃∥2L2(Ω) − ((νρ − νρ̃)∂2
t p, qρ − qρ̃)L2(I,L2(Ω)) − ((νρ − νρ̃)∂2

t (pρ − pρ̃), q)L2(I,L2(Ω))

(4.18)
≤ (ρV I − ρ̃V I , νρ − νρ̃)L2(Ω).

Combining (4.17) and (4.18), we obtain that

α∥νρ − νρ̃∥2L2(Ω) (4.19)
≤ (qρ − qρ̃, ρst − ρ̃st)L2(I,L2(Ω)) − (ρadj − ρ̃adj, pρ − pρ̃)L2(I,L2(Ω)) + (ρV I − ρ̃V I , νρ − νρ̃)L2(Ω)

+
m

∑
i=1
(aip̂ρ,ρ̃, p̂ρ,ρ̃)L2(I,L2(Ω)) − 2

m

∑
i=1
(aip̂ρ,ρ̃, (pρ − pρ̃))L2(I,L2(Ω))

+ 2((νρ − νρ̃)∂2
t p̂ρ,ρ̃, q)L2(I,L2(Ω))

≤ ∥qρ − qρ̃∥L2(I,L2(Ω))∥ρst − ρ̃st∥L2(I,L2(Ω)) + ∥ρadj − ρ̃adj∥L2(I,L2(Ω))∥pρ − pρ̃∥L2(I,L2(Ω))

+ ∥ρV I − ρ̃V I∥L2(Ω)∥νρ − νρ̃∥L2(Ω) +
m

∑
i=1
∥ai∥L∞(I,L∞(Ω))∥p̂ρ,ρ̃∥2L2(I,L2(Ω))

+ 2
m

∑
i=1
∥ai∥L∞(I,L∞(Ω))∥p̂ρ,ρ̃∥L2(I,L2(Ω))∥pρ − pρ̃∥L2(I,L2(Ω))

+ 2∥νρ − νρ̃∥L2(Ω)∥p̂ρ,ρ̃∥L2(I,L2(Ω))∥∂2
t q∥L2(I,L∞(Ω)).

Applying Lemma 4.2 to (4.14) yields for G(t) ∶= ∫
t

0 ρ
st(s) − ρ̃st(s)ds that

∥p̂ρ,ρ̃∥L2(I,L2(Ω)) ≤
√
Tc∥G∥L1(I,L2(Ω)) ≤ T

3
2 c∥ρst − ρ̃st∥L1(I,L2(Ω)) ≤ T 2c∥ρst − ρ̃st∥L2(I,L2(Ω))

(4.20)
with c ∶= ν−1

min
max{√νmax,1}
min{√νmin,1} . Analogously, applying Lemma 4.2 to (4.12) and (4.13), we

obtain that

∥∂lt(pρ − pρ̃)∥L2(I,L2(Ω)) ≤ T 2c(∥νρ − νρ̃∥L2(Ω)∥∂l+2
t p∥L2(I,L∞(Ω)) + ∥∂lt(ρst − ρ̃st)∥L2(I,L2(Ω)))

(4.21)
for l = 0,1 and

∥qρ − qρ̃∥L2(I,L2(Ω)) ≤ T 2c
⎛
⎝

m

∑
i=1
∥ai∥L∞(I,L∞(Ω))∥pρ − pρ̃∥L2(I,L2(Ω)) (4.22)
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+ ∥νρ − νρ̃∥L2(Ω)∥∂2
t q∥L2(I,L∞(Ω)) + ∥ρadj − ρ̃adj∥L2(I,L2(Ω))

⎞
⎠

≤®
(4.21)

T 2c
⎛
⎝

m

∑
i=1
∥ai∥L∞(I,L∞(Ω))T 2c(∥νρ − νρ̃∥L2(Ω)∥∂2

t p∥L2(I,L∞(Ω)) + ∥ρst − ρ̃st∥L2(I,L2(Ω)))

+ ∥νρ − νρ̃∥L2(Ω)∥∂2
t q∥L2(I,L∞(Ω)) + ∥ρadj − ρ̃adj∥L2(I,L2(Ω))

⎞
⎠
.

Therefore, applying (4.20)-(4.22) to (4.19) provides that

α∥νρ − νρ̃∥2L2(Ω)

≤ T 2c
⎛
⎝

m

∑
i=1
∥ai∥L∞(I,L∞(Ω))T 2c (∥νρ − νρ̃∥L2(Ω)∥∂2

t p∥L2(I,L∞(Ω)) + ∥ρst − ρ̃st∥L2(I,L2(Ω)))

+ ∥νρ − νρ̃∥L2(Ω)∥∂2
t q∥L2(I,L∞(Ω)) + ∥ρadj − ρ̃adj∥L2(I,L2(Ω))

⎞
⎠
∥ρst − ρ̃st∥L2(I,L2(Ω))

+ ∥ρadj − ρ̃adj∥L2(I,L2(Ω))T
2c(∥νρ − νρ̃∥L2(Ω)∥∂2

t p∥L2(I,L∞(Ω)) + ∥ρst − ρ̃st∥L2(I,L2(Ω)))

+ ∥ρV I − ρ̃V I∥L2(Ω)∥νρ − νρ̃∥L2(Ω) + T 4c2
m

∑
i=1
∥ai∥L∞(I,L∞(Ω))∥ρst − ρ̃st∥2L2(I,L2(Ω))

+ 2
m

∑
i=1
∥ai∥L∞(I,L∞(Ω))T 4c2∥ρst − ρ̃st∥L2(I,L2(Ω))(∥νρ − νρ̃∥L2(Ω)∥∂2

t p∥L2(I,L∞(Ω))

+ ∥ρst − ρ̃st∥L2(I,L2(Ω))) + 2∥νρ − νρ̃∥L2(I,L2(Ω))T
2c∥ρst − ρ̃st∥L2(I,L2(Ω))∥∂2

t q∥L2(I,L∞(Ω))

≤ c1∥νρ − νρ̃∥L2(Ω)∥ρst − ρ̃st∥L2(I,L2(Ω)) + c2∥ρst − ρ̃st∥2L2(I,L2(Ω))

+ c3∥ρadj − ρ̃adj∥L2(I,L2(Ω))∥ρst − ρ̃st∥L2(I,L2(Ω)) + c4∥νρ − νρ̃∥L2(Ω)∥ρadj − ρ̃adj∥L2(I,L2(Ω))

+ ∥ρV I − ρ̃V I∥L2(Ω)∥νρ − νρ̃∥L2(Ω)

with the constants

c1 ∶= 3T 4c2
m

∑
i=1
∥ai∥L∞(I,L∞(Ω))∥∂2

t p∥L2(I,L∞(Ω)) + 3T 2c∥∂2
t q∥L2(I,L∞(Ω)),

c2 ∶= 4T 4c2
m

∑
i=1
∥ai∥L∞(I,L∞(Ω)), c3 ∶= 2T 2c, c4 ∶= T 2c∥∂2

t p∥L2(I,L∞(Ω)).

Using Young’s inequality, we obtain that

α∥νρ − νρ̃∥2L2(Ω) ≤
α

4 ∥νρ − νρ̃∥
2
L2(Ω) + (

c2
1
α
+ c2)∥ρst − ρ̃st∥2L2(I,L2(Ω)) +

c3

2 ∥ρ
adj − ρ̃adj∥2L2(I,L2(Ω))

+ c3

2 ∥ρ
st − ρ̃st∥2L2(I,L2(Ω)) +

α

4 ∥νρ − νρ̃∥
2
L2(Ω) +

1
α
c2

4∥ρadj − ρ̃adj∥2L2(I,L2(Ω))

+ 1
α
∥ρV I − ρ̃V I∥2L2(Ω) +

α

4 ∥νρ − νρ̃∥
2
L2(Ω),

leading to

α

4 ∥νρ − νρ̃∥
2
L2(Ω) ≤ (

c2
1
α
+ c2 +

c3

2 )∥ρ
st − ρ̃st∥2L2(I,L2(Ω)) + (

c3

2 +
c2

4
α
)∥ρadj − ρ̃adj∥2L2(I,L2(Ω))
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4.1 Perturbed Optimality System

+ 1
α
∥ρV I − ρ̃V I∥2L2(Ω). (4.23)

Therefore, (4.9) is valid. To prove (4.10), note that pρ − p is the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t (pρ − p) −∆(pρ − p) + η∂t(pρ − p) = −(νρ − ν)∂2

t p + ρst in I ×Ω
∂n(pρ − p) = 0 on I × ΓN
pρ − p = 0 on I × ΓD
(pρ − p, ∂t(pρ − p))(0) = (0,0) in Ω.

Applying Lemma 4.2 to the above system yields that

∥pρ − p∥L2(I,L∞(Ω)) (4.24)
≤ ĉ(∥(νρ − ν)∂2

t p∥L2(I,L2(Ω)) + ∥ρst∥L2(I,L2(Ω)) + ∥(νρ − ν)∂3
t p∥L2(I,L2(Ω)) + ∥∂tρst∥L2(I,L2(Ω)))

≤ ĉ((∥∂2
t p∥L2(I,L∞(Ω)) + ∥∂3

t p∥L2(I,L∞(Ω)))∥νρ − ν∥L2(Ω) + ∥ρst∥L2(I,L2(Ω)) + ∥∂tρst∥L2(I,L2(Ω))).

Since (ν, p, q) solves (OSτ ) with (ρst, ρadj, ρvi) = 0, applying (4.9) to (4.24) leads to (4.10).
Since qρ − q solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t (qρ − q) −∆(qρ − q) − η∂t(qρ − q) =

m

∑
i=1
ai(pρ − p) − (νρ − ν)∂2

t q + ρadj in I ×Ω

∂n(qρ − q) = 0 on I × ΓN
qρ − q = 0 on I × ΓD
(qρ − q, ∂t(qρ − q))(T ) = (0,0) in Ω,

Lemma 4.2 implies that

∥qρ − q∥L2(I,L∞(Ω)) ≤ ĉ(
m

∑
i=1
∥ai∥L∞(I,L∞(Ω))(∥pρ − p∥L2(I,L2(Ω)) + ∥∂t(pρ − p)∥L2(I,L2(Ω)))

+
m

∑
i=1
∥∂tai∥L∞(I,L∞(Ω))∥pρ − p∥L2(I,L2(Ω))

+ (∥∂2
t q∥L2(I,L∞(Ω)) + ∥∂3

t q∥L2(I,L∞(Ω)))∥νρ − ν∥L2(Ω)

+ ∥ρadj∥L2(I,L2(Ω)) + ∥∂tρadj∥L2(I,L2(Ω))).

Applying (4.9) and (4.21) with (ρ̃st, ρ̃adj, ρ̃vi) = 0, we obtain (4.11).

With the following lemma, we will abandon the modification Vτad of the admissible
set Vad. The proof follows the argumentation from [77, Corollary 5.3] with a careful
modification.

Lemma 4.5. Let Assumption 4.1 and (SSCτ ) hold. Let (ρst, ρadj, ρV I) ∈ H1(I,L2(Ω)) ×
H1(I,L2(Ω)) ×L∞(Ω) such that ρst(0) = ρadj(T ) = 0 and

∥ρst∥H1(I,L2(Ω)) + ∥ρadj∥H1(I,L2(Ω)) + ∥ρV I∥L∞(Ω) ≤
τ

cL
(4.25)

with cL ∶= max{Lp∥∂2
t q∥L2(I,L∞(Ω)), Lq∥∂2

t p∥L2(I,L∞(Ω)),1}. Then, the unique solution to
(OSτ ) satisfies (OS).
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4 - Sequential Quadratic Programming

Proof. Let (νρ, pρ, qρ) denote the solution to (OSτ ). Since the equations in (OS) and
(OSτ ) coincide, it remains to show that the variational inequality in (OS) is valid. By
(OSτ ), it holds that

(−∫
I
∂2
t p(t)qρ(t) + ∂2

t (pρ(t) − p(t))q(t)dt + λνρ, ν̃ − νρ)L2(Ω) ≥ (ρV I , ν̃ − νρ)L2(Ω) ∀ν̃ ∈ Vτad.
(4.26)

By the definition of Vτad (see (4.5)) and since νρ ∈ Vτad, it holds for every ν̃ ∈ Vτad that
ν̃ − νρ = 0 a.e. in Aτ(ν). As a consequence, (4.26) implies that

(−∫
I
∂2
t p(t)qρ(t) + ∂2

t (pρ(t) − p(t))q(t)dt + λνρ, ν̃ − νρ)L2(Ω∖Aτ (ν)) (4.27)

≥ (ρV I , ν̃ − νρ)L2(Ω∖Aτ (ν)) ∀ν̃ ∈ Vτad.

For every ν ∈ Vad, we set ν̃ ∶= χAτ (ν)ν + χ(Ω∖Aτ (ν))ν ∈ Vτad in (4.27). Since ν̃ and ν coincide
in Ω ∖Aτ(ν), it follows that (4.27) holds for every ν ∈ Vad, i.e.,

(−∫
I
∂2
t p(t)qρ(t) + ∂2

t (pρ(t) − p(t))q(t)dt + λνρ, ν − νρ)L2(Ω∖Aτ (ν)) (4.28)

≥ (ρV I , ν − νρ)L2(Ω∖Aτ (ν)) ∀ν ∈ Vad.

Let A +
τ (ν) ∶= {x ∈ Ω ∶ − ∫

T

0 ∂2
t p(t, x)q(t, x)dt + λν(x) > τ} and A −

τ (ν) ∶= {x ∈ Ω ∶
− ∫

T

0 ∂2
t p(t, x)q(t, x)dt + λν(x) < −τ}. Then, by (4.4), it holds Aτ(ν) = A +

τ (ν) ∪A −
τ (ν)

and it follows for a.e. x ∈ A +
τ (ν) that

τ < −∫
T

0
∂2
t p(t, x)q(t, x)dt + λν(x) (4.29)

= −∫
I
∂2
t p(t, x)qρ(t, x) + ∂2

t (pρ(t, x) + p(t, x))q(t, x)dt + λνρ(x) − ρV I(x)

+ ∫
I
∂2
t p(t, x)(qρ(t, x) − q(t, x)) + ∂2

t (pρ(t, x) − p(t, x))q(t, x)dt + ρV I(x)

≤ −∫
I
∂2
t p(t, x)qρ(t, x) + ∂2

t (pρ(t, x) + p(t, x))q(t, x)dt + λνρ(x) − ρV I(x)

+ ∥∂2
t p∥L2(I,L∞(Ω))∥qρ − q∥L2(I,L∞(Ω)) + ∥pρ − p∥L2(I,L∞(Ω))∥∂2

t q∥L2(I,L∞(Ω)) + ∥ρV I∥L∞(Ω)
≤®

Thm.4.4

−∫
I
∂2
t p(t, x)qρ(t, x) + ∂2

t (pρ(t, x) + p(t, x))q(t, x)dt + λνρ(x) − ρV I(x)

+ cL(∥ρst∥H1(I,L2(Ω)) + ∥ρadj∥H1(I,L2(Ω)) + ∥ρV I∥L∞(Ω)).

Consequently, we obtain for a.e. x ∈ A +
τ (ν) that

0 ≤®
(4.25)

τ − cL(∥ρst∥H1(I,L2(Ω)) + ∥ρadj∥H1(I,L2(Ω)) + ∥ρV I∥L∞(Ω)) (4.30)

≤®
(4.29)

−∫
I
∂2
t p(t, x)qρ(t, x) + ∂2

t (pρ(t, x) + p(t, x))q(t, x)dt + λνρ(x) − ρV I(x).

Analogously, it follows for a.e. x ∈ A −
τ (ν) that

0 ≥ −∫
I
∂2
t p(t, x)qρ(t, x) + ∂2

t (pρ(t, x) + p(t, x))q(t, x)dt + λνρ(x) − ρV I(x). (4.31)
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4.2 Formulation of the SQP Method

On the other hand, by a standard argumentation, due to (3.71), the pointwise inequality

(−∫
I
∂2
t p(t, x)q(t, x)dt + λν(x)) (v − ν(x)) ≥ 0 for all v ∈ [ν−(x), ν+(x)] and a.e. x ∈ Ω

holds, implying that ν = ν− in A +
τ (ν) and ν = ν+ in A −

τ (ν). Therefore, since νρ = ν in
Aτ(ν), along with (4.30) and (4.31), we obtain that

(−∫
I
∂2
t p(t)qρ(t) + ∂2

t (pρ(t) − p(t))q(t)dt + λνρ − ρV I , ν − νρ)
L2(Aτ (ν))

(4.32)

= (−∫
I
∂2
t p(t)qρ(t) + ∂2

t (pρ(t) − p(t))q(t)dt + λνρ − ρV I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0 a.e. in A +
τ (ν) due to (4.30)

, ν − ν−²
≥0 a.e.

)
L2(A +

τ (ν))

+ (−∫
I
∂2
t p(t)qρ(t) + ∂2

t (pρ(t) − p(t))q(t)dt + λνρ − ρV I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤0 a.e. in A −
τ (ν) due to (4.31)

, ν − ν+²
≤0 a.e.

)
L2(A −

τ (ν))
≥ 0 ∀ν ∈ Vad.

Combining (4.28) and (4.32) proves the assertion.

4.2 Formulation of the SQP Method
The SQP method (cf. [72, Section 4.11]) approximates (P) by a sequence of coupled
systems arising from a suitable linearization process of the optimality system (3.135):

Algorithm 1 Sequential Quadratic Programming
1: Choose (ν0, p0, q0) and set k = 0.
2: Find ν ∈ Vad and p, q ∈ C2(I,L2(Ω)) ∩C1(I,H1

D(Ω)) ∩C(I,D(∆D,N)) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk∂
2
t p −∆p + η∂tp = f − (ν − νk)∂2

t pk in I ×Ω
∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (0,0) in Ω

νk∂
2
t q −∆q − η∂tq =

m

∑
i=1
ai(p − pobi ) − (ν − νk)∂2

t qk in I ×Ω

∂nq = 0 on I × ΓN
q = 0 on I × ΓD
(q, ∂tq)(T ) = (0,0) in Ω

(−∫
I
∂2
t pk(t)q(t) + ∂2

t (p(t) − pk(t))qk(t)dt + λν, ν̃ − ν)L2(Ω) ≥ 0 for all ν̃ ∈ Vad,
(Pk)

and set (νk+1, pk+1, qk+1) ∶= (ν, p, q).
3: Stop or set k = k + 1 and go back to step 2.

61



4 - Sequential Quadratic Programming

Remark 4.6. The hyperbolicity and the second-order bilinear character of the PDEs in
(Pk) lead to an undesired effect of loss of regularity, causing two major challenges:

(i) For a given iterate (νk, pk, qk) ∈ Vad × C l(I,L2(Ω)) × C l(I,L2(Ω)) for some l > 2,
the solutions pk+1, qk+1 to (Pk) are in general only l − 1-times continuously differen-
tiable. This can be inferred from Lemma 4.2 due to the regularity of the source
terms (ν − νk)∂2

t pk, (ν − νk)∂2
t qk ∈ C l−2(I,L2(Ω)) in the PDEs of (Pk). For this

reason, Algorithm 1 is generally only executable for a limited number of iterations.
To tackle this issue, we propose using a smooth-in-time regularity condition (see
Assumption 4.7).

(ii) In the parabolic case (cf. [45,49,70,77]), the convergence analysis strongly relies on
Robinson’s notion of strong regularity (see [69]). However, the regularity results and
estimation for the hyperbolic case (see Lemma 3.4 or [34, p. 410]) are weaker than
those for the parabolic one. Consequently, the developed strategies for parabolic
scenarios cannot be directly transferred to our case and require a substantial exten-
sion.

Assumption 4.7. Let Assumption 4.1 hold. Furthermore, let f ∈ C∞(I,L2(Ω)) with
∂ltf(0) = 0 for all l ∈ N0 ∶= N ∪ {0}, let ai ∈ C∞(I,L∞(Ω)) for all i = 1, . . . ,m with
∂ltai(T ) = 0 for all l ∈ N0, let pobi ∈ C∞(I,L2(Ω)) for all i = 1, . . .m, and let (ν0, p0, q0) ∈
Vad ×C∞(I,L∞(Ω)) ×C∞(I,L∞(Ω)) with ∂ltp0(0) = ∂ltq0(T ) = 0 for all l ∈ N0.

Assumption 4.7 implies that p, q ∈ C∞(I,L∞(Ω)) with ∂ltp(0) = ∂ltq(T ) = 0 for all l ∈ N0.
Further, in practice, observation data are typically available through measurements at
various time points. Accordingly, their usual extrapolations are smooth in time. There-
fore, Assumption 4.1 is reasonable since smoothness is only considered in time, whereas
the data are allowed to be non-smooth with respect to the space variable.

Theorem 4.8. Let Assumption 4.7 hold. Then, for every k ∈ N, the system (Pk) admits
at least one solution (νk+1, pk+1, qk+1) ∈ Vad × C∞(I,L∞(Ω)) × C∞(I,L∞(Ω)) satisfying
∂ltpk(0) = ∂ltqk(T ) = 0 for all l ∈ N0. In particular, Algorithm 1 is well-defined.

Proof. Let (νk, pk, qk) ∈ Vad × C∞(I,L∞(Ω)) × C∞(I,L∞(Ω)) with ∂ltpk(0) = ∂ltqk(T ) = 0
for all l ∈ N0 be given for some k ∈ N0. By Gk∶L2(Ω) → C3(I,H1

D(Ω)) we denote the
affine-linear and continuous solution operator that maps every ν to the unique solution p
to ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

νk∂
2
t p −∆p + η∂tp = f − (ν − νk)∂2

t pk in I ×Ω
∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (0,0) in Ω.

Note that the well-definedness of Gk follows from Assumption 4.7 and Lemma 4.2. Making
use of Gk, we consider the following minimization problem:

inf
ν∈Vad

Jk(ν) ∶= J (ν,Gkν) − ((ν − νk)∂2
t (Gkν − pk), qk)L2(I,L2(Ω)). (4.33)

To prove the existence of a minimizer to (4.33), it remains to show that Jk∶L2(Ω) → R
is lower sequentially semicontinuous. The lower sequential semicontinuity of the first
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term is obvious since it is convex and continuous. For the second term, we note that
the embedding C1(I,H1

D(Ω)) ↪ C(I,L2(Ω)) is compact due to the Aubin-Lions lemma.
Then, along with the continuity and affine-linearity of ∂2

tGk∶L2(Ω) → C1(I,H1
D(Ω)), we

obtain the following implication:

νn ⇀ ν weakly in L2(Ω) ⇒ (νn∂2
tGkνn, qk)L2(I,L2(Ω)) → (ν∂2

tGkν, qk)L2(I,L2(Ω)).

In conclusion, Jk is lower sequentially semicontinuous, and therefore (4.33) admits at
least one minimizer νk+1 ∈ Vad. On the other hand, the iteration system (Pk) is equiv-
alent to the condition that J ′k(ν)(ν̃ − ν) ≥ 0 for every ν̃ ∈ Vad which is nothing but the
necessary optimality condition to (4.33). Therefore, (Pk) admits at least one solution
(νk+1, pk+1, qk+1). Applying Assumption 4.7 and Lemma 4.2 to the PDE systems in (Pk)
yields pk+1, qk+1 ∈ C∞(I,L∞(Ω)) and ∂ltpk+1(0) = ∂ltqk+1(T ) = 0 for all l ∈ N0. The claim
follows inductively.

4.3 Auxiliary Estimates
Assumption 4.9. Let Assumption 4.7 and (SSCτ ) hold. Furthermore, suppose for every
l ∈ N0 that

∥∂lt(p0 − p)∥L2(I,L∞(Ω)) ≤ C0l!∥ν − ν0∥L2(Ω), ∥∂lt(q0 − q)∥L2(I,L∞(Ω)) ≤ C0l!∥ν − ν0∥L2(Ω),
m

∑
i=1
∥∂ltai∥L∞(I,L∞(Ω)) ≤ Cal!,

m

∑
i=1
∥∂lt(ai(p − pobi ))∥L2(I,L2(Ω)) ≤ Cal!,

max {∥∂ltp0∥L2(I,L∞(Ω)), ∥∂ltq0∥L2(I,L∞(Ω))} ≤ C0l!,
max {∥∂ltp∥L2(I,L∞(Ω)), ∥∂ltq∥L2(I,L∞(Ω))} ≤ Cl!, ∥∂ltf∥L2(I,L2(Ω)) ≤ Cf l!

and

∥ν0 − ν∥L2(Ω) (4.34)

≤min
⎧⎪⎪⎨⎪⎪⎩

γ

4δ ,
1

2L(2c15! + 4C0 + 2
√
∣Ω∣5!C0c1)

,

¿
ÁÁÀ 8!2γ

√
2

8δL(2c05! +
√
∣Ω∣C0(2c03! + 2C0 + c05!))

⎫⎪⎪⎬⎪⎪⎭
hold for some constants Cf ,Ca,C0,C, γ > 0, satisfying

γ
∞
∏
l=1
(3l + 5)!

√
26−l

=∶ γ <min{1, δ

L(4c1 + 2c2
1)
,

2δτ
cL(8C0 + 4C + 3c1C0 + c1C)

} , (4.35)

2ĉCf + ĉC0
γ

δ
≤ C0, ĉ(2Ca +CacT (C +C0)

γ

δ
+C0

γ

δ
) ≤ C0, (4.36)

where

δ ∶= 2L(2c1 + 3
√
∣Ω∣c2

1), c0 ∶= C0 max{ĉ γ2δ + 1,2ĉ γ4δ (CacT + 1) + 1}, (4.37)

c1 ∶=max{2ĉC0,2ĉC0(CacT + 1),2ĉ(C +C0), ĉ(2CacT (C +C0) + 2C + 2C0),4ĉC0,

ĉC0(2CacT + 4)} (4.38)

with τ, c, ĉ, L > 0 as in (SSCτ ), Lemma 4.2, and Theorem 4.4, respectively.
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Remark 4.10. Notice that (4.35) and (4.36) can always be guaranteed by choosing γ
sufficiently small and C0 sufficiently large. Furthermore, it is straightforward to check
that ∏∞l=1(3l + 5)!

√
26−l

exists. Indeed, it holds for every k ∈ N that

ln(
k

∏
l=1
(3l + 5)!

√
26−l

) =
k

∑
l=1

√
2

6−l
ln((3l + 5)!) =

k

∑
l=1

√
2

6−l 3l+5
∑
s=1

ln(s) ≤
k

∑
l=1

√
2

6−l 3l+5
∑
s=1

s

=
k

∑
l=1

√
2

6−l (3l + 5)(3l + 6)
2 =∶

k

∑
l=1
dl

and

∣dl+1

dl
∣ =
√

25−l (3l+8)(3l+9)
2√

26−l (3l+5)(3l+6)
2

=
√

2
−1 (3l + 8)(3l + 9)
(3l + 5)(3l + 6) ≤

√
2
−1 (12 + 8)(12 + 9)
(12 + 5)(12 + 6) < 1 ∀l ≥ 4.

Thus, by the ratio test, {∑kl=1 dl}k∈N is convergent. Consequently, as exp ∈ C(R), the limit
∏∞l=1(3l + 5)!

√
26−l

exists.

Associated with a given (νk, pk, qk) ∈ Vad × C∞(I,L∞(Ω)) × C∞(I,L∞(Ω)) satisfying
∂ltpk(0) = ∂ltqk(T ) = 0 for all l ∈ N0 and some k ∈ N0, we introduce the mapping

Sk∶L2(Ω) ×X0 ×XT → L2(Ω) ×X0 ×XT , (ν̂, p̂, q̂) ↦ (ν, p, q)

with Xt ∶= {p ∈ C∞(I,L∞(Ω)) ∶ ∂ltp(t) = 0 for all l ∈ N0} for t ∈ {0, T}, that assigns to
every (ν̂, p̂, q̂) ∈ L2(Ω) ×X0 ×XT the solution (ν, p, q) to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p −∆p + η∂tp = f − (νk − ν)∂2

t p̂ − (ν̂ − νk)∂2
t pk − (ν − ν̂)∂2

t p in I ×Ω
∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (0,0) in Ω

ν∂2
t q −∆q − η∂tq =

m

∑
i=1
ai(p − pobi ) − (νk − ν)∂2

t q̂ − (ν̂ − νk)∂2
t qk − (ν − ν̂)∂2

t q in I ×Ω

∂nq = 0 on I × ΓN
q = 0 on I × ΓD
(q, ∂tq)(T ) = (0,0) in Ω

(−∫
I
∂2
t p(t)q(t) + ∂2

t (pk(t) − p(t))q̂(t)

+ ∂2
t (p̂(t) − pk(t))qk(t) + ∂2

t (p(t) − p̂(t))q(t)dt + λν, ν̂ − ν)L2(Ω) ≥ 0 ∀ν̂ ∈ Vτad.
(4.39)

Remark 4.11. The system (4.39) is nothing but (OSτ ) with the perturbation terms

ρst = −(νk − ν)∂2
t p̂ − (ν̂ − νk)∂2

t pk − (ν − ν̂)∂2
t p ∈H1(I,L2(Ω)) (4.40)

ρadj = −(νk − ν)∂2
t q̂ − (ν̂ − νk)∂2

t qk − (ν − ν̂)∂2
t q ∈H1(I,L2(Ω))

ρV I = ∫
I
∂2
t (pk(t) − p(t))q̂(t) + ∂2

t (p̂(t) − pk(t))qk(t) + ∂2
t (p(t) − p̂(t))q(t)dt ∈ L2(Ω)
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satisfying ρst(0) = ρadj(T ) = 0 such that the well-definedness of Sk follows by Proposi-
tion 4.3 and Lemma 4.2, which also imply that the first component ν of Sk(ν̂, p̂, q̂) lies in
Vτad.

We aim to show that Sk admits a unique fixed point. According to (Pk), every fixed
point to Sk exactly solves the iteration in Algorithm 1 with Vτad instead of Vad. Unfortu-
nately, due to the nature of the hyperbolic PDEs and the second-order time derivatives
in the source terms, Sk cannot be defined as a self-map in an appropriate Banach space
(see Lemma 4.2). As a consequence, the contraction principle is not applicable directly to
Sk. As mentioned in the introduction, we establish a suitable self-map to overcome this
issue. First, we define for every k ∈ N0 the mapping

Tk∶L2(Ω) → L2(Ω) ×X0 ×XT , ν̂ ↦ (ν̂, p̂, q̂) (4.41)

where p̂, q̂ solve
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

νk∂
2
t p̂ −∆p̂ + η∂tp̂ = f − (ν̂ − νk)∂2

t pk in I ×Ω
∂np̂ = 0 on I × ΓN
p̂ = 0 on I × ΓD
(p̂, ∂tp̂)(0) = (0,0) in Ω

(4.42)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk∂
2
t q̂ −∆q̂ − η∂tq̂ =

m

∑
i=1
ai(p̂ − pobi ) − (ν̂ − νk)∂2

t qk in I ×Ω

∂nq̂ = 0 on I × ΓN
q̂ = 0 on I × ΓD
(q̂, ∂tq̂)(T ) = (0,0) in Ω.

(4.43)

The well-definedness of Tk follows from Lemma 4.2. Then, the desired self-mapping
operator reads

(Iν ○ Sk ○ Tk)∶L2(Ω) → L2(Ω) with Iν ∶ (ν, p, q) ↦ ν. (4.44)

As we will see later, the operator (4.44) is constructed suitably such that every fixed point
νk+1 of (4.44) is exactly the first (control) component of the solution to (Pk). Furthermore,
the quantity Tk(νk+1) is a fixed point of Sk and solves the iteration (Pk). To prove these
results, let us start with the following auxiliary lemmata:

Lemma 4.12. Let γ > 0 such that

γ
∞
∏
l=1
(3l + 5)!

√
26−l

=∶ γ ∈ (0,1). (4.45)

Then, the sequence {bk}k∈N0 ⊂ R+ defined by

b0 ∶= γ, bk ∶=
k

∏
l=1
(3l + 5)!

√
22+k−l

γ
√

2k

∀k ∈ N

65



4 - Sequential Quadratic Programming

is decreasing and converges R-superlinearly to 0. Furthermore, it holds that

bk ≤ γ
√

2k

∀k ∈ N0 (4.46)
(3k + 5)!2bk−1 ≤ γ ∀k ∈ N. (4.47)

Additionally, suppose that {xn}n∈N0 ⊂ R+ satisfies for some k ∈ N and some δ > 0 that

xk−1 ≤
1
4δ bk−1, xk ≤

1
4δ bk, xk+1 ≤ δ(3k + 5)!2(xk + xk−1)2. (4.48)

Then
xk+1 ≤

1
4δ bk+1. (4.49)

Proof. First, we notice that (4.45) implies that b0 = γ ≤ γ. Furthermore, for every k ∈ N,
we have that

bk =
k

∏
l=1
(3l + 5)!

√
22+k−l

γ
√

2k

= (
k

∏
l=1
(3l + 5)!

√
22−l

γ)

√
2k

≤®
(4.45)

γ
√

2k

∀k ∈ N,

and therefore (4.46) is valid. Since {γ
√

2k

}k∈N0 converges (Q-)superlinearly to 0, the se-
quence {bk}k∈N0 converges R-superlinearly to 0. To prove the monotonicity, notice that
b1 = 8!2γ

√
2 = 8!2b

√
2−1

0 b0 and

bk = (3k + 5)!2 (
k−1
∏
l=1
(3l + 5)!

√
21+k−l

γ
√

2k−1
)

√
2

= (3k + 5)!2b
√

2
k−1 = (3k + 5)!2b

√
2−1

k−1 bk−1 ∀k ≥ 2.

Thus, {bk}k∈N0 is decreasing if we can show that (3k + 5)!2b
√

2−1
k−1 ∈ (0,1) for all k ∈ N.

Indeed, this holds since

0 < (8!2b
√

2−1
0 )

√
2+1
≤ 8!

√
25
b0 = 8!

√
25
γ ≤®

(4.45)

γ < 1

and

0 < ((3k + 5)!2b
√

2−1
k−1 )

√
2+1
≤ (3k + 5)!

√
25
bk−1 = (3k + 5)!

√
25 k−1
∏
l=1
(3l + 5)!

√
21+k−l

γ
√

2k−1
(4.50)

≤
k

∏
l=1
(3l + 5)!

√
25+k−l

γ
√

2k−1
= (

k

∏
l=1
(3l + 5)!

√
26−l

γ)

√
2k−1

≤®
(4.45)

γ
√

2k−1
< 1 ∀k ≥ 2.

The claim (4.47) for k = 1 follows immediately from (4.45). For k ≥ 2, the claim (4.47) is
obtained as follows:

(3k + 5)!2bk−1 ≤ (3k + 5)!
√

25
bk−1 ≤®

(4.50)

γ
√

2k−1
≤ γ ∀k ≥ 2.
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Now, suppose that {xn}n∈N0 ⊂ R+ satisfies (4.48) for some k ∈ N and some δ > 0. If k = 1,
using the monotonicity b1 ≤ b0, we obtain that

x2 ≤®
(4.48)

δ8!2(x1 + x0)2 ≤
1

16δ8!2(b1 + b0)2 ≤
1
4δ8!2b2

0 =
1
4δ8!2γ2 ≤ 1

4δ8!
√

23
11!2γ2 = 1

4δ b2.

If k ≥ 2, again using the monotonicity bk ≤ bk−1, we obtain that

xk+1 ≤®
(4.48)

δ(3k + 5)!2(xk + xk−1)2 ≤
1

16δ (3k + 5)!2(bk + bk−1)2 ≤
1
4δ (3k + 5)!2b2

k−1

= 1
4δ (3k + 5)!2

k−1
∏
l=1
(3l + 5)!

√
23+k−l

γ
√

2k+1
≤ 1

4δ
k+1
∏
l=1
(3l + 5)!

√
23+k−l

γ
√

2k+1
= 1

4δ bk+1.

This completes the proof.

Lemma 4.13. Let Assumption 4.9 hold. Then, for ν, ν̃ ∈ Vad, (ν, p̌, q̌) ∶= T0(ν), (ν, p, q) ∶=
T0(ν), and (ν̃, p̃, q̃) ∶= T0(ν̃), it holds for all l ∈ N0 that

∥∂lt(p̌ − p0)∥L2(I,L∞(Ω)) ≤ c0(l + 3)!∥ν − ν0∥L2(Ω) (4.51)
∥∂lt(q̌ − q0)∥L2(I,L∞(Ω)) ≤ c0(l + 3)!∥ν − ν0∥L2(Ω) (4.52)
∥∂lt(p − p̃)∥L2(I,L∞(Ω)) ≤ c1(l + 3)!∥ν − ν̃∥L2(Ω) (4.53)
∥∂lt(q − q̃)∥L2(I,L∞(Ω)) ≤ c1(l + 3)!∥ν − ν̃∥L2(Ω) (4.54)

with c0, c1 > 0 as in Assumption 4.9. Let additionally νk and (νk−1, pk−1, qk−1) for some
k ∈ N be given such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

νk, νk−1 ∈ Vad, pk−1, qk−1 ∈ C∞(I,L∞(Ω)), ∂ltpk−1(0) = ∂ltqk−1(T ) = 0 ∀l ∈ N0

max{∥∂ltpk−1∥L2(I,L∞(Ω)), ∥∂ltqk−1∥L2(I,L∞(Ω))} ≤ C0(l + 3k − 3)! ∀l ∈ N0

∥νk − ν∥L2(Ω) ≤
1
4δ bk, ∥νk−1 − ν∥L2(Ω) ≤

1
4δ bk−1

(Ak)

with C0, δ > 0 as in Assumption 4.9 and bk, bk−1 as in Lemma 4.12. Then, for ν, ν̃ ∈ Vad,
(ν, p, q) ∶= Tk(ν), (ν̃, p̃, q̃) ∶= Tk(ν̃), and pk, qk being the unique solutions to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

νk−1∂
2
t pk −∆pk + η∂tpk = f − (νk − νk−1)∂2

t pk−1 in I ×Ω
∂npk = 0 on I × ΓN
pk = 0 on I × ΓD
(pk, ∂tpk)(0) = (0,0) in Ω

(4.55)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk−1∂
2
t qk −∆qk − η∂tqk =

m

∑
i=1
ai(pk − pobi ) − (νk − νk−1)∂2

t qk−1 in I ×Ω

∂nqk = 0 on I × ΓN
qk = 0 on I × ΓD
(qk, ∂tqk)(T ) = (0,0) in Ω,

(4.56)
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it holds that pk, qk ∈ C∞(I,L∞(Ω)), ∂ltpk(0) = ∂ltqk(T ) = 0 for all l ∈ N0, and

max{∥∂ltpk∥L2(I,L∞(Ω)), ∥∂ltqk∥L2(I,L∞(Ω))} ≤ C0(l + 3k)! ∀l ∈ N0. (4.57)
Furthermore, it holds for all l ∈ N0 that

∥∂lt(p − p̃)∥L2(I,L∞(Ω)) ≤ c1(l + 3k + 3)!∥ν − ν̃∥L2(Ω) (4.58)
∥∂lt(q − q̃)∥L2(I,L∞(Ω)) ≤ c1(l + 3k + 3)!∥ν − ν̃∥L2(Ω) (4.59)
∥∂lt(p − pk)∥L2(I,L∞(Ω)) ≤ c1(l + 3k)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω)) (4.60)
∥∂lt(q − qk)∥L2(I,L∞(Ω)) ≤ c1(l + 3k)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω)) (4.61)
∥∂lt(p − pk)∥L2(I,L∞(Ω)) ≤ c1(l + 3k + 3)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω)) (4.62)
∥∂lt(q − qk)∥L2(I,L∞(Ω)) ≤ c1(l + 3k + 3)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω)). (4.63)

Proof. Let ν, ν̃ ∈ Vad, (ν, p̌, q̌) ∶= T0(ν), (ν, p, q) ∶= T0(ν), and (ν̃, p̃, q̃) ∶= T0(ν̃). Further-
more, let l ∈ N0. We first note from (4.42) that p̌ − p solves

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν0∂
2
t (p̌ − p) −∆(p̌ − p) + η∂t(p̌ − p) = −(ν − ν0)∂2

t (p0 − p) in I ×Ω
∂n(p̌ − p) = 0 on I × ΓN
p̌ − p = 0 on I × ΓD
(p̌ − p, ∂t(p̌ − p))(0) = (0,0) in Ω,

such that Lemma 4.2 and Assumption 4.9 yield that
∥∂lt(p̌ − p)∥L2(I,L2(Ω)) ≤ c

√
T ∥ν − ν0∥L2(Ω)∥∂l+1

t (p0 − p)∥L1(I,L∞(Ω)) (4.64)
≤ cT ∥ν − ν0∥L2(Ω)∥∂l+1

t (p0 − p)∥L2(I,L∞(Ω))

≤ cTC0(l + 1)!∥ν − ν0∥2L2(Ω) ≤®
(4.34)

cTC0
γ

4δ (l + 1)!∥ν0 − ν∥L2(Ω)

and
∥∂lt(p̌ − p)∥L2(I,L∞(Ω)) (4.65)
≤ ĉ(∥ν − ν0∥L2(Ω)∥∂l+2

t (p0 − p)∥L2(I,L∞(Ω)) + ∥ν − ν0∥L2(Ω)∥∂l+3
t (p0 − p)∥L2(I,L∞(Ω)))

≤ 2ĉ γ4δC0(l + 3)!∥ν0 − ν∥L2(Ω).

Consequently, by the triangular inequality and Assumption 4.9 along with (4.65), we
obtain that

∥∂lt(p̌ − p0)∥L2(I,L∞(Ω)) ≤ ∥∂lt(p̌ − p)∥L2(I,L∞(Ω)) + ∥∂lt(p − p0)∥L2(I,L∞(Ω))

≤ (ĉ γ2δ + 1)C0(l + 3)!∥ν0 − ν∥L2(Ω).

From the definition of c0 (see Assumption 4.9), this implies (4.51). Similarly, due to
(3.135) and (4.43), q̌ − q satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν0∂
2
t (q̌ − q) −∆(q̌ − q) − η∂t(q̌ − q) =

m

∑
i=1
ai(p̌ − p) − (ν − ν0)∂2

t (q0 − q) in I ×Ω

∂n(q̌ − q) = 0 on I × ΓN
q̌ − q = 0 on I × ΓD
(q̌ − q, ∂t(q̌ − q))(T ) = (0,0) in Ω,
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such that Lemma 4.2, Assumption 4.9, and (4.64) yield that

∥∂lt(q̌ − q)∥L2(I,L∞(Ω)) (4.66)

≤ ĉ(
l

∑
j=0
(l
j
)
m

∑
i=1
∥∂jt ai∥L∞(I,L∞(Ω))∥∂l−jt (p̌ − p)∥L2(I,L2(Ω))

+ ∥ν − ν0∥L2(Ω)∥∂l+2
t (q0 − q)∥L2(I,L∞(Ω))

+
l+1
∑
j=0
(l + 1
j
)
m

∑
i=1
∥∂jt ai∥L∞(I,L∞(Ω))∥∂l+1−j

t (p̌ − p)∥L2(I,L2(Ω))

+ ∥ν − ν0∥L2(Ω)∥∂l+3
t (q0 − q)∥L2(I,L∞(Ω)))

≤ ĉ(CacTC0
γ

4δ
l

∑
j=0
(l
j
)j!(l − j + 1)!∥ν − ν0∥L2(Ω) +

γ

4δ ∥ν − ν0∥L2(Ω)C0(l + 2)!

+CacTC0
γ

4δ
l+1
∑
j=0
(l + 1
j
)j!(l − j + 2)!∥ν − ν0∥L2(Ω) +

γ

4δ ∥ν − ν0∥L2(Ω)C0(l + 3)!)

≤®
(4.67)

2ĉC0
γ

4δ (CacT + 1)(l + 3)!∥ν − ν0∥L2(Ω),

where we have used that
l+1
∑
j=0
(l + 1
j
)j!(l − j + 2)! =

l+1
∑
j=0

(l + 1)!
(l + 1 − j)!j!j!(l − j + 2)! =

l+1
∑
j=0
(l + 1)!(l − j + 2) ≤ (l + 3)!. (4.67)

Again, with the triangular inequality and Assumption 4.9 along with (4.66), we obtain
that

∥∂lt(q̌ − q0)∥L2(I,L∞(Ω)) ≤ ∥∂lt(q̌ − q)∥L2(I,L∞(Ω)) + ∥∂lt(q − q0)∥L2(I,L∞(Ω))

≤ C0(2ĉ
γ

4δ (CacT + 1) + 1)(l + 3)!∥ν − ν0∥L2(Ω),

leading (4.52). By (4.42), p − p̃ satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν0∂
2
t (p − p̃) −∆(p − p̃) + η∂t(p − p̃) = −(ν − ν̃)∂2

t p0 in I ×Ω
∂n(p − p̃) = 0 on I × ΓN
p − p̃ = 0 on I × ΓD
(p − p̃, ∂t(p − p̃))(0) = (0,0) in Ω.

Applying Lemma 4.2, and Assumption 4.9 gives that

∥∂lt(p− p̃)∥L2(I,L2(Ω)) ≤ c
√
T ∥ν− ν̃∥L2(Ω)∥∂l+1

t p0∥L1(I,L∞(Ω)) ≤ cC0T (l+1)!∥ν− ν̃∥L2(Ω) (4.68)

and

∥∂lt(p − p̃)∥L2(I,L∞(Ω)) ≤ ĉ(∥ν − ν̃∥L2(Ω)∥∂l+2
t p0∥L2(I,L∞(Ω)) + ∥ν − ν̃∥L2(Ω)∥∂l+3

t p0∥L2(I,L∞(Ω)))
≤ 2ĉC0(l + 3)!∥ν − ν̃∥L2(Ω),
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leading to (4.53). By (4.43), the difference q − q̃ solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν0∂
2
t (q − q̃) −∆(q − q̃) − η∂t(q − q̃) =

m

∑
i=1
ai(p − p̃) − (ν − ν̃)∂2

t q0 in I ×Ω

∂n(q − q̃) = 0 on I × ΓN
q − q̃ = 0 on I × ΓD
(q − q̃, ∂t(q − q̃))(T ) = (0,0) in Ω,

such that Lemma 4.2, Assumption 4.9, and (4.68) provide that

∥∂lt(q − q̃)∥L2(I,L∞(Ω))

≤ ĉ(
l

∑
j=0
(l
j
)
m

∑
i=1
∥∂jt ai∥L∞(I,L∞(Ω))∥∂l−jt (p − p̃)∥L2(I,L2(Ω)) + ∥ν − ν̃∥L2(Ω)∥∂l+2

t q0∥L2(I,L∞(Ω))

+
l+1
∑
j=0
(l + 1
j
)
m

∑
i=1
∥∂jt ai∥L∞(I,L∞(Ω))∥∂l+1−j

t (p−p̃)∥L2(I,L2(Ω))+∥ν−ν̃∥L2(Ω)∥∂l+3
t q0∥L2(I,L∞(Ω)))

≤ ĉ(CacC0T
l

∑
j=0
(l
j
)j!(l − j + 1)!∥ν − ν̃∥L2(Ω) + ∥ν − ν̃∥L2(Ω)C0(l + 2)!

+CacC0T
l+1
∑
j=0
(l + 1
j
)j!(l − j + 2)!∥ν − ν̃∥L2(Ω) + ∥ν − ν̃∥L2(Ω)C0(l + 3)!)

≤®
(4.67)

2ĉC0(CacT + 1)(l + 3)!∥ν − ν̃∥L2(Ω),

leading to (4.54). Now, let k ∈ N and we redefine (ν, p, q) ∶= Tk(ν) and (ν̃, p̃, q̃) ∶= Tk(ν̃).
Furthermore, let νk and (νk−1, pk−1, qk−1) satisfy (Ak) and pk, qk being the unique solutions
to (4.55) and (4.56). Due to Assumption 4.9 and (Ak), applying Lemma 4.2 to (4.55)
yields that pk ∈ C∞(I,L∞(Ω)), ∂ltpk(0) = 0 for all l ∈ N0, and

∥∂ltpk∥L2(I,L∞(Ω)) ≤ ĉ(∥∂ltf∥L2(I,L2(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+2
t pk−1∥L2(I,L∞(Ω)) (4.69)

+ ∥∂l+1
t f∥L2(I,L2(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+3

t pk−1∥L2(I,L∞(Ω)))

≤®
(4.34),(Ak)

2ĉCf(l + 1)! + ĉC0
1
2δ (bk + bk−1)(l + 3k)!

≤®
(4.47)

2ĉCf(l + 1)! + ĉC0
γ

δ
(l + 3k)! ≤®

(4.36)

C0(l + 3k)!.

From (4.55), we obtain that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

νk−1∂
2
t (p − pk) −∆(p − pk) + η∂t(p − pk) = −(ν − νk−1)∂2

t p + (νk − νk−1)∂2
t pk−1 in I ×Ω

∂n(p − pk) = 0 on I × ΓN
p − pk = 0 on I × ΓD
(p − pk, ∂t(p − pk))(0) = (0,0) in Ω.

(4.70)
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Thus, Lemma 4.2, Assumption 4.9, and (Ak) yield

∥∂lt(p − pk)∥L2(I,L2(Ω)) (4.71)
≤ c
√
T (∥ν − νk−1∥L2(Ω)∥∂l+1

t p∥L1(I,L∞(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+1
t pk−1∥L1(I,L∞(Ω)))

≤ cT (C +C0)(l + 3k − 2)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))

and

∥∂lt(p − pk)∥L2(I,L∞(Ω)) (4.72)
≤ ĉ(∥(ν − νk−1)∂l+2

t p∥L2(I,L2(Ω)) + ∥(ν − νk−1)∂l+3
t p∥L2(I,L2(Ω))

+ ∥(νk − νk−1)∂l+2
t pk−1∥L2(I,L2(Ω)) + ∥(νk − νk−1)∂l+3

t pk−1∥L2(I,L2(Ω)))
≤ 2ĉ(C +C0)(l + 3k)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω)),

leading to (4.60). Applying Lemma 4.2 to (4.56), it follow that qk ∈ C∞(I,L∞(Ω)),
∂ltqk(T ) = 0 for all l ∈ N0, and along with Assumption 4.9 and (4.71), we obtain that

∥∂ltqk∥L2(I,L∞(Ω))

≤ ĉ(
m

∑
i=1
∥∂lt(ai(pk − pobi ))∥L2(I,L2(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+2

t qk−1∥L2(I,L∞(Ω))

+
m

∑
i=1
∥∂l+1

t (ai(pk − pobi ))∥L2(I,L2(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+3
t qk−1∥L2(I,L∞(Ω)))

≤ ĉ(
m

∑
i=1
∥∂lt(ai(p − pobi ))∥L2(I,L2(Ω)) +

m

∑
i=1
∥∂l+1

t (ai(p − pobi ))∥L2(I,L2(Ω))

+
m

∑
i=1
∥∂lt(ai(pk − p))∥L2(I,L2(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+2

t qk−1∥L2(I,L∞(Ω))

+
m

∑
i=1
∥∂l+1

t (ai(pk − p))∥L2(I,L2(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+3
t qk−1∥L2(I,L∞(Ω)))

≤ ĉ(
m

∑
i=1
∥∂lt(ai(p − pobi ))∥L2(I,L2(Ω)) +

m

∑
i=1
∥∂l+1

t (ai(p − pobi ))∥L2(I,L2(Ω))

+
m

∑
i=1

l

∑
j=0
(l
j
)∥∂jt ai∥L∞(I,L∞(Ω))∥∂l−jt (pk − p)∥L2(I,L2(Ω))

+
m

∑
i=1

l+1
∑
j=0
(l + 1
j
)∥∂jt ai∥L∞(I,L∞(Ω))∥∂l+1−j

t (pk − p)∥L2(I,L2(Ω))

+ ∥νk − νk−1∥L2(Ω)∥∂l+2
t qk−1∥L2(I,L∞(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+3

t qk−1∥L2(I,L∞(Ω)))

≤ ĉ(
m

∑
i=1
∥∂lt(ai(p − pobi ))∥L2(I,L2(Ω)) +

m

∑
i=1
∥∂l+1

t (ai(p − pobi ))∥L2(I,L2(Ω))

+CacT (C +C0)
l

∑
j=0
(l
j
)j!(l − j + 3k − 2)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))

+ ∥νk − νk−1∥L2(Ω)∥∂l+2
t qk−1∥L2(I,L∞(Ω))

+CacT (C +C0)
l+1
∑
j=0
(l + 1
j
)j!(l − j + 3k − 1)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))
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+ ∥νk − νk−1∥L2(Ω)∥∂l+3
t qk−1∥L2(I,L∞(Ω)))

≤®
(4.34),(Ak)

ĉ(2Ca(l + 1)! +CacT (C +C0)
1
2δ (bk + bk+1)(l + 3k)! +C0

1
2δ (bk + bk+1)(l + 3k)!)

≤®
(4.47)

ĉ(2Ca(l + 1)! +CacT (C +C0)
γ

δ
(l + 3k)! +C0

γ

δ
(l + 3k)!) ≤®

(4.36)

C0(l + 3k)!.

Along with (4.69), the above estimate implies that (4.57) is valid. Now, (4.58) and (4.59)
follow analog to (4.53) and (4.54). By (3.135) and (4.56), we obtain that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk−1∂
2
t (q − qk) −∆(q − qk) − η∂t(q − qk)

=
m

∑
i=1
ai(p − pk) − (ν − νk−1)∂2

t q + (νk − νk−1)∂2
t qk−1 in I ×Ω

∂n(q − qk) = 0 on I × ΓN
q − qk = 0 on I × ΓD
(q − qk, ∂t(q − qk))(T ) = (0,0) in Ω,

such that Lemma 4.2, Assumption 4.9, (Ak), and (4.71) provide

∥∂lt(q − qk)∥L2(I,L∞(Ω))

≤ ĉ(
l

∑
j=0
(l
j
)
m

∑
i=1
∥∂jt ai∥L∞(I,L∞(Ω))∥∂l−jt (p − pk)∥L2(I,L2(Ω))

+
l+1
∑
j=0
(l + 1
j
)
m

∑
i=1
∥∂jt ai∥L∞(I,L∞(Ω))∥∂l+1−j

t (p − pk)∥L2(I,L2(Ω))

+ ∥(ν − νk−1)∂l+2
t q∥L2(I,L2(Ω)) + ∥(ν − νk−1)∂l+3

t q∥L2(I,L2(Ω))

+ ∥(νk − νk−1)∂l+2
t qk−1∥L2(I,L2(Ω)) + ∥(νk − νk−1)∂l+3

t qk−1∥L2(I,L2(Ω)))

≤ ĉ(CacT (C +C0)
l

∑
j=0
(l
j
)j!(l + 3k − j − 2)! +C(l + 2)! +C0(l + 3k − 1)!

+CacT (C +C0)
l+1
∑
j=0
(l + 1
j
)j!(l + 3k − j − 1)! +C(l + 3)!

+C0(l + 3k)!)(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))
≤ ĉ(2CacT (C +C0) + 2C + 2C0)(l + 3k)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω)),

leading to (4.61). To prove (4.62), due to (4.42) and (4.55), note that p − pk solves
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

νk∂
2
t (p − pk) −∆(p − pk) + η∂t(p − pk) = −(ν − νk−1)∂2

t pk + (νk − νk−1)∂2
t pk−1 in I ×Ω

∂n(p − pk) = 0 on I × ΓN
p − pk = 0 on I × ΓD
(p − pk, ∂t(p − pk))(0) = (0,0) in Ω,

(4.73)
such that from Lemma 4.2, (4.57), and (Ak), it follows that

∥∂lt(p − pk)∥L2(I,L2(Ω)) (4.74)
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≤ c
√
T (∥ν − νk−1∥L2(Ω)∥∂l+1

t pk∥L1(I,L∞(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+1
t pk−1∥L1(I,L∞(Ω)))

≤ cTC0(l + 3k + 1)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))

and

∥∂lt(p − pk)∥L2(I,L∞(Ω)) (4.75)
≤ ĉ(∥ν − νk−1∥L2(Ω)∥∂l+2

t pk∥L2(I,L∞(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+2
t pk−1∥L2(I,L∞(Ω))

+ ∥ν − νk−1∥L2(Ω)∥∂l+3
t pk∥L2(I,L∞(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+3

t pk−1∥L2(I,L∞(Ω)))
≤ 4ĉC0(l + 3k + 3)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω)),

leading to (4.62). Finally, due to (4.43) and (4.56), it holds that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk∂
2
t (q − qk) −∆(q − qk) − η∂t(q − qk)

=
m

∑
i=1
ai(p − pk) − (ν − νk−1)∂2

t qk + (νk − νk−1)∂2
t qk−1 in I ×Ω

∂n(q − qk) = 0 on I × ΓN
q − qk = 0 on I × ΓD
(q − qk, ∂t(q − qk))(T ) = (0,0) in Ω,

such that Lemma 4.2, Assumption 4.9, (Ak), (4.57), and (4.74) yield that

∥∂lt(q − qk)∥L2(I,L∞(Ω))

≤ ĉ(
l

∑
j=0
(l
j
)
m

∑
i=1
∥∂jt ai∥L∞(I,L∞(Ω))∥∂l−jt (p − pk)∥L2(I,L2(Ω))

+
l+1
∑
j=0
(l + 1
j
)
m

∑
i=1
∥∂jt ai∥L∞(I,L∞(Ω))∥∂l+1−j

t (p − pk)∥L2(I,L2(Ω))

+ ∥ν − νk−1∥L2(Ω)∥∂l+2
t qk∥L2(I,L∞(Ω)) + ∥ν − νk−1∥L2(Ω)∥∂l+3

t qk∥L2(I,L∞(Ω))

+ ∥νk − νk−1∥L2(Ω)∥∂l+2
t qk−1∥L2(I,L∞(Ω)) + ∥νk − νk−1∥L2(Ω)∥∂l+3

t qk−1∥L2(I,L∞(Ω)))

≤ ĉ(CacTC0

l

∑
j=0
(l
j
)j!(l − j + 3k + 1)! + 4C0(l + 3k + 3)!

+CacTC0

l+1
∑
j=0
(l + 1
j
)j!(l − j + 3k + 2)!)(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))

≤ ĉ(2CacTC0 + 4C0)(l + 3k + 3)!(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω)),

leading to (4.63).

4.4 Convergence
Under Assumption 4.7, we know that Algorithm 1 is well-defined (see Theorem 4.8),
but the iteration step (Pk) may have multiple possible solutions. In the following, we
prove that under Assumption 4.9, the solution to the iteration step (Pk) is unique. More
importantly, under a two-step estimation process (4.77), we establish the R-superlinear
convergence of the unique sequence of iterations towards the solution to (P).
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Proposition 4.14. Let Assumption 4.9 be satisfied and {bk}k∈N0 as in Lemma 4.12. Then,
the mapping (Iν ○S0 ○T0)∶L2(Ω) → L2(Ω) associated with (ν0, p0, q0) is a contraction and
admits a unique fixed point ν1 ∈ Vad satisfying

∥ν1 − ν∥L2(Ω) ≤
1
4δ b1, (4.76)

where γ and δ are as in Assumption 4.9. Let additionally νk and (νk−1, pk−1, qk−1) satisfy
(Ak) for some k ∈ N. Then, the mapping (Iν ○ Sk ○ Tk)∶L2(Ω) → L2(Ω) associated with
(νk, pk, qk), with pk and qk being the unique solutions to (4.55) and (4.56), is a contraction
and admits a unique fixed point νk+1 ∈ Vad satisfying

∥νk+1 − ν∥L2(Ω) ≤ δ(3k + 5)!2(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))2 (4.77)

∥νk+1 − ν∥L2(Ω) ≤
1
4δ bk+1. (4.78)

Remark 4.15. Notice that the positive constant δ appearing in (4.76)-(4.78) is indepen-
dent of k. More precisely, it depends only on the given data as defined in Assumption 4.9.

Proof. Let ν, ν̃ ∈ L2(Ω) and k ∈ N0. Further, if k ∈ N, suppose that νk and (νk−1, pk−1, qk−1)
satisfy (Ak) and pk, qk denote the unique solutions to (4.55) and (4.56), respectively.
According to (4.41), we may write (ν, p, q) ∶= Tk(ν) and (ν̃, p̃, q̃) ∶= Tk(ν̃). As pointed out
in Remark 4.11, (Sk ○ Tk)(ν) and (Sk ○ Tk)(ν̃) solve (OSτ ) with the perturbation terms
(4.40) for (ν̂, p̂, q̂) = (ν, p, q) and (ν̂, p̂, q̂) = (ν̃, p̃, q̃), respectively. Then, by Theorem 4.4,
it holds that

∥(Iν ○ Sk ○ Tk)(ν) − (Iν ○ Sk ○ Tk)(ν̃)∥L2(Ω) (4.79)
≤ L(∥(νk − ν)∂2

t (p − p̃) + (ν − ν̃)∂2
t (pk − p)∥L2(I,L2(Ω))

+ ∥(νk − ν)∂2
t (q − q̃) + (ν − ν̃)∂2

t (qk − q)∥L2(I,L2(Ω))

+ ∥∫
I
∂2
t (pk(t) − p(t))(q(t) − q̃(t)) + ∂2

t (p(t) − p̃(t))(qk(t) − q(t))dt∥L2(Ω))

≤ L(∥νk − ν∥L2(Ω)∥∂2
t (p − p̃)∥L2(I,L∞(Ω)) + ∥ν − ν̃∥L2(Ω)∥∂2

t (pk − p)∥L2(I,L∞(Ω))

+ ∥νk − ν∥L2(Ω)∥∂2
t (q − q̃)∥L2(I,L∞(Ω)) + ∥ν − ν̃∥L2(Ω)∥∂2

t (qk − q)∥L2(I,L∞(Ω))

+ ∥∂2
t (pk − p)∥L2(I,L∞(Ω))∥q − q̃∥L2(I,L2(Ω)) + ∥∂2

t (p − p̃)∥L2(I,L2(Ω))∥qk − q∥L2(I,L∞(Ω))).

According to Assumption 4.9 and Lemma 4.13 (see (4.53) and (4.54)), the above inequality
implies for k = 0 that

∥(Iν ○ S0 ○ T0)(ν) − (Iν ○ S0 ○ T0)(ν̃)∥L2(Ω)

≤ L(2c15! + 4C0 + 2
√
∣Ω∣5!C0c1)∥ν0 − ν∥L2(Ω)∥ν − ν̃∥L2(Ω) ≤®

(4.34)

1
2∥ν − ν̃∥L2(Ω).

Similarly, for k ∈ N, we obtain, using the monotonicity bk ≤ bk−1 (see Lemma 4.12), that

∥(Iν ○ Sk ○ Tk)(ν) − (Iν ○ Sk ○ Tk)(ν̃)∥L2(Ω)

≤®
(4.58)−(4.61)

L(4c1 + 2c2
1)(3k + 5)!2(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))∥ν − ν̃∥L2(Ω)
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≤®
(Ak)

1
2δL(4c1 + 2c2

1)(3k + 5)!2bk−1∥ν − ν̃∥L2(Ω) ≤®
(4.47)

1
2δL(4c1 + 2c2

1)γ∥ν − ν̃∥L2(Ω)

<®
(4.35)

1
2∥ν − ν̃∥L2(Ω).

Therefore, the mapping (Iν ○ Sk ○ Tk)∶L2(Ω) → L2(Ω) is a contraction and consequently
admits a unique fixed point νk+1 ∈ L2(Ω) due to Banach’s fixed point theorem. Also,
according to Remark 4.11, Iν ○ Sk maps into Vτad such that νk+1 ∈ Vτad. Now, let us prove
(4.76) and (4.77). From the above contraction property, it holds that

1
2∥νk+1 − ν∥L2(Ω) + ∥(Iν ○ Sk ○ Tk)(νk+1) − (Iν ○ Sk ○ Tk)(ν)∥L2(Ω) ≤ ∥νk+1 − ν∥L2(Ω).

Thus, since νk+1 = (Iν ○ Sk ○ Tk)νk+1, it follows that

1
2∥νk+1 − ν∥L2(Ω) ≤ ∥νk+1 − ν∥L2(Ω) − ∥(Iν ○ Sk ○ Tk)(νk+1) − (Iν ○ Sk ○ Tk)(ν)∥L2(Ω) (4.80)

≤ ∥(Iν ○ Sk ○ Tk)(ν) − ν∥L2(Ω).

Furthermore, we set (ν, p̌, q̌) ∶= Tk(ν). As above, according to Remark 4.11, Sk(Tk(ν))
solves (OSτ ) with the perturbation terms (4.40) with (ν̂, p̂, q̂) = (ν, p̌, q̌), and (ν, p, q)
solves (OSτ ) with the perturbation (ρst, ρadj, ρV I) = (0,0,0). Thus, Theorem 4.4 implies
that

∥(Iν ○ Sk ○ Tk)(ν) − ν∥L2(Ω) (4.81)
≤ L(∥(νk − ν)∂2

t (p̌ − pk)∥L2(I,L2(Ω)) + ∥(νk − ν)∂2
t (q̌ − qk)∥L2(I,L2(Ω))

+ ∥∫
I
∂2
t (pk(t) − p(t))q̌(t) + ∂2

t (p̌(t) − pk(t))qk(t) + ∂2
t (p(t) − p̌(t))q(t)dt∥

L2(Ω)
)

≤ L(∥νk − ν∥L2(Ω)∥∂2
t (p̌ − pk)∥L2(I,L∞(Ω)) + ∥νk − ν∥L2(Ω)∥∂2

t (q̌ − qk)∥L2(I,L∞(Ω))

+ ∥∂2
t (pk − p)∥L2(I,L∞(Ω))∥q̌ − q∥L2(I,L2(Ω)) + ∥∂2

t (p̌ − pk)∥L2(I,L∞(Ω))∥qk − q∥L2(I,L2(Ω)))
≤ L(∥νk − ν∥L2(Ω)∥∂2

t (p̌ − pk)∥L2(I,L∞(Ω)) + ∥νk − ν∥L2(Ω)∥∂2
t (q̌ − qk)∥L2(I,L∞(Ω))

+ ∥∂2
t (pk − p)∥L2(I,L∞(Ω))∥q̌ − qk∥L2(I,L2(Ω)) + ∥∂2

t (pk − p)∥L2(I,L∞(Ω))∥qk − q∥L2(I,L2(Ω))

+ ∥∂2
t (p̌ − pk)∥L2(I,L∞(Ω))∥qk − q∥L2(I,L2(Ω))).

For k = 0, applying (4.81) to (4.80) and making use of Lemma 4.13 and Assumption 4.9
yield that

∥ν1 − ν∥L2(Ω) ≤ 2L(2c05! +
√
∣Ω∣C0(2c03! + 2C0 + c05!))∥ν0 − ν∥2L2(Ω) ≤®

(4.34)

1
4δ8!2γ

√
2 = 1

4δ b1.

Analogously, for k ∈ N, Lemma 4.13 implies that

∥νk+1 − ν∥L2(Ω) ≤®
(4.60)−(4.63)

2L(2c1 + 3
√
∣Ω∣c2

1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=δ

(3k + 5)!2(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))2.

In conclusion, (4.76) and (4.77) are valid. Finally, due to (Ak) and (4.77), we may apply
Lemma 4.12 with xk ∶= ∥νk − ν∥L2(Ω) to obtain (4.78).
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4 - Sequential Quadratic Programming

Proposition 4.16. Let Assumption 4.9 be satisfied and ν1 ∈ Vad denote the unique fixed
point of (Iν ○ S0 ○ T0) associated with (ν0, p0, q0). Then, (ν1, p1, q1) ∶= T0(ν1) is the unique
solution to the iteration (Pk) for k = 0. Let additionally νk and (νk−1, pk−1, qk−1) satisfy
(Ak) for some k ∈ N and νk+1 ∈ Vad denote the unique fixed point of (Iν ○Sk ○Tk) associated
with (νk, pk, qk), with pk and qk being the unique solutions to (4.55) and (4.56). Then,
(νk+1, pk+1, qk+1) ∶= Tk(νk+1) is the unique solution to (Pk).

Proof. Let k ∈ N0. Since νk+1 is a fixed-point of (Iν ○Sk ○Tk), it holds by the definition of
Sk (see (4.39) for (ν̂, p̂, q̂) = (νk+1, pk+1, qk+1)) that Sk(νk+1, pk+1, qk+1) = (νk+1, p, q) where
p, q are the unique solutions to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t p −∆p + η∂tp = f − (νk − ν)∂2

t pk+1 − (νk+1 − νk)∂2
t pk in I ×Ω

∂np = 0 on I × ΓN
p = 0 on I × ΓD
(p, ∂tp)(0) = (0,0) in Ω

(4.82)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂2
t q −∆q − η∂tq =

m

∑
i=1
ai(p − pobi ) − (νk − ν)∂2

t qk+1 − (νk+1 − νk)∂2
t qk in I ×Ω

∂nq = 0 on I × ΓN
q = 0 on I × ΓD
(q, ∂tq)(T ) = (0,0) in Ω.

(4.83)

Furthermore, according to the definition of Tk (see (4.41) for (ν̂, p̂, q̂) = (νk+1, pk+1, qk+1)),
pk+1 and qk+1, respectively, solve the same systems (4.82) and (4.83). Therefore, we obtain
p = pk+1 and q = qk+1, and consequently Tk(νk+1) is a fixed point of Sk and satisfies the
PDEs in (Pk). Let us prove that Tk(νk+1) satisfies the variational inequality in (Pk).
Note that the assumptions of Lemma 4.13 are fulfilled. On the other hand, in view of
Remark 4.11, the fixed point (νk+1, pk+1, qk+1) of Sk solves (OSτ ) with the perturbation
terms

ρst = −(νk − ν)∂2
t pk+1 − (νk+1 − νk)∂2

t pk − (ν − νk+1)∂2
t p ∈H1(I,L2(Ω)) (4.84)

ρadj = −(νk − ν)∂2
t qk+1 − (νk+1 − νk)∂2

t qk − (ν − νk+1)∂2
t q ∈H1(I,L2(Ω))

ρV I = ∫
I
∂2
t (pk(t) − p(t))qk+1(t) + ∂2

t (pk+1(t) − pk(t))qk(t)

+ ∂2
t (p(t) − pk+1(t))q(t)dt ∈ L∞(Ω),

satisfying ρst(0) = ρadj(T ) = 0. Using Assumption 4.9, Lemma 4.13 for k and k + 1, we
obtain that

∥ρst∥H1(I,L2(Ω)) + ∥ρadj∥H1(I,L2(Ω)) + ∥ρV I∥L∞(Ω)
≤ ∥νk − ν∥L2(Ω)∥∂2

t pk+1∥H1(I,L∞(Ω)) + ∥νk+1 − νk∥L2(Ω)∥∂2
t pk∥H1(I,L∞(Ω))

+ ∥ν − νk+1∥L2(Ω)∥∂2
t p∥H1(I,L∞(Ω)) + ∥νk − ν∥L2(Ω)∥∂2

t qk+1∥H1(I,L∞(Ω))

+ ∥νk+1 − νk∥L2(Ω)∥∂2
t qk∥H1(I,L∞(Ω)) + ∥ν − νk+1∥L2(Ω)∥∂2

t q∥H1(I,L∞(Ω))
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4.4 Convergence

+ ∥∂2
t (pk − p)∥L2(I,L∞(Ω))∥qk+1∥L2(I,L∞(Ω)) + ∥∂2

t (pk+1 − pk)∥L2(I,L∞(Ω))∥qk∥L2(I,L∞(Ω))

+ ∥∂2
t (p − pk+1)∥L2(I,L∞(Ω))∥q∥L2(I,L∞(Ω))

≤ ((8C0 + 4C)(3k + 6)! + (3c1C0 + c1C)(3k + 5)!2)(∥ν − νk+1∥L2(Ω) + ∥ν − νk∥L2(Ω))

≤®
(Ak),(4.78)

1
4δ (8C0 + 4C + 3c1C0 + c1C)(3k + 5)!2(bk+1 + bk´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤2bk−1

)

≤ 1
2δ (8C0 + 4C + 3c1C0 + c1C)(3k + 5)!2bk−1 ≤®

(4.47)

1
2δ (8C0 + 4C + 3c1C0 + c1C)γ <®

(4.35)

τ

cL
.

Therefore, by Lemma 4.5, (νk+1, pk+1, qk+1) solves (OS) with the perturbation terms (4.84).
As a consequence, (νk+1, pk+1, qk+1) satisfies (Pk). Assume that (ν̃k+1, p̃k+1, q̃k+1) is another
solution to (Pk). Then, (ν̃k+1, p̃k+1, q̃k+1) is also a fixed point of Sk, and consequently ν̃k+1
is a fixed point of (Iν ○ Sk ○ Tk). By the uniqueness of the fixed point of (Iν ○ Sk ○ Tk)
(see Proposition 4.14), it follows that ν̃k+1 = νk+1. Furthermore, by the uniqueness of
the solutions to the PDEs in (Pk), we obtain p̃k+1 = pk+1 and q̃k+1 = qk+1. Therefore,
(νk+1, pk+1, qk+1) is the unique solution to (Pk).

Differently from the parabolic case, we cannot prove the quadratic (Q-)convergence of
Algorithm 1. As a remedy, the proposed two-step estimation process (4.77) eventually
enables us to prove R-superlinear convergence, i.e., the error is dominated by some scalar-
valued sequence converging superlinearly to zero [65, page 620].
Theorem 4.17. Let Assumption 4.9 be satisfied. Then, for every k ∈ N, the iteration
step (Pk) of Algorithm 1 admits a unique solution (νk+1, pk+1, qk+1) ∈ Vad×C∞(I,L∞(Ω))×
C∞(I,L∞(Ω)) satisfying

∥νk+1 − ν∥L2(Ω) ≤ δ(3k + 5)!2(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))2.
Furthermore, Algorithm 1 converges R-superlinearly towards the solution ν to (P) with

∥νk − ν∥L2(Ω) ≤
1
4δγ

√
2k

∀k ∈ N. (4.85)

Proof. For every k ∈ N0, let (νk+1, pk+1, qk+1) ∈ Vad × C∞(I,L∞(Ω)) × C∞(I,L∞(Ω)) de-
note a solution to (Pk) according to Theorem 4.8. We combine Proposition 4.14 and
Proposition 4.16 to prove by induction that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(νk+1, pk+1, qk+1) ∈ Vad ×C∞(I,L∞(Ω)) ×C∞(I,L∞(Ω)) is the unique solution to (Pk)
∥νk+1 − ν∥L2(Ω) ≤ δ(3k + 5)!2(∥ν − νk∥L2(Ω) + ∥ν − νk−1∥L2(Ω))2

∥νk − ν∥L2(Ω) ≤
1
4δ bk ≤

1
4δγ

√
2k

, ∥νk+1 − ν∥L2(Ω) ≤
1
4δ bk+1 ≤

1
4δγ

√
2k+1

pk, qk ∈ C∞(I,L∞(Ω)) with ∂ltpk(0) = ∂ltqk(T ) = 0 ∀l ∈ N0

∥∂ltpk∥L2(I,L∞(Ω)) ≤ C0(l + 3k)!, ∥∂ltqk∥L2(I,L∞(Ω)) ≤ C0(l + 3k)! ∀l ∈ N0
(4.86)

for all k ∈ N and bk, bk+1 as in Lemma 4.12. Due to Proposition 4.14 and Proposition 4.16,
the solution (ν1, p1, q1) to (Pk) for k = 0 is unique and satisfies

∥ν − ν1∥L2(Ω) ≤
1
4δ b1 ≤®

(4.46)

1
4δγ

√
2. (4.87)
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4 - Sequential Quadratic Programming

Thus, along with Assumption 4.9, ν1 and (ν0, p0, q0) satisfy (Ak) for k = 1 such that
Proposition 4.14 and Proposition 4.16 imply that the solution (ν2, p2, q2) to (Pk) for k = 1
is unique and satisfies

∥ν − ν2∥L2(Ω) ≤ δ8!2(∥ν − ν1∥L2(Ω) + ∥ν − ν0∥L2(Ω))2, ∥ν − ν2∥L2(Ω) ≤
1
4δ b2 ≤®

(4.46)

1
4δγ

√
22
.

Moreover, Lemma 4.13 implies p1, q1 ∈ C∞(I,L∞(Ω)) with ∂ltp1(0) = 0, ∂ltq1(T ) = 0,
∥∂ltp1∥L2(I,L∞(Ω)) ≤ C0(l+ 3)!, and ∥∂ltq1∥L2(I,L∞(Ω)) ≤ C0(l+ 3)! for all l ∈ N0. In conclusion,
(4.86) is fulfilled for k = 1. Now, let k ≥ 2 be fixed, and assume that (4.86) is satisfied
for k − 1. Then, νk and (νk−1, pk−1, qk−1) satisfy (Ak) such that Proposition 4.14 and
Proposition 4.16 imply that the solution (νk+1, pk+1, qk+1) to (Pk) is unique and it holds
that

∥ν − νk+1∥L2(Ω) ≤ δ(3k + 5)!(∥νk − ν∥L2(Ω) + ∥νk−1 − ν∥L2(Ω))2,

∥ν − νk+1∥L2(Ω) ≤
1
4δ bk+1 ≤®

(4.46)

1
4δγ

√
2k+1

.

Again, Lemma 4.13 implies that pk, qk ∈ C∞(I,L∞(Ω)) with ∂ltpk(0) = ∂ltqk(T ) = 0,
∥∂ltpk∥L2(I,L∞(Ω)) ≤ C0(l + 3k)!, and ∥∂ltqk∥L2(I,L∞(Ω)) ≤ C0(l + 3k)! for all l ∈ N0. This
completes the induction proof.
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NUMERICAL ANALYSIS OF A
FULLY DISCRETE
APPROXIMATION 5

This chapter is devoted to the numerical analysis of a fully discrete approximation for
(1.2). For numerous optimal control problems governed by elliptic and parabolic PDEs,
the numerical analysis, including the convergence of discrete schemes, is explored in the
literature. We mention the publications by Casas et al. [8,14–17], Vexler et al. [10,55,60],
Yousept [81,82], Gong et al. [38], and von Daniels et al. [76]. As we are primarily interested
in the hyperbolic case, we refer to the recent contribution by Peralta and Kunisch [67],
where a source control problem governed by the linear wave equation is approximated
by proposing a Petrov–Galerkin scheme. Notably, in the realm of Maxwell’s equations,
a leapfrog (Yee) time-stepping method [79] has been successfully applied. We refer to
Li [56], Li et al. [57], Cohen and Monk [25], Monk [63], Winckler and Yousept [78], and
Hensel and Yousept [43]. To the best of the author’s knowledge, we are the first to
investigate a leapfrog time-stepping method for (1.2).

Based on a Finite Element method in space, a leapfrog (Yee) time-stepping, and the
auxiliary first-order system (3.9), we derive a fully discrete approximation for (1.2) (see
(5.10)). We show well-definedness of (5.10) and necessary first-order optimality condi-
tion (see Theorem 5.4) following the argumentation from the continuous case (see The-
orem 3.12). Furthermore, based on the techniques in [43, 78], we prove the stability for
the solutions of the discrete state and adjoint equations concerning the approximation
parameter h (see Theorem 5.6). In the final section of the chapter, that is Section 5.4, we
define suitable interpolations of the discrete solutions and prove two different convergence
results: First, interpolations of solutions to the discrete first-order optimality systems con-
verge up to a subsequence towards a solution to the first-order optimality system of the
original problem (see Theorem 5.10). Second, for every local minimizer to (1.2) satisfying
a reasonable growth condition, we prove the existence of a sequence of local minimizers
to the fully discrete approximation for (1.2) converging to the local minimizer to (1.2).

The content of this chapter is available in the author’s preprint [7]. Consequently, direct
quotations from this work will not be explicitly highlighted.

5.1 Fully Discrete Scheme
The essential assumptions for this chapter read as follows:
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5 - Numerical Analysis of a Fully Discrete Approximation

Assumption 5.1. Let Assumption 3.1 hold and let Ω ⊂ RN be a polyhedral Lipschitz
domain. Furthermore, let p1 ∈ L∞(Ω), pobi ∈ W 1,1(I,L2(Ω)), and let ai ∈ C1(I,L∞(Ω))
assumed to be nonnegative for all i = 1, . . . ,m. Moreover, let ν−, ν+ ∈ R satisfy 0 < ν− ≤ ν+.

Let us now establish the fully discrete approximation for the auxiliary first-order system
(3.9). For this purpose, let {Th}h>0 be a quasi-uniform family of triangulations of Ω such
that every edge E of every element T ∈ Th satisfying E ∩ ∂Ω ≠ ∅ belongs either to ΓD
or ΓN , i.e., either E ⊂ ΓD or E ⊂ ΓN . Here, h > 0 denotes the largest diameter of
all K ∈ Th. Furthermore, with Ph

1 , we denote the set of all continuous piecewise linear
functions associated with Th, i.e.,

Ph
1 ∶= {p ∈ C(Ω) ∣p∣K ∈ P1(K) ∀K ∈ Th},

and with DGh
0 (resp. DGh

0), we denote the set of all scalar-valued (resp. vector-valued)
piecewise constant functions associated with Th. Incorporating the partial Dirichlet
boundary condition, let

Ph
1,D ∶= Ph

1 ∩H1
D(Ω) = {ϕh ∈ Ph

1 ∶ ϕh = 0 on ΓD}.

In the following, let Assumption 5.1 hold. Towards discretizing the governing PDE in
time, given some N ∈ N, we choose the equidistant discretization

0 = t0 ≤ t1 ≤ t2 ≤ ⋅ ⋅ ⋅ ≤ tN = T,

where tl − tl−1 = τ = 1
N for all l = 1, . . . ,N . Furthermore, let us employ the middle

points of the constructed subintervals in the time discretization, i.e., tl+ 1
2
∶= tl + τ

2 for all
l = 0, . . . ,N − 1. We aim to define an approximation for (3.9), motivated by the leapfrog
(Yee) time-stepping [79], where we evaluate the first equation in (3.9) at the discretization
nodes while the second one is evaluated at the middle points. This approach leads to
approximations {plh}Nl=0 ⊂ Ph

1,D and {ul+ 1
2

h }N−1
l=0 ⊂DGh

0 where plh ≈ p(tl) and u
l+ 1

2
h ≈ u(tl+ 1

2
)

for the solution (p,u) to (3.9). To arrive at a concise formulation, we introduce the
notation

δp
l+ 1

2
h ∶= p

l+1
h − plh
τ

, p
l+ 1

2
h ∶= p

l+1
h + plh

2 ∀l = 0, . . . ,N − 1 (5.1)

and

δul
h ∶=

u
l+ 1

2
h −u

l− 1
2

h

τ
∀l = 1, . . . ,N − 1. (5.2)

Furthermore, let F l+ 1
2 ∶= F (tl+ 1

2
) for all l = 0, . . . ,N − 1 and νh ∈ Vad be given. We denote

the Ph
1-interpolation operator with

Ih∶C(Ω) → Ph
1 , v ↦

Mh

∑
j=1
v(xj)ϕj, (5.3)

where {ϕj}Mh
j=1 ⊂ Ph

1 denotes the nodal basis of Ph
1 and {xj}Mh

j=1 ⊂ Ω denote the corresponding
nodal points. The operator Ih satisfies

Ihϕ→ ϕ in L∞(Ω) as h→ 0 ∀ϕ ∈W 1,p(Ω), p > N (5.4)
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5.1 Fully Discrete Scheme

Ihϕ→ ϕ in H1(Ω) as h→ 0 ∀ϕ ∈H2(Ω). (5.5)

(cf. [12, Section 4.4]) and Ih(C∞D (Ω)) ⊂ Ph
1,D. Furthermore, Ψh denotes the Ph

1,D projection
operator, i.e., Ψh∶H1

D(Ω) → Ph
1,D, p↦ yh where yh solves

∫
Ω
∇yh ⋅ ∇ϕh + yhϕh dx = ∫

Ω
∇p ⋅ ∇ϕh + pϕh dx ∀ϕh ∈ Ph

1,D .

For all p ∈H1
D(Ω), due to the Céa Lemma, it holds that

∥Ψhp − p∥H1(Ω) ≤ inf
ϕh∈Ph

1,D

∥ϕh − p∥H1(Ω). (5.6)

Furthermore, since H1
D(Ω) = C∞D (Ω)

∥⋅∥H1(Ω) , for every p ∈H1
D(Ω) and for every ϵ > 0, there

exists a pϵ ∈ C∞D (Ω) such that ∥p − pϵ∥H1(Ω) ≤ ϵ
2 , and due to (5.5), there exists h > 0 such

that ∥Ihpϵ − pϵ∥H1(Ω) ≤ ϵ
2 for all h ∈ (0, h]. Then, along with (5.6) and since Ihpϵ ∈ Ph

1,D, it
follows that

∥p −Ψhp∥H1(Ω) ≤ ∥Ihpϵ − p∥H1(Ω) ≤ ∥Ihpϵ − pϵ∥H1(Ω) + ∥pϵ − p∥H1(Ω) ≤ ϵ.

This implies that

Ψhp→ p in H1(Ω) as h→ 0 ∀p ∈H1
D(Ω). (5.7)

Evaluating the first line in (3.9) at tl+ 1
2

and the second line of (3.9) at tl, and incorporating
a Finite Element discretization in space, we obtain the following fully discrete scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(νhδp

l+ 1
2

h + ηpl+
1
2

h )ϕh −u
l+ 1

2
h ⋅ ∇ϕh dx = ∫

Ω
F l+ 1

2ϕh dx

∀ϕh ∈ Ph
1,D, l = 0, . . . ,N − 1

δul
h +∇plh = 0 ∀l = 1, . . . ,N − 1

p0
h ∶= Ψhp0, u

1
2
h ∶= Φh(νh).

(5.8)

Here, Φh∶L∞(Ω) → DGh
0 maps every ν ∈ L∞(Ω) to ∇yh where yh ∈ Ph

1,D denotes the
unique solution to

∫
Ω
∇yh ⋅ ∇ϕh dx = ∫

Ω
(ηp0 + νp1)ϕh dx ∀ϕh ∈ Ph

1,D . (5.9)

The system (5.8) can be solved by alternately solving the variational problem and com-
puting the second line as follows: Suppose that plh ∈ Ph

1,D and u
l+ 1

2
h ∈ DGh

0 are already
given for some l = 0, . . . ,N − 2. Then, applying (5.1), the finite-dimensional variational
problem in (5.8) admits a unique solution pl+1

h ∈ Ph
1,D due to the Lax-Milgram lemma.

Furthermore, due to (5.2) and the second line in (5.8), it follows that u
l+ 3

2
h = u

l+ 1
2

h −τ∇pl+1
h .

Consequently, the iteration scheme (5.8) is well-defined.
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5.2 Discrete Optimal Control Problem
We consider the following discrete admissible set

Vhad ∶= {ν ∈ DGh
0 ∶ ν− ≤ ν(x) ≤ ν+ for every x ∈ Ω} ⊂ Vad.

Making use of the midpoint rule for the numerical integration in time and the leapfrog
scheme (5.8), our fully discrete optimal control problem reads as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minJh(νh,{plh}Nl=0) ∶=
τ

2
m

∑
i=1

N−1
∑
l=0
∫

Ω
ai(tl+ 1

2
)(pl+

1
2

h − pobi (tl+ 1
2
))2 dx + λ2 ∥νh∥

2
L2(Ω)

s.t. νh ∈ Vhad and ({plh}Nl=0,{u
l+ 1

2
h }N−1

l=0 ) ∈ (Ph
1,D)N+1 × (DGh

0)N solves (5.8).
(5.10)

Since for every νh ∈ Vhad, the scheme (5.8) admits a unique solution ({plh}Nl=0,{u
l+ 1

2
h }N−1

l=0 ) ∈
(Ph

1,D)N+1 × (DGh
0)N , the associated solution mapping

Sh∶ Vhad → L2(Ω)N+1 ×L2(Ω)N , νh ↦ ({plh}Nl=0,{u
l+ 1

2
h }N−1

l=0 )

is well-defined. Denoting the first component of Sh with Sh,p∶νh ↦ {plh}Nl=0, the reduced
problem reads

min
ν∈Vh

ad

Jh(νh) ∶= Jh(νh, Sh,p(νh)). (Ph)

For proving the existence of a minimizer to (Ph) in Theorem 5.3, we make use of the
following inverse estimate:

Lemma 5.2 (Inverse estimate, [22, Theorem 3.2.6]). There exists a constant cinv > 0,
independent of h, such that

∥∇ph∥L2(Ω) ≤
cinv
h
∥ph∥L2(Ω) ∀ph ∈ Ph

1,D .

Theorem 5.3. Let Assumption 5.1 hold. Then, for every h > 0, the problem (Ph) admits
at least one global minimizer νh ∈ Vhad.

Proof. Let h > 0 be given. First, we show that the above solution operator Sh,p∶L2(Ω) ⊃
Vhad → L2(Ω)N+1, νh ↦ {plh}Nl=0 is continuous. For this purpose, let νh, ν̃h ∈ Vhad and
({plh}Nl=0,{u

l+ 1
2

h }N−1
l=0 ), ({p̃lh}Nl=0,{ũ

l+ 1
2

h }N−1
l=0 ) ∈ (P

h
1,D)N+1 × (DGh

0)N be the solutions to (5.8)
associated with νh and ν̃h, respectively. Then, we have that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(ν̃h(δp̃

l+ 1
2

h − δpl+
1
2

h ) + η(p̃
l+ 1

2
h − pl+

1
2

h ))ϕh − (ũ
l+ 1

2
h −u

l+ 1
2

h ) ⋅ ∇ϕh dx=∫
Ω
(ν̃h − νh)δp

l+ 1
2

h ϕh dx

∀ϕh ∈ Ph
1,D, l = 0, . . . ,N − 1

δũl
h − δul

h +∇(p̃lh − plh) = 0 ∀l = 1, . . . ,N − 1

p̃0
h − p0

h = 0, ũ
1
2
h −u

1
2
h = Φh(ν̃h) −Φh(νh).

(5.11)
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We show by induction that for every l = 1, . . . ,N , there exists a constant c > 0 that is
independent of ν̃h such that

⎧⎪⎪⎨⎪⎪⎩

∥p̃lh − plh∥L2(Ω) ≤ c∥ν̃h − νh∥L2(Ω)

∥ũl− 1
2

h −u
l− 1

2
h ∥L2(Ω) ≤ c∥ν̃h − νh∥L2(Ω).

(5.12)

From (5.11), we obtain for all l = 0, . . . ,N − 1 that

∫
Ω
( ν̃h
τ
+ η2) (p̃

l+1
h − pl+1

h )ϕh dx (5.13)

= ∫
Ω
( ν̃h
τ
− η2) (p̃

l
h − plh)ϕh + (ũ

l+ 1
2

h −u
l+ 1

2
h ) ⋅ ∇ϕh + (ν̃h − νh)δp

l+ 1
2

h ϕh dx ∀ϕh ∈ Ph
1,D .

The equation (5.13) with l = 0 implies that

∫
Ω
( ν̃h
τ
+ η2) (p̃

1
h − p1

h)ϕh dx =®
(5.11)
∫

Ω
(Φh(ν̃h) −Φh(νh)) ⋅ ∇ϕh + (ν̃h − νh)δp

1
2
hϕh dx (5.14)

=®
(5.9)
∫

Ω
(ν̃h − νh)(p1 + δp

1
2
h )ϕh dx ∀ϕh ∈ Ph

1,D .

Thus, testing (5.14) with ϕh = (p̃1
h − p1

h) and using Hölder’s inequality, we obtain that

∥p̃1
h − p1

h∥L2(Ω) ≤ νmin−1τ(∥p1∥L∞(Ω) + ∥δp
1
2
h ∥C(Ω))∥ν̃h − νh∥L2(Ω).

Furthermore, we have that

∥ũ
1
2
h −u

1
2
h ∥L2(Ω) =®

(5.11)

∥Φh(ν̃h) −Φ(νh)∥L2(Ω) ≤ cP ∥p1∥L∞(Ω)∥ν̃h − νh∥L2(Ω),

where the last inequality is obtained by inserting ϕh = yh in (5.9) and cP > 0 denotes a
Poincaré constant. Therefore, (5.12) is valid for l = 1. Now, assume that (5.12) holds for
a fixed l ∈ {1, . . . ,N − 1}. Since

∥ũl+ 1
2

h −u
l+ 1

2
h ∥L2(Ω) ≤®

(5.11)

∥ũl− 1
2

h −u
l− 1

2
h ∥L2(Ω) + τ∥∇(p̃lh − plh)∥L2(Ω), (5.15)

applying the induction assumption and the inverse estimate from Lemma 5.2 to (5.15), we
obtain the second inequality in (5.12) for l+1. Further, testing (5.13) with ϕh = p̃l+1

h −pl+1
h

and again using the inverse estimate in Lemma 5.2 yields that

∥p̃l+1
h − pl+1

h ∥L2(Ω) ≤ ν−1
− τ((

ν+
τ
+ 1

2∥η∥L∞(Ω)) ∥p̃
l
h − plh∥L2(Ω) +

cinv
h
∥ũl+ 1

2
h −u

l+ 1
2

h ∥L2(Ω)

+∥δpl+
1
2

h ∥C(Ω)∥ν̃h − νh∥L2(Ω)).

Applying the induction assumption and (5.15), we obtain the first inequality in (5.12) for
l + 1. This completes the induction proof. Consequently, by (5.12) and since p̃0

h = p0
h, the
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mapping Sh,p∶L2(Ω) ⊃ Vhad → L2(Ω)N+1, ν ↦ {plh}Nl=0 is continuous and thus Jh∶L2(Ω) ⊃
Vhad → R is continuous. On the other hand, Vhad ⊂ DGh

0 is compact since it is a closed and
bounded subset of the finite-dimensional space DGh

0 . Thus, the minimization problem
(Ph) admits at least one global minimizer due to the Weierstrass theorem.

The following theorem is the discrete version of Theorem 3.12 providing a first-order
necessary optimality condition for (Ph).
Theorem 5.4. Let Assumption 5.1 hold and h > 0 be given. Furthermore, let νh be a
minimizer to (Ph) and ({plh}Nl=0,{u

l+ 1
2

h }N−1
l=0 ) be the associated unique solution to (5.8).

Then, there exists a unique solution ({qlh}Nl=0,{v
l+ 1

2
h }N−1

l=0 ) ∈ (P
h
1,D)N+1 × (DGh

0)N to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(νhδq

l+ 1
2

h − ηql+
1
2

h )ϕh − v
l+ 1

2
h ⋅ ∇ϕh dx =

m

∑
i=1
∫

Ω
ai(tl+ 1

2
)(pl+

1
2

h − pobi (tl+ 1
2
))ϕh dx

∀ϕh ∈ Ph
1,D, l = 0, . . . ,N − 1

δvlh +∇qlh = 0 ∀l = 1, . . . ,N − 1

qNh = 0,vN−
1
2

h = 0,

(5.16)

where
δq

l+ 1
2

h ∶= q
l+1
h − qlh
τ

, q
l+ 1

2
h ∶= q

l+1
h + qlh

2 ∀l = 0, . . . ,N − 1 (5.17)

and

δvlh ∶=
v
l+ 1

2
h − v

l− 1
2

h

τ
∀l = 1, . . . ,N − 1. (5.18)

Furthermore, it holds that

(τ
N−1
∑
l=0
(δpl+

1
2

h − p1)q
l+ 1

2
h + λνh, νh − νh)

L2(Ω)
≥ 0 ∀νh ∈ Vhad. (5.19)

Remark 5.5. Note that the first-order necessary optimality condition (5.19) for the
discrete optimization problem (Ph) is nothing but the discretization of the first-order
necessary optimality condition (3.62) for the continuous problem (P). In particular, our
finite element method for (P), based on the leapfrog time-stepping, is consistent in the
sense that both ansatzes ’first-discretize-then-optimize’ and ’first-optimize-then-discretize’
are equivalent.
Proof. As for (5.8), the well-posedness of (5.16) follows with the Lax-Milgram lemma.
By standard arguments, it is sufficient to show that (5.19) is equivalent to the condition
DJh(νh, νh − νh) ≥ 0 for all νh ∈ Vhad. First, we show for every νh ∈ Vhad that Sh,p∶L∞(Ω) ⊃
Vhad → L2(Ω)N+1 is directional differentiable in νh into the direction (νh − νh) and it holds
that DSh,p(νh, νh − νh) = {p̃lh}Nl=0 where ({p̃lh}Nl=0,{ũl

h}Nl=0) is the unique solution to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(νhδp̃

l+ 1
2

h + ηp̃l+
1
2

h )ϕh − ũ
l+ 1

2
h ⋅ ∇ϕh dx = −∫

Ω
(νh − νh)δp

l+ 1
2

h ϕh dx

∀ϕh ∈ Ph
1,D, l = 0, . . . ,N − 1

δũl
h +∇p̃lh = 0 ∀l = 1, . . . ,N − 1

p̃0
h ∶= 0, ũ

1
2
h ∶= Φ′h(νh)(νh − νh).

(5.20)
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Here, {δp̃l+
1
2

h }N−1
l=0 , {p̃l+

1
2

h }N−1
l=0 , and {δũl

h}N−1
l=1 are defined analog to (5.1) and (5.2). Let t > 0

and νh ∈ Vhad be given. Then, subtracting the corresponding system (5.8) for Sh,p(νh +
t(νh − νh)) = {plh}Nl=0 and tDSh,p(νh, νh − νh) = t{p̃lh}Nl=0 (see (5.20)) from the system (5.8)
for Sh,p(νh) = {plh}Nl=0, we obtain that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(νh(δp

l+ 1
2

h − δpl+
1
2

h − tδp̃l+
1
2

h ) + η(p
l+ 1

2
h − pl+

1
2

h − tp̃l+
1
2

h ))ϕh − (u
l+ 1

2
h −u

l+ 1
2

h − tũl+ 1
2

h ) ⋅ ∇ϕh dx

= −∫
Ω
t(νh − νh)(δp

l+ 1
2

h − δpl+
1
2

h )ϕh dx ∀ϕh ∈ Ph
1,D, l = 0, . . . ,N − 1

δul
h − δul

h − tδũl
h +∇(plh − plh − tp̃lh) = 0 ∀l = 1, . . . ,N − 1

p0
h − p0

h − tp̃0
h = 0, u

1
2
h −u

1
2
h − tũ

1
2
h = 0.

(5.21)
Following the induction argument in the proof of Theorem 5.3, for every l = 1, . . . ,N , we
obtain the existence of a constant c > 0, independent of νh, such that

∥plh − plh − tp̃lh∥L2(Ω) ≤ ct∥νh − νh∥L∞(Ω)∥δp
l− 1

2
h − δpl−

1
2

h ∥L2(Ω)

≤ c
τ
t∥νh − νh∥L∞(Ω)(∥pl+1

h − pl+1
h ∥L2(Ω) + ∥plh − plh∥L2(Ω)).

Again, by the same induction argument, there exists a constant c̃ > 0, independent of νh,
such that

∥plh − plh∥L2(Ω) ≤ c̃t∥νh − νh∥L∞(Ω) ∀l = 0, . . . ,N.

Consequently,

∥Sh,p(νh) − Sh,p(νh + t(νh − νh))
t

−DSh,p(νh, νh − νh)∥
2

L2(Ω)N+1

=
N

∑
l=0

∥plh − plh − tp̃lh∥2L2(Ω)

t2
≤ (N + 1) c

2

τ 2 c̃
2t2∥νh − νh∥4L∞(Ω) → 0 as t↘ 0,

which proves the directional differentiability of Sh,p at νh into the direction (νh − νh). By
standard argumentation, it follows that

DJh(νh, νh − νh) = τ
N−1
∑
l=0

m

∑
i=1
∫

Ω
ai(tl+ 1

2
)(pl+

1
2

h − pobi (tl+ 1
2
))p̃l+

1
2

h dx + λ(νh, νh − νh)L2(Ω).

Testing the first equation in (5.16) with ϕh = p̃
l+ 1

2
h for every l = 0, . . . ,N − 1 implies that

DJh(νh, νh−νh) = τ
N−1
∑
l=0
∫

Ω
(νhδq

l+ 1
2

h −ηq
l+ 1

2
h )p̃

l+ 1
2

h −v
l+ 1

2
h ⋅∇p̃

l+ 1
2

h dx+λ(νh, νh−νh)L2(Ω). (5.22)

In more detail, we elaborate on the right-hand side of (5.22). First, due to (5.1), it holds
that
N−1
∑
l=0

δq
l+ 1

2
h p̃

l+ 1
2

h =
N−1
∑
l=0

ql+1
h − qlh
τ

p̃l+1
h + p̃lh

2 =
N−1
∑
l=0
(−q

l+1
h + qlh

2
p̃l+1
h − p̃lh
τ

+ q
l+1
h p̃l+1

h

τ
− q

l
hp̃

l
h

τ
) (5.23)
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= −
N−1
∑
l=0

q
l+ 1

2
h δp̃

l+ 1
2

h + 1
τ
qNh

=̄0

p̃Nh −
1
τ
q0
h p̃

0
h®
=0

= −
N−1
∑
l=0

q
l+ 1

2
h δp̃

l+ 1
2

h .

Second, it holds that

N−1
∑
l=0

v
l+ 1

2
h ⋅ ∇p̃l+

1
2

h =®
(5.1)

1
2
N−1
∑
l=0

v
l+ 1

2
h ⋅ ∇p̃l+1

h +
1
2
N−1
∑
l=1

v
l+ 1

2
h ⋅ ∇p̃lh +

1
2v

1
2
h ⋅ ∇ p̃0

h®
=0

(5.24)

= 1
2

N

∑
l=1

v
l− 1

2
h ⋅ ∇p̃lh +

1
2
N−1
∑
l=1

v
l+ 1

2
h ⋅ ∇p̃lh =

N−1
∑
l=1

v
l+ 1

2
h + v

l− 1
2

h

2 ⋅ ∇p̃lh + v
N− 1

2
h²
=0

⋅∇p̃Nh

=®
(5.20)

−
N−1
∑
l=1

v
l+ 1

2
h + v

l− 1
2

h

2 ⋅ ũ
l+ 1

2
h − ũ

l− 1
2

h

τ

=
N−1
∑
l=1

⎛
⎜
⎝

v
l+ 1

2
h − v

l− 1
2

h

τ
⋅ ũ

l+ 1
2

h + ũ
l− 1

2
h

2 − v
l+ 1

2
h ⋅ ũl+ 1

2
h

τ
+ v

l− 1
2

h ⋅ ũl− 1
2

h

τ

⎞
⎟
⎠

=
N−1
∑
l=1

δvlh ⋅
ũ
l+ 1

2
h + ũ

l− 1
2

h

2 − 1
τ

v
N− 1

2
h²
=0

⋅ũN− 1
2

h + 1
τ

v
1
2
h ⋅ ũ

1
2
h

=®
(5.16)

−
N−1
∑
l=1
∇qlh ⋅

ũ
l+ 1

2
h + ũ

l− 1
2

h

2 + 1
τ

v
1
2
h ⋅ ũ

1
2
h .

For the first term of the right-hand side in (5.24), note that

−
N−1
∑
l=1
∇qlh ⋅

ũ
l+ 1

2
h + ũ

l− 1
2

h

2 = −1
2
N−1
∑
l=1
∇qlh ⋅ ũ

l+ 1
2

h − 1
2
N−2
∑
l=0
∇ql+1

h ⋅ ũ
l+ 1

2
h (5.25)

= −1
2
N−1
∑
l=0
∇qlh ⋅ ũ

l+ 1
2

h − 1
2
N−1
∑
l=0
∇ql+1

h ⋅ ũ
l+ 1

2
h + 1

2∇q
0
h ⋅ ũ

1
2
h +

1
2 ∇q

N
h±
=0

⋅ũN− 1
2

h

=®
(5.17)

−
N−1
∑
l=0
∇ql+

1
2

h ⋅ ũl+ 1
2

h + 1
2∇q

0
h ⋅ ũ

1
2
h .

Integrating the second term in the right-hand side of (5.24) over Ω, we obtain that

1
τ ∫Ω

v
1
2
h ⋅ ũ

1
2
h dx = ∫

Ω
−
N−1
∑
l=1

v
l+ 1

2
h − v

l− 1
2

h

τ
⋅ ũ

1
2
h +

1
τ

v
N− 1

2
h²
=0

⋅ũ
1
2
h dx (5.26)

=®
(5.16),(5.20)

∫
Ω

N−1
∑
l=1
∇qlh ⋅Φ′h(νh)(νh − νh)dx =®

(5.9)
∫

Ω

N−1
∑
l=1

qlh(νh − νh)p1 dx

=®
(5.17)
∫

Ω

N−1
∑
l=0

q
l+ 1

2
h (νh − νh)p1 −

1
2q

0
h(νh − νh)p1 −

1
2 q

N
h

=̄0

(νh − νh)p1 dx
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=®
(5.9),(5.20)

∫
Ω

N−1
∑
l=0

q
l+ 1

2
h (νh − νh)p1 −

1
2∇q

0
h ⋅ ũ

1
2
h dx.

Integrating (5.24) over Ω and applying (5.25) and (5.26) to (5.24), it follows that
N−1
∑
l=0
∫

Ω
v
l+ 1

2
h ⋅ ∇p̃l+

1
2

h dx =
N−1
∑
l=0
∫

Ω
−∇ql+

1
2

h ⋅ ũl+ 1
2

h + ql+
1
2

h (νh − νh)p1 dx. (5.27)

Applying (5.23) and (5.27) to (5.22), we conclude that

DJh(νh, νh − νh) = τ
N−1
∑
l=0
∫

Ω
−(νhδp̃

l+ 1
2

h + ηp̃l+
1
2

h )q
l+ 1

2
h +∇ql+

1
2

h ⋅ ũl+ 1
2

h − ql+
1
2

h (νh − νh)p1 dx

+ λ(νh, νh − νh)L2(Ω)

=®
(5.20)

τ
N−1
∑
l=0
∫

Ω
(νh − νh)(δp

l+ 1
2

h − p1)q
l+ 1

2
h dx + λ(νh, νh − νh)L2(Ω).

5.3 Stability
In this subsection, under a suitable CFL-condition, we provide stability results for the
solutions of the discrete state equation and discrete adjoint equation. The proof extends
the argumentation in [43,78] to the present case.

Theorem 5.6. Let Assumption 5.1 hold. Furthermore, let h > 0 and N ∈ N satisfy the
CFL-condition

1
Nh
= τ
h
≤ ccfl ∶=

√
ν−√

2cinv
. (5.28)

Then, there exists a constant C > 0, independent h and N , such that for every νh ∈ Vhad,
the associated unique solution ({plh}Nl=0,{u

l+ 1
2

h }N−1
l=0 ) ∈ (P

h
1,D)N+1 × (DGh

0)N to the leapfrog
scheme (5.8) satisfies

max
l∈{0,...,N−1}

∥δpl+
1
2

h ∥L2(Ω) + max
l∈{1,...,N−1}

∥δul
h∥L2(Ω) + max

l∈{1,...,N−1}
∥∇plh∥L2(Ω) ≤ C (5.29)

max
l∈{0,...,N}

∥plh∥L2(Ω) + max
l∈{0,...,N−1}

∥ul+ 1
2

h ∥L2(Ω) ≤ C. (5.30)

Proof. To begin with, we investigate the initial approximations. Testing the first line in
(5.8) for l = 0 with ϕh = p

1
2
h leads to

∫
Ω
(νhδp

1
2
h + ηp

1
2
h )p

1
2
h −u

1
2
h ⋅ ∇p

1
2
h dx = ∫

Ω
F

1
2p

1
2
h dx

⇔̄
(5.1)
∫

Ω

νh
2τ ((p

1
h)2 − (p0

h)2) + η(p
1
2
h )2 −u

1
2
h ⋅ ∇p

1
2
h dx = ∫

Ω
F

1
2p

1
2
h dx.

Therefore, along with the inverse estimate from Lemma 5.2, it follows that

ν−
τ
∥p

1
2
h ∥2L2(Ω) ≤ ∫Ω

νh
τ
(p

1
2
h )2 dx = ∫

Ω

νh
τ
(p

1
h + p0

h

2 )
2

dx ≤ ∫
Ω

νh
2τ ((p

1
h)2 + (p0

h)2)dx
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≤ ∫
Ω

νh
τ
(p0

h)2 +u
1
2
h ⋅ ∇p

1
2
h dx + F 1

2p
1
2
h dx

≤ ν+
τ
∥p0

h∥2L2(Ω) + (
cinv
h
∥u

1
2
h ∥L2(Ω) + ∥F

1
2 ∥L2(Ω)) ∥p

1
2
h ∥L2(Ω).

Then, applying Young’s inequality, we obtain that

ν−
τ
∥p

1
2
h ∥2L2(Ω) ≤

ν+
τ
∥p0

h∥2L2(Ω) +
τ

2ν−
(cinv
h
∥u

1
2
h ∥L2(Ω) + ∥F

1
2 ∥L2(Ω))

2
+ ν−2τ ∥p

1
2
h ∥2L2(Ω),

such that

ν−
2τ ∥p

1
2
h ∥2L2(Ω) ≤

ν+
τ
∥p0

h∥2L2(Ω) +
τ

2ν−
(cinv
h
∥u

1
2
h ∥L2(Ω) + ∥F

1
2 ∥L2(Ω))

2

≤ ν+
τ
∥p0

h∥2L2(Ω) +
τc2

inv

ν−h2 ∥u
1
2
h ∥2L2(Ω) +

τ

ν−
∥F 1

2 ∥2L2(Ω).

Multiplying both sides with 2τ
ν− and making use of the CFL-condition (5.28) yields that

∥p
1
2
h ∥2L2(Ω) ≤

2ν+
ν−
∥p0

h∥2L2(Ω) +
2τ 2c2

inv

ν2
−h

2 ∥u
1
2
h ∥2L2(Ω) +

2τ 2

ν2
−
∥F 1

2 ∥2L2(Ω) (5.31)

≤®
(5.8),(5.28)

2ν+
ν−
∥Ψhp0∥2L2(Ω) +

1
ν−
∥Φh(νh)∥2L2(Ω) +

2T 2

ν2
−
∥f∥2L1(I,L2(Ω)),

where the inequality ∥F 1
2 ∥L2(Ω) ≤ ∥f∥L1(I,L2(Ω)) follows from F

1
2 = F (t 1

2
) = ∫

t 1
2

0 f(s)ds.
Testing (5.9) with ϕh = ∇yh and utilizing the Poincaré inequality, we obtain the bounded-
ness of {Φh(νh)}h>0 ⊂ L2(Ω). Furthermore, {Ψhp0}h>0 ⊂ L2(Ω) is bounded due to (5.7).
Altogether, concluding from (5.31), we obtain the boundedness of {p

1
2
h}h>0 ⊂ L2(Ω). Now,

testing the first line in (5.8) for l = 0 with ϕh = δp
1
2
h , it holds that

ν−∥δp
1
2
h ∥2L2(Ω) ≤ ∫Ω

νhδ(p
1
2
h )2 dx =®

(5.8)
∫

Ω
(F 1

2 − ηp
1
2
h )δp

1
2
h +Φh(νh) ⋅ ∇δp

1
2
h dx

=®
(5.9)
∫

Ω
(F 1

2 − ηp
1
2
h )δp

1
2
h + (ηp0 + νhp1)δp

1
2
h dx

≤ (∥f∥L1(I,L2(Ω)) + ∥η∥L∞(Ω)(∥p
1
2
h ∥L2(Ω) + ∥p0∥L2(Ω)) + ν+∥p1∥L2(Ω))∥δp

1
2
h ∥L2(Ω),

which leads to the boundedness of {δp
1
2
h}h>0 ⊂ L2(Ω). Furthermore, it holds that

∥δu1
h∥L2(Ω) =®

(5.8)

∥∇p1
h∥L2(Ω) =®

(5.1)

∥∇(p0
h + τδp

1
2
h )∥L2(Ω) ≤®

Lem.5.2

∥∇Ψh(p0)∥L2(Ω) +
cinvτ

h
∥δp

1
2
h ∥L2(Ω)

≤®
(5.28)

∥∇Ψh(p0)∥L2(Ω) + cinvccfl∥δp
1
2
h ∥L2(Ω).
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Along with (5.7), the above inequality implies the boundedness of {δu1
h}h>0 ⊂ L2(Ω).

Now, let l ∈ {1, . . . ,N − 1} be arbitrarily fixed. Testing the first line in (5.8) for l and l− 1
with ϕh = δp

l+ 1
2

h + δpl−
1
2

h leads to

∫
Ω
(νhδp

l+ 1
2

h + ηpl+
1
2

h )(δp
l+ 1

2
h + δpl−

1
2

h ) −u
l+ 1

2
h ⋅ ∇(δpl+

1
2

h + δpl−
1
2

h )dx = ∫Ω
F l+ 1

2 (δpl+
1
2

h + δpl−
1
2

h )dx
(5.32)

and

∫
Ω
(νhδp

l− 1
2

h + ηpl−
1
2

h )(δp
l+ 1

2
h + δpl−

1
2

h ) −u
l− 1

2
h ⋅ ∇(δpl+

1
2

h + δpl−
1
2

h )dx = ∫Ω
F l− 1

2 (δpl+
1
2

h + δpl−
1
2

h )dx.
(5.33)

Subtracting (5.33) from (5.32) provides that

∫
Ω
νh(δp

l+ 1
2

h − δpl−
1
2

h )(δp
l+ 1

2
h + δpl−

1
2

h ) + η(p
l+ 1

2
h − pl−

1
2

h )(δp
l+ 1

2
h + δpl−

1
2

h )dx (5.34)

= ∫
Ω
(ul+ 1

2
h −u

l− 1
2

h ) ⋅ ∇(δp
l+ 1

2
h + δpl−

1
2

h ) + (F l+ 1
2 − F l− 1

2 )(δpl+
1
2

h + δpl−
1
2

h )dx.

Now, for some arbitraryN0 ∈ {1, . . . ,N−1}, we sum up the equation (5.34) for k = 1, . . . ,N0
and investigate the resulting terms seperately. For the first term, we obtain that

N0

∑
l=1
∫

Ω
νh(δp

l+ 1
2

h − δpl−
1
2

h )(δp
l+ 1

2
h + δpl−

1
2

h )dx = ∥
√
νhδp

N0+ 1
2

h ∥2L2(Ω) − ∥
√
νhδp

1
2
h ∥2L2(Ω) (5.35)

≥ ν−∥δp
N0+ 1

2
h ∥2L2(Ω) − ν+∥δp

1
2
h ∥2L2(Ω).

Furthermore, it holds that

N0

∑
l=1
∫

Ω
η(pl+

1
2

h − pl−
1
2

h )(δp
l+ 1

2
h + δpl−

1
2

h )dx =®
(5.1)

τ

2
N0

∑
l=1
∫

Ω
η(δpl+

1
2

h + δpl−
1
2

h )2 dx ≥ 0. (5.36)

Moreover, we have that

N0

∑
l=1
∫

Ω
(ul+ 1

2
h −u

l− 1
2

h ) ⋅ ∇(δp
l+ 1

2
h + δpl−

1
2

h )dx =®
(5.2)

τ
N0

∑
l=1
∫

Ω
δul

h ⋅ ∇(δp
l+ 1

2
h + δpl−

1
2

h )dx (5.37)

=®
(5.1)

N0

∑
l=1
∫

Ω
δul

h ⋅ ∇(pl+1
h − plh) + δul

h ⋅ ∇(plh − pl−1
h )dx

=®
(5.8)
∫

Ω
−
N0−1
∑
l=1

δul
h ⋅ (δul+1

h − δul
h) −

N0

∑
l=2
δul

h ⋅ (δul
h − δul−1

h )dx

+ ∫
Ω
δuN0

h ⋅ ∇(p
N0+1
h − pN0

h ) + δu1
h ⋅ ∇(p1

h − p0
h)dx

= ∫
Ω
−
N0−1
∑
l=1

δul
h ⋅ (δul+1

h − δul
h) −

N0−1
∑
l=1

δul+1
h ⋅ (δul+1

h − δul
h)dx

+ τ ∫
Ω
δuN0

h ⋅ ∇δp
N0+ 1

2
h + δu1

h∇δp
1
2
h dx
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= ∫
Ω
−
N0−1
∑
l=1
(δul+1

h + δul
h) ⋅ (δul+1

h − δul
h)dx + τ ∫Ω

δuN0
h ⋅ ∇δp

N0+ 1
2

h + δu1
h∇δp

1
2
h dx

= −∥δuN0
h ∥2L2(Ω) + ∥δu1

h∥2L2(Ω) + τ ∫Ω
δuN0

h ⋅ ∇δp
N0+ 1

2
h + δu1

h∇δp
1
2
h dx

≤ −∥δuN0
h ∥2L2(Ω) + ∥δu1

h∥2L2(Ω) +
1
2∥δu

N0
h ∥2L2(Ω) +

τ 2

2 ∥∇δp
N0+ 1

2
h ∥2L2(Ω) +

1
2∥δu

1
h∥2L2(Ω)

+ τ
2

2 ∥∇δp
1
2
h ∥2L2(Ω)

≤®
Lem.5.2

−1
2∥δu

N0
h ∥2L2(Ω) +

3
2∥δu

1
h∥2L2(Ω) +

c2
invτ

2

2h2 ∥δp
N0+ 1

2
h ∥2L2(Ω) +

c2
invτ

2

2h2 ∥δp
1
2
h ∥2L2(Ω)

≤®
(5.28)

−1
2∥δu

N0
h ∥2L2(Ω) +

3
4∥δu

1
h∥2L2(Ω) +

ν−
4 ∥δp

N0+ 1
2

h ∥2L2(Ω) +
ν−
4 ∥δp

1
2
h ∥2L2(Ω).

Taking the last term from (5.34) into account, we observe that
N0

∑
l=1
∫

Ω
(F l+ 1

2 − F l− 1
2 )(δpl+

1
2

h + δpl−
1
2

h )dx ≤
N0

∑
l=1
∥F l+ 1

2 − F l− 1
2 ∥L2(Ω)(∥δp

l+ 1
2

h ∥L2(Ω) + ∥δp
l− 1

2
h ∥L2(Ω))

=
N0

∑
l=1
∥F l+ 1

2 − F l− 1
2 ∥L2(Ω)∥δp

l+ 1
2

h ∥L2(Ω) +
N0−1
∑
l=0
∥F l+ 3

2 − F l+ 1
2 ∥L2(Ω)∥δp

l+ 1
2

h ∥L2(Ω) (5.38)

=
N0−1
∑
l=1
(∥F l+ 1

2 − F l− 1
2 ∥L2(Ω) + ∥F l+ 3

2 − F l+ 1
2 ∥L2(Ω))∥δp

l+ 1
2

h ∥L2(Ω)

+ ∥FN0+ 1
2 − FN0− 1

2 ∥L2(Ω)∥δp
N0+ 1

2
h ∥L2(Ω) + ∥F

3
2 − F 1

2 ∥L2(Ω)∥δp
1
2
h ∥L2(Ω).

Since F (t) = ∫
t

0 f(s)ds for every t ∈ I, it holds for all l ∈ {1, . . . ,N − 1} that

∥F l+ 1
2 − F l− 1

2 ∥L2(Ω) = ∥F (tl+ 1
2
) − F (tl− 1

2
)∥L2(Ω) =

XXXXXXXXXXX
∫

t
l+ 1

2

t
l− 1

2

f(s)ds
XXXXXXXXXXX
≤ ∥f∥L1(I,L2(Ω)). (5.39)

Applying (5.39) to (5.38) along with Young’s inequality, it follows that
N0

∑
l=1
∫

Ω
(F l+ 1

2 − F l− 1
2 )(δpl+

1
2

h + δpl−
1
2

h )dx (5.40)

≤
N0−1
∑
l=1
(∥F l+ 1

2 − F l− 1
2 ∥L2(Ω) + ∥F l+ 3

2 − F l+ 1
2 ∥L2(Ω))∥δp

l+ 1
2

h ∥L2(Ω) +
2
ν−
∥f∥2L1(I,L2(Ω))

+ ν−4 ∥δp
N0+ 1

2
h ∥2L2(Ω) +

ν−
4 ∥δp

1
2
h ∥2L2(Ω).

Now, applying (5.35)-(5.37), and (5.40) to (5.34), we obtain that

ν−∥δp
N0+ 1

2
h ∥2L2(Ω) − ν+∥δp

1
2
h ∥2L2(Ω)

≤ −1
2∥δu

N0
h ∥2L2(Ω) +

3
2∥δu

1
h∥2L2(Ω) +

ν−
2 ∥δp

N0+ 1
2

h ∥2L2(Ω) +
ν−
2 ∥δp

1
2
h ∥2L2(Ω)

+
N0−1
∑
l=1
(∥F l+ 1

2 − F l− 1
2 ∥L2(Ω) + ∥F l+ 3

2 − F l+ 1
2 ∥L2(Ω))∥δp

l+ 1
2

h ∥L2(Ω) +
2
ν−
∥f∥2L1(I,L2(Ω)).
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Rearranging yields that

ν−
2 ∥δp

N0+ 1
2

h ∥2L2(Ω) +
1
2∥δu

N0
h ∥2L2(Ω) (5.41)

≤ (ν+ +
ν−
2 ) ∥δp

1
2
h ∥2L2(Ω) +

3
2∥δu

1
h∥2L2(Ω)

+
N0−1
∑
l=1
(∥F l+ 1

2 − F l− 1
2 ∥L2(Ω) + ∥F l+ 3

2 − F l+ 1
2 ∥L2(Ω))∥δp

l+ 1
2

h ∥L2(Ω) +
2
ν−
∥f∥2L1(I,L2(Ω)).

Defining

γ ∶= 2 min{ν−,1}−1,

α ∶= (ν+ +
ν−
2 ) ∥δp

1
2
h ∥2L2(Ω) +

3
2∥δu

1
h∥2L2(Ω) +

2
ν−
∥f∥2L1(I,L2(Ω)),

hl ∶= ∥F l+ 1
2 − F l− 1

2 ∥L2(Ω) + ∥F l+ 3
2 − F l+ 1

2 ∥L2(Ω) ∀l ∈ {1, . . . ,N − 2},

I0 ∶= {l ∈ {1, . . . ,N0 − 1} ∶ ∥δpl+
1
2

h ∥L2(Ω) ≥ 1}, J0 ∶= {1, . . . ,N0 − 1} ∖ I0,

the inequality (5.41) is equivalent to

∥δpN0+ 1
2

h ∥2L2(Ω) + ∥δu
N0
h ∥2L2(Ω) ≤ γα + γ∑

l∈J0

hl∥δp
l+ 1

2
h ∥L2(Ω) + γ∑

l∈I0

hl∥δp
l+ 1

2
h ∥L2(Ω) (5.42)

≤ γα + γ∑
l∈J0

hl + γ∑
l∈I0

hl(∥δp
l+ 1

2
h ∥2L2(Ω) + ∥δul

h∥2L2(Ω)).

By definition, it holds that

N0−1
∑
l=1

hl =
N0−1
∑
l=1
(∥F l+ 1

2 − F l− 1
2 ∥L2(Ω) + ∥F l+ 3

2 − F l+ 1
2 ∥L2(Ω)) (5.43)

=
N0−1
∑
l=1

⎛
⎝
∥∫

tl+τ/2

tl−τ/2
f(s)ds∥

L2(Ω)
+ ∥∫

tl+1+τ/2

tl+1−τ/2
f(s)ds∥

L2(Ω)

⎞
⎠

≤
N0−1
∑
l=1
∫

tl+τ/2

tl−τ/2
∥f(s)∥L2(Ω) ds +

N0−1
∑
l=1
∫

tl+1+τ/2

tl+1−τ/2
∥f(s)∥L2(Ω) ds ≤ 2∥f∥L1(I,L2(Ω)).

Applying (5.43) to (5.42), it follows that

∥δpN0+ 1
2

h ∥2L2(Ω) + ∥δu
N0
h ∥2L2(Ω) ≤ γ(α + 2∥f∥L1(I,L2(Ω))) + γ∑

l∈I0

hl(∥δp
l+ 1

2
h ∥2L2(Ω) + ∥δul

h∥2L2(Ω)).

Now, the discrete Gronwall lemma (cf. [23]) implies that

∥δpN0+ 1
2

h ∥2L2(Ω) + ∥δu
N0
h ∥2L2(Ω) ≤ γ(α + 2∥f∥L1(I,L2(Ω))) exp(γ

N0−1
∑
l=1

hl)

≤®
(5.43)

γ(α + 2∥f∥L1(I,L2(Ω))) exp (2γ∥f∥L1(I,L2(Ω))) .
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Since this inequality holds for all N0 ∈ {1, . . . ,N − 1}, along with the boundedness of
{δp

1
2
h}h>0 ⊂ L2(Ω) and (5.8), we conclude that the claim (5.29) is valid. Furthermore, by

(5.1) along with the triangular inequality, we obtain that

∥pl+1
h ∥L2(Ω) ≤ ∥plh∥L2(Ω) + τ∥δp

l+ 1
2

h ∥L2(Ω) ≤ ∥plh∥L2(Ω) + τC ∀l ∈ {0, . . . ,N − 1}.

By induction and since τ = 1
N , this leads to

∥pl+1
h ∥L2(Ω) ≤ (l + 1)τC + ∥p0

h∥L2(Ω) ≤ C + ∥p0
h∥L2(Ω) ∀l ∈ {0, . . . ,N − 1}.

Analogously, we conclude

∥ul+ 1
2

h ∥L2(Ω) ≤ C + ∥u
1
2
h ∥L2(Ω) ∀l ∈ {0, . . . ,N − 1}.

Thus, the second claim (5.30) is also valid.

Corollary 5.7. Let Assumption 5.1 hold, and for every h > 0, let 1
τ = N = N(h) ∈ N satisfy

the CFL-condition (5.28). Furthermore, let ({qlh}Nl=0,{v
l+ 1

2
h }N−1

l=0 ) ∈ (P
h
1,D)N+1 × (DGh

0)N
denote the unique solution to the discrete adjoint system (5.16) associated with νh ∈ Vhad
and ({plh}Nl=0,{u

l+ 1
2

h }N−1
l=0 ) ∈ (P

h
1,D)N+1 × (DGh

0)N . Then, there exists a constant C > 0,
independent h and N , such that

max
l∈{0,...,N−1}

∥δql+
1
2

h ∥L2(Ω) + max
l∈{1,...,N−1}

∥δvlh∥L2(Ω) + max
l∈{1,...,N−1}

∥∇qlh∥L2(Ω) ≤ C

max
l∈{0,...,N}

∥qlh∥L2(Ω) + max
l∈{0,...,N−1}

∥vl+
1
2

h ∥L2(Ω) ≤ C.

Proof. We define ({q̂lh}Nl=0,{v̂
l+ 1

2
h }N−1

l=0 ) ∶= ({qN−lh }Nl=0,{−v
N−l− 1

2
h }N−1

l=0 ) ∈ (P
h
1,D)N+1×(DGh

0)N .
Then, (5.16) implies that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(ν̂hδq̂

l+ 1
2

h + ηq̂l+
1
2

h )ϕh − v̂
l+ 1

2
h ⋅ ∇ϕh dx = −

m

∑
i=1
∫

Ω
ai(tN−l− 1

2
)(pN−l−

1
2

h − pobi (tN−l− 1
2
))ϕh dx

∀ϕh ∈ Ph
1,D, l = 0, . . . ,N − 1

δv̂lh +∇q̂lh = 0 ∀l = 1, . . . ,N − 1

q̂0
h = 0, v̂

1
2
h = 0,

where {δq̂l+
1
2

h }N−1
l=0 , {q̂l+

1
2

h }N−1
l=0 , and {δv̂lh}N−1

l=1 are defined analog to (5.17) and (5.18). Fur-
thermore, we have that

hl ∶= ∥
m

∑
i=1
(ai(tN−l− 1

2
) (pN−l−

1
2

h − pobi (tN−l− 1
2
)) − ai(tN−l+ 1

2
) (pN−l+

1
2

h − pobi (tN−l+ 1
2
)))∥

L2(Ω)

+ ∥
m

∑
i=1
(ai(tN−l− 3

2
) (pN−l−

3
2

h − pobi (tN−l− 3
2
)) − ai(tN−l− 1

2
) (pN−l−

1
2

h − pobi (tN−l− 1
2
)))∥

L2(Ω)

≤ ∥
m

∑
i=1
(ai(tN−l− 1

2
) (pN−l−

1
2

h − pobi (tN−l− 1
2
) − pN−l+

1
2

h + pobi (tN−l+ 1
2
)))∥

L2(Ω)
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+ ∥
m

∑
i=1
(ai(tN−l− 1

2
) − ai(tN−l+ 1

2
))(pN−l+

1
2

h − pobi (tN−l+ 1
2
))∥

L2(Ω)

+ ∥
m

∑
i=1
(ai(tN−l− 3

2
) (pN−l−

3
2

h − pobi (tN−l− 3
2
) − pN−l−

1
2

h + pobi (tN−l− 1
2
)))∥

L2(Ω)

+ ∥
m

∑
i=1
(ai(tN−l− 3

2
) − ai(tN−l− 1

2
))(pN−l−

1
2

h − pobi (tN−l− 1
2
))∥

L2(Ω)

≤®
(5.1),(5.30)

m

∑
i=1
∥ai∥C(I,L∞(Ω))

⎛
⎝
τ

2∥δp
N−l− 1

2
h ∥L2(Ω)+

τ

2∥δp
N−l+ 1

2
h ∥L2(Ω)+

XXXXXXXXXXX
∫

t
N−l+ 1

2

t
N−l− 1

2

∂tp
ob
i (s)ds

XXXXXXXXXXXL2(Ω)

⎞
⎠

+
m

∑
i=1
∥ai∥C(I,L∞(Ω))

⎛
⎜
⎝
τ

2∥δp
N−l− 3

2
h ∥L2(Ω) +

τ

2∥δp
N−l− 1

2
h ∥L2(Ω) +

XXXXXXXXXXX
∫

t
N−l− 1

2

t
N−l− 3

2

∂tp
ob
i (s)ds

XXXXXXXXXXXL2(Ω)

⎞
⎟
⎠

+
m

∑
i=1

⎛
⎜
⎝

XXXXXXXXXXX
∫

t
N−l+ 1

2

t
N−l− 1

2

∂tai(s)ds
XXXXXXXXXXXL∞(Ω)

+
XXXXXXXXXXX
∫

t
N−l− 1

2

t
N−l− 3

2

∂tai(s)ds
XXXXXXXXXXXL∞(Ω)

⎞
⎟
⎠
(C + ∥pobi ∥C(I,L2(Ω)))

for every l ∈ {0,⋯,N − 2}. Summing the inequalities and using (5.29), it follows that
N−2
∑
l=0

hl ≤ 2
m

∑
i=1
∥ai∥C(I,L∞(Ω)) (C+∥∂tpobi ∥L1(I,L2(Ω)))+2

m

∑
i=1
∥∂tai∥L1(I,L∞(Ω))(C+∥pobi ∥C(I,L2(Ω))).

Since the right-hand side is independent of h and N , the claim follows by the exact
argumentation as in the proof of Theorem 5.6.

5.4 Convergence

Given h > 0, N ∈ N, and ({plh}Nl=0,{u
l+ 1

2
h }N−1

l=0 ) ∈ (P
h
1,D)N+1 × (DGh

0)N , let us define the
interpolations

Λp
N,h,Π

p
N,h,Θ

p
N,h∶ I → Ph

1,D, Λu
N,h,Πu

N,h∶ I →DGh
0 ,

FN,h, p
ob
i,N,h∶ I → L2(Ω), ai,N,h∶ I → L∞(Ω),

by

Λp
N,h(t) ∶=

⎧⎪⎪⎨⎪⎪⎩

p0
h if t = 0

plh + (t − tl)δp
l+ 1

2
h if t ∈ (tl, tl+1] for some l ∈ {0, . . . ,N − 1}

(5.44)

Πp
N,h(t) ∶=

⎧⎪⎪⎨⎪⎪⎩

p0
h if t = 0

p
l+ 1

2
h if t ∈ (tl, tl+1] for some l ∈ {0, . . . ,N − 1}

(5.45)

Θp
N,h(t) ∶= {

p0
h if t = 0
plh if t ∈ (tl, tl+1] for some l ∈ {0, . . . ,N − 1}

(5.46)

Λu
N,h(t) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u
1
2
h if t = 0

u
l− 1

2
h + (t − tl)δul

h if t ∈ (tl, tl+1] for some l ∈ {0, . . . ,N − 1}
(5.47)

93



5 - Numerical Analysis of a Fully Discrete Approximation

Πu
N,h(t) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u
1
2
h if t = 0

u
l+ 1

2
h if t ∈ (tl, tl+1] for some l ∈ {0, . . . ,N − 1}

(5.48)

FN,h(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

F (0) if t = 0
F (tl+ 1

2
) if t ∈ (tl, tl+1] for some l ∈ {0, . . . ,N − 1} (5.49)

ai,N,h(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

ai(0) if t = 0
ai(tl+ 1

2
) if t ∈ (tl, tl+1] for some l ∈ {0, . . . ,N − 1} (5.50)

pobi,N,h(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

pobi (0) if t = 0
pobi (tl+ 1

2
) if t ∈ (tl, tl+1] for some l ∈ {0, . . . ,N − 1} (5.51)

for all i = 1, . . . ,m. In a completely analog manner, the corresponding interpolations of
the discrete adjoint ({qlh}Nl=0,{v

l+ 1
2

h }N−1
l=0 ) variables are denoted by

Λq
N,h,Π

q
N,h,Θ

q
N,h∶ I → Ph

1,D, Λv
N,h,Πv

N,h∶ I →DGh
0 .

Suppose that ({plh}Nl=0,{u
l+ 1

2
h }N−1

l=0 ) solves the leapfrog scheme (5.8) associated with νh.
Then, the corresponding interpolations satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(νh∂tΛp

N,h(t) + ηΠp
N,h(t))ϕh −Πu

N,h(t) ⋅ ∇ϕh dx = ∫
Ω
FN,hϕh dx

for all ϕh ∈ Ph
1,D and a.e. t ∈ I

∂tΛu
N,h(t) + ∇Θp

N,h(t) = 0 for a.e. t ∈ I
(Λp

N,h,Λu
N,h)(0) = (Ψh(p0),Φh(νh)).

(5.52)

Moreover, if νh, ({plh}Nl=0,{u
l+ 1

2
h }N−1

l=0 ), and ({qlh}Nl=0,{v
l+ 1

2
h }N−1

l=0 ) satisfy the first-order nec-
essary optimality condition for (Ph) (see (5.8), (5.16), and (5.19)), the corresponding
interpolations fulfill

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(νh∂tΛp

N,h(t) + ηΠp
N,h(t))ϕh −Πu

N,h(t) ⋅ ∇ϕh dx = ∫
Ω
FN,h(t)ϕh dx

for all ϕh ∈ Ph
1,D and a.e. t ∈ I

∂tΛu
N,h(t) + ∇Θp

N,h(t) = 0 for a.e. t ∈ I
(Λp

N,h,Λu
N,h)(0) = (Ψh(p0),Φh(νh))

(5.53)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
(νh∂tΛq

N,h(t) − ηΠq
N,h(t))ϕh −Πv

N,h(t) ⋅ ∇ϕh dx

=
m

∑
i=1
∫

Ω
ai,N,h(t)(Πp

N,h(t) − pobi,N,h(t))ϕh dx for all ϕh ∈ Ph
1,D and a.e. t ∈ I

∂tΛv
N,h(t) + ∇Θq

N,h(t) = 0 for all a.e. t ∈ I
(Λq

N,h,Λv
N,h)(T ) = (0,0)

(5.54)

(∫
I
(∂tΛp

N,h(t) − p1)Πq
N,h(t)dt + λνh, νh − νh)

L2(Ω)
≥ 0 for all νh ∈ Vhad. (5.55)
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5.4 Convergence

Lemma 5.8. Let Assumption 5.1 hold. Furthermore, let {vh}h>0 with νh ∈ Vhad for all
h > 0 converge weakly in L2(Ω) towards some ν ∈ Vad for h→ 0. Then, it holds that

Φh(νh) ⇀ Φ(ν) weakly in L2(Ω) as h→ 0.

Proof. For every h > 0, we set Φh(νh) = ∇yh where yh ∈ Ph
1,D is according to (5.9) the

unique solution to

∫
Ω
∇yh ⋅ ∇ϕh dx = ∫

Ω
(ηp0 + νp1)ϕh dx ∀ϕh ∈ Ph

1,D . (5.56)

Testing (5.56) with ϕh = yh, along with the Poincaré inequality, we obtain the boundedness
of {yh}h>0 ⊂ H1

D(Ω). Therefore, there exists a subsequence (still denoted by the same
symbol) and a y ∈H1

D(Ω) such that

yh ⇀ y weakly in H1(Ω) as h→ 0. (5.57)

Now, let ϕ ∈ C∞D (Ω) be arbitrarily fixed. Then, testing (5.56) with ϕh = Ihϕ ∈ Ph
1,D (see

(5.3)) and passing to the limit h→ 0, we obtain that

∫
Ω
∇y⋅∇ϕdx = lim

h→0∫Ω
∇yh⋅∇Ihϕdx = lim

h→0∫Ω
(ηp0+νhp1)Ihϕdx = ∫

Ω
(ηp0+νp1)ϕdx, (5.58)

where we have used (5.4), (5.5), (5.57), and the weak convergence νh ⇀ ν in L2(Ω) as
h→ 0. In conclusion

∫
Ω
∇y ⋅ ∇ϕdx = ∫

Ω
(ηp0 + νp1)ϕdx ∀ϕ ∈ C∞D (Ω). (5.59)

Since H1
D(Ω) = C∞D (Ω)

∥⋅∥H1(Ω) , it follows that

∫
Ω
∇y ⋅ ∇ϕdx = ∫

Ω
(ηp0 + νp1)ϕdx ∀ϕ ∈H1

D(Ω) ⇒®
(3.6)

∇y = Φ(ν).

Theorem 5.9. Let Assumption 5.1 hold and for every h > 0, let 1
τ = N = N(h) ∈ N

satisfy the CFL-condition (5.28). Furthermore, let {νh}h>0 with νh ∈ Vhad for all h >
0 converge weakly in L2(Ω) towards ν ∈ Vad. Then, the interpolations of the solution
({plh}Nl=0,{u

l+ 1
2

h }N−1
l=0 ) ∈ (P

h
1,D)N+1 × (DGh

0)N to (5.8) satisfy

Λp
N,h → p in C(I,L2(Ω)) as h→ 0

Θp
N,h,Π

p
N,h → p in L∞(I,L2(Ω)) as h→ 0,

where p ∈ C1(I,L2(Ω)) ∩ C(I,H1
D(Ω)) is the first component of the unique solution to

(3.9) associated with ν.

Proof. By Theorem 5.6, along with the definitions of the interpolations (see (5.44)-(5.48)),
the families

{Λp
N,h}h>0,{Π

p
N,h}h>0,{Θ

p
N,h}h>0,{∂tΛ

p
N,h}h>0 ⊂ L∞(I,L2(Ω))
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{∇Θp
N,h}h>0,{Λu

N,h}h>0,{Πu
N,h}h>0,{∂tΛu

N,h}h>0 ⊂ L∞(I,L2(Ω))

are bounded. Furthermore, it holds for every t ∈ (tl, tl+1] and l = 0, . . . ,N − 1 that

∥∇Λp
N,h(t)∥L2(Ω) =®

(5.44)

∥∇(plh + (t − tl)δp
l+ 1

2
h )∥L2(Ω) ≤®

(5.1)

∥∇plh∥L2(Ω) + ∥∇(pl+1
h − plh)∥L2(Ω),

such that {∇Λp
N,h}h>0 ⊂ L∞(I,L2(Ω)) is also bounded due to Theorem 5.6. Moreover, by

the Aubin-Lions lemma, the following embedding is compact:

{p ∈ L∞(I,H1(Ω)) ∶ ∂tp ∈ L∞(I,L2(Ω))} c↪ C(I,L2(Ω)).

Therefore, we find a subsequence (denoted by the same symbol) and a p ∈ C(I,L2(Ω)),
such that

Λp
N,h → p in C(I,L2(Ω)) as h→ 0. (5.60)

Furthermore, it holds that

∥Λp
N,h −Θp

N,h∥L∞(I,L2(Ω)) ≤®
(5.44),(5.46)

max
l∈{0,...,N−1}

τ∥δpl+
1
2

h ∥L2(Ω) ≤®
Thm.5.6

τC ≤®
(5.28)

ccflhC → 0 as h→ 0

∥Θp
N,h −Πp

N,h∥L∞(I,L2(Ω)) ≤®
(5.45),(5.46)

max
l∈{0,...,N−1}

∥plh − p
l+ 1

2
h ∥L2(Ω) =®

(5.1)

1
2 max
l∈{0,...,N−1}

∥pl+1
h − plh∥L2(Ω)

=®
(5.1)

max
l∈{0,...,N−1}

τ

2∥δp
l+ 1

2
h ∥L2(Ω) ≤®

Thm.5.6

τC

2 ≤®
(5.28)

ccflhC

2 → 0 as h→ 0,

such that, along with (5.60), it follows that

Θp
N,h,Π

p
N,h → p in L∞(I,L2(Ω)) as h→ 0. (5.61)

On the other hand, due to the Banach-Alaoglu theorem, there exist subsequences (still
denoted by the same indices), p̃ ∈ L∞(I,L2(Ω)), and v,u, û, ũ ∈ L∞(I,L2(Ω)) such that

∂tΛp
N,h

∗⇀ p̃ weakly-* in L∞(I,L2(Ω)) (5.62)

∇Θp
N,h

∗⇀ v, Λu
N,h

∗⇀ u, Πu
N,h

∗⇀ û, ∂tΛu
N,h

∗⇀ ũ weakly-* in L∞(I,L2(Ω)). (5.63)

By standard argumentation, it follows that p̃ = ∂tp, v = ∇p, and ũ = ∂tu. As above, we
obtain that

∥Λu
N,h −Πu

N,h∥L∞(I,L2(Ω)) ≤®
(5.47),(5.48)

max
l∈{0,...,N−1}

(∥ul− 1
2

h −u
l+ 1

2
h ∥L2(Ω) + τ∥δul

h∥L2(Ω)) (5.64)

=®
(5.2)

max
l∈{0,...,N−1}

2τ∥δul
h∥L2(Ω) ≤®

Thm.5.6

2τC ≤®
(5.28)

2ccflhC → 0, as h→ 0,

such that, along with (5.63), it follows u = û. Next, let us prove that (p,u) is the unique
solution to (3.9) associated with ν. Let t ∈ I ∖ {0} be arbitrarily given. Then, for every
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h > 0, there exists some l(h) ∈ {0, . . . ,N(h) − 1} such that t ∈ (tl(h), tl(h)+1]. In particular,
we have that tl(h)+ 1

2
→ t as h→ 0, and since F ∈W 1,1(I,L2(Ω)), this implies that

∥F ob
N,h(t) − F (t)∥L2(Ω) =®

(5.49)

∥F (tl(h)+ 1
2
) − F (t)∥L2(Ω) ≤ ∫

t
l(h)+ 1

2

t
∥∂tF (s)∥L2(Ω) ds→ 0 (5.65)

as h→ 0. Along with ∥FN,h(t)∥L2(Ω) ≤ ∥F ∥C(I,L2(Ω)) for every t ∈ I (see (5.49)), Lebesgue’s
dominated convergence theorem implies that

FN,h → F in L2(I,L2(Ω)) as h→ 0. (5.66)

Furthermore, since {νh}h>0 converges weakly in L2(Ω) towards ν, along with (5.60), it
holds that for every ϕ ∈ L2(I,C∞(Ω)) that

∣(νhΛp
N,h − νp, ϕ)L2(I,L2(Ω))∣ (5.67)

≤ ∣(νh(Λp
N,h − p), ϕ)L2(I,L2(Ω))∣ + ∣((νh − ν)ϕ, p)L2(I,L2(Ω))∣

≤ ∣((νh − ν)ϕ, (Λp
N,h − p))L2(I,L2(Ω))∣+∣((Λp

N,h − p), νϕ)L2(I,L2(Ω))∣+∣((νh − ν)ϕ, p)L2(I,L2(Ω))∣
→ 0 as h→ 0.

Due to (5.60) and νh ∈ Vad for every h > 0, the sequence {νhΛp
N,h}h>0 ⊂ L2(I,L2(Ω)) is

bounded. Thus, along with the density C∞(I,L2(Ω)) ⊂ L2(I,L2(Ω)), (5.67) implies that

νhΛp
N,h ⇀ νp weakly in L2(I,L2(Ω)) as h→ 0. (5.68)

Moreover, for every ϕ ∈ C∞0 (I,L2(Ω)), it holds for h→ 0 that

(νh∂tΛp
N,h, ϕ)L2(I,L2(Ω)) = −(νhΛp

N,h, ∂tϕ)L2(I,L2(Ω)) (5.69)
→®

(5.68)

−(νp, ∂tϕ)L2(I,L2(Ω)) = (ν∂tp, ϕ)L2(I,L2(Ω)).

Due to (5.62) and again νh ∈ Vad for every h > 0, the sequence {νh∂tΛp
N,h}h>0 ⊂ L2(I,L2(Ω))

is also bounded. Thus, along with the density C∞0 (I,L2(Ω) ⊂ L2(I,L2(Ω)), (5.69) implies
that

νh∂tΛp
N,h ⇀ ν∂tp weakly in L2(I,L2(Ω)) as h→ 0. (5.70)

Using the Ph
1-interpolation operator Ih (see (5.3)), we deduce for every ϕ ∈ C∞D (Ω) and

ψ ∈ C∞0 (I) that

∫
I
∫

Ω
(ν∂tp(t) + ηp(t))ϕ −u(t) ⋅ ∇ϕdxψ(t)dt

=®
(5.5),(5.61),(5.63),(5.70)

lim
h→0∫I ∫Ω

(νh∂tΛp
N,h(t) + ηΠp

N,h(t))Ihϕ −Πu
N,h(t) ⋅ ∇(Ihϕ)dxψ(t)dt

=®
(5.52)

lim
h→0∫I ∫Ω

FN,h(t)Ihϕdxψ(t)dt =®
(5.5),(5.66)

∫
I
∫

Ω
F (t)ϕdxψ(t)dt.

97



5 - Numerical Analysis of a Fully Discrete Approximation

Since H1
D(Ω) = C∞D (Ω)

∥⋅∥H1(Ω) , it follows that

∫
Ω
(ν∂tp(t) + ηp(t))ϕ −u(t) ⋅ ∇ϕdx = ∫

Ω
F (t)ϕdx for all ϕ ∈H1

D(Ω) and a.e. t ∈ I.
(5.71)

Furthermore, by (5.63) and (5.52), we obtain that

∂tu = −∇p. (5.72)

Regarding the initial conditions, it holds that

p(0) =®
(5.60)

lim
h→0

Λp
N,h(0) =®

(5.52)

lim
h→0

Ψh(p0) =®
(5.7)

p0 in L2(Ω). (5.73)

Let ϕ ∈ L2(Ω) be arbitrarily fixed and ξ ∈ C∞(I) such that ξ(T ) = 0 and ξ(0) = 1. We
define [ϕξ] ∈ C∞(I,L2(Ω)) by [ϕξ](t)(x) = ϕ(x)ξ(t) for all t ∈ I and a.e. x ∈ Ω. Then,
along with the integration by parts formula, it follows that

(ϕ,Φ(ν))L2(Ω) =®
Lem.5.8

lim
h→0
(ϕ,Φh(νh))L2(Ω) =®

(5.52)

lim
h→0
(ϕ,Λu

N,h(0))L2(Ω)

= lim
h→0
(−∫

I
(ϕ, ∂tΛu

N,h(t))L2(Ω)ξ(t)dt − ∫
I
(ϕ,Λu

N,h(t))L2(Ω)∂tξ(t)dt)

=®
(5.63)

−∫
I
(ϕ, ∂tu(t))L2(Ω)ξ(t)dt − ∫

I
(ϕ,u(t))L2(Ω)∂tξ(t)dt

= (ϕ,u(0))L2(Ω).

Since ϕ ∈ L2(Ω) was chosen arbitrarily, this implies u(0) = Φ(ν). Along with (5.71)-
(5.73), (p,u) ∈ W 1,∞(I,L2(Ω)) ∩ L2(I,H1

D(Ω)) × W 1,∞(I,L2(Ω)) ∩ L2(I,HN(div,Ω))
satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∂tp + ηp + div u = F in I ×Ω
∂tu +∇p = 0 in I ×Ω
p = 0 on I × ΓD
u ⋅n = 0 on I × ΓN
(p,u)(0) = (p0,Φ(ν)) in Ω.

(5.74)

Thus, (p,u) is the strong solution to (3.9) associated with ν. Since the unique classical
and strong solutions to (3.9) coincide, the claim follows.

Theorem 5.10. Let Assumption 5.1 hold and for every h > 0, let 1
τ = N = N(h) ∈ N satisfy

the CFL-condition (5.28). Furthermore, for every h > 0, let νh ∈ Vhad, ({plh}Nl=0,{u
l+ 1

2
h }N−1

l=0 ),
({qlh}Nl=0,{v

l+ 1
2

h }N−1
l=0 ) ∈ (P

h
1,D)N+1×(DGh

0)N satisfy the first-order necessary optimality con-
dition for (Ph) (see (5.8), (5.16), and (5.19)). Then, there exist a subsequence of {νh}h>0
(still denoted by the same symbol) such that

νh ⇀ ν weakly in L2(Ω) as h→ 0 (5.75)
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Λp
N,h → p in C(I,L2(Ω)) as h→ 0 (5.76)

Θp
N,h,Π

p
N,h → p in L∞(I,L2(Ω)) as h→ 0 (5.77)

Λq
N,h → q in C(I,L2(Ω)) as h→ 0 (5.78)

Θq
N,h,Π

q
N,h → q in L∞(I,L2(Ω)) as h→ 0, (5.79)

where (ν, p, q) ∈ Vad × (C1(I,L2(Ω)) ∩C(I,H1
D(Ω)))2 is a solution to the first-order opti-

mality system to (P) (see (3.9), (3.46), and (3.62)

Proof. Note that Vhad ⊂ Vad. Furthermore, Vad is bounded, closed, and convex in L2(Ω),
and thus, it is weakly sequentially compact in L2(Ω). Consequently, there exists a sub-
sequence of {νh}h>0 (still denoted by the same symbol) and a ν ∈ Vad such that (5.75) is
valid. Then, by the previous Theorem 5.9, we obtain the convergence properties (5.76)
and (5.77), where p ∈ C1(I,L2(Ω)) ∩ C(I,H1

D(Ω)) is the first component of the unique
solution to (3.9) associated with ν. Due to the stability results in Corollary 5.7, anal-
ogously to Theorem 5.9, we obtain the convergence properties (5.78) and (5.79) where
q ∈ C1(I,L2(Ω)) ∩ C(I,H1

D(Ω)) is the first component of the unique solution to (3.46)
associated with ν and p. It remains to prove that (v, p, q) satisfies the variational inequal-
ity (3.62). So, let ν ∈ Vad be arbitrarily given. With Qh∶L2(Ω) → DGh

0 we denote the
standard L2(Ω) orthogonal projection operator onto DGh

0 that is given by

(Qhv)(x) = ∑
T ∈Th

χT (x)
1
∣T ∣ ∫T v(y)dy ∀v ∈ L2(Ω) ∀x ∈ Ω, (5.80)

where χT denotes the characteristic function of T . Then, there exists a constant c > 0,
independent of h, such that

∥v −Qhv∥L2(Ω) ≤ ch∥v∥H1(Ω) ∀v ∈H1(Ω)

(see [33, Prop. 1.135]). Now, let v ∈ L2(Ω) and ϵ > 0 be arbitrarily given. By the density
H1(Ω) ⊂ L2(Ω), there exists vϵ ∈H1(Ω) with ∥vϵ − v∥L2(Ω) ≤ ϵ

3 . Then, it holds that

∥v −Qhv∥L2(Ω) ≤ ∥v − vϵ∥L2(Ω) + ∥vϵ −Qhvϵ∥L2(Ω) + ∥Qhvϵ −Qhv∥L2(Ω)

≤ 2∥v − vϵ∥L2(Ω) + ch∥vϵ∥H1(Ω) ≤ ϵ ∀h ∈ (0,
ϵ

3c∥vϵ∥H1(Ω)
) ,

which implies that Qhv → v in L2(Ω) as h → 0 for every v ∈ L2(Ω). Furthermore, Qh

maps Vad into Vhad since

ν− = ∑
T ∈Th

χT (x)
1
∣T ∣ ∫T v− dy ≤ (Qhv)(x) ≤ ∑

T ∈Th

χT (x)
1
∣T ∣ ∫T v+ dy = ν+ ∀v ∈ Vad ∀x ∈ Ω.

Therefore, the sequence {νh}h>0 ∶= {Qhν}h>0 satisfies

νh ∈ Vhad ∀h > 0 and νh → ν in L2(Ω) as h→ 0. (5.81)

As in the proof of Theorem 5.9, it follows that

νh∂tΛp
N,h ⇀ ν∂tp weakly in L2(I,L2(Ω)) as h→ 0 (5.82)
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νh∂tΛp
N,h ⇀ ν∂tp weakly in L2(I,L2(Ω)) as h→ 0. (5.83)

Finally, along with the weak sequential lower semicontinuity of the squared norm, we
conclude that

λ∥ν∥2L2(Ω) ≤®
(5.75)

lim inf
h→0

λ∥νh∥2L2(Ω)

≤®
(5.55)

lim inf
h→0

⎛
⎝
(∫

I
(∂tΛp

N,h(t) − p1)Πq
N,h(t)dt + λνh, νh)

L2(Ω)

− (∫
I
(∂tΛp

N,h(t) − p1)Πq
N,h(t)dt, νh)

L2(Ω)

⎞
⎠

=®
(5.79),(5.75),(5.81)−(5.83)

(∫
I
(∂tp(t) − p1)q(t)dt + λν, ν)

L2(Ω)
− (∫

I
(∂tp(t) − p1)q(t)dt, ν)

L2(Ω)
,

that implies
(∫

I
(∂tp(ν)(t) − p1)q(t)dt + λν, ν − ν)

L2(Ω)
≥ 0.

Since ν ∈ Vad was arbitrary, (3.62) is valid.

To prove our final result in Theorem 5.12, we need the following lemma:

Lemma 5.11. Let Assumption 5.1 hold and for every h > 0, let 1
τ = N = N(h) ∈ N satisfy

the CFL-condition (5.28). Furthermore, let {νh}h>0 with νh ∈ Vhad for all h > 0 be given.
Then, it holds that

∣J(νh) − Jh(νh)∣ → 0 as h→ 0. (5.84)

If additionally {νh}h>0 converges (strongly) in L2(Ω) towards a ν ∈ Vad as h → 0, then it
holds that

∣J(ν) − Jh(νh)∣ → 0 as h→ 0. (5.85)

Proof. Let ph ∈ C1(I,L2(Ω))∩C(I,H1
D(Ω)) denote the first component of the unique so-

lution to (3.9) associated with νh. Furthermore, for every h > 0, let ({plh}Nl=0,{u
l+ 1

2
h }N−1

l=0 ) ∈
(Ph

1,D)N+1 × (DGh
0)N denote the unique solution to (5.8) and let Πp

N,h denote the corre-
sponding interpolate as in (5.45). Then, as in the proof of Theorem 5.10, there exists a
subsequence of {νh}h>0 (still denoted by the same symbol) and a ν̃ ∈ Vad such that {νh}h>0
convergences weakly in L2(Ω) towards ν̃ as h→ 0. Thus, Theorem 5.9 implies that

Πp
N,h → p̃ in L∞(I,L2(Ω)) as h→ 0, (5.86)

where p̃ ∈ C1(I,L2(Ω)) ∩C(I,H1
D(Ω)) denotes first component of the unique solution to

(3.9) associated with ν̃. Furthermore, the solution operator Sp∶L2(Ω) → L2(I,L2(Ω)), ν ↦
p to (3.9) is weak-strong continuous (see the proof of Theorem 3.7) such that

ph → p̃ in L2(I,L2(Ω)) as h→ 0. (5.87)
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5.4 Convergence

Since pobi ∈W 1,1(I,L2(Ω)), as in (5.65), it follows that pobi,N,h(t) → pobi (t) in L2(Ω) as h→ 0
for every t ∈ I and every i = 1, . . . ,m. Along with ∥pobi,N,h(t)∥L2(Ω) ≤ ∥pobi ∥C(I,L2(Ω)) for every
t ∈ I (see (5.51)), Lebesgue’s dominated convergence theorem implies that

pobi,N,h → pobi in L2(I,L2(Ω)) as h→ 0 ∀i ∈ {1, . . . ,m}. (5.88)

We conclude that

∣J(νh) − Jh(νh)∣ (5.89)

=®
(P),(Ph)

∣12
m

∑
i=1
∫
I
∫

Ω
ai(t)(ph(t) − pobi (t))2 dxdt − τ2

m

∑
i=1

N−1
∑
l=0
∫

Ω
ai(tl+ 1

2
)(pl+

1
2

h − pobi (tl+ 1
2
))2 dx∣

=®
(5.45),(5.51)

RRRRRRRRRRR

1
2

m

∑
i=1
∫
I
∫

Ω
ai(t)(ph(t) − pobi (t))2 dxdt

− 1
2

m

∑
i=1
∫
I
∫

Ω
ai,N,h(t)(Πp

N,h(t) − pobi,N,h(t))2 dxdt
RRRRRRRRRRR

≤ 1
2

m

∑
i=1
∥ai∥C(I,L∞(Ω))∫

I
∫

Ω
∣(ph(t) − pobi (t))2 − (Πp

N,h(t) − pobi,N,h(t))2∣dxdt

+
m

∑
i=1
∥ai − ai,N,h∥L1(I,L∞(Ω))(∥Πp

N,h∥2L∞(I,L2(Ω)) + ∥pobi,N,h∥2L∞(I,L2(Ω)))

= 1
2

m

∑
i=1
∥ai∥C(I,L∞(Ω))∫

I
∫

Ω
∣(ph(t) − pobi (t) −Πp

N,h(t) + pobi,N,h(t))

(ph(t) − pobi (t) +Πp
N,h(t) − pobi,N,h(t))∣dxdt

+
m

∑
i=1
∥ai − ai,N,h∥L1(I,L∞(Ω))(∥Πp

N,h∥2L∞(I,L2(Ω)) + ∥pobi,N,h∥2L∞(I,L2(Ω)))

≤ 1
2

m

∑
i=1
(∥ai∥C(I,L∞(Ω))(∥ph −Πp

N,h∥L2(I,L2(Ω)) + ∥pobi − pobi,N,h∥L2(I,L2(Ω)))

(∥ph∥L2(I,L2(Ω)) + ∥pobi ∥L2(I,L2(Ω)) + ∥Πp
N,h∥L2(I,L2(Ω)) + ∥pobi,N,h∥L2(I,L2(Ω))))

+
m

∑
i=1
∥ai − ai,N,h∥L1(I,L∞(Ω))(∥Πp

N,h∥2L2(I,L2(Ω)) + ∥pobi,N,h∥2L2(I,L2(Ω))).

Since ai ∈ C1(I,L∞(Ω)), as in (5.65), it follows that ai,N,h(t) → ai(t) in L∞(Ω) as h → 0
for every t ∈ I and every i = 1, . . . ,m. Furthermore, ∥ai,N,h(t)∥L∞(Ω) ≤ ∥ai∥C(I,L∞(Ω)) for
every t ∈ I and every i = 1, . . . ,m. Thus, Lebesgue’s dominated convergence theorem
yields that

ai,N,h → ai in L1(I,L∞(Ω)) as h→ 0 ∀i ∈ {1, . . . ,m}. (5.90)
Moreover, since {νh}h>0 ⊂ L∞(Ω) is bounded, {ph}h>0 ⊂ L2(I,L2(Ω)) is bounded due
to Lemma 3.4. Furthermore, {Πp

N,h}h>0 ⊂ L∞(I,L2(Ω)) is bounded due to (5.86) and
{pobi,N,h}h>0 ⊂ L∞(I,L2(Ω)) is bounded due to (5.88). Consequently (5.86)-(5.90) imply
(5.84). Now, let additionally {νh}h>0 converge strongly in L2(Ω) towards a ν ∈ Vad. Then,
due to Theorem 5.12, we have that

Πp
N,h → p in L∞(I,L2(Ω)) as h→ 0, (5.91)
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where p ∈ C1(I,L2(Ω)) ∩ C(I,H1
D(Ω)) is the first component of the unique solution to

(3.9) associated with ν. Analogously to (5.89), it follows that

∣J(ν) − Jh(νh)∣

=®
(P),(Ph)

RRRRRRRRRRR

1
2

m

∑
i=1
∫
I
∫

Ω
ai(p − pobi )2 dxdt + λ2 ∥ν∥

2
L2(Ω) −

τ

2
m

∑
i=1

N−1
∑
l=0
∫

Ω
ai(tl+ 1

2
)(pl+

1
2

h − pobi (tl+ 1
2
))2 dx

− λ2 ∥νh∥
2
L2(Ω)

RRRRRRRRRRR
≤ 1

2
m

∑
i=1
(∥ai∥C(I,L∞(Ω))(∥p −Πp

N,h∥L2(I,L2(Ω)) + ∥pobi − pobi,N,h∥L2(I,L2(Ω)))

(∥p∥L2(I,L2(Ω)) + ∥pobi ∥L2(I,L2(Ω)) + ∥Πp
N,h∥L2(I,L2(Ω)) + ∥pobi,N,h∥L2(I,L2(Ω))))

+
m

∑
i=1
∥ai − ai,N,h∥L1(I,L∞(Ω))(∥Πp

N,h∥2L2(I,L2(Ω)) + ∥pobi,N,h∥2L2(I,L2(Ω)))

+ λ2 ∣∥ν∥
2
L2(Ω) − ∥νh∥2L2(Ω)∣

→®
(5.88),(5.90),(5.91)

0 as h→ 0.

Theorem 5.12. Let Assumption 5.1 hold and for every h > 0, let 1
τ = N = N(h) ∈ N

satisfy the CFL-condition (5.28). Furthermore, let ν ∈ Vad be a locally optimal solution to
(P) such that the following quadratic growth condition holds:

∃σ, δ > 0 ∶ J(ν) ≥ J(ν) + δ∥ν − ν∥2L2(Ω) ∀ν ∈ Vad with ∥ν − ν∥2L2(Ω) ≤ σ. (5.92)

Then, there exists a sequence {νh}h>0 such that

νh ∈ Vhad ∀h > 0 and νh → ν in L2(Ω) as h→ 0.

Furthermore, νh ∈ Vhad is a locally optimal solution to (Ph) for all sufficiently small h > 0.

Remark 5.13. Note that the quadratic growth condition (5.92) is reasonable since it can
be obtained by assuming suitable regularity and compatibility conditions and a sufficient
second-order optimality condition (see Theorem 3.22).

Proof. For Vh,σad ∶= {νh ∈ Vhad ∣ ∥νh − ν∥L2(Ω) ≤ σ}, we consider the minimization problem

min
νh∈Vh,σ

ad

Jh(νh), (Pσ
h)

where the discrete reduced cost functional Jh is given as in (Ph). As in the proof of
Theorem 5.9, there exists a sequence {ν̃h}h>0 with ν̃h ∈ Vhad for all h > 0 such that ν̃h → ν

in L2(Ω) as h → 0. Consequently, there exists h > 0 such that ν̃h ∈ Vh,σad for all h ∈ (0, h].
In particular, Vh,σad is non-empty for all h ∈ (0, h]. Since Vh,σad ⊂ DGh

0 is compact and
Jh∶L2(Ω) ⊃ Vh,σad → R is continuous (see the proof of Theorem 5.3), (Pσ

h) admits at least
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5.4 Convergence

one minimizer νh ∈ Vh,σad due to the Weierstrass theorem for all h ∈ (0, h]. Then, by (5.92),
we obtain for all h ∈ (0, h] that

δ∥νh−ν∥2L2(Ω) ≤ J(νh)−J(ν) = [J(νh)−Jh(νh)]+[Jh(νh)−Jh(ν̃h)]+[Jh(ν̃h)−J(ν)]. (5.93)

The first and the third summand at the right-hand side of (5.93) converge to zero due to
Lemma 5.11 as h → 0. The second summand in (5.93) is non-positive since νh ∈ Vh,σad is a
minimizer of (Pσ

h) and ν̃h ∈ Vh,σad for all h ∈ (0, h]. Therefore, (5.93) implies that

νh → ν strongly in L2(Ω) as h→ 0. (5.94)

It remains to show that νh ∈ Vhad is a minimizer to (Ph). For this purpose, let νh ∈ Vhad
with ∥νh − νh∥L2(Ω) ≤ σ

2 be arbitrarily given. According to (5.94), there exists ĥ > 0 such
that ∥νh − ν∥L2(Ω) ≤ σ

2 for all h ∈ (0,min{h, ĥ}]. Therefore, it follows that

∥νh − ν∥L2(Ω) ≤ ∥νh − νh∥L2(Ω) + ∥νh − ν∥L2(Ω) ≤
σ

2 +
σ

2 = σ ∀h ∈ (0,min{h, ĥ}].

In other words, νh ∈ Vh,σad for all h ∈ (0,min{h, ĥ}]. Since νh is a minimizer to (Pσ
h), it

follows that Jh(νh) ≤ Jh(νh) for all νh ∈ Vhad with ∥νh − νh∥L2(Ω) ≤ σ
2 . In other words, νh is

a local minimizer to (Ph) for all h ∈ (0,min{h, ĥ}].
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IMPLEMENTATION 6

6.1 Projected Gradient Method for SQP Subproblems
In this section, we present how the iteration step (Pk) of the discussed SQP method (see
Algorithm 1 in Chapter 4) can be solved effectively using the projected gradient method.
The method is chosen primarily due to its straightforward implementation and popularity
for solving PDE-constrained optimization problems. For its later computational imple-
mentation, we want to make use of the investigated discretization strategy in Chapter 5.
Since it is based on the auxiliary first-order formulation of the wave equation (see (5.8)),
we begin with establishing the first-order formulation of the iteration step (Pk): Let As-
sumption 4.9 and (SSCτ ) be satisfied and suppose that the k-th iterate (νk, pk, qk) is given.
Then, the next iterate (νk+1, pk+1, qk+1), along with the auxiliary variables uk+1 and vk+1,
solves the coupled system consisting of the state equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk∂tp + div u + ηp = F − (ν − νk)∂tpk in I ×Ω
∂tu +∇p = 0 in I ×Ω
p = 0 on I × ΓD
u ⋅n = 0 on I × ΓN
(p,u)(0) = (0,0) in Ω,

(6.1)

the adjoint equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νk∂tq + div v − ηq =
m

∑
i=1
ai(p − pobi ) − (ν − νk)∂tqk in I ×Ω

∂tv +∇q = 0 in I ×Ω
q = 0 on I × ΓD
v ⋅n = 0 on I × ΓN
(q,v)(T ) = (0,0) in Ω,

(6.2)

and the variational inequality

(∫
I
∂tpk(t)q(t) + ∂t(p(t) − pk(t))qk(t)dt + λν, ν̃ − ν)

L2(Ω)
≥ 0 ∀ν̃ ∈ Vad. (6.3)

By the substitution q = ∂tq̂, where q̂ denotes the adjoint variable in the iteration step (Pk)
of Algorithm 1, we note that (Pk) is equivalent to (6.1)-(6.3). Furthermore, (6.1)-(6.3)
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serves as a first-order necessary optimality condition to the optimal control problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

minJk(ν, p) ∶=D(ν,p)J (νk, pk)(ν−νk, p−pk) +
1
2D

2
(ν,p)L(νk, pk,uk, qk,vk)(ν − νk, p − pk)2

s.t. ν ∈ Vad and p solves (6.1).
(6.4)

where J and L are given as in (1.2) and (3.101). Then, the cost functional reads as

Jk(ν, p) =
m

∑
i=1
(ai(p − pk), pk − pobi )L2(I,L2(Ω)) +

1
2

m

∑
i=1
(ai(p − pk), p − pk)L2(I,L2(Ω))

+ λ(νk, ν − νk)L2(Ω) +
λ

2 ∥ν − νk∥
2
L2(Ω) + ((ν − νk)∂t(p − pk), qk)L2(I,L2(Ω)).

Incorporating the solution operator Sp∶L2(Ω) → C1(I,L2(Ω)) ∩C(I,H1
D(Ω)), that maps

every ν ∈ L2(Ω) to first component p of the unique solution to (6.1), the reduced formu-
lation to (6.4) is given by minν∈Vad

Jk(ν) ∶= Jk(ν,Sp(ν)). Then, the system (6.1)-(6.3) is
equivalent to the condition J ′k(ν)(ν − ν) ≥ 0 for all ν ∈ Vad. The idea of the projected
gradient method is to choose the negative gradient at the previous iterate as the descent
direction and project the result into the admissible set. In our case, because of (6.1)-(6.3),
for l ∈ N, we write

hl = ∫
I
∂tpk(t)ql(t) + ∂t(pl(t) − pk(t))qk(t)dt + λνl. (6.5)

Here, pl denotes the solution to (6.1) associated with νl, and ql denotes the solution to
(6.2) associated with νl and pl. One challenge comes with the choice of a suitable step
size s. Unfortunately, one generally does not expect to find the optimal step size since the
composition of the reduced cost function Jk involving the orthogonal projection PVad

is no
longer quadratic. Therefore, an explicit formula for the optimal step size is not available.
Instead, various strategies exist to approximate the optimal step size or at least to find a
step size that guarantees a descent for the objective function. The most prominent one
is the bisection method: After choosing an initial step size s, one reduces the value until
a desired abort criterion is fulfilled. In order to prevent the step size from becoming too
small in the course of multiple iterations, we additionally increase the step length s again
after a successful iteration step. Then, applied to the SQP subproblems, along with the
step size strategy, the projected gradient method reads as follows:

Algorithm 2 Projected Gradient Method for k-th SQP Iteration
1: Choose ν0 and s > 0. Set l = 0.
2: Compute the solution pl to (6.1) associated with ν = νl.
3: Compute the solution ql to (6.2) associated with ν = νl and p = pl.
4: Compute hl by (6.5).
5: while Jk(PVad

(νl + shl)) ≥ Jk(νl) do
6: Set s = s

2 .
7: end while
8: Set νl+1 ∶= PVad

(νl + shl).
9: Set s = 3s

2 . Stop or set n = n + 1 and go back to step 2.
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Suppose Algorithm 2 is terminated. Then, the last iterate (νl, pl, ql) approximates the
solution (νk+1, pk+1, qk+1) to the k-th SQP subproblem (6.4) (resp. (6.1)-(6.3)). Finally,
with Algorithm 2 at hand, we arrive at the following formulation of the SQP algorithm.

Algorithm 3 Sequential Quadratic Programming
1: Choose (ν0, p0, q0) and set k = 0.
2: Approximate the k-th solution (νk+1, pk+1, qk+1) to the SQP subproblem (6.4) (resp.

(6.1)-(6.3)) using Algorithm 2.
3: Stop or set k = k + 1 and go back to step 2.

6.2 Numerical Experiments
In this section, we present numerical experiments to illustrate the performance of the
proposed SQP algorithm (see Algorithm 3). For our experiments, we set Ω ∶= (0,2)×(0,1)
with the Neumann boundary part ΓN ∶= (0,2)×{1} and the Dirichlet part ΓD ∶= ∂Ω∖ΓN .
Furthermore, the damping term η in the forward model (3.30) is specified as a boundary
layer suppressing reflections caused through the artificial Dirichlet boundary condition.
Inside the layer, the damping term η increases in the direction towards ΓD, whereas η
vanishes outside the layer ω (also see Figure 2.1 in Section 2.1). More precisely, η∶Ω→ R
is defined by η ∶= χω1η1 + χω2η2 + χω3η3, where χωi

denotes the characteristic function of
ωi for i = 1,2,3, and

ω1 ∶= {(x1, x2) ∈ Ω ∶ x1 ≤ γ, x1 ≤ x2}, η1(x1, x2) ∶= β(1 − x1/γ)ρ

ω2 ∶= {(x1, x2) ∈ Ω ∶ x2 ≤ γ, x2 < x1, x2 ≤ 2 − x1}, η2(x1, x2) ∶= β(1 − x2/γ)ρ

ω3 ∶= {(x1, x2) ∈ Ω ∶ 2 − γ ≤ x1, x2 > 2 − x1}, η3(x1, x2) ∶= β(1 + (x1 − 2)/γ)ρ

for all (x1, x2) ∈ Ω. Here, γ ∶= 1/6 is the width of the layer, β ∶= 100 denotes the damping
value at the boundary, and ρ ∶= 2 is the degree of growth towards the boundary. Note
that the sponge layer ω ∶= ω1 ∪ ω2 ∪ ω3 surrounds the entire Dirichlet boundary part ΓD,
i.e., ΓD ⊂ ω. Due to the choice of η, outside the sponge layer, the wave propagation
stays reasonable as the boundary layer causes no significant additional reflections. Our
goal is to reconstruct the non-smooth parameter νd ∈ Vad by solving (P) under acoustic
source signals given by Ricker wavelets. For this purpose, given characteristic functions
χi∶Ω → {1,0} with respect to small subsets surrounding three different point sources
(0.5,1), (1,1), (1.5,1), respectively, the Ricker wavelet is defined by

f(t, x) ∶= α(χ1 + χ2 + χ3)(x) (1 − 2(σπ(t − t0))2) e−(σπ(t−t0))
2 ∀(t, x) ∈ I ×Ω,

where t0 = 0.1 is the time of the wavelet’s peak, α = 105 is a scaling factor and σ = 5 is the
central frequency. Then, the source term F (t, x) = ∫

t

0 f(s, x)ds of the auxiliary first-order
problem (3.9) is given by

F (t, x) = α(χ1 + χ2 + χ3)(x) ((t − t0)e−(σπ(t−t0))
2 − t0e−(σπt0)

2) ∀(t, x) ∈ I ×Ω.

107



6 - Implementation

For the observed wave information, we consider the solution to the forward problem (3.30)
for ν = νd under the deterministic noise model

pob ∶= Sp(νd) + µ.

Here, Sp(νd) represents noiseless data and µ ∈ L2(I,L2(Ω)) a random perturbation of the
observed data caused through background noise. The noise level is then computed by the
quotient

l ∶=
∥µ∥L2(I,L2(Ω))

∥Sp(νd)∥L2(I,L2(Ω))
.

We record the observed wave information at m = 30 different receivers modeled through
the weight functions ai ∶= χRi

and pobi ∶= pob for all i = 1, . . . ,m with the rectangular
observation patches Ri ⊂ Ω given by

Ri ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[6 + 8(i − 1)
64 ,

10 + 8(i − 1)
64 ] × [60

64 ,
64
64] for i = 1, . . . ,15

[6 + 8(i − 16)
64 ,

10 + 8(i − 16)
64 ] × [24

64 ,
28
64] for i = 16, . . . ,30.

For three different choices of νd, we perform reconstruction experiments. For all of
those experiments, under the above synthetic configurations with noise level l ≈ 2%, we
compute numerical solutions to (P) perform 16 iterations of the above SQP method (see
Algorithm 3). For the second step inside Algorithm 3, we choose a maximum of 64 itera-
tions of the projected gradient method (see Algorithm 2). The involved PDEs are solved
using the fully discrete approximation strategy from Chapter 5. For our computational
implementation, we choose the programming language Python (version 3.6.9) and utilize
the package DOLFIN from the open-source computing platform FEniCS (cf. [58, 59]) to
generate the triangulation of Ω and solve the involved variational problems in the finite
element space. We set the regularization parameter λ ∶= 0.001, and the lower and upper
bounds νmin ∶= 1 and νmax ∶= 1.6.

(i) For the first experiment, let us consider a piecewise constant function νd ∶ Ω →
{1,1.4,1.6} featuring a checkerboard structure (see Figure 6.1b). We choose the
initial value ν0 (see Figure 6.1a), which is moderately far from the true solution νd
(see Figure 6.1b). In the first test, we set T = 1. After 16 SQP iterations, we note
that our approach manages to partially reconstruct and detect the checkerboard
structure (see Figure 6.1c). For the second test, we consider a longer wave evolution
process with T = 2. Compared with the first experiment, the longer operating
time leads to a significant improvement in the reconstruction by the SQP algorithm
again after 16 iterations (see Figure 6.1d). For each computed iteration νk, the error
∥νk−νd∥L2(Ω) and the value of the objective function J(νk) is presented in Table 6.1.
In the third test, we enlarge the operating time to T = 3, which, surprisingly, does
not significantly improve the reconstruction. It turns out that the reconstruction
quality is close to the one for T = 2, but the corresponding numerical computation
for T = 3 is less efficient since more time steps have to be solved.

(ii) In the second numerical experiment, with T = 2, we aim to reconstruct a piecewise
constant function νd featuring three distinct rectangles (see Figure 6.2a). In contrast
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6.2 Numerical Experiments

to the first numerical experiment described in (i), we select a constant initial value
ν0 ≡ 1. Notably, this choice indicates no prior information about the three rectangles
featured in νd. However, we successfully reconstruct νd after 16 SQP iterations (see
Figure 6.2b).

(iii) In a third experiment, we present the approach’s ability to reconstruct a true wave
speed parameter νd that does not have piecewise constant values in Ω. For this
purpose, we define νd(x1, x1) ∶= χω(x1, x2) sin(x1) where ω ∶= [0.6,1.4] × [0.4,0.6].
Again, we select a constant initial value of ν0 ≡ 1 and T = 2. As in the first two
experiments, our approach reconstructs the parameter νd after 16 iterations of the
SQP algorithm reasonably well (see Figure 6.3).

For all three experiments, (i) to (iii), Figures 6.1 to 6.3 show the effectiveness of the
presented approach. However, we also want to acknowledge some limitations. Appar-
ently, the error misfit between the iteration νk and νd diminishes comparably slowly (see
Tables 6.1 to 6.3). Safely, this does not disprove the effectiveness of the SQP approach.
Instead, the discrepancy between the numerical results and the analytical investigations
has multiple reasons. For instance, the subproblems are solved with the projected gradi-
ent method due to its straightforward implementation, which does not fully exploit their
linear quadratic nature. Furthermore, the available limited computational resources do
not allow for a significantly finer discretization. Therefore, motivated by the promising
results concerning the SQP algorithm (see Chapter 4) and the discretization strategy (see
Chapter 5), we expect a potential for improvements in the efficiency of the implementa-
tion.

Code and Data Availability

All code, datasets, and related materials generated for this thesis are available from the
author upon request to ensure reproducibility and transparency.
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6 - Implementation

(a) Initial value ν0. (b) Reference solution νd.

(c) Computed solution ν16 for T = 1. (d) Computed solution ν16 for T = 2.

Figure 6.1: Reconstruction in the numerical experiment (i).

(a) Reference solution νd. (b) Computed solution ν16.

Figure 6.2: Reconstruction in the numerical experiment (ii).

(a) Reference solution νd. (b) Computed solution ν16.

Figure 6.3: Reconstruction in the numerical experiment (iii).
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6.2 Numerical Experiments

T=1 T=2
k ∥νk − νd∥L2(Ω) J(νk) ∥νk − νd∥L2(Ω) J(νk)
1 7.7749e-02 2.8236e+00 6.8861e-02 7.4472e+00
2 6.6873e-02 1.7123e-01 4.8954e-02 4.3834e-01
3 6.5276e-02 3.4345e-02 4.3366e-02 6.4354e-02
4 6.3189e-02 2.9373e-02 3.9880e-02 3.8583e-02
5 6.1432e-02 2.1429e-02 3.7219e-02 2.8104e-02
6 5.9974e-02 1.7264e-02 3.5015e-02 2.2006e-02
7 5.8942e-02 1.4594e-02 3.3164e-02 1.8019e-02
8 5.7994e-02 1.2975e-02 3.1586e-02 1.5276e-02
9 5.7184e-02 1.1715e-02 3.0159e-02 1.3232e-02
10 5.6519e-02 1.0774e-02 2.8940e-02 1.1642e-02
11 5.5929e-02 1.0080e-02 2.7812e-02 1.0457e-02
12 5.5368e-02 9.5238e-03 2.6806e-02 9.4963e-03
13 5.4819e-02 9.0373e-03 2.5906e-02 8.7174e-03
14 5.4369e-02 8.6113e-03 2.5091e-02 8.1003e-03
15 5.3925e-02 8.2743e-03 2.4328e-02 7.6122e-03
16 5.3489e-02 7.9753e-03 2.3619e-02 7.1832e-03

Table 6.1: Errors and costs of the numerical experiment (i).

k ∥νk − νd∥L2(Ω) J(νk)
1 1.0369e-01 1.3650e+01
2 6.5096e-02 1.8194e+00
3 5.1108e-02 1.9452e-01
4 4.3163e-02 7.1416e-02
5 3.7802e-02 3.8529e-02
6 3.3577e-02 2.4383e-02
7 3.0404e-02 1.6841e-02
8 2.9701e-02 1.2815e-02
9 2.7382e-02 1.2361e-02
10 2.5147e-02 9.9623e-03
11 2.2798e-02 8.3619e-03
12 2.1124e-02 7.0747e-03
13 1.9442e-02 6.3241e-03
14 1.8933e-02 5.7117e-03
15 1.7704e-02 5.6036e-03
16 1.6353e-02 5.2029e-03

Table 6.2: Errors and costs of the nu-
merical experiment (ii).

k ∥νk − νd∥L2(Ω) J(νk)
1 1.5551e-01 5.8419e+01
2 1.0549e-01 1.3407e+01
3 6.9323e-02 1.4868e+00
4 5.7827e-02 1.8480e-01
5 5.1268e-02 8.9082e-02
6 4.6535e-02 5.6190e-02
7 4.2692e-02 3.9143e-02
8 3.9570e-02 2.8704e-02
9 3.7054e-02 2.2082e-02
10 3.5032e-02 1.7800e-02
11 3.3265e-02 1.4943e-02
12 3.1742e-02 1.2841e-02
13 3.0419e-02 1.1278e-02
14 2.9300e-02 1.0102e-02
15 2.8216e-02 9.2097e-03
16 2.7236e-02 8.4574e-03

Table 6.3: Errors and costs of the nu-
merical experiment (iii).
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CONCLUSION AND OUTLOOK

This thesis explores a hyperbolic PDE-constrained optimization problem (P) with ap-
plications in Full Waveform Inversion. Insights are presented into the analytical and
numerical properties. We prove that the problem is well-defined and that correspond-
ing first-order necessary and second-order sufficient optimality conditions are available.
These conditions also lay the foundation for both the convergence analysis of the SQP
method and the investigation of a fully discrete approximation strategy. In the final part
of this thesis, we present a practical implementation for solving (P) numerically. In the
numerical experiments, the algorithm effectively reconstructs the wave speed parame-
ter, utilizing noisy wave information recorded at distinct receiving points. Notably, the
numerical results demonstrate that our method is well-suited for FWI applications.

While we provide a comprehensive investigation of the analytical and numerical treat-
ment of the optimal control problem (P), open questions are particularly arising from the
practical point of view. Due to our numerical experiments, we can safely conclude that the
presented SQP algorithm performs reasonably well. However, the quality of reconstruc-
tion highly depends on the choice of the size of the observation interval T , the location
and size of the receivers ai, as well as the central frequency σ of the Ricker wavelet source
signals f generating the observation data pobi . For instance, our numerical test demon-
strates that a better reconstruction can be obtained by specifying a not-too-small value
of T . Choosing T too large is unfavorable due to the arising computation costs. While
these phenomena are observed in the numerical tests, theoretical investigations on the
best choice of the parameters are still open. Furthermore, the presented implementation
approach, which solves the SQP subproblems by the projected gradient method, does not
fully utilize the linear-quadratic nature of these subproblems. We hypothesize that more
sophisticated algorithmic techniques can be applied to solve these subproblems in order
to improve efficiency and exploit the full potential of the SQP algorithm.

In conclusion, the promising analytical and numerical results, along with the numerical
experiments, pave the way for future investigations into the presented approach.
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