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ABSTRACT
Porous microstructures represent a challenge for the convergence of FFT-based computational homogenization methods. In this
contribution, we show that the damped Eyre–Milton iteration is linearly convergent for a class of nonlinear composites with a
regular set of pores, provided the damping factor is chosen between zero and unity. First, we show that an abstract fixed-point
method with non-expansive fixed-point operator and non-trivial damping converges linearly, provided the associated residual
mapping satisfies a monotonicity condition on a closed subspace. Then, we transfer this result to the framework of polarization
schemes and conclude the linear convergence of the damped Eyre–Milton scheme for porous materials. We present general argu-
ments which apply to a class of nonlinear composites and mixed stress-strain loadings, as well. We show that the best contraction
estimate is reached for a damping factor of 1∕2, that is, for the polarization scheme of Michel–Moulinec–Suquet, and derive the
corresponding optimal reference material. Our results generalize the recent work of Sab and co-workers who showed that an adap-
tively damped Eyre–Milton scheme leads to linear convergence for a class of linear composites with pores. Finally, we report on
computational experiments which support our findings.

1 | Introduction

FFT-based homogenization methods were introduced by
Moulinec and Suquet at the end of the 1990s [1, 2]. They
quickly became a popular tool for computational micromechan-
ics thanks to their multiple advantages. Indeed, they allow for
direct computation on 2D or 3D images, which may be obtained
by a CT scan for instance. Their matrix-free nature makes them
memory efficient and hence adapted to industrial problems.
Moreover, over the last 30 years, a lot of work was invested [3–5]
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to improve the capabilities of these techniques, focusing mainly
on two core aspects: discretization techniques and solvers.

Several different discretizations have been introduced since
then, aiming at reducing the ringing artifacts characteristic of
the initial Moulinec–Suquet discretization, which is based on
trigonometric polynomials. For instance, the rotated staggered
grid discretization [6] reduces the spurious oscillations character-
istic for trigonometric polynomials at the expense of introducing
a checkerboard pattern. The staggered grid discretization [7]
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avoids those checkerboard patterns, but the position of the inte-
gration points may complicate the handling of anisotropic mate-
rials. Closely related to the two previously cited finite-difference
discretizations, some finite-element [8, 9] and finite-volume
discretizations [10, 11] were also introduced. Fully integrated
Fourier-Galerkin discretizations [12–14] allow to derive bounds
on the macroscopic stiffness but are limited to linear elas-
tic materials. Finally, some other discretizations, based on the
Hashin-Shtrikman principle [15, 16], B-splines [17], interpolative
wavelets [18] or the Radon transform [19] were considered.

Concerning solvers, Moulinec and Suquet’s basic scheme repre-
sents a purely primal approach, operating only on the strain field.
It may be interpreted as a gradient descent method to minimize
the free energy [20]. Building on this aspect, several improve-
ments were proposed, such as an adaptive step-size based on the
Barzilai-Borwein rule [21, 22], fast-gradient methods [23, 24],
or Anderson acceleration [25, 26]. Other strategies, such as the
linear and nonlinear conjugate gradient method [15, 27, 28],
Newton-type methods [20, 29, 30] and Quasi-Newton schemes
[31], were also considered. As noticed by Milton [32], §14 and
Bhattacharya–Suquet [33], the basic scheme may also be devel-
oped in a dual framework, that is, based on the stresses rather
than on the strains, and take advantage of most of the improve-
ments proposed for the primal basic scheme. Dual solvers are of
practical interest for some specific constitutive laws [34] where
they are less computationally expensive than primal solvers.

Aside from primal and dual approaches, polarization approaches
quickly emerged, which operate on a local polarization field
that is neither compatible nor equilibrated. They were first intro-
duced in the linear setting for conductivity problems, by Eyre and
Milton [35]. Then, Michel et al. [36, 37] transferred polarization
approaches to the framework of inelastic solid mechanics. A
more general class of polarization schemes was proposed by
Monchiet and Bonnet, first in the linear setting [38], then in a
nonlinear one [39]. Moulinec and Silva [40] later showed that all
polarization schemes could be united under a common formu-
lation for linear constitutive laws. Schneider et al. [41] extended
this unified formulation to the nonlinear setting and connected
the Eyre–Milton scheme to an existing numerical technique,
the Peaceman-Rachford splitting [42], and its damped variant
to the Douglas-Rachford splitting [43]. By taking advantage of
convergence results for the two splitting techniques [44], they
identified optimal algorithmic parameters in the case of finite
material contrast. These results do not cover the case of infinite
material contrast, for example, in the presence of pores. Then,
resorting to adaptive algorithmic parameters can prove useful
[45, 46] and bring the efficiency of polarization approaches to
the level of primal schemes.

The porous, infinitely-contrasted case also challenges the choice
of algorithmic parameters, and the existence of linearly conver-
gent polarization schemes has been questioned for a long time
[41]. For primal solvers, different authors [7, 47] noticed that the
lack of convergence was caused by the discretization rather than
by the solver. This insight was put on a firm mathematical basis by
Schneider [48], who proved that the continuous, non-discretized
basic scheme converges linearly on a class of porous microstruc-
tures. In particular, the convergence of the solver depends not

only on the material contrast as for non-porous microstruc-
tures, but also on the geometry of the interface. However, not
all discretizations preserve this linear convergence property.
In fact, linear convergence is preserved by some finite differ-
ence [6, 7] discretizations, while spectral discretizations such
as the initial one proposed by Moulinec and Suquet [1, 2] and
Fourier-Galerkin discretizations [12–14] usually lead to numer-
ical instabilities. While a linear convergence result exists for pri-
mal solvers, the question of the linear convergence of polarization
approaches remained open. The recent publication from Sab et al.
[49] provided some answers by exhibiting a linear convergent,
Eyre–Milton-like solver for a class of microstructures containing
both pores and rigid inclusions. The proposed scheme selects the
damping factor adaptively based on a suitable online eigenvalue
estimate. However, both the scheme and its analysis are intrinsi-
cally restricted to linear constitutive laws.

In the present contribution, we show the linear convergence
of the damped Eyre–Milton (DEM) scheme with a fixed
non-trivial damping factor on a rather general class of porous
microstructures.

The article at hand comprises both a theoretical and a com-
putational part. We provide a short overview of the theoretical
arguments in Section 2 to increase the readability of this work.
Sections 3 and 4 contain the more detailed arguments. More pre-
cisely, in Section 3, we consider degenerate fixed-point methods
in an abstract setting. It is well-known [50] that a contractive
mapping on a Banach space possesses a unique fixed point,
and the associated fixed-point scheme converges globally and
linearly to this fixed point. In the case of a merely non-expansive
mapping, matters are more complicated. The celebrated
Krasnoselskii-Mann Theorem, see Ryu–Yin [51], § 2.4, Theorem
1 for a proof, states that for a non-expansive mapping on a Banach
space which has a fixed point, the damped fixed-point iteration
with non-trivial damping converges weakly to the fixed-point set
with a sublinear, that is, logarithmic rate. In the work at hand, we
work out a non-degeneracy condition of the residual mapping
on a closed subspace, which renders the associated damped
fixed-point scheme linearly convergent to the unique fixed point
within the subspace. These results are of independent interest,
in particular, as the level of abstraction permits the presentation
of the arguments in a classroom setting, for instance.

Then, Section 4 is devoted to transferring the linear conver-
gence result obtained in Section 3 to the context of polariza-
tion schemes. More precisely, we derive a linear convergence
estimate in a general framework, including mixed stress-strain
loadings and nonlinear material behavior. We start by defining
the fixed-point mapping encoding the Eyre–Milton scheme. For
microstructures with finite contrast, this mapping is a contrac-
tion mapping [41] and ensures the linear convergence of the
Eyre–Milton scheme. In the case of porous microstructures, how-
ever, this mapping is only non-expansive. We show that the resid-
ual mapping associated with the Eyre–Milton scheme complies
with the conditions established in Section 3. By resorting to the
convergence result established in the latter section, we show that
linear convergence of the damped scheme is ensured for any fixed
damping factor in the open interval (0, 1). A theoretical bound
on the convergence speed of the damped Eyre–Milton scheme
is obtained through the convergence analysis, and the values
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of reference material and damping that optimize the theoretical
bound are derived. Finally, in Section 5, we present several com-
putational experiments to support our theoretical findings.

2 | An Outline of the Arguments

2.1 | The Point of Departure

It is by now well-known in the community that primal
Lippmann-Schwinger solvers also converge in the presence
of pores, provided the solid material distribution and the con-
stitutive laws lead to a mechanically stable microstructure and
a proper discretization is used, for example, the staggered grid
[7], finite elements [8, 9, 52] or the tetrahedral discretization
scheme [53]. The theoretical analysis [48] reveals that the reason
for this convergence lies in a coercivity estimate which permits
to bound of the total “energy” on the entire cell by the “energy”
in the solid skeleton. Of course, such a property cannot hold
for a general strain field, because one may select a strain field
which is non-zero in the pore space but vanishes in the solid
skeleton. However, it is readily observed that the original basic
scheme and its direct derivatives preserve strains that are com-
patible and satisfy the balance of linear momentum in the pore
space w.r.t. the elastic properties inscribed into the pore space by
the reference material ℂ0. Thus, if the initial strain is compatible
and ℂ0-balanced in the pore space, all subsequent iterates will be
compatible and ℂ0-balanced in the pore space, as well. Moreover,
the elastic energy within the pore space is fully determined by
the displacement boundary conditions on the interface between
the pore and solid material. Thus, up to mathematical details,
this transfer mechanism is responsible for the fact that the elastic
energy within pore space is controlled by the energy in the solid
skeleton.

A direct translation of this analysis to polarization schemes
[35, 37] is not straightforward, as they operate on the stress
polarization

𝑷 = 𝝈 + ℂ0 ∶ 𝜺 (1)

instead of the strain field, where we may assume an elastic
behavior 𝝈 = ℂ ∶ 𝜺 for the discussion presented in this section.
Also, polarization schemes have a very different character than
the classical primal solvers. Whereas the primal solvers are eas-
ily understood as modifications and extensions of the classical
gradient-descent method, the analysis of polarization schemes
is based on the contraction-mapping theorem, that is, that any
endomorphism𝐹 ∶ 𝑋 → 𝑋 of a Banach space𝑋 with a Lipschitz
constant strictly less than unity possesses a unique fixed point 𝑥∗
and the classical fixed-point scheme

𝑥𝑘+1 = 𝐹 (𝑥𝑘) (2)

converges linearly to the fixed point 𝑥∗.

In the presence of pores, the fixed-point operator 𝐹 associated
with the Eyre–Milton method is not a contraction. Rather, its
Lipschitz constant is unity. Such a piece of information is not
sufficient per se, in general, as there are operators without fixed
points, for example, translations in Euclidean space.

In the seminal work [49], Sab et al. proposed to consider the
relaxed iterative scheme

𝑥𝑘+1 = 𝛾𝑘 𝑥𝑘 + (1 − 𝛾𝑘) 𝐹 (𝑥𝑘) (3)

with an adaptive damping factor 𝛾𝑘 > 0. They showed that, in
the context of linear elasticity and stable pore space, the itera-
tive scheme (3) is linearly convergent on a suitable subspace and
provided the damping factor 𝛾𝑘 is selected via an associated opti-
mization problem. The subspace consists of those polarizations
(1) which are equilibrated in the pore space.

Despite the breakthrough character of the work [49], there are
several shortcomings. For a start, the scheme (3) does not cover
the classical, that is, non-adaptive methods. Secondly, the scheme
(3) and its analysis both rely on a linear constitutive law, rul-
ing out inelastic micromechanics with significant practical and
industrial interest. Last but not least, the simplicity of the orig-
inal approach to Eyre–Milton schemes [35, 41], that is, a direct
application of the contraction-mapping theorem, is lost.

2.2 | Abstracting and Generalizing the Original
Proof

We sought a generalization of the classical contraction mapping
theorem which permits us to analyze some degenerate cases, as
well. To illustrate the point, suppose that we have a contraction
mapping 𝐹 ∶ 𝑋 → 𝑋 on a Banach space𝑋 with contraction con-
stant 𝑐− ∈ (0, 1). Let us artificially cook up a degenerate case by
considering the mapping

𝐹 ∶ 𝑋 ⊕𝑋 → 𝑋 ⊕𝑋, 𝐹

([
𝑥

𝑦

])
=

[
𝐹 (𝑥)
𝑦

]
(4)

Thus, we consider tuples of inputs and apply the contraction
mapping 𝐹 to the first input but do not change the second input.
The mapping 𝐹 has the Lipschitz constant 1, so the contraction
mapping theorem does not apply. However, we directly observe
that there is, in fact, a unique fixed point, and the naturally asso-
ciated fixed-point scheme converges linearly to this unique fixed
point. In fact, it is just the fixed point scheme associated with the
original mapping 𝐹 in disguise.

To be able to treat this situation, it is helpful to consider the
(vector) residual

𝑅 ∶ 𝑋 → 𝑋, 𝑅(𝑥) = 𝑥 − 𝐹 (𝑥) (5)

The roots of the residual coincide with the fixed points of the
mapping 𝐹 . The residual associated to the lifted mapping (4)
reads

�̃�

([
𝑥

𝑦

])
=

[
𝑥 − 𝐹 (𝑥)

0

]
(6)

and we may infer convergence statements for this type of
formulation.

This motivational example is not general enough for our problem,
essentially because the example does not feature a coupling

3 of 24



between the two inputs. A key insight of Sab et al. [49] is the
estimate

(𝑥 − 𝑦, 𝑅(𝑥) − 𝑅(𝑦)) ≥ 𝑐 ||𝑥 − 𝑦||2 (7)

valid for the Eyre–Milton operator and polarization fields 𝑥 and
𝑦 in the subspace discussed in the previous section. Here, we
consider a suitably weighted 𝐿2-Hilbert space of polarization
fields and the constant 𝑐 is positive and independent of the fields
𝑥 and 𝑦.

From a mathematical perspective, the estimate (7) encodes the
fact that the residual operator 𝑅 is a strongly monotone opera-
tor on the subspace. In particular, there is a unique root of the
residual.

In this work, we use the estimate (7) as a starting point and show
that, provided the fixed-point mapping 𝐹 has the Lipschitz con-
stant 1, the damped fixed-point mapping

𝑥𝑘+1 = 𝛾 𝑥𝑘 + (1 − 𝛾)𝐹 (𝑥𝑘) (8)

is linearly convergent for any starting point𝑥0 in the subspace and
any fixed damping factor 𝛾 ∈ (0, 1). In particular, these results
imply that the adaptivity in the damping parameter proposed by
Sab et al. [49] is not strictly necessary for the linear convergence
of the damped Eyre–Milton scheme in the presence of pores. We
present the corresponding arguments in Section 3.

We wish to highlight that the results we obtain are stronger
than those obtained by Sab et al. [49], even for linear elastic-
ity. The results of the paper [49] lead to the conclusion that the
damped fixed-point mapping (8) converges for a damping factor
𝛾 ∈ (0, 𝛾+) inside an open interval, where 𝛾+ > 0 is a potentially
small number. With the help of a more careful estimate, we show
that 𝛾+ can be chosen as one.

2.3 | Key Arguments in the Linear Case

We identified the coercivity estimate (7) as the key ingredient to
the successful analysis of the damped Eyre–Milton scheme in
the presence of pores. Let us briefly discuss how this estimate is
established in the case of linear elasticity. For this purpose, we
introduce the Eyre–Milton fixed-point operator

𝑭 (𝑷 ) = 2 ℂ0 ∶ 𝜺 + 𝕐 0 ∶ ℤ0 ∶ 𝑷 (9)

with the reflection operator

𝕐 0 = Id − 2 ℂ0 ∶ 𝚪0 (10)

and the “constitutive law”-enforcing operator

ℤ0 = (ℂ − ℂ0) ∶ (ℂ + ℂ0)−1 (11)

whereℂ denotes the local stiffness field,ℂ0 refers to the reference
stiffness and𝚪0 stands for the associated Eshelby-Green operator.
The operator (11) splits a given polarization 𝑷 into the associated
stress 𝝈 and strain 𝜺 via

𝝈 = ℂ ∶ (ℂ + ℂ0)−1 ∶ 𝑷 as well as 𝜺 = (ℂ + ℂ0)−1 ∶ 𝑷 (12)

and changes their “polarization”

ℤ0 ∶ 𝑷 = 𝝈 − ℂ0 ∶ 𝜺 (13)

In a sense, the operator ℤ0 is also a “reflection operator”, keep-
ing the stress and (additively) inverting the strain. For two polar-
ization fields split according to Equation (12), the difference of
residuals takes the form

𝑹(𝑷 1) −𝑹(𝑷 2)

= 2ℂ0 ∶ 𝚪0 ∶ (𝝈1 − 𝝈2) + 2ℂ0 ∶ (Id − 𝚪0 ∶ ℂ0) ∶ (𝜺1 − 𝜺2)
(14)

At this point, we assume the reference material to be proportional
to the identity to simplify some expressions with 𝚪 ≡ 𝚪0 ∶ ℂ0.
With an eye towards the desired estimate (7), one tests this field
with the difference 𝑷 1 − 𝑷 2 to obtain

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
=
(
𝚪 ∶ (𝝈1 − 𝝈2),𝑷 1 − 𝑷 2

)
+
(
ℂ0 ∶ (Id − 𝚪) ∶ (𝜺1 − 𝜺2),𝑷 1 − 𝑷 2

) (15)

Here, the symbol (⋅, ⋅) denotes the 𝐿2-inner product of fields on
the considered cell. Let us rewrite the splitting (12) in operator
form with operators

𝕁0 = ℂ ∶ (ℂ + ℂ0)−1 and 𝕂0 = ℂ0 ∶ (ℂ + ℂ0)−1 (16)

These operators are complementary in the sense that their sum
is just the identity. Moreover, they permit to express the splitting
(12) via

𝝈 = 𝕁0 ∶ 𝑷 and ℂ0 ∶ 𝜺 = 𝕂0 ∶ 𝑷 (17)

In particular, we may recast the identity (15) in the form

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
=
(
𝚪 ∶ 𝕁0 ∶ (𝑷 1 − 𝑷 2),𝑷 1 − 𝑷 2

)
+
(
(Id − 𝚪) ∶ 𝕂0 ∶ (𝑷 1 − 𝑷 2),𝑷 1 − 𝑷 2

) (18)

At this point, we note that the operators 𝚪 and (Id − 𝚪) project
onto compatible and equilibrated fields, but they do not act on the
stress polarizations 𝑷 𝑖 (𝑖 = 1, 2) directly. A critical observation of
Sab et al. [49] is the equivalent form

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
=
(
𝕁0 ∶ 𝚪 ∶ (𝑷 1 − 𝑷 2),𝚪 ∶ (𝑷 1 − 𝑷 2)

)
+
(
𝕂0 ∶ (Id − 𝚪) ∶ (𝑷 1 − 𝑷 2), (Id − 𝚪) ∶ (𝑷 1 − 𝑷 2)

) (19)

of the identity (18), which is based on ingenious algebraic
manipulations using the complementarity of the orthogonal
operators 𝚪 and (Id − 𝚪) and the symmetry/complementarity of
the operators (17).

To arrive at the desired estimate (7), one may argue as follows.
The second summand (19) involves the operator 𝕂0 which is
non-zero everywhere and whose eigenvalues are bounded from
below away from zero. Thus, we get an 𝐿2-bound on the part
(Id − 𝚪) ∶ (𝑷 1 − 𝑷 2). The first summand in Equation (19) is more
subtle, because the operator 𝕁0 vanishes in the pore space. How-
ever, the field 𝚪 ∶ (𝑷 1 − 𝑷 2) is compatible, and we may recover
an estimate for the pore-space contribution from the subspace
property, just like for primal solvers.
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2.4 | Extension to Nonlinear Problems

The key steps described in Section 2.3 are intrinsically linear,
and do not readily generalize to the inelastic/nonlinear setting.
A reasonable class of nonlinear constitutive laws was identified
by Schneider et al. [41] to comprise gradients of strongly convex
functions which moreover satisfy a Lipschitz condition. Once this
class of constitutive laws is fixed, a well-defined extension of the
Eyre–Milton scheme (9) is straightforward, at least from a theo-
retical point of view. More precisely, the linear operator ℤ0 needs
to be replaced by a suitable nonlinear operator 𝒁0, and the same
is true for the two operators 𝕁0 and𝕂0. Due to the assumed mono-
tonicity of the stress mapping, the required inversions make sense
and the (generalized) operators 𝒁0, 𝑱 0 and 𝑲0 are well-defined.
By a similar argument as before, one arrives at the representation

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
=
(
𝚪 ∶ (𝑱 0(𝑷 1) − 𝑱 0(𝑷 2)),𝑷 1 − 𝑷 2

)
+
(
(Id − 𝚪) ∶ (𝑲0(𝑷 1) −𝑲0(𝑷 2)),𝑷 1 − 𝑷 2

) (20)

However, a simple swapping of the nonlocal operators and the
local operators 𝑱 0∕𝑲0 is not directly possible due to the nonlin-
earity. To proceed, we use the Fundamental Theorem of Calculus
to rewrite, for instance, the term

𝑱 0(𝑷 1) − 𝑱 0(𝑷 2) = ∫
1

0

𝜕𝑱 0

𝜕𝑷
(𝑷 2 + 𝑠(𝑷 1 − 𝑷 2)) ∶ [𝑷 1 − 𝑷 2] 𝑑𝑠

(21)
as a superposition of linear operators. Pulling the integral out of
all terms, we end up with an averaged version of the estimate
(18) involving linear operators only. As the gradients of strongly
monotone operators are (linear) strongly monotone operators
with the same monotonicity constant, the linear arguments actu-
ally extend to this kind of nonlinear case. Please note that the
argument depends on the differentiability of the stress map-
ping. However, the case of a non-differentiable stress mapping
may be dealt with via an approximation argument. Alternatively,
Rademacher’s theorem [54] ensures that the stress mapping is dif-
ferentiable almost everywhere, which would also legitimate the
discussion.

The sketched argument extends the convergence results for the
damped Eyre–Milton scheme to porous materials whose consti-
tutive laws inside the solid skeleton are monotone and Lipschitz.
We refer to Section 4 for details.

2.5 | Dealing With Mixed Boundary Conditions

There is a last small issue, which is relevant to the nonlin-
ear/inelastic setting. For linear elasticity, the apparent stiffness of
the microstructure is sought. Therefore, it is convenient to deter-
mine the effective stiffness matrix column-wise by prescribing the
macroscopic strain and computing the effective stress afterward.
Specific experimental setups may be reproduced in postprocess-
ing, for example, extracting the directional Young’s moduli from
the compliance matrix. For the inelastic setting, such an intrin-
sically linear procedure does not readily apply. Rather, mixed
boundary conditions [55] need to be imposed and accounted for

in the scheme. For polarization schemes in Eyre–Milton form,
the relevant procedure is described in Schneider et al. [41].

Returning to the setting of pores, it turns out that the argu-
ments for prescribed strain are not sufficient to handle the case of
mixed boundary conditions. Rather, the projectors 𝚪 and (Id − 𝚪)
need to be modified, and a more refined subspace-argument is
required. The details comprise Appendix A3.

3 | Linear Convergence Theory for Degenerate
Fixed-Point Methods

The theoretical underpinnings of the considered degenerate
fixed-point method(s) are best explained in a suitable abstract
framework. Dealing with several different cases at once is not our
goal, here. Rather, we would like to work out the different math-
ematical mechanisms at play, fostering the understanding of the
inner workings.

We consider a Hilbert space 𝐻 , together with a non-expansive
mapping𝐹 ∶ 𝐻 → 𝐻 , that is, which satisfies the non-expansivity
estimate

||𝐹 (𝑥) − 𝐹 (𝑦)|| ≤ ||𝑥 − 𝑦|| for all 𝑥, 𝑦 ∈ 𝐻 (22)

The associated fixed-point method

𝑥𝑘+1 = 𝐹 (𝑥𝑘), 𝑘 = 0, 1, . . . (23)

for some starting point 𝑥0 ∈ 𝐻 is not necessarily convergent–
consider, for example, the case where the mapping𝐹 corresponds
to the shift by a non-zero vector–and there is no fixed point, or
where the mapping 𝐹 is an orthogonal transformation. The lat-
ter example can be made convergent by considering the damped
fixed-point method

𝑥𝑘+1 = 𝐹𝛾 (𝑥𝑘), 𝑘 = 0, 1, . . . (24)

with the damped fixed-point operator

𝐹𝛾 ∶ 𝐻 → 𝐻, 𝑥 ↦ 𝛾 𝑥 + (1 − 𝛾) 𝐹 (𝑥), 𝛾 ∈ [0, 1) (25)

The original mapping 𝐹 is recovered in the special case 𝐹0 ≡ 𝐹 .

Under rather minimal assumptions, that is, the mapping 𝐹 is
non-expansive (22) and the fixed-point set of the mapping 𝐹 is
non-empty, the damped fixed-point method (24) for fixed damp-
ing 𝛾 ∈ (0, 1) can be shown to be weakly convergent, and the dis-
tance to the fixed-point set decreases with a logarithmic rate, see
Ryu-Yin [51], § 2.4, Theorem 1. For the setup at hand, we consider
more restrictive assumptions and show that the scheme (24) con-
verges strongly and with a linear rate for any damping 𝛾 ∈ (0, 1).

Any fixed point 𝑥∗ of the iterative scheme (25) is a root of the
residual mapping

𝑅 ∶ 𝐻 → 𝐻, 𝑅(𝑥) = 𝑥 − 𝐹 (𝑥) (26)

that is, the equation
𝑅(𝑥∗) = 0 (27)
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holds. We consider a closed subspace 𝐻0 ⊆ 𝐻 which is stable
under the action of the residual mapping (26), that is, it satisfies

𝑅(𝑥0) ∈ 𝐻0 for all 𝑥0 ∈ 𝐻0. (28)

As a consequence, the representation

𝐹𝛾 (𝑥) = 𝛾 𝑥 + (1 − 𝛾) 𝐹 (𝑥) = 𝑥 − (1 − 𝛾) 𝑅(𝑥) (29)

reveals that the damped fixed-point operator (25) preserves the
space𝐻0.

We work under the following assumption:

• There is a constant 𝑐−, s.t. the strong monotonicity estimate

𝑐− ||𝑥 − 𝑦||2 ≤ (𝑥 − 𝑦, 𝑅(𝑥) −𝑅(𝑦)), 𝑥, 𝑦 ∈ 𝐻0 (30)

holds on the closed subset𝐻0 satisfying Equation (28). Here,
the round brackets refer to the inner product on the Hilbert
space𝐻 .

Under this assumption, we establish the following consequences:

1. There is a unique root 𝑥∗ of the residual mapping (27) on
the space𝐻0.

2. For any starting point 𝑥0 ∈ 𝐻0 and any damping parameter
𝛾 ∈ (0, 1), the associated damped fixed-point scheme (24) is
linearly convergent, see Equation (35) below for the exact
estimate.

3. The bound on the contraction factor of the mapping 𝐹𝛾 on
the space𝐻0 is minimized for the choice 𝛾 = 1∕2 with con-
traction constant

√
1 − 𝑐−∕2.

To establish these claims, we need another bound to complement
the monotonicity estimate (30). More precisely, the residual map-
ping 𝑅 is 2-co-coercive on the space𝐻 , that is, the estimate

1
2
||𝑅(𝑥) − 𝑅(𝑦)||2 ≤ (𝑥 − 𝑦, 𝑅(𝑥) − 𝑅(𝑦)), 𝑥, 𝑦 ∈ 𝐻 (31)

holds. Before establishing the validity of this estimate, let
us briefly comment that co-coercivity is stronger than Lips-
chitz continuity. In fact, combining the estimate (31) with the
Cauchy-Schwarz inequality yields the chain of arguments

||𝑅(𝑥) −𝑅(𝑦)||2 ≤ 2 (𝑥 − 𝑦, 𝑅(𝑥) − 𝑅(𝑦))

≤ 2 ||𝑥 − 𝑦|| ||𝑅(𝑥) − 𝑅(𝑦)|| (32)

that is, the Lipschitz continuity (with Lipschitz constant 2) of the
residual mapping (26).

To establish the estimate (31), we recall the definition of the resid-
ual mapping (26) in terms of the fixed-point mapping 𝐹 and use
the binomial formula

||𝑅(𝑥) −𝑅(𝑦)||2
= ||𝑥 − 𝑦 − [𝐹 (𝑥) − 𝐹 (𝑦)]||2
= ||𝑥 − 𝑦||2 − 2 (𝑥 − 𝑦, 𝐹 (𝑥) − 𝐹 (𝑦)) + ||𝐹 (𝑥) − 𝐹 (𝑦)||2

(33)

By the assumed non-expansivity (22) of the mapping 𝐹 , we are
thus led to the estimate

||𝑅(𝑥) −𝑅(𝑦)||2
= ||𝑥 − 𝑦||2 − 2 (𝑥 − 𝑦, 𝐹 (𝑥) − 𝐹 (𝑦)) + ||𝐹 (𝑥) − 𝐹 (𝑦)||2
≤ ||𝑥 − 𝑦||2 − 2 (𝑥 − 𝑦, 𝐹 (𝑥) − 𝐹 (𝑦)) + ||𝑥 − 𝑦||2
= 2

(||𝑥 − 𝑦||2 − (𝑥 − 𝑦, 𝐹 (𝑥) − 𝐹 (𝑦))
)

= 2(𝑥 − 𝑦, 𝑥 − 𝑦 − [𝐹 (𝑥) − 𝐹 (𝑦)])

= 2(𝑥 − 𝑦, 𝑅(𝑥) −𝑅(𝑦))

(34)

Thus, the desired co-coercivity estimate (31) is established.

With these prerequisites at hand, standard fixed-point arguments
[51], §2.4.3 permit us to derive the estimate

‖‖‖𝐹𝛾 (𝑥) − 𝐹𝛾 (𝑦)‖‖‖ ≤ √
1 − 2𝑐− 𝛾(1 − 𝛾) ||𝑥 − 𝑦||, 𝑥, 𝑦 ∈ 𝐻0

(35)
for damping 𝛾 ∈ (0, 1), which implies all three claims. In fact,
Banach’s fixed point theorem [51], §2.4.2 yields the existence of
a unique fixed point 𝑥∗ ∈ 𝐻0, which establishes property 1. The
contraction estimate (35) leads to the validity of property 2. Last
but not least, it is easily seen that the quadratic function

𝜌(𝛾) = 1 − 2𝑐− 𝛾(1 − 𝛾) (36)

is minimized for 𝛾 = 1∕2 with value

𝜌
(1

2

)
= 1 −

𝑐−

2
(37)

Thus, it remains to establish the estimate (35). Writing 𝜆 = 1 − 𝛾
in the expression (29), we use the binomial formula to expand the
difference

‖‖‖𝐹𝛾 (𝑥) − 𝐹𝛾 (𝑦)‖‖‖2

= ||𝑥 − 𝑦 − 𝜆 [𝑅(𝑥) −𝑅(𝑦)]||2
= ||𝑥 − 𝑦||2 − 2𝜆(𝑥 − 𝑦, 𝑅(𝑥) −𝑅(𝑦)) + 𝜆2 ||𝑅(𝑥) − 𝑅(𝑦)||2

(38)
The co-coercivity estimate (31) implies

‖‖‖𝐹𝛾 (𝑥) − 𝐹𝛾 (𝑦)‖‖‖2

= ||𝑥 − 𝑦||2 − 2𝜆(𝑥 − 𝑦, 𝑅(𝑥) −𝑅(𝑦)) + 𝜆2 ||𝑅(𝑥) − 𝑅(𝑦)||2
≤ ||𝑥 − 𝑦||2 − 2𝜆(𝑥 − 𝑦, 𝑅(𝑥) −𝑅(𝑦))

+ 2𝜆2 (𝑥 − 𝑦, 𝑅(𝑥) −𝑅(𝑦))

= ||𝑥 − 𝑦||2 − 2(𝜆 − 𝜆2)(𝑥 − 𝑦, 𝑅(𝑥) −𝑅(𝑦))
(39)

As the term 𝜆 − 𝜆2 = (1 − 𝜆)𝜆 = 𝛾(1 − 𝛾) is positive for any choice
𝛾 ∈ (0, 1), we may use the monotonicity estimate (30) to deduce
the bound

‖‖‖𝐹𝛾 (𝑥) − 𝐹𝛾 (𝑦)‖‖‖2

≤ ||𝑥 − 𝑦||2 − 2 𝛾(1 − 𝛾)(𝑥 − 𝑦, 𝑅(𝑥) −𝑅(𝑦))

≤ ||𝑥 − 𝑦||2 − 2 𝛾(1 − 𝛾)𝑐−||𝑥 − 𝑦||2
=
(
1 − 2𝑐− 𝛾(1 − 𝛾)

)||𝑥 − 𝑦||2
(40)

which is nothing but the desired contraction estimate (35).
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We close this section with a remark. The obtained results are
stronger than the ones obtained in Sab et al. [49]. In fact, Sab et al.
use the Lipschitz estimate

||𝑅(𝑥) −𝑅(𝑦)|| ≤ 2 ||𝑥 − 𝑦||, 𝑥, 𝑦 ∈ 𝐻 (41)

to bound Equation (38) in the form

‖‖‖𝐹𝛾 (𝑥) − 𝐹𝛾 (𝑦)‖‖‖2

= ||𝑥 − 𝑦||2 − 2𝜆(𝑥 − 𝑦, 𝑅(𝑥) − 𝑅(𝑦)) + 𝜆2 ||𝑅(𝑥) −𝑅(𝑦)||2
≤ ||𝑥 − 𝑦||2 − 2𝑐−𝜆 ||𝑥 − 𝑦||2 + 4𝜆2 ||𝑥 − 𝑦||2
=
(
1 − 2 𝑐−𝜆 + 4𝜆2)||𝑥 − 𝑦||2

(42)
The prefactor is less than unity precisely if the condition

𝜆 <
𝑐−

2
(43)

holds, which depends on the (typically unknown) monotonic-
ity constant 𝑐− and is more restrictive than the choice 𝜆 ∈ (0, 1)
established in this section. Moreover, optimizing the constant in
the estimate (42) gives the contraction factor

1 − 2 𝑐−𝜆 + 4𝜆2 = 1 −
𝑐2
−

4
for 𝜆 =

𝑐−

4
(44)

This contraction constant is significantly worse than the one (37)
established in the work at hand.

4 | The Damped Eyre–Milton Method

4.1 | The Eyre–Milton View on the
Micromechanical Problem

We work on a rectangular cell

𝑌 = [0, 𝐿1] × [0, 𝐿2] × · · · × [0, 𝐿𝑑] (45)

in 𝑑 dimensions, which we consider as a periodic unit cell, and
an open subset 𝑌𝑝 ⊆ 𝑌 of “pores” with Lipschitz boundary that
satisfies the following regularity requirement:

If a field 𝒖 ∈ 𝐻1
per(𝑌 )

𝑑 has a homogeneous strain

∇𝑠𝒖(𝒙) = const on 𝑌 ⧵ 𝑌𝑝, it is constant on 𝑌 ⧵ 𝑌𝑝
(46)

This condition restricts the pore shape, ruling out mechani-
cally unstable solid-phase configurations. It is also central to the
analysis, and generalizes the assumption [48, §2.2], which only
considered vanishing strain, to the case of mixed stress-strain
loadings. We remark that the tautological case 𝑌𝑝 = ∅, that is,
without any pore space, is included, as well.

We suppose that a free energy function

𝑤 ∶ 𝑌 × Sym(𝑑) → ℝ (47)

is given where Sym(𝑑) denotes the vector space of symmetric 𝑑 ×
𝑑-tensors, possibly arising as a condensation of a time-discretized
variational principle [56, 57], which satisfies the following
properties:

1. The energy (47) is measurable in the first variable.

2. The energy (47) vanishes on the pore space 𝑌𝑝, that is,

𝑤(𝒙, 𝜺) = 0, 𝒙 ∈ 𝑌𝑝, 𝜺 ∈ Sym(𝑑) (48)

3. For (almost) every 𝑥 ∈ 𝑌 , the energy 𝑤 is continuously dif-
ferentiable in the second variable and the associated stress
operator [48, §2.1]

𝑺 ∶ 𝑌 × Sym(𝑑) → Sym(𝑑)

𝑺(𝒙, 𝜺) = 𝜕𝑤

𝜕𝜺
(𝒙, 𝜺), 𝒙 ∈ 𝑌 , 𝜺 ∈ Sym(𝑑)

(49)

is 𝛼−-strongly monotone in the skeleton(
𝑺(𝒙, 𝜺1) − 𝑺(𝒙, 𝜺2), 𝜺1 − 𝜺2

)
≥ 𝛼− ||𝜺1 − 𝜺2||2, 𝒙 ∈ 𝑌 ⧵ 𝑌𝑝, 𝜺1, 𝜺2 ∈ Sym(𝑑)

(50)

where we use the Frobenius inner product, and 𝛼+-Lipschitz
continuous

‖‖𝑺(𝒙, 𝜺1) − 𝑺(𝒙, 𝜺2)‖‖
≤ 𝛼+ ||𝜺1 − 𝜺2||, 𝒙 ∈ 𝑌 ⧵ 𝑌𝑝, 𝜺1, 𝜺2 ∈ Sym(𝑑)

(51)

for positive constants 𝛼− and 𝛼+.

Notice that due to the condition (48) in the pore space, the stress
operator is zero:

𝑺(𝒙, 𝜺) = 𝟎 for (almost) all 𝒙 ∈ 𝑌𝑝, 𝜺 ∈ Sym(𝑑) (52)

Last but not least, we assume that two complementary orthog-
onal projectors ℙ and ℚ on the space Sym(𝑑) are given-where
the orthogonality refers to the Frobenius inner product–together
with a homogeneous strain 𝜺 ∈ Sym(𝑑) and a homogeneous
stress 𝝈 ∈ Sym(𝑑) which satisfy the compatibility conditions

ℙ ∶ 𝜺 = 𝜺 and ℚ ∶ 𝝈 = 𝝈 (53)

We refer to Kabel et al. [55] for background, examples, and a
discussion.

The problem which we want to solve [48, §2] seeks both a strain
field 𝜺 ∈ 𝐿2(𝑌 ; Sym(𝑑)) and a stress field 𝝈 ∈ 𝐿2(𝑌 ; Sym(𝑑))
which satisfy small-strain kinematic compatibility

𝜺 = 𝑬 + ∇𝑠𝒖 (54)

for some homogeneous strain 𝑬 ∈ Sym(𝑑), a periodic displace-
ment fluctuation field 𝒖 ∈ 𝐻1

per(𝑌 )
𝑑 and the symmetrized gra-

dient operator ∇𝑠, stress equilibrium at the microscale without
body forces

div 𝝈 = 𝟎 (55)

the constitutive law

𝝈(𝒙) = 𝑺(𝒙, 𝜺(𝒙)) for almost all 𝒙 ∈ 𝑌 (56)

and the imposed conditions

ℙ ∶ ⟨𝜺⟩𝑌 = 𝜺 and ℚ ∶ ⟨𝝈⟩𝑌 = 𝝈 (57)
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on the spatial averages of strain and stress, where the operator⟨⋅⟩𝑌 computes the spatial mean of the quantity in brackets.

The basis for the Eyre–Milton method [35] and its descendants
is the equivalence of the Equations (54–57) to the validity of the
Eyre–Milton equation

𝑷 = 2 ℂ0 ∶ 𝜺 + 2 𝝈 + 𝕐 ∶ 𝒁0(𝑷 ) (58)

for the plus-polarization field

𝑷 = 𝝈 + ℂ0 ∶ 𝜺 (59)

where ℂ0 = 𝛼0 Id is a reference material with an arbitrary
Young’s modulus 𝛼0 > 0 and where we define the tensor operator

𝕐 = Id − 2𝚪 − 2ℚ∘⟨⋅⟩𝑌 ∈ 𝐿(𝐿2(Sym(𝑑))) with

𝚪 = ∇𝑠(div ∇𝑠)†div
(60)

as well as the “nonlinear reflection” operator

𝒁0 ∶ 𝐿2(𝑌 ; Sym(𝑑)) → 𝐿2(𝑌 ; Sym(𝑑))

𝒁0(𝑷 ) = 𝑱 0(𝑷 ) −𝑲0(𝑷 )
(61)

which involves the operators

𝑱 0(𝑷 ) = 𝑷 −𝑲0(𝑷 ) (62)

𝑲0(𝑷 ) = ℂ0 ∶ (𝑺 + ℂ0)−1(𝑷 ) (63)

The latter condition means that the equation

𝑷 = 𝑲0(𝑷 ) + 𝑺
(
𝔻0 ∶ 𝑲0(𝑷 )

)
holds for all

𝑷 ∈ 𝐿2(𝑌 ; Sym(𝑑)) and with 𝔻0 =
(
ℂ0)−1 (64)

The operator (63) is well-defined due to the strong monotonicity
of the operator ℂ0 + 𝑺.

For the equivalence of the Equations (54–57) and the
Eyre–Milton equation in the nonlinear setting, we refer to
Schneider et al. [41].

Let us discuss the emergence of the operators (62) and (63) a lit-
tle bit as they are central to the ensuing analysis. The operators
𝑱 0 and 𝑲0 are defined in such a way that if the polarization (59)
comes from a stress-strain pair which satisfies the constitutive
law (56), that is,

𝑷 = 𝝈 + ℂ0 ∶ 𝜺 with 𝝈 = 𝑺(⋅, 𝜺) (65)

then we can recover both the stress and the strain field via

𝝈 = 𝑱 0(𝑷 ) and ℂ0 ∶ 𝜺 = 𝑲0(𝑷 ) (66)

Conversely, for any given polarization field 𝑷 ∈ 𝐿2(𝑌 ; Sym(𝑑)),
defining a strain and a stress field by Equation (66) permits to
decompose the given polarization field 𝑷 into a pair of stress and
strain fields which are related by the constitutive law. With this
observation at hand, the action of the 𝒁0 operator (61) becomes

𝒁0(𝑷 ) = 𝝈 − ℂ0 ∶ 𝜺 in the decomposition (65) (67)

These considerations are also true in the pore space, where the
definitions (62) and (63) imply the equations

𝑱 0(𝑷 )(𝒙) = 𝟎 and 𝑲0(𝑷 )(𝒙) = 𝑷 (𝒙), 𝒙 ∈ 𝑌𝑝. (68)

In the skeleton 𝑌 ⧵ 𝑌𝑝, both operators 𝑱 0 and 𝑲0 are strongly
monotone. More precisely, the inequalities[

𝑱 0(𝑷 1)(𝒙) − 𝑱 0(𝑷 2)(𝒙)
]
∶
(
𝑷 1(𝒙) − 𝑷 2(𝒙)

)
≥ 𝛼−

𝛼− + 𝛼0

‖‖𝑷 1(𝒙) − 𝑷 2(𝒙)‖‖2
, a.a. 𝒙 ∈ 𝑌 ⧵ 𝑌𝑝

(69)

and [
𝑲0(𝑷 1)(𝒙) −𝑲0(𝑷 2)(𝒙)

]
∶
(
𝑷 1(𝒙) − 𝑷 2(𝒙)

)
≥ 𝛼0

𝛼+ + 𝛼0

‖‖𝑷 1(𝒙) − 𝑷 2(𝒙)‖‖2
, a.a. 𝒙 ∈ 𝑌 ⧵ 𝑌𝑝

(70)

hold for arbitrary fields 𝑷 1,𝑷 2 ∈ 𝐿2(𝑌 ; Sym(𝑑)) in terms of the
constants 𝛼± arising in the assumed conditions (50) as well as (51)
and the reference material constant 𝛼0. The validity of the esti-
mates (69) and (70) follows directly from general considerations
of convex analysis [58] by identifying the operator 𝑲0 as a resol-
vent operator [51], §2.4, whereas the operator 𝑱 0 corresponds to
a reflected resolvent operator [51], §2.5.

The classical analysis of the nonlinear Eyre–Milton scheme [35,
40, 41], that is, in case of vanishing pore space, rests upon the
estimate

‖‖𝒁0(𝑷 1)(𝒙) −𝒁0(𝑷 2)(𝒙)‖‖
≤ 𝜌(𝛼0) ‖‖𝑷 2(𝒙) − 𝑷 2(𝒙)‖‖, a.a. 𝒙 ∈ 𝑌 ⧵ 𝑌𝑝

(71)

for the contraction constant

𝜌(𝛼0) = max

(||||𝛼− − 𝛼0

𝛼− + 𝛼0

||||,
|||||
𝛼+ − 𝛼0

𝛼+ + 𝛼0

|||||
)

(72)

of the operator 𝒁0 on the skeleton, valid for arbitrary fields
𝑷 1,𝑷 2 ∈ 𝐿2(𝑌 ; Sym(𝑑)). The estimate (71) follows from general
considerations of convex analysis, see Giselsson–Boyd [44].

Moreover, it is well known [35, 40, 41] that the reflection operator
𝕐 defined in Equation (60) is orthogonal, that is, the identity

||𝕐 ∶ 𝝉||𝐿2 = ||𝝉||𝐿2 holds for any 𝝉 ∈ 𝐿2(𝑌 ; Sym(𝑑)) (73)

where we use the 𝐿2-norm associated to the inner product

(𝝉 ,𝑷 )𝐿2 = 1|𝑌 | ∫𝑌 𝝉 ∶ 𝑷 𝑑𝒙, 𝝉 ,𝑷 ∈ 𝐿2(𝑌 ; Sym(𝑑)) (74)

With these observations at hand, we consider the Hilbert space

𝐻 = 𝐿2(𝑌 ; Sym(𝑑)) (75)

and the fixed-point mapping (76) encoding the right-hand side of
the Eyre–Milton Equation (58)

𝑭 ∶ 𝐿2(𝑌 ; Sym(𝑑)) → 𝐿2(𝑌 ; Sym(𝑑))

𝑭 (𝑷 ) = 2 ℂ0 ∶ 𝜺 + 2 𝝈 + 𝕐 ∶ 𝒁0(𝑷 )
(76)
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Apparently, any fixed point of the mapping (76) corresponds to
the solution of the Eyre–Milton Equation (58) and thus to a solu-
tion to the micromechanical problem (62) and (63) of interest.

Based on the observation

||𝑭 (𝑷 1) − 𝑭 (𝑷 2)||𝐿2 = ||𝕐 ∶ 𝒁0(𝑷 1) − 𝕐 ∶ 𝒁0(𝑷 1)||𝐿2

= ||𝒁0(𝑷 1) −𝒁0(𝑷 2)||𝐿2

(77)

where we used the definition (76) and the orthogonality (73), in
case of vanishing pore space, one concludes the estimate

||𝑭 (𝑷 1) − 𝑭 (𝑷 2)||𝐿2 ≤ 𝜌(𝛼0)||𝒁0(𝑷 1) −𝒁0(𝑷 2)||𝐿2 (78)

As the prefactor (72) is less than unity for all reference-parameter
choices 𝛼0 > 0, we have exposed the mapping 𝑭 as a contraction
mapping. In particular, the associated fixed-point method

𝑷 𝑘+1 = 𝑭 (𝑷 𝑘) ≡ 2 ℂ0 ∶ 𝜺 + 2 𝝈 + 𝕐 ∶ 𝒁0(𝑷 𝑘) (79)

converges linearly to the unique fixed point for any initial value
𝑷 0 as a consequence of the contraction mapping theorem.

In case of non-vanishing pore space, this simple analysis
is no longer sufficient. The identity (77) only implies the
non-expansivity estimate

||𝑭 (𝑷 1) − 𝑭 (𝑷 2)||𝐿2 ≤ ||𝑷 1 − 𝑷 2||𝐿2 (80)

due to the identity

𝒁0(𝑷 )(𝒙) = −𝑷 (𝒙), 𝒙 ∈ 𝑌𝑝 (81)

valid in the pore space, see Equation (68).

The goal of the article at hand is to show that the damped
fixed-point scheme

𝑷 𝑘+1 = 𝛾 𝑷 𝑘 + (1 − 𝛾)𝑭 (𝑷 𝑘)

≡ 𝛾 𝑷 𝑘 + (1 − 𝛾)
[
2 ℂ0 ∶ 𝜺 + 2 𝝈 + 𝕐 ∶ 𝒁0(𝑷 𝑘)

] (82)

with non-trivial damping 𝛾 ∈ (0, 1) converges on the closed sub-
space

𝐻0 =
{
𝑷 ∈ 𝐻 ≡ 𝐿2(𝑌 ; Sym(𝑑)) ||| div 𝑷 = 0 in 𝑌𝑝.

}
(83)

The course of action is to follow Section 3 and to establish the key
estimate (30). Moreover, defining the residual mapping

𝑹 ∶ 𝐿2(𝑌 ; Sym(𝑑)) → 𝐿2(𝑌 ; Sym(𝑑)), 𝑹(𝑷 ) = 𝑷 − 𝑭 (𝑷 )
(84)

it will be shown that the space (83) is residual stable, that is, sat-
isfies the property (28).

4.2 | Collecting the Relevant Identities
and Estimates

The starting point of this investigation is the following useful
expression for the residual (84)

𝑹(𝑷 ) = 2 ℂ0 ∶ �̃�𝑐 ∶ (𝜺 − 𝜺) + 2 �̃� ∶ (𝝈 − 𝝈) (85)

involving the complementary orthogonal projectors

�̃� ∶ 𝑷 = Γ ∶ 𝑷 +ℚ ∶ ⟨𝑷 ⟩𝑌 and �̃�𝑐 ∶ 𝑷 = 𝑷 − �̃� ∶ 𝑷 (86)

as well as the fields

𝝈 = 𝑱 0(𝑷 ) and 𝜺 = 𝔻0 ∶ 𝑲0(𝑷 ) (87)

The formula (85) follows by elementary algebraic manipula-
tions. For the convenience of the reader, the result is recalled in
Appendix A1.

The representation formula (85) is quite useful, essentially for
two reasons. For a start, the formula permits us to show the stabil-
ity (28) of the linear subspace (83) under the action of the residual
mapping (85). A direct consequence of the definition (60) of the
operator �̃� is the simple formula

div �̃� ∶ 𝝉 = div 𝝉 , valid for any 𝝉 ∈ 𝐿2(𝑌 ; Sym(𝑑)) (88)

which directly implies the complementary identity

div �̃�𝑐 ∶ 𝝉 = div (𝝉 − �̃� ∶ 𝝉) = div 𝝉 − div �̃� ∶ 𝝉
⏟⏞⏟⏞⏟

=div 𝝉

= 𝟎
(89)

Then, the representation formula (85) implies the identity

div 𝑹(𝑷 ) = 2div �̃�𝑐 ∶ ℂ0 ∶ (𝜺 − 𝜺) + 2 div �̃� ∶ (𝝈 − 𝝈)

= 2 div (𝝈 − 𝝈) = 2 div 𝝈
(90)

where we used that the imposed stress 𝝈 is constant. Thus, we
have the implication

div 𝑹(𝑷 )(𝒙) = 2 div 𝝈(𝒙)
⏟⏟⏟

=𝟎

= 𝟎 for 𝒙 ∈ 𝑌𝑝 (91)

In particular, the linear subspace (83) is stable under the action
of residual mapping (85).

The second use of the representation formula (85) is in establish-
ing the following key estimate

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
𝐿2

≥ 𝛼0

𝛼+ + 𝛼0

1|𝑌 | ∫𝑌 ‖‖‖�̃�𝑐 ∶ (𝑷 1 − 𝑷 2)
‖‖‖2
𝑑𝒙

+
𝛼−

𝛼− + 𝛼0

1|𝑌 | ∫𝑌 ⧵𝑌𝑝 ‖‖�̃� ∶ (𝑷 1 − 𝑷 2)‖‖2
𝑑𝒙

(92)

which holds for arbitrary fields 𝑷 1,𝑷 2 ∈ 𝐿2(𝑌 ; Sym(𝑑)). In the
case of linear elasticity and for pure strain loading, the lower
bound (92) was established by Sab and co-workers [49]. The
nonlinear case requires additional ideas, which we collect in
Appendix A2.

The estimate (92) is rather close to the desired monotonicity esti-
mate (30). However, the integral of the second term does not cover
the pore space. To cope with this shortcoming, another estimate
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is required. More precisely, there is a constant 𝛿 ∈ (0, 1], s.t. for
any homogeneous strain field 𝑻 and an arbitrary displacement
fluctuation field 𝒖 ∈ 𝐻1

per(𝑌 )
𝑑 which satisfies the PDE

div ∇𝑠𝒖 = 𝟎 in the pore space 𝑌𝑝 (93)

the estimate

∫𝑌 ⧵𝑌𝑝
‖‖‖𝑻 + ∇𝑠𝒖‖‖‖2

𝑑𝒙 ≥ 𝛿 ∫𝑌
‖‖‖𝑻 + ∇𝑠𝒖‖‖‖2

𝑑𝒙 (94)

holds, whose derivation is contained in Appendix A3.

4.3 | The Damped Eyre–Milton Method
and Porous Microstructures

In this section, we are concerned with the micromechanical
problem and how the damped Eyre–Milton method can be used
to solve it. The following holds:

1. There is a unique solution 𝑷 ∗ ∈ 𝐻0, that is, with div 𝑷 ∗ = 𝟎
in the pore space 𝑌𝑝, of the Eyre–Milton Equation (58).

2. For any starting point 𝑷 0 ∈ 𝐻0 and a non-trivial damping
factor 𝛾 ∈ (0, 1), the associated damped Eyre–Milton itera-
tive scheme (79) converges linearly with the estimate

||𝑷 𝑘+1 − 𝑷 ∗||𝐿2

≤ √
1 − 2𝑐−𝛾(1 − 𝛾) ||𝑷 𝑘 − 𝑷 ∗||𝐿2 , 𝑘 = 0, 1, 2, . . .

(95)
and the constant

𝑐− = 2 min
(

𝛼0

𝛼+ + 𝛼0
,
𝛼−𝛿

𝛼− + 𝛼0

)
(96)

where 𝛼0 denotes the reference-material constant, 𝛼± stands
for the strong monotonicity (50) and Lipschitz constant (51)
of the stress operator in the skeleton and the constant 𝛿 ∈
(0, 1] arises in the Korn-type lower bound (94).

3. The bound (95) is optimized for 𝛾 = 1∕2, that is, the
method which is equivalent to what was introduced by
Michel, Moulinec, and Suquet [36, 37] as the “augmented
Lagrangian scheme”. In this case, the contraction estimate
(95) becomes

||𝑷 𝑘+1 − 𝑷 ∗||𝐿2 ≤
√

1 − min
(

𝛼0

𝛼+ + 𝛼0
,
𝛼−𝛿

𝛼− + 𝛼0

)
||𝑷 𝑘 − 𝑷 ∗||𝐿2 𝑘 = 0, 1, 2, . . .

(97)

These assertions follow directly from the abstract derivations pro-
vided in section 3. We have already established that the subspace
(83) is stable under the action of the vector residual (84) and that
the fixed-point mapping (76) is non-expansive (22), see Equation
(80). It remains to establish the monotonicity estimate

(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
𝐿2 ≥ 𝑐−‖‖𝑷 1 − 𝑷 2

‖‖2
𝐿2 (98)

for all fields 𝑷 1,𝑷 2 ∈ 𝐻0 and the constant (96).

The point of departure is the key estimate (92), which is valid for
any pair of fields 𝑷 1 and 𝑷 2. In case both fields 𝑷 1 and 𝑷 2 belong
to the subspace 𝐻0, the estimate

1|𝑌 | ∫𝑌 ⧵𝑌𝑝 ‖‖�̃� ∶ (𝑷 1 − 𝑷 2)‖‖2
𝑑𝒙 ≥ 𝛿 1|𝑌 | ∫𝑌 ‖‖�̃� ∶ (𝑷 1 − 𝑷 2)‖‖2

𝑑𝒙

(99)
holds. In fact, writing

�̃� ∶ (𝑷 1 − 𝑷 2) = 𝚪 ∶ (𝑷 1 − 𝑷 2) +ℚ ∶ ⟨𝑷 1 − 𝑷 2⟩𝑌 ≡ 𝕋 + ∇𝑠𝒖
(100)

for the fields

𝕋 = ℚ ∶ ⟨𝑷 1 − 𝑷 2⟩𝑌 and 𝒖 = (div ∇𝑠)†div (𝑷 1 − 𝑷 2) (101)

we may apply the estimate (94) to deduce

∫𝑌 ⧵𝑌𝑝
‖‖�̃� ∶ (𝑷 1 − 𝑷 2)‖‖2

𝑑𝒙

= ∫𝑌 ⧵𝑌𝑝
‖‖‖𝕋 + ∇𝑠𝒖‖‖‖2

𝑑𝒙 ≥ 𝛿 ∫𝑌
‖‖‖𝕋 + ∇𝑠𝒖‖‖‖2

𝑑𝒙

= 𝛿 ∫𝑌
‖‖�̃� ∶ (𝑷 1 − 𝑷 2)‖‖2

𝑑𝒙

(102)

which is the desired estimate (98). Here, we used the simple iden-
tity (88) to see that

div ∇𝑠𝒖 = div 𝚪 ∶ (𝑷 1 − 𝑷 2) = div (𝑷 1 − 𝑷 2) = 𝟎 in 𝑌𝑝.

(103)
We comment on the obtained results.

1. The obtained assertions confirm previous computational
experiments [46] which suggest that the non-damped
Eyre–Milton scheme (79) does not (always) converge for
porous materials, whereas non-trivial damping with a factor
𝛾 ∈ (0, 1) leads to convergence.

2. Sab et al. [49] analyzed the case of linear composites
with pure strain loading, that is, ℚ = 𝟎, and proposed an
Eyre–Milton type scheme with a damping parameter 𝛾𝑘
which may change from one iteration to the next and which
is chosen from an extremum principle. The work at hand
shows that such a procedure is not necessary for conver-
gence. Rather, selecting an iteration-independent damping
factor is sufficient to ensure convergence. Whether choos-
ing the damping factor adaptively may be advantageous is
another matter, however.

3. We established the arguments in the continuous setting,
that is, not factoring in the effect of the discretization
scheme used. However, it is well known that the discretiza-
tion scheme has a strong effect on the convergence behav-
ior of FFT-based schemes [5, 7]. In the context of primal
formulations and porous materials, certain finite difference
and finite element discretizations [6–8, 59] render the typ-
ical iterative schemes [1, 22, 27] convergent, whereas the
Fourier-type discretizations [2, 12–14] may imply diver-
gence [5, 7]. Similar observations were made in the context
of polarization methods [26, 46, 49].
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4. The convergence rate (97) of the iterative scheme depends
on the choice of the reference constant 𝛼0. The contraction
factor (97) is minimized w.r.t. the value 𝛼0 precisely if the
monotonicity constant (96) is maximized. This is the case
provided the identity

𝛼0

𝛼+ + 𝛼0
=

𝛼−𝛿

𝛼− + 𝛼0
(104)

holds. Solving this quadratic equation for 𝛼0 > 0 gives the
solution

𝛼∗0 =
√

(1 − 𝛿)2

4
𝛼2
− + 𝛼−𝛼+𝛿 −

1 − 𝛿
2

𝛼−
(105)

Thus, in case of vanishing porosity, that is, 𝛿 = 1, we recover
the optimal reference constant

𝛼∗0 =
√
𝛼+𝛼− (106)

that was established previously [35, 40, 41]. For the other
extreme, that is, strong porosity, we expect the constant 𝛿 ≪
1 to be rather small, and we are interested in this case. By
Taylor’s theorem, we are led to the expansion

𝛼∗0 = 𝛼+ 𝛿 + 𝑂(𝛿2) (107)

In general, the optimal reference material 𝛼∗0 increases with
the porosity constant 𝛿, and lies in the interval

(
0,
√
𝛼+𝛼−

]
.

5. In case of strong porosity and of a small porosity constant 𝛿,
the monotonicity constant (96) associated to the reference
material (107) is

𝑐− ≡ 2
𝛼−𝛿

𝛼− + 𝛼+𝛿
= 2 𝛿 + 𝑂(𝛿2) (108)

In particular, for prescribed tolerance, on the order of 1∕𝛿
iterations are required for the damped Eyre–Milton scheme
(82). In contrast, only 1∕

√
𝛿 iterations are required for

(Newton-)CG, see Schneider [48]. This means that either
our estimates are not optimal or the damped Eyre–Milton
method (82) is less effective for porous materials than the
most efficient primal solvers [48].

6. The developments in this article involved a fixed reference
material. However, as the optimal reference material choice
(105) involves the parameter 𝛿 which is hard to estimate,
more focus should be laid on adaptive parameter estimation
techniques [45, 46].

5 | Computational Investigations

5.1 | Setup

The polarization schemes described in this paper were imple-
mented in an existing in-house FFT-based micromechanics
solver, written in Python with Cython extensions, using OpenMP
for parallelization and the FFTW [60] library to apply the fast
Fourier transform. All computational examples were run on a
laptop with 32 GB RAM and an Intel Core i5 1.3 GHz processor.

In the following, polarization schemes are compared to primal
and ADMM-based solvers. We resort to the convergence crite-
ria presented in Schneider et al. [41]. These convergence cri-
teria are based on the introduction of a Lippmann-Schwinger
operator

𝚲(𝜺) = 𝜺 + (Γ0 + 𝔻0 ∶ ℚ ∶ ⟨⋅⟩) ∶(
𝑺(⋅, 𝜺) − ℂ0 ∶ 𝜺

)
− 𝑬 − 𝔻0 ∶ 𝚺

(109)

This Lippmann-Schwinger operator is equivalent to the residual
operator introduced in (85). The difference between the two oper-
ators is the quantity which it acts upon. The operator (109) takes
a strain field as input, whereas the residual (85) acts on a polar-
ization (59). In formulas, the identity

𝑹(𝑷 ) = 2ℂ0 ∶ 𝚲(𝜺) holds with 𝑷 = 𝑺(⋅, 𝜺) + ℂ0 ∶ 𝜺 (110)

The operator (109) quantifies the degree of kinematic compati-
bility of the strain 𝜺, the equilibrium of the stress field, and the
satisfaction of the macroscopic loading conditions.

For all solvers, we consider the residual

res =
||𝚲(𝜺)||ℂ0||⟨𝝈⟩𝑌 ||𝔻0

(111)

where || ⋅ ||ℂ0 and || ⋅ ||𝔻0 denote the ℂ0 and the 𝔻0 weighted 𝐿2

inner products, respectively.

For primal solvers like the basic scheme, compatibility and the
macroscopic strain conditions are directly enforced by the solver
at every iteration. Hence, the residual (111) becomes

res =

‖‖‖Γ0 ∶ (⋅, 𝜺) + 𝔻0 ∶
(⟨𝑺(⋅, 𝜺)⟩𝑌 − 𝚺

)‖‖‖ℂ0||⟨𝑺(⋅, 𝜺𝑘)⟩
𝑌
||𝔻0

(112)

This quantity does not depend on the constant 𝛼0 in the reference
material ℂ0 = 𝛼0 Id, see Schneider et al. [41]. In the following,
the quantity defined in Equation (112) is used as the residual for
primal schemes.

For polarization schemes in Eyre–Milton form (82)

𝑷 𝑘+1 = 𝛾 𝑷 𝑘 + (1 − 𝛾)(𝑷 𝑘 −𝑹(𝑷 𝑘)) = 𝑷 𝑘 − (1 − 𝛾)𝑹(𝑷 𝑘)
(113)

one observes the identity

||𝑷 𝑘+1 − 𝑷 𝑘||𝔻0

1 − 𝛾
= ||𝑹(𝑷 𝑘)||𝔻0 (114)

Thus, the residual (111) takes the form

res = 1
2(1 − 𝛾)

||𝑷 𝑘+1 − 𝑷 𝑘||𝔻0||⟨𝑺(⋅, 𝜺𝑘)⟩
𝑌
||𝔻0

(115)

for polarization schemes (82). In particular, although the damp-
ing factor 𝛾 appears explicitly in the expression (115), the residual
is independent of the damping factor.
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For polarization schemes in the ADMM implementation [36, 37],
the residual (111) may be expressed in the form

res =
||𝒆𝑘 − 𝜺𝑘+1∕2||ℂ0||⟨𝝈(𝜺𝑘)⟩||𝔻0

(116)

see Schneider [46].

For polarization schemes, the residual (111) depends on the ref-
erence material. However, the residual is the natural quantity
which measures the contraction properties of the underlying
fixed-point operator (76). Alternative residuals were considered,
but come typically with additional computational overhead in the
nonlinear or inelastic case.

Unless stated otherwise, all approaches are solved up to a toler-
ance tol = 10−5 on the residual.

5.2 | A Sand-Core Microstructure

As a first example, we consider a sand-core microstructure, dis-
cretized by 2563 voxels, represented in Figure 1a. The microstruc-
ture consists of 64 grains of sand with a volume fraction of 58.58%,
held together by an inorganic binder with a volume fraction of
1.28%. It was generated by a variant of the mechanical contrac-
tion method initially proposed by Williams and Philipse [61],
described in Schneider et al. [62]. The material parameters of the
constituent materials are given in Table 1.

First, the behavior of the damped Eyre–Milton scheme
(82) is investigated for three different discretizations:
Moulinec–Suquet’s spectral discretization based on trigono-
metric polynomials [1, 2], the rotated staggered grid [6] and the
staggered grid discretization [7]. For all three discretizations, the
reference material is chosen as 𝛼0 =

√
𝛼+𝛼−, where 𝛼− (resp. 𝛼+)

is the lowest non-zero (resp. highest) eigenvalue of the sand and
binder’s stiffness tensors. Results are presented for two damping
factors: 𝛾 = 0.25 and 𝛾 = 0.5. For all discretizations, a vanishing
damping factor 𝛾 = 0 led to divergence of the solver, while for
damping factors 𝛾 = 0.25 and 𝛾 = 0.5, only the staggered grid
shows linear convergence. The other two discretizations feature

logarithmic convergence, failing to reduce the residual below
10−5 after 10,000 iterations. Willot’s discretization leads to a
2.32.10−4 residual after 10,000 iterations for a damping factor
of 𝛾 = 0.25 (resp. a 2.78.10−4 residual for a damping factor of
𝛾 = 0.5). Moulinec–Suquet’s discretization leads to a residual
of 1.21.10−3 (resp. 1.48.10−3) for the same number of iterations.
Similar results, showing a more stable behavior for the staggered
grid discretization than for the other two on porous microstruc-
tures, were reported for primal solvers [48]. Hence, the staggered
grid discretization is used in the following examples.

As highlighted in Section 4.3, choosing the reference material
𝛼0 =

√
𝛼+𝛼− optimizes the theoretical bound on the convergence

rate for non-porous microstructures, see Equation (95). Such
an optimal choice can also be derived for porous materials, as
shown in Equation (107). However it relies on a constant 𝛿,
which depends on the geometry of the microstructure and is diffi-
cult to estimate. Figure 2a compares various choices of reference
material 𝛼0:

• the arithmetic mean of the highest and lowest (zero in the
porous case) eigenvalues 𝛼0 = 0.5𝛼+;

• the geometric mean of the highest and lowest non-zero
eigenvalues 𝛼0 =

√
𝛼+𝛼−;

• the lowest non-zero eigenvalue 𝛼0 = 𝛼−;

• the highest eigenvalue 𝛼0 = 𝛼+;

• and the choice of reference material 𝛼0 = 𝛼+∕5 case, inves-
tigated by Schneider [46] and which performs well in
Monchiet and Bonnet [39].

For all of these choices, results are plotted for two different damp-
ing factors: 𝛾 = 0.25 and 𝛾 = 0.5.

TABLE 1 | Elastic properties for the sand grain microstructure.

𝑬 (in GPa) 𝝂

Quartz sand [63, 64] 66.9 0.25
Inorganic water glass binder [65] 71.7 0.17

FIGURE 1 | A sand core microstructure. (a) Geometry of the microstructure; (b) Convergence for different discretizations.
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FIGURE 2 | Sand core microstructure: choice of the reference material. (a) Common choices of reference material, Damping factor: left 𝛾 = 0.25,
right 𝛾 = 0.5; (b) Adjustment of the reference material, damping factor 𝛾 = 0.5.

From Figure 2a, it appears that considering the upper-bound
eigenvalue 𝛼+ as a reference material leads to the lowest asymp-
totic convergence rate, while considering the value 𝛼0 = 0.2𝛼+
stemming from Monchiet–Bonnet’s computational experiments
[39] leads to the highest asymptotic convergence rate. We note
that, in terms of values, the following relations hold for the
present example:

0.2𝛼+ ≤ 𝛼− ≤ 0.5𝛼+ ≤ √
𝛼+𝛼− ≤ 𝛼+ (117)

Hence, the smallest of these five reference materials leads to the
fastest convergence rate. This is consistent with Equation (107),
from which we expect that the optimal reference material is only
a fraction of the highest stiffness tensor eigenvalue: 𝛼0 = 𝛿𝛼+,
where the constant 𝛿 is small. In order to try to refine the esti-
mate on the unknown parameter 𝛿, several values were tested
in Figure 2b, for a damping factor 𝛾 = 0.5. From this figure, it
appears that a value 𝛿 = 0.05 provides the reference material
which maximizes the convergence rate and minimizes the num-
ber of iterations to reach a tolerance of 10−5. It is also interesting
to note that all cases present a superlinear convergence rate for
the first dozens of iterations. However, such a superlinear phase
is longer if the reference material is chosen too stiff than if it is too
soft. As an example, the asymptotic convergence rate is around
the same for the reference materials 𝛼0 = 0.01𝛼+ and 𝛼0 = 0.1𝛼+,
however the latter converges to a tolerance of 10−5 in half as many
iterations as the former. We also observe that a proper choice
of the reference material has a significant effect on the iteration
count required to reach the desired tolerance: for a damping fac-
tor 𝛾 = 0.5, choosing a reference material 𝛼0 = 𝛼+ leads to 18.6
more iterations that the present optimal choice 𝛼 = 0.05𝛼+.

In Figure 3a, we study the effect of the damping factor on the
convergence speed for a given reference material 𝛼0 = 0.05𝛼+.
It appears that all considered damping factors, from 𝛾 = 0.01 to
𝛾 = 0.9, lead to convergence. This result is consistent with the
theoretical convergence analysis performed in Section 4.3, which

showed that any damping factor 𝛾 in the open interval (0, 1)
should lead to linear convergence. From Figure 3a, the highest
final convergence rate is reached for a damping factor 𝛾 = 0.1.

In order to compare the convergence rate of the DEM schemes
investigated in Figure 3a to the convergence rate of primal solvers,
Figure 3b shows the convergence behavior of the conjugate gra-
dient method (abbreviated CG) introduced by Zeman et al. [27]
and of the primal Barzilai-Borwein approach [22] (abbreviated
BB). In the present example, the CG solver outperforms all DEM
approaches in terms of convergence rate and of number of iter-
ations to convergence. In particular, it converges to a tolerance
of 10−5 in 74% less iterations than the DEM approach with a
damping factor 𝛾 = 0.5, and in 7% less iterations than the 𝛾 =
0.1-version of DEM. This result is consistent with the conver-
gence rate estimates for CG and DEM, recalled in remark 5.,
Section 4.3. The Barzilai-Borwein approach reaches the pre-
scribed tolerance in more iterations than the DEM approaches
featuring a damping factor comprised between 0.05 and 0.25.
However, it outperforms the DEM approaches with a damping
factor of 0.01 or greater than 0.5 in terms of iteration count.

For practical applications, it is of interest to determine the solvers
parameters that lead to the minimum number of iterations to
reach a given tolerance, even though these parameters do not
necessarily yield the optimal convergence rate. For that purpose,
Figure 3c reports the number of iterations required to reach tol-
erance tol = 10−5 as a function of the reference material and of
the damping factor. A damping factor of 𝛾 = 0.05 is optimal for
a reference material exceeding 0.05𝛼+, while a damping factor
of 𝛾 = 0.1 leads to a lower number of iterations for a reference
material inferior to 0.05𝛼+. For all investigated reference materi-
als, considering a damping factor 𝛾 = 0.25 increases the number
of iterations by 5 to 27%. A damping factor of 𝛾 = 0.5 performs
worse and leads to the number of iterations increased by 46 to
91%. From Figure 3c, it also appears that the optimal reference
material is almost independent of the damping factor.

13 of 24



FIGURE 3 | Sand core microstructure: influence of the damping factor on convergence and comparison to primal approaches. (a) DEM solver:
residual for a reference material 𝛼0 = 0.05𝛼+; (b) Primal solvers: residual; (c) DEM solver: iteration count to reach a residual of 10−5.

TABLE 2 | Iteration counts for various adaptive polarization approaches.

𝜸 = 0.25 𝜸 = 0.5

Actualization strategy Iterations
Final value of

Iterations
Final value of

the reference material the reference material

Barzilai-Borwein 175 𝛼0 = 4 247 MPa 236 𝛼0 = 4 347 MPa
(0.034𝛼+) (0.034𝛼+)

Residual Balancing 914 𝛼0 = 59 837 MPa 384 𝛼0 = 14 959 MPa
(0.45𝛼+) (0.11𝛼+)

Averaging 171 𝛼0 = 11 920 MPa 257 𝛼0 = 11 921 MPa
(0.089𝛼+) (0.089𝛼+)

In Figures 2b and 3c, we performed a trial-and-error procedure to
find the reference material leading to the fastest convergence. It
is however tedious to perform such a fine-tuning of the reference
material for every FFT simulation. Therefore, adaptive step-size
strategies come in handy. In the following, we take advantage of
the equivalence between the damped Eyre–Milton scheme and
ADMM approaches [38, 40, 41] to resort to adaptive strategies
developed for ADMM [45, 46]. We add to our investigations
the Barzilai-Borwein [21] approach proposed by Xu et al. [66,
67], the residual balancing approach from He et al. [68] and
the averaging approach presented by Lorentz and Tran-Dinh
[69]. Table 2 records the number of iterations for those three
adaptive approaches and for two damping factors: 𝛾 = 0.25 and
𝛾 = 0.5. All adaptive step-size strategies lead to convergence
within less than 1,000 iterations. The most efficient one in the
example at hand is the averaging strategy with a damping factor
𝛾 = 0.25, closely followed by the Barzilai-Borwein strategy, also
for 𝛾 = 0.25. The residual balancing strategy is the only one
where a damping factor 𝛾 = 0.5 leads to a lower number of
iterations than a damping factor 𝛾 = 0.25. We also note that the
best adaptive strategy still performs worse than a finely tuned
constant reference material. Having a look at the final value of
the reference material for all three strategies, it appears that the

efficiency of the strategy increases with the proximity to the best
constant reference material.

As a conclusion to this first example on a quite challenging
microstructure, it seems that an aggressive strategy, both in
terms of the reference material and of the damping factor,
leads to fast convergence of the damped Eyre–Milton scheme.
For an optimal choice of these two parameters, the damped
Eyre–Milton scheme exhibits performances comparable to the
fastest available primal solvers.

5.3 | An Open-Cell Foam

As a second example, we consider the foam structure represented
in Figure 4a. To generate such a microstructure, we followed
the procedure proposed by Redenbach [70]. A random Laguerre
tesselation is created first. Then, the edges of the Laguerre cells
are thickened to give rise to a truss network. The final porosity is
80%, which makes FFT-based homogenization quite challenging.
We furnished the solid material composing the microstructure
with the isotropic properties of aluminum extracted from Segu-
rado et al. [71], that is, a Young’s modulus 𝐸 = 75 GPa and a
Poisson ratio 𝜈 = 0.3. The microstructure is subjected to a uni-
axial strain loading of 0.1% in the 𝑥-direction.
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FIGURE 4 | Porous foam microstructure. (a) Geometry of the microstructure; (b) Evolution of the residual for various choices of constant reference
material. Damping factor: left: 𝛾 = 0.25, right: 𝛾 = 0.5.

FIGURE 5 | Foam microstructure: influence of the damping factor on the convergence. (a) Evolution of the residual for a reference material 𝛼0 =
0.2𝛼+; (b) Iteration count to reach a tolerance tol = 10−5.

Different usual choices of reference material are investigated in
Figure 4b. Among those choices, the strategy leading to the high-
est convergence rate is a reference material 𝛼0 = 0.2𝛼+. We also
note that the convergence rate for a given reference material is
always lower with a damping factor 𝛾 = 0.25 than for 𝛾 = 0.5.

From Figure 5a, it appears that all investigated damping factors,
from 0.01 to 0.9, lead to linear convergence. A damping factor
𝛾 = 0.05 minimizes the final convergence rate. Choosing a damp-
ing factor lower than this value reduces the length of the super-
convergence phase at the beginning, while choosing a higher one
still allows for superconvergence at the beginning but reduces
the asymptotic convergence rate. We also note that, as hinted in
Section 4.3, using damping factors greater than 0.5 is not favor-
able in terms of convergence rate.

Figure 5b reports investigations on the iteration count to reach
a tolerance tol = 10−5 for various damping factors and reference
materials. The optimal reference material for this example is
𝛼0 = 0.05𝛼+. As for the previous example, the optimal refer-
ence material is almost insensitive to the value of the damping
factor. A damping factor 𝛾 = 0.1 leads to the lowest number
of iterations for the optimal reference material, and may be
outperformed by the value 𝛾 = 0.05 if the reference material is
chosen too stiff, that is, exceeding the optimal one. Figure 5b
also contains the results obtained by two primal solvers: CG
[27] and primal BB [22]. Contrary to the previous example,
the polarization schemes outperform the primal solvers in
terms of iteration count for a reference material 𝛼0 = 0.05𝛼+
and damping factors 𝛾 = 0.05 and 𝛾 = 0.1. The DEM scheme
with a damping factor 𝛾 = 0.25 and 𝛾 = 0.5 is outperformed by
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CG however, as it could be expected from the estimate derived
in Section 4.3.

5.4 | A Porous Short Glass-Fiber Reinforced
Polyamide

As a third example, we move out of the elastic setting and take
into account materials with inelastic behavior. We investigate a
fiber microstructure, presented in Figure 6a. Such a microstruc-
ture is composed of an elastoplastic polyamide matrix, reinforced
by 150 𝜇m-long, elastic glass fibers of diameter 10 𝜇m with a
15% volume fraction, aligned in the 𝑥-direction. The matrix also
contains 25 𝜇m pores with a 1% volume fraction. The microstruc-
ture was generated using the sequential addition and migration
algorithm [72, 73], and discretized by 2563 voxels.

While the fibers are considered to behave elastically, the matrix
is supposed to follow a 𝐽2-elastoplastic material model with
linear-exponential hardening:

𝜎0(𝑝) = 𝜎𝑌 + 𝑘1𝑝 + 𝑘2(1 − exp(−𝑚𝑝)) (118)

All material parameters, extracted from Doghri et al. [74], are
gathered in Table 3.

First, a uniaxial extension of 1% in 𝑥-direction is applied as a
single-step loading.

Figure 6b records the convergence of the damped Eyre–Milton
approach for different usual choices of reference materials and
damping factors. With the considered material and considering a
single-step loading, the following relations hold:

𝛼− <
√
𝛼+𝛼− < 0.2𝛼+ < 0.5𝛼+ < 𝛼+ (119)

Figure 6b, shows that the polarization schemes converge linearly
for all considered scenarios. In the present case, the highest con-
vergence rate is obtained for the choice of reference material
𝛼0 =

√
𝛼+𝛼−. This observation contrasts with the two previous

examples and tends to indicate that the porosity constant is quite
close to 𝛿 = 1. A reference material 𝛼0 = 𝛼− is too soft and leads
to a too large step-size, while all other choices are too stiff. Once
again, a damping factor 𝛾 = 0.25 leads to slightly less iterations
than 𝛾 = 0.5, for all considered reference materials.

Figure 7a represents the convergence speed for various damping
factors and a reference material 𝛼0 =

√
𝛼+𝛼−. As for the previous

two examples, the damped Eyre–Milton scheme converges lin-
early for all damping factors investigated. A damping factor of 𝛾 =
0.05 or 𝛾 = 0.1 enables faster convergence and a higher conver-
gence rate. We also note that, for this specific example, the classi-
cal undamped Eyre–Milton scheme converges. This might be due
to the low volume fraction and the regular shape of the pores.

Because the choice of reference material is non-trivial, it is of
interest to resort to adaptive approaches as used for the sand
core microstructure in Section 5.2. Figure 7b reports on the con-
vergence behavior of the three adaptive polarization approaches
investigated in Section 5.2, namely Barzilai–Borwein [66, 67],
residual balancing [68] and averaging [69] actualization rules, for
two values of damping factor: 𝛾 = 0.25 and 𝛾 = 0.5. Comparing
Figure 7a,b reveals that the DEM approaches, with a reference
material 𝛼0 =

√
𝛼+𝛼− and a damping factor comprised between

0.05 and 0.5, outperform adaptive approaches in terms of the
convergence rate and iteration count. The damped Eyre–Milton
scheme with a damping factor 𝛾 = 0.05 leads to the highest con-
vergence rate among polarization schemes. The residual balanc-
ing and the averaging strategies lead to between 450 and 900 iter-
ations. Thus, these two adaptive polarization approaches require

FIGURE 6 | Porous short glass-fiber reinforced polyamide microstructure. (a) Geometry of the microstructure; (b) Evolution of the residual for
various choices of constant reference materials.

TABLE 3 | Mechanical properties for the porous fiber microstructure [74].

Glass fibers 𝑬 = 72 GPa 𝝂 = 0.22

Polyamide 𝐸 = 2.1 GPa 𝜈 = 0.3 𝜎𝑌 = 29 MPa 𝑘1 = 139 MPa
matrix 𝑘2 = 32.7 MPa 𝑚 = 319.4
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FIGURE 7 | Fiber microstructure: convergence behavior for various solvers. (a) DEM with a reference material 𝛼0 =
√
𝛼+𝛼−; (b) Adaptive ADMM

solvers; (c) Primal solvers.

FIGURE 8 | Fiber microstructure: multiple load steps. (a) Iteration count per step for various solvers; (b) Convergence behaviour: First load step;
(c) Convergence behaviour: Tenth load step.

around three to six times more iterations than the best polariza-
tion scheme, 1.5 to 3 times more than the primal approaches, but
still less than most of the common constant strategies represented
in Figure 6b. The Barzilai-Borwein rule leads to an excessively
soft reference material 𝛼0 = 30 MPa and, hence, to a low conver-
gence rate and the highest iteration count. In Figure 7c, three dif-
ferent primal solvers are also considered: the basic scheme with
Barzilai-Borwein adaptive step-size [22], the nonlinear conjugate
gradient method [28] and the Newton CG scheme [20, 30]. We
note that the rate of convergence of all three primal approaches is
higher than the rate of convergence of the 𝛾 = 0.5-DEM approach
for low values of the residual, typically lower than 10−4. For
such values of the residual, the rate of convergence of the DEM
approaches featuring damping ratios of 𝛾 = 0.05 to 𝛾 = 0.25 is
similar to the one of primal approaches.

After considering a single large load step, we turn our attention
to a different loading: a 5% strain is applied in 50 equidistant
load steps in the 𝑥-direction. An affine extrapolation of the ini-
tial guess 𝜺0(𝑡𝑛+1) is used for the load step 𝑡𝑛+1, as proposed by
Moulinec and Suquet [2]:

𝜺0(𝑡𝑛+1) = 𝜺0(𝑡𝑛) +
𝑡𝑛+1 − 𝑡𝑛
𝑡𝑛 − 𝑡𝑛−1

(𝜺(𝑡𝑛) − 𝜺(𝑡𝑛−1)) (120)

where 𝜺(𝑡𝑛) and 𝜺(𝑡𝑛−1) are the converged solution of the two pre-
vious steps. It should be noted that the lower-bound constant
𝛼− depends on the hardening function, and its estimate is recom-
puted for each time step, see Schneider et al. [41].

Figure 8a shows the iteration count per loading step for
four polarization approaches with various damping factors and
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the fixed reference material 𝛼0 =
√
𝛼+𝛼−. The three primal

approaches investigated for the single-load-step loading, namely
Barzilai Borwein, Newton CG and nonlinear CG, are also added
for comparison. Interestingly, all four polarization approaches
have a common pattern in terms of the number of iterations per
step. The iteration count is rather high for the first to steps, from
400 for a damping factor 𝛾 = 0.05 to 763 for a damping factor
𝛾 = 0.5. It is divided by a factor of 12 to 13 by the third step, and
then slowly decreases to reach between 11 iterations per step for a
damping factor 𝛾 = 0.05 and 19 iterations per step for a damping
factor 𝛾 = 0.5.

In terms of the average iteration count, the best primal approach
is the Barzilai-Borwein scheme [22], with 60.8 iterations per step.
The two other primal schemes, Newton-CG [20, 30] and non-
linear CG [28], perform significantly worse, with an average of
90.6 iterations/step for Newton CG and of 85.8 iterations/step for
the nonlinear CG. The efficiency of the primal Barzilai-Borwein
scheme relatively to CG schemes has already been outlined for
inexpensive material laws [31], as it is the case here. The damped
Eyre–Milton scheme outperforms all primal schemes, except for
a damping factor 𝛾 = 0.5. For the example at hand, the best damp-
ing factor is 𝛾 = 0.05, with an average iteration count of 33.8 iter-
ations/step.

We turn our attention to the convergence rate of the different
methods. Figure 8b shows the convergence rate of the DEM and
primal schemes for the first load step, while Figure 8c shows the
same quantity for the tenth step. For the first iteration, all three
primal solvers outperform the DEM schemes in terms of con-
vergence rate and in terms of number of iterations to reach the
tolerance tol = 10−5. The opposite is true for the tenth loading
step. Overall, the results presented in Figure 8 outline the perfor-
mance of polarization methods compared to primal solvers in the
nonlinear case.

5.5 | A Porous Metal Matrix Composite

For this last example, we consider a metal matrix composite,
represented in Figure 9. This microstructure is composed of 33
ceramic inclusions with a volume fraction of 29.5%, blue-colored

in Figure 9 and 31 pores with a volume fraction of 0.5%,
gold-colored in Figure 9. It was generated using the sequential
addition and migration algorithm [72] and discretized by 1283

voxels. The ceramic beads are assumed to be elastic while the
aluminum matrix follows a 𝐽2-elastoplastic material law with
power-law hardening:

𝜎0(𝑝) = 𝜎𝑌 + 𝑘 𝑝𝑚 (121)

All material parameters, extracted from Segurado et al. [71], are
gathered in Table 4. The example at hand is challenging because
of the exponent in the power-law hardening. Notably, the smallest
eigenvalue 𝛼− in the aluminum matrix goes to zero at high strains,
which complicates the selection of an optimal reference material.

A uniaxial extension of 1% in the 𝑥-direction is applied via 50
equidistant loading steps.

Figure 9b shows the number of iterations per step for various
choices of reference material and a damping factor of 𝛾 = 0.25.
From Figure 9b, it appears that the best choice of reference mate-
rial is 𝛼0 =

√
𝛼+𝛼− from the third iteration onwards. What is

striking is how, once again, an unwise choice of reference mate-
rial makes the damped Eyre–Milton scheme completely uncom-
petitive. For instance, regarding Figure 9b, the average iteration
count per load increment goes from 23.3 for a reference mate-
rial 𝛼0 =

√
𝛼+𝛼− to 180.0 for a reference material 𝛼0 = 𝛼+. From

this example and the one presented in Section 5.4, it seems that a
reference material 𝛼0 =

√
𝛼+𝛼− is an acceptable choice for porous

microstructures with a low volume fraction of pores and a regular
pore shape. For such a value of reference material, the damping
factor leading to the lowest number of iterations is either 𝛾 = 0.05
or 𝛾 = 0.1 depending on the step considered, see Figure 10a. A
damping factor 𝛾 = 0.5 leads to 72% more iterations on average,
while 𝛾 = 0.25 leads to only 18% more iterations.

Figure 10 compares the convergence behavior of the DEM
approaches with various damping factors to the behavior
of the three primal schemes investigated in Section 5.4:
Barzilai–Borwein [22], Newton CG [20, 30] and nonlinear CG
[28]. For these three solvers, the average iteration count per step

FIGURE 9 | Metal-matrix composite microstructure. (a) Geometry of the microstructure; (b) Iteration count per load step for a fixed damping factor
𝛾 = 0.25.
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TABLE 4 | Mechanical properties for the metal-matrix composite [71].

Inclusions 𝐸 = 400 GPa 𝜈 = 0.2
Matrix 𝐸 = 75 GPa 𝜈 = 0.3 𝜎𝑌 = 75 MPa 𝑘 = 416 MPa 𝑚 = 0.3895

FIGURE 10 | Metal matrix composite: multiple load steps. (a) Iteration count per step for various solvers; (b) Convergence behaviour: First load
step; (c) Convergence behaviour: Tenth load step.

ranges from 28.1 for BB to 38.0 for Newton CG. As in the previ-
ous example, the DEM schemes with a reference material 𝛼0 =√
𝛼+𝛼− and damping factors 𝛾 = 0.05, 𝛾 = 0.1 and 𝛾 = 0.25 yield

lower iteration counts per step, between 19.2 and 23.3, than the
primal approaches. The 𝛾 = 0.5-DEM approach falls among the
primal schemes in terms of iteration count, with 34.2 iterations
per step on average. Investigating in more details on the conver-
gence behavior of specific load-steps reveals that the convergence
rate of DEM approach is lower than the convergence rate of pri-
mal approaches for the first step. For the tenth load step, the DEM
schemes converge at a faster rate than nonlinear CG and BB. The
Newton-CG scheme has a vaster convergence rate than the DEM
scheme with a damping factor 𝛾 = 0.5, but converges in more
iterations because of a higher initial residual. In conclusion, the
example at hand confirms that polarization approaches are effi-
cient alternatives to primal approaches for computing the non-
linear behavior of porous microstructures.

6 | Conclusions and Perspectives

In this work, we investigated the convergence of polarization
methods [35, 36, 38] in the framework of FFT-based computa-
tional homogenization for porous microstructure. While it has
been proved that primal approaches converge linearly for porous
material [48], a linear convergence result of polarization schemes
was exhibited only for linear composites and adaptive damping
parameters by Sab et al. [49]. We proved the linear convergence of
the damped Eyre–Milton scheme with a fixed non-trivial damp-
ing factor in a general framework including mixed stress-strain

boundary conditions and nonlinear material behavior. We exhib-
ited sharper estimates than Sab et al. [49] on the convergence rate,
and showed that any damping value in the open interval (0, 1)
leads to linear convergence. Such theoretical findings were sup-
ported by numerical experiments on complex microstructures.
Granted that a stable discretization scheme such as the staggered
grid [7] was used, all numerical experiments exhibited linear
convergence.

The convergence analysis showed that the theoretical bound
is optimal of a damping factor 𝛾 = 0.5, that is, for the
Michel–Moulinec–Suquet [36] scheme. For such a damping fac-
tor, the reference material that optimizes the bound is always in
the interval (0,

√
𝛼+𝛼−]. The numerical experiments confirmed

that the reference material maximizing the convergence rate is
contained in this interval. However, the numerical experiments
also revealed that the theoretical bound may not be optimal.
Indeed, the damping factors that minimized the convergence rate
lay between 𝛾 = 0.05 and 𝛾 = 0.1 consistently. Interestingly, these
values are similar to the optimal damping factors obtained by Sab
et al. [49] in the elastic case.

The experiments also showed that using a well-chosen constant
damping factor decreases the number of iterations to convergence
by 55 to 90% compared to using the value 𝛾 = 0.5 stemming from
the convergence analysis. By comparison, choosing the reference
material 𝛼0 =

√
𝛼+𝛼− if it is not optimal increased the number of

iterations by a factor up to 17. Even though a wise choice of the
damping factor accelerates convergence, it is not able to repair a
bad choice of reference material. Hence, it appears that the choice
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of the reference material is more important than the considered
damping factor. However, to reach optimal performance, both the
reference material and the damping factor need to be tuned.

A comparison to primal solvers in the elastic framework showed
that the damped Eyre–Milton scheme with optimized damping
and reference material could be as fast as the conjugate gradi-
ent scheme [27], and faster than the primal Barzilai-Borwein
scheme [22]. However, determining the optimal DEM parame-
ters is tedious, and polarization-based schemes with adaptive ref-
erence material and fixed damping factor are still less efficient
than primal solvers. When it comes to nonlinear behavior, the
results of the two examples investigated indicate that the DEM
scheme outperforms primal approaches for a wise choice of ref-
erence material and a damping factor comprised between 𝛾 =
0.05 and 𝛾 = 0.25. In with such parameters, polarization schemes
lower the iteration count by a factor of up to two, at least for the
examples considered.

Future work may be devoted to improving the theoretical bound
to get more refined estimates of the value of the optimal damping
factor and reference material. An extension of the proposed anal-
ysis to the case of rigid inclusions, as proposed by Sab et al. [49],
can also be envisaged.

Data Availability Statement

The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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Appendix A

Out-Sourced Mathematical Derivations

A1 | The Formula for the Residual

The goal of this appendix is to establish the validity of the representation
formula (85)

𝑹(𝑷 ) = 2 ℂ0 ∶ �̃�𝑐 ∶ (𝜺 − 𝜺) + 2 �̃� ∶ (𝝈 − 𝝈) (A1)

for the residual (84). Our starting points are the definitions (76) and (84),
that is, we have the identity

𝑹(𝑷 ) = 𝑷 − 𝕐 ∶ 𝒁0(𝑷 ) − 2 ℂ0 ∶ 𝜺 − 2 𝝈 (A2)

Combining the Equations (59) and (67) in the form

𝑷 = 𝝈 + ℂ0 ∶ 𝜺 and 𝒁0(𝑷 ) = 𝝈 − ℂ0 ∶ 𝜺 (A3)

for the fields (87) and the representation formula implied by the defini-
tions (60) and (86)

𝕐 = Id − 2 �̃� (A4)

we observe

𝑷 − 𝕐 ∶ 𝒁0(𝑷 ) = 𝝈 + ℂ0 ∶ 𝜺 − (Id − 2 �̃�) ∶ (𝝈 − ℂ0 ∶ 𝜺)

= 𝝈 + ℂ0 ∶ 𝜺 − 𝝈 + ℂ0 ∶ 𝜺 + 2 �̃� ∶ (𝝈 − ℂ0 ∶ 𝜺)

= 2 ℂ0 ∶ 𝜺 − 2 ℂ0 ∶ �̃� ∶ 𝜺 + 2 �̃� ∶ 𝝈

(A5)

As we work with a diagonal reference material ℂ0 = 𝛼0 Id and by
definition (86) of the operator �̃�𝑐 , we may rewrite Equation (A5) in
the form

𝑷 − 𝕐 ∶ 𝒁0(𝑷 ) = 2 ℂ0 ∶ �̃�𝑐 ∶ 𝜺 + 2 �̃� ∶ 𝝈 (A6)

As the operator 𝚪 defined in Equation (60) annihilates homogeneous
fields, we have the identities

�̃� ∶ 𝝈 = 𝝈 and �̃�𝑐 ∶ 𝜺 = 𝜺 (A7)

where we used the compatibility conditions (57). Combining this insight
with Equation (A2) and the representation (A6) yields the claim (A1).

A2 | The Lower Bound for the Residual

In this paragraph, we would like to establish the validity of the estimate
(92)

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
𝐿2

≥ 𝛼0

𝛼+ + 𝛼0

1|𝑌 | ∫𝑌 ‖‖‖�̃�𝑐 ∶ (𝑷 1 − 𝑷 2)
‖‖‖2
𝑑𝒙

+
𝛼−

𝛼− + 𝛼0

1|𝑌 | ∫𝑌 ⧵𝑌𝑝 ‖‖�̃� ∶ (𝑷 1 − 𝑷 2)‖‖2
𝑑𝒙

(A8)

We will assume that the free energy (47)-and thus also the operators 𝑱 0

and 𝑲0 are smooth in the second variable. Then, we will infer the fun-
damental Theorem of calculus to transfer the linear elastic arguments of
Sab et al. [49] to the setting at hand. At the end of this section, we will
briefly discuss how the case of general free energy (47) is followed by a
mollification argument.

By the representation formula (85) for the residual and accounting for the
definition (87)

𝑹(𝑷 ) = 2 �̃�𝑐 ∶ (𝑱 0(𝑷 ) − ℂ0 ∶ 𝜺) + 2 �̃� ∶ (𝑲0(𝑷 ) − 𝝈) (A9)

we arrive at the formula

𝑹(𝑷 1) −𝑹(𝑷 2)

= 2 �̃�𝑐 ∶ (𝑲0(𝑷 1) −𝑲0(𝑷 2)) + 2 �̃� ∶ (𝑱 0(𝑷 1) − 𝑱 0(𝑷 2))
(A10)

As we assumed smoothness in the tensor variable, we may use the funda-
mental Theorem of calculus to write

𝑱 0(𝑷 1)(𝒙) − 𝑱 0(𝑷 2)(𝒙) = ∫
1

0
𝕁0(𝒙,𝑷 2(𝒙) + 𝑠(𝑷 1(𝒙) − 𝑷 2(𝒙))) ∶

(𝑷 1(𝒙) − 𝑷 2(𝒙)) 𝑑𝑠
(A11)

and

𝑲0(𝑷 1)(𝒙) −𝑲0(𝑷 2)(𝒙) = ∫
1

0
𝕂0(𝒙,𝑷 2(𝒙) + 𝑠(𝑷 1(𝒙) − 𝑷 2(𝒙))) ∶

(𝑷 1(𝒙) − 𝑷 2(𝒙)) 𝑑𝑠
(A12)
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where the tensor fields𝕁0 and𝕂0 correspond to the derivatives of the oper-
ators 𝑱 0 and 𝑲0 in the tensor variable. Thus, the formula (A10) becomes

𝑹(𝑷 1) −𝑹(𝑷 2) = 2∫
1

0

(
�̃� ∶ 𝕁0 + �̃�𝑐 ∶ 𝕂0) ∶ (𝑷 1 − 𝑷 2) 𝑑𝑠 (A13)

where we suppress the arguments of the fields 𝕁0 and 𝕂0 for notational
convenience. Taking the𝐿2-inner product with the field 𝑷 1 − 𝑷 2 leads to
the expression

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
𝐿2

= ∫
1

0

(
�̃� ∶ 𝕁0 ∶ (𝑷 1 − 𝑷 2),𝑷 1 − 𝑷 2

)
𝐿2

+
(
�̃�𝑐 ∶ 𝕂0 ∶ (𝑷 1 − 𝑷 2),𝑷 1 − 𝑷 2

)
𝐿2 𝑑𝑠

= ∫
1

0

(
𝕁0 ∶ (𝑷 1 − 𝑷 2), �̃� ∶ (𝑷 1 − 𝑷 2)

)
𝐿2

+
(
𝕂0 ∶ (𝑷 1 − 𝑷 2), �̃�

𝑐 ∶ (𝑷 1 − 𝑷 2)
)
𝐿2 𝑑𝑠

(A14)

where we used that the operators (86) are orthogonal, in particular
self-adjoint. The complementarity of the orthogonal projectors (86) per-
mits us to decompose

𝑷 1 − 𝑷 2 = �̃� ∶ (𝑷 1 − 𝑷 2) + �̃�𝑐 ∶ (𝑷 1 − 𝑷 2) (A15)

so that we are led to the (lengthy) expression

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
𝐿2

= ∫
1

0

(
𝕁0 ∶ �̃� ∶ (𝑷 1 − 𝑷 2), �̃� ∶ (𝑷 1 − 𝑷 2)

)
𝐿2

+
(
𝕁0 ∶ �̃�𝑐 ∶ (𝑷 1 − 𝑷 2), �̃� ∶ (𝑷 1 − 𝑷 2)

)
𝐿2 𝑑𝑠

+
(
𝕂0 ∶ �̃� ∶ (𝑷 1 − 𝑷 2), �̃�

𝑐 ∶ (𝑷 1 − 𝑷 2)
)
𝐿2 𝑑𝑠

+
(
𝕂0 ∶ �̃�𝑐 ∶ (𝑷 1 − 𝑷 2), �̃�

𝑐 ∶ (𝑷 1 − 𝑷 2)
)
𝐿2 𝑑𝑠

(A16)

The operators 𝕁0 and 𝕂0 are self-adjoint, that is, satisfy the major symme-
try, and obey the identity

𝕁0 + 𝕂0 = Id (A17)

The latter (linear) identity is a consequence of differentiating the (nonlin-
ear) identity (62). The fact that 𝕁0 and 𝕂0 are self-adjoint follows from the
fact that both are Hessians of certain functions, that is, those whose gra-
dient corresponds to the resolvent and reflected resolvent, respectively.
More precisely, Lagrangian duality is involved with that.

Thus, for any 𝑸 ∈ 𝐿2(𝑌 ; Sym(𝑑)) it holds that(
𝕁0 ∶ �̃�𝑐 ∶ 𝑸, �̃� ∶ 𝑸

)
𝐿2 +

(
𝕂0 ∶ �̃� ∶ 𝑸, �̃�𝑐 ∶ 𝑸

)
𝐿2

=
(
𝕁0 ∶ �̃�𝑐 ∶ 𝑸, �̃� ∶ 𝑸

)
𝐿2 +

(
�̃� ∶ 𝑸,𝕂0 ∶ �̃�𝑐 ∶ 𝑸

)
𝐿2

=
([
𝕁0 + 𝕂0] ∶ �̃�𝑐 ∶ 𝑸, �̃� ∶ 𝑸

)
𝐿2

=
(
�̃�𝑐 ∶ 𝑸, �̃� ∶ 𝑸

)
𝐿2

= 0

(A18)

where we used the fact that the orthogonal projectors �̃� and �̃�𝑐

are complementary. Applying the last insight (A18) to the case
𝑸 = 𝑷 1 − 𝑷 2 and integrating, permits to rewrite Equation (A16) in
the form

1
2
(
𝑹(𝑷 1) −𝑹(𝑷 2),𝑷 1 − 𝑷 2

)
𝐿2

= ∫
1

0

(
𝕁0 ∶ �̃� ∶ (𝑷 1 − 𝑷 2), �̃� ∶ (𝑷 1 − 𝑷 2)

)
𝐿2

+
(
𝕂0 ∶ �̃�𝑐 ∶ (𝑷 1 − 𝑷 2), �̃�

𝑐 ∶ (𝑷 1 − 𝑷 2)
)
𝐿2 𝑑𝑠

(A19)

The linearization of a nonlinear strongly monotone operator is also
strongly monotone with the same strong monotonicity constant. As the
operators𝕁0 and𝕂0 linearize the strongly monotone operators𝑱 0 and𝑲0,
the estimates (69) and (70) imply the lower bounds

(
𝕁0(𝒙,𝑻 ) ∶ �̃� ∶ 𝑸, �̃� ∶ 𝑸

)
𝐿2 ≥ 𝛼−

𝛼− + 𝛼0
||�̃� ∶ 𝑸||2 (A20)

and

(
𝕂0(𝒙,𝑻 ) ∶ �̃�𝑐 ∶ 𝑸, �̃�𝑐 ∶ 𝑸

)
𝐿2 ≥ 𝛼0

𝛼+ + 𝛼0
||�̃�𝑐 ∶ 𝑸||2 (A21)

in the skeleton 𝑌 ⧵ 𝑌𝑝 ∋ 𝒙 and for arbitrary 𝑻 ,𝑸 ∈ Sym(𝑑). In the pore
space, the identities

𝕁0(𝒙,𝑻 ) = 𝟎 and 𝕂0(𝒙,𝑻 ) = Id, 𝒙 ∈ 𝑌𝑝, 𝑻 ∈ Sym(𝑑) (A22)

hold. Thus, the desired estimate (A8) follows.

Last but not least let us briefly comment on the assumed smoothness of
the free energy in the tensor variable. In fact, one may use a mollifier to
smooth the free energy, preserving the 𝛼−-strong monotonicity and the
𝛼+-Lipschitz continuity of the associated stress operator in the skeleton.
Then, the estimate (A8) established for the smooth case applies. The esti-
mate (A8) for the non-smooth case then follows by letting the mollifier
approach a Dirac distribution.

A3 | The Recovery Estimate in the Pore Space

The goal of this section is to show the existence of a positive constant 𝛿,
s.t. the estimate (94)

∫𝑌 ⧵𝑌𝑝
‖‖‖𝑻 + ∇𝑠𝒖‖‖‖2

𝑑𝒙 ≥ 𝛿 ∫𝑌
‖‖‖𝑻 + ∇𝑠𝒖‖‖‖2

𝑑𝒙 (A23)

holds for a homogeneous strain field 𝑻 and any displacement fluctuation
field 𝒖 ∈ 𝐻1

per(𝑌 )
𝑑 which satisfies the PDE (93)

div ∇𝑠𝒖 = 𝟎 in the pore space 𝑌𝑝 (A24)

First notice that in case the estimate (A23) holds, the constant 𝛿 cannot
exceed unity. Indeed, by choosing 𝑻 = 𝟎 and a displacement field fully
supported in the skeleton 𝑌 ⧵ 𝑌𝑝, a constant 𝛿 greater than unity would
lead to a contradiction.

The estimate (A23) itself follows from two other bounds. For a start, there
is a constant 𝐶1, s.t. the following variant of Korn’s inequality [75]

∫𝑌 ⧵𝑌𝑝 ||𝑻 ||2 + ||∇𝒖||2 𝑑𝒙 ≤ 𝐶1 ∫𝑌 ⧵𝑌𝑝
‖‖‖𝑻 + ∇𝑠𝒖‖‖‖2

𝑑𝒙 (A25)

holds for all 𝑻 ∈ Sym(𝑑) and any field 𝒖 ∈ 𝐻1
per(𝑌 )

𝑑 which satisfies the
PDE (A24). Secondly, there is a constant 𝐶2, s.t. the estimate

∫𝑌𝑝 ‖∇𝑠𝒖‖2 𝑑𝒙 ≤ 𝐶2 ∫𝑌 ⧵𝑌𝑝 ‖∇𝑠𝒖‖2 𝑑𝒙 (A26)

holds for all fields 𝒖 ∈ 𝐻1
per(𝑌 )

𝑑 satisfying the PDE (A24). With the
estimates (A25) and (A26) at hand, the desired estimate (A23) follows
directly. In fact, as the symmetrized gradient of a periodic displacement
fluctuation field is 𝐿2-orthogonal to the constants, the binomial formula
implies the identity

∫𝑌
‖‖‖𝑻 + ∇𝑠𝒖‖‖‖2

𝑑𝒙 = ∫𝑌 ||𝑻 ||2 + ‖∇𝑠𝒖‖2 𝑑𝒙 (A27)
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The estimate (A26) implies the bound

∫𝑌 ‖∇𝑠𝒖‖2 𝑑𝒙 = ∫𝑌𝑝 ‖∇𝑠𝒖‖2 𝑑𝒙 + ∫𝑌 ⧵𝑌𝑝 ‖∇𝑠𝒖‖2 𝑑𝒙

≤ (
1 + 𝐶2

)
∫𝑌 ⧵𝑌𝑝 ‖∇𝑠𝒖‖2 𝑑𝒙

(A28)

In particular, we obtain an estimate

∫𝑌
‖‖‖𝑻 + ∇𝑠𝒖‖‖‖2

𝑑𝒙

≤ max
( |𝑌 ||𝑌 ⧵ 𝑌𝑝| , (1 + 𝐶2

))
∫𝑌 ⧵𝑌𝑝 ||𝑻 ||2 + ‖∇𝑠𝒖‖2 𝑑𝒙

≤ 𝐶1 max
( |𝑌 ||𝑌 ⧵ 𝑌𝑝| , (1 + 𝐶2

))
∫𝑌 ⧵𝑌𝑝

‖‖‖𝑻 + ∇𝑠𝒖‖‖‖2
𝑑𝒙

(A29)

where we used the point-wise inequality ||∇𝑠𝒖|| ≤ ||∇𝒖|| and the
Korn-type estimate (A25). In particular, the desired lower bound (A23)
holds with the constant

𝛿 = 1
𝐶1 max

(|𝑌 |∕|𝑌 ⧵ 𝑌𝑝|, (1 + 𝐶2
)) (A30)

Thus, it remains to discuss the validity of the estimates (A25) and (A26).
For the second estimate (A26), we refer to Appendix B in Schneider [48].
The first estimate (A25) is a direct consequence of the assumption (46),
and is most easily established by the traditional proof strategy for Korn’s
inequality on a general domain. We argue by contradiction, that is, we
assume that the estimate (A25) does not hold. Then, there are sequences
(𝑻 𝑘) and (𝒖𝑘) which satisfy the equation

∫𝑌 ⧵𝑌𝑝
‖‖‖𝑻 𝑘‖‖‖2

+ ‖‖∇𝒖𝑘‖‖2
𝑑𝒙 = 1 for all 𝑘 (A31)

but whose sum vanishes in the limit

∫𝑌 ⧵𝑌𝑝
‖‖‖𝑻 𝑘 + ∇𝑠𝒖𝑘

‖‖‖2
𝑑𝒙 → 0 as 𝑘→ ∞ (A32)

Due to the uniform bound implied by Equation (A31), the sequence
(𝑻 𝑘) is compact, that is, we may assume–possibly up to relabeling–that
the sequence converges to an element 𝑻 ∈ Sym(𝑑). Similarly, the
Rellich-Kondrachov Theorem implies that we may find an element 𝒖 ∈
𝐻1(𝑌 ⧵ 𝑌𝑝)𝑑 , s.t. the sequence (𝒖𝑘) converges strongly in 𝐿2 to 𝒖 and
whose gradients converge 𝐿2-weakly to ∇𝒖. In particular, the sum 𝑻 𝑘 +
∇𝑠𝒖𝑘 also converges weakly in 𝐿2 to 𝑻 + ∇𝑠𝒖. Due to the norm conver-
gence (A32), we must necessarily have

𝑻 + ∇𝑠𝒖 = 𝟎 (A33)

In particular, the field 𝒖 has a homogeneous symmetrized gradient on the
skeleton. By the assumption (46), it follows that 𝑻 = 𝟎 and ∇𝑠𝒖 = 𝟎 hold
separately, which is in contradiction with the starting assumption (A31).
Consequently, the estimate (A25) holds.
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