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Abstract

Metamaterials are attracting much attention due to their remarkable mechanical prop-
erties. They can be tailored to fulfill a specific functionality. However, they usually
exhibit size-effects phenomena, indicating that their mechanical behaviors vary when
their size changes. To model them as a homogeneous medium, enriched continua theo-
ries that capture size-effects are the preferred choice. The relaxed micromorphic model
is a generalized continuum that differs from the classical micromorphic theory by using
the Curl of a micro-distortion field instead of the full gradient, however, leading to many
advantages such as the notably reduced number of parameters and well-posedness for
the symmetric force stress case. The most important advantage is the unique behavior
as a macroscopic-microscopic two-scale linear elasticity model, which other generalized
continua do not offer. In this work, we use the relaxed micromorphic continuum to model
metamaterials. First, conforming H1(B)×H(Curl,B) finite elements are presented and
tested in several numerical examples. We systematically investigate the boundary con-
ditions of the micro-distortion field, proving the necessity of the consistent coupling
boundary condition. We identify the microscopic elasticity tensor employing the stiffest
response concept under affine and non-affine boundary conditions. Finally, we develop
an optimization procedure to define all the unknown parameters through direct energy
fitting.

Zusammenfassung

Metamaterialien gewinnen aufgrund ihrer bemerkenswerten mechanischen Eigenschaften
immer mehr an Aufmerksamkeit. Sie können auf eine bestimmte Funktionalität
zugeschnitten werden. Sie weisen jedoch in der Regel Größeneffekte auf, was bedeutet,
dass sich ihr mechanisches Verhalten ändert, wenn sich ihre Größe ändert. Um sie als ho-
mogenisiertes Medium zu modellieren, sind erweiterte Kontinuumstheorien, die Größen-
effekte erfassen, die bevorzugte Wahl. Das Relaxed Micromorphic Model ist so ein er-
weiterte Kontinuum, das sich von der klassischen mikromorphen Theorie dadurch un-
terscheidet, dass es der Curl eines Mikroverzerrungsfeldes anstelle des vollen Gradienten
verwendet, was jedoch zu vielen Vorteilen führt, wie z. B. der deutlich reduzierten Anzahl
von Parametern und der Wohlgestelltheit für den Fall symmetrischer Kraftspannung.
Der wichtigste Vorteil ist das einzigartige Verhalten als makroskopisch-mikroskopisches
Zwei-Skalen lineares Modell, das keine anderen erweiterte Kontinua bieten. In dieser
Arbeit verwenden wir das Relaxed Micromorphic Model, um Metamaterialien zu mod-
ellieren. Zunächst werden konforme H1(B)×H(Curl,B) Finite Elemente vorgestellt und
in mehreren numerischen Beispielen getestet. Wir untersuchen systematisch die Randbe-
dingungen des Mikro-Verzerrungsfeldes und beweisen die Notwendigkeit der konsisten-
ten Kopplungsrandbedingung. Wir identifizieren den mikroskopischen Elastizitätstensor
unter Verwendung des Stiffest-Response-Konzepts mit affinen und nicht-affinen Randbe-
dingungen. Schließlich entwickeln wir ein Optimierungsverfahren, um alle unbekannten
Parameter durch direkte Energieanpassung zu bestimmen.
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Introduction and Motivation 1

1 Introduction and Motivation

To deal with various societal challenges, such as the lack of resources, sustainability, cli-
mate change, and the need for substitutes for critical materials like those used in batteries,
new fundamental insights from mechanics and mathematics are required to develop new
materials and efficient computational methods focusing on reducing the computational
cost and the associated energy consumption. In various high-tech fields such as the elec-
tric automotive industry, lightweight aircraft industry, biomedical research and others,
there is an increasing need for new solid materials with specific properties to provide op-
timal solutions. Metamaterials, artificially created structures, are a promising solution.
The Greek term “meta” in metamaterials, meaning “beyond”, symbolizes that metamate-
rials have properties beyond those of traditional bulk materials, Fischer et al. [2020].
They can be tailored to fit a specific functionality, and therefore, they are gaining much
attention in both academia and industry. Figure 1.1 illustrates the number of annual peer-
reviewed articles with the keyword “metamaterial” on Scopus published over the last 20
years, reflecting a rapidly growing interest. The first metamaterials can be tracked back to
electromagnetism, where the direction of the electromagnetic radiation can be controlled,
which enabled the development of many devices such as biosensors, absorbers, antennas,
optical filters, and others (Abdullah et al. [2021], Iyer et al. [2020], Kumar et al.
[2022]).
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Figure 1.1: Annual number of peer-reviewed publications with the keyword “metamaterial”
in Scopus (www.scopus.com) in the last 20 years.

The term “mechanical metamaterials” is more recent and refers to metamaterials with me-
chanical applications. The advances in additive manufacturing (AM), notably 3D printing,
have revolutionized the production of mechanical metamaterials. These technologies have
allowed the production of complex materials with intricate architectures across various
length scales, see for example Jiang and Li [2018], Lei et al. [2019], Montgomery
et al. [2020], Plocher and Panesar [2019]. Over the course of human history, the
range of available materials has continued to expand to meet new demands. However,
certain limitations have restricted the mechanical properties of classic bulk materials.
For example, there is a relation between the density and strength of materials, where a
high-strength material also has a high density and vice versa. Mechanical metamaterials
are a new generation of materials that can break the previous limitations. An example
of achieving an extremely high strength-to-density ratio through the engineering of the
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microstructure is the metamaterial shown in Schaedler et al. [2011], which consists of
more than 99% air and is made of hollow tubes of nickel. Mechanical metamaterials also
exhibit some unusual mechanical properties inherited from the topology of specifically
designed unit-cells rather than their constituent materials’ mechanical properties. Such
mechanical properties are negative Poisson’s ratio, negative compressibility, negative ther-
mal expansion and ultra-large elastic deformations Fischer et al. [2020], Lee et al.
[2012], Yu et al. [2018]. However, the most crucial aspect of mechanical metamaterials
under static loading is the ability to tailor their mechanical properties, such as having a
relatively large stiffness in some modes of deformation, whereas they could be significantly
compliant in other modes, i.e. programmable stiffness, see for example Lu et al. [2022].

Mechanical metamaterials can manipulate acoustic and elastic waves, see e.g. Elmadih
et al. [2021], as they exhibit the band-gap property where a certain targeted frequency
range cannot propagate within the metamaterial which can be of great importance in
many fields. The band-gap property of metamaterials can drive innovations in the de-
sign of lightweight vehicles, with the focus on absorbing external shocks and dynamic
loads. Furthermore, buildings and infrastructures built nearby sources of vibrations and
noises, such as tramways, train stations, metro lines, highways, windmills and others,
would benefit from these metamaterials to improve their enjoyment, safety and usability.
Earthquake-proof structures can be designed using metamaterials to withstand earth-
quakes with specific frequency ranges. Many noise- and vibration-damping tools and ap-
plications based on these metamaterials could be easily and cheaply manufactured at a
large scale Jiménez et al. [2016], Madeo et al. [2016b; 2018]. Countless unusual and
novel applications, which we cannot even imagine or think of at this point, could suddenly
come to light as soon as such metamaterials become readily available, especially with new
generations of 3D printers capable of printing traditional metallic materials with high
accuracy. Reviews about the applications of mechanical metamaterials can be found in
Barchiesi et al. [2019], Kadic et al. [2019], Qi et al. [2022], Surjadi et al.
[2019], Wu et al. [2019], Zadpoor [2016].

To facilitate the design procedures of new metamaterials, appropriate and effective compu-
tational methods are required to investigate their effective mechanical properties. One ob-
vious option is modeling metamaterials by fully discretizing the underlying complex struc-
ture (full-scale resolution). This is typically infeasible for typical engineering problems due
to the associated substantial computational costs. Homogenization approaches towards
homogeneous continua are a practical choice that could simplify the design process dras-
tically Zohdi [2004], Zohdi and Wriggers [2005]. However, mechanical metamateri-
als typically reveal size-effect phenomena, meaning that their effective properties change
when varying the material size for the case when scale-separation does not hold. Gen-
erally, size-effects can indicate both increasing and decreasing stiffness while reducing
the size Kirchhof et al. [2023], Wheel et al. [2015]. In this work, we consider
only the case that smaller is relatively stiffer. The classical Cauchy-Boltzmann theory
and first-order homogenization methods are incapable of describing materials with size-
effects (or band-gaps) because of the absence of an internal length, which characterizes
the underlying microstructure, from the energy functional and constitutive equations.
Generalized continua are enhanced continua that can model these size-effects as a ho-
mogeneous continuum without accounting for the detailed microstructure. The first pos-
sibility of enhancement is achieved by accounting for higher-grade differential operators
in the energy functional. Gradient elasticity (or strain/stress gradient) theories provide
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extensions of the classical elasticity equations by adding different types of higher-order
spatial derivatives of strains and stresses to account for the size-effects. Moreover, clas-
sical elastic singularities, e.g. due to point loads, dislocation lines and crack tips, can be
eliminated, c.f. Aifantis [1992], Altan and Aifantis [1992], Lazar et al. [2006],
by these higher-order gradients. The gradient elasticity theory was developed first in the
early 1960s by Mindlin [1964; 1965], Mindlin and Eshel [1968]. Various formats of
gradient elasticity were developed with different differential operators and different num-
bers of constitutive parameters, e.g. Aifantis [2011], Askes et al. [2008], Eremeyev
et al. [2021], Eringen [1972; 1983], Fischer et al. [2011], Forest [2020], Forest
and Sab [2012], Goda and Ganghoffer [2016], Lazar [2014], Shekarchizadeh
et al. [2022], Yang et al. [2021]. A general review of the theories of gradient elasticity
can be found in Altan and Aifantis [1997], Askes and Aifantis [2011]. Gradient
elasticity theories require continuity of the higher-order fields, which seems to be a non-
physical assumption since microstructures often have perturbations that imply possible
discontinuities in the higher-order gradient of the displacement. Moreover, it has been
shown that gradient elasticity theories are inadequate for describing dynamic phenomena
such as band-gap response in metamaterials since the microstructure has its own vibra-
tional modes independently of the unit-cell’s macromotion. Alternatively, it is logical to
introduce a new class of generalized continua by expanding the kinematics to contain ad-
ditional degrees of freedom independent of the classical translational degrees of freedom.
In this regard, we refer to the Cosserat and micromorphic theories. A classification of
generalized continua is available in Alavi et al. [2023], Neff et al. [2014a].

The Cosserat (or micropolar) theory was initially introduced by the brothers Eugèn
Cosserat and François Cosserat, who defined an elastic continuum with kinematically
independent translational and rotational degrees of freedom Cosserat and Cosserat
[1909]. In the framework of the Cosserat media, each point of the medium can be rep-
resented as an infinitesimal rigid body which moves and rotates Alavi et al. [2022b],
Blesgen and Neff [2023],Ghiba and Neff [2023],Ghiba et al. [2023],Neff [2006],
Neff et al. [2010b], Saem et al. [2023],Trovalusci and Pau [2014]. Cosserat theory
can be used to model liquid crystals Lee and Eringen [2003], granular materials Mo-
han et al. [1999], Mühlhaus [1986], foam-like structures (like bones) Ascenzi et al.
[1994], chiral metamaterials Alavi et al. [2021b], cellular materials Onck [2002] and
masonry Besdo [1991], Godio et al. [2017]. However, the Cosserat continuum is unable
to model deformable microstructures such as metamaterials. The “full” micromorphic the-
ory is the most general framework for a continuum which assumes a two-scale continuum
model where the kinematics of each material point is expressed by a macroscopic contin-
uous deformation and an independent internal microscopic deformation Eringen [1968],
Eringen and Suhubi [1964], Ju et al. [2021], Neff and Forest [2007], Suhubi
and Eringen [1964]. Generally, the energy function is governed by the macroscopic de-
formation gradient and the gradient of a second-order tensor called the micro-distortion.
However, micromorphic models are excessively complex with many undefined constitutive
parameters associated with higher-order tensors (e.g. gradient of the micro-distortion),
making it challenging to convince engineers to consider them seriously.

This work adopts the relaxed micromorphic model introduced in Ghiba et al.
[2015], Neff et al. [2014a]. Being a micromorphic model, it features the classical trans-
lational degrees of freedom as well as a non-symmetric micro-distortion field. However, it
employs a relaxed curvature, where the Curl of the micro-distortion field is utilized instead
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of the full gradient. Using only the Curl has some decisive advantages. The assumed strain
energy is drastically simplified where the curvature part is only incorporated through the
Curl of the micro-distortion field. As a result, the number of constitutive parameters that
need to be determined is reduced compared to the conventional micromorphic approach.
The Curl of the micro-distortion field remains a second-order tensor, thus circumvent-
ing the need for constitutive relations involving sixth-order tensors that are associated
with the gradient of the micro-distortion in the classical theory. The relaxed micromor-
phic model generates “bounded stiffness” Neff et al. [2010a], Rizzi et al. [2021a;b;c;
2022b] for large values of the characteristic length (arbitrary small samples), in oppo-
sition to all strain gradient, Cosserat-micropolar or classical micromorphic approaches.
As it turns out, the relaxed micromorphic model interpolates between two well-defined
scales: the classical continuum scale of macroscopic elasticity, whose stiffness is given by
a macroscopic elasticity tensor known uniquely from periodic homogenization and a mi-
croscopic scale, whose stiffness is given by a microscopic elasticity tensor. The role of
the characteristic length is then to scale correctly with the size of the specimen and to
describe the interaction between the two scales. The tangential continuity is sufficient as a
regularity condition for the micro-distortion (same as the deformation gradient), and it is
enough to control the tangential projection of the micro-distortion field on the boundary
instead of the full field, Ghiba et al. [2021]. As we show later, the consistent coupling
boundary condition enforces that the tangential projections of the gradient of the dis-
placement field and the micro-distortion field on the boundary are the same d’Agostino
et al. [2022b], Rizzi et al. [2021a;b]. The consistent coupling boundary condition
is a necessary component for modeling that allows the relaxed micromorphic model to
reach the intended upper microscopic bound which permits a physical-based identification
of the unknown material parameters associated with the microscopic scale. The relaxed
micromorphic model recovers a symmetric force stress tensor while maintaining the well-
posedness when setting the rotational (Cosserat) couple modulus to zero, which has been
proven using new generalized Korn’s inequality Gmeineder et al. [2023; 2024], Lewin-
tan and Neff [2021], Lewintan et al. [2021]. Moreover, the relaxed micromorphic
model has successfully captured the band gaps for many periodic metamaterials, see for
example Aivaliotis et al. [2020], Barbagallo et al. [2019], d‘Agostino et al.
[2020], Demore et al. [2022], Madeo et al. [2015; 2016a;b; 2017], Rizzi et al.
[2022a;c;d]. The well-posedness for the static and dynamic problems has been proved in
Neff et al. [2015], Owczarek et al. [2019]. In Knees et al. [2023; 2024], the global
and local regularities of the relaxed micromorphic model were investigated.

Identifying the material parameters of generalized continua models poses an active open
research topic and generally remains unsolved. In this regard, we refer to the discussions
and challenges listed in Sarhil et al. [2023b;c; 2024]. Different schemes were intro-
duced for the homogenization of heterogeneous fully discretized microstructures into the
Cosserat continuum in Alavi et al. [2022b], Forest and Sab [1998], Hütter [2019],
Reda et al. [2021], different variants of the gradient elasticity continuum in Abali
and Barchiesi [2021], Abali et al. [2019], Bacigalupo et al. [2018], Khakalo
and Niiranen [2020], Lahbazi et al. [2022], Sarar et al. [2023], Schmidt et al.
[2022], Skrzat and Eremeyev [2020], Weeger [2021], Yang and Müller [2021],
Yang et al. [2020; 2022] and the classical Eringen-Mindlin micromorphic continuum
(curvature based on full-gradient) in Alavi et al. [2021a], Biswas and Poh [2017],
Forest [2002], Hütter [2017], Rokoš et al. [2019; 2020a;b], Zhi et al. [2022]. How-
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ever, too many major questions remain unanswered, and each researcher tailors its own
approach without reaching a universally accepted solution. Two approaches are widely
utilized in the scientific community to determine material parameters associated with the
higher-order homogenized properties, which are asymptotic expansion methods, see e. g.
Bacigalupo and Gambarotta [2010a], Boutin [1996] (can be combined with fast
Fourier transform methods, see Li and Zhang [2013], Tran et al. [2012]) and heuris-
tic approaches based on customized definitions of higher-order modified non-homogeneous
Dirichlet boundary conditions (up to quartic) on the unit-cell Berkache et al. [2017],
Forest and Trinh [2011], Goda and Ganghoffer [2016]. Among the heuristic ap-
proaches, quadratic boundary conditions have been investigated widely, see e.g. Auf-
fray et al. [2010], Forest [2002; 2016], Forest and Trinh [2011], Kouznetsova
et al. [2002; 2004], Trinh et al. [2012], in the field of homogenization into second
gradient continua and classical full micromorphic continua. However, several challenging
issues are described in the literature for this option. First, this approach does not yield
vanishing effective higher-order moduli when a homogeneous material is tested. Second,
when scale-separation holds (many unit-cells), and the classical first-order homogeniza-
tion theory is applicable, Cauchy theory with the known macroscopic elasticity tensor is
also not automatically regenerated, cf. Alavi et al. [2021a]. Alternatively, additional
body forces have been added to the microstructure with higher-order Dirichlet bound-
ary conditions Monchiet et al. [2020], Yvonnet et al. [2020]. The obtained results
agree well with the ones from asymptotic homogenization, but there remain artifacts for
the specific case of a unit-cell made of soft inclusions and hard matrix, for which the
higher-order moduli differ. A novel procedure has been introduced in Hütter [2019] by
averaging only over micro-heterogeneities. Trinh et al. [2012] shows that fourth-order
kinematic boundary conditions should be used to fully determine the higher-order moduli
in a micromorphic theory. In Hütter [2022], a harmonic decomposition of a micromor-
phic theory is introduced to the governing equations and employed to porous materials.
A variational approach is introduced for the homogenization from a Cauchy continuum
on the micro-scale towards a second gradient or micromorphic continuum on the macro
level in Ganghoffer and Reda [2021] and Alavi et al. [2021a], respectively, where
the microscopic displacement is decomposed into a homogeneous and a fluctuation part,
as in classical first-order homogenization theory, but the homogeneous part of the de-
formation arises here from a variational approach. Based on the Hill–Mandel condition,
Weeger [2021] introduced a homogenization approach for periodic lattice structures and
metamaterials into a second gradient linear elastic model on the macro-scale. Similar to
Forest and Trinh [2011], zero energy modes are noticed for some of the higher-order
moduli. In Schmidt et al. [2022], a homogenization scheme for higher-order continua
is demonstrated based on Isogeometric Analysis. Further developments in the context of
multiphysical applications are discussed by Waseem et al. [2020]. In the field of asymp-
totic expansion homogenization, metamaterials are investigated inAbali and Barchiesi
[2021], Abali et al. [2022], Yang and Müller [2021] with a focus on size-effects. A
direct computational scheme is shown by Abali et al. [2019] for determining the effec-
tive moduli through comparison with microstructure simulations for selected higher-order
modes. The crucial rules of the wedge and double traction forces are analyzed in Yang
et al. [2021].

The main goal of this work is to bridge the gap between the mathematical theory of
the relaxed micromorphic model and its practical application in the engineering context.



6 Introduction and Motivation

The relaxed micromorphic model offers many potentials for modeling materials with size-
effects, specifically metamaterials. Moreover, we are not interested in band-gap phenomena
and therefore no dynamic effects are considered.

The finite element implementation and the numerical examples in this work are performed
within AceGen and AceFEM programs, which are developed and maintained by Jože
Korelc (University of Ljubljana). The interested reader is referred to Korelc [1997],
Korelc and Wriggers [2016].

1.1 Outline

In Chapter 2, we delve into the fundamental aspects of continuum mechanics, including
kinematics, stress concept, and balance equations. We broaden the framework to incor-
porate enriched continua in general. Then, we narrow it down to the specific cases of the
Cosserat, the Mindlin-Eringen micromorphic, and the relaxed micromorphic theories. Af-
ter that, we demonstrate the connections between the kinematics and energy functionals
of most known generalized continua.

Chapter 3 presents the relaxed micromorphic model, starting with the relevant Hilbert
spaces and associated norms. We derive the variational formulation that leads to the strong
and weak forms with the related boundary conditions. Then, we discuss the limiting cases
when the characteristic length parameter approaches zero and infinity, which results in
the unique behavior of the relaxed micromorphic model as a two-scale linear elasticity
model.

In Chapter 4, we introduce the basics of the finite element method, focusing on con-
forming approximation spaces for the relaxed micromorphic model. We then demonstrate
the unique properties of the implemented finite elements and the distinct behavior of the
relaxed micromorphic model components including the different stress measures through
numerical examples for a varying characteristic length parameter.

In Chapter 5, we model metamaterial beams subjected to bending with the relaxed
micromorphic continuum. After obtaining the solution of fully resolved beams, we iden-
tify the material parameters of the relaxed micromorphic continuum. To obtain the mi-
croscopic elasticity tensor, we introduce two approaches based on affine and non-affine
boundary conditions. We investigate the boundary conditions of the micro-distortion field
for both symmetric and non-symmetric force stress cases. Finally, we calibrate the char-
acteristic length parameter to fit the results of fully resolved beams.

In Chapter 6, we determine the material parameters in the relaxed micromorphic model
for a given periodic microstructure through a least squares fitting of the total energy
of the relaxed micromorphic homogeneous continuum to the total energy of the fully
resolved heterogeneous microstructure. We check the consistency of our approach for
linear elasticity subjected to periodic and affine Dirichlet boundary conditions. Then, we
expand the approach to the relaxed micromorphic model, which involves considering an
adequate number of quadratic deformation modes and different specimen sizes. Finally, we
compare the least squares fitting results of the relaxed micromorphic model, the Cosserat-
micropolar model, and the classical micromorphic model with two different curvature
formulations.

Chapter 7 concludes the dissertation and gives an outlook to possible future investiga-
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tions on homogenization into the relaxed micromorphic model.

1.2 Publications

During writing this dissertation, the following articles were published. Contents from these
publications are used in this work. Drafts were uploaded on arXiv.

J. Schröder, M. Sarhil, L. Scheunemann and P. Neff. Lagrange and H1(B) × H(curl,B)
based finite element formulations for the relaxed micromorphic model. Computational
Mechanics, 70, 1309–1333, 2022. doi:10.1007/s00466-022-02198-3

M. Sarhil, L. Scheunemann, J. Schröder and P. Neff. On a tangential-conforming finite
element formulation for the relaxed micromorphic model in 2D. Proceedings in Applied
Mathematics and Mechanics, 21, e202100187, 2021. doi:10.1002/pamm.202100187

M. Sarhil, L. Scheunemann, J. Schröder and P. Neff. Size-effects of metamaterial
beams subjected to pure bending: on boundary conditions and parameter identifica-
tion in the relaxed micromorphic model. Computational Mechanics, 72, 1091–1113, 2023.
doi:10.1007/s00466-023-02332-9.

M. Sarhil, L. Scheunemann, J. Schröder and P. Neff. On the identification of material
parameters in the relaxed micromorphic continuum. Proceedings in Applied Mathematics
and Mechanics, 23, e202300056, 2023. doi:10.1002/pamm.202300056.

M. Sarhil, L. Scheunemann, J. Schröder and P. Neff, Modeling the size-effect of metamate-
rial beams under bending via the relaxed micromorphic continuum. Proceedings in Applied
Mathematics and Mechanics, 22, e202200033, 2023. doi:10.1002/pamm.202200033.

M. Sarhil, L. Scheunemann, P. Lewintan, J. Schröder, and P. Neff. A computa-
tional approach to identify the material parameters of the relaxed micromorphic
model. Computer Methods in Applied Mechanics and Engineering, 425, 116944, 2024.
doi:10.1016/j.cma.2024.116944
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2 Fundamentals of continuum mechanics and enriched continua

All matter is discontinuous, as it is composed of molecules, which, in turn, comprise
atoms consisting of nuclei and electrons. Most engineering applications involve materials
at large length and time scales. This is the case when the considered material is at a
length scale much larger than the atomic spacing, and the studied phenomenon is acting
on a time scale longer than the atomic vibration period. Therefore, it is possible to ignore
the discrete nature of the matter without making significant errors.

In this Chapter, we introduce an overview of the fundamental concepts of continuum
mechanics of solids presented in Eringen [1967], Schröder et al. [2013], Trues-
dell and Noll [1965], Truesdell and Toupin [1960a], and used in Balzani [2006],
Brands [2012], Brinkhues [2012], Hoegen [2019], Igelbüscher [2021], Keip [2012],
Labusch [2018], Scheunemann [2017], Viebahn [2019]. The origins of the classical
theory of continuum mechanics can be traced back to the pioneering works of the French
scientist Augustin-Louis Cauchy. Therefore, this theory is commonly referred to as the
Cauchy continuum Drapaca and Sivaloganathan [2019], Truesdell [1992]. We
then extend the framework to include more sophisticated enriched continua.

2.1 Kinematics, deformation measures and time derivatives

In continuum mechanics, the body under focus is analyzed as a continuous matter, and the
underlying microscopic structure is not explicitly considered. The microstructure role is
taken into account in the material’s laws (constitutive relations). We assume a body that
consists of a continuous set of material points in the three-dimensional Euclidean space
R3. To analyze deformations, we introduce two distinct states of the body. We consider
an undeformed reference configuration B0 at time t = t0, known as well as the material,
initial or Lagrangian configuration, where the position of each material point is defined by
a material position vectorX. The body undergoes a deformation to the deformed current
configuration B at time t > t0, known as well as actual, spatial or Eulerian configuration,
which is characterized by a spatial position vector x. The position vectors X and x are
defined by the orthonormal (cartesian) basis vectors {EI} and {ei} in the reference and
actual configurations, respectively, as

X = XI EI , and x = xi ei, with i, I = 1, 2, 3 . (2.1)

The motion (deformation) of the body from the reference configuration B0 to the current
configuration B is defined by a continuous unique one-to-one mapping function, depicted
in Figure 2.1,

φ(X, t) : B0 → B , (2.2)

where each material point in the reference configuration is mapped to precisely one point
in the current configuration. The deformation mapping is an injective one-to-one function.
Therefore it excludes any deformations that involve tearing and interpenetration of the
body’s matter. As a result, the inverse of deformation mapping must exist and is well
defined

x = φ(X, t) and X = φ−1(x, t) . (2.3)

We define the displacement as the difference between the position in the reference and
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e1

e2

e3

E1

E2

E3

φ(X, t)

∂B0
∂B

B0
B

F · dX

cofF · dA

detF dV
dV

dA

dX
dx

da

dv

Figure 2.1: The body in reference (material) configuration on the left and current (spatial)
configuration on the right.

current configuration
u(X, t) = φ(X, t)−X = x−X . (2.4)

The deformation gradient F is a fundamental kinematic quantity on which every defor-
mation and strain measure is based since it provides information on the alteration of the
relative positions of the material points. It serves as a primary measure of deformation
which is defined as the partial derivative of the spatial position x with respect to the
material position X

F (X, t) =
∂x

∂X
= Gradx = ∇x , (2.5)

which can be rewritten in an alternative representation as

F = ∇(X + u) = I +∇u , (2.6)

with the identity tensor I and the gradient-operator Grad(•) = ∇(•) with respect to
the material position X. The deformation gradient is a linear operator which maps an
infinitesimal line element from the reference undeformed configuration dX to the current
deformed configuration dx as

dx = F (X, t) · dX and dX = F−1(x, t) · dx , (2.7)

where the inverse of the deformation gradient is defined as

F−1(x, t) =
∂X

∂x
= gradX = ∇xX = I −∇xu , (2.8)

with grad(•) = ∇x(•) is the gradient operator with respect to the spatial position x.

An infinitesimal material area element dA = N dA, with the material unit outward
normal vector N , is mapped into the actual configuration da = n da, with the spatial
unit outward normal vector n, through the transformation

da = det[F ]F−T · dA = cofF · dA , (2.9)
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with cofF := det[F ]F−T is the cofactor of F . We transform an infinitesimal volume
element from the reference configuration dV to the current configuration dv as

dv = detF dV . (2.10)

To ensure the existence of a unique (one-to-one) transformation map, it is necessary to
confirm the existence of the inverse mapping φ−1. Consequently, the deformation gradient
cannot be singular, and its inverse must exist, i.e. detF ̸= 0. To prevent self-penetration
of the body and the occurrence of negative volume elements, we enforce as a necessary
condition that the determinant of the deformation gradient, referred to as the Jacobian,
must be strictly positive J := detF > 0.

The deformation gradient F describes the total deformation of the body, which can be
decomposed multiplicatively (polar decomposition, see Neff et al. [2014b]) into the
stretch (straining) part and the rigid body rotation

F = R ·U = V ·R , (2.11)

with R as the rotation tensor, and U and V are the right (material) stretch tensor and
the left (spatial) stretch tensor, respectively. The rotation tensor is a proper orthogonal
tensor that satisfies RT = R−1, RT ·R = I and detR = 1. The deformation gradient
provides all the information about the local deformation of a material point. However,
it is not the most suitable method for accurately describing shape alterations because it
includes the effects of rigid body rotations. We introduce the right (material) and left
(spatial) Cauchy-Green deformation tensors as suitable deformation measures

C = F T · F = UT ·U and B = F · F T = V · V T , (2.12)

which are symmetric and free of rigid body rotations. They carry only information about
the stretch of the body. Further, a key (relative) deformation measure is defined as half
of the difference between the square norm of an infinitesimal line element in the reference
configuration (dX) and the square norm of the same line element after mapping into the
actual configuration (dx)

1

2
(dx · dx− dX · dX) =

1

2
(dX · F T · F · dX − dX · I · dX)

=dX · 1
2
(F T · F − I) · dX

=dX · 1
2
(C − I)︸ ︷︷ ︸

:=E

· dX .

(2.13)

The Green-Lagrange strain tensor E is symmetric and defined in the reference configu-
ration. It vanishes for undeformed bodies and is independent of rigid body motions and
rotations. It can be rewritten considering Equations (2.6) and (2.12) as

E =
1

2

(
∇u+ (∇u)T + (∇u)T · ∇u

)
. (2.14)
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Alternatively, we rewrite Equation (2.13) as the following

1

2
(dx · dx− dX · dX) =

1

2
(dx · I · dx− dx · F−T · F−1 · dx)

=dx · 1
2
(I − F−T · F−1) · dx

=dx · 1
2
(I −B−1)︸ ︷︷ ︸

:=e

· dx .

(2.15)

The Almansi strain tensor e is symmetric and defined in the actual configuration. It
vanishes for undeformed bodies and is independent of rigid body motions and rotations.
It can be rewritten considering Equations (2.8) and (2.12) as

e =
1

2

(
∇xu+ (∇xu)

T − (∇xu)
T · ∇xu

)
. (2.16)

The derivatives of the kinematic quantities in time and space are required to find the
partial differential equations that govern the motion and deformation of the body. In
the following, we introduce the time derivative of quantities we need later. The material
velocity and material acceleration are obtained as the first and the second time derivatives
of the motion function φ(X, t), receptively, characterized in the Lagrangian reference
system (∂X/∂t = 0)

ẋ(X, t) =
dx(X, t)

dt
=
∂φ(X, t)

∂t
,

ẍ(X, t) =
dẋ(X, t)

dt
=
∂2φ(X, t)

∂t2
.

(2.17)

The material time derivative of the deformation gradient, which is referred to as the
material velocity gradient, reads

Ḟ =
d

dt

Å
∂x

∂X

ã
=

∂ẋ

∂X
= Grad ẋ =

∂ẋ

∂x
· ∂x
∂X

= L · F , (2.18)

with L is the spatial velocity gradient which is given as

L :=
∂ẋ

∂x
= grad ẋ =

∂ẋ

∂X
· ∂X
∂x

= Ḟ · F−1 . (2.19)

Finally, we calculate the material time derivative of the Jacobian

J̇ =
∂ detF

∂t
=
∂ detF

∂F
:
∂F

∂t
= det[F ]F−T : Ḟ = J F−T : (L · F )︸ ︷︷ ︸

trL

= J div ẋ . (2.20)

In this work, we consider only bodies undergoing small deformations and rotations which
leads to the assumption that the components of the displacement gradient tensor are very

small, i.e. |∂ui
∂xj
| ≪ 1 with i, j = 1, 2, 3. We neglect higher-order terms seen in Equations

(2.14) and (2.16), leading to the linear strain tensor ε defined as
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ε =
1

2

(
∇u+ (∇u)T

)
= sym[∇u] , (2.21)

which will be used to describe the deformations. Note that, within the assumption of
small deformations and rotations, the space gradient can be considered the same in both
material and spatial coordinates (∇• ≈ ∇x•).

2.2 Concept of stress

Consider a deformable continuum body subjected to external effects such as mechanical
loads, gravity forces, heating or others. The internal forces that arise on infinitesimal
surfaces within the body as a reaction to the external effects are referred to as stress. This
stress can be visualized by a cut through the body with the normal vector n acting on
the cutting plane, see Figure 2.2.

e1

e2

e3

B

cutting
plane

da

da

n

x

−n

t

−t

σ11

σ21

σ31

σ12

σ22

σ32

σ13

σ23

σ33

Figure 2.2: Illustration of a body detached into two parts to show the traction vector.
The state of the stress can be expressed by the components of the traction vectors on three
cutting planes with the normal vectors e1, e2, and e3.

The forces are transmitted through the cutting surface from one segment to another,
resulting in a force vector ∆f distribution on a small area ∆a which is belonging to the
cutting plane. For an infinitesimally small area, i.e. ∆a → 0, we introduce the traction
vector t as

t(x, t,n) := lim
∆a→0

∆f

∆a
=

df

da
. (2.22)

The Cauchy theorem states that a symmetric second-order tensor field σ(x, t) exists,
which is independent of the orientation of n and satisfies

t(x, t,n) = σ(x, t) · n . (2.23)

The Cauchy stress tensor σ represents the true stress in the current configuration because
it relates the current force in the cutting plane to the current area element. The Cauchy
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stress tensor can be expressed by three traction vectors associated to three cutting planes
in the actual configuration defined by three linearly independent (perpendicular) normal
vectors. An obvious choice is, of course, the traction vectors te1 , te2 and te3 defined on
the cutting planes with the normal vectors e1, e2 and e3, respectively, representing the
orthonormal basis vectors

σ(x, t) = tei ⊗ nj = tei ei ⊗ nj ej =

Ñ
σ11 σ12 σ13
σ21 σ22 σ33
σ31 σ32 σ33

é
ei ⊗ ej . (2.24)

The index i of the stress tensor components σij indicates the direction in which the traction
component is pointing, and the index j defines the direction of the normal of the cutting
surface. The present dissertation consider only bodies subjected to small deformations,
and therefore, further stress quantities are not described.

2.3 Balance equations

In the following discussion, we explore the fundamental principles of continuum mechan-
ics, which are material-independent and grounded on axioms that govern every natural
phenomenon, i.e. they are based on observations and cannot be deduced from other laws.
These principles serve as the essential basics for developing material modeling in com-
putational mechanics. Below, we introduce the balance of mass, the balance of linear
momentum, the balance of angular momentum, the balance of energy and the entropy
inequality.

2.3.1 Balance of mass

The conservation law of mass states that “the total mass remains constant during the
motion or deformation, provided it does not exchange mass with its surroundings, i.e.
mass flux is zero”. In other words, mass cannot be created or destroyed. The total mass
m reads

m =

∫
B
ρ(x, t) dv = const , (2.25)

where ρ is the actual density. The material time derivative of the total mass is obtained,
taking into consideration dv = J dV and Equations (2.20) and (2.25), which has to vanish

ṁ =
dm

dt
=

d

dt

∫
B
ρ dv =

∫
B
(ρ div ẋ+ ρ̇) dv = 0 , (2.26)

and the local form of the balance of mass reads

ρ div ẋ+ ρ̇ = 0 ∀x ∈ B , (2.27)

with ρ̇ = ∂ρ
∂t

is the material time derivative of the actual density. However, for small
deformations, the difference between the actual and reference configurations is negligible
and it is valid to assume J ≈ 1 and ρ̇ ≈ 0.
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2.3.2 Balance of linear momentum

The axiom of balance of linear momentum, also known as Newton’s second law of motion,
postulates that “the material time derivative of the linear momentum is equal to the sum
of all external surface and volume forces acting on the body”. Thus, we have

d

dt

∫
B

ρ ẋ dv =

∫
B

f dv +

∫
∂B

t da . (2.28)

Here, f is the body force per unit volume, and the traction vector t acts on the boundary
∂B. With the help of the balance of mass in Equation (2.27), we get

d

dt

∫
B

ρ ẋ dv =

∫
B

ρ ẍ dv . (2.29)

By making use of Cauchy theorem in Equation (2.23) and the divergence theorem, i.e.∫
∂B
σ · n da =

∫
B
divσ dv, the balance of linear momentum becomes∫

B

(divσ + f − ρ ẍ) dv = 0 , (2.30)

and the local statement of balance of linear momentum reads

divσ + f − ρ ẍ = 0 ∀x ∈ B . (2.31)

2.3.3 Balance of angular momentum

The balance of angular momentum states that “the material time derivative of the angular
momentum, also referred to as the moment of momentum, with respect to a fixed reference
point x is equal to the resultant moment of all external forces and moments acting on the
body, with respect to the same reference point x”. Thus, we get

d

dt

∫
B

ρ (x− x)× ẋ dv =

∫
B

(x− x)× f dv +

∫
∂B

(x− x)× t da . (2.32)

Seeking simplicity and without loss of generality, we consider x = 0. The left-hand side
in Equation (2.32) becomes with the use of the balance of mass in Equation (2.27)

d

dt

∫
B

ρx× ẋ dv =

∫
B

ρx× ẍ dv . (2.33)

The traction part in Equation (2.32) can be reformulated by taking into consideration the
divergence theorem and introducing the third-order permutation tensor E as∫

∂B

x× t da =

∫
∂B

x× σ · n da =

∫
B

x× divσ + E : σT dv . (2.34)

The third-order permutation tensor E is defined by
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Eijk =+ 1, when (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2)

Eijk =− 1, when (i, j, k) is (3, 2, 1), (2, 1, 3) or (1, 3, 2)

Eijk =0, otherwise .

(2.35)

Substituting Equations (2.33) and (2.34) into Equation (2.32) and considering the linear
momentum balance in Equation (2.31), we obtain∫

B

ρx× (divσ + f − ρ ẍ)︸ ︷︷ ︸
=0

+ E : σT dv = 0 , (2.36)

which leads to ∫
B

E : σT dv = 0 , and E : σT = 0 ∀x ∈ B . (2.37)

The corresponding local form can be rewritten with the definition in Equation (2.35)

E : σT = Eijk : σkj ei =

Ñ
σ32 − σ23
σ13 − σ31
σ21 − σ12

é
= 0 ∀x ∈ B , (2.38)

and the Cauchy stress has to be symmetric, i.e.

σ = σT ∀x ∈ B . (2.39)

2.3.4 Balance of energy

The balance of energy, also known as the first law of thermodynamics, states that “the
material time derivative of the total energy of a physical body, split into internal and
kinetic energy, is equal to the sum of the power resulting from all external loads acting
on the body”. We will, however, restrict ourselves to mechanical isothermal processes
(constant temperature and no heat source or flux). Thus, we obtain

d

dt


∫
B

ρ e dv︸ ︷︷ ︸
internal energy

+

∫
B

1

2
ρ ẋ · ẋ dv︸ ︷︷ ︸

kinetic energy

 =

∫
B

ẋ · f dv +

∫
∂B

ẋ · t da︸ ︷︷ ︸
mechanical power

, (2.40)

where e denotes the specific internal energy defined per unit mass. The individual terms
used above are reformulated with the assumption of small deformations to

d

dt

∫
B

ρ e dv =

∫
B

ρ ė dv , (2.41)

d

dt

∫
B

1

2
ρ ẋ · ẋ dv =

∫
B

ρ ẋ · ẍ dv , (2.42)
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∫
∂B

ẋ · t da =

∫
B

ẋ · divσ + σ : ∇ẋ dv =

∫
B

ẋ · divσ + σ : ε̇ dv , (2.43)

and by substituting into Equation (2.40), we obtain the expression∫
B

ρ ė− σ : ε̇− ẋ ·
[
divσ + f − ρ ẍ

]︸ ︷︷ ︸
=0

dv =

∫
B

ρ ė− σ : ε̇ dv = 0 . (2.44)

Thus, the local statement of the balance of energy reads

ρ ė− σ : ε̇ = 0 ∀x ∈ B . (2.45)

2.3.5 Entropy inequality

A mathematical model is said to be thermodynamically consistent when it satisfies the
entropy inequality, which every natural phenomenon obeys, as the disorder only increases.
The entropy inequality, also known as the second law of thermodynamics, cannot be
interpreted as a classical balance equation. It gives information about the direction in
which an observed phenomenon should proceed. It is given in the form of an inequality
where “the entropy change in a closed system must be zero for reversible processes and
positive for irreversible processes”. The entropy S of a body B is introduced in terms of
a specific entropy density function η defined per unit mass as

S =

∫
B
ρ η dv . (2.46)

The entropy inequality for thermal independent processes with using the local statement
of the balance of mass in Equation (2.27) reads

Ṡ =
d

dt

∫
B
ρ η dv =

∫
B
ρ η̇ dv ≥ 0 . (2.47)

Taking into consideration Helmholtz free energy per unit mass ψ̃ = e− θη, and since we
assume only isothermal processes, i.e. the temperature is constant θ = const > 0, we get
the following local form with the help of the balance of energy in Equation (2.45)

ρ (ė− ˙̃ψ) = σ : ε̇− ρ ˙̃ψ ≥ 0 ∀x ∈ B , (2.48)

and with the introduction of the volume-specific Helmholtz free energy ψ = ρ ψ̃, the local
form of the entropy inequality for small deformations can be reformulated to read

σ : ε̇− ψ̇ ≥ 0 ∀x ∈ B . (2.49)

With the assumption that the volume-specific free energy is a function of the linear strain,
i.e. ψ = ψ(ε), we can modify the entropy inequality to
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σ : ε̇− ∂ψ

∂ε
: ε̇ = (σ − ∂ψ

∂ε
) : ε̇ ≥ 0 ∀x ∈ B , (2.50)

and the constitutive relation for the stress tensor reads

σ =
∂ψ

∂ε
. (2.51)

The previous stress-strain relation describes a hyperelastic material. The stress of a hy-
perelastic material can be derived from an assumed strain energy function. No entropy
is produced (no plastic deformation, no damage, etc.), and the process is reversible. The
corresponding standard elasticity tensor is obtained then as

C =
∂σ

∂ε
=
∂2ψ

∂ε2
with σ = C : ε. (2.52)

For linear isotropic materials, the strain energy function takes the form

ψ = µ ε : ε+
1

2
λ(tr ε)2 , (2.53)

and the corresponding stress and elasticity tensors are

σ = 2µ ε+ λ(tr ε)I and C = 2µII + λI ⊗ I , (2.54)

with Iijkl = 1
2
[δikδjl + δilδjk].

2.4 Material modeling: isotropy and anisotropy

When considering materials with specific microstructures like metamaterials, crystals,
composites, and biological tissues, the behavior of the material can be directionally de-
pendent, leading to what is termed as anisotropic behavior. On the other hand, materials
exhibiting directionally independent behavior are termed isotropic. In order to formulate
physically meaningful constitutive laws, the principles of material frame indifference and
material symmetry need to be fulfilled, see e.g. Brands [2012], d’Agostino et al.
[2024], Labusch [2018], Truesdell [1969], Truesdell and Noll [1965], Truesdell
and Toupin [1960b], Viebahn [2019].

The principle of material frame indifference (objectivity) postulates that “the material
response does not differ by changing the position of the observer”. In other words, it
requires the invariance of the constitutive equations under superimposed rigid body mo-
tion. Let us assume a scalar-valued function f̂(vi,Vi), a vector-valued function f̂(vi,Vi)
and a tensor-valued function F̂ (vi,Vi) depending on the vector-valued arguments vi and
tensor-valued arguments Vi. The functions f̂ , f̂ and F̂ satisfy the principle of material
frame indifference when

f̂(vi,Vi) = f̂(Q · vi,Q · Vi ·QT )

Q · f̂(vi,Vi) = f̂(Q · vi,Q · Vi ·QT )

Q · F̂ (vi,Vi) ·QT = F̂ (Q · vi,Q · Vi ·QT )

}
∀Q ∈ SO(3) , (2.55)
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where the special orthogonal group SO(3) represents an arbitrary rigid body rotation, i.e.
the transformation Q ∈ SO(3) satisfies detQ = 1 and QT = −Q. The tensor functions
f̂ , f̂ and F̂ are then termed as isotropic tensor functions.

The description of the material behavior must satisfy the principle of material symmetry
as well, which states that “the constitutive response of a body must be independent of a
transformation Q belonging to its symmetry group Gk”, see d’Agostino et al. [2024].
The symmetry group Gk incorporates information about material symmetry. Thus, for a
material with a given constitutive relationship of the form σ := σ̂(ε) and a given free
energy function of the form ψ := ψ̂(ε), we have

Q · σ̂(ε) ·QT = σ̂(Q · ε ·QT )

ψ̂(ε) = ψ̂(Q · ε ·QT )

}
∀Q ∈ Gk . (2.56)

A material is said to be isotropic if it is independent of any transformation Q where Gk
is the special orthogonal group SO(3) for this case. An isotropic strain energy and stress
functions depending on the strain satisfies

Q · σ̂(ε) ·QT = σ̂(Q · ε ·QT )

ψ̂(ε) = ψ̂(Q · ε ·QT )

}
∀Q ∈ SO(3) , (2.57)

which satisfies the requirement of the material frame indifference in Equation (2.55).
Otherwise, the material symmetry group Gk is a subgroup of SO(3), then the material is
anisotropic. This means an arbitrary rotation of the material under the same unrotated
loading leads to a different material response. In order to characterize the behavior of
anisotropic materials, the concept of structural tensors is introduced. The structural ten-
sorsMi are defined asMi = ai⊗ai, with ai being the preferred directions of unit length.
The structural tensors preserve the material symmetry group

Mi = Q ·Mi ·QT ∀Q ∈ Gk . (2.58)

An anisotropic strain energy and stress functions depending on the strain have to satisfy
the requirements of material symmetry for the considered material, which read

Q · σ̂(ε,Mi) ·QT = σ̂(Q · ε ·QT ,Mi)

ψ̂(ε,Mi) = ψ̂(Q · ε ·QT ,Mi)

}
∀Q ∈ Gk . (2.59)

The above-given relations in Equation (2.59), which hold for a special symmetry group
Gk of the assumed material, will be transformed to isotropic functions that are valid for
any rigid body rotation Q ∈ SO(3). To do so, we rotate the structural tensors as well

Q · σ̂(ε,Mi) ·QT = σ̂(Q · ε ·QT ,Q ·Mi ·QT )

ψ̂(ε,Mi) = ψ̂(Q · ε ·QT ,Q ·Mi ·QT )

}
∀Q ∈ SO(3) , (2.60)

and the objectivity requirement in Equation (2.55) is fulfilled. Accordingly, we can find
a defined number of invariants and the relevant tensor operators without violating the
requirements of material symmetry.
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2.5 Variational formulation for linear elasticity

To maintain coherence in this thesis, we introduce an alternative methodology to de-
rive the balance equations, initially focusing on linear elasticity. This method is based
on minimizing the total elastic energy, leading to the formulation of the balance equa-
tions. Subsequently, we extend this approach to address the balance equations for other
generalized continua. In the theory of linearized elasticity, infinitesimal deformations and
rotations are assumed, i.e. ||∇u|| ≪ 1, and the actual configuration coincides with the
reference configuration. The total energy for linear elastic continuum for the static case
reads

Π(u) =

∫
B
ψ(∇u)− f · u dV −

∫
∂Bt

t · u dA→ min , (2.61)

where the elastic energy density is defined as

ψ(∇u) = 1

2
sym∇u : C : sym∇u . (2.62)

The variation of the total energy with respect to the displacement vector, i.e. δuΠ = 0,
with

δuΠ =

∫
B
C : sym∇u : ∇δu− f · δu dV −

∫
∂Bt

t · δu dA , (2.63)

leads after applying integration by parts and the divergence theorem to

δuΠ =

∫
B
{div(C : sym∇u) + f} · δu dV , (2.64)

and the associated strong form with the associated boundary conditions reads

div(C : sym∇u) + f = 0 in B ,
t = (C : sym∇u) · n on ∂Bt ,
u = ū on ∂Bu ,

(2.65)

satisfying ∂Bu ∩ ∂Bt = ∅ and ∂Bu ∪ ∂Bt = ∂B. The strain and stress quantities, both
symmetric, are defined as ε = sym∇u and σ = C : sym∇u = C : ε.

2.6 Enriched continua

The classical continuum theory of Cauchy, as discussed earlier, considers the material
point to be infinitesimally small, i.e. strict mathematical points. The micromorphic theory
expands the material point’s scope to capture a small space, e.g. one grain in granular
materials or a unit-cell in metamaterials. Thus, it intrinsically provides the homogeneous
continuum description with an internal length scale. The current Section is dedicated
to extending the Cauchy continuum theory to encompass enriched continua in the most
comprehensive manner possible, and we briefly introduce then three enriched continua.
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Seeking comparison, we generally follow the notation used by the publications of the
relaxed micromorphic model, such as Neff et al. [2014a].

2.6.1 Kinematics

For the generalized continua theory, the physical body of interest consists of a set of
material points with embedded deformable microcontinua, see Figure 2.3. This body in
the reference configuration B0 undergoes deformation to reach the actual configuration B.
Within each material point, the embedded microcontinuum (or particle) in the reference
configuration, denoted as B0

M , deforms into BM in the actual configuration.

o

XM

X xM

x

Φ

ϕ

B

B0

B0M

BM

I + P

u

Figure 2.3: The micromorphic theory: the reference configuration on the left and current
configuration on the right.

An appropriate mapping under an arbitrary deformation for the macro-micro system from
the reference to the actual frame is achieved by combining both macro- and micromotion.
The microcontinuum is characterized by its centroid. The macromotion carries this cen-
troid from XM in the reference configuration to xM at the actual configuration as

xM(XM) =XM + u(XM) , (2.66)

where u is the macroscopic displacement vector. The micro deformation, accounting for
the inner deformation of the particle, is assumed to be independent of the macroscopic
deformation and homogeneous (first-order affine transformation). Consequently, a director
vector Φ attached to the centroid of B0

M is mapped to a director vector ϕ attached to the
centroid of BM by

ϕ = FM(XM) ·Φ , with FM(XM) = I + P (XM) , (2.67)

where FM is the deformation gradient of the micromotion and P is the micro-distortion
field, see Equation (2.6). The micro-distortion is a macroscopic field which describes the
microscopic deformation so the enriched continuum can capture the microscopic state
explicitly. A point in the microcontinuum B0

M with a position X = XM + Φ in the
reference configuration is mapped to a position x at the actual configuration by
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x(XM ,Φ) = xm(XM) + ϕ(XM ,Φ) =XM + u(XM) + (I + P (XM)) ·Φ , (2.68)

and the motion of each point in the microcontinuum is uniquely defined by the pair {u,P }.
In the most general case, the micro-distortion field P is non-symmetric describing micro-
shearing, micro-stretching and micro-rotation. The literature contains numerous models of
enriched continua. These models differ mainly in the restrictions imposed on the micro-
distortion field as well as the differential operator used for the curvature measure. In
the following, we present the “full” micromorphic model by Mindlin-Eringen (P ,∇P ),
The Cosserat micropolar model (skewP ,CurlP ) and the relaxed micromorphic model
(P ,CurlP ). Our focus will remain solely on generalized continua within the framework
of small deformations, so there will be no need to distinguish between reference and current
configuration. The body of interest will be denoted by B.

2.6.2 The micromorphic theory by Mindlin-Eringen

The micromorphic theory was developed first by R. D. Mindlin and A. C. Eringen in the
1960s, see for examples Eringen [1968], Eringen and Suhubi [1964], Mindlin [1964;
1965], Mindlin and Eshel [1968], Suhubi and Eringen [1964]. The full gradient of a
second-order non-symmetric micro-distortion field is employed for the curvature measure-
ment. The displacement vector u : B ⊆ R3 → R3 and a non-symmetric micro-distortion
field P : B ⊆ R3 → R3×3 are defined by the minimization of the total energy

Π(u,P ) =

∫
B
ψ (∇u,P ,∇P ) dV −→ min, (2.69)

where no body forces or moments are considered presently seeking simplicity. The elastic
energy density reads

ψ (∇u,P ,∇P ) =
1

2

(
(∇u− P ) : Ce : (∇u− P ) + symP : CP : symP

+ µL2
c∇P

... L̆ ...∇P + 2(∇u− P ) : Ce P : symP
)
.

(2.70)

Here, the fourth-order tensor Ce : R3×3 → R3×3 acting on ∇u − P has at most 45
independent coefficients. The fourth-order tensor CP : Sym(3)→ Sym(3) acting on symP
has the classical 21 independent coefficients. The sixth-order tensor L̆ is associated with
curvature and has at most 378 coefficients while the fourth-order tensor Ce P has 54
independent coefficients. The parameter Lc > 0 is the characteristic length, and µ > 0 is
added for dimensional consistency, while L̆ is dimensionless. Note that this formulation
here with 45+21+378+54 = 498 independent coefficients is even simpler than the more
general formulation in Mindlin [1964], which contains two additional mixed terms, i.e.
(∇P , ∇u − P ) and (∇P , SymP ), with two associated fifth-order tensors with a total
903 independent coefficients. The specific appearance of symP in the energy function is
dictated by infinitesimal Galilean invariance, see e.g. Rizzi et al. [2024]. The strong
form of the balance equations of the Mindlin-Eringen micromorphic continuum reads
Neff et al. [2014a]
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div
(
Ce : (∇u− P ) + Ce−P : symP︸ ︷︷ ︸

Σ

)
=0 ,

div
(
µL2

c L̆
...∇P︸ ︷︷ ︸

M

)
−

(
CP : symP + CT

e−P : (∇u− P )
)︸ ︷︷ ︸

S

+Σ =0 ,
(2.71)

where Σ and S are second-order non-symmetric force and micro-stress tensors, respec-
tively, and M is a third-order moment stress tensor. The balance equations (2.71) repre-
sent generalized balances of linear and angular momentum, respectively.

A significant challenge in employing the micromorphic theory for modeling the mechanical
behavior of material lies in the difficulty of determining the numerous unknown coeffi-
cients. This not only presents a technical issue but also a challenge in physically inter-
preting the material parameters themselves, since some are size-dependent while others
are size-independent, Barbagallo et al. [2017], Chen and Lee [2003a;b]. Finally,
for the case Ce → ∞ and if no mixed terms are considered, we obtain P = ∇u and,
consequently, we have

ψ (∇u,∇(∇u)) = 1

2

(
sym∇u : CP : sym∇u+ µL2

c∇(∇u)
... L̆ ...∇(∇u)

)
, (2.72)

and the gradient elasticity model is recovered in which CP must coincide with the classical
periodic homogenization.

2.6.3 The Cosserat model

The first enriched continuum is traced back to the works of the Cosserat brothers
Cosserat and Cosserat [1909]. They assume that each material point is rigid but
can rotate. Therefore, a skew-symmetric micro-distortion field is considered by setting
A := skewP ∈ so(3) with three additional rotational degrees of freedom instead of the
full nine degrees of freedom in the Mindlin-Eringen micromorphic theory, Barbagallo
[2017], Ghiba et al. [2023]. The displacement vector u and the skew-symmetric micro-
distortion field A are defined through the following energy minimization

Π(u,A) =

∫
B
ψ (∇u,A,∇(axlA)) dV −→ min, (2.73)

and the energy density reads

ψ (∇u,A,∇axlA) =
1

2

(
sym∇u : Cε : sym∇u

+ (skew∇u−A) : CA : (skew∇u−A)

+ µL2
c∇(axlA) : L : ∇(axlA)

)
,

(2.74)

with
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A =

Ñ
0 A12 A13

−A12 0 A23

−A13 −A23 0

é
, and axlA = (−A23, A13,−A12)

T . (2.75)

Here, Cε is a standard elasticity tensor acting on sym∇u. The tensor CA is a fourth-order
tensor acting on skew∇u − A and L is a fourth-order tensor acting on ∇(axlA). The
curvature in the Cosserat theory can be expressed using the Curl operator rather than
the gradient with the help of Nye’s formula since A is skew-symmetric, see d’Agostino
et al. [2022a], Nye [1953],

∇(axlA) =
1

2
tr
[
(CurlA)T

]
I − (CurlA)T . (2.76)

Therefore, an alternative formulation of the energy can be introduced with the help of the
Curl operator acting on the skew-symmetric tensor A. This formulation is isomorphic to
the formulation in Equation (2.74) Barbagallo et al. [2017]

ψ (∇u,A,CurlA) =
1

2
( sym∇u : Cε : sym∇u

+ (skew∇u−A) : CA : (skew∇u−A)

+ µL2
c CurlA : L : CurlA) .

(2.77)

The strong form of the balance equations of the Cosserat model reads

div

Ñ
Cε : sym∇u+ CA : (skew∇u−A)︸ ︷︷ ︸

Σ

é
= 0 ,

skewCurl

Ñ
µL2

c L : CurlA︸ ︷︷ ︸
m

é
− CA : (skew∇u−A)︸ ︷︷ ︸

skewΣ

= 0 ,

(2.78)

representing a generalized balance of linear and angular momentum, respectively. Here,
Σ is a non-symmetric force stress tensor and m is the second-order couple stress tensor.

A broad spectrum of materials, including granular materials Mohan et al. [1999],
Mühlhaus [1986], foam-like structures, bones Ascenzi et al. [1994], Lakes [1995],
Park and Lakes [1986], and chiral metamaterials Alavi et al. [2021b], aligns with
the assumption of a rigid microstructure. However, the simplicity of the model restricts
its effectiveness in modeling more complex materials such as metamaterials.

2.6.4 The relaxed micrmorphic model by Neff

The relaxed micromorphic model balances the intricacies of the micromorphic continuum
and the simplicity of the Cosserat model. It significantly reduces the number of unknown
parameters compared to the Mindlin-Eringen micromorphic theory while still employing
its kinematic (full micro-distortion field). Nonetheless, it incorporates only the Curl of
the micro-distortion for the curvature as in the Cosserat theory. It provides an efficient
solution for modeling materials that exhibit size-effects or/and band gaps.
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Similar to the micromorphic theory, the kinematics of each material point in the relaxed
micromorphic model are described by a displacement vector u and a non-symmetric micro-
distortion field P . The elastic energy density is formulated as

ψ (∇u,P ,CurlP ) =
1

2
( sym[∇u− P ] : Ce : sym[∇u− P ]

+ symP : Cmicro : symP

+ skew[∇u− P ] : Cc : skew[∇u− P ]

+ µL2
c CurlP : L : CurlP ) ,

(2.79)

where the Curl of the micro-distortion field is utilized instead of the full gradient for
the curvature measurement, c.f. Equation (2.70). Chapter 3 is devoted to describing the
components and the characteristics of the relaxed micromorphic model comprehensively.
For the limit case Cmicro →∞, the micro-distortion field must be skew-symmetric P = A
and the Cosserat model is recovered with the corresponding strain energy density given
in Equation (2.77). Furthermore, letting Cc → ∞ leads to A = skew∇u and we obtain
the couple stress model, see e.g. Neff et al. [2016], with the following strain energy
density

ψ (∇u,Curl skew∇u) = 1

2
( sym∇u : Ce : sym∇u

+ µL2
c Curl skew∇u : L : Curl skew∇u) .

(2.80)

2.6.5 Some other generalized continua in a nutshell

Generalized continua encompass numerous models in the literature, and their notation is
not unified. Reviews discussing the classes and relations between generalized continua can
be found in Forest [2013], Neff et al. [2014a]. In Figure 2.4, we present a genealogy
tree outlining various well-known generalized continuum models. This figure depicts their
kinematics, energy dependencies, and interactions between these different models.
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Mindlin-Eringen micromorphic
kinematics: (u,P )
ψ(∇u,P ,∇P )

u : displacement (3 dofs)
P : micro-distortion (9 dofs)

micro-strain
kinematics: (u,S)
ψ(∇u,S,∇S)

S : micro-strain (6 dofs)

strain gradient,
kinematics: (u)

ψ(∇u,∇(sym∇u))

relaxed micromorphic
kinematics: (u,P )
ψ(∇u,P ,CurlP )

micro-stretch
kinematics: (u,A, p)

ψ(∇u,A, p,Curl(A+ pI))
p : micro-(volume strain) (1 dof)

A : skew-symmetric micro-rotation tensor (3 dofs)

Cosserat
kinematics: (u,A)
ψ(∇u,A,Curl(A)︸ ︷︷ ︸

or∇(axlA)

)

couple stress
kinematics: (u)

ψ(∇u,Curl(skew∇u))

micro-void
kinematics: (u, p)
ψ(∇u, p,Curl(pI))

second gradient
kinematics: (u)
ψ(∇u,∇(∇u))

P = S (symmetric)

S = sym∇u

∇P → CurlP

P = A+ pI

p = 0

A = skew∇u

A = 0

P = ∇u

C m
ic
ro
→
∞

Figure 2.4: Genealogy tree of some generalized continua.
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3 The relaxed micromorphic model (RMM)

The relaxed micromorphic model (RMM) is a generalized continuum descrip-
tion that simplifies the form of the assumed strain energy compared to the
classical Mindlin-Eringen micromorphic theory by employing a relaxed curvature
in terms of the Curl of a micro-distortion field rather than its full gradient
Demore et al. [2022], Madeo et al. [2016b], Neff et al. [2014a].

Utilizing only the Curl of the micro-distortion field offers several advantages. First, it
achieves relative simplicity compared to the classical Eringen-Mindlin micromorphic the-
ory, as reflected in the notably reduced number of material parameters. For instance, the
relaxed micromorphic model characterizes a two-dimensional metamaterial consisting of a
periodic cubic unit-cell with only eight parameters (three of them are uniquely defined by
first-order classical homogenization). The simplicity is further highlighted by eliminating
the fifth- and sixth-order tensors found in classical Mindlin-Eringen micromorphic the-
ory. Second, the model demonstrates well-posedness for the important case of symmetric
force stress, as proven using a new generalized Korn’s inequality Gmeineder et al.
[2023; 2024], Lewintan and Neff [2021], Lewintan et al. [2021]. This property is
not demonstrated in the Cosserat model since µc = 0 leads to no coupling. The most
notable advantage of the RMM is the bounded stiffness for small sizes, where the stiffness
of the RMM is bounded from below and above. This allows the material parameters to
be related to two well-defined scales Gourgiotis et al. [2024], Sarhil et al. [2023c],
Schröder et al. [2022], which is not possible for classical micromorphic or gradient
elasticity theories that exhibit unbounded stiffness for large values of the characteristic
length parameter (a zoom in the microstructure).

In this Chapter, we provide a comprehensive description of the relaxed micromorphic
model. We begin by introducing the relevant Hilbert spaces and norms in Section 3.1.
Section 3.2 presents the energy function, offering a detailed explanation of the associated
material parameters. The variational problem is derived in Section 3.3, leading to the weak
and strong forms along with their respective boundary conditions. Analytical solutions
for the limiting cases of Lc → 0 and Lc →∞ are derived. The distinctive behavior of the
relaxed micromorphic model as a two-scale elasticity model is highlighted in Section 3.6.

3.1 Hilbert spaces and related norms

In this Section, some common and well-known function spaces are introduced, Brenner
and Scott [2008], Brezzi and Fortin [1991], Igelbüscher [2021], Viebahn [2019],
in order to define suitable function spaces for the unknown field variables. First, we intro-
duce the Lebesgue space Lp(B), which is characterized by p-integrable functions on the
domain B. A function a belongs to the Lebesgue space Lp(B) if the p-th power of the
function is bounded

Lp(B) := {a | ||a||Lp <∞} for 1 ≤ p <∞ , (3.1)

with the associated norm
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||a||Lp :=

Å∫
B
|a|pdV

ã1/p
. (3.2)

The space of square-integrable functions L2(B) is defined as

L2(B) := {a | ||a||L2 <∞ , ||a||2L2 =

∫
B
a2dV } , (3.3)

and the Lebesgue norms of a generic vector-valued function a and a generic second-order
tensor function A read

||a||2L2 :=
3∑

i=1

||ai||2L2 , ||A||2L2 :=
3∑

i=1

3∑
j=1

||Aij||2L2 . (3.4)

The definition of Lebesgue spaces focuses solely on the function itself and does not involve
statements regarding its derivatives. In contrast, Hilbert spaces include restrictions on the
derivatives of the function, making them particularly interesting when continuity, or even
higher-order continuity, is required. We introduce the Hilbert spaces Hq(B), H(div,B)
and H(curl,B) for a vector-valued function a as

Hq(B) := {a ∈ L2(B) | ∇qa ∈ L2(B)} ,
H(div,B) := {a ∈ L2(B) | diva ∈ L2(B)} ,
H(curl,B) := {a ∈ L2(B) | curla ∈ L2(B)} ,

(3.5)

with ∇q as the q-th differential operator and the associated norms read

||a||2Hq(B) := ||a||2L2 +

q∑
s=1

||∇sa||2L2 ,

||a||2H(div,B) := ||a||2L2 + || diva||2L2 ,

||a||2H(curl,B) := ||a||2L2 + || curla||2L2 .

(3.6)

The solution of the relaxed micromorphic model, as we will show later, is to be found
in the space (u,P ) ∈ H1(B) × H(curl,B). The Hilbert space H1(B) is defined for the
displacement vector u as

H1(B) = {u ∈ L2(B) | ∇u ∈ L2(B)} , (3.7)

with the norm
||u||2H1(B) = ||u||2L2 + ||∇u||2L2 . (3.8)

The space H(curl,B) is defined for the micro-distortion field P as

H(curl,B) = {P i ∈ L2(B) | curlP i ∈ L2(B) , for i = 1, 2, 3} , (3.9)

where P i are the row-vectors of P , see Equations (3.16) and (3.17), and the associated
norm reads

||P ||2H(curl,B) = ||P ||2L2 + ||CurlP ||2L2 . (3.10)

The total norm of the space H1(B)×H(curl,B) is defined as

||{u,P }||2H1(B)×H(curl,B) = ||u||2H1(B) + ||P ||2H(curl,B) . (3.11)

We refer to Schröder et al. [2022], Sky [2022], Sky et al. [2022] for further details.
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3.2 Model description

The relaxed micromorphic model is a continuum model that describes the kinematics of a
material point using a displacement vector u : B ⊆ R3 → R3 and a non-symmetric micro-
distortion field P : B ⊆ R3 → R3×3. Both are defined for the static case by minimizing
the potential

Π(u,P ) =

∫
B
ψ (∇u,P ,CurlP ) − f · u −M : P dV −

∫
∂Bt

t · u dA −→ min , (3.12)

with (u,P ) ∈ H1(B)×H(curl,B). The vector f and tensor M describe the given body
force and body moment, respectively, while t is the traction vector acting on the boundary
∂Bt ⊂ ∂B. The elastic energy density ψ reads

ψ (∇u,P ,CurlP ) =
1

2

(
sym[∇u− P ] : Ce : sym[∇u− P ]

+ symP : Cmicro : symP

+ skew[∇u− P ] : Cc : skew[∇u− P ]

+ µL2
c CurlP : L : CurlP

)
.

(3.13)

Here, Cmicro and Ce are fourth-order positive definite standard elasticity tensors, Cc is a
fourth-order positive semi-definite rotational coupling tensor, L is a fourth-order tensor
acting on non-symmetric arguments, Lc is a non-negative parameter describing the char-
acteristic length scale, and µ is a typical shear modulus which is added for dimensional
consistency. The characteristic length parameter plays a significant role in the relaxed
micromorphic model. This parameter is related to the size of the microstructure and de-
termines its influence on the macroscopic mechanical behavior. The characteristic length
allows scaling the number of considered unit-cells, keeping all remaining parameters of
the model scale-independent, where the macro-scale with Cmacro and the micro-scale with
Cmicro are retrieved for Lc → 0 and Lc →∞, respectively, if suitable boundary conditions
are applied, see Neff et al. [2020], Sarhil et al. [2021], Schröder et al. [2022].
The characteristic length parameter accounts for non-localities in the considered metama-
terial, where the deformation of each unit-cell is influenced by deformations and motions of
the neighboring cells. The macroscopic elasticity tensor Cmacro associated with Lc → 0 can
be defined by the standard first-order periodic homogenization (scale-separation holds),
while the microscopic elasticity tensor Cmicro associated with Lc → ∞ represents the
stiffest extrapolated response (zooming in the microstructure). The constitutive coeffi-
cients are assumed constant with the following symmetries

(Cmicro)ijkl = (Cmicro)klij = (Cmicro)jikl , (Cc)ijkl = (Cc)klij = −(Cc)jikl ,

(Ce)ijkl = (Ce)klij = (Ce)jikl , (L)ijkl = (L)klij ,
(3.14)

where Cmicro and Ce are connected to Cmacro through a Reuss-like homogenization relation
Barbagallo et al. [2017] (equivalent stiffness of springs in series)

C−1
macro = C−1

micro + C−1
e ⇒ Ce = Cmicro : (Cmicro − Cmacro)

−1 : Cmacro . (3.15)

The energy functional of the model does not explicitly feature the macroscopic elasticity
tensor Cmacro. However, the previous relation involving Cmicro and Ce, which must be
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explicitly contained in the energy functional, assures that linear elasticity with Cmacro is
recovered as Lc tends towards zero. Note that the shear modulus µ appears for dimensional
reasons and is a priori not related to the shear moduli appearing in Cmacro or Cmicro.

The micro-distortion field has the following general form for the three-dimensional case

P =

 (P 1)T

(P 2)T

(P 3)T

 =

 P11 P12 P13

P21 P22 P23

P31 P32 P33

 with P i =

 Pi1

Pi2

Pi3

 , i = 1, 2, 3 , (3.16)

where P i denotes the row vectors of P . We let the Curl operator act on the row vectors
of the micro-distortion field P , i.e.

CurlP =

 (curlP 1)T

(curlP 2)T

(curlP 3)T

 =

 P13,2 − P12,3 P11,3 − P13,1 P12,1 − P11,2

P23,2 − P22,3 P21,3 − P23,1 P22,1 − P21,2

P33,2 − P32,3 P31,3 − P33,1 P32,1 − P31,2

 . (3.17)

For the two-dimensional case, the micro-distortion field and its Curl operator are reduced
to

P =

 (P 1)T

(P 2)T

0T

 =

 P11 P12 0
P21 P22 0
0 0 0

 and CurlP =

 0 0 P12,1 − P11,2

0 0 P22,1 − P21,2

0 0 0

 . (3.18)

3.3 Variational formulation

The variation of the potential with respect to the displacement field, i.e. δuΠ = 0, with

δuΠ =

∫
B
{Ce : sym[∇u− P ] + Cc : skew[∇u− P ]︸ ︷︷ ︸

=: σ

} : ∇δu− f · δu dV

−
∫
∂Bt

t · δu dA ,

(3.19)

leads, after integration by parts and using the divergence theorem, to the weak form

δuΠ =

∫
B
{divσ + f} · δu dV = 0 , (3.20)

where σ stands for the non-symmetric force stress tensor. The associated strong form
with the related boundary conditions reads

divσ + f = 0 with u = u on ∂Bu and t = σ · n on ∂Bt , (3.21)

satisfying ∂Bu ∩ ∂Bt = ∅ and ∂Bu ∪ ∂Bt = ∂B and n is the outward normal on the
boundary. Similarly, the variation of the potential with respect to the micro-distortion
field, i.e. δPΠ = 0, with

δPΠ =

∫
B
{σ − Cmicro : symP︸ ︷︷ ︸

=: σmicro

+M} : δP − µL2
c(L : CurlP )︸ ︷︷ ︸
=:m

: Curl δP dV , (3.22)
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yields after using integration by parts and applying Stokes’ theorem

δPΠ =

∫
B
{σ − σmicro − Curlm+M} : δP dV

+

∫
∂B
{

3∑
i=1

(
mi × δP i

)
· n} dA = 0 ,

(3.23)

where σmicro and m are the micro- and moment stresses, respectively, and mi and δP i

denote row vectors of the associated second-order tensors. Here, we have employed the
relation

∫
B
m : Curl δP dV =

∫
B
Curlm : δP dV −

∫
∂B
{

3∑
i=1

(
mi × δP i

)
· n} dA . (3.24)

Using the identity of the scalar triple vector product

(a× b) · c = (c× a) · b = (b× c) · a , (3.25)

leads for the reformulation∫
∂B
{

3∑
i=1

(
mi × δP i

)
· n} dA =

∫
∂BP

{
3∑

i=1

(
δP i × n

)
·mi} dA −

∫
∂Bm

{
3∑

i=1

(
mi × n

)
· δP i} dA .

(3.26)

The associated strong form reads

Curlm = σ − σmicro +M , (3.27)

with related boundary conditions, formulated in terms of the row vectors P i and mi of
the associated second-order tensors,

3∑
i=1

P i × n = tp on ∂BP and by definition
3∑

i=1

mi × n = 0 on ∂Bm , (3.28)

where ∂BP ∩ ∂Bm = ∅ and ∂BP ∪ ∂Bm = ∂B.
The first strong form in Equation (3.21) represents a generalized balance of linear momen-
tum (force balance), while the second strong form in Equation (3.27) outlines a general-
ized balance of angular momentum (moment balance). The generalized moment balance
invokes the Cosserat theory with the Curl Curl operator rising from the matrix Curl op-
erator of the second-order moment stressm. In comparison to the classical micromorphic
model, see Eringen [1968], Neff et al. [2014a], the relaxed micromorphic model uses
the same kinematical measures but employs a curvature measure from the Cosserat mi-
cropolar theory, see Neff et al. [2010b]. The strong form of the relaxed micromorphic
model, along with the associated boundary conditions, can be summarized as follows:
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divσ + f = 0 on B,
u = u on ∂Bu ,
t = σ · n on ∂Bt ,

σ − σmicro − Curlm+M = 0 on B ,
3∑

i=1

P i × n = tP on ∂BP ,

3∑
i=1

mi × n = 0 on ∂Bm ,

(3.29)

where ∂BP ∩ ∂Bm = ∂Bu ∩ ∂Bt = ∅ and ∂BP ∪ ∂Bm = ∂Bu ∪ ∂Bt = ∂B. By substitut-
ing the generalized balance of angular momentum into the generalized balance of linear
momentum, a resulting (but not independent) balance equation reads

divσmicro + f = 0 on B , (3.30)

which does not appear in the Eringen-Mindlin micromorphic theory or the Cosserat mi-
cropolar model. A dependency between the displacement field and the micro-distortion
field on the boundary was introduced by Neff et al. [2020] and subsequently consid-
ered in d’Agostino et al. [2022b], Rizzi et al. [2021a;b], Sky et al. [2021]. This
so-called consistent coupling boundary condition relates the projection of the dis-
placement gradient on the tangential plane of the boundary to the respective parts of the
micro-distortion, i.e.

P · τ = ∇u · τ ⇔ P i × n = ∇ui × n for i = 1, 2, 3 on ∂BP = ∂Bu , (3.31)

where τ is a tangential vector on the Dirichlet boundary and ∇ui are the row vectors of
∇u. This boundary condition can be enforced explicitly on the displacement’s Dirichlet
boundary because the displacement gradient’s tangential projection is known. However,
we can extend this relative boundary condition to parts of ∂Bm by enforcing the consistent
coupling condition on ∂B“m ⊆ ∂Bm via a penalty approach as

Π⇐ Π+

∫
∂Bm̂

κ1
2

3∑
i=1

||(P i −∇ui)× n)||2 dA , (3.32)

where κ1 is the penalty parameter.

3.4 Limiting case Lc → 0

For the limit Lc → 0, the generalized balance of angular momentum in Equation (3.29)
turns with Lc = 0 into

σ − σmicro +M = 0 . (3.33)

Alternatively, it can be rewritten as the following
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Ce : sym[∇u− P ] + Cc : skew[∇u− P ]− Cmicro : symP +M = 0 . (3.34)

The micro-distortion field P can be calculated after some algebraic manipulations as

symP =(Ce + Cmicro)
−1 : (Ce : sym∇u+ symM) ,

skewP =C−1
c : skewM + skew∇u

(3.35)

which leads, with the assumption M = 0, to

symP =(Ce + Cmicro)
−1 : Ce : sym∇u ,

skew[∇u− P ] =0
(3.36)

and by substituting in Equation (3.34), we obtain

Ce : sym[∇u− P ] = Cmicro : (Ce + Cmicro)
−1 : Ce : sym∇u . (3.37)

The generalized balance of linear momentum in Equation (3.29) taking into consideration
Equations (3.36) and (3.37) becomes

div[
(
Cmicro : (Ce + Cmicro)

−1 : Ce

)︸ ︷︷ ︸
=:Cmacro

: sym∇u] + f = 0 , (3.38)

and we obtain the classical balance of linear momentum for the linear elastic Cauchy
continuum. The definition of the macroscopic elasticity tensor Cmacro = Cmicro : (Ce +
Cmicro)

−1 : Ce = (C−1
e + C−1

micro)
−1, which has been introduced before in Equation (3.15),

is a series sum of Ce and Cmicro (Reuss-like homogenization). Therefore, Cmacro is softer
than both Ce and Cmicro, Barbagallo et al. [2017]. The case Lc → 0 corresponds to
the lower limit of the relaxed micromorphic model. This limit is associated with the soft
response of large specimens (many unit-cells), and the classical first-order homogenization
procedures are valid to identify the elasticity tensor Cmacro.

3.5 Limiting case Lc →∞

For the limit Lc → ∞, the term CurlP has to vanish, see Equations (3.12) and (3.13).
This implies the reduction of the micro-distortion to a gradient field P = ∇v Neff
et al. [2020], Sky [2022]. The elastic energy density of the relaxed micromorphic model
in Equation (3.13) becomes

ψ (∇u,∇v) = 1

2

(
sym[∇u−∇v] : Ce : sym[∇u−∇v]

+ sym∇v : Cmicro : sym∇v

+ skew[∇u−∇v] : Cc : skew[∇u−∇v]
)
.

(3.39)

The variation of the total energy with respect to the remaining fields u and v reads
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δuΠ =

∫
B

{
Ce : sym[∇u−∇v] + Cc : skew[∇u−∇v]

}
: ∇δu− f · δu dV

−
∫
∂Bt

t · δu dA ,

δvΠ =

∫
B

{
Ce : sym[∇u−∇v] + Cc : skew[∇u−∇v]

− Cmicro : sym∇v +M
}
: ∇δv dV ,

(3.40)

and the associated strong forms are

div[Ce : sym[∇u−∇v] + Cc : skew[∇u−∇v]] + f = 0 (3.41a)

div[Ce : sym[∇u−∇v] + Cc : skew[∇u−∇v]− Cmicro : sym∇v +M ] = 0 . (3.41b)

We substitute Equation (3.41b) into (3.41a) and obtain

div[Cmicro : sym∇v] = divM − f . (3.42)

Enforcing the consistent coupling condition on the boundary, see Equation (3.31), with
vanishing body force f leads to the apparent solution ∇v = ∇u. The divergence of

the body moment can be interpreted as a microscopic body force f = − divM . The
minimization problem can be reformed as∫

B

1

2
∇u : Cmicro : ∇u− f · u dV −→ min (3.43)

with the balance equation

div[Cmicro : sym∇u] + f = 0 (3.44)

and a linear elastic Cauchy continuum with elasticity tensor Cmicro is recovered. The case
Lc →∞ corresponds to the upper limit of the relaxed micromorphic mode characterized
by linear elasticity with elasticity tensor Cmicro. This limit must be associated with the
stiffest response of the assumed material as we are zooming in the microstructure into
one single unit-cell.

3.6 Characteristics of the RMM: a two-scale elasticity model

As we demonstrated in Sections 3.4 and 3.5, the relaxed micromorphic model recovers
a “soft” linear elasticity model with an elasticity tensor Cmacro as Lc → 0 and a “stiff”
linear elasticity model with an elasticity tensor Cmicro as Lc →∞. Therefore, the relaxed
micromorphic model interpolates between two well-defined scales: the microscopic scale,
described by linear elasticity with a microscopic elasticity tensor representing the maxi-
mum stiffness exhibited by the assumed metamaterial, and the macroscopic scale, char-
acterized by linear elasticity with a macroscopic elasticity tensor obtained using standard
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periodic first-order homogenization methods when scale-separation holds. The critical role
of the characteristic length parameter is to scale correctly with the specimen size and to
control the transition between the micro- and macro-scales. Therein, large values of the
characteristic length correspond to zooming into the “stiff” microstructure, for example,
one unit-cell, while small values result in an effective “soft” classical homogeneous re-
sponse for large structures. Figure 3.1 illustrates how this unique behavior distinguishes
the relaxed micromorphic model from other generalized continua that exhibit unbounded
stiffness for arbitrarily small specimens (i.e., large values of the characteristic length).

characteristic length Lc∞ 0

linear elasticity with Cmacro

linear elasticity with Cmicro

re
la
ti
ve

st
iff
n
es
s

unit-cell

many unit-cells

RMM

other generalized continua (Cosserat, second gradient,
Mindlin-Eringen)

Figure 3.1: The stiffness of the relaxed micromorphic model (RMM) is bounded from
above and below. Other generalized continua exhibit unbounded stiffness for small sizes.
For large values of the characteristic length, linear elasticity with a microscopic elasticity
tensor is recovered (one unit-cell) while linear elasticity with a macroscopic elasticity ten-
sor is obtained for small values of the characteristic length (many unit-cells). Taken from
Sarhil et al. [2024].
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4 Finite Element Method

Within the last decades, the Finite Element Method (FEM) has been proven to be a
well-established numerical approach for an approximate and effective solution of par-
tial differential equations on complex finite geometries with different types of bound-
ary conditions. The finite element method is based on approximating of the contin-
uous problem into a discrete counterpart with a certain number of unknowns (de-
grees of freedom), which yields an equations system that can be solved employing
suitable numerical methods and computer codes. For a general overview of the fi-
nite element method and the associated concepts, we refer to the standard books, e.g.
Bathe [2006], Wriggers [2008], Zienkiewicz et al. [2013].

In this Chapter, we introduce the fundamental concepts of the finite element realization
of the relaxed micromorphic model with the needed H1(B)- and H(curl,B)-conforming
finite element approximation spaces. The proper finite element approximation of the
micro-distortion field is the Nédélec space, which utilizes tangential-conforming vecto-
rial shape functions. We provide a comprehensive description of the construction of
H1(B) × H(curl,B) elements with Nédélec formulation of the first kind on triangular
and quadrilateral meshes. Six finite elements are built, seeking comparison, which differ
in the approximation space of the micro-distortion: two triangular elements with first-
and second-order Nédélec formulation, two quadrilateral elements with first- and second-
order Nédélec formulation, and two nodal triangular elements with standard first- and
second-order Lagrangian formulation. Three numerical examples are introduced. The first
numerical example is a patch-test to check the implementation. The second numerical ex-
ample is designed to check the convergence behavior of the different finite elements when
the solution is discontinuous in the micro-distortion field. We investigate the influence of
the characteristic length in the last example, which covers the size-effect property.

Parts of this Chapter are published in:

J. Schröder, M. Sarhil, L. Scheunemann and P. Neff. Lagrange and H1(B) × H(curl,B)
based finite element formulations for the relaxed micromorphic model. Computational
Mechanics, 70, 1309–1333, 2022. doi:10.1007/s00466-022-02198-3

M. Sarhil, L. Scheunemann, J. Schröder and P. Neff. On a tangential-conforming finite
element formulation for the relaxed micromorphic model in 2D. Proceedings in Applied
Mathematics and Mechanics, 21, e202100187, 2021. doi:10.1002/pamm.202100187

4.1 Linearization of the weak forms

Since the solution of the variational problem in Section 3.3 can generally be nonlinear,
the solution of boundary value problems requires an iterative procedure. The Newton-
Raphson scheme is particularly efficient for solving nonlinear algebraic systems, converging
quadratically in a sufficiently close neighborhood of the real solution. Therefore, linearizing
the underlying coupled weak forms in Equations (3.19) and (3.22) becomes necessary. We
revisited the weak forms, clarifying their physical interpretation by expanding them into
expressions linked to virtual work. We rewrite the first weak form in Equation (3.19) as
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δuΠ =

∫
B
σ : ∇δu dV︸ ︷︷ ︸
=: δuΠint

−
(∫

B
f · δu dV +

∫
∂Bt

t · δu dA︸ ︷︷ ︸
=: δuΠext

)
, (4.1)

where δuΠ
int and δuΠ

ext denote the virtual internal and external work associated with
the displacement field. Similarly, we reform the second weak form in Equation (3.22) as

δPΠ =

∫
B
(σmicro − σ) : δP +m : Curl δP dV︸ ︷︷ ︸

=: δPΠint

−
∫
B
M : δP dV︸ ︷︷ ︸
=: δPΠext

, (4.2)

where δPΠ
int and δPΠ

ext denote the virtual internal and external work associated with
the micro-distortion field. The linearization of previous weak forms with respect to a given
point u = ŭ and P = P̆ reads

Lin δuΠ(ŭ, P̆ , δu,∆u,∆P ) = δuΠ(ŭ, P̆ , δu) + ∆u δuΠ(ŭ, P̆ , δu,∆u)

+ ∆P δuΠ(ŭ, P̆ , δu,∆P ) ,

Lin δPΠ(ŭ, P̆ , δP ,∆u,∆P ) = δPΠ(ŭ, P̆ , δP ) + ∆u δPΠ(ŭ, P̆ , δP ,∆u)

+ ∆P δPΠ(ŭ, P̆ , δP ,∆P ) ,

(4.3)

where ∆u and ∆P are the incremental displacement and micro-distortion field, respec-
tively. The incremental parts of the linearization are obtained through the (partial) direc-
tional derivatives with respect to the corresponding field quantity. The increment of the
virtual work is obtained exemplarily as

∆u δuΠ(ŭ, P̆ , δu,∆u) =
d

dϵ
δuΠ(ŭ+ ϵ∆u, P̆ , δu)

∣∣∣∣
ϵ=0

= Du δuΠ(ŭ, P̆ , δu) ·∆u , (4.4)

which applies analogously to the other terms. Moreover, we assume that the traction t,
the body force f and the body momentM are conservative external loading so that their
directional derivatives vanish, i.e. ∆ δuΠ

ext = 0 and ∆ δPΠ
ext = 0. Thus, we obtain the

following linearization of the weak forms

Lin δuΠ =

∫
B
σ : ∇δu dV −

∫
B
f · δu dV −

∫
∂Bt

t · δu dA

+

∫
B
∇δu : ∂∇uσ : ∇∆u dV +

∫
B
∇δu : ∂Pσ : ∆P dV ,

Lin δPΠ =

∫
B
(σmicro − σ) : δP +m : Curl δP dV −

∫
B
M : δP dV

−
∫
B
δP : ∂∇uσ : ∇∆u dV +

∫
B
δP : (∂Pσmicro − ∂Pσ) : ∆P dV

+

∫
B
Curl δP : ∂CurlPm : Curl∆P dV ,

(4.5)

with the following partial derivatives
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∂∇uσ = Ce+Cc , ∂Pσ = −(Ce+Cc) , ∂Pσmicro = Cmicro , ∂CurlPm = µL2
c L . (4.6)

Note that the symmetry and anti-symmetry operators have been dropped because the
definition of the tensors Ce,Cmicro : R3×3 → Sym(3) and Cc : R3×3 → so(3) implies these
operators, see Equation (3.14), compare with Sky et al. [2022].

For the 2D case, the isotropic nature of the curvature arises because of the
reduction of the Curl of micro-distortion field to a vector out of the plane
CurlP := ((CurlP )13, (CurlP )23)

T , see Equation (3.18). This also applies to the mo-
ment stress m := (m13,m23)

T . Thus, the curvature is controlled solely by the character-
istic length, assuming L = II, denoting the fourth-order identity tensor. The final form of
the linearized weak forms for the 2D case reads

Lin δuΠ =

∫
B
σ : ∇δu dV −

∫
B
f · δu dV −

∫
∂Bt

t · δu dA

+

∫
B
∇δu : (Ce + Cc) : ∇∆u dV −

∫
B
∇δu : (Ce + Cc) : ∆P dV ,

Lin δPΠ =

∫
B
(σmicro − σ) : δP +m · Curl δP dV −

∫
B
M : δP dV

−
∫
B
δP : (Ce + Cc) : ∇∆u dV +

∫
B
δP : (Ce + Cc + Cmicro) : ∆P dV

+

∫
B
µL2

c Curl δP · Curl∆P dV .

(4.7)

The coupled linearized forms are solved in each iteration step n with respect to the
incremental quantities ∆un+1 and ∆Pn+1 under the assumptions that Lin δuΠ = 0 and
Lin δPΠ = 0. The total displacement and micro-distortion fields are updated, i.e un+1 =
un + ∆un+1 and Pn+1 = Pn + ∆Pn+1 and this procedure continues iteratively until the
incremental virtual works and the incremental displacement and micro-distortion field
tend towards zero, i.e. less than a given tolerance.

4.2 Finite element discretization

The linearized equations have to be solved numerically with the FEM. The main concept
of the FEM is to replace the real physical body B with a finite number nele of non-
overlapping finite elements Be resulting in a discrete counterpart Bh, see Figure 4.1,

B ≈ Bh =

nele⋃
e=1

Be . (4.8)

Each finite element approximates the primary variables, here the displacement and the
micro-distortion field, via appropriate shape functions considering the values of the pri-
mary variables at specific locations (nodes and edges), and the continuous problem is
transformed into a discrete problem with a finite number of values of the primary vari-
ables located at the Finite Element mesh.
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B

∂B

Bh ∂Bh

FE discretization

parameter space

X(ξ)

J = ∂X
∂ξ

Be

πe
η

ξ x
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Figure 4.1: Discretization of the physical domain B with the boundary ∂B resulting in an
approximate domain Bh with the boundary ∂Bh consisting of nele finite elements Be. Each
finite element is formulated within the parameter space and subsequently mapped into the
physical space.

The isoparametric concept is a commonly employed approach in the finite element method
that has been adopted for this thesis. It involves introducing an isoparametric subspace
called parameter space. Within this subspace, an isoparametric or unit element is defined
in terms of natural coordinates ξ = {ξ, η} and subsequently mapped into the physical
space X = {x, y}. This mapping is established with respect to the transformation maps,
which are determined by the Jacobian matrix.

4.3 Conforming finite element approximations

As a result of employing the matrix Curl operator of the micro-distortion field for
the curvature measurement, the relaxed micromorphic model seeks the solution of the
micro-distortion in H(curl,B), while the displacement solution is still in H1(B). The
appropriate finite elements of the relaxed micromorphic model must be conforming in
H1(B)×H(curl,B) space. In the following, we present two approximation spaces for the re-
laxed micromorphic model for the purpose of comparison; nodal-edge H1(B)×H(curl,B)-
conforming formulation and standard nodal formulation. Various H1(B) × H(curl,B)-
conforming finite elements will be compared with standard H1(B) × H1(B)-conforming
finite elements of different shapes and orders in numerical examples.



Finite Element Method 41

4.3.1 H1(B)-conforming finite element formulation

A conforming H1(B) discretization employs the well-known Lagrange shape func-
tions. They are widely used for the standard finite element formulations. The La-
grange interpolation functions are scalar-valued polynomials that are assigned to
nodes. Details on the construction of Lagrange shape functions can be found in
Bathe [2006], Wriggers [2008], Zienkiewicz et al. [2013]. Lagrange shape func-
tions have to satisfy two conditions. The first condition states that the shape function
linked with node I denoted as N I must be equal to one at that specific node and zero at
all other nodes

N I(ξJ) =

®
1 if I = J

0 if I ̸= J
. (4.9)

The second condition, known as the partition of unity condition, asserts that the sum of
the interpolation functions at each position of the element must equal one

∑
I

N I(ξ) = 1 . (4.10)

We list in Table 4.1 the H1(B)-conforming finite element spaces that we will use later.

Discretization of the geometry and displacement field :

Assuming there are nu nodes in each element for discretizing the displacement field u.
Both geometry and the displacement field are approximated using the same Lagrangian
shape functions Nu

I (isoparametric concept), which are defined in the parameter space
with natural coordinates ξ = {ξ, η},

Xh =
nu∑
I=1

Nu
I (ξ)XI , uh =

nu∑
I=1

Nu
I (ξ)d

u
I , (4.11)

where XI are the coordinates of displacement node I and du
I are its displacement degrees

of freedom. The deformation gradient is obtained in physical space by

∇uh =
nu∑
I=1

du
I ⊗∇Nu

I (ξ) with ∇Nu
I (ξ) = J

−T · ∇ξN
u
I , (4.12)

where J = ∂X
∂ξ

is the mapping Jacobian, ∇ and ∇ξ denote gradient operators with respect
to X and ξ, respectively.

Discretization of the micro-distortion field :

As previously mentioned, while the appropriate discretization for the micro-distortion
field requires H(curl,B)-conforming elements, we also introduce a standard Lagrange
formulation for the micro-distortion field as well to facilitate comparison. Let us assume
that nP nodes are used to discretize the micro-distortion field P . The micro-distortion
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Table 4.1: The parametric H1(B)-conforming elements with the shape functions.

linear T1 element quadratic T2 element
3 nodes 6 nodes

N1 = 1− ξ − η
N2 = ξ
N3 = η

N1 = (1− ξ − η)(1− 2ξ − 2η)
N2 = ξ(2ξ − 1)
N3 = η(2η − 1)
N4 = 4ξ(1− ξ − η)
N5 = 4ξη
N6 = 4η(1− ξ − η)

1(0, 0) 2(1, 0)

3(0, 1)

4

56

η

ξ

linear Q1 element quadratic Q2 element
4 nodes 9 nodes

N1 =
1

4
(1− ξ)(1− η)

N2 =
1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1− ξ)(1 + η)

N1 =
1

4
(ξ2 − ξ)(η2 − η)

N2 =
1

4
(ξ2 + ξ)(η2 − η)

N3 =
1

4
(ξ2 + ξ)(η2 + η)

N4 =
1

4
(ξ2 − ξ)(η2 + η)

N5 =
1

2
(1− ξ2)(η2 − η)

N6 =
1

2
(ξ2 + ξ)(1− η2)

N7 =
1

2
(1− ξ2)(η2 + η)

N8 =
1

2
(ξ2 − ξ)(1− η2)

N9 = (1− ξ2)(1− η2)

ξ

η

1(−1,−1) 2(1,−1)

3(1, 1)4(−1, 1)

5

6

7

8
9

field for the 2D case is approximated using the relevant scalar shape functions NP
I

P 1
h =

ï
(Ph)11
(Ph)12

ò
=

nP∑
I=1

NP
I (ξ)

ï
(dPI )11
(dPI )12

ò
,

P 2
h =

ï
(Ph)21
(Ph)22

ò
=

nP∑
I=1

NP
I (ξ)

ï
(dPI )21
(dPI )22

ò
,

(4.13)

where (dPI )11, (d
P
I )22, (d

P
I )12 and (dPI )22 are the degrees of freedom of the micro-distortion

field at node I. In order to calculate the Curl of P , the gradient of the row vectors in
physical space can be calculated by

∇P i
h = J−T · ∇ξP

i
h for i = 1, 2 , (4.14)

and the rotation of the vector P i
h reads

curl2D P i
h = (Ph)i2,1 − (Ph)i1,2 for i = 1, 2 . (4.15)
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4.3.2 H(curl,B)-conforming finite element formulation

Because of using the matrix Curl operator of the micro-distortion field for the curvature
measurement, the relaxed micromorphic model seeks the solution of the micro-distortion
field in H(curl,B). The appropriate finite elements of such a case must be conforming
in H(curl,B) (tangentially conforming). The first formulation of conforming “edge” ele-
ments was introduced in Raviart and Thomas [1977]. The name “edge” element was
used because the degrees of freedom (dofs) are associated only with edges for a first-order
approximation. H(curl,B)-conforming finite elements of the first kind were presented in
Nédélec [1980] and the second kind in Nédélec [1986], which are comparable with
H(div,B)-conforming elements of the first kind in Raviart and Thomas [1977] and
the second kind in Brezzi et al. [1985]. Employing covariant projections, an exten-
sion to elements with curved edges was developed by Crowley et al. [1988]. A gen-
eral implementation of Nédélec elements of the first kind is presented in Olm et al.
[2019], and a detailed review of H(div,B)- and H(curl,B)-conforming finite elements
is available in Kirby et al. [2012] and Rognes et al. [2009]. Furthermore, hierar-
chical H(curl)-conforming finite elements are employed to solve Maxwell boundary and
eigenvalue problems in Schöberl and Zaglmayr [2005]. Various finite element formu-
lations of the relaxed micromorphic model were presented for the antiplane shear case
in Sky et al. [2021], and the three-dimensional case in Sky et al. [2022; 2024a]. A
conforming finite element formulation for a further relaxed curvature can be found in
Sky et al. [2024b]. In this work, we choose the Nédélec space of the first kind. For more
details, the reader is referred to Boffi et al. [2014],Kirby et al. [2012],Monk [1993],
Rognes et al. [2009]. Nédélec formulations use vectorial shape functions that satisfy
tangential continuity at element interfaces. The lowest-order two-dimensional Nédélec el-
ements are illustrated in Figure 4.2.

ξ

η

ξ

η

e1e2

e3e1

e2

e3

e4

(1,-1)

(1,1)(-1,1)

(-1,-1) (1,0)(0,0)

(0,1)

Figure 4.2: The lowest-order (k = 1) Nédélec elements: triangle
î
ND△

ó2
1
(right) and

quadrilateral
î
ND□

ó2
1
(left). Definition of the individual edges ei. The red arrows indicate

the orientation of tangential flux. Taken from Schröder et al. [2022]

Triangular Nédélec elements of order k are based on the space[
ND△]2

k
= (IPk−1)

2 ⊕ Sk with Sk = {p ∈ (ĬPk)
2 |p · ξ = 0} , (4.16)

where IPk−1 is the linear space of polynomials of degree k − 1 or less and ĬPk is the
linear space of homogeneous polynomials of degree k. Equivalently, this space can be
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characterized by [
ND△]2

k
=< ⊕ĬPk−1

ï
−η
ξ

ò
. (4.17)

The dimension of this linear space is dim
Ä[
ND△]2

k

ä
= k(k + 2). Quadrilateral Nédélec

elements of order k are based on the linear space[
ND□

]2
k
=

ï
Qk−1,k

Qk,k−1

ò
where Qm,n = span{ξiηj | i ≤ m, j ≤ n}, (4.18)

with dim
Ä[
ND□

]2
k

ä
= 2k(k + 1). The vectorial shape functions vk in parameter space

are calculated by constructing a linear system of equations based on a set of inner and
outer dofs. For the 2D case, the outer dofs of an edge ei (see Figure 4.2) are determined
by the integral

mei
j (v

k) =

∫
ei

(vk · ti) rj ds , ∀ rj ∈ IPk−1(ei) , (4.19)

where rj is a polynomial IPk−1 along edge ei and ti is the normalized tangential vector of
edge ei. The inner dofs are defined for triangular elements by

minner
i (vk) =

∫
πe

vk · qi da , ∀ qi ∈ (IPk−2(πe))
2 , (4.20)

while they are given for quadrilateral elements by

minner
i (vk) =

∫
πe

vk · qi da , ∀ qi ∈
ï
Qk−1,k−2(πe)
Qk−2,k−1(πe)

ò
. (4.21)

The scalar-valued and vectorial functions rj and qi are linearly independent polynomials
that are chosen as Lagrange polynomials. For the lowest-order element (k = 1), only
outer dofs occur. For higher-order elements (k ≥ 2), the number of outer dofs increases

and additional inner dofs are introduced. E.g. for the
[
ND△]2

2
with a dimension 8, we

have 6 outer dofs and 2 inner ones.

In the following, we illustrate the derivation of the vectorial Nédélec shape functions
for the lowest-order triangular element NT1. The derivations of Nédélec’s vectorial shape
functions for the second-order triangular element and both first- and second-order quadri-
lateral elements are presented in Appendix A. An parametric triangular element is de-
fined on a domain π△

e = {0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ}. The parametric lowest-order finite
elements with the respective edge numbering are shown in Figure 4.2. The Nédélec space
of a first-order triangular element (NT1) reads[

ND△]2
1
=

ßï
1
0

ò
,

ï
0
1

ò
,

ï
−η
ξ

ò™
, (4.22)

and the general form of vectorial shape function is

v1 =

ï
a1 − a3 η
a2 + a3 ξ

ò
, (4.23)

where ai, i = 1, 2, 3 are coefficients yet to be defined based on the dofs. Starting from the
definition in Equation (4.19), we set rj = 1 for all edges. The tangential vectors of all
edges, see Figure 4.2 (right), are given by

t1 =
1√
2

ï
1
−1

ò
, t2 =

ï
0
1

ò
, t3 =

ï
1
0

ò
. (4.24)
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We calculate the dofs following Equation (4.19) using ξ + η = 1 on the first edge, ξ = 0
on the second edge and η = 0 on the third edge and obtain

me1
1 = a1 − a2 − a3, me2

1 = a2, me3
1 = a1 . (4.25)

In order to obtain the vectorial shape functions v11,v
1
2 and v13 from the general function

in Equation (4.23), we have to compute three associated combinations for a1, a2 and a3.
We derive the explicit expressions for the vectorial shape functions by enforcing

mei
1 (v

k
j ) = δij , (4.26)

for shape vector vkj associated with edge ej. The evaluation of dofs for each edge, i.e.

edge 1: me1
1 = 1, me2

1 = 0, me3
1 = 0 ⇒ a1 = 0, a2 = 0, a3 = −1

edge 2: me1
1 = 0, me2

1 = 1, me3
1 = 0 ⇒ a1 = 0, a2 = 1, a3 = −1

edge 3: me1
1 = 0, me2

1 = 0, me3
1 = 1 ⇒ a1 = 1, a2 = 0, a3 = 1

(4.27)

leads to the shape vectors

v11 =

Å
η
−ξ

ã
, v12 =

Å
η

1− ξ

ã
, v13 =

Å
1− η
ξ

ã
. (4.28)

A visualization is depicted in Figure 4.3. Note that each vectorial shape function linked
with a specific edge is perpendicular to the other edges, i.e. it has tangential projection
only on its associated edge.
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Figure 4.3: Tangential-conforming vectorial shape functions of NT1 element. Blue circles
indicate the position where the dofs are defined. Taken from Schröder et al. [2022]

Mapping vectorial shape functions vkI from the parameter space to ψ̆k
I in the physical

space must conserve the tangential continuity property. This is guaranteed by using the
covariant Piola transformation, see for example Rognes et al. [2009], which reads

ψ̆k
I = J−T · vkI and curl ψ̆k

I =
1

detJ
J · curlξ vkI . (4.29)

For our implementation of H(curl,B)-conforming elements, we modify the mapping to
enforce the required orientation of the degrees of freedom at inter-element boundaries
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and to attach a direct physical interpretation to the Neumann-type boundary conditions.
Hence, two additional parameters, α and β, appear for the vectorial shape functions
associated with edge dofs

ψk
I = αIβIψ̆

k
I and curlψk

I = αIβI curl ψ̆
k
I , (4.30)

where αI = ±1 is the orientation consistency function which ensures that on an edge,
belonging to two neighboring finite elements, a positive tangential flux direction is de-
fined. Therefore, this positive tangential direction is determined based on a positive x-
coordinate. A tangential component pointing in negative x-direction is multiplied by a
value αI = −1 to obtain an overall positive tangential flux on each edge. When the
tangential direction has no projection on the x-axis, the same procedure is employed in
y-direction. This can be summarized as

αI =



+1 if (ψ̆k
I )1

∣∣∣∣
EI

> 0 ,

−1 if (ψ̆k
I )1

∣∣∣∣
EI

< 0 ,

+1 if (ψ̆k
I )1

∣∣∣∣
EI

= 0 and (ψ̆k
I )2

∣∣∣∣
EI

> 0 ,

−1 if (ψ̆k
I )1

∣∣∣∣
EI

= 0 and (ψ̆k
I )2

∣∣∣∣
EI

< 0 .

. (4.31)

Figure 4.4 illustrates an example of calculating the orientation parameter values of two
neighboring elements.

y

x

1

32
1

2

3

1

2

E1

E1

E2
E3

E3

E2

(a) local orientations
of dofs

element α1 α2 α3

1 -1 +1 -1
2 +1 -1 +1

(b) orientation parameter
values

y

x

1

2

(c) global orienta-
tions of dofs

Figure 4.4: Example of assembling of two neighboring elements which satisfy the orientation
consistency via the orientation parameter αI . Taken from Schröder et al. [2022]

The normalization parameter βI enforces that the sum of vectorial shape functions ψk
I

at a shared edge scalar multiplied with the associated tangential vector must be equal to
one in physical space. Furthermore, the sum of the shape functions belonging to one edge
scalar multiplied by the tangential vector of the other edges must vanish. These conditions
are reflected by

τI ·
∑
J

ψk
J

∣∣∣∣
EI

≡
®
1 if I = J

0 if I ̸= J
. (4.32)
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Here,
∑
J

ψk
J

∣∣∣∣
EI

is the sum of shape vectors related to outer dofs of an edge EJ evaluated on

edge EI and τI is the normalized tangential vector of an edge EI where E denotes the edges
in the physical space. Based on Equations (4.30) and (4.32), we compute straightforward
the parameters βI . In detail, we get for first- and second-order elements

βI = LI and βI =
LI

2
, (4.33)

respectively, where LI denotes the length of edge EI in physical space. For the 2D case,
the rotation of vectorial shape functions only has one active component out of the plane,
which reads

curl2D ψk
I =

αIβI
detJ

curl2Dξ vkI . (4.34)

The micro-distortion field P is approximated by the vectorial dofs dP
I =

(
(dPI )1, (d

P
I )2

)T
representing its tangential projections at location I = 1, ..., nP . The micro-distortion field
and its Curl are interpolated as

Ph =
nP∑
I=1

dP
I ⊗ψk

I , CurlPh =
nP∑
I=1

dP
I ⊗ curlψk

I . (4.35)

The non-vanishing components of the Curl operator of the micro-distortion field for the
2D case are obtained byï

curl2D P 1
h

curl2D P 2
h

ò
=

nP∑
I=1

curl2D ψk
I d

P
I =


nP∑
I=1

curl2D ψk
I (d

P
I )1

nP∑
I=1

curl2D ψk
I (d

P
I )2

 . (4.36)

4.4 Implemented finite elements

We introduce four nodal-edge H1(B) × H(curl,B) elements based on the formulation in
Section 4.3.2 and two standard nodal H1(B) × H1(B) elements based on Section 4.3.1.
All implemented finite elements use scalar quadratic shape functions of Lagrange-type for
the displacement field discretization with the notation T2 for triangles and Q2 for quadri-
laterals. The micro-distortion field is discretized using different formulations presented in
Sections 4.3.1 and 4.3.2. For the standard nodal elements, Lagrange-type ansatz functions
are employed, leading to element types T2T1 (linear ansatz for P ) and T2T2 (quadratic
ansatz for P ). Different nodal-edge elements are built using first- and second-order Nédélec
formulations with tangential-conforming shape functions denoted as NT1 and NT2 for tri-
angular elements and QT1 and QT2 for quadrilateral elements. The micro-distortion dofs
in the standard nodal H1(B) × H1(B) elements are tensorial with 2 × 2 entries, while
the nodal-edge H1(B) × H(curl,B) elements use vectorial dofs for the micro-distortion
field representing the tangential projections. The used finite elements are depicted in the
parameter space in Figure 4.5.

The expected convergence rates of H1(B)×H(curl,B) elements for the relaxed micromor-
phic model were discussed for anti-plane shear and 3D cases in Sky et al. [2021; 2022].
In a similar way for an element with an H1(B)-conforming formulation of order k for the
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Figure 4.5: The implemented finite elements in the parameter space. Black dots represent
the displacement nodes while red squares stand for micro-distortion field nodes associated
with 2 × 2 tensorial dofs in Lagrange formulation. Red arrows and crosses indicate the
edge and inner vectorial dofs, respectively, of the micro-distortion field used in Nédélec
formulation. Taken from Schröder et al. [2022]

displacement approximation and a first type Nédélec formulation of order k for the micro-
distortion approximation, the solution should converge with an optimal convergence rate
k in H1(B)×H(curl,B) norm which is defined in Section 3.1. Therefore, we expect that
the elements T2NT2 and Q2NQ2 achieve an optimal convergence rate of two.

4.5 Discretization of the linearized weak forms

In the following, we give the discretized formulations of the linearized weak forms shown
in Equation (4.7) for the implemented finite element approximation spaces. Here, we use
the Voigt notation, demonstrated in Appendix B, which stores the second-order tensors
as vectors and the fourth-order tensors as matrices. Voigt notation provides an efficient
representation of the discrete linearized weak forms (distinguished with wide hat •̂).

4.5.1 H1(B)×H1(B) finite elements

The approximation of the physical, virtual and incremental displacement field is given
element-wise by means of
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uh =
nu∑
I=1

Nu
I d

u
I , δuh =

nu∑
I=1

Nu
I δd

u
I , ∆uh =

nu∑
I=1

Nu
I ∆du

I , (4.37)

with the definition of the matrix Nu
I as

Nu
I =

ï
Nu

I 0
0 Nu

I

ò
, (4.38)

where du
I = ((duI )1, (d

u
I )2)

T denotes the discrete nodal displacements at node I while δdu
I

and ∆du
I are the virtual and incremental counterparts, respectively. The displacement

gradient and the associated virtual and incremental counterparts are discretized as

∇̂uh =
nu∑
I=1

Bu
I d

u
I ,

‘∇δuh =
nu∑
I=1

Bu
I δd

u
I , ’∇∆uh =

nu∑
I=1

Bu
I ∆d

u
I , (4.39)

with the following definition of the Bu
I matrix which contains the spatial derivatives of

the shape functions

Bu
I =


(Nu

I ),1 0
0 (Nu

I ),2
(Nu

I ),2 0
0 (Nu

I ),1

 . (4.40)

The approximation of the physical, virtual and incremental micro-distortion field is given
element-wise for H1(B)-conforming element by means of“Ph =

nP∑
I=1

NP
I d

P
I ,

”δP h =
nP∑
I=1

NP
I δdP

I ,
‘∆P h =

nP∑
I=1

NP
I ∆dP

I , (4.41)

where the matrix NP
I is defined as:

NP
I =


NP

I 0 0 0
0 NP

I 0 0
0 0 NP

I 0
0 0 0 NP

I

 . (4.42)

Here, dP
I =

(
(dPI )11, (d

P
I )22, (d

P
I )12, (d

P
I )21

)T
represents the discrete nodal micro-distortion

at node I, while δdP
I and ∆dP

I stand for the virtual and incremental counterparts, respec-
tively. The Curl of the micro-distortion field and its virtual and incremental counterparts
are further discretized as

CurlPh =
nP∑
I=1

BP
I d

P
I , Curl δPh =

nP∑
I=1

BP
I δd

P
I , Curl∆Ph =

nP∑
I=1

BP
I ∆dP

I , (4.43)
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with the matrix BP
I defined as

BP
I =

ï
−(NP

I ),2 0 (NP
I ),1 0

0 (NP
I ),1 0 −(NP

I ),2

ò
. (4.44)

Next, we substitute the discrete approximations into the linearized weak forms as pre-
sented in Equation (4.7). The discrete formulation of the linearized weak form of the
generalized balance of linear momentum for one H1(B)×H1(B) finite element is given by

(Lin δuΠ)
e =

nu∑
I=1

(δdu
I )

T

{∫
Be

(Bu
I )

T σ̂ dV −
∫
Be

Nu
I f dV −

∫
(∂Be)t

Nu
I t dA

}
︸ ︷︷ ︸

ru
I

+
nu∑
I=1

nu∑
J=1

(δdu
I )

T

{∫
Be

(Bu
I )

T (Ĉe + Ĉc)B
u
J dV

}
︸ ︷︷ ︸

kuu
IJ

∆du
J

+
nu∑
I=1

nP∑
J=1

(δdu
I )

T

{
−
∫
Be

(Bu
I )

T (Ĉe + Ĉc)N
P
J dV

}
︸ ︷︷ ︸

kup
IJ

∆dP
J .

(4.45)

Analogously, the linearized weak form of the generalized balance of angular momentum
for one H1(B)×H1(B) finite element reads

(Lin δPΠ)
e =

nP∑
I=1

(δdP
I )

T

{∫
Be

NP
I (σ̂micro − σ̂) + (BP

I )
T m dV −

∫
Be

NP
I
”M dV

}
︸ ︷︷ ︸

rp
I

+
nP∑
I=1

nu∑
J=1

(δdP
I )

T

{
−
∫
Be

NP
I (Ĉe + Ĉc)B

u
J dV

}
︸ ︷︷ ︸

kpu
IJ

∆du
J

+
nP∑
I=1

nP∑
J=1

(δdP
I )

T

{∫
Be

NP
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IJ
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J .

(4.46)

4.5.2 H1(B)×H(curl,B) finite elements

H1(B) × H(curl,B) elements differ from H1(B) × H1(B) elements primarily in the ap-
proximation space used for the micro-distortion field and, consequently, its Curl. The
discretization of the physical, virtual and incremental micro-distortion field P is given by
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“Ph =
nP∑
I=1

ΨP
I d

P
I ,

”δP h =
nP∑
I=1

ΨP
I δd

P
I ,

‘∆P h =
nP∑
I=1

ΨP
I ∆dP

I , (4.47)

with the matrix ΨP
I is defined as

ΨP
I =


(ψk

I )1 0
0 (ψk

I )2
(ψk

I )2 0
0 (ψk

I )1

 . (4.48)

Here, dP
I = [(dPI )1, (d

P
I )2]

T represents the discrete nodal tangential projection of the micro-
distortion at node I while δdP

I and ∆dP
I stand for the virtual and incremental counter-

parts, respectively. The Curl of micro-distortion field and its virtual and incremental
counterparts are further discretized as

CurlPh =
nP∑
I=1

curl2D ψk
I d

P
I ,

Curl δPh =
nP∑
I=1

curl2D ψk
I δd

P
I ,

Curl∆Ph =
nP∑
I=1

curl2D ψk
I ∆d

P
I ,

(4.49)

Next, we substitute the discrete approximations into the linearized weak forms as pre-
sented in Equation (4.7). The discrete formulation of the linearized weak form of the
generalized balance of linear momentum for one H1(B) × H(curl,B) finite element is
given by

(Lin δuΠ)
e =

nu∑
I=1

(δdu
I )

T

{∫
Be

(Bu
I )

T σ̂ dV −
∫
Be

Nu
I f dV −

∫
(∂Be)t

Nu
I t dA

}
︸ ︷︷ ︸

ru
I

+
nu∑
I=1

nu∑
J=1

(δdu
I )

T

{∫
Be

(Bu
I )

T (Ĉe + Ĉc)B
u
J dV

}
︸ ︷︷ ︸

kuu
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∆du
J

+
nu∑
I=1

nP∑
J=1

(δdu
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T

{
−
∫
Be

(Bu
I )

T (Ĉe + Ĉc)Ψ
P
J dV

}
︸ ︷︷ ︸

kup
IJ

∆dP
J .

(4.50)

Analogously, the linearized weak form of the generalized balance of linear momentum for
one H1(B)×H(curl,B) finite element reads
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4.6 Numerical integration

To compute the stiffness matrix and residual vector for each finite element, obtained as
integral quantities over an element domain Be, we utilize Gauss quadrature. This method
entails evaluating the function at multiple integration points within the element domain,
multiplying these values by corresponding Gauss weights wGp, and subsequently summing
them up. Applying the isoparametric concept allows us to convert the integral of a function
f(X) over an element Be in physical space to the unit element πe in the parameter space

∫
Be

f(X) dV =

∫
πe

f(ξ) detJ(ξ) dπ . (4.52)

The previous integral can be numerically evaluated using Gauss quadrature

∫
πe

f(ξ) detJ(ξ) dπ ≈
nGp∑
Gp=1

wGp f(ξGp) detJ(ξGp) . (4.53)

Here, a sufficient number of Gaussian points nGp and appropriate integration posi-
tions need to be selected for accurate computation. For more details, we refer to
Bathe [2006], Wriggers [2008], Zienkiewicz et al. [2013] and the references within.

4.7 Assembling procedure for the boundary value problem

To obtain the solution for a boundary value problem within a domain B, discretized by
nele finite elements, we must assemble the global system of equations. We arrange the
finite element vectors of virtual and incremental primary variables

δde =

ï
δdu

e

δdp
e

ò
, and ∆de =

ï
∆du

e

∆dp
e

ò
, (4.54)
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with δd•
e =

[
(δd•

1)
T , (δd•

2)
T , ..., (δd•

n•)T
]T

and ∆d•
e =

[
(∆d•

1)
T , (∆d•

2)
T , ..., (∆d•

n•)T
]T
. The

element stiffness matrix and residual vector are given by

ke =

ï
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e kup

e

kpu
e kpp

e

ò
, and re =

ï
rue
rpe

ò
, (4.55)

where we have

k•⋆
e =


k•⋆
11 k•⋆

12 ... k•⋆
1n⋆

k•⋆
21 k•⋆

22 ... k•⋆
2n⋆

... ... ... ...
k•⋆
n•1 k•⋆

n•2 ... k•⋆
n•n⋆

 , and r•e =


r•1
r•2
...
r•n•

 . (4.56)

In order to obtain the global stiffness matrix K, the global solution vector ∆D and the
global residual vector R, we assemble the element contributions over the whole domain

K =
nele

A
e = 1

ke , ∆D =
nele

A
e = 1

∆de , R =
nele

A
e = 1

re , (4.57)

and the global system of equation reads

(δD)T (K∆D +R) = 0 ∀ δD ̸= 0 ⇒ ∆D = −K−1R . (4.58)

Within a Newton-Raphson iterative scheme the global soltuin vector is updated D =
D +∆D until the global residual vector R falls below a given tolerance.

4.8 Numerical examples

For the numerical examples in this Section, we assume isotropic material behavior which
can be described by the set of material parameters λmicro, µmicro, λe, µe, µc, µ and Lc, where
λ∗ and µ∗ denote the Lamé coefficients. Moreover, we consider the Cosserat modulus
µc = 0, cf. Neff [2006], Neff et al. [2015], leading to the symmetry of the force stress
tensor, however, the model is still well-posed.

4.8.1 Patch-test

Patch-tests, introduced in the 1960s, are instructed for the following intentions: i) to
inspect the performance of finite element formulations violating continuity conditions
(convergence) ii) to find out simple programming mistakes iii) as an established tool
to check the convergence order for any element type, see Zienkiewicz and Taylor
[1997]. For finite elements that satisfy required continuity conditions, patch-tests checks
the correct programming.

We prepare a patch-test for the relaxed micromorphic model. A domain B = [0, 1]× [0, 1]
is considered. The isotropic case of the relaxed micromorphic model is assumed with
material parameters λmicro = µmicro = λe = µe = µ = 1, Lc = 1 and µc = 0. The solution
is given a priori (u and P = ∇u), and the generated body moments and forces are defined
by solving the strong forms. In our numerical setup, we apply the derived body moments
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and forces with Dirichlet boundary conditions u = u and P · τ = P · τ on the whole
boundary ∂B . Irregular meshes consisting of four quadrilaterals or triangles are utilized,
see Figure 4.6.

(0.6, 0.7)
(0.6, 0.7)

Figure 4.6: Patch-test discretization. Taken from Schröder et al. [2022]

Simple patch-test:

We test the case of a linear displacement and a constant micro-distortion field. The as-
sumed solution with the related body-forces and body-moments reads

u =

Å
x
y

ã
, P =

Å
1 0
0 1

ã
, f = 0, M =

Å
4 0
0 4

ã
. (4.59)

Due to the polynomial order of the shape functions, all elements must capture the so-
lution precisely, which is what we obtain after testing, except for typical computational
inaccuracies (machine precision).

Higher-order patch-test:

Next, we investigate the case of a quadratic displacement and a linear micro-distortion
field. The given solution with the related body-forces and body-moments reads

u =

Å
x2

y2

ã
, P =

Å
2x 0
0 2y

ã
, f = 0, M =

Å
6x+ 2y 0

0 2x+ 6y

ã
. (4.60)

Due to the polynomial order of the shape functions, the elements T2T1, T2T2, T2NT2 and
Q2NQ2 can obtain the analytical solution (except for the typical computational inaccu-
racies). First-order Nédélec elements are unable to obtain the analytical solution without

numerical errors because the element’s spaces
[
ND△]2

1
and

[
ND□

]2
1
do not contain the

whole linear space (IP1)
2. Therefore, we use this test to analyze the convergence behavior

of first-order Nédélec elements T2NT1 and Q2NQ1. The used structured and unstruc-
tured meshes as well as the convergence behavior are displayed in Figures 4.7 and 4.8.
The numerical solution converges to the analytical solution when refining the mesh.
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(a) mesh 1
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(d) convergence study

Figure 4.7: The error measurements ||u−u||L2 and ||P −P ||L2 of the higher-order patch-
test with quadratic displacement for element T2NT1 with varying number of equations in
(d). Three different types of finite element meshing were chosen for the convergence study,
see (a-c). Taken from Schröder et al. [2022]
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Figure 4.8: The error measurements ||u−u||L2 and ||P −P ||L2 of the higher-order patch-
test with quadratic displacement for element Q2NQ1 with varying number of equations in
(d). Three different types of finite element meshing were chosen for the convergence study,
see (a-c). Taken from Schröder et al. [2022]
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4.8.2 Discontinuous solution: convergence study

For this boundary value problem, we assume a homogeneous rectangular domain B with
length l = 2 and height h = 1 shown in Figure 4.9. We consider the following displacement
and micro-distortion field

u =



Ç
ey(1−x)

ey
2(1−x)

å
for x ≤ 1Ç

ey(x−1)

ey
2(x−1)

å
for x > 1

, (4.61)

P = ∇u =



Ç
−yey(1−x) (1− x)ey(1−x)

−y2ey2(1−x) 2y(1− x)ey2(1−x)

å
for x ≤ 1Ç

yey(x−1) (x− 1)ey(x−1)

y2ey
2(x−1) 2y(x− 1)ey

2(x−1)

å
for x > 1

, (4.62)

where the displacement field and tangential components of the micro-distortion
P · e2 = (P 12, P 22)

T are continuous on an interface at x = 1 while the normal components
P · e1 = (P 11, P 21)

T show discontinuities. The isotropic case of the relaxed micromorphic
model is assumed with the material parameters λmicro = µmicro = λe = µe = µ = 1,
Lc = 1 and µc = 0. Solving the strong forms leads to vanishing body forces, while the
body moments read

M =

Å
3u1,1 + u2,2 u1,2 + u2,1
u1,2 + u2,1 u1,1 + 3u2,2

ã
. (4.63)

y

x

1

11

0.5

u = u ,P · τ = P · τ

u = u ,P · τ = P · τ

u = u ,P · τ = P · τ

u = u ,P · τ = P · τ

Figure 4.9: 2D homogeneous rectangular. The inspection line, used in Figures 4.11 and
4.12, can be seen in red color. Taken from Schröder et al. [2022]

For the numerical setup, the boundary conditions are enforced as

u = u and P · τ = P · τ = ∇u · τ on ∂B , (4.64)
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where the obtained body moments and different meshes are used. We display in Figure
4.10 the displacement and micro-distortion field obtained by 882 Q2NQ2 elements on a
structured rectangular mesh (see Figure 4.13a). The tangential components of the micro-
distortion are continuous on the interface, while the normal components exhibit a jump.

(a) u1 (b) u2

(c) P11 (d) P12

(e) P21 (f) P22

Figure 4.10: Displacement and micro-distortion field components. Taken from
Schröder et al. [2022].

A convergence study of the component P11 along the inspection line y = 0.5 is plotted
in Figures 4.11 and 4.12. H1(B)×H1(B) elements, see Figure 4.11, lead to a continuous
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solution that causes a transition zone at the interface which requires to be resolved by
increasing the mesh density tremendously in order to resemble the discontinuous solution
at the interface. Meanwhile, the discontinuous solution of P11 can be captured by H1(B)×
H(curl,B) elements, see Figure 4.12. The second-order Nédélec formulations in T2NT2
and Q2NQ2 give a numerical solution close to the analytical solution, even with a coarse
mesh. In contrast, first-order Nédélec formulations in T2NT1 and Q2NQ1 demand a denser
mesh because they only illustrate a constant micro-distortion field in each element.

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

4 elements

36 elements

484 elements

analytical 

x

P11

(a) T2T1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

4 elements

36 elements

484 elements

analytical 

x

P11

(b) T2T2

Figure 4.11: Illustration of P11 along the inspection line y = 0.5 using nodal elements with
different mesh densities on regular structured meshes. Taken from Schröder et al. [2022].

We investigate the convergence rates of the implemented finite elements in this numerical
example for three different meshes, see Figures 4.13, 4.14 and 4.15. The mesh schemes are
refined similarly to Figures 4.7 and 4.8. Instead of plotting the L2-norm error of total space
||{u,P } − {u,P }||2H1(B)×H(curl,B), see Section 3.1, we demonstrate its individual compo-

nents. These are the L2-norms of the error of the displacement ||u− u||L2 , its gradient
||∇u−∇u||L2 , the micro-distortion ||P −P ||L2 and its Curl field ||CurlP − CurlP ||L2 .
The analysis of the individual error norms is more targeted-oriented from an engineering
point of view since it deals with the different energy terms independently. Second-order
Nédélec elements T2NT2 and Q2NQ2 lead to convergence rates of three in the L2-norm
of the displacement error (||u − u||L2), and a convergence rate of two in the remaining
error norms. Thus, the second-order Nédélec elements T2NT2 and Q2NQ2 exhibit an
optimal convergence rate of two in the space H1(B)×H(curl,B) norm, which meets the
theoretical anticipations. First-order Nédélec elements T2NT1 and Q2NQ1 deliver one
order of convergence less compared to second-order ones. The nodal elements T2T1 and
T2T2 show a convergence rate of less than half in H1(B)×H(curl,B) norm.
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Figure 4.12: Illustration of P11 along the inspection line y = 0.5 using H1(B) ×
H(curl,B) elements with different mesh densities on regular structured meshes. Taken from
Schröder et al. [2022].
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Figure 4.13: Computational convergence study (b) of first mesh depicted in (a). Taken
from Schröder et al. [2022].
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Figure 4.14: Computational convergence study (b) of second mesh depicted in (a). Taken
from Schröder et al. [2022].
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Figure 4.15: Computational convergence study (b) of third mesh depicted in (a). Taken
from Schröder et al. [2022].
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4.8.3 Characteristic length analysis: pure shear problem

We introduce a third boundary value problem shown in Figure 4.16, consisting of a circular
domain B with radius ro = 25 and a circular hole at its center with radius ri = 2. We
consider no body forces or moments here. We clamp the displacement field u = 0 on
the inner boundary ∂Bi and we rotate the outer boundary ∂Bo counter clockwise with
ū = (−∆

ro
y, ∆

ro
x)T where ∆ = 0.01. For the micro-distortion field, we apply the consistent

coupling boundary condition (P · τ = ∇u · τ ) on all boundaries ∂B = ∂Bi ∪ ∂Bo. Two
different cases are discussed here. A single material is considered for case (A), whereas two
materials are assumed for case (B). The second material is located as a ring with an outer
radius rm = 10 and an inner radius ri = 2. The material parameters are shown in Table
4.2. In this boundary value problem, we analyze the influence of a varying characteristic
length parameter Lc.

x

y

∂Bi

∂Bo

Material 1

B

2ri

2ro

ri ≤ r ≤ ro , Material 1

(a) case (A)

x

y

∂Bi

∂Bo

Material 1

Material 2

2ri
2rm
2ro

B

rm < r ≤ ro , Material 1
ri ≤ r ≤ rm , Material 2

(b) case (B)

Figure 4.16: Boundary value problem: pure shear. Taken from Schröder et al. [2022].

Table 4.2: Material parameters of the third boundary problem, see Figure 4.16. Taken from
Schröder et al. [2022]

Material 1 Material 2
λmicro = 555.55, µmicro = 833.33
λe = 486.11, µe = 729.17
µc = 0, µ = 833.33
L = II, Lc ∈ {0.001, 5, 1000}

λmicro = 2777.78, µmicro = 4166.67
λe = 2430.555, µe = 3645.85
µc = 0, µ = 4166.67
L = II, Lc ∈ {0.001, 5, 1000}

The problem results in a rotationally-symmetric solution where only the shear components
(ur,θ, uθ,r, Prθ, Pθr ̸= 0) are non-zero. Here, we show the solution in polar coordinates (polar
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angle: θ, radius: r). The convergence behavior of the different elements is examined for
case (B) and Lc = 5 using three different mesh densities (410, 3044 and 30620 triangular
elements and 448, 3040 and 30256 quadrilateral elements). Since the micro-distortion
field is in H(curl,B), the tangential shear component Prθ must be continuous while the
radial shear component Pθr shows a jump, see Figure 4.17, where Q2NQ2 elements are
employed. Similar to the boundary value problem in Section 4.8.2,H1(B)×H1(B) elements
are unable to capture this discontinuity in Pθr, which is illustrated in Figure 4.18. The
discontinuous solution of the micro-distortion field is demonstrated in Figure 4.19 using
H1(B)×H(curl,B) elements. The higher-order Nédélec formulation in T2NT2 and Q2NQ2
elements already achieves satisfactory results with a coarse mesh.

(a) Pθr (b) Prθ

Figure 4.17: Non-vanishing micro-distortion components of the second boundary problem
using 3040 Q2NQ2 elements for Lc = 5. Taken from Schröder et al. [2022].
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Figure 4.18: The non-vanishing components of P along the radius for the H1(B)×H1(B)
elements using three mesh densities and Lc = 5. Taken from Schröder et al. [2022].

Next, we explore the influence of a variation of the length-scale parameter Lc on the
response of the relaxed micromorphic model for case (A). The relation of the relaxed
micromorphic model to the classical Cauchy theory has been discussed in detail in Chapter
3 for the limiting case Lc → 0 and Lc →∞. Lc → 0 relates to a macroscopic view of the
material with microstructure, with the relaxed micromorphic model being equivalent to a
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Figure 4.19: The non-vanishing components of P along the radius for H1(B)×H(curl,B)
elements using three mesh densities and Lc = 5. Taken from Schröder et al. [2022].

linear elasticity model with macroscopic stiffness tensor Cmacro defined as the Reuss lower-
bound of Ce and Cmicro, i.e. Cmacro := (C−1

e +C−1
micro)

−1, see Section 3.4. The case Lc →∞
corresponds to zooming into the microstructure, where an equivalence to linear elasticity
with microscopic elasticity tensor Cmicro can be reproduced, see Section 3.5. In the latter
case, it can be shown that P = ∇u holds. In this investigation, we approximate the
limiting cases by Lc = 10−3 and Lc = 103, respectively. Figure 4.20 illustrates the elastic
energy density along the radius, and Figure 4.21 shows the non-vanishing components of
P together with the respective displacement gradient components using 30624 Q2NQ2
elements. In Figure 4.22, we display the total potential of the relaxed micromorphic model
while varying the characteristic length parameter Lc. The figures clearly show the behavior
described above. The bounding behavior of the relaxed micromorphic model for small
sizes is a significant advantage that most other generalized models miss. Nevertheless,
the previous results do not hold for different boundary conditions of the micro-distortion
field. Utilizing a different setting of Dirichlet boundary conditions (e.g. homogeneous
Dirichlet boundary condition) will maintain the role of the characteristic length (increasing
Lc makes the material stiffer) but the upper bound, when Lc → ∞, will be reliant on
the boundary value problem and the boundary conditions. Using the consistent coupling
boundary condition allows the model to realize Cauchy linear elasticity with Cmicro and
P = ∇u for Lc → ∞ regardless of the boundary value problem, see Rizzi et al.
[2021a;b;c; 2022b]. For the consistent coupling boundary condition, Cmicro can be related
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to the stiffest response of the material on the smallest reasonable scale such as one unit-
cell of a metamaterial as we will show later in Chapter 5. For the results of linear elasticity
model, a standard T2 nodal element is implemented.
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Figure 4.20: Elastic energy density along the radius. Taken from Schröder et al. [2022].
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Figure 4.21: The non-vanishing components of P and ∇u along the radius. ∇u is not
influenced by the value of the characteristic length Lc. Taken from Schröder et al. [2022].

We analyze the behavior of the different stresses σ, σmicro and m under a variation of
Lc. The force stress tensor σ illustrated in Figure 4.23 vanishes for large values of the
characteristic length, Lc = 1000. At the same time, it is bounded from above by the
classical linear elasticity stress with elasticity tensor Cmacro for Lc = 0.001. The only
non-vanishing component of the moment stress mrz is displayed in Figure 4.24 (mθz = 0),
which behaves opposite to the force stress when varying Lc. It is nearly zero for Lc = 0.001,
and it increases for growing Lc. The micro-stress shown in Figure 4.25 is bounded between
the linear elasticity stress with elasticity tensor Cmicro from above and Cmacro from below
for large and small values of the characteristic length, respectively.
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Figure 4.22: Total potential varying the characteristic length. Taken from
Schröder et al. [2022].
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Figure 4.23: Force stress shear component σrθ = σθr plotted along the radius. Taken from
Schröder et al. [2022].

4.9 Discussions

We put together the main components of standard nodal and nodal-edge finite element
formulations of the relaxed micromorphic model. The standard nodal elements H1(B)×
H1(B) cannot achieve satisfactory results for a discontinuous solution. H1(B)×H(curl,B)
elements capture the jumps of the normal components of the micro-distortion field. In
contrast to the standard nodal elements, H1(B)×H(curl,B) elements lead to an efficient
convergence in the sense of the error norm reduction with mesh refinement. We numeri-
cally investigated the role of the characteristic length that controls the scale-dependency
property of the relaxed micromorphic model. For Lc → 0, the model is equivalent to the
standard Cauchy linear elasticity model with Cmacro defined as the Reuss lower-limit of
elasticity tensors Ce and Cmicro, see Equation (3.15), while the model is corresponding to
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Figure 4.24: Non-zero component of moment stress mrz plotted along the radius. Taken
from Schröder et al. [2022].
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Figure 4.25: Micro-stress shear component (σmicro)rθ = (σmicro)θr plotted along the radius.
Taken from Schröder et al. [2022].

a Cauchy linear elasticity model with Cmicro with P = ∇u for Lc →∞. This aligns with
the analytical results discussed in Sections 3.4 and 3.5.

We have shown the dependency of different stress measurements on the characteristic
length. The force stress is at maximum for Lc → 0 and vanishes for Lc → ∞, but the
moment stress behaves in the opposite way. The micro-stress varies between Cauchy linear
elasticity stresses with Cmicro and Cmacro for Lc → ∞ and Lc → 0, respectively. For the
remaining part of this thesis, we will use the Q2NQ2 element for numerical analysis.
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5 Modeling metamaterial beams under pure bending via RMM

As we have shown analytically in Chapter 3 and numerically in Chapter 4, the relaxed
micromorphic model interpolates between two well-defined scales: the classical continuum
scale of macroscopic linear elasticity, whose stiffness is given by the elasticity tensor Cmacro

and a microscopic scale, which is linear elastic as well with stiffness Cmicro. The function of
the characteristic length Lc > 0 is then to scale correctly with the size of the specimen and
to describe the interaction between these two scales. For Lc → 0, we get a macroscopic lin-
ear elasticity (complete scale-separation, stiffness Cmacro). For Lc →∞ (zooming into the
microstructure), we recover a microscopic linear elasticity (stiffness Cmicro). The appear-
ing length-scale independent elasticity tensors Ce and Cmicro are related by a Reuss-like
formula in Equation (3.15) as a function of the uniquely known elasticity tensor Cmacro

from classical homogenization theory. Therefore, it remains to identify Cmicro, which hap-
pens to be the largest observable stiffness in the model. Such a definition for Cmicro does
not exist in the classical micromorphic model or other variants of it.

In this Chapter, we want to investigate the possibilities that this unique interpretation
of the relaxed micromorphic model delivers. We consider metamaterial beams consisting
of periodic unit-cell subjected to bending. The size-effects of bending was studied uti-
lizing other generlized continua such as strain gradient, Cosserat-micropolar and other
continua in Abali et al. [2022], Al-Basyouni et al. [2015], Hosseini and Niira-
nen [2022], Khakalo and Niiranen [2019; 2020], Khakalo et al. [2018], Lakes
[2022], Li et al. [2022], Liebold and Müller [2016], Yin et al. [2021]. Modeling
the mechanical behavior of many metamaterials was conducted for many applications us-
ing enriched continua in Abali [2019], Carcaterra et al. [2015], Del Vescovo and
Giorgio [2014], El Dhaba [2020], Glaesener et al. [2021], Placidi et al. [2017],
Rueger et al. [2019], Shekarchizadeh et al. [2021], Shi et al. [2022], Sridhar
et al. [2016; 2018]. Identifying Cmacro is a standard procedure in periodic homogenization
theory. The largest stiffness idea will drive the identification of Cmicro. First, we analyze
the size-effects of metamaterial beams with fully discretized microstructure which we will
use as a reference study. Afterward, we employ the relaxed micromorphic continuum to
model the size-effects without accounting for the fully resolved microstructure. The mate-
rial parameters and adequate boundary conditions of the micro-distortion field P should
be determined in order to establish a simplified fitting procedure on the reference meta-
material beams. The consistent coupling condition (applied on the Dirichlet boundary
of u) permits the relaxed micromorphic to operate on the whole range between Cmacro

and Cmicro, which is of key importance for correctly identifying the unknown material pa-
rameters, i.e. Cmicro. However, an alternative loading by a normal linear traction (applied
moment), which delivers the same results for the fully resolved metamaterial, achieves con-
sistent results for the relaxed micromorphic model when the consistent coupling condition
is imposed via the penalty approach.

In a previous study Neff et al. [2020], Cmicro was supposed to be given by the Löwner
matrix supremum CLöwner

micro of elasticity tensors appearing under affine Dirichlet condi-
tions on different choices of unit-cell, which is used to capture band-gaps successfully
in d‘Agostino et al. [2020]. However, the results in the present Chapter inspires that
CLöwner

micro is too soft, when compared with the appearing stiffness in the bending regime.
Here, we extend our understanding of Cmicro towards all scenarios, notably including non-
affine Dirichlet conditions.
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The outline of this Chapter is as follows: the size-effects of the heterogeneous microstruc-
tured metamaterial beams are investigated in Section 5.1 for two loading cases that lead
to the same results. In Section 5.2 we determine the material parameters of the relaxed
micromorphic model. Section 5.3 analyzes the boundary conditions of the micro-distortion
field for symmetric (µc = 0) and non-symmetric (µc ̸= 0) force stresses. We then fit the
relaxed micromorphic model solution to the microstructured metamaterial solution by
calibrating the curvature in Section 5.5. In Section 5.6, the relaxed micromorphic model
is shown to be capable of handling two loading scenarios in addition to pure bending.
Finally, we discuss our findings of this Chapter in Section 5.7.

Parts of this Chapter have been published in:

M. Sarhil, L. Scheunemann, J. Schröder and P. Neff. Size-effects of metamaterial
beams subjected to pure bending: on boundary conditions and parameter identifica-
tion in the relaxed micromorphic model. Computational Mechanics, 72, 1091–1113, 2023.
doi:10.1007/s00466-023-02332-9.

M. Sarhil, L. Scheunemann, J. Schröder and P. Neff. On the identification of material
parameters in the relaxed micromorphic continuum. Proceedings in Applied Mathematics
and Mechanics, 23, e202300056, 2023. doi:10.1002/pamm.202300056.

M. Sarhil, L. Scheunemann, J. Schröder and P. Neff, Modeling the size-effect of metamate-
rial beams under bending via the relaxed micromorphic continuum. Proceedings in Applied
Mathematics and Mechanics, 22, e202200033, 2023. doi:10.1002/pamm.202200033.

5.1 Reference study: full discretization of metamaterial specimens

Here, we investigate the size-effect phenomena of metamaterial beams with a fully re-
solved microstructure consisting of periodic unit-cell. The size-effect phenomena will be
analyzed via the effective bending stiffness of beams subjected to pure bending. According
to the elementary beam theory of Euler–Bernoulli, the bending moment is linked to the
“bending” curvature by

M(x) = D(x)κ(x), (5.1)

where D(x) and κ(x) are the bending stiffness and the curvature at a position x along the
beam. For a constant bending moment M along the beam length, we assume an effective
flexural rigidity D and an effective curvature κ so that we obtain

D =
M

κ
. (5.2)

We design in the following two beam models subjected to a vanishing shear force and a
constant moment along the length L, see Figure 5.1. A rotation θ = κL is applied on
the right end for the first loading case, while a moment load is enforced for the second
loading case instead. An effective constant curvature can be determined with the help
of an effective deflection w(x), which stands for the displacement of the beam in the
y-direction at location x,

κ =
d2w(x)

dx2
. (5.3)

A deflection equation w(x), which will be fitted later to the fully resolved beams, featuring
an effective constant curvature and satisfying the boundary conditions of the beam model,
reads
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w(x) =
κ

2
(x2 − L2) satisfying w(L) = 0, and

dw(0)

dx
= 0 . (5.4)

L L

M = tH2

6

θ = κL

x

y

x

y

x

y

x

y

Case 2 (applied moment)Case 1 (applied rotation)

Figure 5.1: The beam models, compare Figure 5.3. Taken from Sarhil et al. [2023c].

A 2D metamaterial is considered with a periodic unit-cell consisting of a square with
an edge length l = 1.9 · 10−2m and a circular inclusion at its center with a diameter of
d = 1.2 ·10−2m, see Figure 5.2. Both matrix and inclusion are isotropic linear elastic with
the material parameters shown in Table 5.1. The inclusion is 20 times softer than the
matrix. A standard triangular finite element with quadratic shape functions (T2) is used
for this analysis. The specimens are considered with dimensions H × L = n l × 12n l so
that the length of the beams is always twelve times the height where n is the number of
unit-cells in the height direction, see Figure (5.2). The length of the beams is much larger
than their height, so the Euler–Bernoulli beam theory is valid.

Table 5.1: Material parameters of the assumed metamaterial. Taken from
Sarhil et al. [2023c].

Young’s modulus: E Poisson’s ratio: ν λ µ
Matrix 70GPa 0.333 52.35GPa 26.25GPa
Inclusion 3.5GPa 0.333 2.62GPa 1.31GPa

The boundary conditions of the beam models in Figure 5.1 are passed on to the 2D fully
resolved metamaterial beams as shown in Figure 5.3. For the first loading case, we rotate
the right edge in the plane through a given displacement in x-direction as a linear function
of the height (y-coordinates). For the second loading case, a moment is applied on the
right edge by means of a traction in x-direction as a linear function of y-coordinates.
The left boundary for both loading cases is fixed in x-direction and free to move in y-
direction. Furthermore, we fix the middle point on the right edge in y-direction. We intend
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Figure 5.2: Illustration shows the geometry of the specimens for n = 1, 2, 3, 4, 5 with the
assumed unit-cell. The number of finite elements with degrees of freedom (dofs) are shown
in parentheses. Taken from Sarhil et al. [2023c].

by introducing these two loading cases to prove that they deliver identical results for
the microstructured metamaterial beams. This equivalence of both loading cases should
also be demonstrated by the relaxed micromorphic model when appropriate boundary
conditions are set. However, dealing with traction is challenging for generalized continua
because it implies defining unknown higher-order traction. Moreover, we assume κ = 1
and t = 109N/m.

After solving the fully resolved microstructure, the effective curvature κ is obtained by the
following least squares minimization over all the nodes nnode of the finite element mesh

nnode∑
I

((du
I )2 − w(XI))

2 → min , (5.5)

which leads, considering Equation (5.4), to

κ =

nnode∑
I

(du
I )2

(XI)
2
1−L2

2

nnode∑
I

(
(XI)

2
1−L2)

2
)2
, (5.6)
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Figure 5.3: The boundary conditions of the fully resolved metamaterial shown exemplarily
for n = 2 (H × L = 2 l × 24 l). Taken from Sarhil et al. [2023c].

where XI and du
I are the coordinates and the displacement degrees of freedom at node

I. The bending stiffness can be calculated following Equation (5.2), where the moment
M can be calculated using the reactions of nodes located at the left or right edges.
Alternatively, the bending stiffness can be calculated by means of the maximum deflection
at the left edge of the beam, i.e. w(0). This is because the fluctuation of the deflection
of the heterogeneous solution is tiny compared to the maximum deflection on the left
edge w(0). We obtain from Equations (5.2) and (5.4) substituting x = 0 and considering
w(0) = wFEM(0)

D = − ML2

2wFEM(0)
, (5.7)

where wFEM(0) is the deflection of the FEM solution averaged over the left edge (x = 0).
Calculating the bending stiffness using Equations (5.2) or (5.7) delivers the same result
which we tested numerically.

The effective material properties of the large specimens can be obtained by the standard
computational periodic first-order homogenization produced by a unit-cell with periodic
boundary conditions, which is identified as Cmacro in Section 5.2.1. As we will show later,
the macroscopic elasticity tensor Cmacro is not isotropic and shows cubic symmetry. The
size-effects are shown via the so-called normalized bending stiffness D/Dmacro plotted in
Figure 5.4, which relates the actual stiffness of the fully discretized metamaterial to the
one obtained from homogenized linear elasticity with Cmacro which reads analytically

Dmacro =
EmacroH

3

12 (1− ν2macro)
. (5.8)

When we increase the specimen size, the normalized bending stiffness approaches value
one. Applying a rotation (loading case 1) or a moment (loading case 2) leads to similar
results.
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Figure 5.4: The normalized bending stiffness varying the beam size H × L = n l × 12n l.
Taken from Sarhil et al. [2023c].

5.2 Parameter identification for the relaxed micromorphic continuum

The relaxed micromorphic model should reproduce the previous size-effects exhibited by
the fully resolved heterogeneous metamaterial beams. However, the identification of the
boundary conditions and material parameters is not obvious.

5.2.1 Identification of the macroscopic elasticity tensor Cmacro

Linear elasticity with the macroscopic elasticity tensor Cmacro determines the lower bound
of the relaxed micromorphic model, see Figure 3.1, associated with the case Lc → 0. Thus,
Cmacro corresponds to large values of n where the macroscopic homogeneous response is
expected, and the macroscopic problem is much larger than the microscopic problem.
Thus, scale-separation holds and the classical homogenization theory can be applied. The
standard analysis with a periodic unit-cell and periodic boundary conditions should be
used, see for example Zohdi and Wriggers [2005]. The geometry of the unit-cell has
no role in this analysis because of periodicity, e.g. every periodic unit-cell in Figure 5.5
delivers the same, c.f. Neff et al. [2020].

Our analysis shows that Cmacro has the cubic symmetry property for our assumed meta-
material, and it reads (Tilde stands for Voigt notation, see Appendix B)

C̃macro =

Ñ
2µmacro + λmacro λmacro 0

λmacro 2µmacro + λmacro 0
0 0 µ∗

macro

é
, (5.9)

where three parameters need to be defined. We obtain by our standard numerical analysis

C̃macro =

Ñ
47.86 17.61 0
17.61 47.86 0
0 0 9.98

é
[GPa] ⇒

λmacro = 17.61 GPa
µmacro = 15.13 GPa
µ∗
macro = 9.98 GPa

. (5.10)
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5.2.2 Identification of the microscopic elasticity tensor Cmicro via affine defor-
mations

Linear elasticity with the microscopic elasticity tensor Cmicro determines the upper bound
of the relaxed micromorphic model, see Figure 3.1, associated with the case Lc → ∞.
Thus, Cmicro is identified as the maximum stiffness on the micro-scale. Nevertheless, Cmicro

must exhibit the cubic symmetry similar to Cmacro according to the extended Neumanns’s
principle Neff et al. [2020]. In order to achieve stiff estimates for Cmicro, we apply first
affine Dirichlet boundary conditions, which must lead to a stiffer response than the peri-
odic boundary conditions, i.e. Cmacro. There are infinite choices of the unit-cell available.
However, we only have to choose unit-cells that preserve the cubic symmetry property
under the applied Dirichlet boundary conditions. We investigate then different variants
of unit-cell under the affine Dirichlet boundary conditions. We obtain the corresponding
apparent stiffness tensor denoted as CD

i for each choice of a unit-cell i = 1, .., r subjected
to the affine Dirichlet boundary conditions. The positive definite microscopic elasticity
tensor will be set as the least upper bound of the apparent stiffness of the microstructure
measured in the energy norm following the Löwner matrix supremum problem, see for
details Neff et al. [2020].

For the assumed metamaterial, four different variants of the unit-cell are suitable, see
Figure 5.5, which lead to the elasticity tensors CD

i , i = 1, .., 4 with the cubic symmetry
property as intended. The results are summarized in Table 5.2.

L

H

(1) (2) (3) (4)

Figure 5.5: The possible choices of the unit-cell with cubic symmetry. The edge length
of the unit-cell equals to l for (1) and (2) and

√
2 l for (3) and (4). Taken from

Sarhil et al. [2023c].

The microscopic elasticity tensor CLöwner
micro is defined then by the Löwner matrix supremum

problem as

ε : CLöwner
micro : ε ≥ ε : CD

i : ε where i=1,...,4 , ∀ε ∈ Sym(3) . (5.11)
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Table 5.2: The elasticity parameters of the unit-cells shown in Figure 5.5 under affine
Dirichlet boundary conditions. The elasticity parameters define elasticity tensors which ex-
hibit cubic symmetry similar to Cmacro. Taken from Sarhil et al. [2023c].

unit-cell λi [GPa] µi [GPa] µ∗
i [GPa]

1 18.26 15.34 14.61
2 20.15 15.83 14.44
3 19.25 15.54 13.19
4 19.56 15.66 12.68

which turns for the cubic symmetry case toÑ
ε11
ε22
2ε12

é Ñ
2µLöwner

micro + λLöwner
micro λLöwner

micro 0
λLöwner
micro 2µLöwner

micro + λLöwner
micro 0

0 0 (µ∗)Löwner
micro

é Ñ
ε11
ε22
2ε12

é
≥

Ñ
ε11
ε22
2ε12

é Ñ
2µi + λi λi 0

λi 2µi + λi 0
0 0 µ∗

i

é Ñ
ε11
ε22
2ε12

é
,

for i=1,....,4 , ∀

Ñ
ε11
ε22
ε12

é
∈ R3 .

(5.12)

The solution of the previous problem reads

(µ∗)Löwner
micro ≥ max

i
{µ∗

i } , µLöwner
micro ≥ max

i
{µi} ,

λLöwner
micro + µLöwner

micro ≥ max
i
{µi + λi} ,

(5.13)

for every unit-cell choice, i.e. i = 1, .., 4 . We take therefore (see Table 5.2, the selected
values are marked with bold font)

(µ∗)Löwner
micro := µ∗

1 = 14.61GPa , µLöwner
micro := µ2 = 15.83GPa ,

λLöwner
micro := µ2 + λ2 − µLöwner

micro = 20.15GPa ,
(5.14)

and thus

C̃Löwner
micro :=

Ñ
51.81 20.15 0
20.15 51.81 0
0 0 14.61

é
[GPa] . (5.15)

However, the previous estimate serves as a lower bound for Cmicro. In Figure 5.6, we
show the size-effect of the fully resolved metamaterial beams and the linear elasticity
solutions with the following elasticity tensors: I) Cmacro, II) CLöwner

micro , III) Cmatrix of the
homogeneous isotropic matrix, and IV) CVoigt which is isotropic and obtained by the equal
strain assumption CVoigt = ϕmatrixCmatrix + ϕinclusionCinclusion where ϕmatrix and ϕinclusion are
the volume fractions of the matrix and inclusion, respectively, which leads to λVoigt =
36.77GPa and µVoigt = 18.44GPa.

The obtained CLöwner
micro in Equation (5.15) is too soft compared to the reference hetero-

geneous beams. Even linear elasticity with CVoigt is softer than the solution of the fully
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resolved metamaterial beam for n = 1. This can be explained by the fact that the typi-
cal bending mode cannot be mapped with affine Dirichlet Boundary conditions. Here, a
“Voigt bound” for higher modes would be required, which does not exist for non-affine
deformations. Note that the tensor Cmicro, although appearing in the relaxed micromor-
phic model and the classical micromorphic model, does not have the same meaning in the
latter, which is related to the bounded stiffness property of the former.

We may relate Cmicro to the matrix stiffness Cmatrix since Cmatrix represents the stiffest
part of the assumed microstructure. Thus, introduce a scalar α ≥ 1 so that we have
Cmicro := αCLöwner

micro . We define an upper limit for Cmicro as

ε : Cmatrix : ε ≥ ε : Cmicro : ε = ε : αCLöwner
micro : ε, ∀ε ∈ Sym(3) . (5.16)

By introducing Equation (5.16), we keep the anisotropic symmetry property of Cmicro

while the elasticity tensor Cmatrix is isotropic. We obtain then

µ∗
matrix =µmatrix ≥ α(µ∗)Löwner

micro , µmatrix ≥ αµLöwner
micro ,

λmatrix + µmatrix ≥ α(λLöwner
micro + µLöwner

micro ) ,
(5.17)

and the parameter α is defined by

α ∈ [1,min(
µ∗
matrix

(µ∗)Löwner
micro

,
µmatrix

µLöwner
micro

,
µmatrix + λmatrix

µLöwner
micro + λLöwner

micro

)] = [1, 1.66] . (5.18)

We illustrate in Figure 5.6 that linear elasticity with Cmicro = 1.66CLöwner
micro is stiffer than

the fully resolved metamateriel for n = 1 and therefore it is a valid choice. However,
assuming Cmicro = Cmatrix does not break the extended Neumann’s principle. We will
investigate later numerically the consequences of the different choices for Cmicro.
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Figure 5.6: The normalized bending stiffness varying the beam size H × L = n l × 12n l
compared to the ones obtained by linear elasticity with different elasticity tensors shown in
Section 5.2.2. Taken from Sarhil et al. [2023c].
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5.2.3 Identification of the microscopic elasticity tensor Cmicro via non-affine
deformations

We determined in Section 5.2.2 the microscopic elasticity tensor Cmicro as the Löwner
matrix supremum. Nevertheless, the affine Dirichlet boundary conditions are too soft and
unable to capture the size-effects of bending. In order to estimate the stiffness Cmicro in
the relaxed micromorphic model, we choose in the following approach the most simple
ansatz

Cmicro = β∗Cmacro with β∗ = max{βi} > 1 with i = 1, ...., r. (5.19)

The size dependency is a complex phenomenon in general and cannot be modeled by
a single scalar β∗ alone, of course. The parameters βi are determined via the energy
equivalence of a heterogeneous microstructured domain Bi and an equivalent homogeneous
domain Bmacro

i with the same dimensions governed by linear elasticity with an elasticity
tensor βi Cmacro, see Figure 5.7. Here, we consider a higher-order deformation mode, which
is the pure bending mode. The bending mode is enforced by applying non-affine Dirichlet
boundary conditions on the whole boundary. They are derived from the analytical solution
of the pure bending problem of the homogeneous problem in Rizzi et al. [2021b]

u = u =
κ

2

Ñ
−2xy

λmacro

2µmacro + λmacro

y2 + x2

é
on ∂B , (5.20)

which leads to a constant curvature κ for the homogeneous case with no shear strain and
one active stress component σ11

ε = sym∇u =

Ñ
−κ y 0

0
λmacroκ y

2µmacro + λmacro

é
,

σ =

Ñ
−4µmacro(µmacro + λmacro)βκ y

2µmacro + λmacro

0

0 0

é
.

(5.21)

Cmicro = βi Cmacro

Cinclusion

Cmatrix

energetically equivalent
xx

yy

u = u on ∂Bmacro
iu = u on ∂Bi

Figure 5.7: Illustration shows the procedure used to calculate βi. Taken from
Sarhil et al. [2023c].

We search for the stiffest possible component on the microstructure under flexural defor-
mation mode by investigating different arrangements of unit-cells, which do not have to
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exhibit cubic symmetry as in Section 5.2.2. Six different arrangements were considered,
see Figure 5.8. The largest obtained value is β∗ = β1 = 1.64. Increasing the size of the
arrangements of the unit-cells, considered in Figure 5.8, we retrieve the macroscopic prop-
erty, where βi converges to the value one as it should. This behavior is shown examplarily
for unit-cell (a) in Figure 5.9.

β1 = 1.64

(a)

β2 = 0.53

(b)

β3 = 0.53

(c)

β4 = 1.63

(d)

β5 = 1.22

(e)

β6 = 0.9

(f)

Figure 5.8: The values of the parameter βi calculated for different unit-cells. Unit-
cell (a) provides the stiffest flexural stiffness with β∗ = β1 = 1.64. Taken from
Sarhil et al. [2023c].

1.64

1.16

1.07

1.03

1.75

Figure 5.9: The parameter β converges to the value one when increasing the size of a
cluster of unit cells (n× n) shown exemplarily for type (a) in Figure 5.8. We also show the
extrapolated value β = 1.75 . Taken from Sarhil et al. [2023c].

We show in Figure 5.10 the size-effect of the fully resolved metamaterial beams and
the linear elasticity solutions with elasticity tensors Cmicro = 1.64Cmacro and Cmacro. The
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choice Cmicro = 1.64Cmacro guarantees that a homogeneous continuum with elasticity
tensor Cmicro = 1.64Cmacro is stiffer than the fully discretized metamaterial. The upper
limit Cmicro = 1.64Cmacro is slightly stiffer than the relatively stiffest metamaterial beam
(n = 1), which confirms its validity. However, we extrapolate Cmicro = 1.75Cmacro as an
improved upper bound to provide a better fitting.

n = 1

n = 2

n = 5
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Figure 5.10: The normalized bending stiffness varying the beam size H × L = n l × 12n l
compared to the ones obtained by linear elasticity with different elasticity tensors shown in
Section 5.2.3. Taken from Sarhil et al. [2023c].

5.2.4 Identification of Ce

The elasticity tensor Ce is calculated via the micro-macro Reuss-like homogenization
formula in Equation (3.15). The obtained elasticity tensor Ce is automatically positive
definite since Cmicro > Cmacro and has cubic symmetry property. However, no obvious
physical interpretation can be assigned to the tensor Ce.

5.3 The boundary conditions of the micro-distortion field

It is worth noting that there has been a lack of attention given to investigating boundary
conditions (BCs) in the context of enriched continua in the literature. However, the im-
portance of such conditions must be addressed, as they play a crucial role in identifying
material parameters accurately. Without setting the correct BCs for the micro-distortion
field, the behavior of enriched continua can change significantly, rendering the identifica-
tion of material parameters meaningless.

In the context of the relaxed micromorphic model, the boundary conditions (BCs) of the
micro-distortion field play especially a critical role. It is important to choose appropriate
BCs that induce a curvature in the model, i.e. CurlP ̸= 0. This is because inadequate
boundary conditions of the micro-distortion field can lead to unwanted behavior of the
relaxed micromorphic model. Such behavior can manifest in the form of the model not
exhibiting size-effects or failing to reach the intended upper limit (linear elasticity with
Cmicro) for Lc → ∞. Hence, selecting the right BCs is crucial for ensuring the accuracy
and reliability of the relaxed micromorphic model.
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5.3.1 Symmetric force stress case

We assume here Cc = 0 (µc = 0) which causes symmetric force stress σ and symmetric
Curlm because the balance of angular momentum in Equation (3.29d) becomes symmet-
ric. We test the sufficiency of the boundary conditions by comparing the solution of the
relaxed micromorphic model for varied values of the characteristic length parameter Lc

with the solutions obtained by the standard linear elasticity with elasticity tensors Cmicro

and Cmacro. More specifically, the relaxed micromorphic model should reproduce linear
elasticity with elasticity tensors Cmicro and Cmacro for Lc →∞ and Lc → 0, respectively.
To put it differently, the theoretical features of the RMM that are depicted in Figure 3.1
have been successfully retrieved.

In order to conduct a numerical test, we fixed the geometry of a beam to H×L = 2 l×24 l.
We assume Cmicro = 1.75Cmacro and set µ = µmacro. The boundary conditions of the dis-
placement field are taken similar to the ones applied on the fully resolved metamaterials
in Figure 5.3. For the first case with applied rotation, the consistent coupling condition is
applied on the right and left edges via a penalty approach, see Figure 5.11 and Equation
(3.32). Indeed, enforcing the consistent coupling condition on the Dirichlet boundary of
the displacement field is adequate to fulfill the theoretical limits of the relaxed micromor-
phic model, i.e. linear elasticity with elasticity tensors Cmicro and Cmacro. Removing the
consistent coupling condition on left or right edges leads to vanishing curvature, turning
the relaxed micromorphic model into standard linear elasticity with Cmacro. The previous
behavior is demonstrated in Figure 5.12. The exact same behavior is observed for the
second loading case with applied traction if we apply the consistent coupling condition on
the boundary corresponding to the first loading case, see Figure 5.11. Consequently, the
relaxed micromorphic model leads to consistent results for both loading cases, see Figure
5.12.

L

x

y

ux = −κLy
P · τ = ∇u · τ

ux = 0

P · τ = ∇u · τ

Case 1 (applied displacement)

L

x

y

P · τ = ∇u · τ
ux = 0

P · τ = ∇u · τ
tx = −2ty/H

Case 2 (applied traction)

Figure 5.11: The boundary value problems of the homogeneous relaxed micromorphic
model for both loading cases. These boundary value problems are equivalent to the two
cases of the heterogeneous metamaterial shown in Figure 5.3. The upper and lower edges
are traction-free. Taken from Sarhil et al. [2023c].
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Figure 5.12: The normalized bending stiffness obtained by the relaxed micromorphic model
for both loading cases for the symmetric force stress scenario Cc = 0 while varying the
characteristic length Lc. Sufficient BCs indicate applying the consistent coupling condition
on the left and right edges, see Figure 5.11. Removing the consistent coupling condition
on left or right edge is considered as insufficient and leads to no size-effect. Taken from
Sarhil et al. [2023c].

5.3.2 Non-symmetric force stress case

Next, we investigate the non-symmetric force stress case, i.e. the balance of angular mo-
mentum in Equation (3.29d) is non-symmetric. We assume Cc = 2µcII (2D case) where
II is the fourth-order identity tensor and µc is the Cosserat couple modulus acting as a
spring constant between the skew-symmetric parts of ∇u and P . We study the influence
of varying the Cosserat couple modulus µc ∈ [0, 0.01, 0.1, 1] ∗ µmacro considering differ-
ent scenarios of the boundary condition of P . The geometry and the remaining material
parameters are taken as for the symmetric case, see Section 5.3.1.

In Figure 5.13, we show the normalized bending stiffness for the cases (a) the consistent
coupling condition is applied either on the left or right edge, (b) no consistent coupling
boundary condition is considered and (c) the consistent coupling boundary condition is
applied on both left and right edges. Size-effects are noticed even if the consistent coupling
condition is not placed simultaneously on the right and left edges, which is not the case
for the symmetric force stress (µc = 0), c.f. Figure 5.12. Increasing the Cosserat couple
modulus µc raises the stiffness of the relaxed micromorphic model closer to linear elasticity
with Cmicro for Lc →∞ and even reach it in Figure 5.13(a). However, it is not guaranteed
that the relaxed micromorphic model achieves linear elasticity with Cmicro for Lc → ∞,
see Figure 5.13(b). The results of enforcing the consistent coupling condition on both left
and right edges are equivalent for the symmetric and non-symmetric cases in Figures 5.12
and 5.13(c), respectively, and the Cosserat couple modulus has no influence.

5.3.3 Cosserat limit, skew-symmetric micro-distortion field

The micropolar Cosserat continuum in Section 2.6.3 is recovered for the case of
Cmicro →∞. The micro-distortion field must be then skew-symmetric A = skewP , c.f.
Alavi et al. [2022a], Blesgen and Neff [2023], Ghiba et al. [2023], Khan et al.
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(a) consistent coupling condition either on the left or right
edge
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(c) consistent coupling condition on the left and right edges

Figure 5.13: The normalized bending stiffness obtained by the relaxed micromorphic model
for both loading cases with non-symmetric force stress and with varying the characteristic
length Lc. Different scenarios are investigated for the boundary conditions of the micro-
distortion field. Enforcing the consistent coupling condition on both left and right edges
(c) reproduces the results of the symmetric force stress case in Figure 5.11 and Cosserat
modulus has no effect. Taken from Sarhil et al. [2023c].
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[2022]. We investigate numerically the influence of different scenarios of the boundary con-
ditions for the micro-distortion field P similar to Section 5.3.2: (a) the consistent coupling
condition is applied on either the left or right edge, (b) without enforcing the consistent
boundary condition and (c) the consistent coupling condition is applied on both left and
right edges for Cmicro = 1000Cmacro. Different values of the Cosserat couple modulus µc

are assumed for varied values of the characteristic length parameter Lc in Figure 5.15. We
find that when the consistent coupling condition is not simultaneously applied at both
right and left ends, large values of Lc result in a beam that does not bend, see Figure
5.14, causing an infinite nonphysical bending stiffness. This emphasizes the crucial role of
the consistent coupling condition, not just in the relaxed micromorphic model, but also
in the Cosserat case. Hence due to the bending stiffness issue, we have opted to show the
normalized total energy Π/Πmacro for this analysis alternatively (instead of D/Dmacro).

(a) consistent coupling condition on the
left edge

(b) consistent coupling condition on the
right edge

(c) no consistent coupling condition
(d) consistent coupling condition on the
left and right edges

Figure 5.14: The deformed beams for the case Cmicro = 1000Cmacro ”Cosserat type” with
Lc = 1000m and µc = 2µmacro. The classical bending deformation can only be induced
when the consistent coupling condition is applied on both its left and right ends (d). Taken
from Sarhil et al. [2023c].

We notice that linear elasticity with elasticity tensor Cmicro = 1000Cmacro is recognized
as an upper limit when the consistent coupling condition is enforced simultaneously on
both left and right edges, see Figure 5.15(c). Nevertheless, less prominent size-effects are
noticed when the consistent coupling condition is not enforced, Figure 5.15(a-b). While
size-effects are prompted only for non-vanishing Cosserat couple modulus µc ̸= 0 for cases
(a) and (b), enforcing the consistent coupling condition simultaneously on both left and
right edges leads to size-effects with no influence of the Cosserat couple modulus µc which
is well-known for the Cosserat model under pure bending. This can be explained by the
fact that for pure bending the skew-symmetric part of the micro-distortion field is the
same as the skew-symmetric part of the gradient of the displacement, see Rizzi et al.
[2021b], which is the case for both the relaxed micromorphic continuum in Figure 5.13(c)
and the Cosserat model in Figure 5.15(c).
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(a) consistent coupling condition either on the left or right
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(c) consistent coupling condition on the left and right
edges

Figure 5.15: The relative total energy obtained by the relaxed micromorphic model for
both loading cases with non-symmetric force stress (µc ̸= 0) and with varying the char-
acteristic length Lc. Here, we assume Cmicro = 1000Cmacro leading to a skew-symmetric
micro-distortion field which retrieves the Cosserat model since the curvature expression is
then equivalent with the Cosserat framework, see Ghiba et al. [2023]. Different scenar-
ios are investigated for the boundary conditions of the micro-distortion field. Taken from
Sarhil et al. [2023c].
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5.4 Scaling of the curvature

The curvature for the 2D case is isotropic because CurlP is reduced to a vector, see
Equation (3.18). Therefore, the curvature will be controlled by the quantity µL2

c, assuming
L = II is the fourth-order identity tensor. Since the parameters µ and Lc should be set
constant independent of the specimen size, the curvature is modified by incorporating the
size of the beams through the number n. Figure 5.4 shows that a stiffer response is observed
for smaller values of the number n (n = 1 is the stiffest). The relaxed micromorphic
model exhibits stiffer response for larger values of the characteristic length parameter Lc

(inversely proportional to n), see for example Figure 5.12. Therefore, we replace the last
term in Equation (3.13) by

1

2
µ

Å
Lc

n

ã2

CurlP : CurlP , (5.22)

where n denotes the number of unit cells in the y-direction. Hence, for a constant Lc,
smaller values are obtained for the term Lc/n by increasing the beam size (increasing n).
This modification reproduces the intended size-effects (smaller is stiffer), which is not ad
hoc, but follows from a rigorous scaling argument, c.f. Neff et al. [2020] and applies to
other continua as well such as higher-gradient or classical micromorphic continua.

5.5 Calibration of the curvature in RMM with the fully resolved solution

We provided in Section 5.2 an identification scheme for the scale-independent material
parameters of the relaxed micromorphic model. The boundary conditions of the micro-
distortion field were determined in Section 5.3 in order to guarantee the intended behavior
of the relaxed micromorphic model and the influence of the characteristic length Lc for
both loading cases, as illustrated in Figure 3.1. The quantities associated with the curva-
ture are yet to be identified.

For this calibration, we assume symmetric force stress, i.e. µc = 0. As we discussed
in Sections 5.2.2, 5.2.3 and 5.3.3, different choices are made for Cmicro, e.g. Cmicro =
1.66CLöwner

micro (affine BCs), Cmicro = Cmatrix, Cmicro = 1.75Cmacro (non-affine BCs) and
Cmicro = 1000Cmacro (Cosserat). Considering Cmicro = 10000Cmacro yield similar results to
Cmicro = 1000Cmacro, as expected, which can be explained by the fact that we are operating
in a range close to the lower bound Cmacro. For each choice of Cmicro, the curvature should
be calibrated by means of Lc and µ. Without loss of generality, we can always assume
the shear modulus µ = µmacro and then the characteristic length Lc should be chosen in
order to fit the solution of the fully discretized metamaterial, Figure 5.16. Alternatively,
the characteristic length Lc can be set in advance, e.g. Lc = l (size of the unit-cell),
and then the shear modulus µ should be calibrated, see Figure 5.17 and Equation (5.22).
The decisive quantity is the product µL2

c. Since the Cosserat curvature coincides with
the curvature expression of the relaxed micromorphic model Ghiba et al. [2023], one
would expect that using similar values for µL2

c is a sensible choice. As Figures 5.16(d) and
5.17(d) show, this is not the case. For a rough Cosserat fit different orders of magnitude
for µL2

c have to be taken which are getting arbitrary. Furthermore, the data points can
be fitted also with a Cosserat type model but it should be remarked that the unbounded
stiffness (beyond n = 1) leads to a sensitive identification of the parameters. The same
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problem would appear by using other continua such as the second gradient or the classical
micromorphic theories.
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(d) Cmicro = 1000Cmacro; “Cosserat model”

Figure 5.16: The normalized bending stiffness varying the beam size H × L = n l × 12n l
obtained by the fully discretized metamaterial and the relaxed micromorphic model. We
analyze here different choices for Cmicro with varying Lc and fixing µ = µmacro. The results
are equivalent for both loading cases. Taken from Sarhil et al. [2023c].
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micro

n = 1 n = 2

n = 5

0.01 0.02 0.05 0.10
0.0

0.5

1.0

1.5

2.0

(b) Cmicro = Cmatrix

n = 1 n = 2

n = 5

0.01 0.02 0.05 0.10
0.0

0.5

1.0

1.5

2.0

(c) Cmicro = 1.75Cmacro

n = 1 n = 2

n = 5

0.01 0.02 0.05 0.10
0.0

0.5

1.0

1.5

2.0

(d) Cmicro = 1000Cmacro; “Cosserat model”

Figure 5.17: The normalized bending stiffness varying the beam size H × L = n l × 12n l
obtained by the fully discretized metamaterial and the relaxed micromorphic model. We
analyze here different choices for Cmicro with varying µ and fixing Lc = l. The results are
equivalent for both loading cases. Taken from Sarhil et al. [2023c].
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5.6 Validation: further numerical examples

This study assesses the obtained material parameters of the relaxed micromorphic model
for two additional loading scenarios apart from pure bending. We consider the fully re-
solved metamaterial beams with the dimensions and material parameters outlined before
in Section 5.1. In the relaxed micromorphic model, we consider the symmetric case where
µc = 0. The macroscopic elasticity tensor, Cmacro, is defined in Section 5.2.1 and the
curvature is scaled to the specimen’s size using Equation (5.22) under the assumption of
µ = µmacro. The microscopic elasticity tensor Cmicro is determined using the same four
different assumptions outlined in Section 5.5.

5.6.1 Simple shearing

The boundary conditions are derived from the solution of an infinite stripe under simple
shear in Rizzi et al. [2021a]

u = u =

Å
ay
0

ã
on ∂B , (5.23)

which leads to the following strain and stress tensors for the homogeneous linear elasticity
with macroscopic elasticity tensor Cmacro

ε =

Å
0 a/2
a/2 0

ã
, σ =

Å
0 a µ∗

macro

a µ∗
macro 0

ã
. (5.24)

The boundary value problems for the relaxed micromorphic model and the reference
fully resolved metamaterial are depicted in Figure 5.18. Dirichlet boundary condition for
the displacement field and the consistent coupling condition are enforced over the entire
boundary.

L = 24lL = 24l

H = 2lH = 2l

fully discretized metamaterial relaxed micromorphic model

u = u on ∂B u = u, P · τ = ∇u · τ on ∂B

x

y

x

y

Figure 5.18: Boundary value problem: pure shear, shown exemplarily for n = 2, for the
fully discretized metamaterial and the homogeneous relaxed micrmorphic continuum. Taken
from Sarhil et al. [2023c].

We analyze the size-effects via the normalized shear force T
Tmacro

, which is shown in Figure
5.19. Here, T is the actual shear force while the macroscopic shear force Tmacro (associated
with linear elasticity with Cmacro) is given by Tmacro = a µ∗

macro L. The size-effects associ-
ated with pure shear response are less pronounced than the size-effects associated with
pure bending. We notice that the choices Cmicro = 1.66CLöwner

micro and Cmicro = 1.75Cmacro

deliver close results for the bending in Figure 5.16 but different results for the simple
shear in Figure 5.19 which can be explained by their different anisotropy properties. We
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notice that the results for shear are less satisfactory than the results for bending since
fitting was based on bending mode.
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Figure 5.19: The normalized shear force varying the specimen’s size H × L for different
choices of Cmicro. Taken from Sarhil et al. [2023c].
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5.6.2 Cantilever under traction load

We consider the classical cantilever problem in the following setup. We fix the right edge of
the beam in both directions while a constant traction of ty = t is applied in the y-direction
on the left edge. The boundary value problems for both the fully discretized metamaterial
and the relaxed micromorphic model are illustrated in Figure 5.20. The microscopic elas-
ticity model can be recovered for large values of Lc when the consistent coupling condition
is applied to the entire boundary. However, for small values of Lc, a boundary layer is
built up at the upper and lower edges, requiring a fine mesh. This issue can be resolved
by partially applying the consistent boundary condition, i.e. (P · τ )y = (∇u · τ )y.

L = 24lL = 24l

H = 2lH = 2l
Fy Fy

fully discretized metamaterial relaxed micromorphic model

x

y

x

y

P · τ = ∇u · τ on ∂B

Figure 5.20: Boundary value problem: cantilever, shown exemplarily for n = 2, for the
fully discretized metamaterial and the homogeneous relaxed micromorphic continuum. Taken
from Sarhil et al. [2023c].

The equivalent beam model with the deformed shape (for n = 2) are displayed in Figure
5.21. The cantilever is subjected to a constant shear force Fy = tH and a linear moment
that is zero on the left end and maximum on the right end M = Fy x.

L

Fy

x

y

Figure 5.21: The beam model of the cantilever and the deformed shape for n = 2. Taken
from Sarhil et al. [2023c].

We analyze the size-effects via the inverse of the normalized maximum displacement, ex-
pressed as wmacro(0)

w(0)
, see Figure 5.22. Here, w(0) is the actual displacement in y-direction,

while the macroscopic displacement (associated with linear elasticity with Cmacro) is cal-

culated via the elementary beam theory by the formula wmacro(0) =
4(1−ν2macro)FyL3

EmacroH3 . The
results of both the fully discretized metamaterial and the relaxed micromorphic model
show good agreement, as the dominant size-effect is bending. However, if consistent bound-
ary conditions are not applied across the entire boundary, agreement is not achieved. This
highlight again the importance of the consistent boundary condition and the flexibility of
the relaxed micromorphic continuum to model any engineering problem.
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Figure 5.22: The inverse of the normalized deflection at the free end of the cantilever
(x = 0) for varying the specimen’s size H × L for different choices of Cmicro. Taken from
Sarhil et al. [2023c].
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5.7 Discussions

We analyzed the size-effects of fully resolved beams under pure bending. We have shown
that applying a rotation (via a given displacement) or a moment (via an applied traction)
on the fully discretized metamaterial beams leads to similar results, which we should also
get when we model the beams via the relaxed micromorphic model.

We defined the macroscopic elasticity tensor Cmacro using the standard first-order homog-
enization with periodic boundary conditions. However, the microscopic elasticity tensor
Cmicro is linked to the stiffest possible response of the assumed metamaterial. We in-
troduced two approaches for the identification of Cmicro. The first approach is based on
the least upper bound of the apparent stiffness of the microstructure measured in the
energy norm following the Löwner matrix supremum problem in Neff et al. [2020].
Therefore, different unit-cell variants are considered under the affine Dirichlet boundary
conditions. However, the flexural deformation mode is not captured by affine Dirichlet
boundary conditions, and the resulting Cmicro is not stiff enough to reproduce the solution
of fully resolved metamaterial beams subjected to bending. Therefore, we have to scale
up the elasticity tensor obtained by Löwner matrix supremum. A second approach is built
to identify the microscopic elasticity tensor by non-affine boundary conditions (bending
deformation mode). Therefore, different unit-cells are bent to obtain the largest possible
flexural rigidity.

Next, we thoroughly examined the boundary conditions for both loading cases (rotation or
moment) for the symmetric and non-symmetric force stress scenarios. The consistent cou-
pling boundary condition allows the model to work on the whole intended range bounded
by linear elasticity with microscopic and macroscopic elasticity tensors from above and be-
low, respectively. Thus, correctly identifying the parameters of the relaxed micromorphic
model must be associated with the consistent coupling boundary condition. Otherwise,
Cmicro is not recognized as an upper bound.

A final fitting is conducted to decide the values of characteristic length and the shear
modulus associated with the curvature measure in the relaxed micromorphic model. The
relaxed micromorphic model reproduces successfully the size-effects in a consistent manner
for both loading cases. Finally, the obtained parameters of the relaxed micromorphic
model were examined for two loading scenarios apart from pure bending. Good agreement
was obtained in general. However, the unique identification of the microscopic elasticity
tensor Cmicro remains yet to be done, but it must be stiffer than the apparent stiffness
under the affine Dirichlet boundary conditions.
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6 Computational approach to identify the material parameters

We defined the microscopic elasticity tensor as the stiffest response at the unit-cell level
in Chapter 5. This was inspired by Neff et al. [2020], where the microscopic elastic-
ity tensor was determined by the Löwner matrix supremum of elasticity tensors under
affine Dirichlet conditions. However, it was found too soft for size-effects in the bending
regime Sarhil et al. [2023a]. This prompted an expansion of our understanding of the
microscopic elasticity tensor, particularly by incorporating non-affine Dirichlet conditions
Sarhil et al. [2023b;c], resulting in a microscopic elasticity tensor calibrated precisely
for bending. However, a homogenization procedure for the identification of the unknown
parameters, including the characteristic length, has not yet been established.

Various methods have been proposed for the homogenization of heterogeneous microstruc-
tures into the Cosserat continuum in Forest and Sab [1998], Hütter [2019], Reda
et al. [2021], the gradient elasticity continuum in Abali and Barchiesi [2021], Abali
et al. [2019], Bacigalupo et al. [2018], Khakalo and Niiranen [2020], Lahbazi
et al. [2022], Sarar et al. [2023], Schmidt et al. [2022], Skrzat and Eremeyev
[2020], Weeger [2021], Yang and Müller [2021], Yang et al. [2020; 2022], and
the classical Eringen-Mindlin micromorphic continuum in Alavi et al. [2021a], Biswas
and Poh [2017], Forest [2002], Hütter [2017; 2022], Rokoš et al. [2019; 2020a;b],
Zhi et al. [2022]. However, in the field of homogenization towards generalized continua,
several important queries emerge that have mostly been explored and answered under the
standard first-order homogenization theory Ganghoffer et al. [2023], Trinh et al.
[2012]. Homogenizing into higher-order continua is indeed a challenging task, with the
definition of a representative volume element (RVE) and the choice of boundary condi-
tions being the first apparent issues that one faces. The first-order homogenization theory
postulates that the condition of continuity of the local fields at the interface of the RVE
results in the periodicity requirement of the displacement fluctuation field. It is worth
noting that the independence of the effective property on the selected RVE is ensured in
first-order homogenization theory as long as we use periodic geometry accompanied by
periodic boundary conditions. However, the periodicity requirement becomes less relevant
in the absence of scale-separation and an overall strain gradient loading in the framework
of higher-order homogenization, see Bacigalupo and Gambarotta [2010b]. Conse-
quently, the higher-order moduli are dependent on the choice of the RVE. Alternatively,
the analysis can be done on a cluster of unit-cells and considering the converged behavior
in the central unit-cell to get rid of boundary layer effects but zero-energy modes for some
certain deformation modes are obtained Forest and Trinh [2011]. Another crucial is-
sue is that the boundary conditions cannot strictly regulate the average second gradient,
and usually, multiple modes are activated simultaneously. Consequently, selecting the rel-
evant higher-order polynomial coefficients becomes very difficult. This can be revised by
volumetric constraints Jänicke and Steeb [2012].

In this Chapter, we aim to avoid the yet unanswered questions by utilizing a non-classical
homogenization strategy to define the remaining unknown parameters of the relaxed mi-
cromorphic model. This optimization strategy is based on the least squares fitting of the
energy of the homogeneous relaxed micromorphic continuum with the energy of the fully
discretized specimens. It does not need the use of classical (or non-classical) micro-macro
transition relations, which are unknown yet for the relaxed micromorphic model. By evalu-
ating various deformation modes, whether random or not, and different specimen sizes, we
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identify the unknown parameters of the relaxed micromorphic model. The presented ap-
proach circumvents the issues associated with conventional homogenization theory, which
are strictly valid when scale-separation holds. Consequently, when size-effect phenomena
appear and scale-separation is not well-defined, establishing a representative volume el-
ement (RVE) becomes inherently problematic and illogical. We specify the optimization
to align with the assumed cubic unit-cell, which is not a limitation for the assumed algo-
rithm, as we precisely know the anisotropy properties of the relaxed micromorphic model.
A relevant methodology is outlined in Abali et al. [2019], which selects n deformation
modes to determine n unknowns and precisely solves the resulting n equations.

This Chapter follows the outline: In Section 6.1, we introduce the periodic uni-cell and
its material parameters. Section 6.2 is devoted to presenting an algorithm that serves as
a motivational example and conceptual validation. This algorithm determines the stiff-
ness matrix of an equivalent homogeneous continuum for one unit-cell under both affine
Dirichlet and periodic boundary conditions. The algorithm is then further expanded in
Section 6.3 to encompass the case of an equivalent relaxed micromorphic homogeneous
continuum. In Section 6.4, we conduct a comparison between the fitting results of the
relaxed micromorphic model, the Cosserat model and the classical micromorphic model
with a simplified curvature and an isotropic curvature. The results are discussed and
validated in Section 6.4.

Parts of this Chapter are published in:

M. Sarhil, L. Scheunemann, P. Lewintan, J. Schröder, and P. Neff. A computa-
tional approach to identify the material parameters of the relaxed micromorphic
model. Computer Methods in Applied Mechanics and Engineering, 425, 116944, 2024.
doi:10.1016/j.cma.2024.116944

6.1 The unit-cell and the material parameters

We consider a unit-cell consisting of a stiff matrix (aluminum) and a swiss-cross shape
ultra-soft inclusion where the Lamé parameters differ by a factor 10000. Both materi-
als are isotropic linear elastic. The parameters and the geometry of the unit-cell are
shown in Figure 6.1. We consider n unit-cells in each direction in the computation do-

main B = [−L
2
,
L

2
]× [−L

2
,
L

2
] = [−n l

2
,
n l

2
]× [−n l

2
,
n l

2
].

l

l1

l2
Lamé parameters λ [kN/mm2] µ [kN/mm2]

Matrix 51.08 26.32
Inclusion 51.08 10−4 26.32 10−4

l [mm] l1 [mm] l2 [mm]

1/n 0.9 l 0.3 l

Figure 6.1: Unit-cell with the material and geometrical parameters. Taken from
Sarhil et al. [2024].
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6.2 Motivation and consistency check for linear elasticity

In this Section, we present the fundamentals of an optimization procedure established on
the concept of a least squares fitting of energies for determining the unknown parameters
of the effective homogenized continuum. Note that linear elasticity model is assumed here
on both microscopic and microscopic scales.

6.2.1 Affine Dirichlet boundary condition

We employ this approach to first identify the elasticity tensor of an equivalent linear
elastic homogeneous medium under affine boundary conditions, as shown in Figure 6.2.
Although affine Dirichlet boundary conditions are not typically considered in classical
homogenization theory, it is important to note that there exists a unique effective elas-
ticity tensor Caffine which defines energy equivalence under all affine boundary conditions,
however, for a certain unit-cell. It is worth mentioning that this tensor is stiffer than
the effective elasticity tensor Cperiodic obtained under periodic boundary conditions, as
discussed in Chapter 5. To encompass both cases, we use the generalized notation Chom

since the same algorithm is involved in determining both tensors.

linear elasticity
Cinclusion

Cmatrix

energetically equivalent

affine Dirichlet BCs

xx

yy

u = ui on ∂Bu = ui on ∂B

Figure 6.2: Illustration of the homogenization algorithm used to identify the parameters of
an equivalent linear elastic medium under affine kinematic boundary condition. Taken from
Sarhil et al. [2024].

The Hill-Mandel lemma postulates that the strain energies of the heterogeneous and
equivalent homogeneous continua are equal. We have the following minimization problem

r2 = min
Chom

imax∑
i=1

||Πhet
i (u,C)− Πhom

i (u,Chom)||2 , (6.1)

where i indicates different loading cases induced by affine Dirichlet boundary conditions
enforced on the whole boundary (ūi = ε̄i · x on ∂B with ε̄i ∈ Sym(3) ). Πhet

i (u,C)
is the total energy of the heterogeneous domain under loading case i while Πhom

i (u,Chom)
is the total energy of an equivalent linear elastic homogeneous continuum under loading
case i. They read

Πhet
i (u,C) =

1

2

∫
B
ε : C(x) : ε dV , Πhom

i (u,Chom) =
1

2

∫
B
ε : Chom : ε dV . (6.2)

The stiffness’s anisotropy class must be specified in advance. This may require additional
considerations and careful choosing of the suitable stiffness’s anisotropy class to ensure
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the accuracy of the results. We consider an equivalent continuum with a stiffness tensor
that holds cubic anisotropy. This aligns with our preference for a cubic unit-cell in Figure
6.1. The stiffness matrix Chom in Voigt notation reads

C̃hom =

 2µhom + λhom λhom 0
λhom 2µhom + λhom 0
0 0 µ∗hom

 , (6.3)

which is characterized by three independent parameters. The total strain energy of the
equivalent homogeneous continuum can be rewritten as

Πhom
i (u,Chom) =

1

2

∫
B
ε : Chom : ε dV

=

∫
B
µhom (ε211 + ε222) + µ∗hom(2ε212) +

λhom

2
(ε11 + ε22)

2 dV

= µhom

Å∫
B
(ε211 + ε222) dV

ã
︸ ︷︷ ︸

Πhom
i,µ

+µ∗hom
Å∫

B
2ε212 dV

ã
︸ ︷︷ ︸

Πhom
i,µ∗

+ λhom
Å∫

B

1

2
(ε11 + ε22)

2dV

ã
︸ ︷︷ ︸

Πhom
i,λ

= µhom Πhom
i,µ + µ∗hom Πhom

i,µ∗ + λhomΠhom
i,λ .

(6.4)

The goal of the assumed algorithm is to identify the parameters λhom, µhom, and µ∗hom

by solving the minimization problem in Equation (6.1). However, initial values must be
appointed to solve the n boundary value problems. Consequently, an iterative procedure
is required after setting initial values for the unknown parameters. We then seek the
increments ∆λhom, ∆µhom, and ∆µ∗hom such that:

Πhom
i (u,Chom +∆Chom) = (µhom +∆µhom)Πhom

i,µ + (µ∗hom +∆µ∗hom)Πhom
i,µ∗

+ (λhom +∆λhom)Πhom
i,λ

=Πhom
i (u,Chom) + ∆µhomΠhom

i,µ +∆µ∗homΠhom
i,µ∗

+∆λhomΠhom
i,λ .

(6.5)

The total strain energy of the equivalent homogeneous continuum can be written for imax

loading cases as
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Πhom

1 (u,Chom +∆Chom)
Πhom

2 (u,Chom +∆Chom)
.
.

Πhom
imax

(u,Chom +∆Chom)

 =


Πhomo

1,µ Πhom
1,µ∗ Πhom

1,λ

Πhom
2,µ Πhom

2,µ∗ Πhom
2,λ

. . .

. . .
Πhom

imax,µ Πhom
imax,µ∗ Πhom

imax,λ


︸ ︷︷ ︸

D

 ∆µhom

∆µ∗hom

∆λhom


︸ ︷︷ ︸

∆Chom

+


Πhom

1 (u,Chom)
Πhom

2 (u,Chom)
.
.

Πhom
imax

(u,Chom)


︸ ︷︷ ︸

b

.

(6.6)

The minimization problem in Equation (6.1) becomes

r2 = min
∆Chom

imax∑
i=1

||Πhet
i (u,C)

−
Ä
Πhom

i (u,Chom) + ∆µhomΠhom
i,µ +∆µ∗homΠhom

i,µ∗ +∆λhomΠhom
i,λ

ä
||2 ,

(6.7)

and the solution of the least squares problem reads

∆Chom = (DTD)−1DT (a− b) with ai = Πhet
i (u,C) , (6.8)

where the parameters µhom, µ∗hom and λhom are updated in an iterative procedure until
the error r2 converges to a constant value, optimally zero. The algorithm is presented
in Algorithm 1. For this algorithm, a standard T2 finite element with quadratic shape
functions is used.

The implemented procedure leads for any imax ≥ 3 and single unit-cell (n = 1) to
the solution µhom = 6.251 kN/mm2, µ∗hom = 8.337 kN/mm2 and λhom = 4.379
kN/mm2, see Figure 6.3. This meets the solution of the classical homogenization the-
ory, see Neff et al. [2020], within one iteration, which is expected because the system
is linear. The error vanishes, meaning the fitting delivers the unique solution, and the
Hill-Mandel condition is precisely fulfilled. Note that choosing three deformation modes
(imax = 3) is sufficient when these modes yield three independent equations, such as
shearing, stretching along one of the axes and a third mode resulting in a third linearly
independent equation.

6.2.2 Periodic boundary condition

In standard homogenization theory, periodic boundary conditions are the choice to define
the effective properties. This is based on the scale-separation assumption due to the
significant difference in length scales between the macroscopic and microscopic problems.
The microscopic strain is decomposed into a constant macroscopic part ε̄ and a fluctuation
part Ûε as
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begin
production of the reference data (heterogeneous material)

- inputs: the unit-cell geometry with the material parameters of the matrix
and inclusion
- define imax affine deformation modes ε̄i for i = 1, ...., imax

- if affine boundary conditions then u = ū = ε̄i · x on ∂B
- if periodic boundary conditions then ū = ε̄i · x on B
- solve imax boundary value problems of the heterogeneous material
- calculate the vector aT = [Πhet

1 ,Πhet
2 , ..,Πhet

imax
]

defining the unknown (homogeneous material)
- set initial values for the parameters λhom, µhom, µ∗hom

repeat
- apply the deformation modes (ε̄i for i = 1, ...., imax)
- if affine boundary conditions then u = ū = ε̄i · x on ∂B
- if periodic boundary conditions then ū = ε̄i · x on B
- solve imax boundary value problems of the equivalent homogeneous
medium (for affine BCs, we solve the total displacement field while for
periodic BCs, we solve the fluctuation part)
- calculate the vector bT = [Πhom

1 ,Πhom
2 , ..,Πhom

imax
]

- calculate the derivative matrix D; (Di: row vectors)

DT
i = [Πhomo

i,µ ,Πhom
i,µ∗ ,Πhom

i,λ ] for i = 1, .., imax

- solve:

[∆µhom,∆µ∗hom,∆λhom]T = (DTD)−1DT (a− b)

-update:
µhom ← µhom +∆µhom,
µ∗hom ← µ∗hom +∆µ∗hom,
λhom ← λhom +∆λhom

- calculate the current error r2

until r2 < tol

- The parameters µhom, µ∗hom, λhom are known
end

Algorithm 1: Algorithm for the minimization problem for an equivalent homogeneous
linear elastic continuum. Taken from Sarhil et al. [2024].
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We consider four random modes imax = 4 applied on a unit-cell n = 1

ε̄1 =

Å
−0.02 0.03
0.03 0.01

ã
, ε̄2 =

Å
0.03 −0.01
−0.01 0.05

ã
,

ε̄3 =

Å
0.01 0.01
0.01 −0.01

ã
, ε̄4 =

Å
0.01 0
0 0.02

ã
.

set initial values:

µhom = 26.32 kN/mm2 , µ∗hom = 26.32 kN/mm2 and λhom = 51.08 kN/mm2.

The algorithm delivers:

iteration µhom µ∗hom λhom r2

[kN/mm2] [kN/mm2] [kN/mm2] [(kN·mm)2]

0 26.32 26.32 51.08 0.05198

1 6.251 8.337 4.379 2.374 10−26

2 6.251 8.337 4.379 1.105 10−28

final result:

µhom = 6.251 kN/mm2 , µ∗hom = 8.337 kN/mm2 and λhom = 4.379 kN/mm2.

Figure 6.3: Results of the parameter identification algorithm for an equivalent linear elas-
ticity continuum under affine boundary conditions. Taken from Sarhil et al. [2024].
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ε = ε̄+ Ûε and u = ū+ Ûu = ε̄ · x+ Ûu . (6.9)

The partial derivatives of the total energy of the homogeneous equivalent continuum with
respect to the unknown material parameters are computed, taking into consideration that
the integral of the fluctuation part of strain over the domain equals zero, i.e.

∫
B
Ûε dV = 0,

Πhom
i,µ =

∫
B

(ε 2
11 + ε 2

22) dV

= VB(ε̄
2
11 + ε̄222) +

∫
B

2(ε̄11Ûε11 + ε̄22Ûε22) dV︸ ︷︷ ︸
=0

+

∫
B

(Ûε 2
11 + Ûε 2

22) dV ,

Πhom
i,µ∗ =

∫
B
2ε212 dV = 2VBε̄

2
12 +

∫
B

4ε̄12Ûε12 dV︸ ︷︷ ︸
=0

+

∫
B

2Ûε 2
12 dV .

Πhom
i,λ =

∫
B

1

2
(ε11 + ε22)

2 dV

=
VB
2
(ε̄11 + ε̄22)

2 +

∫
B

(ε̄11 + ε̄22)(Ûε11 + Ûε22) dV︸ ︷︷ ︸
=0

+

∫
B

1

2
(Ûε11 + Ûε22)2 dV ,

(6.10)

The boundary ∂B is divided into two parts (“+”,“-”) which satisfies ∂B = ∂B+ ∪ ∂B−

with outward unit normals n− and n+ satisfying n− = −n+ and the periodicity condition
is postulated as Ûu(x+) = Ûu(x−) , (6.11)

which is depicted in Figure 6.4. The algorithm is identical to the one for affine Dirichlet
boundary conditions shown in Algorithm 1, but the imax deformation modes are enforced
on the body, i.e. ū = ε̄ · x on B. For this, we implement a standard T2 finite element,
which discretizes the fluctuation field.

linear elasticity
Cinclusion

Cmatrix

energetically equivalent

periodic BCs

xx

yy

Ûu(x+) = Ûu(x−) on ∂BÛu(x+) = Ûu(x−) on ∂B

x− x+ x− x+n−
n+ n−

n+

+

−

− +

+

−

− +

Figure 6.4: Periodicity condition of the fluctuation field is enforced on both heterogeneous
and homogeneous equivalent continua. Taken from Sarhil et al. [2024].

The results of the implemented algorithm are shown in Figure 6.5. For any choice
of three deformation modes or more imax ≥ 3, we get the exact solution in one it-
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eration which reads µhom = 5.9 kN/mm2, µ∗hom = 0.627 kN/mm2 and λhom =
1.748 kN/mm2. This meets the solution of classical homogenization theory in
Neff et al. [2020], Sarhil et al. [2023b]. Like the case of affine boundary conditions,
three deformation modes are sufficient when they deliver three linearly independent equa-
tions. The result of this analysis serves as the limit case for the relaxed micromorphic
model for very large specimens n→∞, i.e. linear elasticity with elasticity tensor Cmacro.
Enforcing vanishing fluctuations on the boundary restores the same results of the affine
Dirichlet boundary condition.

We consider four random modes imax = 4 applied on a unit-cell n = 1

ε̄1 =

Å
−0.02 0.03
0.03 0.01

ã
, ε̄2 =

Å
0.03 −0.01
−0.01 0.05

ã
,

ε̄3 =

Å
0.01 0.01
0.01 −0.01

ã
, ε̄4 =

Å
0.01 0
0 0.02

ã
set initial values:

µhom = 26.32 kN/mm2 , µ∗hom = 26.32 kN/mm2 and λhom = 51.08 kN/mm2.

The algorithm delivers:

iteration µhom µ∗hom λhom r2

[kN/mm2] [kN/mm2] [kN/mm2] [(kN·mm)2]

0 26.32 26.32 51.08 0.05863

1 5.9 0.627 1.748 1.275 10−27

2 5.9 0.627 1.748 2.353 10−31

final result:

µhom = 5.9 kN/mm2, µ∗hom = 0.627 kN/mm2 and λhom = 1.748 kN/mm2 .

Figure 6.5: Results of the parameter identification algorithm for an equivalent linear elas-
ticity continuum under periodic boundary conditions. Taken from Sarhil et al. [2024].

6.3 Computational approach to identify the material parameters for RMM

In order to build a relation between the heterogeneous fully-detailed metamaterial and the
homogeneous relaxed micromorphic continuum, we handle the size-effect by incorporating
the number of considered unit-cells within the computational domain of the reference
heterogeneous material with assuming L = II (2D case), see Equation (5.22). Thus, the
elastic energy density of the relaxed micromorphic in Equation (3.13) becomes
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ψ (∇u,P ,CurlP ) =
1

2
( sym[∇u− P ] : Ce : sym[∇u− P ]

+ symP : Cmicro : symP

+ skew[∇u− P ] : Cc : skew[∇u− P ]

+ µ (
Lc

n
)2CurlP : CurlP ) .

(6.12)

The scalar n has been introduced representing the number of the unit-cells in the compu-

tational domain B = [−L
2
,
L

2
]× [−L

2
,
L

2
] = [−n l

2
,
n l

2
]× [−n l

2
,
n l

2
] as illustrated in Figure

6.6. The characteristic length parameter Lc is fixed then for any considered size.

LLLL

lll
n = 1n = 2n = 3large n

Lc

n
largersmaller

RMM Cmicro (P = ∇u)Cmacro

stiffness largersmaller

. . . . . . . . .

Figure 6.6: Illustration of the scaling Lc/n delivering the intended “smaller is stiffer”
effect for computations on a domain of fixed size and constant Lc. Taken from
Sarhil et al. [2024].

The macroscopic elasticity tensor Cmacro corresponds to large specimens n → ∞, where
a unit-cell with periodic boundary conditions should be used as in our analysis in Sec-
tion 6.2.2. The macroscopic elasticity tensor Cmacro exhibits cubic symmetry with three
independent parameters, and reads

C̃macro =

 2µmacro + λmacro λmacro 0
λmacro 2µmacro + λmacro 0

0 0 µ∗
macro

 , with

λmacro = 1.748 kN/mm2 , µmacro = 5.9 kN/mm2 , µ∗
macro = 0.627 kN/mm2 .

(6.13)

The stiffness tensors Ce and Cmicro should contain the maximal invariance group of
the periodic microstructure (i.e. Cmacro) following the extended Neumann’s principle in
Neff et al. [2020]. Thus, we have



Computational approach to identify the material parameters 109

C̃micro =

 2µmicro + λmicro λmicro 0
λmicro 2µmicro + λmicro 0
0 0 µ∗

micro

 ,
C̃e =

 2µe + λe λe 0
λe 2µe + λe 0
0 0 µ∗

e

 ,

(6.14)

and the elastic energy density assuming symmetric force stress Cc = 0 becomes

ψ (∇u,P ,CurlP ) =µe

(
(u1,1 − P11)

2 + (u2,2 − P22)
2
)

+
µ∗
e

2
(u1,2 + u2,1 − P12 − P21)

2

+
λe
2
(u1,1 + u2,2 − P11 − P22)

2 + µmicro(P
2
11 + P 2

22)

+
µ∗
micro

2
(P12 + P21)

2 +
λmicro

2
(P11 + P22)

2

+
µLc

2

2n2

(
(CurlP )213 + (CurlP )223

)
.

(6.15)

Note that assuming Cc = 0 is a valid option, when the consistent boundary condition
is used which we demonstrated in Chapter 5. The Reuss-like homogenization relation in
Equation (3.15) taking into consideration the relations in Equation (6.14) leads to

µe =
µmicro µmacro

µmicro − µmacro

, µ∗
e =

µ∗
micro µ

∗
macro

µ∗
micro − µ∗

macro

,

λe + µe =
(λmicro + µmicro) (λmacro + µmacro)

(λmicro + µmicro)− (λmacro + µmacro)
.

(6.16)

The current problem depicted in Figure 6.7 can be expressed by least squares fitting of en-
ergies of the reference heterogeneous solution and the homogenous relaxed micromorphic
model solution

r2 = min
µmicro, µ

∗
micro, λmicro, µL2

c

nmax∑
n=1

imax∑
i=1

||Πhet
i×n(u)− Πi×n(u,P )||2 , (6.17)

with i = 1, ...., imax loading cases on n × n unit-cells for n = 1, ..., nmax. Consequently,
jmax = imax nmax reference solutions need to be obtained for the heterogeneous material.

To solve the minimization problem in Equation (6.17), we define the following derivatives
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RMM

energetically equivalent

non-affine Dirichlet BCs

x

y

x

y

x

y

x

y

u = ui on ∂B
u = ui on ∂B P · τ = ∇ui · τ on ∂B

n = 1n = 2n = 3

Figure 6.7: Illustration of the minimization problem to obtain the material parameters in
the RMM. The consistent coupling condition is enforced on the whole boundary. Taken from
Sarhil et al. [2024].

Πi×n,µmicro
=

∂Πi×n

∂µmicro

=

∫
B

∂ψ

∂µmicro

dV ,

Πi×n,µ∗
micro

=
∂Πi×n

∂µ∗
micro

=

∫
B

∂ψ

∂µ∗
micro

dV ,

Πi×n,λmicro
=

∂Πi×n

∂λmicro

=

∫
B

∂ψ

∂λmicro

dV ,

Πi×n,µL2
c
=
∂Πi×n

∂µL2
c

=

∫
B

∂ψ

∂µL2
c

dV ,

(6.18)

which cannot be evaluated analytically. Therefore, they will be determined numerically
by a finite difference scheme as

∂Π

∂•
=

Π(•+ ϵ)− Π(•)
ϵ

(6.19)

where the scalar ϵ has to be small. The minimization problem in Equation (6.17) can be
expressed instead in terms of the increments of the unknown quantities and we get

r2 = min
∆µmicro,∆µ∗

micro,∆λmicro,∆µL2
c

nmax∑
n=1

imax∑
i=1

||Πhet
i×n −

(
Πi×n +

∂Πi×n

∂µmicro

∆µmicro

+
∂Πi×n

∂µ∗
micro

∆µ∗
micro +

∂Πi×n

∂λmicro

∆λmicro +
∂Πi×n

∂µL2
c

∆µL2
c

)
||2 .

(6.20)

Hence, we obtain an optimization problem where the unknowns have to be updated in an
iterative procedure. In the following, we execute a line search algorithm to ensure that
the unknowns do not violate some constraints, which we introduce later. The solution of
the minimization problem at the current position (µmicro, µ

∗
micro, λmicro, µL

2
c) leads to the

following vector

Λ = (DTD)−1DT (a− b) , (6.21)

with
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a =


Πhet

1×1

Πhet
1×2

.

.
Πhet

imax×nmax

 , b =


Π1×1

Π1×2

.

.
Πimax×nmax

 , Λ =


∆µmicro

∆µ∗
micro

∆λmicro

∆µL2
c

 , (6.22)

and

D =



DT
1×1

DT
1×2

.

.

DT
imax×nmax

 =



∂Π1×1

∂µmicro

∂Π1×1

∂µ∗
micro

∂Π1×1

∂λmicro

∂Π1×1

∂µL2
c

∂Π1×2

∂µmicro

∂Π1×2

∂µ∗
micro

∂Π1×2

∂λmicro

∂Π1×2

∂µL2
c

. . . .

. . . .
∂Πimax×nmax

∂µmicro

∂Πimax×nmax

∂µ∗
micro

∂Πimax×nmax

∂λmicro

∂Πimax×nmax

∂µL2
c

 , (6.23)

where the vector Λ represents a preferred direction at the current position. The new
position has to be updated as

µmicro

µ∗
micro

λmicro

µL2
c


new

=


µmicro

µ∗
micro

λmicro

µL2
c

+ βΛ (6.24)

where β is the distance along the direction Λ. An exact strategy can be implemented to
optimize the identification of β with the criterion

r2 =min
β

nmax∑
n=1

imax∑
i=1

||Πhet
i×n

− Πi×n(µmicro + βΛ1, µ
∗
micro + βΛ2, λmicro + βΛ3, µL

2
c + βΛ4)||2 .

(6.25)

The quantity Cmicro − Cmacro must be positive definite to keep Ce positive definite, see
Equation (3.15), and therefore Cmicro must be stiffer than Cmacro. Moreover, Lc must be
strictly positive which yields then a maximum distance βmax along the preferred direction
which satisfies

µmicro + βmaxΛ1 > µmacro ,

µ∗
micro + βmaxΛ2 > µ∗

macro ,

λmicro + βmaxΛ3 + µmicro + βmaxΛ1 > λmacro + µmacro ,

µL2
c + βmaxΛ4 > 0 .

(6.26)

For our implementation, inexact identification of β is implemented seeking simplicity by
evaluating the function at multiple points in the domain β ∈ [0,min(1, βmax)] along the
preferred direction Λ and we choose the one with the least error r2.

The selection of the boundary conditions plays an essential role in the homogenization
theory. We choose Dirichlet boundary conditions that encompass both affine and non-
affine parts on the entire boundary
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ūi = Bi · x+Ci · x⊗ x on ∂B (6.27)

with

Bi =

ï
(Bi)11 (Bi)12
(Bi)21 (Bi)22

ò
with (Bi)jk = random[−0.05, 0.05] (6.28)

and

Ci ·x⊗x =

ï
(Ci)111 (Ci)112 (Ci)122
(Ci)211 (Ci)212 (Ci)222

ò x2

xy
y2

 with (Ci)jkl = random[−0.05, 0.05] .

(6.29)

Incorporating non-affine boundary conditions is anticipated, in analogy to the theories of
higher-order homogenization. Nevertheless, size-effects have been reported for both affine
and non-affine loading. The implemented algorithm can be seen in Algorithm 2 which is
searching for an optimized quantity µL2

c associated with the curvature. To represent the
order of Lc with respect to the size of the unit-cell, we give a definition for the shear mod-
ulus µ by using the isotropic elastic moduli closest to the cubic macroscopic moduli Cmacro

for the log-Euclidean norm Norris [2006]. This definition is unique and independent of
whether the difference in stiffness or compliance is considered. The isotropic equivalent
shear modulus reads

µ = 5

»
(µmacro)2(µ∗

macro)
3 = 1.537 kN/mm2 . (6.30)

The results of the implemented algorithm for the parameter identification of the RMM are
shown in Figure 6.8. We employ 40 randomly generated deformation modes across three
distinct sizes. Consequently, we solve 120 boundary value problems for the heterogeneous
case before initiating the least squares optimization procedure.

The implemented optimization algorithm reaches the intended purpose, resulting in a final
error much less than the error of the given initial values. However, µ∗

micro tends towards
very large values which do not fit a classical shear modulus. Thus, we need to introduce
the concept of the stiffest possible response: the microscopic elasticity tensor cannot yield
a stiffer response than the homogeneous stiff matrix for any loading scenario. The stiffest
possible response concept stems from the relaxed micromorphic model operating between
two scales, both governed by linear elasticity with standard elasticity tensor.

The concept of the stiffest possible response ensures the preservation of the physical in-
terpretation of the upper bound, which cannot be logically stiffer than the stiff matrix,
at least from an engineering point of view. While the microscopic elasticity tensor Cmicro

also exists in the classical micromorphic models, it lacks an associated bound. Thus, the
microscopic elasticity tensor in the classical micromorphic continuum is not reflected in
a microscopic scale (linear elasticity with elasticity tensor Cmicro). Setting Cmicro to infin-
ity aligns with the assumption of an infinitely rigid microstructure that can only rotate
(Cosserat model), which is a very unrealistic simplification. The goal of the stiffest re-
sponse constraint, likely resulting in a poorer fit, is to preserve a physical interpretation of
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begin
production of the reference data (heterogeneous material)

- define nmax deformation modes (i = 1, ...., imax) applied on the boundary

ūi = Bi · x+Ci · x⊗ x on ∂B

- define number of cluster sizes considered in analysis with n× n unit-cells;
n = 1, .., nmax

- solve jmax = imaxnmax boundary value problems of the heterogeneous
material
- calculate the vector aT = [Πhet

1×1,Π
het
1×2, ....,Π

het
imax×nmax

]

defining the unknown (homogeneous relaxed micromorphic continnum)
- give initial values for the parameters µmicro, µ

∗
micro, λmicro, µL

2
c

repeat
- apply the deformation modes on the boundary
(ūi = Bi · x+Ci · x⊗ x on ∂B)
- calculate the vector bT = [Π1×1,Π1×2, ....,Πimax×nmax ]
- calculate the matrix D; row vectors read

DT
i×n = [

∂Πi×n

∂µmicro

,
∂Πi×n

∂µ∗
micro

,
∂Πi×n

∂λmicro

,
∂Πi×n

∂µL2
c

]

- solve:
Λ = (DTD)−1DT (a− b)

- define βmax ≤ 1 which keeps Ce positive definite and Lc positive

- try multiple values of β = { 1

512
,

1

256
,

1

128
,
1

64
,
1

32
,
1

8
,
1

4
,
1

2
, 1}βmax

- choose β which delivers the least error r2 along the direction Λ
- update:

µmicro ← µmicro + βΛ1, µ∗
micro ← µ∗

micro + βΛ2

λmicro ← λmicro + βΛ3, µL2
c ← µL2

c + βΛ4

- calculate the current error r2new to compare with the one form last
iteration r2old

until
r2old − r2new

r2old
< tol

- the parameters µmicro, µ
∗
micro, λmicro, µL

2
c are known

end

Algorithm 2: Algorithm for the optimization procedure of parameter identification
of the relaxed micromorphic model. Taken from Sarhil et al. [2024].
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We consider forty random modes imax = 40 applied on three sizes nmax = 3

ūi = Bi · x+Ci · x⊗ x on ∂B

components of Bi and Ci are randomly generated, see Equations (6.28) and (6.29)

known from previous analysis in Equations (6.13) and (6.30):

µmacro = 5.9 kN/mm2 , µ∗
macro = 0.627 kN/mm2 ,

λmacro = 1.748 kN/mm2 , µ = 1.537 kN/mm2

set initial values:

µmicro = 26.32 kN/mm2, µ∗
micro = 26.32 kN/mm2,

λmicro = 51.08 kN/mm2, Lc = 1mm

The algorithm delivers:

iteration µmicro µ∗
micro λmicro Lc r2

[kN/mm2] [kN/mm2] [kN/mm2] [mm] [(kN·mm)2]

0 26.32 26.32 51.08 1 0.015237

1 19.66 50.85 38.46 0.788 0.00273407

2 15.38 143.12 27.98 0.697 0.0011551

: : : : : :

6 10.18 344.45 11.29 0.883 0.000352264

7 10.19 358.87 11.3 0.882 0.000352236

: : : : : :

10 10.19 354.77 11.3 0.882 0.000352234

11 10.19 354.88 11.3 0.882 0.000352234

12 10.19 354.87 11.3 0.882 0.000352234

final parameters set:

µmicro = 10.19 kN/mm2, µ∗
micro = 354.87 kN/mm2,

λmicro = 11.3 kN/mm2, Lc = 0.882 mm = 0.882L.

Figure 6.8: Results of the parameter identification algorithm for the relaxed micromorphic
model. We refer to the obtained final parameters set here as parameter set 1. Taken from
Sarhil et al. [2024].
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the microscopic scale appearing solely in the relaxed micromorphic model. Here, the coef-
ficients of Cmicro are expected to have a reasonable range, avoiding arbitrary magnitudes
of the material parameters found in other generalized continua. However, the reasonabil-
ity of this assumption remains an open question for future research. This bound on the
stiffness will be expressed in terms of energy norms (Löwner order) as

ε : Cmicro : ε ≤ ε : Cmatrix : ε , ∀ε ∈ Sym(3) . (6.31)

The latter condition can be rewritten as

 ε12
ε22
2ε12

T  2µmicro + λmicro λmicro 0
λmicro 2µmicro + λmicro 0
0 0 µ∗

micro

  ε12
ε22
2ε12

 ≤
 ε12

ε22
2ε12

T  2µmatrix + λmatrix λmatrix 0
λmatrix 2µmatrix + λmatrix 0

0 0 µ∗
matrix

  ε12
ε22
2ε12

 ,

∀

 ε12
ε22
ε12

 ∈ R3 ,

(6.32)

and the solution reads, see Neff et al. [2020],

µ∗
micro ≤ µmatrix ,

µmicro ≤ µmatrix ,

µmicro + λmicro ≤ µmatrix + λmatrix .

(6.33)

The first optimization gives a shear modulus µ∗
micro = 354.87 kN/mm2 which violate the

criterion of the stiffest response in Equation (6.33) since µ∗
matrix = 26.32 kN/mm2. Accord-

ingly, we refine the optimization algorithm. In each iteration, if the new value(s) break
the constraints in Equation (6.33), we project the parameter that violates the constraints
back into the acceptable domain. We then repeat the current iteration, omitting this
parameter. Regardless, in the next iteration, we include all parameters again. In our al-
gorithm, only the parameter µ∗

micro attempts to break the upper limit constraint, leading
to its projection back into the admissible domain in each iteration. The results of the
revised algorithm are depicted in Figure 6.9. The obtained parameters from the optimiza-
tion procedure with upper constraints lead to a larger error than when no constraints
are considered. There is a concern, particularly with gradient-based algorithms, regarding
whether they converge to a global minimum and the potential for a much more satisfactory
solution. To investigate this, we calculated the error for 114 parameter sets, employing
10 divisions within the permitted domain for each parameter between the macroscopic
and matrix parameters. The set exhibiting the least error was chosen as the algorithm’s
starting point. The algorithm consistently converges to the same solution shown in Figure
6.10 for any starting point (we have tried many other starting points). The advantageous
behavior of the relaxed micromorphic model is acknowledged as a two-scale model. It is
bounded by two limits, each with distinct physical interpretations, and all the unknown
parameters have well-defined ranges. Therefore, employing a gradient-based optimization
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procedure was demonstrated to be effective. Vice versa, utilizing a gradient-based opti-
mization for the classical Eringen-Mindlin micromorphic theory, lacking an upper bound,
does pose challenges due to the higher number of parameters and the uncertainty about
the magnitude of these unknowns. We tried to enhance the fitting by introducing an ad-
ditional skew-symmetric term in the energy, i.e. µc|| skew(∇u − P )||2, representing the
micro-rotation coupling, where µc is the Cosserat modulus. However, the Cosserat couple
modulus trended towards negative values and needed to be projected back to zero, de-
livering symmetric force stress σ as before. This highlights the importance of using the
consistent coupling boundary condition and meets the results of our principle investiga-
tions in Chapter 5.

6.3.1 Skew-symmetric micro-distortion field instead of the full one

By setting Cmicro →∞, the relaxed micromorphic model retrieves the Cosserat model,
see Section 2.6.3. The micro-distortion field P must then be skew-symmetric, c.f. Alavi
et al. [2022a], Blesgen and Neff [2023], Ghiba et al. [2023], Jeong and Neff
[2010], Jeong et al. [2009], Khan et al. [2022], Neff and Jeong [2009], Neff
et al. [2010a]. The energy function of the relaxed micromorphic model is modified then
with setting A := skewP ∈ so(3) to

ψCosserat (∇u,A,CurlA) =
1

2
( sym∇u : Cmacro : sym∇u

+ (skew∇u−A) : Cc : (skew∇u−A)

+ µL2
c CurlA : L : CurlA) .

(6.34)

which turns out for the cubic anisotropic case into as

ψCosserat (∇u,A,CurlA) =µmacro (u
2
1,1 + u22,2) +

µ∗
macro

2
(u1,2 + u2,1)

2

+
λmacro

2
(u1,1 + u2,2)

2 +
µc

2
(u1,2 − u2,1 − 2A12)

2

+
µLc

2

2n2

(
(CurlA)213 + (CurlA)223

)
.

(6.35)

Here, µc must be strictly positive for the Cosserat model to be operative, otherwise the
coupling of the fields (u,A) vanishes. We applied the optimization algorithm for the
Cosserat model where only two unknown parameters (Lc and µc) must be identified. The
results are demonstrated in Figure 6.11. We explored two boundary condition scenarios
for the micro-distortion field: (I) consistent boundary conditions applied to the entire
boundary, and (II) free boundary conditions. The results obtained with consistent bound-
ary conditions delivered significantly better fitting. Consequently, the following analysis
focuses on the results obtained under consistent boundary conditions.
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We consider forty random modes imax = 40 applied on three sizes nmax = 3

ūi = Bi · x+Ci · x⊗ x on ∂B

where components of Bi and Ci are randomly generated, see Equations (6.28) and (6.29)

known from previous analysis in Equations (6.13) and (6.30):

µmacro = 5.9 kN/mm2 , µ∗
macro = 0.627 kN/mm2 ,

λmacro = 1.748 kN/mm2 , µ = 1.537 kN/mm2

set initial values:

µmicro = 26.32 kN/mm2, µ∗
micro = 26.32 kN/mm2,

λmicro = 51.08 kN/mm2, Lc = 1mm

The algorithm delivers:

iteration µmicro µ∗
micro λmicro Lc r2

[kN/mm2] [kN/mm2] [kN/mm2] [mm] [(kN·mm)2]

0 26.32 26.32 51.08 1 0.015237

1 19.37 26.32 19.33 1.039 0.0048919

2 13.73 26.32 10.8 1.083 0.00124667

3 10.07 26.32 7.83 1.126 0.000695682

4 10.57 26.32 8.19 1.122 0.000674557

5 10.55 26.32 8.22 1.123 0.000674545

6 10.55 26.32 8.22 1.123 0.000674545

7 10.55 26.32 8.22 1.123 0.000674545

final parameters set:

µmicro = 10.55 kN/mm2, µ∗
micro = 26.32 kN/mm2,

λmicro = 8.22 kN/mm2, Lc = 1.123mm = 1.123L

Figure 6.9: Results of the parameter identification algorithm for the relaxed micromorphic
model. Here, we impose a constraint on the microscopic elasticity tensor Cmicro to ensure
it is not stiffer than the stiff matrix. We refer to the obtained final parameters set here as
parameter set 2. Taken from Sarhil et al. [2024].
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We consider forty random modes imax = 40 applied on three sizes nmax = 3

ūi = Bi · x+Ci · x⊗ x on ∂B

components of Bi and Ci are randomly generated, see Equations (6.28) and (6.29)

known from previous analysis in Equations (6.13) and (6.30):

µmacro = 5.9 kN/mm2 , µ∗
macro = 0.627 kN/mm2 ,

λmacro = 1.748 kN/mm2 , µ = 1.537 kN/mm2

set initial values:

µmicro = 10.03 kN/mm2 , µ∗
micro = 26.32 kN/mm2,

λmicro = 6.7 kN/mm2, Lc = 1.36mm

The algorithm delivers:

iteration µmicro µ∗
micro λmicro Lc r2

[kN/mm2] [kN/mm2] [kN/mm2] [mm] [(kN·mm)2]

0 10.03 26.32 6.7 1.36 0.00153283

1 10.74 26.32 7.9 1.057 0.000785925

2 10.42 26.32 8.17 1.128 0.000674967

3 10.56 26.32 8.22 1.122 0.000674548

4 10.55 26.32 8.22 1.123 0.000674545

5 10.55 26.32 8.22 1.123 0.000674545

final parameters set:

µmicro = 10.55 kN/mm2, µ∗
micro = 26.32 kN/mm2,

λmicro = 8.22 kN/mm2, Lc = 1.123mm = 1.123L

Figure 6.10: Results of the parameter identification algorithm for the relaxed micromorphic
model. Here, we impose a constraint on the microscopic elasticity tensor Cmicro to ensure it
is not stiffer than the stiff matrix. We start with different initial values and the algorithm
delivers the same values as in Figure 6.9. Taken from Sarhil et al. [2024].
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We consider forty random modes imax = 40 applied on three sizes nmax = 3

ūi = Bi · x+Ci · x⊗ x on ∂B

components of Bi and Ci are randomly generated, see Equations (6.28) and (6.29)

known from previous analysis in Equations (6.13) and (6.30):

µmacro = 5.9 kN/mm2 , µ∗
macro = 0.627 kN/mm2 ,

λmacro = 1.748 kN/mm2 , µ = 1.537 kN/mm2

further assumptions: (≈ Cmicro →∞)

µmicro = 10000µmacro , µ∗
micro = 10000µ∗

macro , λmicro = 10000λmacro

set initial values:

µc = 1 kN/mm2 , Lc = 1mm

The algorithm delivers:

with consistent boundary condition without consistent boundary condition

iteration µc Lc r2

[kN/mm2] [mm] [(kN·mm)2]

0 1 1 0.01967

1 4.04 0.615 0.00265

2 12.97 0.59 0.002517

: : : :

10 1739.03 0.614 0.002128

11 1408.36 0.614 0.002125

: : : :

17 452.64 0.616 0.00211923

18 452.6 0.616 0.00211923

iteration µc Lc r2

[kN/mm2] [mm] [(kN·mm)2]

0 1 1 0.0261827

1 2.04 0.711 0.0258911

2 14.51 0.51 0.0257639

: : : :

10 64.43 · 104 5.133 0.0114968

11 64.82 · 104 5.132 0.0114965

: : : :

19 67.49 · 104 5.132 0.0114945

20 67.52 · 104 5.132 0.0114945

final parameters set (with consistent boundary condition):

µc = 452.6 kN/mm2 and Lc = 0.616mm = 0.616L.

Figure 6.11: Results of the parameter identification algorithm for the Cosserat model.
Taken from Sarhil et al. [2024].
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6.3.2 Full gradient of the micro-distortion field instead of its Curl

Another comparison can be conducted between the results obtained by the relaxed cur-
vature (CurlP ) within the relaxed micromorphic model and the full curvature (∇P )
within the classical micromorphic model. The energy function of the Eringen-Mindlin
micromorphic model reads (using the relaxed micromorphic model notation)

ψEringen (∇u,P ,∇P ) =
1

2

(
sym[∇u− P ] : Ce : sym[∇u− P ]

+ symP : Cmicro : symP

+ skew[∇u− P ] : Cc : skew[∇u− P ]

+ (∇u− P ) : Cmixed : symP

+
µL2

c

n2
∇P ... L̆ ...∇P

)
.

(6.36)

Here, L̆ is a sixth-order tensor and Cmixed is a fourth-order tensor. For the planar cubic
case, the tensor L̆ associated with the curvature requires already the definition of 10
independent parameters d’Agostino et al. [2024]. Thus, we have

∇P
... L̆

...∇P =

P11,1

P12,2

P22,1

P21,2

P22,2

P21,1

P11,2

P12,1



T 

L111111 L111122 L111221 L111212 0 0 0 0
L111122 L122122 L122221 L122212 0 0 0 0
L111221 L122221 L221221 L221212 0 0 0 0
L111212 L122212 L221212 L212212 0 0 0 0

0 0 0 0 L111111 L111122 L111221 L111212

0 0 0 0 L111122 L122122 L122221 L122212

0 0 0 0 L111221 L122221 L221221 L221212

0 0 0 0 L111212 L122212 L221212 L212212





P11,1

P12,2

P22,1

P21,2

P22,2

P21,1

P11,2

P12,1


,

(6.37)

where L111111, L111122, L111221, L111212, L122122, L122221, L122212, L221221, L221212 and L212212

are to be determined. The total number of unknown parameters for the Eringen-Mindlin
full micromorphic model equals 14 for the 2D case (3 for Cmicro, 1 for Cc and 10 for L) if
we already exclude the mixed term (∇u− P ) : Cmixed : symP . Dealing with such many
unknowns is not feasible for a gradient-based optimization. Therefore, for the sake of
simplicity, we restrict our analysis to the most simplified curvature formulation to reduce
the number of unknown parameters. Thus, the curvature will only be associated with a

single scalar µL2
c, i.e. L̆

...∇P = ∇P . However, it is clear that optimizing the coefficients
of the tensor L̆ (with cubic symmetries) will provide a better fit. The energy function of
the simplified micromorphic model for a cubic material turns into
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ψEringen (∇u,P ,∇P ) = µe

(
(u1,1 − P11)

2 + (u2,2 − P22)
2
)

+
µ∗
e

2
(u1,2 + u2,1 − P12 − P21)

2

+
λe
2
(u1,1 + u2,2 − P11 − P22)

2

+ µmicro(P
2
11 + P 2

22) +
µ∗
micro

2
(P12 + P21)

2

+
λmicro

2
(P11 + P22)

2 +
µc

2
(u1,2 − u2,1 − P12 + P21)

2

+
µLc

2

2n2
||∇P ||2 ,

(6.38)

where the parameters µmicro, µ
∗
micro, λmicro, µc and Lc need to be defined. The optimization

follows the same approach as for the relaxed micromorphic model by enforcing the consis-
tent boundary conditions on the whole boundary. The results are displayed in Figure 6.12.
The optimization gives µmicro = 5.959 kN/mm2 , µ∗

micro = 80.82 kN/mm2, λmicro = 12.06
kN/mm2 , µc = 1138.34 kN/mm2 and Lc = 0.695 mm with an error r2 = 0.000612487
(kN·mm)2. The simplified full micromorphic model prefers an asymmetric force stress
σ, disagreeing with the relaxed micromorphic model. Moreover, Cmicro for the full mi-
cromorphic model is not associated with an upper limit stiffness property, which makes
the obtained tensor Cmicro not physically based and, therefore, incomparable with any
measurable quantity from an engineering point of view.

We can enhance the fitting by introducing a simplified isotropic curvature characterized
by three independent parameters (α1, α2, α3). This isotropic curvature in the full micro-
morphic model has the form Rizzi et al. [2021b]

∇P ... L̆ ...∇P =
2∑

i=1

Å
α1|| dev symP,i||2 + α2|| skewP,i||2 +

2

9
α3 tr

2(P,i)

ã
. (6.39)

The optimization outcomes are demonstrated in Figure 6.13 assuming Lc = 1 mm. The op-
timized parameters read µmicro = 5.967 kN/mm2 , µ∗

micro = 392.15 kN/mm2, λmicro = 10.77
kN/mm2, µc = 808.94 kN/mm2, α1 = 0.187 , α2 = 0.318 and α3 = 5.65 . However, the error
r2 for the isotropic curvature (0.000528 [(kN·mm)2]) does not show a notable enhancement
compared to the simplified curvature (0.000612 [(kN·mm)2]). Note that the calculated
parameters (Cmicro, µc) for the two formulations of curvature in the micromorphic model
show a significant difference, leaving doubts about the physical interpretations.
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We consider forty random modes imax = 40 applied on three sizes nmax = 3

ūi = Bi · x+Ci · x⊗ x on ∂B

components of Bi and Ci are randomly generated, see Equations (6.28) and (6.29)

known from previous analysis in Equations (6.13) and (6.30):

µmacro = 5.9 kN/mm2 , µ∗
macro = 0.627 kN/mm2 ,

λmacro = 1.748 kN/mm2 , µ = 1.537 kN/mm2

further assumptions:

Cmixed = 0

set initial values:

µmicro = 26.32 kN/mm2 , µ∗
micro = 26.32 kN/mm2,

λmicro = 51.08 kN/mm2, µc = 1 kN/mm2 , Lc = 1mm

The algorithm delivers:

iteration µmicro µ∗
micro λmicro µc Lc r2

[kN/mm2] [kN/mm2] [kN/mm2] [kN/mm2] [mm] [(kN·mm)2]

0 26.32 26.32 51.08 1 1 0.029915

1 8.48 46.8 6.14 4.27 0.7 0.0023058

2 8.33 82.89 9.32 11.54 0.621 0.0018288

: : : : : : :

11 5.959 85.5 12.28 1057.11 0.688 0.000612789

12 5.959 82.99 12.16 1070.65 0.692 0.000612667

: : : : : : :

25 5.959 80.83 12.06 1138.32 0.695 0.000612487

26 5.959 80.82 12.06 1138.34 0.695 0.000612487

final parameters set:

µmicro = 5.959 kN/mm2 , µ∗
micro = 80.82 kN/mm2, λmicro = 12.06 kN/mm2,

µc = 1138.34 kN/mm2, Lc = 0.695mm = 0.695L .

Figure 6.12: Results of the parameter identification algorithm for the simplified full mi-
cromorphic model. Taken from Sarhil et al. [2024].
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We consider forty random modes imax = 40 applied on three sizes nmax = 3

ūi = Bi · x+Ci · x⊗ x on ∂B

components of Bi and Ci are randomly generated, see (6.28) and (6.29)

known from previous analysis in Equations (6.13) and (6.30):

µmacro = 5.9 kN/mm2 , µ∗
macro = 0.627 kN/mm2 ,

λmacro = 1.748 kN/mm2 , µ = 1.537 kN/mm2

further assumptions:

Lc = 1mm, Cmixed = 0

set initial values:

µmicro = 26.32 kN/mm2 , µ∗
micro = 26.32 kN/mm2, λmicro = 51.08 kN/mm2,

µc = 1 kN/mm2, α1 = α2 = α3 = 1

The algorithm delivers:

iteration µmicro µ∗
micro λmicro µc α1 α2 α3 r2

[kN/mm2] [kN/mm2] [kN/mm2] [kN/mm2] [(kN·mm)2]

0 26.32 26.32 51.08 1 1 1 1 0.018407

1 16.21 35.89 −0.714 1.966 0.8 0.702 2.254 0.00180853

2 11.76 62.89 3.425 4.12 0.673 0.355 3.09 0.00122141

: : : : : : :

13 10.33 249.7 5.974 189.27 0.398 0.212 3.69 0.000956095

14 10.2 266.56 6.24 523.67 0.373 0.212 3.77 0.000945068

: : : : : : :

25 5.974 430.96 11.41 773.63 0.148 0.325 5.883 0.000534085

26 5.959 406.16 11.05 784.36 0.166 0.318 5.758 0.000532797

: : : : : : :

49 5.966 392.15 10.77 808.91 0.187 0.318 5.65 0.000528028

50 5.967 392.15 10.77 808.94 0.187 0.318 5.65 0.000528028

final parameters set:

µmicro = 5.967 kN/mm2, µ∗
micro = 392.15 kN/mm2, λmicro = 10.77 kN/mm2,

µc = 808.94 kN/mm2, α1 = 0.187, α2 = 0.318, α3 = 5.65

Figure 6.13: Results of the parameter identification algorithm for the full micromorphic
model with isotropic curvature. Taken from Sarhil et al. [2024].
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6.4 Comparisons and validation

The average error of the relaxed micromorphic model concerning 120 reference hetero-
geneous solutions equals 5.3% for parameter set 1 (not constrained) in Figure 6.8, and
7.5% for parameter set 2 in Figure 6.9 (constrained). The Cosserat case gives an average
error of 13.7%. The full micromorphic model leads to an average error of 7.2% for the
simplified curvature and 6.3% for the isotropic curvature. Figure 6.14 shows the results
of fitting 7 deformation modes from the 40 random modes. We expand the results to
encompass not just the first 3 sizes (n = 1, 2, 3) employed in the optimization algorithm
but also the first 6 sizes (n = 1, .., 6). Further after these sizes, size-effects do not occur,
and standard homogenization theory becomes valid. The relaxed micromorphic and the
full micromorphic models demonstrate good agreement with the heterogeneous solutions.
While the Cosserat model delivers the poorest fitting among the investigated models, no
obvious superior model stands out, but the unconstrained relaxed micromorphic model
(parameter set 1) illustrates the least error.

We validate the optimization procedure results in Figure 6.15 for four different defor-
mation modes that were not considered in the optimization algorithm. Two deformation
modes are first-order modes and the other are second-order modes. The models show, in
general, satisfactory results. Due to the relaxed curvature expression in the relaxed mi-
cromorphic model, we do not expect to reach a perfect fitting, considering that only four
unknown parameters describe the relaxed micromorphic model. The Cosserat model re-
produces no size-effects for axial loading and displays good results for shear loading, which
is expected. However, the relaxed micromorphic model exhibits better overall agreement
with the fully resolved solution. Using the full-gradient of the micro-distortion with a
single characteristic length parameter does not enhance the overall fitting (the simplified
Eringen-Mindlin micromorphic model). We tested if a better fitting can be achieved using
an isotropic curvature with 3 independent parameters. However, this did not lead to a
significant enhancement.

Discussions

We successfully established a computational approach to define the unknown material
parameters of the relaxed micromorphic model. We first conducted a short consistency
check of the presented methodology for linear elasticity under affine and periodic bound-
ary conditions. The implemented algorithm delivered the correct results of the classical
homogenization theory. We expanded our approach to the relaxed micromorphic model.
Due to the simplicity of the model, only the microscopic elasticity tensor Cmicro and a
scalar associated with curvature have to be defined via the suggested computational ap-
proach, given that the macroscopic elasticity tensor Cmacro is known and Ce is uniquely
determined once Cmicro is known.

Only four parameters were included in the algorithm for our specific unit-cell with cubic
symmetry. The algorithm is based on the Hill-Mandel energy equivalence applied to vari-
ous deformation modes and sizes. It employs a least squares fitting of the energies of the
fully resolved metamaterial and the equivalent homogenous continuum. Thus, we have
avoided the classical microscopic-macroscopic transition schemes and the identification of
a representative volume element. Moreover, we eliminated the need to deal with various
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deformation mode i = 1

deformation mode i = 5 deformation mode i = 10

deformation mode i = 15 deformation mode i = 20

deformation mode i = 30 deformation mode i = imax = 40

Figure 6.14: The total energy of the heterogeneous material, the relaxed micromorphic
model, the Cosserat case, and the Eringen-Mindlin full micromorphic model with both the
simplified and isotropic curvature. We show 7 random deformation modes with the deformed
shape for n = 1 scaled by a factor of three. Taken from Sarhil et al. [2024].
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ūT = (0.05x, 0) ūT = (0.05y, 0)

ūT = (0.05xy, 0) ūT = (0, 0.05x2)

Figure 6.15: The total energy of the heterogeneous material and the homogeneous relaxed
micromorphic model is examined for the two parameter sets, varying the size for four modes
that were not included in the algorithm. We also show the outcomes of the Cosserat and
the simplified Eringen-Mindlin micromorphic model. Dirichlet boundary conditions are set
on the whole boundary u = ū on B. The deformed shape is shown for n = 1 enhanced
by a factor of three. Taken from Sarhil et al. [2024].

stress quantities and their microscopic equivalents, which are unknown to us yet.

The implemented algorithm delivered a good fit, but we found it is necessary to add
an additional criterion, from an engineering point of view, ensuring that the microscopic
elasticity tensor cannot exceed the stiffness of the homogeneous stiff matrix for any defor-
mation mode. We compared the obtained parameters with and without this criterion, and
the results showed satisfactory agreement. Moreover, we conducted a comparison between
the results of the relaxed micromorphic model and those obtained by the Cosserat model,
which uses a skew-symmetric micro-distortion field, as well as the simplest case of the full
Eringen-Mindlin micromorphic model. For the full Eringen-Mindlin micromorphic model,
we utilized the full-gradient of the micro-distortion field for the curvature but associated
with a single scalar characteristic length. We attempted to enhance the fitting of the full
Eringen-Mindlin micromorphic model by employing an isotropic curvature, resulting in a
slight enhancement. The relaxed and full micromorphic continuum shows a comparable
fitting level to the fully resolved heterogeneous solution, while the Cosserat continuum
performs the worst.

We recognize that the full Eringen-Mindlin micromorphic model can exhibit better fitting
than the relaxed micromorphic model. The full Eringen-Mindlin micromorphic model
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has, in the most general formulation, 903 material parameters. However, compared to the
relaxed micromorphic model, no improvement is achieved for simplified forms of the full
micromorphic model with a remarkably reduced number of parameters but comparable
to the number of parameters of the relaxed micromorphic model. Thus, the relaxation
of the curvature to consider only the Curl, as in the relaxed micromorphic model, is a
reasonable simplification leveraging the strength of the very simple Cosserat model and
the highly complex full micromorphic model.
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7 Conclusions and outlook

Despite their potentials, the complex mathematical formulations and the high number of
parameters of generalized continua theories have prevented their widespread adoption for
real-life engineering problems. However, the advantageous behavior of the relaxed micro-
morphic model, as a true two-scale elasticity model, simplifies the physical interpretation
of material parameters, which other generalized continua cannot offer.

We introduced the basic principles of continuum mechanics of solids within the frame-
work of the Cauchy continuum, including kinematics, stress concept, balance equations
and variational principles. We expanded this framework to encompass more advanced en-
riched continua, thus offering a more comprehensive understanding of these continua. We
presented in detail the main components of the relaxed micromorphic model, including
energy function, material parameters, and the variational problem that leads to the weak
and strong forms with the associated boundary conditions. We analyzed the limiting cases
analytically when the characteristic length parameter approaches zero or infinity, causing
the model’s advantageous behaviors as a two-scale elasticity model. The relaxed micro-
morphic model operates between a macroscopic linear elastic scale with a uniquely defined
macroscopic elasticity tensor and a microscopic linear elastic scale with a to-be-defined
microscopic elasticity tensor.

The finite element formulation of the relaxed micromorphic model must be conforming
in H(B) × H(curl,B) space. The basic principles of the finite element method and dif-
ferent approximation spaces were introduced in detail. We comprehensively described the
construction of H(curl,B)-conforming elements with Nédélec shape vectors. In several nu-
merical examples, we tested the different finite elements’ behavior with their convergence
rates for the case of a discontinuous solution favoring H1(B)×H(curl,B) elements. Fur-
thermore, we examined the different stress measures in the relaxed micromorphic model
for the limiting cases of the characteristic length parameter.

We observed that the boundary conditions of enriched continua have not been studied
meticulously in the literature. However, they play a crucial role in accurately identifying
the unknown parameters since the behavior of generalized continua varies depending on
the set of boundary conditions used. The consistent coupling boundary condition ensures
that the intended upper bound of the relaxed micromorphic model is realized. This upper
bound happens to be linear elasticity with a microscopic elasticity tensor. Thus, identi-
fying the microscopic elasticity tensor makes sense only when the consistent boundary
condition is enforced. We investigated numerically applying the consistent boundary con-
dition for different problems (via a penalty approach when necessary), such as bending,
shearing, and classical cantilever, and the microscopic elasticity tensor was always seen as
an upper bound. This applies to displacement-driven and traction-driven problems. Thus,
this flexibility has not been observed in other enriched continua since the consistent cou-
pling boundary condition can always be used.

Significant efforts have been devoted to the identification of material parameters of
enriched continua in the mechanics community. The relaxed micromorphic model, being
a two-scale model, exhibits unique behavior that allows a physical interpretation to help
identify the unknown parameters. The microscopic elasticity tensor is determined by the
concept of the stiffest possible response of the assumed microstructure. First, the micro-
scopic elasticity tensor was assumed to be given by the Löwner matrix supremum of elas-
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ticity tensors appearing under affine Dirichlet conditions on different unit-cells, which was
found to be too soft for capturing size-effects. Therefore, we introduced another approach
based on calibrating the microscopic elasticity tensor via non-affine bending deformation
modes. Finally, the curvature was fitted to the reference fully resolved solutions. While
both approaches provided initial estimates, it is important to continue exploring and de-
veloping more accurate methods in this direction. Thus, we implemented an optimization
procedure that determined the unknown material parameters for the relaxed micromor-
phic model after a consistency check for linear elasticity, which successfully delivered the
results of classical homogenization theory. The optimization procedure is based on the
least squares fitting of the energy of the equivalent homogeneous continuum with the
energy of the fully resolved microstructure. Both the microscopic elasticity tensor and
the characteristic length parameter in the relaxed micromorphic model were identified via
the presented optimization. Two different scenarios were introduced during the optimiza-
tion implementation (constrained or non-constrained by the stiff matrix from above). We
compared the results of the optimization procedure of the relaxed micromorphic model,
the Cosserat model, and the classical micromorphic theory with two different curvature
formulations. The relaxed micromorphic model delivers the least error and best fit among
them.

Future investigations are needed in the context of the higher-order homogenization theory
into the relaxed micromorphic continuum. However, the microscopic-macroscopic transi-
tion relations must first be available for the relaxed micromorphic model. Further chal-
lenges are expected, such as the choice of the representative volume element and the
boundary conditions on this representative volume element. It would be interesting to
compare the results of the higher-order homogenization approaches to the ones from the
implemented optimization and see if they can deliver better fitting.
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A Nédélec shape functions

A Second-order triangular element NT2

Triangular elements are defined on a domain π△
e = {0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ}. The finite

elements with the respective edge numbering are shown in Figure 4.2. The Nédélec space
of a second-order triangular element (NT2) reads

[
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and the general form of shape functions reads

v2 =

Å
a1 + a2 ξ + a3 η − a7 η2 − a8 ξη
a4 + a5 ξ + a6 η + a7 ξη + a8 ξ

2

ã
, (A.2)

where ai, i = 1, ..., 8 are coefficients yet to be defined based on the dofs. Explicit functions
rj, j = 1, 2 and qi, i = 1, 2 in Equations (4.19) and (4.20) are assumed as

edge 1 : r1 = ξ , r2 = η ,

edge 2 : r1 = η , r2 = 1− η ,
edge 3 : r1 = 1− ξ , r2 = ξ ,

inner : q1 =

ï
1
0

ò
, q2 =

ï
0
1

ò
,

(A.3)

and the tangential vectors of the element edges are the same as in Equation (4.24) .
The inner and outer dofs are calculated according to Equations (4.19) and (4.20) using
ξ+ η = 1 on the first edge, ξ = 0 on the second edge and η = 0 on the third edge, such as

me1
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(A.4)
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and the resulting shape functions shown in Figure A.1 are obtained by an analogous
procedure as described for NT1 element in Section 4.3.2, leading to
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ã
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B First-order quadrilateral element NQ1

Quadrilateral elements have a domain π□
e = {−1 ≤ ξ ≤ 1,−1 ≤ η ≤ 1}. The Nédélec

space of a first-order quadrilateral element (NQ1) reads
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and the general form of shape vectors reads

v1 =

Å
a1 + a2 η
a3 + a4 ξ

ã
, (A.7)

where ai, i = 1, .., 4 are coefficients yet to be defined based on the dofs. Starting from
Equation (4.19), we set rj = 1 for all edges. The tangential vectors for the first and third
edge are t1 = t3 = (1, 0)T and for the second and fourth edge t2 = t4 = (0, 1)T , see Figure
4.2 (left). We calculate edge dofs taking into consideration that η = −1 on the first edge,
ξ = 1 on the second edge, η = 1 on the third edge and ξ = −1 on the fourth edge, leading
to

me1
1 = 2(a1 − a2) , me2

1 = 2(a3 + a4) , me3
1 = 2(a1 + a2) , me4

1 = 2(a3 − a4) . (A.8)

We solve the system of equations obtained by an analogous procedure to the one described
for NT1 element in Section 4.3.2 leading to the shape functions demonstrated in Figure
B.2, which read
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(A.9)

where v1i is associated with edge ei for i = 1, .., 4 .
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Figure A.1: Tangential-conforming vectorial shape functions of NT2 element. Blue circles
indicate the position where the dofs are defined. Taken from Schröder et al. [2022].

C Second-order quadrilateral element NQ2

The Nédélec space of a second-order quadrilateral element (NQ2) reads
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Figure B.2: Tangential-conforming vectorial shape functions of NQ1 element. Blue circles
indicate the position where the dofs are defined. Taken from Schröder et al. [2022].

and the vectorial shape functions have the following general form
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where ai, i = 1, .., 12 are coefficients yet to be defined based on the dofs. Starting from
Equations (4.19) and (4.21), explicit functions rj, j = 1, 2 and qi, i = 1, 2, 3, 4 are set as
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The edge and inner dofs are calculated according to Equations (4.19) and (4.21) consider-
ing that tangential vectors and coordinates coloration are identical to the NQ1 element,
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such that
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Tangential-conforming shape functions demonstrated in Figure C.3 are obtained by an
analogous procedure as described for NT1 element in Section 4.3.2, leading to
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Figure C.3: Tangential-conforming vectorial shape functions of NQ2 element. Blue circles
indicate the position where the dofs are defined. Taken from Schröder et al. [2022].
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B Voigt notation

Because this thesis concentrates solely on two-dimensional case, Voigt notation will be
introduce within this context. The fourth-order elasticity tensor C written in 4×4 matrix
notation based on the vector notation of the stresses σ̂ = [σ11, σ22, σ12, σ21] and the strains
ε̂ = [ε11, ε22, ε12, ε21] reads

Ĉ =


C1111 C1122 C1112 C1121

C2211 C2222 C2212 C2221

C1211 C1222 C1212 C1221

C2111 C2122 C2112 C2121

 . (B.1)

For the symmetric case, i.e. σ12 = σ21 and ε12 = ε21, the fourth-order elasticity tensor
C written in 3 × 3 matrix notation based on the vector notation of the stresses σ̃ =
[σ11, σ22, 2σ12] and the strains ε̃ = [ε11, ε22, 2ε12] reads

C̃ =

 C1111 C1122
1
2
(C1112 + C1121)

C2211 C2222
1
2
(C2212 + C2221)

1
2
(C1211 + C2111)

1
4
(C1222 + C2122)

1
4
(C1212 + C2112 + C1221 + C2121)

 , (B.2)

which leads with the symmetries Cijkl = Cklij = Cjikl to

C̃ =

 C1111 C1122 C1112

C2222 C2212

sym C1212

 . (B.3)
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Schröder et al. [2022]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.19 The non-vanishing components of P along the radius for H1(B) ×
H(curl,B) elements using three mesh densities and Lc = 5. Taken from
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N. Jiménez, W. Huang, V. Romero-Garćıa, V. Pagneux, and J.-P. Groby. Ultra-thin
metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics
Letters, 109(12):121902, 09 2016.

X. Ju, R. Mahnken, L. Liang, and Y. Xu. Goal-oriented mesh adaptivity for inverse
problems in linear micromorphic elasticity. Computers and Structures, 257:106671,
2021.

M. Kadic, G. Milton, M. van Hecke, and M. Wegener. 3D metamaterials. Nature Reviews
Physics, 1(3):198–210, 2019.

M.-A. Keip. Modeling of Electro-Mechanically Coupled Materials on Multiple Scales. PhD
thesis, University of Duisburg-Essen, 2012.

S. Khakalo and J. Niiranen. Lattice structures as thermoelastic strain gradient metama-
terials: Evidence from full-field simulations and applications to functionally step-wise-
graded beams. Composites Part B: Engineering, 177:107224, 2019.

S. Khakalo and J. Niiranen. Anisotropic strain gradient thermoelasticity for cellular
structures: Plate models, homogenization and isogeometric analysis. Journal of the
Mechanics and Physics of Solids, 134:103728, 2020.



152 References

S. Khakalo, V. Balobanov, and J. Niiranen. Modelling size-dependent bending, buckling
and vibrations of 2D triangular lattices by strain gradient elasticity models: Applica-
tions to sandwich beams and auxetics. International Journal of Engineering Science,
127:33–52, 2018.

H. Khan, I.-D. Ghiba, A. Madeo, and P. Neff. Existence and uniqueness of Rayleigh
waves in isotropic elastic Cosserat materials and algorithmic aspects. Wave Motion,
110:102898, 2022.

R. C. Kirby, A. Logg, M. E. Rognes, and A. R. Terrel. Common and unusual finite ele-
ments. In Automated Solution of Differential Equations by the Finite Element Method:
The FEniCS Book, pages 95–119. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

S. Kirchhof, A. Ams, and G. Hütter. On the question of the sign of size effects in the
elastic behavior of foams. Journal of Elasticity, 2023.

D. Knees, S. Owczarek, and P. Neff. A local regularity result for the relaxed micromorphic
model based on inner variations. Journal of Mathematical Analysis and Applications,
519(2):126806, 2023.

D. Knees, S. Owczarek, and P. Neff. Global regularity for a physically
nonlinear version of the relaxed micromorphic model on lipschitz domains,
2024. URL https://arxiv.org/abs/2403.17451. To appear in Proceedings of

the Royal Society of Edinburgh Section A: Mathematics.

J. Korelc. Automatic generation of finite-element code by simultaneous optimization of
expressions. Theoretical Computer Science, 187(1):231–248, 1997.

J. Korelc and P. Wriggers. Automation of Finite Element Methods. Springer International
Publishing, 2016.

V. Kouznetsova, M. Geers, and W. Brekelmans. Multi-scale constitutive modelling of het-
erogeneous materials with a gradient-enhanced computational homogenization scheme.
International Journal for Numerical Methods in Engineering, 54:1235–1260, 2002.

V. Kouznetsova, M. Geers, and W. Brekelmans. Multi-scale second-order computational
homogenization of multi-phase materials: a nested finite element solution strategy. Com-
puter Methods in Applied Mechanics and Engineering, 193:5525–5550, 2004.

R. Kumar, M. Kumar, J. Chohan, and S. Kumar. Overview on metamaterial: History,
types and applications. Materials Today: Proceedings, 56:3016–3024, 2022. 3rd Inter-
national Conference on Contemporary Advances in Mechanical Engineering.

M. Labusch. A two-scale homogenization scheme for the prediction of magneto-electric
product properties. PhD thesis, University of Duisburg-Essen, 2018.

A. Lahbazi, I. Goda, and J.-F. Ganghoffer. Size-independent strain gradient effective
models based on homogenization methods: Applications to 3D composite materials,
pantograph and thin walled lattices. Composite Structures, 284:115065, 2022.

R. Lakes. On the torsional properties of single osteons. Journal of Biomechanics, 28(11):
1409–1410, 1995.



References 153

R. Lakes. Cosserat shape effects in the bending of foams. Mechanics of Advanced Materials
and Structures, 2022. doi: 10.1080/15376494.2022.2086328.

M. Lazar. On gradient field theories: gradient magnetostatics and gradient elasticity.
Philosophical Magazine, 94(25):2840–2874, 2014.

M. Lazar, G. A. Maugin, and E. C. Aifantis. Dislocations in second strain gradient
elasticity. International Journal of Solids and Structures, 43(6):1787–1817, 2006.

J. Lee and A. Eringen. Continuum theory of smectic liquid crystals. The Journal of
Chemical Physics, 58(10):4203–4211, 08 2003.

J.-H. Lee, J. P. Singer, and E. L. Thomas. Micro-/nanostructured mechanical metama-
terials. Advanced Materials, 24(36):4782–4810, 2012.

M. Lei, W. Hong, Z. Zhao, C. Hamel, M. Chen, H. Lu, and H. . Qi. 3D printing of
auxetic metamaterials with digitally reprogrammable shape. ACS Applied Materials &
Interfaces, 11(25):22768–22776, 2019.

P. Lewintan and P. Neff. Lp-trace-free generalized Korn inequalities for incompatible
tensor fields in three space dimensions. Proceedings of the Royal Society of Edinburgh:
Section A Mathematics, pages 1–32, 2021. ISSN 0308-2105.

P. Lewintan, S. Müller, and P. Neff. Korn inequalities for incompatible tensor fields in
three space dimensions with conformally invariant dislocation energy. Calc. Var., 60
(4):150, 2021. ISSN 1432-0835.

A. Li, Q. Wang, M. Song, J. Chen, W. Su, S. Zhou, and L. Wang. On strain gradient
theory and its application in bending of beam. Coatings, 12(9), 2022.

J. Li and X.-B. Zhang. A numerical approach for the establishment of strain gradient con-
stitutive relations in periodic heterogeneous materials. European Journal of Mechanics
- A/Solids, 41:70–85, 2013.

C. Liebold and W. H. Müller. Comparison of gradient elasticity models for the bending
of micromaterials. Computational Materials Science, 116:52–61, 2016.

C. Lu, M. Hsieh, Z. Huang, C. Zhang, Y. Lin, Q. Shen, F. Chen, and L. Zhang. Ar-
chitectural design and additive manufacturing of mechanical metamaterials: A review.
Engineering, 17:44–63, 2022.

A. Madeo, P. Neff, I.-D. Ghiba, L. Placidi, and G. Rosi. Band gaps in the relaxed linear
micromorphic continuum. Zeitschrift für angewandte Mathematik und Mechanik, 95(9):
880–887, 2015.

A. Madeo, P. Neff, M. V. d’Agostino, and G. Barbagallo. Complete band gaps includ-
ing non-local effects occur only in the relaxed micromorphic model. Comptes Rendus
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P. Monk. An analysis of Nédélec’s method for the spatial discretization of Maxwell’s
equations. Journal of Computational and Applied Mathematics, 47(1):101–121, 1993.

S. M. Montgomery, X. Kuang, C. D. Armstrong, and H. J. Qi. Recent advances in additive
manufacturing of active mechanical metamaterials. Current Opinion in Solid State and
Materials Science, 24(5):100869, 2020.
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