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Abstract
Scene understanding is a long-standing problem in the field of Computer Vision,
which aims to extract useful information of a scene from raw sensor data and inter-
pret the data content at the human understanding level. In the last decade, modern
deep learning techniques enabled amazing developments of many Computer Vision
tasks for purposive scene understanding at various levels of detail and abstraction.
Semantic segmentation, as the main focus of this study, is an important tool for vi-
sual scene understanding that aims to assign a class label to each pixel in the image
from a predefined set of classes. Semantic segmentation has shown critical usefulness
to many applications, which need a precise, pixel-level understanding of their envi-
ronment such as: autonomous vehicles, medical image analysis for computer-aided
diagnosis, robot navigation, etc.
Recent advances in deep learning based semantic segmentation approaches show sig-
nificant performance gains in terms of accuracy, which require high-end GPUs to run
inferences in near real-time. However, some aspects of semantic segmentation such
as computational efficiency have not been thoroughly studied. This is a challenging
problem in many robotics platforms, where not only high-end GPUs are not always
available, but also effectiveness and efficiency are highly required.
This thesis discusses our work towards solutions to the following challenges, namely
1) the time and computation constraints in real time applications or systems with
limited computational power such as autonomous driving applications, 2) incorpo-
rating spatial relationship and contextual information, along with other high-level
extracted features to improve scene understanding 3) model generalizability capa-
bility to work properly for unseen similar domain, when the labelled data available
for training models is small or limited. Considering these problems by emphasising
on solutions, which permit inference time reduction, the following contributions are
presented in this thesis :

1. First, the thesis introduces a novel neural network-based semantic segmentation
model, that is both memory-efficient and fast, capable of running on a CPU.
This model is efficient both in execution time and memory requirements, which
consumes very low computation resources and can be embedded in real-time sys-
tems. By integrating limited prior information, such as hand-crafted features,
into the input data-model, it becomes possible to achieve excellent segmenta-
tion results without the necessity of increasing network layering. Moreover, this
approach helps avoid the burden of a large number of parameters and reduces
computational efforts. To showcase the practicality of this real-time CPU seg-
mentation model, we apply it to the challenge of urban scene segmentation.
Specifically, we focus on achieving efficient and highly accurate road segmen-
tation, which holds significant potential for intelligent vehicle applications in
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creating a safe drivable environment. It surpasses GPU-based state-of-the-art
semantic segmentation performance at really fast rates.

2. To improve the precision of the proposed model, a graph-based image segmen-
tation technique is employed, incorporating contextual information and spatial
dependencies at minimal additional cost. Various optimization algorithms, in-
cluding approximate inference procedures, are investigated to enhance the seg-
mentation results within the specific graph-based neighbourhood model. The in-
troduced method achieves state-of-the-art performance on benchmark datasets
for road semantic segmentation, making it suitable for CPU or low-end GPUs.

3. The third contribution tackles three important challenges: a) the scarcity of
training data, where only a small number of fully labelled images are available
along with a large set of unlabelled data, b) the need to improve the generaliz-
ability of the model to work effectively on unseen but similar domains, and c) the
necessity to enhance the model’s robustness in the presence of context-changing
factors, such as shadows on the road surface. To address these challenges, we
propose a novel semi-supervised semantic segmentation method in conjunction
with our previously introduced technique, resulting in fine-grained semantic
segmentation results. This method leverages an unsupervised image-to-image
translation technique, which aims to learn the translation between two visual
domains without relying on paired data. By utilizing this approach, we demon-
strate the effectiveness of our technique in road segmentation, a task known
for its complexity due to the resemblance of roads to other patterns like walk-
ing areas, grass, and the presence of shadows or vehicles on the road surface.
Notably, by addressing the issues of limited labelled data, enhancing general-
izability, and improving robustness in the face of context-changing factors, our
method achieves comparable performance to state-of-the-art methods, while
operating efficiently on low-end GPUs, requiring low computational efforts.

Our methods have been tested on several public semantic segmentation datasets for
autonomous driving and evaluated by well-known segmentation evaluation metrics.
Experiments conducted on each method provide compelling evidence that all of our
approaches produce more efficient semantic segmentation results compared to the
state-of-the-arts methods.

Keywords: Semantic segmentation, Superpixels, Hand-crafted feature extraction,
Graph-based image segmentation, Conditional Random Fields, Convolutional neu-
ral network, Semi-supervised semantic segmentation, Un-supervised image-to-image
translation, Autonomous driving, Road segmentation
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Kurzfassung
Szeneverständnis ist ein langjähriges Problem im Bereich der Computer Vision, das
darauf abzielt, nützliche Informationen einer Szene aus rohen Sensordaten zu ex-
trahieren und den Dateninhalt auf menschlicher Verständnisebene zu interpretieren.
Im letzten Jahrzehnt haben moderne Deep-Learning-Techniken erstaunliche Fortschritte
bei vielen Aufgaben der Computer Vision ermöglicht, um eine gezielte Szeneverständ-
nis auf verschiedenen Detail- und Abstraktionsebenen zu erreichen. Die semantische
Segmentierung, die im Mittelpunkt dieser Studie steht, ist ein wichtiges Werkzeug für
das visuelle Szeneverständnis, das versucht, jedem Pixel im Bild eine Klassenbeze-
ichnung aus einer vordefinierten Menge von Klassen zuzuweisen. Die semantische
Segmentierung hat sich als äußerst nützlich für viele Anwendungen erwiesen, die ein
präzises Verständnis auf Pixelebene ihrer Umgebung erfordern, wie z.B. autonome
Fahrzeuge, medizinische Bildanalyse zur computerunterstützten Diagnose, Roboter-
Navigation usw.
Aktuelle Fortschritte in Deep-Learning-basierten Ansätzen zur semantischen Segmen-
tierung zeigen signifikante Leistungssteigerungen in Bezug auf Genauigkeit, erfordern
jedoch leistungsstarke GPUs, um Inferenzen nahezu in Echtzeit auszuführen. Allerd-
ings wurden einige Aspekte der semantischen Segmentierung, wie z.B. die Rechenleis-
tung, nicht gründlich untersucht. Dies stellt ein herausforderndes Problem in vielen
Robotik-Plattformen dar, in denen nicht nur leistungsstarke GPUs nicht immer ver-
fügbar sind, sondern auch Effektivität und Effizienz stark gefordert werden.
Diese Arbeit diskutiert unsere Lösungsansätze für die folgenden Herausforderungen:
1) Zeit- und Rechenbeschränkungen in Echtzeitanwendungen oder Systemen mit be-
grenzter Rechenleistung, wie z.B. autonome Fahrzeuganwendungen, 2) Integration
von räumlichen Beziehungen und kontextuellen Informationen zusammen mit anderen
hochrangigen extrahierten Merkmalen, um das Szeneverständnis zu verbessern, 3)
Fähigkeit des Modells zur Generalisierung, um ordnungsgemäß in unbekannten, ähn-
lichen Domänen zu funktionieren, wenn die für das Training verfügbaren gelabelten
Daten klein oder begrenzt sind. Unter Berücksichtigung dieser Probleme, indem Lö-
sungen betont werden, die eine Reduzierung der Inferenz-zeit ermöglichen, werden in
dieser Arbeit folgende Beiträge vorgestellt:

1. Erstens wurde in der Arbeit ein neuartiges semantisches Segmentierungsmodell
basierend auf neuronalen Netzwerken eingeführt, das sowohl speicher-effizient
als auch schnell ist und auf einer CPU ausgeführt werden kann. Dieses Modell
ist sowohl in Bezug auf die Ausführungszeit als auch die Speicheranforderungen
effizient und verbraucht sehr geringe Rechenressourcen, wodurch es in Echtzeit-
systeme integriert werden kann. Durch die Integration begrenzter vorheriger
Informationen, wie z. B. manuell definierte Merkmale, in das Eingabedaten-
modell können ausgezeichnete Segmentierungsergebnisse erzielt werden, ohne
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die Notwendigkeit einer Erhöhung der Netzwerkschichtung. Darüber hinaus
hilft dieser Ansatz, die Belastung durch eine große Anzahl von Parametern zu
vermeiden und den Rechenaufwand zu reduzieren. Um die Praktikabilität dieses
Echtzeit-CPU-Segmentierungsmodells zu demonstrieren, wird es auf das Prob-
lem der Segmentierung städtischer Szenen angewendet. Insbesondere konzen-
trieren wir uns darauf, eine effiziente und hochpräzise Straßensegmentierung
zu erreichen, die ein erhebliches Potenzial für intelligente Fahrzeuganwendun-
gen zur Schaffung einer sicheren befahrbaren Umgebung birgt. Das Modell
übertrifft die leistungsstärkste semantische Segmentierung auf GPU-Basis mit
wirklich schnellen Raten.

2. Zweitens wird zur Verbesserung der Präzision des vorgeschlagenen Modells eine
graphbasierte Bildsegmentierungstechnik eingesetzt, die Kontextinformationen
und räumliche Abhängigkeiten mit minimalen zusätzlichen Kosten berücksichtigt.
Verschiedene Optimierungsalgorithmen, einschließlich approximativer Inferen-
zverfahren, werden untersucht, um die Segmentierungsergebnisse innerhalb des
spezifischen graphbasierten Nachbarschaftsmodells zu verbessern. Die vorgestellte
Methode erzielt eine Leistung auf dem Stand der Technik bei Benchmark-
Datensätzen für die semantische Segmentierung von Straßen und eignet sich
für CPUs oder Low-End-GPUs.

3. Der dritte Beitrag befasst sich mit drei wichtigen Herausforderungen: a) dem
Mangel an Trainingsdaten, bei dem nur eine kleine Anzahl vollständig gekennze-
ichneter Bilder zusammen mit einer großen Menge an nicht gekennzeichneten
Daten zur Verfügung steht, b) der Notwendigkeit, die Generalisierbarkeit des
Modells zu verbessern, um effektiv in unsichtbaren, aber ähnlichen Bereichen
zu arbeiten, und c) der Notwendigkeit, die Robustheit des Modells angesichts
von Kontextänderungen, wie z. B. Schatten auf der Straßenoberfläche, zu
verbessern. Um diesen Herausforderungen zu begegnen, schlagen wir eine neuar-
tige halb-überwachte semantische Segmentierungsmethode in Verbindung mit
unserer zuvor vorgestellten Technik vor, um feinkörnige semantische Segmen-
tierungsergebnisse zu erzielen. Diese Methode nutzt eine unbeaufsichtigte Bild-
zu-Bild-Übersetzungstechnik, die darauf abzielt, die Übersetzung zwischen zwei
visuellen Domänen zu erlernen, ohne auf gepaarte Daten angewiesen zu sein.
Durch die Anwendung dieses Ansatzes demonstrieren wir die Wirksamkeit un-
serer Technik bei der Straßensegmentierung, einer Aufgabe, die aufgrund der
Ähnlichkeit von Straßen zu anderen Mustern wie Gehbereichen, Gras und dem
Vorhandensein von Schatten oder Fahrzeugen auf der Straßenoberfläche bekan-
ntermaßen komplex ist. Beachtenswert ist, dass unsere Methode durch die Be-
wältigung der Probleme begrenzter gekennzeichneter Daten, Verbesserung der
Generalisierbarkeit und Steigerung der Robustheit angesichts von kontextverän-
dernden Faktoren eine vergleichbare Leistung wie modernste Methoden erzielt,
während sie effizient auf Low-End-GPUs arbeitet und geringen Rechenaufwand
erfordert.
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Unsere Methoden wurden an mehreren öffentlichen semantischen Segmentierungs-
datensätzen für autonomes Fahren getestet und anhand bekannter Segmentierungs-
bewertungsmetriken bewertet. Experimente, die mit jeder Methode durchgeführt
wurden, liefern überzeugende Beweise dafür, dass alle unsere Ansätze effizientere se-
mantische Segmentierungsergebnisse im Vergleich zu den Methoden nach dem Stand
der Technik liefern.

Schlüsselwörter: Semantische Segmentierung, Superpixel, Handgefertigte Merk-
malsextraktion, Graphbasierte Bildsegmentierung, Bedingte Zufallsfelder, Convolu-
tional Neural Network, Semi-überwachte semantische Segmentierung, Unüberwachte
Bild-zu-Bild-Übersetzung, Autonomes Fahren , Straßensegmentierung
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1 Introduction

Visually perceiving natural scenes, where a human can act within or navigate, and
obtaining a comprehensive understanding of high-level scene structures can quickly
be performed by the human visual system. However, providing the similar capability
to understand a 3D scene represented in a 2D image or video by machines and com-
puter systems is the most challenging problem. Understanding a scene is much more
than to simply record and store it, extract some features, and eventually recognize an
object. It integrates meaningful information at multiple levels to find a mapping to
extract semantic relationships and patterns from sensor data. The field of computer
vision encompasses a wide range of problems and tasks aimed at enabling machines
to achieve purposive scene understanding at varying levels of detail and abstraction
by extracting information from visual data. To achieve a comprehensive understand-
ing, it is necessary to strike a delicate balance between local, global, and dynamic
aspects that may exist within a scene. For instance, an observer may be interested
in determining the presence of a car in an image (recognition), localizing the exact
position of the car (localization), or even counting the number of car instances in
the image (instance segmentation). Another task could involve recognizing objects
that have never been seen before by observing a set of similar objects. Developing
computing machines capable of effortlessly performing these vision tasks poses signif-
icant challenges. Based on the level of complexity, semantic scene information can be
roughly divided into different levels. These levels include Scene Classification, which
provides a single tag or label for the entire image. There is also Object Detection
within the scene, identifying bounding boxes for different objects in the image. Scene
Semantic Segmentation is another level, where a per-pixel semantic tag is assigned to
the image. Lastly, there is Instance Segmentation, which not only assigns a per-pixel
semantic tag but also a unique object identifier to each distinct object of interest in
the image.
This thesis deals with a fundamental task in computer vision, i.e. the semantic seg-
mentation, which is widely regarded as the main step of image analysis and scene
understanding and has shown favourable usefulness to many applications such as:
medical image analysis for computer-aided diagnosis, robot navigation, video surveil-
lance , human-computer interaction and virtual reality and self-driving vehicles. Fig-
ure. 1.1 shows semantic segmentation in some applications. In autonomous driving,
as our case study, semantic segmentation provides the essential understanding of
constantly-changing environment for making decisions, like the recognition of objects
(buildings, road, lane markings), shape (cars, pedestrians) and the spatial relation-
ship (differentiating between road and side-walk or grass). The goal is to assign a
semantic label to each pixel corresponding to objects contained in an image. Our fo-
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cus is on the utilization of advanced machine learning techniques to solve the problem
in a cost-effective computational approach.

1.1 Background
Most traditional image segmentation methods attempt to group pixels to define "co-
herence" in terms of low-level cues such as intensity, texture, spatial information, and
smoothness of boundary [Achanta et al., 2012, Comaniciu and Meer, 2002, Garcia-
Lamont et al., 2018]. In these methods the obtained segmented image is mostly
covered with regions that are not completely homogenous. A segmented region could
cover more than one object, or one object could be divided into several regions.
Image segmentation using graphical models such as Markov Random Field (MRF)
or the Conditional Random Field (CRF) [Camilus and Govindan, 2012, Liu et al.,
2017, Kohli and Torr, 2007, Arnab et al., 2018, Zhou et al., 2016] is another type of
image segmentation method, where each pixel is assigned to a specific class label in
such a way, that pixels with certain object characteristics belong to the same class.
The model defines the joint probability distribution of the image observation and the
label random variables on the 2D regular lattice. Non-causal relationships among
the nodes in a graphical model, such as the spatial relationships among neighbour-
ing labels, are extracted to force the adjacent pixels to be classified into the same
group and calculate the energy functions for the graphical models. Although, much
research have been followed on the basic framework such as incorporating the hier-
archical connectivity and higher-order potentials to improve the segmentation and
labelling accuracy, however they are suffering from modelling complexity and high
computational cost.
In recent years, deep learning techniques and in particular, Convolutional Neural
Networks (CNNs) [LeCun et al., 1998, Krizhevsky et al., 2012, O. Russakovsky,
2015, LeCun et al., 2015, Szegedy et al., 2015, He et al., 2016] made a breakthrough
in effectiveness of image analysis and semantic segmentation. They enable, through
different network layering, the automatic learning of hierarchical image features from
low-level to high-level. The early CNN-based semantic segmentation methods used a
patch-wise classification technique, where a sliding window moves across the image
and splits it as many as local overlapped patches. These studies generally required a
refinement process, since labelling assigning was done separately for each patch and
the segmentation results must be aggregated to achieve the same resolution as the in-
put, which mostly produced undesirable segmentation results [Ulku and Akagündüz,
2022, Lateef and Ruichek, 2019].
Pixel-wise segmentation based on Fully Convolutional Neural Networks (FCNs) [Long
et al., 2015] is another type of semantic segmentation method, which conserve the
spatial information of their inputs throughout the computation i.e., their inputs and
outputs are of the same spatial size. The network takes an image as input and out-
puts the probability maps of each pixel belonging to pre-defined object classes. The
Encoder-Decoder based architecture, known as the U-nets [Ronneberger et al., 2015],
is the state-of-the-art image segmentation study following the fully convolutional con-
struction. Its network is comprised of two parts. Encoder part gradually reduces the
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1.1 Background

Figure 1.1: Examples of semantic segmentation Applications. (a) A slice of a 3D
volume of a MR image from IBSR dataset and its segmentation result
[Withey and Koles, 2008], (b) Example patch of the semantic object classi-
fication contest with true orthophoto and its ground truth [Song and Kim,
2020] https://www.isprs.org/education/benchmarks/UrbanSemLab/
2d-sem-label-vaihingen.aspx, (c) Annotated image from the COCO-
Stuff dataset with dense pixel-level annotations for stuff and things [Cae-
sar et al., 2018], (d) a sample from The Cityscapes Dataset for Semantic
Urban Scene Understanding [Cordts et al., 2016], (e) a Sample from an in-
door dataset and accompanying labels for robot navigation [Yeboah et al.,
2018]
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spatial dimension through some pooling layers to capture all higher semantic informa-
tion needed for segmentation, whilst decoder part gradually recovers the object details
and spatial dimension to reconstruct the resolution lost by downsampling operation
by combining multi-level feature maps from encoder. By using skip connections, each
feature map of the decoder part receives the information from the correspondingly
cropped feature map at the same level of the encoder part.

1.2 Motivation
Deep Convolutional Neural Networks (DCNNs) have led to significant breakthroughs
in scene understanding. In the realm of semantic segmentation methods, the pri-
mary focus of enhancements has been on improving classification accuracy to achieve
highly precise results. While ’performance’ in this context includes not only accu-
racy but also efficiency and resource optimization, the quest for high performance is
predominantly marked by the challenge of finding a balanced trade-off among these
factors. Achieving a semantic segmentation method, that excels in accuracy while
maintaining efficiency and optimal resource use remains an intricate challenge. The
preliminary deep learning techniques mostly focus on the image classification task
[Deng, 2012, Zhao et al., 2017, Krizhevsky et al., 2012], where image is analysed to
assign a label from a set of pre-defined classes to an entire image. In contrast, seman-
tic segmentation is the process of assigning a class label to each pixel in an image,
where pixels that are close and have similar spectral characteristics are then grouped
together into a segment that represents a specific object in the image. Semantic
segmentation provides richer information, including object’s boundary and shape,
therefore, the semantic segmentation task requires a different deep neural network
structure compared to the image classification task. It inherits all the problems from
classification, such as appearance changes, scales and lighting conditions, cropping
and occlusion. These problems become even more severe, because semantic segmen-
tation must not only identify the semantic class, but also estimate its exact location.
Fully convolutional-based neural networks [Long et al., 2015, Ronneberger et al., 2015]
provide an end-to-end learning method for semantic segmentation, whilst avoiding the
tremendous increasing of parameters, caused by reconciling classification to segmen-
tation. Before the advent of fully convolutional methods, classification models were
often repurposed for segmentation tasks. This adaptation involved treating each pixel
or region as an independent classification problem, necessitating modifications to the
models. Consequently, the number of parameters grew substantially, as each pixel or
region required its own set of parameters. In contrast, the fully convolutional method
addressed segmentation directly, using convolutional layers to capture spatial depen-
dencies without the need for extensive modifications. This approach resulted in more
parameter-efficient solutions, as the models were designed specifically for segmenta-
tion tasks from the outset.
Most recent improvements in both patch-wise or pixel-wise CNN-based methods for
semantic segmentation were accomplished by increasing the network size [Simonyan
and Zisserman, 2014, He et al., 2016], whereas deeper networks provoke large com-
putational costs. It makes them unsuitable for real-time systems, that require low-
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1.2 Motivation

latency operations. Advanced Driver Assistance Systems (ADAS) are examples of
these applications, due to their crucial need to take decisions in precise intervals.
Therefore, improving semantic segmentation models towards achieving both high ac-
curacy and low latency is of crucial importance.

Goal 1: In this thesis, we focus on an efficient semantic image segmentation task
to fill this gap and propose a general concept based on the Convolutional Neural
Network(CNN) to solve the semantic image segmentation task in a time and resource
budget, applicable for real time systems.

While deep convolutional neural networks are strongly powerful to learn the local
features for the pixel-level labelling task in an end-to-end way and perform well seg-
mentation results, they have drawbacks to utilize global context information to model
the interactions and correlation between the output variables directly. The label pre-
diction by CNN-based method is done for each local neighbouring interdependently
without including the information from surrounding labels. CNNs lack to encour-
age label agreement between similar pixels and to keep the spatial and appearance
consistency of the labelling output, which lead to obtain a very coarse segmentation
result. Furthermore, having larger receptive field of convolutional network along with
max-pooling layers in CNNs reduce the chance of getting a fine segmentation output
especially along the object boundary. Thus, simple feed forward CNNs may not be
the perfect model for smoothed semantic segmentation and some further post pro-
cessing step is needed. Several works have successfully combined the effectiveness of
CNNs with the probabilistic graphical models such as CRFs to address the discussed
issues.

Goal 2: For the reason stated above, a further goal of this thesis is to study the use
of different CRF based techniques as a post processing step to move from a coarse to
fine segmentation result. We investigate their effectiveness regarding their accuracy
and time efficiency to keep our main goal for using in real time systems.

Despite of great success of fully supervised machine learning methods for solving
various problems in computer vision, they suffer from having large amount of anno-
tated training data from a specific context and a specific application. It leads to two
difficulties. First, annotating data for pixel-wise classification tasks (such as semantic
segmentation) is difficult and costly, especially for high-resolution images that contain
millions of pixels. Second, supervised models can only perform at their maximum pre-
cision, when applied to the same or similar training data. To fulfill this requirement,
we should have enough annotated data set to train models to make them robust for all
real-world contexts in that particular application. Applying a pre-trained semantic
segmentation model to an unseen domain, such as a new city, whose images are not
presented in the training set, will not achieve satisfactory performance due to data
set biases [Chen et al., 2017]. While semi-supervised semantic segmentation methods
using partial annotations [Papandreou et al., 2015, Vezhnevets et al., 2012] alleviate
this problem, they still require some pixel-level ground truth. To rectify mentioned
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problems and adjust the methods for better generalization, recently, unsupervised
techniques based on Generative Adversarial Network(GAN)[Goodfellow et al., 2020]
have been growing as a powerful technique to improve the generalizability of deep
learning methods. They can translate one domain to another domain and adapt data
for use in a new domain and dispel the necessity of having costly labelled data.

Goal 3: This leads to the third goal of this thesis to exploit unsupervised learning
for the semantic segmentation to completely strengthen our proposed method to be
adaptable for domain with different underlying data distribution, while fulfilling the
current performance requirement.

1.3 Contribution
This dissertation focusses on an efficient semantic image segmentation method to ob-
tain the most accurate solution as possible for a restricted time budget, usable for real
time systems. As the case study, all works presented here contribute to the research
in modern ADAS, that should be accurate and computationally efficient to execute
in real time on embedded platforms. This study, comprise semantic segmentation for
pixel-wise classification of different objects in urban scene images mainly tested for
road segmentation. All proposed methods constituted the state of the art, at the mo-
ment of completion. This work addresses different challenges which are summarized
below:

Fully supervised Super pixel-based Convolutional Neural Network for
Semantic Segmentation

As a first contribution, in this thesis, we proposed a novel approach to utilize the
advantages of supervised CNNs for the task of semantic segmentation at the suitable
computational effort. This method mainly differs from usual semantic segmentation
methods in two aspects: first the input data model for the CNN network and second
the simple CNN-network layering. The state-of-the-art convolutional neural networks
for image segmentation are based on two different input data model: They are based
on either patch-wise [Farabet et al., 2013, Ciresan et al., 2012, Ning et al., 2005] or
pixel-wise dense classification [Long et al., 2015]. The most recent improvements in
CNN’s are profited by using above input data models and increasing the network
size, which together require powerful GPUs. Since deeper networks cause large com-
putational costs, they are mostly not suitable for real time systems. In Comparison
to above state-of-the-art models, our method combines larger basic units ”super-
pixels” with simple network structure, which tremendously reduces the input size.
This strategy disassembles the pixel grid into super pixels forming the basic units
for the classification task by CNN. The proposed CNN for super pixel-level image
segmentation applies conventional supervised learning and uses training data with
corresponding defined superpixel ground truth as prior information. Reducing the
input to the superpixel domain allows the CNN’s structure to stay small and efficient
to compute, while keeping the advantage of convolutional layers.
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1.3 Contribution

• An existing approach [Achanta et al., ] is adopted to perform well-segmented
superpixel segmentation over each single image, which have recently shown
success as the fast and accurate bottom-up grouping of pixels method. Here,
super pixels [Ren and Malik, 2003] are described by a spectral similarity and
spatial proximity to enforce compactness and homogeneity within the super
pixel.

• This thesis shows the incorporation of high-level declarative prior knowledge by
hand-crafting features. We define for each super pixel a high dimensional feature
descriptor, which extracts relevant informative superpixel characteristics in the
image to facilitate the subsequent learning and generalization steps.

• The superpixels are assigned to corresponding positions of a regular grid struc-
ture extending across the image in order to create neighbourhood relations for
convolutional purpose.

• This lattice together with the image descriptors are fed to a proposed convo-
lutional neural network to classify the superpixels of the image according to
semantic categories.

• Two cases from different datasets are used as examples to show that the pro-
posed method is effective for road segmentation tasks. The strengths and the
drawbacks of the proposed superpixel CNN based method are summarized
through illustrative test and case studies. In particular, we conduct several
comprehensive road segmentation tests by attentively change the size or ho-
mogeneity (regular or irregular) of superpixel and observe the effect on the
outcomes of the CNN models in two perspectives named Birds-Eye view (BEV)
and Image View or First-Person View (FPV). While, BEV provides a top-down
perspective of a scene or environment, showing objects and their spatial rela-
tionships from an overhead viewpoint, Image-View represents the viewpoint of
an observer or camera within the scene, capturing the view as perceived from
the observer’s position.

Fine-grained Super pixel-based Convolutional Neural Network for Se-
mantic Segmentation using Conditional Random Field(CRF)

In the proposed SP-CNN method, the runtime profits from using few layers and
irregular super pixels as basis for the input for the CNN rather than regular patch
or full image, which tremendously reduces the input size. Although, this method
achieved remarkable low computational time in both training and testing phases, the
lower resolution of the super pixel domain yields naturally lower accuracy compared
to high-cost state of the art methods. Furthermore, Convolutional Neural Networks
(CNNs) have limitations, when it comes to capturing the direct dependency between
output variables. In conventional CNN approaches, each label variable is predicted
independently, which can compromise the achievement of a smooth segmentation.
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• In the second contribution of this dissertation, we propose a model strategy to
refine the classification result from super pixel grid to pixel grid using Condi-
tional Random Fields (CRFs) [Lafferty et al., 2001]. CRFs can model global
properties like object connectivity, geometric properties, and spatial relation-
ship between objects.

• The key idea of CRF inference for semantic labelling is to formulate the la-
bel assignment problem as a probabilistic inference problem, that incorporates
assumptions such as the label agreement between similar pixels or image re-
gions. This work comprises two aspects for coupling local and global evidence.
We combine the local image classification information extracted from CNN part
with global information of neighbouring pixel relations to decide for an accurate
pixel label.

• To make the semantic labelling assignment computationally feasible and effort-
less, the refinement procedure is limited to the inaccurate predicted super pixels
labelling from the previous step along the object border.

• Three different CRF optimization techniques are investigated for the task of
pixel-wise image segmentation, considering the labels as hidden states and solv-
ing the label prediction as a solution to the inference problem. Different infer-
ence methods are used to study the influence of computational gain and overall
accuracy, allowing for robust and accurate statistical analysis of semantic seg-
mentation. Experiments show that the final proposed refinement procedure can
obtain comparable performance among the top-performing algorithms on the
case study for road segmentation.

Un-supervised smooth Super pixel-based Convolutional Neural Network
for Semantic Segmentation

The approach presented before based on a supervised CNN method and a proba-
bilistic graphical model, like other fully supervised semantic segmentation methods,
is suffering from the lack of a robust learning mechanism that is generalizable over
different conditions. The previous approach, employing a combination of supervised
CNN method and probabilistic graphical model, is subject to a common challenge
shared by many fully supervised semantic segmentation methods. It lacks a robust
learning mechanism capable of effectively adapting to diverse conditions and achiev-
ing generalizability. For humans, it is easy to distinguish between roads, sidewalls,
grass, or existence of shadow on the road surface irrespective of lighting conditions,
surroundings, and other variations. To achieve such a high degree of robustness to
variations, a powerful and stable learning method is required. Contrary to the tra-
ditional methods, the supervised deep learning methods provide the potential ability
to construct such a learning algorithm, removing a great deal of hand-engineering,
while still retaining a large modelling capacity. However, they are highly dependent
on the very large amount of training data set with high costs of manual annotation,
that have equal underlying distribution with testing data. Whereas, having diversity
between the training and testing data is common in the real world.

8



1.4 Organization

• Our next contribution in this dissertation is to rectify above problem and adjust
the method for a better generalization. We propose an unsupervised technique
based on Cycle Consistence Adversarial Network (CycleGAN) [Zhu et al., 2017]
to exploit this intuition as a powerful technique to improve the generalizability
of proposed super pixel based convolutional neural network model and enhance
the super pixel semantic segmentation result.

• Primarily, we defined a 4 channel augmented input data model and demonstrate
how our framework can process new imagery data in order to generate a real-
looking of fine-grained samples.

• Secondly, we algorithmically and architecturally adapt the adversarial model
framework to the new data model to handle the trade-off among the segmenta-
tion accuracy, memory resources and inference speed for large-scale image size.
We experimentally show that better budget-aware segmentation results (in both
timing and computational resource) are achieved by the proposed method com-
paring to other unsupervised methods for road segmentation as our case study.

1.4 Organization
The rest of the thesis is organized as follows:
Chapter 2 provides a detailed description of the technical background for the methods,
we present in this thesis for the task of semantic image segmentation. It gives in-depth
understanding of the notations and terminologies used in later chapters. Meanwhile,
it gives an overview of Artificial Neural Networks (ANNs) and their fundamental parts
with the focus on the Convolutional Neural Network (CNN) architectures, which are
the main thread to the whole proposed approaches in this work, and provides a guide-
line to the following chapters.
The next three chapters discuss our novel techniques for semantic scene segmentation
with the less computational efforts and time-budget applicable for real-time systems.
All three proposed methods are applied to semantic road segmentation task. The
models are trained on two public available data sets in autonomous driving and sev-
eral experiments are conducted to show the strengths or drawbacks of the methods.
In Chapter 3, we introduce our novel technique incorporating superpixels with a
CNN network for achieving a fast and computationally efficient semantic segmenta-
tion, while maintaining an acceptable level of accuracy. A simple CNN architecture
with a new input data scheme based on super pixels integrated with the high-quality
hand-crafted features is proposed in this chapter. The general concept presented here
is used as the foundation for the rest of the two proposed methods.
In order to address the speed-accuracy trade-off discussed in Chapter 3, Chapter 4
introduces a novel approach aimed at improving model performance. The proposed
method leverages graphical models to enhance accuracy without compromising effi-
ciency. Experimental results on road segmentation demonstrate the effectiveness of
this approach in achieving improved performance.
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Chapter 5 focuses on un(semi)supervised method for coarse-to-fine semantic segmen-
tation task to alleviate the fully supervised drawbacks and afford the Goal 3 of the
contributions.
Chapter 6 summarize the contributions of the presented work and concludes the whole
thesis. Moreover, it gives an outlook to the future works stemming from this research.
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2 Technical Background

This chapter provides a comprehensive overview of the fundamental theory underlying
deep neural networks. In Sections 2.1, 2.3 - 2.5, we delve into the architecture of key
neural networks, their components, and the theoretical concepts and terms that form
the basis of the methods proposed in this thesis. Additionally, we explore familiar
learning schemes, optimization techniques, and diverse loss functions. By examining
these topics, we establish a solid foundation for understanding the principles upon
which our research builds.
Section 2.2 provides an overview of deep learning, outlining key training strategies
and foundational principles of deep neural networks. Section 2.6 delves into Convolu-
tional Neural Networks (CNNs), the cornerstone of machine learning methodologies
in a plethora of semantic segmentation tasks, including the three contributions of this
work. It offers a comprehensive introduction to CNNs, elucidating the architecture’s
layered structure and the pivotal roles these layers play.
Section 2.7 presents the essential concepts and taxonomy of image segmentation tech-
niques, with a particular emphasis on deep learning-based semantic segmentation ap-
proaches, the core subject of this thesis. It will thoroughly examine prominent deep
learning frameworks extensively applied to semantic segmentation, detailing their
mechanisms and applications.

2.1 An Introduction to Artificial Neural Network (ANN)

Artificial Neural Networks (ANN) are a family of computational models inspired by
human brain processes and designed to analyse and process the underlying relation-
ship between sets of data. ANNs pave the way for scientific advances to achieve a
high level of competence in solving many complex problems. The main components
of an ANN are input/output, computational units (neurons), weights, biases, and
activation functions, which are discussed below.

2.1.1 Artificial Neuron

Fundamental computational units in ANNs called neurons or nodes, wherethrough
data and computations flow. Figure 2.1 shows the functionality of a neuron in an
artificial neural network. Each neuron is characterized by its weight vector (W),
bias (b) and activation function (f). They receive one or more inputs, that can
come from either the raw data or from neurons of previous layer. Each input vector
x = [x1, . . . , xn] is associated with a weight parameter vector W = [w1, ..., wn], that
will be learnt through network training. Another input parameter is the bias (b),
which is a scalar parameter and like the weights is learnable.
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Figure 2.1: Neuron Functionality

A bias value is used to adjust the output along with the weighted sum of the inputs, to
equilibrate the appropriate result with the given data. Each neuron performs a linear
transformation on its input using the weights and biases. Then the result (z) is sent
to an activation function, to decide whether a neuron should be activated or not. This
means, it will decide whether the neuron’s input to the network is important or not
in the process of prediction using simple mathematical operation. This mathematical
function can be stated as follows.

z =
n∑
i=1

wixi + b

a = f(z)
(2.1)

2.1.2 Activation Functions

The activation function f in equation 2.1, as a non-linear transformation function, is
a decision-making element, that signifies the decision boundary in the input domain
by setting a threshold in the induced local field. Without an activation function, the
output is a simple linear function, which always acts as a linear regression model.
The result of stacking linear functions is also a linear function. However, most of the
real world problems are complex and non-linear. The activation functions enable us
to solve more complicated tasks. Several non-linear activation functions for neural
networks are described in the literature [Goodfellow et al., 2016]. Theoretically, any
differentiable function can be considered as an activation function. In practice, only
few "well-behaved" (bounded, monotonically increasing, and differentiable) activation
functions are used. Some of the popular activation functions are highlighted in Table
2.1. Generally, different nodes in the same or different layers of the neural network
may have different activation functions. Nevertheless, almost all the networks use
the same activation functions specially for the nodes in the same layer. Moreover,
choosing the activation function strongly depends on the task to be solved or the
better way of speaking, what our network is trying to learn.
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2.2 Understanding Deep Neural Network(DNN)

Name Function f Derivative of f : f ′ Range

Identity f(x) = x f ′(x) = 1 (−∞,∞)

Sigmoid f(x) = 1
1 + exp(−x) f ′(x) = f(x)(1− f(x)) (0, 1)

Gaussian f(x) = exp(−x2) f ′(x) = −2x exp(−x2) (0,∞)

Thanh f(x) = exp(x)− exp(−x)
exp(x) + exp(−x) f ′(x) = 1− [f(x)]2 (−1, 1)

ReLU f(x) =
{

0, x ≤ 0
x, x > 0

f ′(x) =
{

0, x ≤ 0
1, x > 0

(0,∞)

LReLU f(x) =
{

0.01x, x ≤ 0
x, x > 0

f ′(x) =
{

0.01, x ≤ 0
1, x > 0

(0,∞)

PReLU f(x) =
{
αx, x ≤ 0
x, x > 0

f ′(x) =
{
α, x ≤ 0
1, x > 0

(0,∞)

Table 2.1: Common activation functions used in neural networks [Goodfellow et al.,
2016, Aggarwal et al., 2018, He et al., 2015a]. The activation functions
include Rectified Linear Unit (ReLU), which sets negative values to zero,
Leaky ReLU (LReLU), allowing a small, non-zero gradient when the unit
is inactive, and Parametric ReLU (PReLU), where the leakage coefficient
becomes a learnable parameter along with other network parameters.

2.2 Understanding Deep Neural Network(DNN)

The way that processing elements (Neurons) in ANN are connected to each other is
very essential in ANNs. There are different types of architectures for ANNs such as,
single layer feed-forward, multi-layer feed-forward, Recurrent,etc. The simplest form,
a feed-forward neural network, also known as a perceptron consists of three main lay-
ers of neurons.The first layer, called input layer is composed of n neurons, arranged
as a n-dimensional vector, the hidden layer (could be more than 1 layer) is composed
of m neurons, arranged as a m-dimensional vector, and the output layer. More gener-
ally, an ANN with multiple consecutive hidden layers is called Deep Neural Network
(DNN) [Hinton et al., 2006]. They have become the most powerful solutions to com-
plex tasks like Natural Language Processing, Computer Vision, Speech Synthesis.
The hidden layers are iteratively breaking down the input into valuable information,
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leaving out the redundant information and extract the important patterns, that are
distinctive to a particular object. Relatively large number of layers in deep networks
allows the network to automatically learn more complex patterns and relationships
exist in the data.

2.2.1 Major Architectures of Deep Neural Networks

There are three different types of Deep Neural Networks, which are popularly used:

1. Multi-Layer Perceptrons (MLP): Multi-Layer Perceptrons (MLPs) [Rosen-
blatt, 1958, Rumelhart et al., 1986] are a basic yet powerful type of deep neural
network with a feed-forward architecture (see section 2.4.1). They consist of
an input layer, multiple hidden layers, and an output layer. MLPs operate by
taking an input vector and transforming it through these layers to produce an
output, which serves as the network’s prediction. The model learns by adjusting
its parameters to reduce the difference between its predictions and the actual
data. MLPs are versatile and can be applied to a wide range of tasks, from
simple regression to complex classification problems.

2. Convolutional Neural Networks (CNN): A Convolutional Neural Network
(CNN) [Widrow, 1962, Fukushima, 1980, LeCun et al., 1998] is another type
of deep neural networks with spatially bounded parameters. CNNs are mainly
used in Computer Vision or image processing for doing a specific task like image
classification, object recognition, and semantic segmentation.

3. Recurrent Neural Networks (RNN): If feed-forward neural networks are
extended to have feedback connections, they are called Recurrent Neural Net-
works [Elman, 1990, Hochreiter, 1997]. Comparison to other feed-forward net-
works, they are able to send information over time-steps. From a sequence of
input vectors, RNN takes each vector at a time and model them. This ability
allows the network to preserve state, while each input is modelled.

2.3 Broad strategies for training ML models

Learning approaches differ based on the interaction between the learner and the
environment, and the way of earning skills or knowledge obtained by synthesizing
useful concepts from historical data. It is a goal-guided process for the improvement
of the system’s behaviour due to experience and prior knowledge. According to the
learning process and the type of output or the problem it attempts to solve, they are
largely divided to four main recognized categories [Goodfellow et al., 2016, LeCun
et al., 2015]:

• Supervised

• Unsupervised
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2.3 Broad strategies for training ML models

• semi-supervised

• Reinforcement

In supervised learning, the objective is to find a general rule that maps inputs to
ground truth labels. Here, a learning algorithm analyses the training data samples
and produces a derived function, which will later be used for mapping new examples.
In this learning method, labels have to be available during training.
Unsupervised machine learning, in contrast to supervised, does not need any labelled
data. Here, the model learns to use techniques on the input data to mine for rules,
detect patterns, and cluster(group) the data points, that help to obtain meaningful
insights within datasets without reference or labels to be known.
Semi-supervised learning as a Hybrid Learning approach combines supervised and un-
supervised learning, in which the training data contains a large number of unlabelled
examples and few labelled ones. Semi-supervised learning attempts to improve the
accuracy of supervised learning by exploiting information from cheap and abundant
unlabelled data.
In Reinforcement Learning, machines continuously interacts with its environment in
an iterative mode to take a suitable action to maximize reward within a particular
context. The system evaluates its performance based on the feedback responses and
reacts accordingly.
Training neural networks together with acquiring annotated datasets are cumber-
some and computationally expensive. To overcome this problem, various techniques
of transfer learning are proposed to leverage from pre-trained models as the starting
point for training, instead of training a neural network from scratch. Transfer learn-
ing, reuses the model and data gained, while solving one problem and applies it to
a new related task. Transfer learning methods can be categorized in inductive and
transductive [Ribani and Marengoni, 2019]. Inductive transfer learning is a powerful
technique that enables the transfer of knowledge from one domain to another, leading
to improved learning and performance. It involves utilizing labelled data from both
the source and target domains during training. The process begins with pre-training
a model on a large dataset or alternative data sources like simulation data or gen-
erative models. Subsequently, the model is fine-tuned using a smaller target dataset
that has limited labelled examples. By leveraging the learned features and knowledge
from the source domain, the model can benefit from the general representations that
are relevant to both domains. This approach is particularly effective when the shared
features between the domains are more general rather than specific to the source do-
main alone. Examples of inductive transfer learning include multi-task learning and
self-taught learning, which further demonstrate the potential and versatility of this
approach.
Transductive transfer learning refers to as domain adaption, can also be used to trans-
fer knowledge from a source domain to a target domain, where no labelled target data
is available, but the unlabelled data on the target domain can be seen during training.
Domain adaption in deep neural networks is a very active research area and several
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techniques in deep neural network for domain adaption are investigated in [Wang and
Deng, 2018].

Figure 2.2: Scheme of a Multi-Layer Perceptron(MLP) network with n input features,
m hidden neurons per layer, L layers and three outputs. The diagram
exemplifies the forward propagation process, highlighting how data flows
from the input layer through the hidden layers to produce the final output.

2.4 Training Deep Neural Networks
Training deep neural networks involves a two-phase process, encompassing the for-
ward pass and the backward pass, utilizing the error back-propagation algorithm.
During the forward pass, computation progresses layer by layer from the input to-
wards the output, applying a mapping function and activating each layer’s neurons
non-linearly. Conversely, the backward pass involves computing the gradients of the
loss function with respect to each weight, moving from the output back to the in-
put layer. This bidirectional flow, known as forward and backward propagation,
is fundamental to approximating the mapping functions central to the operation of
contemporary deep learning models.

2.4.1 Forward Propagation

In the realm of feed-forward networks, the architecture is designed to allow informa-
tion to move in a single direction from the input layer to the output layer, navigating
through various hidden layers. The Multilayer Perceptron (MLP), a prime example
of such networks, is recognized for its fully interconnected design. Every neuron in a
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2.4 Training Deep Neural Networks

layer is connected to each neuron in the next layer, with distinct biases and weight
sets facilitating the flow of data. Figure 2.2 illustrates the forward propagation in an
MLP, tracing the input’s journey through multiple hidden layers to the output. This
visualization underscores the MLP’s linear progression, where each layer’s output be-
comes the input of the next layer, culminating in the final output. This structured
data flow allows the MLP to decode and learn intricate patterns within the input
data, making it a versatile tool for tasks ranging from classification to numerical ap-
proximation.
Training a Multilayer Perceptron (MLP) involves mapping an input vector x =
[x1, . . . , xn], where each xi is an input feature, through multiple L layers to pro-
duce a predicted output ŷ = [ŷ1, . . . , ŷC ], where C signifies the number of output
neurons. The transformation denoted by ŷ = f(x;W,B) incorporates a series of
learnable weight matrices W = [W [1], . . . ,W [L]] and bias vectors B = [b[1], . . . , b[L]],
with W [l] being the weight matrix that connects the (l− 1)-th layer to the l-th layer,
and b[l] representing the corresponding bias vector for the l-th layer. Each layer, from
the input to the output, contributes to this mapping by performing a weighted sum-
mation of its inputs, adding the bias vector b[l], and applying a non-linear activation
function to produce activations a[l] for the next layer. The final layer, or the output
layer, outputs the prediction ŷ, employing an activation function suited to the task at
hand. The objective of training is to fine-tune the weights W and biases B, so that ŷ
closely approximates the actual outputs y = [y1, . . . , yC ], utilizing back-propagation
and optimization techniques to minimize the loss function that measures the differ-
ence between ŷ and y (see section 2.4.2).
In initial step of the training procedure, all weights in the network are stochastically
initialized (see section 2.5.2). The general statement of the equation 2.1 for jth node
of the lth layer has the following equations:

z
[l]
j =

m∑
k=1

w
[l]
jk a

[l−1]
k + b

[l]
j

a
[l]
j = f [l](z[l]

j )
(2.2)

Here, The superscript indexes indicate the number of the corresponding hidden layer
and the subscript indexes shows the number of node. w[l]

jk refers to the weight associ-
ated with the neuron j in the layer l with the neuron k from layer l−1. For every layer
in the network, certain parameters associated with following notations are considered:

• n[l] : The number of neurons in the layer l,

• W[l] : The weight matrix associated with the layers l and l − 1 with the size
of (n[l] ×m[l−1]). wljk refers to the weight associated with the neuron j in the
layer l with the neuron k from layer l − 1,
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• b[l] : The vector of biases associated with the layer l of the size (n[l] × 1),

• a[l] : The vector of activations of the neurons in the layer l of the size (n[l]× 1),

• z[l] : The vector of the sum of the weighted output of the neurons in the layer
l and the size (n[l] × 1),

• f[l] : The activation function applied to the the neurons in the layer l with
a[l] = f [l](z[l]).

To calculate a[l] for every layer l in the network, we should calculate an intermediate
vector z[l]. If x is the input vector to the neural network (a[0] = x), then z[l] is
obtained from the following equation:

a[l] = f [l](z[l]) = f [l](w[l] · a[l−1] + b[l]) (2.3)

Here, the activation of the final layer represents the neural network’s predicted output
ŷ.

2.4.2 Back-propagation
Through backward-pass, also known as back-propagation phase, the network learns
how far its predicted output is from the right answer, and then injects the error
committed from this prediction (forward) phase back into the network to update its
parameters ( weights (w) and biases (b)) on the next iteration. This process leads to
the actual output getting closer to the target output, and a better network learning
[Rumelhart et al., 1986] and more specifically by [Bishop and Nasrabadi, 2006, pages
240-245].
The learning process begins with the forward propagation phase, where the input
features of a single sample, x = [x1, x2, ..., xn], are fed into the network. This step
involves processing the data from left to right to predict the network’s output, repre-
sented as ŷ. During this phase, the true value y is already established. The second
step is to determine how ”wrong” the guess of the network is. For this purpose, a
cost function C is used to calculate the error scoring (loss) between the forecast ŷ and
actual value y. In the context of a single sample, a commonly utilized cost function
can be defined as:

C = 1
2C

C∑
i=1

(ŷi − yi)2 (2.4)

Where C indicating the dimensionality of the output space, which could correspond
to the number of classes in a classification setting or output variables in regression.
The training goal is to find a set of parameters (weights), that will minimize the cost
function. In the third step, the weights are updated based on the calculated error.
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2.4 Training Deep Neural Networks

Finally, the forward and backward passes repeat until custom epoch count, where the
error reaches to a minimum value.
The back-propagation algorithm leverages the gradients of the cost function relative
to the network’s parameters to guide the updates, thereby systematically improving
model performance. A cornerstone technique for adjusting the weights to minimize
the cost function is Gradient Descent (GD) [Goodfellow et al., 2016, page 83]. GD
iteratively updates each weight by moving it in the opposite direction of its cost
function’s gradient, effectively steering the parameters towards the minimum of the
cost function. For a network with L layers, the update rules for the weight w[l]

jk

connecting the k-th neuron in layer l − 1 to the j-th neuron in layer l and the bias
b
[l]
j associated with the j-th neuron in layer l, during iteration t, are given by:

w
[l]
jk(t) = w

[l]
jk(t− 1)− η ∂C

∂w
[l]
jk(t− 1)

b
[l]
j (t) = b

[l]
j (t− 1)− η ∂C

∂b
[l]
j (t− 1)

(2.5)

Where η is the learning rate, and ∂C
∂w

[l]
jk

is the gradient of the loss function C with

respect to the weight w[l]
jk and ∂C

∂b
[l]
j

denotes the gradient of the loss function C with

respect to the bias b[l]j . To apply back-propagation, we compute the partial derivatives
∂C
∂w

[l]
jk

and ∂C
∂b

[l]
j

, which quantify how changes in weights and biases affect the loss. For

a weight wjk in a simple network with a single layer and a bias b = 1, the gradient of
the loss with respect to wjk is:

∂C
∂w

[1]
jk

= ∂C
∂a

[1]
j

·
∂a

[1]
j

∂z
[1]
j

·
∂z

[1]
j

∂w
[1]
jk

(2.6)

Here, a[1]
j denotes the activation of the j-th neuron in layer 1, and z[1]

j represents the
weighted input to this neuron, calculated as z[1]

j =
∑
k w

[1]
jkxk + b, with xk being the

input from layer 0 and b being the bias. Given that ∂z
[1]
j

∂w
[1]
jk

equals xk (the input from

the previous layer), the formula simplifies to:

∂C
∂w

[1]
jk

= ∂C
∂a

[1]
j

·
∂a

[1]
j

∂z
[1]
j

· xk (2.7)
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To extend this concept to a multi-layer perceptron (MLP) with L layers, we define
the error term δ

[l]
j for the j-th neuron in the l-th layer as the derivative of the cost

function with respect to the neuron’s weighted input z[l]
j :

δ
[l]
j ≡

∂C
∂z

[l]
j

(2.8)

Considering that ∂z
[l]
j

∂w
[l]
jk

is the activation a[l−1]
k from the previous layer, the gradient of

the cost function with respect to the weight can be expressed using the error term:

∂C
∂w

[l]
jk

= a
[l−1]
k · δ[l]

j (2.9)

The value of δ for each neuron is computed by propagating these errors backward
from the output layer. This methodical adjustment of weights and biases, based
on the back-propagation of errors, allows for the gradual improvement of the model’s
performance by minimizing the discrepancy between the predicted and actual outputs.
For the entire network, the derivatives of the cost function with respect to the weights
and biases in any layer l are calculated using the chain rule and are based on the error
terms of the neurons:

∂C
∂W [l] = ∂C

∂a[L] ·

 L∏
i=l+1

∂a[i]

∂z[i] ·
∂z[i]

∂a[i−1]

 · ∂a[l]

∂z[l] ·
∂z[l]

∂W [l]

∂C
∂b[l]

= ∂C
∂a[L] ·

 L∏
i=l+1

∂a[i]

∂z[i] ·
∂z[i]

∂a[i−1]

 · ∂a[l]

∂z[l]

(2.10)

These gradients are computed recursively from the output layer back to the input
layer, enabling the network to adjust its weights and biases to minimize the loss
function and improve the model’s accuracy by reducing the discrepancy between the
predicted and actual outputs.
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2.5 Common Principles of Deep Networks

2.5.1 Vanishing or Exploding Gradient

The vanishing gradient problem [Hochreiter, 1991] is one of the key challenge in train-
ing deep neural networks, that can be happen either by improper weight initialization
(section 2.5.2), or through updating weights using back-propagation (section 2.4.2),
where the derivatives of the network is found with the chain rule by moving layer by
layer from the final layer to the initial one. When n hidden layers use an activation
like the sigmoid function, the gradient decreases exponentially as we propagate down
to the initial layers. That leads weights and biases will not be updated effectively
with each training session. One of the simple solution to this problem is to replace
the activation function of the network by ReLU.
In contrast, exploding gradient[Goodfellow et al., 2016] is a problem where large er-
ror gradients accumulate and resulting in large weight updates to neural network
model during training. This leads the model being unstable and unable to learn from
the training data. At an extreme, the values of weights can become so large as to
overflow and result in NaN(Not a Number) values, that can no longer be updated.
Exploding gradient problem can be solved by redesigning the network model, using
rectified linear activation, or weight regularization (section 2.5.3). Main solution to
the exploding gradient problem is to prevent the gradients from getting too large by
applying a process called gradient clipping, which imposes a predefined threshold on
each gradient. Gradient clipping ensures that gradients move in the same direction
but with shorter lengths.
In general, to prevent the vanishing or exploding in the gradients of the network’s
activations, the variance of the activations should not change across every layer. How-
ever, the distribution of activations can shift and scale in a forward pass, leading to
a deterioration in weight distribution and consequently slowing down training and
triggering side effects between layers.

2.5.2 Weight Initialization

Weight initialization is a method, where the weights of the neural network are set to
small random values. This values define the starting point of optimization algorithm
(learning or training) of the neural network model. The proper weight initialization is
essential for network to learn well. The selection of too large or too small weights leads
to the layer activation outputs exploding or vanishing through a deep neural network
and the network will take longer to converge, if it is even able to do so at all. Weights
in neural networks are mostly initialized with small and different random numbers to
break symmetry as much as possible. This causes the activations to be zero-centred
and have specific variance. Accordingly, they could keep specific distribution over
multiple layers and each neuron can learn its distinct feature. A state-of-the-art
weight initialization approach, that uses the Sigmoid or Tanh activation function is
called “Glorot” or “Xavier” initialization [Glorot and Bengio, 2010], where scaled ran-
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dom uniform or Gaussian distribution is used for the initial weights W of each layer.
In [Glorot and Bengio, 2010] a variance ν(W ) of the weight initialization distribution
is proposed based on the number of neurons nin in the previous and the number of
neurons nout in the current layer. The primary objective of Xavier initialization is
to maintain uniform variances for both activations and gradients across all network
layers. Such a consistency is crucial for preventing gradients from vanishing or explod-
ing during training, thereby facilitating a smoother and more effective optimization
process. It aims to ensure, that the variances of the layer inputs (pre-activations)
and the layer outputs (post-activations) remain balanced, i.e ν(a[l]) ≈ ν(z[l]). The
method achieves this by scaling the variance of the initial weights ν(W ) according to
a compromise between the number of neurons in the connecting layers. Specifically,
when nin equals nout, the variance scaling perfectly balances the forward and back-
ward propagation needs. In general, to accommodate layers where nin and nout differ,
Xavier initialization averages these two values, as outlined in the following equation:

ν(W ) = 2
nin + nout

(2.11)

This approach ensures a uniform initial distribution of neuron outputs across the
network, which has been shown to significantly enhance the convergence rate during
training.
Above assumption is invalid for ReLU and PReLU (table 2.1). In the specific case
of the neural networks with ReLU, half of the results are truncated. To overcome
this, He et al. [He et al., 2015a] proposed to only rely on the number of neurons in
the previous layer. This standard approach for initialization of the weights of neural
network layers that use the rectified linear (ReLU) activation function is called “He”
initialization. The He initialization method is calculated as a random number with
a Gaussian probability distribution with a mean of 0 and a standard deviation of

σHe =
√

2
nin

.

ν(W ) = 2
nin

(2.12)

2.5.3 Model Regularization

State-of-the-art neural networks have millions of parameters with many degrees of
freedom. To improve the model prediction of the networks, selecting and tuning the
preferred level of the model complexity is an unavoidable and important step [Bishop
and Nasrabadi, 2006, chapter 5.5]. The Poor model selection can lead to diminishing
or exploding gradients that are accumulated by the chain rule of derivatives. Tak-
ing into account the bias-variance trade-off prevents the model from under-fitting or
over-fitting. Under-fitting occurs due to oversimplification of the model (high bias).
This problem mainly occurs either by improper weight initialization or by using some
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bounded activation functions such as Sigmoid or Tanh (section 2.1.2). Bounded func-
tions also have a bounded gradient, which can exponentially decrease the gradient,
when used in every layer. Over-fitting is caused by over-complication of the model
(high variance). It happens when a model learns the details and noise in the training
data, which negatively impacts the performance of the model on new data. By using
regularization technique, over-fitting can be prevented. It discourages the learning of
a model of both high complexity and flexibility, by adding an additional penalty term
in the error function. The two common regularization techniques are L1 and L2 :

L1 = λ
n∑
i=1
| wi |

L2 = λ
n∑
i=1

(wi)2
(2.13)

where n is the number of weights wi, |wi| is the absolute value of each weight, w2
i is

the square of each weight and the parameter λ∈R, as the penalize value, controls the
influence of the regularization. L1 regularization, also known as Lasso regularization,
incorporates the absolute value of the coefficients into the loss function as a penalty
term. On the other hand, L2 regularization, also referred to as ridge regression, adds
the squared magnitude of the coefficients as the penalty term. Regularization with L1
promotes sparsity in the model by driving many coefficients to zero, and L2 favours
a Gaussian distribution of the weights [Hastie et al., 2009, pages 610-611].
Weight decay [Goodfellow et al., 2016, pages 230-237] is an effective regularization
technique to mitigate over-fitting by subtly modifying the weight update rule in gra-
dient descent. Unlike direct inclusion of L1 or L2 regularization terms in the loss
function, weight decay incorporates a shrinkage factor, governed by the parameter λ,
into the weight update process (see equation 2.5). This approach adjusts the weights
by not only considering the gradient of the cost function, but also by scaling down
the weights from the previous iteration, as outlined in the following equation:

w
[l]
jk(t) = w

[l]
jk(t− 1)− η

 ∂C
∂w

[l]
jk(t− 1)

+ λw
[l]
jk(t− 1)

 (2.14)

This formula ensures a gradual reduction in the magnitude of the weights with each
training iteration. By systematically decreasing the weights, weight decay helps in
keeping the model parameters modest, thereby steering the learning process towards
simpler models that generalize better to unseen data. This technique not only helps
in controlling over-fitting but also contributes to a more stable and robust learning
dynamics.
Dropout is another technique to prevent over-fitting in neural network [Goodfellow
et al., 2016, page 258]. During training, some number of layer outputs are randomly
ignored by setting their value to 0. It makes the training process noisy and prevent
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the situations, where network layers co-adapt to correct mistakes from prior layers,
in turn making the model more robust. In general, dropout increases the training
time, however improves the performance of the network.

2.5.4 Batch Normalization

Batch normalization [Ioffe and Szegedy, 2015], or batch-norm is a technique to in-
crease the stability and performance of neural network training. It normalizes the
activations of intermediate layers with zero mean and a standard deviation of 1, which
makes the training faster and over-fitting smaller.
As outlined in section 2.4.1, z[l]

j represents the aggregated weighted inputs (pre-
activation output) for the j-th neuron in layer l. The symbol ẑ[l]

j is introduced to
represent these inputs in their normalized form before applying the activation func-
tion. During the batch normalization process for a batch containing M samples, the
empirical mean µ[l]

j and variance ν[l]
j are computed for each neuron j across the batch.

For the i-th sample in the batch, the normalization process for neuron j within layer
l encompasses these steps:

µ
[l]
j = 1

M

M∑
i=1

z
[l](i)
j (2.15)

ν
[l]
j = 1

M

M∑
i=1

(z[l](i)
j − µ[l]

j )2 (2.16)

z
[l](i)
normj =

z
[l](i)
j − µ[l]

j√
ν

[l]
j + ε

(2.17)

In the normalization equation, ε is a small constant added to the variance ν[l]
j to ensure

numerical stability, by preventing division by zero. Following this adjustment, the
activations are normalized to produce z[l](i)

normj . This step standardizes the activations
to have zero mean and unit variance for each neuron across the batch, setting the
stage for subsequent scaling and shifting.

ẑ
[l](i)
j = γ · z[l](i)

normj + β (2.18)

The parameters γ and β are learnable scale and shift factors for each neuron j in
layer l, enabling the network to adjust the normalization effect if necessary. The
normalized and adjusted output ẑ[l](i)

j then undergoes activation through the layer
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activation function, f [l], resulting in the final activation a[l](i)
j for the i-th sample and

j-th neuron at layer l:

a
[l](i)
j = f [l](ẑ[l](i)

j ) (2.19)

This process, ensures that each layer inputs are standardized, promoting more con-
sistent training dynamics and improving the model’s learning capability. By ensuring
that each layer receives inputs with consistent statistical properties, Batch Normal-
ization helps in stabilizing the gradient flow through the network, making it possible
to employ higher learning rates and accelerating convergence.

2.5.5 Loss Functions

A deep neural network learns how to map a set of inputs to a set of outputs by
choosing the correct weights. Finding the perfect weights for a neural network is
almost not possible. Instead, the model tries to navigate the space of possible sets of
weights in order to make enough good predictions. The function used to evaluate a
candidate solution called loss or objective function [Aggarwal et al., 2018].
Several training loss functions are used in Computer Vision. Cross-Entropy (CE)
and Mean Squared Error (MSE) are the main two ones. For classification tasks, the
cross-entropy is commonly used, which is defined for discrete events, where outputs
(classes) are usually encoded in an indicator vector (one-hot vector) and the output
of the network are interpreted as a probability distribution across the classes. Given
a set of predicted probabilities, denoted as ŷ = [ŷ1, ŷ2, ..., ŷC ], where ŷi represents the
predicted probability for class i and C is the total number of classes, and the true
labels represented as one-hot encoded vectors y = [y1, y2, ..., yC ], where yi = 1 if the
sample belongs to class i and yi = 0 otherwise, the Cross-Entropy loss LCE for total
N samples is calculated as:

LCE(y, ŷ) = − 1
N

N∑
j=1

C∑
i=1

[yj,i log(ŷj,i)] (2.20)

In this formula, log(·) denotes the natural logarithm. The term yj,i indicates if the jth
sample is in class i, while ŷj,i represents the model’s predicted probability, that the
jth sample falls into class i. The loss is computed by taking the negative logarithm
of the predicted probability for the true class label and summing it over all classes.

Another common objective function is known as Mean Squared Error (MSE). It mea-
sures the average squared difference (known as euclidean distance) between the pre-
dicted value and the true label or target for each sample, and then takes the average
across all samples. Traditionally, MSE is employed in single-output regression scenar-
ios, where the goal is to predict a single continuous variable. However, in the realm
of multi-output task(classification or regression), where the objective extends to pre-
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dicting multiple variables from the same set of inputs, the MSE can be adapted to
accommodate this complexity too. This adaptation involves summing over multiple
continuous outputs (or classes) per sample. The formula for MSE loss (LMSE) can be
presented as following:

LMSE(y, ŷ) = 1
N

N∑
i=1

C∑
j=1

(ŷi,j − yi,j)2 (2.21)

Squaring the differences has the effect of penalizing larger deviations more than
smaller ones, as the squared terms amplify the differences. Therefore MSE loss is
sensitive to outliers.
The concept of Softmax loss, also known as categorical cross-entropy loss, is pivotal
in multi-class classification tasks, particularly when paired with the softmax activa-
tion function in the output layer. This loss function quantifies the disparity between
the predicted class probabilities and the actual labels. To compute Softmax loss, we
initially apply the softmax function to the logits or predicted scores. For a problem in-
volving C classes, the softmax function serves as an extension of the sigmoid function,
transforming the output vector z[L] of the final layer into a probability distribution,
where each element’s value ranges between [0, 1], and the sum of all elements equals
1. The softmax function for the i-th sample and j-th class is defined as:

Softmax(z[L]
i,j ) = ŷi,j = ez

[L]
i,j∑C

k=1 e
z

[L]
i,k

(2.22)

Here, ŷi,j denotes the predicted probability, that the i-th sample is associated with
class j, calculated by normalizing the exponential of the logit z[L]

i,j across all classes
k for that sample, ensuring that the sum of probabilities for all classes equals 1.
Subsequently, the Softmax loss (LSoftmax) is computed as:

LSoftmax(y, ŷ) = − 1
N

N∑
i=1

C∑
j=1

yi,j log(ŷi,j) (2.23)

In this formula, yi,j acts as a binary indicator, being 1 if class j is the correct classifica-
tion for the i-th sample, and 0 otherwise. The key distinction between Cross Entropy
and Softmax Loss lies in the derivation of the predicted probabilities ŷi,j . While Soft-
max Loss specifically employs the softmax function to convert the model’s logits into
probabilities before applying the cross-entropy formula, Cross Entropy Loss can be
applied in contexts, where the predicted probabilities are derived through different
means, not limited to the softmax function.

The loss function can also be learned along with the network instead of explicitly
formulating an objective function, by using Adversarial training. In [Goodfellow et al.,
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2020] is proposed a combination of a generator and discriminator network known
as Generative Adversarial Network (GAN), where a generator network is trained
concurrently to generate adversarial samples from noise and is updated alternately to
the discriminator network. Generated samples are added to the original ones to fool
the discriminator. The discriminator network is trained to distinguish the original
samples from generated ones in an adversarial way. More detail is explained in section
5.3

(a) Structure of a fully connected multilayer
perceptron network

(b) Structure of a Convolutional Neural Network(CNN)

Figure 2.3: A Comparison between (a) a fully connected multilayer perceptron struc-
ture and (b) a Convolutional Neural Network(CNN). Inputs in CNN
are 2-D arrays (images), while inputs to the fully connected neural
networks are vectors. The computations performed by both networks
are very similar:(1) a sum of products is formed, (2) a bias value is
added, (3) the result is passed through an activation function, and
(4) the activation value becomes a single input to a following layer.
The last pooled feature maps of the CNN are vectorized and serve as
the input to a fully connected neural network. The class to which
the input image belongs is determined by the output neuron with
the highest value. Image (a) source: https://towardsdatascience.
com/convolutional-neural-network-17fb77e76c05, Image (b) source:
[Gonzalez, 2009, page 965]
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2.6 Convolutional Neural Network (CNN)

In MLP networks, or fully connected neural networks pattern features are designed
as vectors. They were engineered and extracted from images prior to be given as
input to a neural network. However, one of the main strength of neural networks is
that they are capable of learning necessary pattern features directly on its own from
training data. One solution to do this, is to convert images to vectors directly by
organizing the pixels as the elements of the vector. However, this approach does not
utilize any spatial relationships that may exist between pixels in an image[Gonzalez,
2009]. A Convolutional Neural Network (CNN or ConvNet for short) [Krizhevsky
et al., 2012] is a class of deep neural networks with spatially bounded parameters,
that accept images as inputs. CNNs are mainly used in Computer Vision or image
processing for doing a specific task like image classification, face recognition, and
semantic segmentation. The main efficiency of a CNNs is their ability to work with
grid-structured inputs such as image, where there are strong spatial dependencies in
local areas of the grid. For example, in a 2-dimensional image, neighbouring spatial
locations in an image often have similar colour values of the individual pixels.

2.6.1 CNN Architecture Overview

Convolutional Neural Networks like almost every other neural network are comprised
of multi-layer neurons with learnable weights and biases, which are trained by a kind
of back-propagation algorithm [Goodfellow et al., 2016]. However, their network ar-
chitecture and input differ from multi-layer perceptron networks. MLPs take a vector
as input and their hidden layers are a series of the fully-connected layers, in which
neurons between two adjacent layers are fully pairwise connected. The last layer
called output layer is another fully connected layer that in a classification application
represent the class scores (See Figure.2.3(a)).
Contrary to MLPs, input to the CNN is tensor(more than one dimension), that can
understand spatial relation between nearby pixels. Figure 2.3(b) illustrate the gen-
eral architecture of a CNN network. CNNs consist of one or multiple convolution
layers, which extract the simple features from input by executing convolution oper-
ations. Each layer in the convolutional network is arranged according to a spatial
3-dimensional grid structure, which has a height, width, and depth. The depth of
a layer in a CNN can refer to the number of channels( blue, green, and red) in the
input image or the number of feature maps in the hidden layers. Moreover, the neu-
rons in each layer are connected to a small local spatial region in the previous layer
(Receptive field) instead of all neurons in a fully-connected manner. The convolution
operation in each layer and the transformation to the next layer is critically depen-
dent on maintenance of these spatial relationships among the grid cells. The final
output layer present the output in form of a single vector of class scores, arranged
along the depth dimension [Goodfellow et al., 2016].
The main three types of layers in CNN are convolution, pooling, and activation layer.
Besides, the final layer is often fully connected that maps the set of inputs to a set
of output nodes in an application-specific way. In the following, we will explore the
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2.6 Convolutional Neural Network (CNN)

various types of layers that comprise a convolutional neural network and delve into
their respective functionalities, which intertwine within the network structure.

2.6.2 CNN Layers and Operations

In Convolutional Neural Networks (CNNs), the convolutional layer plays a pivotal
role by utilizing filters, also known as kernels, to conduct convolution operations on
its input [Goodfellow et al., 2020][page 331]. These operations are instrumental in
discerning spatial hierarchies within data, such as images, enabling the detection of
specific patterns like edges or textures. The filters achieve this by systematically
traversing the input, computing the dot products at each location between the filter’s
weights and the local regions of the input. Each filter, essentially a two-dimensional
matrix of learnable weights with predefined dimensions (height Fh and width Fw),
adapts during the training process to optimize pattern detection.
The convolution process involves the filter moving across every possible position on
the input, applying the dot product operation at each spot to generate the output
feature map. Mathematically, the convolution operation conducted by a single filter
at a location (i, j) on the input is represented as:

z
[l]
i,j =

Fh−1∑
u=0

Fw−1∑
v=0

X
[l−1]
i+u,j+v ·W

[l]
u,v + b[l] (2.24)

In this expression, z[l]
i,j denotes the output at position (i, j) in the feature map of the

l-th layer, prior to the activation function. The term xi+u,j+v references the value
at position (i + u, j + v) in the input for layer l, marking the specific spatial region
under consideration. The weight W [l]

u,v at position (u, v) within the kernel for layer
l is highlighted, with the kernel dimensions being Fh × Fw. The bias term b[l] is
added to the sum. Both Xij and W[l] are presented as matrices to underscore their
spatial attributes, thereby signified in bold to indicate their tensorial nature rather
than simple vectorial forms (see section 2.4.1).
The operation commonly referred to as "convolution" in CNN literature often resem-
bles the mathematical operation known as cross-correlation. Traditionally, convo-
lution involves flipping the kernel both horizontally and vertically before sliding it
across the input. However, in many neural network implementations, this flipping
step is omitted for efficiency, as the filters are learned during training, rendering the
flipping unnecessary. This leads to a slight difference in the formula notation used to
describe the operation. To align with the traditional definition of convolution, which
includes flipping the kernel, the operation can also be expressed as:

z
[l]
i,j =

Fh−1∑
u=0

Fw−1∑
v=0

X
[l−1]
i−u,j−v ·W

[l]
u,v + b[l] (2.25)
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A convolutional layer comprises multiple such kernels, each traversing the input to
compute convolutions at each step, governed by a specified stride. This sequential
computation across the input surface yields a two-dimensional array of outputs for
each kernel, known as a feature map, encapsulating detected feature information.
This is illustrated in Figure.2.4.
Following the generation of feature maps, an element-wise non-linear activation func-
tion, such as ReLU, is applied, akin to the treatment of fully connected layer outputs.
This ensemble of feature maps from various kernels enriches the network’s feature de-
tection capabilities, contributing to the nuanced understanding and processing of the
input data.

Figure 2.4: A 3 × 3 convolution kernel is applied across a sample image 5 × 5, with
the step size 1, to generate an output. The resulting activation map is of
the size 3× 3.

Pooling layer

Like MLPs, CNNs have multiple layers that enable CNN to detect complex features.
In addition to the convolutional layer, there is another type of layer called Pooling
layer, which is used to decrease the spatial resolution of the feature maps. Due to
the large number of weights, convolutional layers are computationally expensive and
need a high spatial requirement. Pooling layers reduce the amount of the computation
performed in the network by aggregating the presence of the features in a region of
the feature map. common types of pooling layers are max pooling, average pooling,
interpolation and stridden convolution. Irrespective of the pooling method employed,
the fundamental idea behind the pooling layer is to ensure translational invariance.
This is achieved by acknowledging that the relative spatial arrangement of features
in relation to one another holds greater significance than their precise spatial coordi-
nates.
Max-Pooling is a widely utilized pooling technique in CNNs. Given an input fea-
ture map X of dimensions Hfm×Wfm (where Hfm and Wfm represent the height and
width of the feature map, respectively), max-pooling operates over a defined window
of size k × k and strides across the feature map in steps of size k (assuming stride
equal to the pool size for simplicity). For each k × k region, it selects the maximum
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2.6 Convolutional Neural Network (CNN)

Figure 2.5: Max-pooling operation sample. The max-pooling kernel is 2× 2 with the
step size(stride) of 1

value within that window. The result is a new feature map with reduced dimensions⌊
Hfm
k

⌋
×
⌊
Wfm
k

⌋
, where each element in k × k block is the largest value of the region

covered by the filter (See Figure.2.5).
Basically, max-pooling or average pooling are fixed operations, without having param-
eters need to be learnt. In [Springenberg et al., 2014] researchers raised opinion that
max-pooling can simply be replaced by a convolutional layer with increased stride
without loss in the accuracy. Here, the filter kernel is shifted by a larger number than
one. Replacing the convolutions with larger strides( referred to as stridden convolu-
tions) allows the layer to learn its own pooling function instead of a fixed operation
(E.g. Max pooling), which may increases the model’s expressiveness ability.

Transposed Convolution Layers

Convolutional layers are well suited for feature extraction through sparse interaction
and parameter sharing. If we go deeper into the network the redundancy is reduced
and the features become more informative. However, By reducing the redundancy, we
obtain an abstract representation of the image. For some applications like semantic
segmentation, or resolution enhancement, every pixel and dimension are matters and
have important information. Therefore, having same spatial dimensions of the input
and output is favourable. To decompress the abstract representation and preserve
the size of the input, a stack of the transposed convolution layers, which are also
known as deconvolution layers, are used in CNN to reverse the spatial transformation
effect of a convolution layer [Goodfellow et al., 2016]. They trained jointly with
convolutional layers during the training process to learn a set of weights to reconstruct
the original inputs. Transposed convolutions expand the spatial dimensions of their
input, typically a feature map. This is in contrast to standard convolution operations,
that tend to reduce the input dimensions. The enlargement effect of transposed
convolutions makes them particularly useful in tasks such as image segmentation and
generative models, where reconstructing or upsampling to a larger spatial resolution is
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required. The spatial dimensions of the output produced by a transposed convolution
layer can be determined using the formula:

Hout = (Hfm − 1)× s+ Fh

Wout = (Wfm − 1)× s+ Fw
(2.26)

Here, Hout and Wout represent the height and width of the output feature map,
respectively. Hfm and Wfm denote the height and width of the input feature map.
s stands for the stride of the transposed convolution, and Fh and Fw are the height
and width of the kernel (filter) used in the operation. By employing transposed
convolution layers, the abstract representation can be decompressed, and the original
input size can be preserved. Figure 2.6 visually illustrates the process of this reverse
transformation.

Figure 2.6: Transposed convolution operation. In this illustration, a 2×2 feature map
is subjected to a transposed convolution operation using a 2 × 2 kernel.
The transposed convolution involves matrix multiplications by aligning
the kernel with each 2× 2 patch of the input feature map and computing
the element-wise product, followed by the summation of these products
to obtain each element of the output. This process is repeated across
the input, resulting in a larger output feature map with dimensions 3×3.
The transposed convolution operation effectively expands the feature map,
preserving spatial information and allowing for more detailed analysis in
applications such as semantic segmentation and resolution enhancement.

Fully Connected Layers

The fully connected layer or Dense Layer is a layer, in which every node in the layer
is connected to every node in the previous layer [Aggarwal et al., 2018]. This layer
acts exactly the same as a traditional feed-forward network. Generally, more than
one fully connected layer can be used in the network to increase the power of the
computations towards the end. Because each node in this level receives input from
all nodes in the previous level, each node can potentially have a full perspective of all
features computed in the previous level. For that reason, in the image classification
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applications in CNNs, this layer is mostly used as the last layer to make decisions
related to the classification task.

2.6.3 Convolutional Neural Network Training

Training a Convolutional Neural Network (CNN) centers on optimizing the network’s
weights and biases to reduce the loss function, highlighting discrepancies between
predictions and actual targets. This begins with initializing parameters, potentially
leveraging specific strategies to enhance the learning phase. A CNN operates in two
phases, feature extraction through convolutional and pooling layers, and classification
via fully connected layers that interpret these features to produce output scores. In
each training step, an input (like an image) undergoes a series of transformations
through convolutional, activation, pooling, and fully connected layers, resulting in a
prediction. The difference between this prediction and the actual target is quantified
using a loss function, such as Cross-Entropy for classification or Mean Squared Error
for regression tasks.
The training’s backbone is Gradient Descent (GD), also known as the batch gra-
dient descent [Goodfellow et al., 2016, pages 82 and 151]. It is an optimization
technique aimed at minimizing the cost function by iteratively adjusting network
parameters based on the entire dataset. This involves computing gradients through
back-propagation and updating parameters to reduce loss, a process repeated across
numerous epochs (For further details on the back-propagation algorithm, please refer
to section 2.4.2).
To avert over-fitting, regularization techniques like L1/L2 or dropout may be incorpo-
rated, adding penalties to the cost function or intermittently excluding units during
training to promote the learning of generalized features. The training persists until
the loss function stabilizes or a predetermined epoch count is reached. Subsequently,
the network’s performance is evaluated on a separate dataset to confirm its general-
ization skills. Throughout, adjusting hyper parameters and the network’s structure
is key to achieving the best performance.

Training a Convolutional Neural Network (CNN) efficiently, especially with large
datasets, poses challenges with computational cost and practicality. Traditional Gra-
dient Descent (GD), which updates parameters using the entire dataset in each it-
eration, becomes less feasible due to the extensive computational resources required.
Stochastic Gradient Descent (SGD) [Robbins and Monro, 1951] offers a solution by
updating parameters for each training example individually, thus significantly re-
ducing the computational load per iteration. Unlike GD, which computes the cost
function across the entire dataset, SGD evaluates the cost for a single, randomly se-
lected training example at each step. This approach not only accelerates the training
process but also introduces randomness that can help escape local minima. How-
ever, the variance in updates due to SGD’s stochastic nature can lead to fluctuating
convergence paths. To mitigate this and balance the efficiency of SGD with the sta-
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bility of GD, Mini-Batch Stochastic Gradient Descent (Mini-Batch SGD) is widely
adopted. This variant processes a small, random subset of the training data in each
iteration, offering a compromise between the exhaustive computation of GD and the
high variance of SGD. Mini-Batch SGD strikes a balance by reducing the variance
of parameter updates compared to SGD, while being more computationally efficient
than GD. This method is particularly favoured in CNN training for its effectiveness
in handling large datasets and facilitating faster convergence.

2.7 Semantic Segmentation Background

Image segmentation is one of the fundamental step of the digital image processing.
Image segmentation is a method, where a digital image is divided into multiple re-
gions(sets of pixels) called image segments to analyse them with respect to a particular
application such as classification, pattern recognition [Rafael, 1992]. It is one of the
long standing Computer Vision problem. Different methods have been proposed over
decades to improve the segmentation results, starting from classical methods such
as threshold-based techniques, to the graphical-based models and finally deep neural
networks, which are performing a semantic segmentation with understanding of image
in pixel level with outstanding results. In this section, we review the fundamental and
well-known image segmentation techniques. We briefly discuss taxonomic of image
segmentation techniques. Then we focus on the semantic segmentation techniques
based on the deep learning and discuss in detail two state of the arts deep learning
methods, which are widely used for semantic segmentation task.

Figure 2.7: Image segmentation categories,adapted from [Saeed, 2020]
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2.7 Semantic Segmentation Background

2.7.1 Taxonomy of image segmentation methods
Fu et al. [Fu and Mui, 1981] discuss a survey on different image segmentation methods
before the deep learning era. Figure 2.7 displays the taxonomy of those techniques.
Generally, image segmentation methods are divide into 6 groups based on their char-
acteristics

1. Threshold-based Segmentation

2. Edge-based Segmentation

3. Region-based Segmentation

4. Clustering-based Segmentation

5. Graph-based Segmentation

6. ANN-based Segmentation

Threshold-based Segmentation

It is a global technique of image segmentation, where separating foreground or object
from the background with no overlapping sections [Sahoo et al., 1988]. This requires
a certain amount of the contrast between the subject and the background. In this
technique, the intensity histogram of all the pixels in the image is considered. Then
a threshold value is set to divide the image into sections. However, this threshold
has to be perfectly chosen to segment an image into an object and a background.
Various threshold techniques are Global, local and Split, merge and growing [Zaitoun
and Aqel, 2015].

Edge-based Segmentation

Another segmentation technique is edge detection, which relies on finding edges in an
image by using different edge detection techniques [Zaitoun and Aqel, 2015]. Edge
detection is sensitive to relative changes at a local level i.e the boundaries of objects
and regions. By moving from one region to another (or from the subject to the back-
ground), the gray level may change and a shift in the gray levels can be detected.
Although edge detection methods perform better than threshold-based techniques,
they can only describe the strength and direction of edges of neighbouring pixels,
where various subsequent information are required to link the edge fragments and to
extract the desired features like lines, open curves, shape boundaries, etc [Bali and
Singh, 2015]. A variety of different edge detection operators with different mathemat-
ical and computational costs have been developed such as Sobel [Kanopoulos et al.,
1988], Prewitt [Prewitt et al., 1970], Canny [Li et al., 2009],etc.

Region-based Segmentation

It divides the entire image into sub regions or clusters with the same grey level for all
pixels in one region. In this method, neighbouring pixels are scanned and grouped to a
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region based on a given homogeneity criteria. In other word, the similarity distance of
each pixel should satisfy the homogeneity criteria. Watershed segmentation [Beucher
and Lantuejoul, 1979], Split-and-merge [Pavlidis and Horowitz, 1974] and region-
growing techniques [Ikonomatakis et al., 1997] are examples of such methods.

Clustering-based Segmentation

Clustering algorithms are used to group similar pixels based on similar features, such
that pixels in a similar group( cluster) are more comparative to each other rather
than those in dissimilar groups. Features are parts of information that can be the
extracted from an image processing or computational task based on attributes of
image properties. There are a large variety of features used for image segmentation
and other purposes, such as Pixel colour, Histogram of oriented gradients (HOG)
[Dalal and Triggs, 2005], Local Binary Pattern (LBP) [Ojala et al., 1994]. In clustering
approaches, one or more particular features can be extracted and then group them
based on a specific distance metric system to aggregate the feature samples into
homogeneous regions. Hierarchical clustering, K-Means, Fuzzy C-Means are some
examples of the clustering-based methods [Dubey et al., 2018].

Graph-based Segmentation

It comprises a group of image segmentation algorithms based on graph theory, where
an image is considered as a graph. The vertices of the graph represent each pixel
of the image and edges link adjacent pixels. Weights on the edges are assigned in
accordance with the similarity between two neighbouring pixels like colour, distance,
or textures. Comparison to the previous categories of image segmentation methods,
graph-based methods can capture precise definitions of the properties of a group,
which often reflect global aspects of the image and result in a better segmentation.
In addition, according to their graph structure, all image features such as intensity,
colour texture, continuity of edges are treated in a uniform network. While research
over the past years have seen considerable progress in graph-based methods of image
segmentation, these methods have still complex computation and are too slow to be
practical for many applications. These graph based segmentation methods might be
grouped as a)graph cut based methods, b)interactive methods, c) minimum spanning
tree based methods and 4) pyramid based methods [Camilus and Govindan, 2012].

ANN-based Segmentation

Artificial Neural Networks (ANN) have emerged as a highly sought-after method for
image segmentation, particularly in the realms of semantic and instance segmentation,
leveraging the power of deep neural networks. Their outstanding features, such as the
ability to gracefully handle noise, real-time applicability, and exceptional generaliz-
ability, have fuelled an unprecedented boom in the adoption of ANN-based methods
for achieving precise and accurate image segmentation. The ANN-based image seg-
mentation techniques are mainly divided into two categories [Amza, 2012]: supervised
and unsupervised methods. In supervised approach the training data and available
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ground truth are used to train the machine. Unsupervised methods or clustering
processes are semi or fully automatic in the absence of the ground truth. However,
these architectures may be implemented using prior application-specific knowledge at
design time, i.e., anatomical, physical, or biological knowledge.
In the next section, we focus on semantic segmentation based on the deep learning
techniques and discuss two main approaches which are widely used as the bases in
most semantic segmentation applications.

2.7.2 Semantic Segmentation Using CNNs

As mentioned before, semantic segmentation provides a label at the pixel level. The
improvements of semantic segmentation techniques facilitate the solution of real-word
applications such as medical imaging [Ronneberger et al., 2015], autonomous driv-
ing [Badrinarayanan et al., 2017] or even paving the way to new ones. Like other
scene understanding tasks, semantic segmentation have moved from classical method
using hand-crafted features [Fu and Mui, 1981] to deep learning based techniques,
which obtain impressive state-of-the-art results [Garcia-Garcia et al., 2017]. In the
last few years, semantic segmentation has attracted considerable attention and made
great progress in many vision tasks [Krizhevsky et al., 2012, P. Sermanet, 2013, Long
et al., 2015], especially due to the performance enhancement of CNNs. In [Zhu et al.,
2016] is discussed a in-depth review of recent development of image segmentation
methods, including classic bottom-up methods, interactive methods, object region
proposals, semantic parsing and image co-segmentation, which provides a detailed
comparison of classical solutions for semantic segmentation with special emphasis on
superpixel methods. In [Garcia-Garcia et al., 2017], comprehensive advancements in
deep learning-based approaches for semantic segmentation are presented, encompass-
ing novel architectures and commonly utilized datasets. The forefront of semantic
image segmentation is dominated by deep learning techniques, where the evolution
of architectures has transitioned from CNN-based structures primarily designed for
classification tasks to adaptive architectures tailored specifically for segmentation.
These evolved architectures enhance the resolution of learned feature representations
by incorporating a decoder module atop the classification CNN, enabling pixel-level
predictions. The encoder, or base classifier architecture, learns features while progres-
sively reducing resolution. In these evolved architectures, an additional decoder mod-
ule further enhances the resolution of the learned feature representations, facilitating
per-pixel predictions. Noteworthy among the various CNN-based architectures pro-
posed for semantic segmentation are the influential solutions of Fully Convolutional
Neural Network (FCN) [Long et al., 2015] and U-Net [Ronneberger et al., 2015],
which have paved the way for modern semantic segmentation architectures.
Long et al. [Long et al., 2015] introduced a groundbreaking technique called fully
convolutional networks (FCN) for semantic segmentation. Unlike patch-wise training
methods, FCN utilizes the entire image to derive dense predictions. It achieves this
by transforming the fully connected layers of the CNN classifier into convolutional
layers with appropriate filter sizes. To upsample the learned feature map from the
CNN classifier to the input resolution, FCN employs bi-linear interpolation. Fur-
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thermore, the method utilizes transposed convolutions to upsample feature maps at
multiple scales, which are then merged into the final prediction. For per-pixel la-
belling, a standard classification loss, such as the Cross-Entropy (CE) loss [De Boer
et al., 2005], is applied independently to each pixel. This loss function operates on
individual pixels and does not take neighbouring pixel information into account.
Noh et al. [Noh et al., 2015] introduced the Deconvolutional Network (DeconvNet)
for semantic segmentation, featuring an advanced decoder network. This network
architecture utilizes a series of deconvolution (or un-pooling) and Rectified Linear
Unit (ReLU) layers in a stacked configuration. The design facilitates gradual up-
sampling, interspersed with intermediate convolutions, along the expanding path of
the network. This approach marks a significant development in the field of semantic
segmentation. SegNet [Badrinarayanan et al., 2017] is another alternative architec-
ture for semantic segmentation, in which a symmetric encoder-decoder architecture
is defined. Contrary to DeconvNet, during upsampling, the max pooling indices at
the corresponding encoder layer are recalled to upsample.
In U-Net [Ronneberger et al., 2015], a u-shaped architecture network was proposed
with long-range skip connections between the contracting and expanding path. The
feature maps from different encoding layers are concatenated with the upsampled
feature maps from the corresponding decoding layers. Therefore U-Net is able to pre-
serve fine detail, while, incorporating context from a larger receptive field. Since in
U-Net, the entire feature maps are transferred from the encoder path to the decoder
path, a lot of memory is used, while in SegNet only the pooling indices are transferred
to the expansion path from the compression path using less memory.
In addition to the architectures previously mentioned, Residual Networks (ResNets)
stand out as a key development in the realm of semantic segmentation. ResNets [He
et al., 2016] brought a novel approach to network design through the implementation
of residual blocks. These blocks are designed to combat the vanishing gradient prob-
lem, a common issue in deep networks, by introducing ’shortcut connections’. In a
ResNet, each layer’s output is fed not only into the next layer but also ’skips’ ahead
to layers approximately 2–3 hops away. A hop is a single layer or a set of operations
in the network. This innovative design, where the output of one layer is connected to
another layer several hops ahead, facilitates the training of much deeper networks. It
does so by allowing the flow of gradients through these shortcuts, ensuring effective
learning even in very deep layers.
Building on the foundational architectures of FCN, DeconvNet, SegNet, and par-
ticularly U-Net and ResNets, the field of semantic segmentation has experienced a
significant evolution towards optimizing network architectures, each with their unique
impact on efficiency and performance. ResNets, known for their shortcut connections,
allow the construction of deeper networks to capture more complex features. How-
ever, this increased depth can lead to higher computational complexity compared to
architectures like U-Net. While U-Net, with its U-shaped architecture and long-range
skip connections, excels in preserving fine detail and incorporating a larger receptive
field context, it manages to do so with a comparatively moderate computational de-
mand. This is in contrast to the potentially higher computational requirements of
deep ResNets. Nonetheless, the innovation of ResNets lies in their ability to ad-
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dress the vanishing gradient problem, enabling the training of deeper models that
were previously not feasible. SegNet distinguishes itself with its memory-efficient de-
sign, which hinges on transferring only pooling indices, unlike U-Net. This approach
starkly contrasts with U-Net’s method of transferring entire feature maps from the
encoder to the decoder, a process that significantly increases memory usage. As il-
lustrated in figures 2.8 and 2.9, these developments show the evolution of semantic
segmentation architectures, each building upon and refining the concepts of its pre-
decessors. Despite the high performance of these models, their reliance on extensive,
fully supervised annotated data presents significant challenges. These challenges are
particularly acute in scenarios, where such data is scarce or the high costs of semantic
segmentation annotations are prohibitive.
In response to these challenges, newer architectures like ENet [Paszke et al., 2016],
ERFNet [Romera et al., 2017], and ICNet [Zhao et al., 2018] have emerged, prioritiz-
ing processing speed and efficiency. These models achieve this by operating at lower
resolutions, facilitated by rapid downsampling at the initial stages of the encoder
and employing lightweight decoders to reduce network parameters. This approach
marks a significant departure from the more memory-intensive methods like U-Net,
aiming to balance the trade-off between efficiency and accuracy. While these ad-
vancements substantially enhance efficiency, they often come with a compromise in
accuracy. Moreover, the pursuit of real-time performance in per-pixel labelling meth-
ods remains a challenge due to the high computational requirements, particularly in
embedded systems and advanced driver assistance systems (ADAS). The upcoming
chapter delves deeper into these challenges faced by semantic segmentation in real-
time applications and discusses the contributions of this thesis in addressing these
complexities.

2.8 Summary
In this chapter, we have covered the technical backgrounds that have been used in
the following chapters. In particular, we explained the fundamental definitions and
concepts about the artificial Neural networks, with focus on deep neural networks
and investigated the general strategies for training of machine learning models. We
presented the major building blocks of a convolutional neural network architecture,
which has been widely used as the learning approach in this thesis. We also reviewed
the main concepts and the state-of-the arts methods in the tasks related to the se-
mantic image segmentation. In fact, it was a broad area, and it was impossible to
review all related methods. We illustrated the taxonomy of the different approaches
in the image segmentation applications, started with the classical methods to the
most recently ones based on deep learning. We will also review the most related
methods to our contributions in the later chapters, where it is necessary.
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(a) Fully Convolutional Neural Network(FCN) Architecture [Long et al., 2015]

(b) DeconvNet Architecture [Noh et al., 2015]

(c) SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmenta-
tion [Badrinarayanan et al., 2017]

Figure 2.8: Representative Examples of State-of-the-Art Semantic Segmentation Ar-
chitectures (Part 1): FCN, DeconvNet and SegNet.
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(a) U-Net Architecture [Ronneberger et al., 2015]

(b) ResNet Architecture [He et al., 2016, Bangar, 2022]

Figure 2.9: Representative Examples of State-of-the-Art Semantic Segmentation Ar-
chitectures (Part 2): U-Net, and ResNet.
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3 Superpixel-based Road Segmentation
for Real-time systems using CNN

Convolutional Neural Networks (CNN) contributed considerable improvements for
image segmentation tasks in the field of Computer Vision. Despite of their suc-
cess, an inherent challenge is the trade-off between accuracy and computational cost.
The high computational efforts for large networks operating on the image’s pixel grid
makes them ineligible for many real time applications such as various Advanced Driver
Assistance Systems (ADAS). The purpose of this chapter is to present and discuss
the first contribution of this thesis. As mentioned in the introductory chapter, our
first contribution focuses on the learning a supervised semantic segmentation model
with a time and resource budget, which makes it suitable to be used successfully for
real-time applications. In particular, this contribution has been developed for the
use case of autonomous driving applications like road segmentation. Because in this
area, a precise pixel-by-pixel classification of the image with more attention to the
computationally efficient solutions is crucial.
In this chapter, we propose a novel supervised CNN approach for semantic segmen-
tation task, based on the combination of superpixels and high dimensional feature
channels. We provide an example of applying the proposed method for semantic
segmentation of urban scene images, targeting the application of driver assistance
systems.

In the upcoming sections of this chapter, we will delve into a detailed discussion of
the proposed method, focusing on its application to two open-source imagery datasets
within the context of autonomous driving. The core idea is to reduce the computa-
tional complexity by segmenting the image into homogeneous regions (superpixels)
and feed image descriptors extracted from these regions into a CNN rather than
working on the pixel grid directly. To enable the necessary convolution operations
on the irregular superpixels, we introduce a lattice projection scheme as part of the
superpixel creation method, which composes neighbourhood relations and forces the
topology to stay fixed during the segmentation process. Reducing the input to the
superpixel domain allows the CNN’s structure to stay small and efficient to compute,
while keeping the advantage of convolutional layers. The method is generic and can
be easily generalized for segmentation tasks other than road segmentation.

The works of this chapter are partly published in [Zohourian et al., 2018b] and [Zo-
hourian et al., 2018a].

43



3.1 Introduction
One of the long-lasting goals of Computer Vision is the automated scene understand-
ing from a variety of the images. Exposing image specification is useful for applica-
tions, like image editing, image search, and environment perception for autonomous
vehicles. Detecting objects like roads, pedestrians, vehicles, traffic signs, etc. is im-
portant for many driver-less cars and driver assistance systems. Due to the variability
of different factors like colour, shape, illumination and shadows or obstacles on the
road surface, the road detection is a challenging problem. The state-of-the-arts tech-
niques to solve this problem are mainly based on deep learning and Convolutional
Neural Networks (CNNs) [LeCun et al., 2015, Schmidhuber, 2015]. These methods
enable towards better visual understanding by applying a semantic segmentation pro-
cess in which each pixel is assigned to an object category. The segmentation result
provides meaningful information to support higher level scene understanding tasks.
As we discussed in 2.7.2, there are two major approaches to train CNN-based image
processing systems. The two approaches differ with respect to the input data model.
One of the approaches is based on a patch-wise analysis of the images, i.e. an ex-
traction and classification of rectangular regions having a fixed size for every single
image [Ciresan et al., 2012, Farabet et al., 2013, Ganin and Lempitsky, 2014, Ning
et al., 2005]. The other one is based on full image resolution, wherein all pixels of
an image in the original size are analysed [Long et al., 2015]. Most recent improve-
ments in both CNN-based methods were accomplished by increasing the network size
[Simonyan and Zisserman, 2014, He et al., 2016], whereas deeper networks provoke
large computational costs that make them unsuitable for embedded devices in driver
assistance systems.
In the current work we apply a superpixel-based CNN method for the specific appli-
cation of pixel-wise road segmentation that uses superpixels as input data model. To
the best of our knowledge, it is the first time that irregular superpixels with regular
lattice projection for convolutional purpose is given as input data model into a CNN
network. The proposed method comprises the following steps:

• First, segmenting the image into superpixels, wherein the superpixels are coher-
ent image regions comprising a plurality of pixels having similar image features.

• Then determining image descriptors for the superpixels, wherein each image
descriptor comprises a plurality of image features.

• The superpixels are assigned to the corresponding positions of a regular grid
structure extending across the image.

• This lattice together with the image descriptors are fed to the convolutional
neural network, to classify the superpixels of the image according to semantic
categories.

Feeding a network with almost well segmented " superpixel" units enables the network
to learn local information like contrast, shape, texture, etc. much better rather than
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3.2 Related Works

using raw image pixels. In comparison to [Long et al., 2015], that is based on full
resolution input data and has a deep convolutional network layering (e.g: vgg-19),
our method combines larger basic units " superpixels " with simple network structure.
This results in significant reduction of the computational costs for a densely labelled
map prediction. Contrary to patch-based semantic segmentation approaches [Fara-
bet et al., 2013], information about spatial context in the proposed method can be
preserved preferably due to the usage of superpixels.

The subsequent sections of this chapter are structured as follows:

In Section 3.2, we provide an overview of relevant literature and discuss prior works
in the field. Section 3.3 focuses on our novel approach, the superpixel-based Convo-
lutional Neural Network (SP-CNN). Here, we delve into the details of the superpixel
segmentation method and elaborate on the proposed high-dimensional feature de-
scriptor. In Section 3.4, we begin by describing the two primary publicly available
datasets used in our study, which are specifically designed for self-driving applications.
Subsequently, we analyse the proposed model using two distinct machine learning
approaches. Furthermore, we delve into the architectural aspects of the proposed
network and discuss the selection of relevant parameters. Section 3.5 presents the
experimental results obtained from the aforementioned datasets, focusing on urban
scene images captured from various visual perspectives. The evaluation process en-
compasses accuracy assessment as well as computational time analysis. Finally, Sec-
tion 3.6 draws conclusions based on the findings and discuss potential future works
and areas that require further improvement.

3.2 Related Works
Road segmentation has been studied for decades. It is essential in autonomous driv-
ing and mobile robot applications. Traditional road segmentation techniques mostly
rely on the detection and extraction of local characteristics in images such as colour,
position prior, edge, texture [Alvarez and Ĺopez, 2010, Sturgess et al., 2009, Lombardi
et al., 2005]. Alvarez et al.[Alvarez and Ĺopez, 2010] separate road from background
by using illumination-invariant models. Sturgess et al. [Sturgess et al., 2009] pro-
posed a novel framework to combine motion and appearance features for object class
segmentation problems. Their approach classify the road based on the motion and
appearance features and then refine the road boundary with the conditional ran-
dom field. A road model switching is proposed in [Lombardi et al., 2005] to fit the
road model to the road configuration. Numerous hand-crafted low-level features have
been suggested in previous studies to address particular challenges such as occlusions,
scale variations, and illumination differences. Nevertheless, these features often fail
to handle illumination changes or effectively handle occlusions caused by objects like
vehicles or pedestrians on the road surface. Consequently, the traditional methods
exhibit limited generalizability, leading to imprecise outcomes in road segmentation.
Recently, deep learning has made remarkable progress in Computer Vision. Devel-
oping CNNs [LeCun et al., 2015] had the biggest impact on this success for tasks
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such as image classification [Krizhevsky et al., 2012], object detection [Girshick et al.,
2014, P. Sermanet, 2013], scene labelling [Farabet et al., 2013, Chen et al., 2014]. Se-
mantic segmentation research has experienced a huge improvement in the era of deep
learning. The state of- the-art methods for semantic segmentation are generally fully
convolutional networks [Long et al., 2015], which are directly applied to the whole
image. This method has been improved further in several newer approaches such
as " DeepLab " [Chen et al., 2014]or SegNet [Badrinarayanan et al., 2015]. However,
some aspects for semantic segmentation such as computational efficiency has not been
thoroughly investigated in the literature. Although, this would have a huge impact
on applications such as autonomous driving. Most of the per pixel labelling methods
are too expensive for embedded applications and they require powerful GPUs to be
fast enough for achieving the real-time performance.
In this work we combine superpixels segmentation with convolutional neural network.
Several other methods benefit from this combination too. Gadde [Gadde et al., 2016]
embedded superpixels into a newly defined layer that he names "Bilateral Inception"
which acts as an edge preserving filter. This layer is substituted with a fully connected
layer and propagates label information between superpixels. This results in better
segmentation than in exclusively pixel-wise approaches. However, this network still
uses full resolution images as the inputs. SuperCNN [He et al., 2015b] is a neural net-
work based approach for salient object detection. A sequence of superpixels, instead
of a 2D image pattern, is fed into this network. Contrary to this 1-D inputs, our
proposed method uses a 2D-grid of superpixels as input to the network which allows
for easier extraction of the neighbourhood information by convolutional network.

3.3 Proposed Method: Real-time Superpixel-CNN Semantic
Segmentation Framework

This work addresses the task of road segmentation from urban scene images. We
tackle the problem by segmenting the images into superpixels, deriving road relevant
features, and constructing a rational feature model fed into CNN to segment road re-
gions. Figure 3.1 displays the architecture of our method. superpixels are extracted
using the Simple Linear Iterative Clustering (SLIC) [Achanta et al., ] algorithm (see
section 3.3.1). The main features extracted from the superpixels are intensity, texture
and location (see section 3.3.2). The proposed idea is applied into two different ma-
chine learning methods including support vector machine (SVM)[Cortes and Vapnik,
1995] and convolutional neural network [Goodfellow et al., 2016], which are explained
in section 3.4.2.
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3.3.1 superpixel Extraction
In this part we discuss the superpixels concept as the basic units in our proposed
method. We explain which method we used for extracting the superpixels and how
we adapted them for embedding in convolutional neural network.
Superpixel segmentation methods are employed to partition an image into spatially
homogeneous regions, which are then treated as cohesive entities for subsequent pro-
cessing in image processing and Computer Vision applications (see section 2.7.1).
Compared to individual pixels, superpixels hold more perceptual meaning and offer
significant computational efficiency gains [Ren and Malik, 2003]. While superpixel
segmentation techniques aim to achieve homogeneous areas, challenges arise due to
factors such as scene characteristics, spectral variability, and the tuning of scale pa-
rameters in the extraction algorithm. To address these challenges, superpixel ex-
traction methods incorporate spatial connectivity and spectral similarity, effectively
grouping neighbouring pixels with similar characteristics. Evaluating the performance
of superpixel segmentation can be done based on criteria such as runtime, error met-
rics, and segmentation robustness. Adherence to the object boundary, simplicity,
memory efficiency and speed are several criteria, that can affect the performance of
the superpixel segmentation method [Ren and Malik, 2003]. Therefore, the selection
and tuning of the superpixel algorithm and its parameters are crucial for achieving
optimal results in specific applications. Two primary advantages of well-extracted
superpixel properties, which motivate us to adopt them as fundamental units in our
approach, are outlined below:

• Accuracy Well segmented superpixels can store more compact information
about the color, texture, etc. and they are less ambiguous and sensitive to
noise than features extraction at pixel level. They can preserve the geometric
object structures and adjust well to the object contours.

• Efficiency Dealing with millions of pixels and their parameters(such as spatial
coordinates, intensity levels, etc.) in large systems can be costly, whereas us-
ing superpixels can greatly reduce the model complexity and computation cost
especially for real time systems.

Regular superpixel segmentation methods, characterized by a grid-based arrangement
of superpixels, are commonly employed to preserve the topology of an image. How-
ever, this regularity comes with several drawbacks. Firstly, it can compromise the
maximum homogeneity of texture within each superpixel, as the grid structure may
not align well with the actual texture boundaries. This limitation leads to mixed
or inconsistent representations of texture within the superpixels. Secondly, regular
superpixel segmentation often oversimplifies complex object boundaries, resulting in
a loss of detail and inaccurate delineation. Moreover, the fixed grid structure may
not be the most efficient representation for images with irregular or non-uniform
structures, limiting its applicability. Additionally, regular superpixel segmentation
lacks the flexibility to adapt to diverse image characteristics and different levels of
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3.3 Proposed Method: Real-time Superpixel-CNN Semantic Segmentation Framework

detail. Objects with varying scales, shapes, or orientations may not be adequately
captured by the fixed grid structure, further compromising the segmentation quality.
Lastly, regular superpixel segmentation methods heavily rely on parameter tuning,
such as the size of the grid cells, to achieve optimal results. However, finding the
right parameter values that suit a wide range of images can be challenging, and
suboptimal choices may lead to inadequate segmentation quality. Considering these
drawbacks, irregular superpixel segmentation methods are often preferred as they of-
fer more flexibility in capturing complex structures, preserving texture homogeneity,
accommodating diverse image characteristics, and reducing sensitivity to parameter
tuning. However, superpixels generated through irregular segmentation have varying
sizes and irregularly shaped boundaries, making them unsuitable as direct input for
convolutional networks. To utilize convolutional operations and kernels efficiently,
a regular topology is required. Therefore, a necessary step involves re-aligning or
adjusting the irregular superpixels to conform to a regular structure, enabling them
to serve as suitable input for a convolutional network.

Original SLIC Method

There are different superpixel algorithms. Region-based [Yu, 2005], mean shift [Co-
maniciu and Meer, 2002], water shed [Vincent and Soille, 1991] and graph-based
[Felzenszwalb and Huttenlocher, 2004] approaches are well-known techniques for su-
perpixel extraction with the high performance. They have their own pros and cons.
We used Simple Linear Iterative Clustering (SLIC) algorithm [Achanta et al., ] for
superpixel segmentation for all our experiments. It has been shown to provide com-
petitive results with a minimum of computational complexity among other superpixel
extraction methods.
Figure 3.2 shows an example of applying SLIC on one of our image. Algorithmi-
cally, SLIC simply computes a k-means clustering over pixels. SLIC initiates with
equally-sized superpixels arranged in a grid structure. The similarity between pixels
is calculated based on two criteria: spectral similarity and spatial proximity that
enforces compactness and regularity in the superpixel shapes. The main idea of this
approach is to limit the search space to a region proportional to the desired SP size
which reduces considerably the calculation time. superpixels grow by measuring the
(spectral-spatial) distance between each pixel to its cluster centre and then update
the cluster centres based on K-means algorithm.The input parameters for this method
include the input images with a total of Npx pixels, the desired number of approxi-
mately equally-sized superpixels represented by Nsp, and a weighted distance denoted
as mslic. The value of mslic serves as a control factor to adjust the compactness of the
superpixels by balancing the trade-off between colour similarity and spatial proxim-
ity in the distance calculation. A higher value of mslic places greater importance on
spatial proximity, leading to the creation of more compact superpixels. Conversely, a
lower value of mslic emphasizes colour similarity over spatial proximity.

To begin, the superpixels are initialized with approximately equal sizes, each con-
taining approximately Npx/Nsp pixels. When aiming for roughly equally sized super-
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pixels, a superpixel center is positioned at regular interval S =
√
Npx/Nsp on a grid.

Here, S represents the interval distance between the centers of adjacent superpixels
on a grid. Each superpixel has a spatial extent of approximately S2, representing its
neighbourhood area. The SLIC algorithm specifically calculates distances from each
cluster center to the pixels located within a 2S×2S area. This ensures that the pixels
associated with a particular cluster center reside within this defined area and are not
situated farther away. It leads to reduction of complexity and distance computations,
independent from the number of superpixels [Achanta et al., ].
For a set of superpixel centers, each represented by Centi = [li, ai, bi, xpi , ypi ], where
i ranges from 1 to Nsp and each positioned at consistent intervals S on the grid, the
algorithm determines the closeness of pixels to their respective cluster centers. This
is achieved by measuring Euclidean distances in two realms, the CIELAB color space,
where li, ai, bi denote the lightness and color-opponent dimensions to mimic human
visual perception, and the spatial domain, where P = (xp, yp)i pinpoint the i-th
superpixel center’s location on the image plane. Such a dual approach ensures a bal-
anced consideration of color similarity and spatial proximity. However, to avoid the
potential for uneven superpixel shapes that can emerge from diverse superpixel sizes,
the algorithm incorporates a compactness control mslic as outlined in the equation
3.1. Larger mslic resulting superpixels are more compact and smaller mslic aimed
better segmentation, but more irregular size and shape. The authors in [Achanta
et al., ] mentioned, that the value of mslic can be chosen from the range of [1, 20]. In
their experiments, they specifically selected a value of mslic equal to 10, which they
found to offer a good balance between colour similarity and spatial proximity.
Euclidean distances in CIELAB colour space are visually meaningful for small dis-
tances. Outweighing pixel colour similarities (mslic) prevents the spatial pixel dis-
tances from exceeding this perceptual colour distance limit. Hence, instead of using
a simple Euclidean distance in the 5D space, distance measure Ds from each pixel j
to the cluster center i defined as follows:

dcolor =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2

dSpatial =
√

(xpj − xpi)2 + (ypj − ypi)2

Ds = dcolor + mslic

S
dSpatial

(3.1)

where Ds is the sum of the lab colour space distance and the spatial distance nor-
malized by the grid interval S.

Enforcement Connectivity procedure:

After superpixel segmentation, SLIC uses a method to enforce all superpixels to be
connected and prevent too small areas or any islands or disconnected area, which is
called Enforcement Connectivity procedure. This method leads to non constant num-
bers of created superpixels making them unsuitable as direct CNN input model. This
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3.3 Proposed Method: Real-time Superpixel-CNN Semantic Segmentation Framework

inconsistency in number of created superpixel would cause trouble for our proposed
approach. To prevent this problem, we used a modified version of SLIC. This version
changes the connectivity enforcement algorithm provided by SLIC to keep the num-
ber of superpixels constant. This help us to provide the same size of input data for
our network while keep the strength of SLIC method for having almost homogeneous
superpixels.

Figure 3.2: Superpixel segmentation of a sample image based on SLIC method after
applying "Enforcement Connectivity" procedure.

Adapted SLIC Method

In the modified version, we perform following steps for each superpixel. First we find
the whole set of adjacent superpixels, and the label-connected components in 2-D for
each superpixel. Then if a certain superpixel has more than one segment with the
same label, we keep the larger one and merge the rest into the nearest superpixel,
which is picked up from neighbourhood(for example superpixels number 321 or 322 in
Figure 3.3). The nearest superpixel is computed based on euclidean distance between
the center of sub-segment to the center of each adjacent segment. Contrary to the
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original version we do not remove any too small region with only one label-connected
area. Figure 3.3 compares superpixel regions before and after applying of our enforce
connectivity algorithm.

Figure 3.3: Enhancing superpixel segmentation through connectivity enforcement:
Before and After. Disconnected superpixels (e.g., superpixels 321, 322
or 330 ) are intelligently integrated into their nearest neighbourhood, re-
sulting in smoother segmentation boundaries.

The necessity to having a regular topology to be able to convolve the input data
with kernels, motivated us to propose a superpixel lattice projection. The lattice is
centered in the rectangular structure extracted from the first iteration of SLIC method
(defined by the centers of the superpixels). This grid is directly used to establish a
regular topology for the final superpixels, i. e. the superpixels generated by the last
iteration step.

3.3.2 Hand-Crafted Feature Extraction
Feature selection acts as a preprocessing step that enables us to model relevant object
characteristics in the image. We tested different combinations of features and decided
on a particular combination, which gives the best performance. We considered three
different feature groups, which are discussed in the following.

Colour Feature

Colour is the perceptual response of detectors such as the human brain or a camera
to the light emitted or reflected by objects in an environment. It serves as a means
by which important visual information is extracted and interpreted. It is widely rec-
ognized as one of the most informative features utilized by the human visual system
for comprehending objects and scenes. This perception is influenced by several fac-
tors: a) the ambient light present in the environment, b) how objects reflect light
within the scene, c) the human eyes or sensors that receive the light, and d) the
subsequent processing of the received light [Weller and Westneat, 2019]. A mathe-
matical model, that maps perceived colours onto a system of coordinates is called
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colour space. Some of the colour space are: RGB (Red, Green, Blue), HSV (hue,
saturation, and value), CMYK (cyan, magenta, yellow, and key), and CIELAB (also
known as Lab). In CIELAB, "L" represents perceptual lightness, while "a" and "b"
represent the four unique colors of human vision: red, green, blue, and yellow. Each
color space has its own strengths and is designed to address specific colour-related
concerns and objectives in research. A comprehensive study on the colour theory and
colour space is beyond the scope of this thesis. We investigated the respective colour
spaces and their usefulness [Garcia-Lamont et al., 2018], which prompted us to use
them as handcrafted features in this work . We used different colour spaces RGB,
Lab, HSV and computed the average values of all pixels within each superpixel for
each colour channel separately.

RGB provides a computationally manageable format for storing images and are
largely optimized for digital displays. However, it is not perceptually uniform and
can display a smaller range of colours than the human eye can perceive. HSV, in
contrast, attempts to more closely mimic human colour perception. However, HSV is
non-linear and highly device dependent, which requires additional information about
lighting in a scene, or the type of the sensor that capture the scene. In addition
the separation of the luminance component makes it useful for image segmentation
analyses and other applications. The CIELAB colour space, or simply Lab, is a
colour model developed by the International Commission on Illumination (CIE). It is
designed to represent all perceivable colours and provide a uniform colour space that
is independent of devices or colourant systems. The CIE Lab space consists of three
components: L, a, and b. The L component represents the lightness of the colour,
ranging from black (L = 0) to white (L = 100). The a component represents the
position along the green-red axis, with negative values indicating green and positive
values indicating red. The b component represents the position along the blue-yellow
axis, with negative values indicating blue and positive values indicating yellow. It
was designed to make visual of an image closer to perception of the human eye along
by decoupling the brightness information (L channel) from the chroma information
(channels a and b) and takes into account some image enhancement in the colour
space.

Defining descriptors in different colour spaces usually improves the description of
object and texture image categories [Verma et al., 2010]. They are more robust
against image variations such as lighting changes, rotation, and occlusions [Burghouts
and Geusebroek, 2009].

Position Feature

Generally, road area can be detected from its surroundings based on the colour feature,
however the appearance of shadows or similar pattern to the roads like side-walks,
leads to the relatively difficult adequate prediction. As the colour to class distribution
may vary for different positions and road is typically located in the bottom, we
considered "position" as a second type of representative feature addition to the colour

53



feature. The average of vertical coordinates of pixels in each superpixel is selected as
the location feature.

Texture Feature

Some local information like texture and shape can contribute to object and scene im-
age classification. Investigation of our images represent significant changes between
the texture of a road and its surroundings, especially compared to houses and trees.
Roads tend to be flat and smooth, whereas trees and houses have more complex and
compound textures. We use Local Binary Patterns (LBP)[Ojala et al., 1994] to com-
putes correlation and disparity among pixels inside each superpixel. LBP showed to
be promising for recognition and classification of texture images. It has important
advantages such as rotation and gray-scale invariance. The original LPB operator is
defined as a 3× 3 window, where the central pixel is considered as a threshold, sub-
tracted from the grey value of the adjacent 8 pixels. If the resulting value is negative,
the pixel is set to ’0’, otherwise it is set to ’1’ which concatenate together to give an
8- bits code corresponding an integer ranging from 0 to 255 (a total of 256 types).
The basic LBP operator [Ojala et al., 1996] has a limitation in capturing dominant fea-
tures with a large-scale structure due to its small neighbourhood size. This limitation
arises because the basic LBP operator considers only a small group of neighbouring
pixels, which may not effectively represent larger patterns or structures in an image.
To overcome this limitation, an extension to the LBP operator was introduced [Ojala
et al., 2002], which allows for a more flexible definition of the neighbourhood, denoted
as (P,R). In the (P,R) neighbourhood notation, P represents the number of sam-
pling points around the central pixel, and R denotes the radius or distance from the
central pixel to the neighbouring points. Unlike the fixed circular neighbourhood of
the basic LBP, the (P,R) neighbourhood enables the consideration of different radii
and numbers of sampling points. This flexibility allows for capturing textures with
varying scales and structures. By adjusting the values of P and R, the extended
LBP can adapt to different texture patterns present in an image. A more formal
description of the LBP operator can be given as:

LBP (xpc , ypc) =
P−1∑
n=0

τ(In − Ic) · 2n (3.2)

with P is the total number of neighbouring pixels considered around the central pixel,
(xpc , ypc) is central pixel position with intensity Ic, and In is the intensity of the nth
neighbouring pixel. τ is the threshold function defined as:

τ(x) =
{

1, if x >= 0
0, otherwise

(3.3)
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Another extension of LBP introduced the concept of uniform patterns [Ojala et al.,
2002]. A Local Binary Pattern is considered uniform if it exhibits at most two bitwise
transitions from 0 to 1 or vice versa when the binary string is considered circular. For
example, patterns like 00000000, 11111111, 01111110, and 11001111 are classified as
uniform, while patterns like 10101010 and 00110011 are non-uniform. To reduce the
number of distinct patterns, a mapping table is utilized, assigning a unique label to
each uniform pattern while grouping non-uniform patterns under a common label.
Once the patterns are converted into uniform patterns, the feature vector for a single
cell is constructed by counting the occurrences of each uniform pattern within the
neighbourhood. This process significantly reduces the number of distinct patterns
from 256 to 59. This reduction in length from 256 to 59 enhances the computational
efficiency, memory usage, and reduces the risk of over-fitting in subsequent analysis
or machine learning algorithms.

In conclusion, considering all the aforementioned features, a high-dimensional feature
descriptor is defined for each superpixel. The image descriptor encompasses a total
of 69 image features (see Figure 3.4), which include 9 color features (combining RGB,
HSV, and Lab), 1 position feature, and 59 LBP features. This comprehensive feature
set ensures high levels of accuracy and reliability in the analysis. The resulting data
model is then inputted into a straightforward convolutional network, as illustrated
below.

3.3.3 Network Architecture and Hyper-parameters

Contrary to most state of the art CNN-based semantic segmentation approaches, our
proposed method does not require a complex network architecture to handle large im-
age context, due to the pre-segmentation which improves computational time. Figure
3.5 shows our proposed CNN architecture. This network consists of two convolutional
layers, two channel-wise feature layers (1×1 convolution filter) and one drop-out layer
with non-linear activation function after each convolutional and channel-wise feature
layer. The input of our method is defined by the superpixel lattice (see section 3.3.1)
on each image with size of Himg/S and Wimg/S, where S is initial superpixel side
length andWimg, Himg are image width and height. The output is a set of three num-
bers, arranged in the superpixel lattice, to indicate respectively which of the three
classes of the road, non-road or un-labelled they belong to. We explain them more in
detail in section 3.5.

The weights in the first convolutional layer are initialized randomly from a Gaussian
distribution with setting bias to zero. In our network, we employ Softmax loss (refer
to section 2.5.5 equations 2.22 and 2.23) as the chosen loss function. Softmax loss,
also known as Log Loss, quantifies the disparity between the predicted class proba-
bilities (derived from the softmax function) and the actual class labels. For the final
classification decision, our method selects the class with the highest predicted prob-
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Figure 3.4: 3D Visualization of the Extracted Feature Representation for Superpixel-
Based Segmentation. This figure illustrates the 69-dimensional feature
representation derived from each superpixel, organized into a regular
11 × 36 grid. Each cell in the grid corresponds to a superpixel from
the segmented input image, and the depth of the visualization represents
the 69 different features extracted per superpixel. The features include
colour, texture, and positional attributes, all of which are crucial for effec-
tive road semantic segmentation. This structured representation is used
to facilitate feature learning in subsequent convolutional network process-
ing.
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3.3 Proposed Method: Real-time Superpixel-CNN Semantic Segmentation Framework

ability for each pixel. This approach aligns with standard practices, where the class
with the maximum softmax score is considered the most likely class for each instance.
The training network undergoes optimization using the stochastic gradient descent
(SGD) algorithm for a maximum of 300 iterations. In this optimization process, the
current state of the model’s error is estimated repeatedly based on the loss (objective)
function. This estimation allows the weights to be updated and reduces the model’s
loss in the subsequent evaluation.
To ensure effective optimization, the learning rate and other hyper-parameters are
fine-tuned on the validation set. In our case, the learning rate is set to 0.1 × 10−4,
and the weight decay is set to 0.0001. Additionally, we employ a momentum value
of 0.9 and utilize mini-batches of size 50. All of the above parameters are carefully
selected through empirical experimentation to achieve a reasonably good loss value
and error rate. These parameter settings remain consistent across all datasets. Figure
3.6 presents the visual representation of our loss (objective) and error plots during
the training phase. These plots provide valuable insights into the performance and
progress of our model throughout the training process.

1. Error log plot: The error log plot provides a visual representation of the errors
or misclassification made by our CNN model throughout the training process.
It displays the training error and validation error on the y-axis, while the x-axis
represents the number of epochs. By analysing the error log plot, we can gain
insights into the convergence behaviour of our model. Ideally, we want both the
training and validation errors to consistently decrease and converge to a low
value. However, if the training error decreases significantly, while the validation
error increases, it indicates over-fitting, which means our model becomes too
specialized to the training data and struggles to generalize effectively to unseen
examples.

2. Objective Log Plot: The objective log plot illustrates the trend of the loss
function values (specifically, the softmax loss in our model) throughout the
training epochs. This plot offers valuable insights into the optimization process.
Similar to the error log plot, the y-axis represents the loss values, while the x-
axis denotes the number of epochs. By analysing the objective log plot, we
can evaluate the model’s proficiency in optimizing the softmax loss function.
Ideally, both the training and validation loss curves should exhibit a consistent
decline and converge to a low value. However, if the training loss decreases
significantly, while the validation loss increases, it indicates over-fitting.

The error log plot primarily focuses on the misclassification rate and generaliza-
tion performance of your model, while the loss log plot emphasizes the optimization
progress and model convergence based on the loss function. Both plots offer valuable
insights, but they provide different perspectives on the model’s performance and be-
haviour during training. Therefore, it is recommended to analyse and present both
plots to gain a comprehensive understanding of the CNN model’s training process in
your thesis.
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3.4 Implementation Details

In the context of our training process, it is noteworthy that training was conducted
for a total of 300 epochs. However, during the period from 200 to 300 epochs, an
interesting observation emerges: while the training loss exhibits a stable behaviour,
the validation loss demonstrates a slight increase. Notably, the error rates for both
the training and validation sets exhibit a consistent pattern after the 200th epoch,
indicating a lack of further improvement.

This behaviour suggests that our model’s performance has reached a plateau or a state
of near-optimality after 200 epochs of training. Despite the observed slight increase
in the validation loss, the error rate remains constant, which indicates that the model
is still achieving satisfactory results in terms of classification accuracy. This finding
implies that our model has effectively learned the underlying patterns in the data to a
significant extent during the initial 200 epochs of training. Consequently, subsequent
adjustments or fine-tuning do not yield substantial improvements in the loss metric.
This phenomenon aligns with the notion that our model’s capacity to enhance its
performance has been reached.
In the objective plot, the decline in the loss value reflects an improvement in the
predicted probabilities as training progresses, particularly until the 200th epoch. This
observation supports the idea that the initial phase of training is crucial for achieving
considerable enhancements in model performance.
Overall, these findings emphasize the significance of the first 200 epochs in our training
process, as they allowed the model to effectively learn the relevant patterns in the
data. The subsequent epochs, while not leading to substantial improvements in loss,
maintain the model’s classification accuracy at an acceptable level. These insights
contribute to our understanding of the model’s capacity and its behaviour throughout
the training process.

3.4 Implementation Details

We tackle the problem of the efficient semantic road segmentation by segmenting the
urban scene images into superpixels, deriving road relevant features, and constructing
a rational feature model using machine learning mechanism to segment road object
in the images. The images are broken down into small units by extracting super-
pixels from the original image using the Simple Linear Iterative Clustering (SLIC)
algorithm of section 3.3.1. The main features we extracted from the superpixels are
colour, texture and location according to section 3.3.2. Then, we compare two dif-
ferent machine learning models a) Supporting Vector Machines (SVM) [Cortes and
Vapnik, 1995] and b) Convolutional neural network (CNN) models based on the gen-
erated features. SVM is used to analyse the applicability of the proposed input data
model to obtain an efficient semantic segmentation result and investigate how much
deep learning could empower our proposed method. Before we describe the proposed
method in detail, we discuss the two main public datasets for urban scene images
which are used as the input datasets in this work.
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Figure 3.6: The objective and error plots during the training. The training error is
depicted by the blue line and the validation error is represented by an
red dotted line. Softmax loss is used as objective function and stochas-
tic gradient descent as the optimization algorithm. The plot shows that
the training process converged well. The plot for loss is smooth, given
the continuous nature of the error between the probability distributions.
Log Loss(softmax loss) gradually declines as the predicted probability im-
proves after almost 200 iterations. After 200 epochs, the learning ability
of the network is almost steady or slightly getting overfit.

3.4.1 Datasets

We evaluate our method using two widely-used challenging datasets comprising urban
scenarios, i.e. the KITTI [Fritsch et al., 2013a] and the Cityscapes [Cordts et al., 2016]
datasets. In the following we give a brief description of the datasets followed by the
evaluation results.

KITTI Dataset

KITTI road estimation data set comprises 502 8-bits RGB images splits in train,
validation and test sets with ground truth label for three semantic classes. KITTI is
one of the most popular datasets for road segmentation in urban scene applications.
The training set comprises a total of 289 (URBAN) images, which are further cat-
egorized into three sets, each representing a specific road scene category commonly
found in inner cities. Specifically, there are 95 images with urban markings (UM), 96
images with multiple marked lanes in urban areas (UMM), and 98 images depicting
unmarked urban streets (UU). In the UM dataset, annotations for the ego-lane are
also provided.
The test set comprises a total of 290 (URBAN) images, with 96 images showcasing
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3.4 Implementation Details

urban markings (UM), 94 images depicting multiple marked lanes in urban areas
(UMM), and 100 images of unmarked urban streets (UU). However, it is important
to note that the ground truth for the test set is not publicly available.
The image dimensions vary with the width lying in [1226, 1238, 1241, 1242] and their
height in [370, 374, 375, 376]. We selected 20% of train set images from 3 different
categories UM,UMM,UU for the validation set. These images are completely from
different video sequences which are not part of the train set.
In evaluating road and lane detection performance on the KITTI dataset, models
are analysed within the Birds-Eye-View (BEV) space, with their outputs rendered as
confidence map or binary map that delineate road areas. This evaluation framework
employs core parameters such as True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). These parameters respectively quantify
the number of road pixels accurately predicted, non-road pixels correctly identified,
non-road pixels erroneously classified as road, and road pixels incorrectly marked as
non-road.
The assessment leverages several metrics to evaluate model performance comprehen-
sively. Accuracy (ACC) measures the proportion of correctly identified pixels across
the dataset, reflecting the overall correctness of the model’s predictions. Precision
(PRE) assesses the ratio of correctly predicted road pixels against all pixels labelled
as road by the model, indicating the precision of the model in identifying road areas.
Recall (REC) captures the fraction of actual road pixels that the model correctly
identifies, reflecting the model’s sensitivity to road features. The False Positive Rate
(FPR) and False Negative Rate (FNR) provide further insights into the types of er-
rors made by the model, indicating the proportion of non-road pixels misclassified as
road and the proportion of road pixels missed by the model, respectively.
A key focus of our evaluation is the Maximum F-measure (MaxF) [Everingham et al.,
2010], which here represents the highest F1 score achievable by the model across
various decision thresholds. This metric underscores the optimal balance between
precision and recall, essential for accurately classifying road pixels. Notably, in our
method, MaxF is directly derived from the binary map outputs without adjusting de-
cision thresholds, highlighting the model’s inherent capability to delineate road areas
effectively.
Additionally, Average Precision (AP) [Everingham et al., 2010] is an essential met-
ric in object detection that encapsulates a model’s precision across different recall
levels (r). AP computes the average of the highest precision values p for any recall
r̃ ≥ r, across eleven evenly spaced recall thresholds from 0 to 1, at 0.1 intervals.
This approach captures the model’s efficacy on the precision-recall curve, providing
a unified perspective on its performance. The equations for these metrics, adapted
from [Fritsch et al., 2013a], are delineated in Equations 3.4 to 3.10, providing a math-
ematical foundation for our evaluation methodology.
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ACC = TP + TN

TP + FP + TN + FN
(3.4)

PRE = TP

TP + FP
(3.5)

REC = TP

TP + FN
(3.6)

FPR = FP

FP + TN
(3.7)

FNR = FN

TP + FN
(3.8)

F1 = 2× PRE ×REC
PRE +REC

(3.9)

AP = 1
11

∑
r∈{0,0.1,...,1}

max
r̃≥r

p(r̃) (3.10)

In our experimental setup using the KITTI dataset, we carefully selected the param-
eters for the SLIC algorithm. Specifically, we set the number of superpixels (Nsp)
to 400 and the weight (mslic) to 35. As a result, each image was divided into 396
superpixels, which were then projected onto an 11 × 36 lattice to serve as the input
for the CNN.

Cityscape Dataset

Cityscapes is another new large dataset for semantic scene understanding in urban en-
vironments [Cordts et al., 2016], comprising the images, which were taken under good
or medium daytime weather conditions and their corresponding pixel-wise ground
truth label for 19 semantic categories consists of road (including road and side-walk),
car, pedestrian, bicycle, etc. One void class is considered for pixels not belonging to
the nineteen classes. The dataset contains 2975 training, 500 validation, and 1525
test images. All of the images in this dataset are in the same size of 1024×2048 pixels.

In the Cityscape dataset [Cordts et al., 2016], the standard Jaccard Index [Evering-
ham et al., 2015], commonly referred to as the PASCAL VOC intersection-over-union
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3.4 Implementation Details

(IoU) metric, is employed to evaluate performance on test set. The IoU is calculated
as the ratio of true positive (TP) pixels to the sum of TP, false positive (FP), and
false negative (FN) pixels, across the entire test set. A comprehensive explanation
will be provided in Section 3.5. There are two separate mean performance scores
in Cityscape benchmark: IoUcategory and IoUclass, which address the two semantic
granularities classes and categories respectively. In each of them, pixels labelled as
void do not contribute to the score.

To conduct our evaluation, we present the results obtained from the validation and
test sets. Our focus during evaluation was solely on road segmentation. Consequently,
we modified all labels, except for the road class, to be classified as the background
label. This enabled us to exclusively assess the performance of our approach in terms
of road segmentation. In our Cityscape experiment, we conducted the analysis by
selecting specific SLIC parameters: Nsp = 2000 for the number of superpixels and
mslic = 10 for the weight. These parameter choices were applied to half-resolution
images (512× 1024), resulting in 2048 superpixels for each image. Subsequently, the
superpixels were projected onto a 32× 64 lattice, which served as the input data for
the CNN in our experiment.

3.4.2 Model Analysis

To address the challenge of achieving both fast and accurate road segmentation, we
propose an innovative approach that leverages super-pixel segmentation as the input
data model, combined with Convolutional Neural Network (CNN) as the final decision
for choosing the superior machine learning approach for our semantic segmentation
task.

As mentioned in section 2.7, conventional segmentation approaches commonly employ
two strategies decomposing each image frame into fixed-size patches or analysing indi-
vidual pixels throughout the entire image. However, pixel-level classification is prone
to noise, which poses difficulties in accurately identifying homogeneous regions and
requires substantial computational resources and powerful GPUs. While fixed-sized
patches offer noise reduction and improved information aggregation, they suffer from
a lack of adequate spatial context. This limitation gives rise to suboptimal pairings
in nearest neighbour searches and compromises the accuracy of the segmentation re-
sults. Moreover, these patches can encompass multiple distinct image regions, leading
to a degradation in the overall classification performance.
In this study, two distinct machine learning approaches are employed for semantic
road segmentation using the KITTI dataset. The first approach involves training a
support vector machine (SVM) directly on the inhomogeneous superpixels extracted
through the SLIC method. Additionally, handcrafted features, such as colour, po-
sition, and texture, are extracted from the labelled superpixels. These features are
then utilized as input for the SVM to classify the road objects in the images.
In contrast, the second approach introduces a novel method based on Convolutional
Neural Networks (CNN). Instead of directly using the inhomogeneous superpixels
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as input, this approach utilizes a mask that covers the irregular superpixel. This
mask is specifically designed to provide the necessary information for the convolution
operation within the CNN. By incorporating this mask-based approach, the CNN
effectively addresses the challenges posed by irregular superpixels and enhances the
segmentation performance for road object.

SP-SVM

Support Vector Machines (SVM) [Cortes and Vapnik, 1995] is a discriminative clas-
sifier, which maximize the margin between data near the classification boundaries. A
support vector machine (SVM) classifier was trained on samples of road images based
on superpixel extraction. First, each image from KITTI dataset with sizeHimg×Wimg

is segmented into superpixels by SLIC method [Achanta et al., ], where the number
of desired superpixel and compactness are chosen as in the CNN-based method (re-
spectively Nsp = 400,mslic = 35). Contrary to CNN’s, that require 2D input data,
SVM’s generally need a vector (1D input data). Hence, in this approach, we do not
need the projection lattice (like our proposed CNN method). Due to the different
size of the images in the KITTI dataset, discussed in section 3.4.1, the total number
of generated superpixels varies between [396− 400] superpixels for each image.
We assign the majority label of all pixels in each superpixel as corresponding class
label to that superpixel. Each superpixel is described by 69 features includes, a set of
the colour channels in different colour space, position and the Local Binary Patters
(LBP) 3.3.2. We provided a vector array of all superpixels from all images in the
training set and the corresponding vector array of their labels as data input model.
The classifier was implemented in Matlab 2015b using LibSVM library. We used
Linear kernel provided in the this library. We did our experiment first with binary
SVM for two classes (road and un-road when the side-walk is excluded from the im-
ages). By applying this binary classification on the validation set with 10 images, we
achieved road segmentation accuracy of about 87, 81%. Next time we applied Multi-
SVM with 3 different classes: road, un-road and side-walk and achieved 94.34% of the
road segmentation accuracy. The results are shown in figure 3.7. Additional examples
are illustrated in Appendix I.

Because SVM only cares about samples near the margin, it usually avoids the prob-
lem of over-fitting, however the major downside of SVM is that it can be painfully
inefficient to train compared to other powerful models like CNN. Although it is good,
it is certainly not the best.
Using linear SVM make us sure that if this linear superpixel based binary(multi) clas-
sifier can segment the road in the images almost good, a powerful machine learning
approach like CNN should provide better segmentation results. It is important to
note that, While an SVM-based approach was initially explored as part of this study
to analyse the potential effectiveness of our proposed method, a direct comparison
between the SVM and CNN results is not presented in this section. This decision is
based on several factors. Firstly, the SVM approach primarily served as a prelimi-
nary step to assess the feasibility of the subsequent CNN-based approach. Secondly,
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Figure 3.7: Road segmentation with SVM. a)is the result obtained from the binary
SVM, b) shows the Multi-class SVM result.

the SVM-based evaluation was conducted on a subset of the training and validation
images from the KITTI dataset, which may not provide a fair basis for direct com-
parison with the CNN results obtained on the entire dataset. Lastly, due to hardware
constraints and availability, a comprehensive comparison of computational efficiency
between the two methods, in terms of running time, was not conducted. Therefore,
the section 3.5 focused on the analysis and discussion of the CNN-based approach
performance, which constitutes the main contribution of this study.

SP-CNN

We address the use of superpixels as the visual primitives for semantic segmentation.
superpixels are obtained from an over-segmentation of the image and they aggre-
gate visually homogeneous pixels, while respecting natural terrain boundaries. As
discussed in part(3.3.1), we used SLIC method for superpixel segmentation. This
method creates different size of irregular-shaped image segmentation, which are not
suitable for convolution operation. Contrary to our SVM method, we need a regular
topology to be able to convolve the input data with kernels. On one hand, employing
regular superpixel segmentation methods helps preserve the topology of the image.
However, it also leads to a loss of maximum homogeneity in terms of the texture
within each superpixel.
To address this issue, we propose the use of a mask placed over the original superpixel
segmentation. This mask is centered on a regular grid derived from the initial itera-
tion of our Adapted SLIC method (see section 3.3.1). By incorporating this approach,
we establish a grid structure, that facilitates the application of a convolutional layer,
while simultaneously maintaining the correlation between pixels within each cluster.
For a visual representation, please refer to Figure 3.8.
In this method we don’t need exactly the same size of the images, but we need the
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same total number of superpixels on each image. To keep the equality between the
amount of the number of created inhomogeneous superpixels with the amount of the
superpixels in the mesh grid, we used our Adopted SLIC method from 3.3.1. It is
important, that the class labelling was determined based on the majority label of all
pixel labels in the inhomogeneous superpixels, not in regular superpixels.
This lattice together with the high dimensional image descriptors are fed to our
designated convolutional neural network described in section 3.3.3, to classify the su-
perpixels of the image according to semantic categories. Figure 3.9 displays a simple
visualization of a sample convolutional kernel and corresponding output feature map
from a convolutional layer in our network. A two-dimensional filter learned by the
model is visualized to discover the types of features that the model will detect in
specific intermediate step, and the activation map output by convolutional layer can
be inspected to understand exactly what features were detected for a given input
image.

Figure 3.8: Grid scheme on top of superpixel segmentation (After) "Enforcement Con-
nectivity".

3.5 Evaluation and Discussion
The training and testing phases were conducted using a hardware setup equipped
with an Intel(R) Core(TM) i7-4790K CPU running at a clock speed of 4GHz.

To ensure optimal performance, the feature vectors extracted from superpixels un-
derwent a normalization process. This involved calculating the mean and standard
deviation for each channel within the training set. Subsequently, these computed
values were employed to normalize the feature vectors in both the training and eval-
uation stages.
Normalizing the feature vectors using the mean and standard deviation serves several
purposes. Firstly, it helps center the data distribution around zero, which aids in sta-
bilizing the learning process and improving convergence during training. Secondly,
it enables fair comparisons and consistent results by eliminating any potential bias
introduced by varying scales or offsets in the original feature values.
It is essential to perform the normalization solely on the training set and not on

66



3.5 Evaluation and Discussion

Figure 3.9: Visualizing a Filter and corresponding output Feature Map from our Con-
volutional Neural Network. First superpixel segmentation is applied on
original image to extract the required high dimensional feature descriptor.
Then it is projected on regular mesh grid to be able to do the convolu-
tional operation. A sample kernel filter from our network is convolved
with this lattice and results the corresponding feature map.

the combined train, validation, and test sets. This approach ensures that the nor-
malization process remains unbiased and reflective of the training data’s statistical
characteristics. By applying the mean and standard deviation computed from the
training set to the evaluation phase, we maintain consistency and allow the model to
generalize effectively to unseen data.

To ascertain consistency in the comparison with other state-of-the-art methods using
the KITTI dataset [Fritsch et al., 2013a], we employed the evaluation metrics specified
by the KITTI benchmark, as discussed in Section 3.4.1. By utilizing these evaluation
metrics, we maintain the standard framework for assessing the performance of our
method in relation to others.
Our primary objective was to perform road segmentation from the background. To
assess the effectiveness of our proposed approach, we conducted evaluations in two
domains, a) the native pixel grid and b) the superpixel grid. These evaluations
encompassed two perspectives:

• The Image perspective (egocentric view), which reflects the scene as observed
from the viewpoint of the camera or the person capturing the images.

• The Birds Eye View (BEV) projection provided by the KITTI dataset, as de-
tailed in section 3.4.1.
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In the superpixel domain, the evaluation process involves defining the ground truth
for each superpixel based on the majority of pixel labels contained within it. If
the majority does not exceed 80%, we assign a new label called Un-labelled to these
instances, resulting in a total of three classes road, non-road, and unlabelled. However,
since the KITTI road benchmark evaluates only two classes (road and non-road), we
modified the labelling of superpixels in the test set by reassigning them based on the
majority value.

3.5.1 KITTI Evaluation on Image Perspective
We adhered to the evaluation methodology outlined in the KITTI dataset (see [Fritsch
et al., 2013a]). Due to the unavailability of ground truth for the test data, we utilized
the validation set to assess our approach from the image perspective. In Figure 3.10,
we present two illustrative results obtained from the KITTI dataset, demonstrating
the successful segmentation of the road. Additional examples are available in Ap-
pendix I.

Figure 3.10: Road segmentation based on proposed SP-CNN method for two samples
from KITTI. The first horizontal row shows input images. Ground-truth
based on pixels and superpixels are shown in the second and third rows.
The last row shows the predicted results based on superpixel labelling

Table 3.1 presents the average evaluation results obtained from the validation set for
various urban categories in the KITTI dataset, considering both the superpixel and
pixel domains. Our proposed model and parameters, as described in sections 3.4.2
and 3.3.3, were utilized to evaluate the results for each dataset based on both super-
pixel and pixel ground-truths. In this evaluation, the positive class was defined as
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"road", while the negative class consisted of "non-road" and " unlabelled" instances.
Furthermore, we also included the evaluation results obtained from the Cityscape
validation dataset (further discussed in section 3.5.3). To ensure a consistent com-
parison between the KITTI and Cityscape datasets, we utilized the evaluation metric
from KITTI to evaluate the Cityscape validation set as well.

Dataset Benchmark ACC MaxF PRE REC FPR FNR

KITTI Superpixel 97.37% 92.57% 94.21% 91.62% 5.79% 1.86%

pixel 96.50% 90.08% 92.80% 88.07% 7.20% 2.65%

CityScape Superpixel 95.75% 92.44% 89.08% 96.76% 10.92% 1.14%

pixel 94.10% 90.01% 84.41% 97.14% 15.59% 1.89%

Table 3.1: Evaluation results on KITTI and Cityscape validation sets. For the evalu-
ation of the following experiments we used these metrics: accuracy (ACC),
maximum F-measure (MaxF) or F1, precision (PRE), recall (REC), false
positive rate (FPR), false negative rate (FNR)

The evaluation results on the KITTI dataset, presented in Table 3.1, offer valuable in-
sights into the performance of our road segmentation approach in different categories.
In the superpixel domain, our method achieved an impressive average accuracy (ACC)
of 97.37%, indicating a high level of correct road predictions. This was further sup-
ported by a substantial F-measure (MaxF) of 92.57%, reflecting the balance between
precision (PRE) and recall (REC) measures. The precision score of 94.21% highlights
the model’s ability to accurately classify road pixels, while the recall score of 91.62%
demonstrates its effectiveness in capturing a significant portion of the road pixels
present in the images.
Furthermore, the low false positive rate (FPR) of 5.79% signifies the model’s capa-
bility to minimize the misclassification of non-road pixels as road, which is crucial for
avoiding false detections. Additionally, the low false negative rate (FNR) of 1.86%
indicates the model’s proficiency in capturing the majority of road pixels, reducing
the likelihood of missing relevant road segments.

In the pixel domain, our approach achieved a slightly lower but still impressive aver-
age accuracy of 96.50%. This indicates a strong performance in accurately classifying
road pixels at the individual pixel level. The F-measure of 90.08% suggests a good
balance between precision and recall, with a precision score of 92.80% and a recall
score of 88.07%. These results highlight the model’s ability to accurately identify road
pixels while maintaining a relatively low rate of false positives and false negatives.
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Comparing the results between the superpixel and pixel domains, we can observe
that the superpixel-based approach consistently achieves higher accuracy, F-measure,
and recall scores compared to the pixel-based approach. This issue arises because
the final label assigned to each superpixel is determined by the majority pixel label
within it. Consequently, when superpixels lack homogeneity, this assignment based
on majority voting may affect the segmentation result at the pixel level, potentially
introducing some inaccuracies. However, it does not significantly impact the overall
superpixel-level results, as the majority label within each superpixel tends to domi-
nate. Despite these challenges, the pixel-based approach demonstrates commendable
performance, showcasing its ability to classify road pixels at a finer granularity, while
still achieving competitive evaluation scores.
Overall, these evaluation results on the KITTI dataset demonstrate the effective-
ness of our proposed road segmentation approach. The high accuracy, F-measure,
precision, recall, and low false positive and false negative rates indicate the model’s
robustness in accurately identifying road pixels, thereby contributing to the reliable
detection and understanding of road scenes.
Although the road segmentation in Figure 3.10 shows overall success, it encounters
challenges near the road border, resulting in false detections. The more detailed view
in figure 3.11 reveals, this issue arises from the inherent nature of superpixel seg-
mentation, which struggles to accurately identify the precise boundary of the road.
Superpixels are formed to group similar pixels, often encompassing both the road
and its surroundings. As a consequence, the compactness of the superpixels leads
to false detections at the road border. Additionally, the presence of shadows further
complicates the segmentation process. To address these challenges, a refinement step
will be introduced in the subsequent chapter to enhance the accuracy and localization
of the road segmentation.

Figure 3.11: Wrong-predicted area is shown as non-red superpixels
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Evaluation between irregular and regular superpixels

In our subsequent experiment, we demonstrate the superiority of well-homogeneous
irregular-shaped superpixels, generated through our customized superpixel creation
method, over regular-shaped fixed-size patches. The irregular-shaped superpixels
exhibit higher classification accuracy compared to the less homogeneous fixed-size
patches, enabling more effective navigation in complex terrain environments.
In this experiment, we employed a regular superpixel segmentation technique to fit
the superpixels into fixed-size patches. Specifically, we utilized the first iteration of
our Adapted SLIC method on all images from the KITTI dataset, resulting in a
regular grid-like structure with 396 superpixels per image. This approach ensured a
consistent number of superpixels and preserved the correlation between pixels within
each superpixel group based on the criteria discussed in section 3.3.1.
However, it is crucial to acknowledge that although the regular superpixel segmenta-
tion enforced a uniform shape for each superpixel, it did not guarantee homogeneity
across the superpixels. Consequently, the superpixels within the grid structure might
exhibit variations in terms of their internal homogeneity and may not accurately rep-
resent distinct objects or regions within the image.
Subsequently, we extracted the previously proposed feature vector (see section 3.3.2)
from each patch obtained through the regular superpixel segmentation. It is worth
noting, that this feature extraction approach differs from our SP-CNN techniques,
where the feature descriptors are extracted from irregular superpixels instead of the
lattice grid. This disparity in feature extraction from irregular superpixels and regular
ones can introduce potential drawbacks, as regular superpixels may not fully capture
the intricate details and nuances of the underlying objects or regions of interest in
the image.

The evaluation results from Table 3.2 showcase the performance of the fixed-size
superpixel method and the irregular superpixel method in road segmentation.The
evaluation was conducted in both the superpixel and pixel domains.
At the superpixel level, the irregular superpixel method outperforms the fixed-size
superpixel method in terms of F-measure. The irregular superpixel method achieves
an F-measure of 92.57%, indicating a higher overall accuracy in segmenting road su-
perpixels compared to the fixed-size method, which yields an F-measure of 87.52%.
This suggests that the irregular superpixel method captures more precise and accu-
rate boundaries of road segments within each superpixel.
Similarly, when examining precision, the irregular superpixel method achieves a higher
score of 94.21%, compared to the fixed-size superpixel method with a precision score
of 80.46% in superpixel domain. This signifies that a larger proportion of road su-
perpixels identified by the irregular method are correctly classified as road segments.
However, when considering the results at the pixel level, both the irregular superpixel
and the fixed-size superpixel method exhibit a decrease in performance compared
to the superpixel level. The irregular superpixel method achieves an F-measure of
90.08%, while the fixed-size superpixel method yields a slightly lower F-measure of
85.19%. This indicates that both methods encounter challenges in accurately seg-
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menting individual road pixels. The relatively small discrepancy of 5% in the overall
F-measure between the two methods is primarily influenced by the accurate identifi-
cation of non-road regions rather than road segments. It is because of the imbalanced
class distribution between road and non-road regions within each image. This imbal-
ance affects the performance evaluation, particularly in terms of road segmentation.
However, it also highlights the high correctness achieved in segmenting non-road ar-
eas, as indicated by the overall F-measure scores.
Despite the decrease in accuracy at the pixel level, the irregular superpixel method
still demonstrates superior performance in precision. It achieves a precision score of
92.80%, whereas the fixed-size superpixel method obtains a precision score of 78.85%.
This large gap of almost 14% of average precision implies the low ability of the road
segmentation in patch-wise method. This gets even worse by existing shadow or ob-
stacle on the road surface (See Figure.3.12).
Overall, the results indicate that the irregular superpixel method outperforms the
fixed-size superpixel method in both superpixel-level and pixel-level road segmenta-
tion. The irregular method achieves higher accuracy, precision, and F-measure scores,
indicating its effectiveness in capturing the boundaries of road segments more accu-
rately. However, it is important to consider, that both methods experience some
challenges in accurately identifying road pixels at the pixel level, suggesting the pres-
ence of potential misclassification or missed road pixels in both approaches.

Method Benchmark MaxF PRE REC

Fixed-size SP Superpixel 87.52% 80.46% 98.07%

pixel 85.19% 78.85% 94.70%

irregular SP Superpixel 92.57% 94.21% 91.62%

pixel 90.08% 92.80% 88.07%

Table 3.2: Evaluation results on both regular and irregular shape of superpixels on
KITTI validation set.

An alternative approach is to use resized images as input instead of feeding the model
with superpixels. However, this idea has two significant drawbacks.

First, decreasing the resolution of the images results in a loss of information, espe-
cially when aiming to achieve the small size of 11× 36 for the projected lattice. This
reduction in resolution would particularly impact the prediction results for images
with shadows on the road or when distinguishing the road from side-walks, leading
to poorer segmentation outcomes.
Second, our objective extends beyond road segmentation alone. We also aim to detect
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and segment other objects present in the images, such as vehicles and pedestrians.
Resizing the images is not a suitable solution for effectively segmenting small objects.
Even if resizing is performed using down/up sampling techniques, it would require
significant computational resources and increase computational time.
In summary, the use of resized images as an alternative to superpixels presents lim-
itations in terms of information loss, particularly for challenging scenarios involving
shadows and distinguishing road from side-walks. Additionally, resizing is not a suit-
able approach for segmenting small objects, and it introduces computational com-
plexities. Therefore, leveraging superpixels remains a more advantageous choice for
our multi-object segmentation objective.

Figure 3.12: Road segmentation prediction with SP-CNN for two samples based on:
a) fixed-size superpixels (Patches), b) irregular superpixels

3.5.2 KITTI Evaluation on Birds Eye View Perspective
When evaluating the road segmentation in the birds-eye perspective on the KITTI
benchmark, the images are first projected onto the ground plane using known camera
geometry. This projection allows for a consistent representation of the scene in a
regular grid format, enabling pixel-wise comparison (see section 3.4.1). The evalua-
tion results in Table 3.3 provide insights into the performance of the segmentation
algorithm across different categories (UM, UMM, UU, and URBAN) in the KITTI
test dataset.URBAN category consists all three other subsets.

Comparing the results between table 3.1 and 3.3, we can observe, that the MaxF
score in the pixel domain (90.08% from Table 3.1) is higher than the MaxF scores
achieved by any of the individual benchmarks in the BEV perspective evaluation
(ranging from 78.47% to 85.07% in Table 3.3). This indicates, that the segmentation
algorithm performs better at the image perspective compared to the individual road
categories evaluated in the BEV perspective.
The difference in performance can be attributed to the challenges introduced by the
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BEV perspective evaluation. The error caused by inhomogeneous super-pixels at
the road border, as mentioned before, is spread over a larger area due to terrain
projection. This leads to a reduction in accuracy compared to the image perspective
evaluation. To better understand the effect of terrain projection, Figure 3.13 provides
visual examples of the mentioned projection effect on the results.

Benchmark MaxF AP PRE REC FPR FNR

UM_ROAD 81.60 % 69.62 % 78.13 % 85.40 % 10.89 % 14.60 %

UMM_ROAD 85.07 % 79.86 % 85.97 % 84.20 % 15.11 % 15.80 %

UU_ROAD 78.47 % 65.18 % 74.20 % 83.25 % 9.43 % 16.75%

URBAN_ROAD 82.36 % 72.31 % 80.48 % 84.33 % 11.27 % 15.67 %

Table 3.3: Evaluation Results on KITTI Test set

Figure 3.13: Road segmentation result from official KITTI test set in baseline and
bird eye view perspectives. Here, red denotes false negatives, blue is
false positives and green represents true positives.

3.5.3 Cityscape Evaluation

The evaluation results for road segmentation on the Cityscape validation dataset,
categorized into pixel and superpixel domains, are presented in table 3.1. In order
to facilitate a meaningful comparison between the results obtained from KITTI and
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Cityscape datasets, we utilized the metric from KITTI for evaluating the results on
the Cityscape dataset as well. However, during the evaluation on the test set, as
elaborated in Section 3.4.1, we employed the intersection-over-union (IOU) metric
[Cordts et al., 2016] to measure the accuracy of class predictions, alongside other
state-of-the-art methods specifically designed for this dataset.

Evaluation on Validation Set

From table 3.1, in the superpixel domain, our approach achieves a slightly higher
accuracy of 95.75%, compared to 94.10% in the pixel domain. This indicates that
the superpixel-based segmentation approach yields slightly better overall accuracy in
correctly classifying road segments within the Cityscape dataset.
Considering the F-measure, the superpixel domain outperforms the pixel domain
with a score of 92.44% compared to 90.01%. This suggests that the superpixel-based
approach achieves a better balance between precision and recall, indicating its effec-
tiveness in accurately delineating road segments.
Analysing the precision values, the superpixel domain demonstrates a precision score
of 89.08%, while the pixel domain achieves a slightly lower precision of 84.41%. This
suggests that the superpixel-based approach is more successful in accurately iden-
tifying road pixels, achieving a higher percentage of correctly classified road pixels
relative to the total number of pixels labelled as road.
In terms of recall, the pixel domain achieves a slightly higher recall (97.14%) than
the superpixel domain (96.76%). However, both domains exhibit a strong ability to
identify a high proportion of road pixels. The superpixel domain also demonstrates
lower false positive rate (FPR) and false negative rate (FNR) compared to the pixel
domain.
In summary, the superior accuracy of the superpixel-based approach in road segmen-
tation on the Cityscape validation dataset can be attributed to the same reason as
we discussed in the KITTI dataset. The key factor lies in the utilization of majority
labels assigned to superpixels. It is important to acknowledge it, when superpixels
exhibit variations in their composition, this assignment based on majority voting may
introduce some inaccuracies at the pixel level. While this challenge exists, it does not
significantly impact the overall results at the superpixel level. Despite these inherent
challenges, the pixel-based approach still demonstrates notable performance in road
segmentation.

Evaluation on Test Set

For the evaluation on the Cityscape test set, as elaborated in Section 3.4.1, we em-
ployed the intersection-over-union (IOU) metric [Cordts et al., 2016] to measure the
accuracy of class predictions, alongside other state-of-the-art methods specifically
designed for this dataset. Given that the publicly available Cityscape benchmark
assesses 19 classes, it would be unfair to directly compare the average results of our
approach (which focuses solely on the "road" class) with those of state-of-the-art meth-
ods. Hence, we conducted a comparative analysis by considering the per-class scores
exclusively for the "road" class, examining how our approach fares against several
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Method Processor Input Size FLOPs(G) Params(M) road (IoU) Runtime(S) AI-Scores

DeepLab(LargeFOV-
Strong)

Nvidia Titan X 512× 1024 457.8 262.1 97.3% 4 24870

FCN Nvidia Titan X 512× 1024 136.2 512.5 97.4% 0.5 24870

CRF-RNN Nvidia Titan X 512× 1024 - >513 96.3% 0.7 24870

Ours Intel(R) Core(TM)
i7-4790K CPU

@4GHz

32 × 64 0.253 0.3 90.08% 0.82 1400

Table 3.4: Intersection of union(IoU) results for road class on Cityscapes testing set.
All runtimes for each approach are obtained from Cityscape benchmark
website [Cordts et al., 2016] and [Dong et al., 2020], which is evaluated
with the same hardware. DeepLab LargeFOV-Strong [Chen et al., 2016],
FCN [Long et al., 2015], CRF-RNN [Zheng et al., 2015]. AI-Scores:https:
//ai-benchmark.com/ranking_deeplearning.html

recent approaches on the Cityscape test set. The summarized results are presented
in Table 3.4.
Furthermore, in addition to comparing the accuracy of our method with other state-of-
the-art methods on the Cityscape test set, we also conducted a comprehensive analysis
considering various factors such as the input size, number of FLOPs (floating-point
operations per second), number of parameters (Params), runtimes, and AI-scores.
The "AI-score" is a metric used to assess the performance of various hardware config-
urations, when running deep learning workloads. The higher the AI-score, the better
the hardware configuration is considered to be in terms of its ability to handle deep
learning tasks efficiently. By considering these multiple evaluation criteria, we aim to
provide a comprehensive assessment of our approach in comparison to other methods,
taking into account both accuracy and computational efficiency. These aspects will
be discussed in detail in section 3.5.4.

From Table 3.4, although our approach achieved a lower accuracy compared to some
state-of-the-art methods, it is important to highlight that our method offers notable
advantages in terms of computational efficiency. Despite the slightly lower accuracy,
our approach demonstrates comparable performance, while requiring minimal com-
putational time.
Figure 3.14 showcases a selection of sample images from the Cityscape dataset. In the
last row of the figure, both correct prediction labels and incorrect labels (shown in
white) are displayed. Unlike many advanced semantic segmentation methods applied
to urban scene datasets (as indicated in Table 3.4), which typically require downsam-
pling the original high-resolution images from 1024×2048 to half the size (512×1024),
our approach achieves impressive results with only occasional misprediction, primar-
ily along the road boundaries, similar to our observations in the KITTI dataset. The
ability of our approach to achieve such favourable results without the need for ex-
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3.5 Evaluation and Discussion

tensive downsampling highlights its effectiveness in accurately capturing the intricate
details of the road segmentation task on the Cityscape dataset.

Figure 3.14: Road segmentation result from official Cityscape validation set. The
first horizontal row shows input images. Ground-truth based on pixels
and superpixels are shown in the second and third lines. The Fourth
line shows the predicted results. The last row presents the correct and
incorrect labelling prediction. The white colour specifies which parts are
predicted wrong, which are mostly happened at along road boundary.
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3.5.4 Run-time Analysis

Most of the state of the art methods in semantic segmentation are based on GPU and
powerful hardware facilities, which limit their application to CPU based embedded
systems. Our approach using superpixels and simple CNN network (see section 3.3.3)
aimed at real-time performance, which reduces the computational complexity to ease
the integration of proposed method into ADAS and autonomous driving systems. We
evaluated the computational time for both KITTI and Cityscape datasets in both
train and test time.

Training and Testing Run-time Comparison

During the experiments conducted on the KITTI road dataset, our approach not only
achieved notable results in terms of accuracy, but also demonstrated remarkable effi-
ciency. The training phase exhibited impressive speed, with a mere 4.3s per epoch. It
is important to note that we conducted a total of 200 epochs for all images, ensuring
thorough model optimization and learning.
When it comes to testing, our approach showcased outstanding computational ef-
ficiency as well. The total run-time per image, including superpixel segmentation
(0.2s), feature extraction (LBP 0.2s + position 0.002s), and CNN learning (0.009s),
amounted to an impressive 0.41s. These computations were carried out on a CPU,
utilizing a Matlab implementation without parallel processing, as detailed in Section
3.5. For a comprehensive overview of the required running times for both the KITTI
and Cityscape datasets, please refer to Table 3.5.

The swift training and testing durations of our approach demonstrate its efficiency in
achieving accurate road segmentation results. By effectively utilizing computational
resources and streamlining the processing steps, we have ensured that our approach
delivers high-quality outcomes within a remarkably short time frame.

Dataset No_SP SP FE CNN Total_Runtime

KITTI 396 0.2s 0.2s 0.01s 0.41s

CityScape 2048 0.3s 0.6s 0.02s 0.82s

Table 3.5: CPU-based Computational Run-Time in seconds per frame for both
KITTI and City-scape image resolution: 1) number of superpixels(No_SP)
2) superpixel segmentation (SP), 3) Feature Extraction(FE), and 4) Net-
work (CNN)
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Comparison with State-of-the-Art Methods on KITTI Dataset

For the preprocessing steps (superpixel segmentation and feature extraction), we used
non-optimized Matlab implementations for experimental reasons. However, runtime
optimized versions for superpixel segmentation in CPU processor [Neubert, 2015]
can reach a performance of 0.008s for an image segmentation into 400 superpixels.
Further, an optimized version for LBP feature extraction [López et al., 2014] can
reach 0.001s. Using both bears the potential to squeeze the total runtime to 0.019s,
which is very fast for semantic segmentation without using GPU and enabling for
embedding in the real time systems. In table 3.6, we compared our approach with
some of the state of the art methods in semantic segmentation in both accuracy
and computational time on KITTI dataset. All results provided for URBAN road
category from test set.

Method Processor MaxF AP Runtime(s) AI-Scores

LODNN NVIDIA GTX980Ti
GPU, 6GB memory

94.07 % 92.03% 0.018 16038

UP_CONV_POLY NVIDIA Titan X GPU. 93.83 % 90.47 0.083 24870

DDN NVIDIA GTX980Ti
GPU, 6GB memory

93.43 % 89.67 % 2 16038

Ours (un-Optimized
runtime)

Intel(R) Core(TM)
i7-4790K CPU @4GHz

82.36 % 72.31 % 0.41 1400

Ours (Optimized
runtime)

Intel(R) Core(TM)
i7-3770 CPU @

3.40GHz

82.36 % 72.31 % 0.019 1400

Table 3.6: Comparative analysis of road segmentation performance on the KITTI
UMM test set, featuring our SP-CNN method against some of the leading
state-of-the-art methods. Only results of published methods are reported.
LODNN: [Caltagirone et al., 2017], UP_CONV_POLY [Oliveira et al.,
2016], DDN [Mohan, 2014].
AI-Scores:https://ai-benchmark.com/ranking_deeplearning.html

Despite the impressive run-time of 0.018s achieved by the state-of-the-art method
[Caltagirone et al., 2017], it is important to note that their implementation utilizes
a high-performance NVIDIA GTX980Ti GPU with 6GB memory. This GPU-based
processing significantly boosts their computational speed, making it approximately
11 times faster than our CPU-based method, which operates on a 4-core CPU. Thus,
the disparity in run-time is expected given the hardware differences between the two
approaches.
It is worth mentioning that the lower evaluated MaxF of our proposed approach,
as discussed in the evaluation on Birds Eye Perspective (Section 3.5.2), is partly
attributed to the presence of inhomogeneous superpixels at the road border. This
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error becomes more pronounced due to terrain projection, resulting in a spread of
inaccuracies over a larger area. However, it is worth noting that this limitation
can be mitigated by implementing a post-processing step, potentially improving the
MaxF to 96% for the KITTI dataset and 94% for the Cityscape dataset. Details
regarding this post-processing step will be discussed in the subsequent chapter.
By acknowledging the hardware differences between our method and the state-of-the-
art approach and addressing the challenges posed by inhomogeneous superpixels, we
can better understand the observed discrepancies in run-time and evaluation scores.

Comparison with State-of-the-Art Methods on Cityscape Dataset

Finally, we compared the proposed method with several state-of-the-art methods on
cityscape [Cordts et al., 2016] test dataset as a high resolution dataset. In Table.
3.4, we already reported the accuracy results (IoU) for class road. In addition, the
corresponding running time as well as the status of the number of Parameters and
FLOPs obtained for all the competing methods is presented here. Note that all the
competing methods values are obtained from [Dong et al., 2020], where evaluated by
using a single NVIDIA TITAN X card.

Given that Cityscape images have a high resolution of 2048 × 1024, most networks
struggle to fit them into GPU memory, even powerful ones. To address this, the
authors in [Dong et al., 2020] trained their models on smaller crops of full-resolution
images and processed all images at half-resolution during testing. However, due to
the superpixel-based nature of our approach, we are able to work with the native
resolution in both the training and testing phases without losing any information.
Table 3.4 showcases the significant improvements in speed and computational effi-
ciency achieved by our proposed method, while maintaining an acceptable level of
accuracy and utilizing cost-effective resources. Specifically, our method achieves an
impressive 90.08% Intersection over Union (IoU) for road segmentation at a speed of
0.82s, requiring only 0.253G FLOPs and 0.3M parameters. It is worth mentioning,
that while FCN [Long et al., 2015] achieves the best performance with a runtime of
0.5s and 97.5% road-class IoU, they rely on a powerful GPU that is 18 times faster
than our CPU and operates on half-resolution images. Furthermore, our proposed
method utilizes 538 times fewer FLOPs and 1708 times fewer parameters compared
to FCN for a similar computational time. It is important to mention, that the runtime
results obtained from our approach using an unoptimized MATLAB implementation.

However, an optimized version of superpixel creation for high-resolution images (from
1339 × 891 pixels to 35042 × 336 pixels) with 1000 superpixels on an Intel Core i5-
6200U processor can achieve runtimes ranging from 5 to 21 ms [Draegert, 2017].
Therefore, the runtime for Cityscape resolution would be approximately 8ms.

In summary, our approach demonstrates exceptional computational efficiency and ad-
vantages compared to other methods, even considering the limitations of our MAT-
LAB implementation. By leveraging superpixels, we effectively handle high-resolution
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images while achieving competitive results. This makes our approach highly suitable
for real-time systems, striking a favorable balance between accuracy and compu-
tational speed. Additionally, our method is compatible with inexpensive hardware
resources, enabling fast processing times during both training and testing phases.

3.6 Conclusion
We have introduced a superpixel-based convolutional neural network approach for
road segmentation, with the primary objective of reducing resource utilization and
runtime, while maintaining a high level of accuracy. Our aim is to enable the de-
ployment of our approach on embedded devices, particularly in applications such as
ADAS (Advanced Driver Assistance Systems).
The fundamental concept behind our approach is to leverage superpixel units instead
of individual pixels as input for the CNN. By projecting a superpixel segmentation
onto a regular lattice structure, we preserve the topology and enable efficient con-
volution operations. This allows us to extract object characteristics from nearly
homogeneous and irregular-shaped superpixel units.
Extensive experiments were conducted to evaluate our approach under various sources
of uncertainty. The results demonstrate promising levels of accuracy and efficiency in
segmentation tasks, while significantly reducing processing time during runtime. In
fact, our approach achieves state-of-the-art processing time scores for semantic road
segmentation.
By adopting this superpixel-based strategy, we have effectively addressed the chal-
lenges of resource consumption and runtime in pixel-wise classification. Our method
opens up possibilities for real-time deployment on embedded devices, making it a
valuable contribution to the field of road segmentation.
Furthermore, the proposed superpixel-based mechanism is not limited to road segmen-
tation alone. It can also be extended to facilitate semantic understanding of various
objects in different domains. By leveraging the advantages of superpixel units, our
approach has the potential to enhance the accuracy and efficiency of semantic seg-
mentation tasks beyond road scenes. This flexibility and versatility further highlight
the significance and applicability of our method in the broader context of object seg-
mentation and understanding.
In the next chapter, we will delve into areas of improvement and expansion that can
be explored based on our CPU-based superpixel CNN approach for semantic seg-
mentation. While our approach has significantly reduced computational time, it is
important to address the existing accuracy gap compared to GPU-based state-of-the-
art methods. We will discuss strategies to mitigate the limitations arising from non-
revisable decisions made during superpixel segmentation, focusing on enhancing the
segmentation performance at road boundaries. These advancements will contribute
to more precise and reliable road segmentation, improving the overall performance of
our approach.
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4 Efficient fine-grained road segmentation
using superpixel-based CNN and CRF
models

In this chapter, we continue the study of an efficient solution for semantic segmenta-
tion task applicable for real time systems.

While Convolutional Neural Networks (CNN) have shown great promise for semantic
segmentation, their high computational requirements remain a significant obstacle.
In a previous chapter, we introduced a novel approach that leverages the advantages
of CNNs, while drastically reducing computational effort. We applied our proposed
method for the task of road segmentation as a rudimentary problem in advance driver
assistance systems (ADAS) to provide a safe and comfortable driving. By using ir-
regular superpixels as the input to the CNN instead of the pixel grid, we achieved a
notable reduction in runtime. However, the lower resolution of the superpixel domain
resulted in decreased accuracy compared to state-of-the-art methods with higher com-
putational costs.
This chapter presents an enhancement to the proposed semantic segmentation model
by incorporating a Conditional Random Field (CRF) [Lafferty et al., 2001] to improve
segmentation accuracy through the inclusion of spatial context. We consider semantic
image segmentation again in the street and urban scene context as the specified task
and investigate, how to improve the segmentation accuracy by incorporating spatial
context. Our refinement procedure focuses on the superpixels that intersect with the
predicted road boundary, ensuring minimal additional computational effort. Reduc-
ing the input to the superpixel domain allows the CNN’s structure to stay small and
efficient to compute, while keeping the advantage of convolutional layers. The integra-
tion of CRF compensates for the trade-off between accuracy and computational cost.
The proposed system achieves performance comparable to top-performing algorithms
on publicly available road benchmarks, and its fast inference makes it particularly
well-suited for real-time applications.
This chapter is structured as follows. In section 4.1, we provide a clear understanding
of the motivation and goals driving our work in this chapter. To offer the reader a
comprehensive view, section 4.2 offers an up-to-date overview of the refinement pro-
cedures combined with the CNN-based model for semantic segmentation tasks. In
section 4.3, we delve into the implications of Conditional Random Fields (CRF) as a
type of probabilistic graphical model. CRF is utilized as a post-processing step on the
results obtained from the previous chapter. We explain the fundamental principles of
CRF and provide additional background information relevant to our work. Section 4.4
briefly reviews the scheme of our proposed method from the previous chapter, which
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serves as a foundation for our current work in obtaining fine-grained segmentation
results. Furthermore, we present an overview of our proposed technique to enhance
the segmentation results. In section 4.5, we analyse three different CRF techniques
that strike a balance between efficiency and accuracy. These techniques are evaluated
and discussed in terms of their performance. To evaluate our refinements, section 4.6
assesses the three strategies from two perspectives: image perspective 4.6.1 and birds-
eye view perspective 4.6.2. The evaluation is based on accuracy and time efficiency.
Sections 4.7 summarize the chapter, discussing its limitations and drawing conclu-
sions.

The findings presented in this chapter have been partially published in previous work
[Zohourian et al., 2018c] or [Zohourian et al., 2022].

4.1 Introduction
Significant advancements in deep convolutional neural network (CNN) models, such
as those introduced by [Krizhevsky et al., 2012, Simonyan and Zisserman, 2014, He
et al., 2016], have greatly improved pixel-wise semantic segmentation tasks by ex-
tracting rich hierarchical features [Long et al., 2015, Zheng et al., 2015, Lin et al.,
2016, Chen et al., 2014, Liu et al., 2015]. However, achieving fast and accurate pixel
label estimation, that is compatible with real-time applications remains a challenging
task. While recent approaches have increased accuracy by constructing deeper net-
works with numerous layers [Simonyan and Zisserman, 2014, He et al., 2016], these
models often face limitations in computational power and memory. Additionally,
many advanced CNN models, particularly those used for semantic image segmenta-
tion, require high-end GPUs for real-time inference, which may not be readily avail-
able for certain applications like mobile phones or robotic platforms.
In the previous chapter, we addressed these challenges by introducing a memory-
efficient and fast semantic segmentation model, known as SP-CNN, which operates
on CPUs at acceptable frame rates and consumes minimal computational resources.
To demonstrate the applicability of this CPU segmentation model, we applied it to
the task of urban scene segmentation, which is crucial for self-driving intelligent ve-
hicles.
The proposed method distinguishes itself from conventional semantic segmentation
approaches in two key aspects. First, it utilizes superpixel units rather than pixels
as the input data model for the CNN network. Second, it adopts a simplified CNN
layering structure. While most segmentation approaches achieve improvements in
fully-supervised semantic segmentation through deeper network layering [Simonyan
and Zisserman, 2014, He et al., 2016], which can be computationally expensive and
require powerful GPUs for real-time embedding, our approach with a simplified net-
work structure and larger input units (superpixels) reduces parameter count, enhances
training and runtime efficiency, and enables execution on CPUs.
Despite achieving significantly faster speeds and requiring less memory, the segmenta-
tion accuracy of this method is relatively low, comparable to current state-of-the-art
methods in semantic segmentation. Accurate road segmentation is challenging due
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to variations in illumination, appearance, and occlusions. Furthermore, CNN-based
methods predict labels independently for each local neighbourhood without incorpo-
rating information from surrounding labels, leading to coarse outputs. For example,
parts of the road near the roadside area may be incorrectly predicted as a side-walk
due to the lack of global context information. Additionally, the lower resolution of the
superpixel domain naturally limits the ability to achieve fine segmentation results,
particularly for small objects or heterogeneous superpixels.
In this chapter, we aim to enhance the efficiency of road segmentation by leveraging a
conditional random field (CRF) technique [Lafferty et al., 2001] in conjunction with
the previously proposed superpixel CNN-based segmentation approach. This further
improves the efficiency of the model for CPUs and low-end GPUs (see Figure 4.1).Our
segmentation algorithm follows several steps, which we summarize briefly here:

• Image segmentation into superpixels, where these coherent regions consist of
pixels with similar image features

• Determination of image descriptors for the superpixels, consisting of multiple
image features

• Assignment of superpixels to corresponding positions on a regular grid structure
spanning the entire image

• Feeding the lattice and image descriptors into the convolutional network for
superpixel classification based on semantic categories

• Development of an effective optimization strategy for increasing road segmen-
tation precision using the CRF technique.

The current work comprises two aspects for coupling local and global evidences. To
get more accurate and smooth segmentation results, we applied a Conditional Ran-
dom Field (CRF)-based method as post prepossessing step. We combine the local
image classification information extracted from CNN part with global information
of neighbouring pixels to decide accurate pixel label. This idea follows largely pre-
vious work by fully connected pairwise CRFs [Krähenbühl and Koltun, 2011] as a
post-processing step [Chen et al., 2014, Chen et al., 2016], integrating CRFs into
the network by approximating its mean-field inference steps [Zheng et al., 2015, Liu
et al., 2015, Lin et al., 2016] to enable end-to-end training. Experiments show that
without using of global classification, the segmentation performs poorly, especially
in inhomogeneous superpixels. However, with a hypothetical solution, the segmen-
tation outperforms the CNN results and achieves comparable segmentation accuracy
with other state of the arts methods. We demonstrate the power of the proposed
architecture on public KITTI data set for road segmentation task.
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Figure 4.1: a) Original image overlay with superpixel segmentation, b) CNN segmen-
tation result based on superpixel, c) CRF segmentation result.

4.2 Related Works

Motivated by the remarkable success of deep learning, convolutional neural network
(CNN)-based classifiers have been adapted for the task of semantic segmentation. Se-
mantic segmentation provides valuable information, including object boundaries and
shapes, which are crucial for effective path planning and perception of the drivable
road environment in self-driving intelligent vehicle systems. Earlier approaches pri-
marily relied on a multi-patch approach [Giusti et al., 2013, Li et al., 2014]. However,
more recently, state-of-the-art semantic segmentation systems have embraced the use
of fully convolutional networks (FCNs), initially introduced in [Long et al., 2015].
These FCNs employ a skip architecture to integrate heat maps from different reso-
lutions and replace the last few fully connected layers of a conventional CNN with
convolutional layers, enabling efficient end-to-end learning with variable input sizes.
Various enhancements and deeper variants of FCNs have been proposed in [Badri-
narayanan et al., 2015, Noh et al., 2015].
However, CNN-based segmentation methods encounter certain issues that can impact
the accuracy of semantic segmentation, leading to imprecise region segmentation and
discontinuous edges. One key issue is that CNN-based methods independently predict
labels for each local neighbourhood without considering information from surround-
ing labels. This is despite the fact that labels produced by the CNN at neighbouring
pixels are often correlated due to the overlap of their receptive fields. Unfortunately,
these dependencies are not explicitly modelled, resulting in coarse outputs when con-
volutional filters with large receptive fields are employed. Furthermore, consecutive
pooling operations during the encoding stage of CNNs can diminish the likelihood of
achieving fine segmentation results, particularly for small objects such as pedestrians
or traffic lights. This loss of detailed information arises from the pooling operations.
To address these challenges and enhance the accuracy of pixel labelling, CNNs are
often combined with probabilistic graphical models like Conditional Random Fields
(CRFs) [Lafferty et al., 2001]. CRFs are utilized to model various dependencies among
pixel labels and refine weak and coarse segmentation outputs in a post-processing step
[Zheng et al., 2015, Chen et al., 2014, Chen et al., 2016]. [Farabet et al., 2013] utilized
a superpixel-based CRF model as a post-processing step on a CNN-based multi-scale
feature extractor to achieve the final segmentation. Another method, DeepLab-CRF
[Chen et al., 2014], employed a dense CRF approach [Krähenbühl and Koltun, 2011]
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as a post-processing step on a trained Fully Convolutional Network (FCN). [Zheng
et al., 2015] introduced an end-to-end CNN-CRF model, integrating the CRF directly
into the CNN architecture and jointly learning the CRF parameters and CNN pa-
rameters from training data. They also employed a mean-field inference technique,
implemented as a Recurrent Neural Network (RNN), to optimize the dense CRFs.
This approach was later extended to handle higher-order CRF terms [Arnab et al.,
2015]. Extensions of the RNN-CNN approach, such as the bilateral neural network
for high-dimensional sparse data [Jampani et al., 2016], have also been proposed.
Our proposed model differs from these state-of-the-art approaches in the way we com-
bine CRFs and CNNs. We utilize pixel-level CRFs as a proposal mechanism for a
CNN-based re-ranking system, focusing only on a small portion of pixels surround-
ing the road border. In contrast to [Farabet et al., 2013], who used superpixels as
nodes for a local pairwise CRF, we consider each pixel belonging to the superpixels
that intersect with the road contour as a CRF node. This approach exploits long-
range dependencies, while significantly reducing the computational cost associated
with performing pixel-level CRF inference on the entire image resolution.

4.3 CRF Background and Notations

In this section, we will delve into the fundamental concept of Conditional Random
Fields (CRF) [Lafferty et al., 2001], as a class of statistical modelling methods.

4.3.1 CRF Basics and Comparison with MRFs

CRFs are undirected probabilistic graphical models widely employed for capturing
spatial regularities in images. While a classifier predicts labels for individual sam-
ples without considering neighbouring samples, CRFs have the ability to incorporate
contextual information. This is achieved by modelling the predictions as a graphical
model, that represents the dependencies between them. CRFs serve as a common
type of machine learning approach used across a wide range of applications, from
mitigating low-level noise to performing high-level scene interpretation. Their objec-
tive is to assign appropriate class labels to each pixel, considering the relationships
and context within the image.
In image segmentation, early works primarily centred around the use of a proba-
bilistic generative framework known as Markov Random Fields (MRF) [Bishop and
Nasrabadi, 2006, 383-393]. This framework models the joint probability of an image
X and its corresponding labels Y . MRF-based approaches consider the image and
its labels as a graphical model, where nodes represent image pixels or regions, and
edges represent the relationships and dependencies between these nodes. The joint
probability distribution is defined based on the local interactions between neighbour-
ing pixels or regions, capturing the spatial coherence and smoothness properties of
the image. The goal is to determine the most likely set of labels, that accurately
represent the underlying structure and boundaries within the image.
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4.3.2 CRF Structure and Advantages

While MRF offers advantages, it also comes with significant limitations, particularly
when dealing with a large dataset or complex dependencies among features. In such
cases, constructing a probability distribution over all variables with a large number
of components in X and Y becomes challenging. Additionally, modelling dependen-
cies between inputs can lead to complex and intractable models, while ignoring these
dependencies can result in performance degradation.
A promising solution to address this challenge is the use of Conditional Random Field
(CRF) [Lafferty et al., 2001]. CRF takes a discriminative approach, combining the
strengths of discriminative classification and graphical modelling. Specifically, CRF
models focus on the conditional distribution P (Y |X), where Y represents the mul-
tivariate outputs Y = (y1, y2, ..., yn), with each yi corresponding to the class label
assigned to a specific pixel in the context of image segmentation. On the other hand,
X = (x1, x2, ..., xn) represents a set of random variables, that denote observed evi-
dence for pixels, such as intensity or colour values. The domain of Y is a set of labels
L = {l1, ..., lC} in C classes. For a binary class segmentation, C = 2 and L = {0, 1}.
To compactly capture the dependencies between variables, CRF utilizes an associated
graphical structure G = (V,E). This undirected graph consists of nodes (or vertices)
V , which represent individual pixels in the image, and edges E, that denote pairwise

Figure 4.2: Illustration of a Conditional Random Field (CRF) Model for Pixel-wise
Image Labelling. In this diagram, each pixel is represented by yi, indicat-
ing its label, and xi, denoting its characteristic features such as colour,
intensity, or texture. The inter-pixel relationships are depicted by red
lines, illustrating the connectivity among neighbouring pixels and imply-
ing adherence to the Markov property. Blue lines illustrate the associa-
tion between each pixel and its corresponding label. This representation
is based on concepts from [Yedidia et al., 2003, Freemann, 2012].
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relationships between neighbouring pixels. These edges allow the CRF to effectively
model dependencies between adjacent labels. In Figure 4.2, a comprehensive visual
representation of the concept is shown. In the graph, the total number of nodes is
denoted as n = |V |, with each pixel associated with an observed image feature xi
and an output variable yi (segmentation label). The output variables are conditioned
on the input variable xi, following the Markov property with respect to the graph
structure: P (yi|xi, {yj : i 6= j}) = P (yi|xi, {yj : i ∼ j}). This equation says, that the
probability of yi given xi and the labels of all other nodes (excluding i) is equal to
the probability of yi given xi and the labels of its neighbouring nodes j, where j ∼ i
indicates that nodes i and j are neighbours in the graph G. Typically, neighbouring
pixels are those that are spatially close to each other, like immediate horizontal and
vertical neighbours. The definition of this neighbour system, including the choice of
adjacency or nearest neighbour relations, is crucial in determining the proximity of
the contextual constraint.
This approach offers several advantages, such as simplifying the model structure com-
pared to joint models and significantly enhancing computational efficiency. Unlike the
generative nature of MRF, CRF is a discriminative graphical model, that primarily
emphasizes the posterior distribution of observations. This enables CRF to directly
predict the unobserved variables based on the observed ones. By focusing on the
conditional distribution, CRF effectively leverages the available information to make
accurate predictions, making it well-suited for various tasks, including image segmen-
tation.

4.3.3 Parameter Estimation and Energy Minimization in CRFs

The crucial step for effectively utilizing CRFs is the estimation of model parameters
to accurately capture the underlying relationships between observed evidence and
class labels. Expectation Maximization (EM) [Bishop and Nasrabadi, 2006, Moon,
1996],a cornerstone in probabilistic model parameter estimation, is an iterative al-
gorithm used to estimate the parameters of a probabilistic model in the training
phase, when there are hidden or unobserved variables. During the Expectation step
(E-step), the algorithm estimates the posterior probabilities of the hidden variables,
given the observed data. In the Maximization step (M-step), the algorithm maxi-
mizes the expected log-likelihood of the data respect to the model parameters. By
iteratively alternating between these two steps, EM optimizes the CRF parameters,
which is important for accurate and effective CRF modelling.

After estimating the model parameters using EM or other optimization methods, the
core principle of CRFs revolves around energy minimization. The primary objective
is to establish an energy function, that determines the most likely assignment of out-
put variables (pixel labels) based on the input data. In the realm of energy-based
segmentation, this predication is mathematically formalized through the Gibbs distri-
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bution [Krähenbühl and Koltun, 2011], a framework that articulates the probability
of a label configuration in light of input data and model parameters:

P (Y |X) = 1
Z(X) exp(−E(Y |X)) (4.1)

Here, E(Y |X) represents the energy of a labelling configuration Y , given the observed
features X. This formulation indicates, that the probability of a labelling configu-
ration Y is inversely related to its Gibbs energy, which means lower energy implies
higher probability and vice versa. This energy is defined as:

E(Y |X) =
∑
c∈CG

φc(Yc|X) (4.2)

In the above equation CG is the set of cliques of the graph G = (V,E) on Y . Yc is
the set of labels for the pixels within clique c. φc is the clique potential function,
also known as the compatibility function, which measures the agreement of the la-
bel configuration Yc with the observed evidence X within the clique c. Z(X) is a
normalization factor, ensures that the probabilities sum to one. The Gibbs energy
of a labelling measures, how compatible a possible labelling of the image is with the
observed evidence and with itself.

Transitioning from clique-based formulations to a more granular perspective, CRFs
can be expounded in terms of unary and pairwise potentials, particularly germane to
image segmentation. The unary potential quantifies the likelihood of each pixel be-
longing to a certain class, informed by observed data, while the pairwise potential, or
smoothness term, fosters spatial consistency among adjacent pixels. This dichotomy
not only encapsulates the relationships between individual labels and local features,
but also between labels of neighbouring pixels, thereby embodying the spatial coher-
ence intrinsic to image data.
Accordingly, the energy function for a labelling Y , integrating both unary and pair-
wise potentials, can be succinctly expressed as [Krähenbühl and Koltun, 2011]:

E(Y |X) = α
∑
i

ϕ(xi, yi) + β
∑
ij

ψ(yi, yj) (4.3)

where α and β are some positive constant weights. ϕ(xi, yi) represents the unary
potential for pixel i, that is getting a particular label yi. This value can be com-
puted for instance from CNN and corresponding annotated label. Function ϕ pays a
penalty for disregarding the predicted label from annotation. The second term is the
pairwise potential or the smoothness term, representing the joint Gibbs distribution
on the label field and satisfying the Markov property. It encodes the neighbouring
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information between two labels of neighbouring pixels i and j and ψij computes the
difference between a pixel label from its neighbour.

4.3.4 Inference Methods in CRFs

We want to find the optimal labelling Y ∗, that maximizes the posterior probability
P (Y |X) given the observed image X. MAP [Nowozin et al., 2011] estimation can be
expressed as:

(MAP )Y ∗ = arg max
Y

P (Y |X) (4.4)

This is equivalent to finding the labelling that minimizes the Gibbs energy:

Y ∗ = arg min
Y

E(Y |X) (4.5)

where Y ∗ is the most probable pixel-level image labelling from a set of all possible
hidden variables (labels) for the observable variable X.

The aim is to find the label configuration, that minimizes the overall energy, thereby
yields the most probable segmentation. The inference process involves finding the
best label configuration Y ∗, that minimizes the energy function E(Y |X) for a given
input image X. Finding exact inference in CRFs is intractable and computationally
expensive due to the complex dependencies and the large number of possible label
configurations. Therefore, approximate inference methods are often employed, such
as Iterated Conditional Mode (ICM) [Besag, 1986], Belief Propagation (BP) [Bishop
and Nasrabadi, 2006, 393-418], mean field approximation [Tanaka, 1999], to efficiently
estimate the most likely assignment of class labels. The goal is to assign labels to
each pixel in the image, that maximize the posterior probability P (Y |X). By com-
bining estimation model parameter technique with approximate inference methods,
the CRF model can efficiently and effectively estimate the most likely assignment of
class labels to pixels.

We propose a pixel-wise image segmentation method based on statistical classification
of Markov fields. We treat the image labels as hidden states and infer them using
different algorithms that maximize the posterior probability. We assume the same
data distribution for all models, but we vary the Markovian prior assumptions over
the label random field. We use CNN to provide the unary potentials for all three
conditional random field (CRF) models. The inference steps involve different types
of interactions or message passing operations between the pixels, such as:

• Nearest-neighbour interactions: We sum up the spatially varying horizon-
tal and vertical interactions between the pixels. This is also known as iterated
conditional modes (ICM)(section 4.5.1).
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• Belief Propagation: We propagate messages along the edges of the CRF
graph, that represent the beliefs about the label of each pixel. We compute the
marginal distributions of the label random field from these messages (section
4.5.2).

• Mean Field updates: We approximate the distribution of the label random
field by a simpler distribution, that minimizes the Kullback-Leibler divergence
[Kullback and Leibler, 1951, 79-86]. We update the parameters of this distri-
bution iteratively until convergence (section 4.5.3).

We construct the CRF graph and potential functions from the image data, and apply
them only to the image pixels that belong to the superpixels touching the predicted
road boundary. We compare the performance of all three methods for classification
and analyze the trade-off between computational efficiency and accuracy. Our method
allows for robust and accurate statistical analysis on the road segmentation task.

4.4 Proposed Method: Enhanced Superpixel-CNN with CRF
for Fine-Grained Semantic Segmentation

In our latest research, we have integrated Conditional Random Field (CRF) and
Convolutional Neural Network (CNN) methodologies into a comprehensive frame-
work tailored for fine-grained road segmentation in urban environments, showcased
in Figure 4.3. This integration builds upon the groundwork laid out in Chapter 3,
where our initial approach was introduced. In the upcoming section (4.4.1), we will
briefly revisit this foundation. Understanding this background is crucial, as our cur-
rent model, enriched with CRF techniques, is rooted in these foundational concepts.
We further refined our approach by aligning superpixel contours with road bound-
aries using CRF. This targeted enhancement significantly increases accuracy with
minimal computational overhead, as detailed in Section 4.4.2. Subsequent sections
will delve into the specific techniques applied and the results obtained, providing a
comprehensive insight into our refined road segmentation method.

4.4.1 Superpixel-based Convolutional Neural Network
In Chapter 4.4.1, we introduced a method that harmonizes the advantages of su-
perpixels with convolutional capabilities. Our method leveraged irregular superpixel
segmentation to enhance the efficiency and accuracy of convolutional neural networks
(CNNs).
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Input Data Model

Our process initiated with the segmentation of the image into coherent superpixels,
utilizing an adopted version of the SLIC algorithm [Achanta et al., ]. SLIC employs
k-means clustering in both spectral and spatial dimensions, leading to the growth
and refinement of superpixels based on spectral-spatial distances. However, the in-
herent variability introduced by the "Enforce-Connectivity" procedure in SLIC makes
the resulting superpixels unsuitable for direct CNN input. To address this, we made
strategic modifications to ensure consistency and compatibility with CNNs. For more
details you can see the section 3.3.1.
We preserved smaller regions and adjusted the segmentation to produce more consis-
tent superpixels. In cases, where superpixels had multiple segments sharing the same
label, we retained the larger one and merged the rest into the nearest superpixel. The
selection of the nearest neighbourhood was based on Euclidean distance, measured
between the centre of the sub-segment and the centre of each adjacent segment. Rec-
ognizing the necessity of a regular structure for convolution, a lattice was defined,
centred on the rectangular structure from SLIC’s initial iteration, projecting it onto
corresponding irregular superpixels from the final step.
Additionally, we crafted a 69 dimensional image descriptor for each superpixel, incor-
porating various image features such as colour, position, and Local Binary Pattern
(LBP) features. This unified data, coupled with image descriptors, formed the in-
put for the CNN, facilitating pixel-wise classification with heightened accuracy and
efficiency.

CNN Network Architecture

Our unique input data model, which benefits from the structure of superpixels and
feature descriptors, allows us to use a simpler CNN architecture. This reduces com-
putational time. The network consists of two convolutional layers, two channel-wise
feature layers, and a drop-out layer. Each layer is followed by a non-linear activation
function. The input is determined by the superpixel lattice, and the output classifies
segments as either road or un-road. Further details on the network architecture can
be found in Section 3.3.3.

4.4.2 Segmentation Refinement with CRF

Our superpixel-based convolutional network already has the capability to do the
coarse segmentation by capturing the local properties such as object shape and con-
textual information. In addition to this local information, the global context infor-
mation that captures semantic of spatial interdependencies is also required for an
accurate image labelling. However, this information may not explicitly included into
the CNNs. CNNs have their own shortcomings to directly model the interactions and
correlation between the output variables to obtain this global information, which is
important for a smooth semantic segmentation(see figure 4.4).
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Figure 4.4: The prediction result from our proposed superpixel based CNN method
from one sample of KITTI validation dataset.

To this end, Conditional Random Fields (CRF) [Lafferty et al., 2001] has been used
to impose consistency and coherency between labels. As discussed in section 4.3, they
can model global properties like object connectivity, geometric properties and spatial
relationship between objects. By combining CNN and CRF models, we are able to
fine-tune the CNN segmentation results for the task of road segmentation specially
along the road border.

4.5 Customized CRF Optimization: Model Analysis for CNN
Integration

In Computer Vision and image processing, many problems can be approached as
energy minimization tasks, effectively modelled using Conditional Random Fields
(CRFs). Particularly in image segmentation, CRFs aim to assign optimal labels to
individual pixels. The precise determination of the "best" label for each pixel is pivotal
and directly influences the definition of the energy function.
Building on our exploration of CRF fundamentals in the previous section, this chapter
introduces our tailored adaptations of key inference methods: ICM, LBP, and Mean
Field. These versions, enhanced by integrating the unary component from our CNN
results, optimize energy minimization and enhance semantic segmentation. Following
rigorous testing, the most effective technique will be selected from these customized
approaches. Designed for both standard CPUs and resource-constrained GPUs, these
CRF enhancements signify a notable advancement in image segmentation accuracy.
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4.5.1 Iterated Conditional Modes (ICM)
Iterated Conditional Modes (ICM) [Besag, 1986] is an energy optimization method
for MRF. It is an iterative algorithm, that employs a deterministic greedy strategy to
find a local minimum by minimizing an energy function in equation 4.5. It employs
knowledge of a neighbourhood system for optimal solution inference. It is initiated
by an estimation of P (Y |X) or a random selection and smooths out the initial seg-
mentation by assigning the new label to each pixel so that it has the minimum energy
given the neighbourhood relations. This process is repeated until convergence. The
main steps of ICM can be written as follows:

1. Initialize the label configuration Y (0) = (y(0)
1 , y

(0)
2 , . . . , y

(0)
n ), where Y (t) is the

label configuration for all pixels in the image at iteration t, n represents the
number of pixels in the image, and each y(0)

i is the initial label for the ith pixel.
This initialization can be based on an estimation from P (Y |X) or a random
selection. Define the convergence criteria, including the maximum number of it-
erations (MaxItr), the energy threshold (T ), and the minimum change in energy
(∆E) required to continue between iterations.

2. For each iteration t and each pixel i, compute the potential energy change ∆E(t)
i

for assigning any possible label l from the label set L. Calculate this energy
change as:

∆E(t)
i (l) = E(y(t)

i = l|X)− E(y(t−1)
i |X)

Here, E(yi = l|X) is the energy associated with assigning the new label l to
pixel i at iteration t represents the energy of the current label configuration,
E(y(t−1)

i |X) represents the energy of pixel i from the previous iteration t− 1.

3. Update the label of pixel i to the one, that minimizes the energy,

y
(t)
i = arg min

l
∆E(t)

i (l)

This minimization leads to a lower energy state, i.e., minl ∆E
(t)
i (l) < 0. If no

label for any pixel leads to a lower energy state, conclude that a local minimum
has been reached and terminate the algorithm.

4. Check for termination criteria. If the current iteration t reaches MaxItr, or
if ∆E = |E(t) − E(t−1)| < T , where E(t) is the total energy of the system
at iteration t, and T is a small positive threshold value, stop the algorithm.
Otherwise, increment t by 1 and repeat from step 2.

Although, ICM is an efficient method, which can be quickly completed after a few
iterations, this method cannot guarantee a globally optimal solution, due to two main
reasons: a) Label initialization and b) Local convergence. In comparison with other
energy minimization methods such as Loopy Belief Propagation(LBP) [Murphy et al.,
1999], ICM is greatly affected by the label initialization [Szeliski et al., 2006]. In case
of a bad initialization, the error will spread out after iterations, whereas with a good
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initialization, the result can be surprisingly satisfying. High-dimensional spaces with
non-convex energies, such as pixel-wise segmentation in vision domain, are highly
sensitive to the initial estimation. Therefore, choosing an appropriate initialization
is really important in this domain. Moreover, due to their large number of local
minima, ICM may result in a solution that is far from global optimum, which is not
acceptable.
In the past, the initialization for ICM typically relied on the maximum likelihood
method, yielding less promising classification accuracy. However, a notable enhance-
ment emerged when ICM was initialized using Convolutional Neural Network (CNN)
outputs. Within the ICM method, labels are assigned to pixels using an energy min-
imization approach, aiming to optimize the segmentation quality and accuracy. This
method has become a pivotal aspect of our redefined ICM approach.

Algorithm (1) outlines the steps of our proposed ICM implementation. To estimate
precise variance values for pixel intensity levels, we applied a Gaussian Mixture Model
(GMM) [Williams and Rasmussen, 1996] tailored for our application. In the realm
of mixture models, a latent variable is employed to denote a specific mixture com-
ponent selected from a discrete set of K components. In our customized GMM,
we integrated two distinct components, each corresponding to one of our classes, to
model the pixel intensity distributions of road and non-road classes. Within our op-
timization framework, we introduced an auxiliary vector k̄ = (k1, ..., ki, ..., kn), where
ki ∈ {1, ...,K} assigns a unique GMM component to each pixel. This assignment is
based on whether the pixel is associated with the road (yi = 1) or non-road (yi = 0)
class. Each component within a GMM is characterized by three fundamental pa-
rameters, the mean RGB value (µ), the covariance matrix (Σ), and the weighting
coefficient (π) that enables their mixing. Through adjustment of the weighting coeffi-
cients, the model proficiently analyses pixel intensity distributions, facilitating precise
classification into the individual classes. The energy function presented in equation
4.3 can be reformulated as follows [Rother et al., 2004]:

E′(Y, k̄, θ̄, X) = α
∑
i

ϕ′(xi, yi, ki, θ̄) + β
∑
ij

ψ′(yi, yj) (4.6)

In this equation, Y represents the set of labels for each pixel. X represents the
features of each pixel. θ̄ represents the parameters of the GMM component, where
θ̄ = {π(y, k), µ(y, k),Σ(y, k)}, y ∈ {0, 1}, and k ∈ {1, . . . ,K}. α and β are penalize
factors.

In GMMs, the goal is often to maximize the likelihood of the observed data given
the model parameters, or equivalently, to minimize the negative log-likelihood. This
approach transforms the product of probabilities into a sum of log probabilities, sim-
plifying the computation, especially for optimization algorithms. Equation 4.7 likely
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Adaptive ICM (X,Y, T,MaxItr)

Input : pixels contained in superpixels surrounding the road border (X),
corresponding labels from CNN (Y ), Potential threshold (T ),
maximum number of iterations (MaxItr)

Output: smooth road segmentation

1) Initialize Mixture Models parameters θ̄ from CNN outputs // GMM Model

while not MaxItr do

2) Assign GMM components

k∗i = arg min
k∈{1,...,K}

ϕ′(xi, yi, k, θ̄)

3) Learn GMM parameters

θ̄∗ = arg min
θ̄

∑
i

ϕ′(xi, yi, k∗i , θ̄)

4) Calculate unary energy // Unary Energy

ϕ′(xi, yi, ki, θ̄) = − log π(yi, ki) + 1
2 log |Σ(yi, ki)|

+ 1
2(xi − µ(yi, ki))TΣ(yi, ki)−1(xi − µ(yi, ki))

5) Calculate pairwise energy // Pairwise Energy

ψ′(yi, yj) =
{
ω, if yi 6= yj

0, if yi = yj

6) Calculate the total Energy based on appropriate Penalize values

E′(Y, k̄, θ̄, X) = α
∑
i

ϕ′(xi, yi, ki, θ̄) + β
∑
ij

ψ′(yi, yj)

7) Estimate optimal labels // Total Energy

Ŷ = arg min
Y

E′(Y, k̄, θ̄, X)

end

Algorithm 1: Our Developed ICM algorithm
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represents the probability of a data point xi under the GMM, expressed as a weighted
sum of Gaussian distributions:

P (xi|θ) =
K∑
k=1

πkN (xi|µk,Σk) (4.7)

where, xi represents a data point in the dataset, ( could be a feature vector de-
rived from a pixel). N denotes the Gaussian distribution function or the probabil-
ity distribution function(PDF) and N (xi|µk,Σk) denotes the probability distribution
function(PDF) for a normal random variable (Gaussian distribution) with mean µk
and covariance Σk, and mixing coefficients πk corresponding to individual mixture
components k, so that:

K∑
k=1

πk = 1 and ∀k πk > 0 (4.8)

By definition, the probability density function (PDF) of observing a data point xi is
given by:

N (xi|µk,Σk) = 1
(2π)D/2|Σ|1/2

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)

(4.9)

To optimize the parameters of the GMM, it is common to minimize the negative
log-likelihood of data, leading to the equation:

− logP (xi|θ) = − log
(

K∑
k=1

πkN (xi|µk,Σk)
)

(4.10)

From the first part of the equation 4.6 for a single data-point xi and by applying the
negative logarithm of the likelihood, we can write:

ϕ′(xi, yi, ki, θ̄) = − log P (xi|yi, ki, θ̄)− log π(yi, ki) (4.11)

Where p(· ) is a Gaussian probability distribution, and π(· ) are mixture weighting
coefficients. Taking the negative logarithm of the likelihood aims to minimize the
negative log-likelihood, equivalent to maximizing the likelihood, ensuring numerical
stability and transforming small probabilities into manageable large positive values
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suitable for optimization algorithms.
Now, from equations 4.9 and 4.11 we obtain:

ϕ′(xi, yi, ki, θ̄) = − log π(yi, ki) + 1
2 log |Σ(yi, ki)|

+ 1
2(xi − µ(yi, ki))TΣ(yi, ki)−1(xi − µ(yi, ki)) (4.12)

In our proposed method, we initialize the Gaussian Mixture Model using the output
obtained from our proposed superpixel-based CNN method. To seamlessly integrate
this information into our energy minimization framework, we employ a K-means clus-
tering approach, dividing the data into two clusters corresponding to our classes of
interest. This initial clustering forms the basis for our Expectation Maximization
(EM) algorithm [Wu et al., 2008], consisting of two essential steps, the expectation
step and the maximization step. In the expectation step, we leverage the prior model
parameters, derived from the CNN output, along with the K-means clustered data,
to estimate the likelihood of pixel classifications. By employing the GMM formula we
discussed earlier, we iteratively refine these estimates in the maximization step. Here,
the algorithm adjusts the GMM parameters, including the means, covariances, and
mixing coefficients, to maximize the likelihood of the observed and estimated pixel
classifications. This iterative process ensures the accurate segmentation of road and
non-road pixels, making our methodology more robust and reliable for road segmen-
tation tasks.
Having laid the foundation with our unary term derived from the Gaussian Mixture
Model (GMM) using the meticulous Expectation Maximization (EM) algorithm and
CNN initialization, our attention now turns to the crucial pairwise interactions. As
depicted in Equation 4.6, the pairwise term for each pixel, denoted by ψ′, captures
subtle relationships between neighbouring pixels, enhancing the segmentation by pro-
moting local coherence. Differing from the approach in [Rother et al., 2004], we in-
troduced our smoothness energy based on the Potts model. In this formulation, label
discrepancies between neighbouring pixels are penalized, shaping the segmentation
result with spatial consistency. Mathematically our smoothness term is formulated
as follows:

ψ′(yi, yj) =
{
ω, if yi 6= yj

0, if yi = yj
(4.13)

In this formulation, ψ′(yi, yj) takes the value of ω, when neighbouring pixels yi and yj
have different labels (yi 6= yj) and 0 when they share the same label (yi = yj). This
calculation is performed for all neighbours of each pixel i. ω specifies the penalty for
adjacent pixels having differing labels, reflecting the inherent cost of label discontinu-
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ity. This penalty is subsequently scaled by β in the overall energy function, adjusting
the relative influence of local consistency on the segmentation outcome.

Figure 4.5: The two dimensional indices of the 8 neighbours pixels surrounding p =
(i, j).

In Traditional Iterated Conditional Modes (ICM) methods commonly employ 4 near-
est neighbours for label smoothing. However, we recognized the limitations of this
approach, particularly in achieving accurate optimization due to local convergence is-
sues. To enhance the optimization accuracy, we extended our neighbourhood system
to include 8 neighbouring pixels around each pixel. This expansion enables a more
comprehensive assessment of the surrounding context, ultimately leading to improved
segmentation performance. For each class, we count the number of of neighbour pix-
els, that their label do not match the label of the current pixel. These customized
pairwise terms, outlined in Figure 4.5, add a valuable layer of context-awareness to
our energy minimization process. To maintain the balance between smoothness and
accuracy, the total smooth energy is penalized with a carefully chosen threshold value
(β) , ensuring a nuanced approach to road segmentation. Now that the energy model
is fully defined, the new segmentation Ŷ can be estimated as a global minimum:

Ŷ = arg min
Y

E′(Y, k̄, θ̄, X) (4.14)

Figure 4.6 showcases select image samples from the KITTI dataset [Fritsch et al.,
2013a], where our enhanced ICM method has been applied to achieve seamless road
segmentation. Notably, our adapted ICM method yields a significantly smoother
segmentation along road border compared to our superpixel-based CNN approach,
exemplifying the enhanced capabilities of our proposed methodology. The detailed
values and implementation specifics will later be discussed in section 4.6.

4.5.2 Loopy Belief Propagation (LBP)
Performing probabilistic inference for large-scale multivariate random variables, such
as in image segmentation, presents significant computational challenges. To facilitate
an efficient method for the joint estimation of per-pixel object class labels, Loopy Be-
lief Propagation (LBP), as introduced by Murphy et al. [Murphy et al., 1999], offers
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Figure 4.6: CRF-ICM based smoothed road segmentation result from KITTI valida-
tion set. The first horizontal row shows input images. Ground-truth im-
ages are shown in the second line. Third row shows our proposed SP-CNN
segmentation results explained in chapter 3. Smoothed road segmentation
results along road boundary obtained from our proposed ICM method are
shown in fourth line. The last row presents the final labelling prediction.

an approximation of true marginals through iterative local computations of beliefs.

Loopy Belief Propagation (LBP) serves as a powerful technique for finding approxi-
mate solutions in Conditional Random Fields (CRFs), particularly effective in com-
plex graph structures with loops. The process involves iterative updates and ex-
changes of messages among the nodes of the graph. In each iteration, every node,
say node i, computes a "message", mi→j(yj), to be sent to an adjacent node, j. This
message encapsulates node i’s current estimate or "belief" about the probable label
configuration, denoted as bi(yi), which is formed from the incoming messages of all
other neighbours except j.

In general, the LBP algorithm begins with an initialization phase where all messages
are set to a constant, often 0 or 1, allowing for a uniform starting point. Messages
are then passed iteratively, ensuring that each node sends a message to its neighbour
only after all incoming messages have been received, except for the one from the
destination node itself. The exact order of message passing is flexible and can be
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4.5 Customized CRF Optimization: Model Analysis for CNN Integration

tailored to the problem’s specifics. Upon convergence, nodes formulate their beliefs
by integrating all incoming messages.
Given the inherent loops within the graph, exact inference is unattainable, which
is why LBP serves as an approximation technique. Guaranteeing convergence can
be challenging, hence certain criteria are established such as stopping after a fixed
number of iterations, or when the variation in energy becomes negligible.
The objective is to attain label assignments that maximize the joint probability
through Maximum A Posteriori (MAP) estimation as articulated by [Nowozin et al.,
2011]. Different message-passing algorithms like sum-product, max-product, and min-
sum are utilized to compute the MAP estimation of variables in graphical models
[Kschischang, 1999, Weiss and Freeman, 2001, Yedidia et al., 2003]. They each of-
fer distinct methods of message calculation, hence influencing the nature of their
approximations.

Sum-Product Message Passing: Which is also know as belief propagation, is
used for calculating marginal probabilities. The algorithm adopts a comprehensive
approach by taking the sum of the product of incoming messages and potentials,
encapsulating a broader range of possibilities. Once all messages have been passed,
each node can compute its belief. The message and belief update rules are as following:

m
(t)
i→j(yj) =

∑
yi

exp(−αϕ(xi, yi)) exp(−βψ(yi, yj))
∏

k∈M(i)\j
m

(t−1)
k→i (yi)


b
(t)
i (yi) = exp(−αϕ(xi, yi))

∏
k∈M(i)

m
(t)
k→i(yi)

(4.15)

Here, m(t)
i→j(yj) represents the message from node i to node j concerning label yj at

iteration t. M(i) is the set of neighbouring nodes of i excluding j, and mk→i(yi)
represents the message received by node i from its neighbour k. The unary and pair-
wise potentials within the energy function, ϕ(·) and ψ(·), respectively, contribute to
these messages as described in Equation 4.3. The potential functions ϕ and ψ have
already been characterized in terms of energy. When employing the Gibbs distribu-
tion within a probabilistic graphical model, we need to transform these energy values
into probabilities through the Boltzmann distribution. This transformation entails
exponentiating the negative energy term in the formula.

Max-Product Message Passing: Focusing on the most probable outcomes, the
max-product algorithm simplifies the problem by maximizing the product of incom-
ing messages and potentials. This strategy expedites computation but can be more
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susceptible to local optima. The message and belief update rules in the max-product
approach reformulated as follows:

m
(t)
i→j(yj) = max

yi

exp(−αϕ(xi, yi)) exp(−βψ(yi, yj))
∏

k∈M(i)\j
m

(t−1)
k→i (yi)


b
(t)
i (yi) = exp(−αϕ(xi, yi))

∏
k∈M(i)

m
(t)
k→i(yi)

(4.16)

Min-Sum Message Passing: The min-sum algorithm is a variation of the max-
product algorithm, where operations are performed in the log domain. This converts
products into sums and maximization into minimization, because we often work with
negative log-probabilities (costs or energies). In this context, the "min" part is actually
finding the minimum energy configuration, not minimum values.

m
(t)
i→j(yj) = min

yi

αϕ(xi, yi) + βψ(yi, yj) +
∑

k∈M(i)\j
m

(t−1)
k→i (yi)


b
(t)
i (yi) = αϕ(xi, yi) +

∑
j∈M(i)

m
(t)
j→i(yi)

(4.17)

The difference between the three types of message passing methods—Sum-Product,
Max-Product, and Min-Sum—lies in the way they compute messages and use them
to obtain labels. The Sum-Product algorithm provides probabilistic information
(marginal probabilities) about label assignments for each pixel, which represents the
belief in each label’s likelihood given the observed data. The Max-Product algo-
rithm, which is closely related to the Min-Sum algorithm when potentials are in the
log domain, aims to find the most probable single global label assignment (the MAP
estimate) that minimizes the energy function. The Min-Sum algorithm, which is an
efficient approximation of the Max-Product algorithm when working with log-domain
potentials, also aims at identifying a single label assignment that minimizes the en-
ergy, albeit in a more computationally efficient manner due to the additive nature
of its operations. Ultimately, the choice between sum-product and max-product (or
min-sum) algorithms is dependent on the application’s needs and the desired balance
between computational efficiency and the robustness of the inference.
After the Loopy Belief Propagation algorithm has converged, or after a fixed number
of iterations, a set of beliefs for each node will be obtained. The MAP estimates the
best label assignment for each node i by choosing the label y∗i that maximizes the
belief at that node (for sum-product or max-product) or minimizes the energy (for
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min-sum). For the sum-product and max-product algorithms, this can be formalized
as:

ŷi = arg max
yi

bi(yi) (4.18)

Here, bi(yi) is the belief for node i, computed as previously described. For the min-
sum algorithm, the label assignment would typically be represented as finding the
label that minimizes the sum of costs:

ŷi = arg min
yi

bi(yi) (4.19)

When assessing the performance of algorithms designed for probabilistic inference in
graphical models, it is crucial to analyse their computational complexities. These
complexities dictate the practicality of applying such algorithms to real-world prob-
lems like image segmentation.

The Sum-Product algorithm, which is utilized for computing marginal probabilities,
stands out as the most computationally demanding in among of three. It requires
summing over the product of messages for all label combinations, making its com-
plexity higher. This algorithm’s message passing complexity is O(V ·D ·K2 ·degree),
where V is the number of nodes, D is the dimensionality of the feature space, K
is the number of labels, and degree is the average number of neighbours per node(
eg. 4-Connectivity or 8-Connectivity). The time complexity, considering the iterative
nature of the algorithm, expands to O(V ·D ·K2 · degree · iterations).

On the other hand, the Max-Product and Min-Sum have lower computational
complexity compared to Sum-Product, because they focus on finding the maximum
or minimum value across the labels, rather than calculating a distribution. These
algorithms sidestep the computational overhead of the feature space dimensionality
D seen in Sum-Product, since they work directly on the label space and the messages
are based on the pairwise potentials between labels and the current belief about the
labels, rather than the features of the data itself. The unary potentials are considered
in the calculation of the belief, but this is often considered a pre-computation step
since it does not change between iterations. Their message passing complexity is
generally noted as O(K2 ·degree), with the time complexity following as O(K2 ·degree·
iterations). These are typically lower than that of the Sum-Product algorithm per
iteration, mainly due to not incorporating D. The node degree plays a pivotal role,
influencing computational load through the number of messages exchanged. In tasks
like road segmentation, higher degrees can improve accuracy but also demand more
computational resources. Execution times for these algorithms can differ widely in
practice, influenced by the graph’s architecture and the efficiency of the algorithm’s
implementation.
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Adaptive LBP (X,Y, T,MaxItr, α, β, θ̄);

Input : Pixel features (X), initial labels from CNN (Y ), convergence
tolerance (T ), maximum number of iterations (MaxItr), parameters
of GMM (θ̄), penalize factors (α, β)

Output: Approximate MAP labeling

1) Initialize GMM parameters θ̄ with CNN outputs ; // GMM Model

Initialization

2) Calculate unary potentials using GMM (See Algorithm 1); // Unary Energy

3) Initialize messages for all variables to zero; // Message Initialization

while not converged and iteration count ≤ MaxItr do
4) Update Messages using Min-Sum; // Message Update

mi→j(yj) = min
yi∈all labels

[
α · ϕ′(xi, yi, ki, θ̄)+

β · ψ′′(yi, yj)+∑
k∈neighbors of i except j

mk→i(yi)
]

5) Calculate Belief for each label; // Belief Computation

bi(yi) = αϕ′(xi, yi, ki, θ̄) +
∑

z∈neighbors of i
mz→i(yi)

6) Check for convergence based on change in messages and T ;

7) Update MAP assignment ; // MAP Assignment and Energy Calculation

ŷi = arg min
yi

bi(yi)

end

Algorithm 2: Our proposed Enhanced LBP for Road Segmentation using Min-
Sum Message Passing with GMM
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4.5 Customized CRF Optimization: Model Analysis for CNN Integration

In this research, we introduce a novel adaptation of Loopy Belief Propagation (LBP)
combined GMMs specifically tailored for semantic road segmentation. Detailed in
Algorithm (2), our method innovatively initializes and integrates GMM components
within the LBP framework, focusing particularly on areas along road borders to en-
hance computational efficiency.
Central to our approach is a unique strategy for initializing GMM parameters, lever-
aging the discriminative capabilities of a previously developed SP-CNN method. This
ensures, that the GMM parameters are semantically meaningful and resulting in sig-
nificantly enhanced unary potentials within the CRF. This targeted initialization,
applied specifically to superpixels adjacent to road borders, allows for more efficient
processing compared to traditional methods that operate on entire images.
To optimize our model further, we chose the min-sum method for message passing
within our CRF model, aiming to minimize the energy function as described in equa-
tion 4.6. Our in-depth computational complexity analysis which is discussed earlier,
revealed that both the Min-Sum and Max-Product methods, with complexities of
O(K2 · degree · iterations), are more efficient than the Sum-Product algorithm. Al-
though our experiments employed both Min-Sum and Max-Product methods with
nearly identical results in accuracy and computational time, we present here the
Min-Sum method.
The model initiates with messages set to a default value of zero. Similar to our adap-
tive ICM method, as discussed in section 4.5.1, we implement the Potts model with
minor modifications. The pairwise potential reformulated as:

ψ′′(yi, yj) =
{
ω, if yi 6= yj

ε, if yi = yj
(4.20)

Here, ψ′′(yi, yj) assumes the value of ω, when neighbouring pixels yi and yj have
differing labels. In contrast to ICM, we deliberately incorporate the ε value, when
yi = yj . This inclusion is intended to mitigate numerical issues, such as division by
zero or logarithm of zero, which are common in algorithms like Min-Sum due to very
small probability values that could lead to numerical instability. By establishing ε
as a lower bound for these probabilities, we maintain numerical stability by ensuring
that the values aids in the convergence of the algorithm by preventing extreme prob-
ability values.
In the context of ICM, the primary focus is on local updates and immediate energy
reduction. This approach often necessitates considering the labels of neighbouring
nodes in a greedy manner. However, ICM does not explicitly require considering cases
where neighbouring nodes share the same label, as its primary concern is whether a
change in a single node’s label reduces the total energy.
In contrast, LBP’s message-passing mechanism inherently accounts for both scenar-
ios: when neighbouring nodes have identical or different labels. The introduction of
the ε value in this setting has a direct impact on the probabilities involved, adjusting
the penalties or rewards for label consistency or inconsistency, thereby influencing
the overall labelling decisions.
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The LBP is inherently iterative, continuing until minimal energy change is observed
or a predefined number of iterations is reached. Our message-passing sequence was
selected to be right, left, up, down, any sequence considering 4-connectivity neigh-
bourhood to keep the computational efficiency close to our adaptive ICM method.
This choice of connectivity effectively balances computational load, while maintain-
ing segmentation accuracy. Details on hyper-parameter settings will be discussed in
Section 4.6.
Empirical results from applying our hybrid method to the KITTI dataset [Fritsch
et al., 2013a] have been promising. As Figure 4.7 demonstrates, our approach not
only adeptly captures the interplay between global and local pixel interactions, but
also enhances road segmentation accuracy, particularly along road borders.

Figure 4.7: CRF-LBP based smoothed road segmentation result from KITTI valida-
tion set. The first horizontal row shows input images. Ground-truth im-
ages are shown in the second line. Third row shows our proposed SP-CNN
segmentation results explained in chapter 3. Smoothed road segmenta-
tion results along road boundary obtained from our proposed method are
shown in fourth line. The last row presents the final labelling prediction.

4.5.3 DenseCRF with Mean-Field Approximation

In our research, we employed another specialized inference method to achieve effective
and smooth road segmentation. This method utilizes a fully connected Conditional
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Random Field (CRF), as detailed in [Krähenbühl and Koltun, 2011]. In this model,
every pixel in an image is considered to be connected to every other pixel, forming a
fully connected network. The key to this model’s efficiency lies in its use of "pairwise
edge potentials", which describe the relationship or dependency between each pair of
connected pixels. Uniquely, these potentials in the model are formulated as Gaussian
linear combinations. To manage the complexity inherent in this fully connected net-
work, the approach incorporates the concept of ’mean-field’ approximation. Rather
than computing the direct influence of every other pixel, which is computationally
intensive, the mean-field approximation assumes that each pixel is influenced by a
collective, average effect of the entire image. This theoretical construct significantly
reduces the computational burden, making it feasible to analyse and predict the labels
in images.
Contrary to the approach in the referenced paper where unary potentials are obtained
from TextonBoost, our method utilizes class conditional probability maps generated
from the softmax layer of our specifically designed SP-CNN model. These probability
maps are integrated into the framework of the fully-connected CRF as described in
[Krähenbühl and Koltun, 2011], with the aim of improving road segmentation out-
comes. This novel application harnesses the sophisticated output of our SP-CNN
model to guide the final CRF pixel-wise labelling, with a particular focus on the
challenging road border areas. By integrating the probability class maps, we ensured
a robust and nuanced starting point for the CRF segmentation process, effectively
leveraging deep learning insights for initial pixel classification. In addition, our pre-
processed initialization is particularly advantageous, as it brings the mean-field ap-
proximation closer to optimal solutions at the outset, reducing the iterative burden
and enhancing the overall convergence speed.
Our method aligns with the established pairwise potentials and Gaussian kernel for-
mulation as in [Krähenbühl and Koltun, 2011] (equation 4.21):

ψi,j = ω1 exp(−‖Pi − Pj‖
2

2σ2
α

− ‖Ii − Ij‖
2

2σ2
β

) + ω2 exp(−‖Pi − Pj‖
2

2σ2
γ

) (4.21)

Here, two Gaussian kernels are employed to define the pairwise potentials, the ap-
pearance kernel and the smoothness kernel. The appearance kernel is designed to
assess the colour similarity between adjacent pixels, factoring in both their spatial
positions (Pi and Pj) and colour intensities (Ii and Ij). This kernel’s primary role
is to encourage pixels with similar colours and proximities to be classified with the
same label. In contrast, the smoothness kernel focuses exclusively on the spatial po-
sitioning of pixels. Its purpose is to promote label consistency among spatially close
pixels, effectively reducing the presence of small, isolated regions in the segmentation
output. The extent of these kernels’ influence is finely tuned by the parameters σα
and σβ, which control the degrees of colour and spatial nearness, and σγ , which sets
the threshold for defining the size of small isolated areas. The equation is balanced
by linear combination weights ω.
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Furthermore, the algorithm leverages the mean-field approximation and a message
passing framework within a fully-connected graph to efficiently approximate the la-
tent variables that minimize the Gibbs energy for labelling. As demonstrated in
Figure 4.8, the application of this sophisticated CRF method on selected images from
the KITTI dataset results in notably smoother road segmentation boundaries.

Figure 4.8: CRF-Meanfield based smoothed road segmentation result from KITTI
validation set. The first horizontal row shows input images. Ground-
truth images are shown in the second line. Third row shows our proposed
SP-CNN segmentation results explained in chapter 3. Smoothed road
segmentation results along road boundary obtained from our proposed
method are shown in fourth line. The last row presents the final labelling
prediction.

This approach simplifies the complexity of traditional loopy belief propagation (LBP)
message passing from quadratic to linear, enhancing the processing of long-range de-
pendencies and the ability to delineate fine edge details.The mean-field algorithm
allows to approximate the maximum posterior efficiently from a billion edges of fully
connected CRF [Krähenbühl and Koltun, 2011].
A pivotal aspect of this method lies in its ability to simplify the computational com-
plexity of message passing, contrasting starkly with traditional loopy belief propaga-
tion (LBP). In standard LBP, the message-passing complexity is quadratic (O(n2))
due to the requirement for each node in a fully connected graph to exchange mes-
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4.6 Evaluation and Discussion

sages with every other node. This quadratic complexity arises from the fact that for a
graph with n nodes, each node must communicate and update its state based on the
states of n− 1 other nodes, leading to an extensive number of of n× (n− 1) pairwise
interactions.
Conversely, the DenseCRF model utilizes the mean-field approximation, where the
update of each node’s belief is influenced by an efficiently computed global aggregation
of effects from all other nodes in the graph. This is achieved through the application
of Gaussian filtering, which aggregates these influences in a way that scales linearly
with the number of nodes. As a result, instead of each node processing interactions
individually with every other node, the mean-field approximation allows the update
for each node to be computed in linear time (O(n)), relative to the number of nodes.
Such an optimization significantly enhances the algorithm’s capability in handling
long-range dependencies and in delineating fine edge details, crucial for high-fidelity
image segmentation tasks [Krähenbühl and Koltun, 2011].

4.6 Evaluation and Discussion
The entirety of our experiments was executed on an Intel(R) Core(TM) i7-4790K
CPU at 4GHz, providing a robust computational foundation to support our analyses.
In this chapter, we further evaluate our method using the publicly available KITTI
dataset (referenced in Chapter 3.4.1), renowned for its urban scenario images. The
dataset encompasses 502 8-bit RGB images, categorized into training, validation, and
test sets, each annotated for three distinct semantic classes: urban markings (UM),
multiple urban markings (UMM), and unmarked urban streets (UU). Specifically, the
training set includes 289 images, while the test set comprises 290 images. These im-
ages vary in dimensions, primarily within the width range of [1226, 1238, 1241, 1242]
and height range of [370, 374, 375, 376]. For validation purposes, 20% of the training
set images, ensuring diversity across categories and sequences, were selected. To en-
sure continuity with the methodologies outlined in our prior research (see Chapter
3), we diligently maintained the same experimental conditions and parameter spec-
ifications. This included the deployment of SLIC parameters set to Nsp = 400 and
mslic = 35, resulting in 396 superpixels per image. These superpixels were then or-
ganized into an 11× 36 lattice, which was subsequently utilized as the input for our
CNN model.
As elucidated in 3.5, our evaluation within the superpixel framework is predicated
on establishing ground truth labels according to the majority pixel label within each
superpixel. In chapter 3, Superpixels where the dominant label does not constitute
at least an 80% majority are designated with an unlabelled status, thereby creating
a three-class system, road, non-road, and unlabelled. However, for pixel-level analy-
sis on the validation set, superpixels marked as unlabelled were combined with the
non-road class to form a singular negative class, facilitating a binary classification
evaluation scheme in line with the KITTI road benchmark’s two-class evaluation sys-
tem. In contrast to the ternary system employed in the training and validation phases
of the previous chapter, this chapter adopts a binary classification approach from the
start, for all datasets. This simplification enhances our method’s ability to distinguish
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between ’road’ and ’non-road’ categories more effectively. The impact of this adjust-
ment is evident in the segmentation discrepancies highlighted in figure 4.9. Areas that
were previously categorized as ’unlabelled’ superpixels have a significant influence on
our predictive pixel-based segmentation outcomes, often leading to false positives or
negatives in pixel classification. The shift from a ternary to a binary classifier has
notably mitigated these inaccuracies, thereby refining our prediction accuracy.

4.6.1 Evaluation on Image Perspective

In current work, our primary objective is to enhance the road segmentation results
obtained from our previous work. The evaluation was conducted both in the image
perspective and in the bird’s-eye-view projection provided by the KITTI dataset. Due
to the unavailability of the ground truth for the KITTI dataset’s test data (as noted
in [Fritsch et al., 2013a]), we utilized the validation set to enable a comprehensive
evaluation of our methods from an image perspective. Initially, we rigorously assessed
the results yielded by each of the three proposed CRF optimization techniques, ICM,
LBP, and dense CRF with mean-field method, on this validation set. This process
involved a comparative analysis to determine which technique demonstrated the high-
est accuracy in alignment with our initial method described in the previous chapter.
Following this internal evaluation, the technique that exhibited superior performance
was then selected for further validation. This advanced step involved applying our
chosen CRF optimization method on the test set and subsequently submitting these
results to the KITTI benchmark website. This approach ensured our adherence to
the evaluation protocols established by KITTI (referenced in [Fritsch et al., 2013a]),
allowing for a direct and fair comparison with other state-of-the-art methods.

In our study, Fully connected CRF based on mean-field approximation has the best
performance. The weight of the appearance kernel in Dense CRF method was set at
ω1 = 0.1, and the kernel widths were determined as σα = 60 and σβ = 10. Addi-
tionally, we assigned the parameters ω2 = 1 and σγ = 3. In the Iterated Conditional
Mode (ICM) approach, which exhibited a marginally lower accuracy, we rigorously
tested various values for beta, ranging from -1 to 20, maintaining ω = 1. Optimal
performance, as validated against ground truth on the training set, was achieved with
potential weights of α = 1 and β = 20 (refer to Equation 4.6). In contrast, Loopy
Belief Propagation underperformed compared to the other two methods. The best re-
sults for this approach were obtained using potential weights of α = β = 1, ω = 0.95,
and ε = 0.05. It is noteworthy that for all three CRF methods, we consistently used
20 iterations. The results derived from each of these CRF techniques, with the afore-
mentioned parameters, are detailed in a dedicated section. One exemplary outcome,
illustrating the comparative effectiveness of all three CRF methods, is presented in
Figure 4.10.
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4.6 Evaluation and Discussion

(a) Ternary SP-CNN Classifier

(b) Binary SP-CNN Classifier

Figure 4.9: contrast between ternary and binary classification in Superpixel-Based
CNN approach as discussed in Chapter 3. Red indicates ’non-road’ pixels,
pink signifies ’road’ pixels, green represents ’unlabelled’ pixels, and white
denotes incorrectly predicted pixels.
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Figure 4.10: Smoothed road segmentation based on a) Iterated Conditional Mode,b)
Loopy Belief Propagation, c)Fully connected CRf with mean-field ap-
proximation method.

Method ACC MaxF PRE REC FPR FNR

CNN Ternary-Classifier 96.50% 90.08% 92.80% 88.07% 7.20% 2.65%

CNN Binary-Classifier 94.41% 94.28% 91.41% 97.34% 8.59% 2.60%

CRF_LBP 94.31 % 87.58 % 88.58 % 86.74 % 9.51 % 4.92%

CRF_ICM 96.90 % 87.94 % 88.02 % 93.62 % 16.95 % 0.89 %

CRF_MeanField 96.85 % 91.47 % 92.30 % 90.65 % 7.70 % 2.10 %

Table 4.1: This table presents the evaluation results on the KITTI validation set,
comparing the performance before and after the application of various CRF
techniques, including ICM, LBP, and Dense CRF based on the mean-field
approximation. Additionally, the results for the CNN Ternary-Classifier,
as discussed in Chapter 3, are based on a three-class label system, road,
un-road, and unlabelled. In contrast, the CNN Ternary-Classifier here
focuses solely on two classes, road and un-road.

Table 4.1 summarizes the average evaluation results on the validation set for all
urban categories based on the three adaptive CRFs. The accuracy obtained from
CNN part was 94.41%. The variance in evaluation values on validation sets, reported
across the two chapters (3 and 4), highlights the influence of different classification
strategies on model evaluation. In previous chapter, we employed a three-class system
(road, non-road, and unlabelled) for the CNN model, resulting in an accuracy of
96.50% and a maximum F1 (MaxF) score of 90.08%. This approach, which classified
uncertain pixels as unlabelled, offered a detailed assessment, but at the expense of a
slightly lower F-measure score due to its conservative nature, while boosting overall
accuracy. In contrast, in this chapter, a binary classification (road and non-road) was
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adopted, simplifying the evaluation. This change led to an accuracy of 94.41% and a
higher F-measure score of 94.28% , driven by a notable increase in recall (97.34%).
This suggests, that the binary system was more effective in identifying road pixels,
rather than ternary classifier. The observed results from applying CRF techniques,
specifically the CRF Mean-Field method, show a higher overall accuracy 96.85%, but
a lower F-measure score 91.47% compared to the CNN model’s performance. The
CNN Binary-Classifier has a lower precision (91.41%) but a higher recall (97.34%)
compared to the CRF_MeanField method (92.30% precision and 90.65% recall). This
suggests, that the CNN Binary-Classifier is better at identifying most of the relevant
road pixels (high recall) but at the cost of incorrectly labelling more non-road pixels
as road (lower precision). Conversely, CRF_MeanField is slightly more precise in
labelling road pixels but misses more actual road pixels (lower recall). The observed
outcome, particularly the lower precision of the CRF methods compared to the CNN
model, can potentially be explained by this smoothing process’s influence on the
superpixels at the boundaries. The reclassification during the CRF smoothing step,
intended to refine the edges, might inadvertently alter the labels of some superpixels
incorrectly. This behaviour is shown in figure 4.11.

Figure 4.11: Balancing Precision and Recall in Road Segmentation. The third-row
images showcase the CNN segmentation, achieving a high recall that
captures most of the road, despite some imprecision along the bound-
aries. The bottom-row images detail the CRF segmentation, which offers
refined boundary precision and smoother contours but at the trade-off of
reduced recall, evidenced by its omission of certain road segments that
the CNN identified.
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This phenomenon suggests, that while the CRF methods are effective in creating
visually smoother boundaries, they might also introduce errors by re-misclassifying
non-road elements as road, especially in complex boundary regions, where the distinc-
tion between road and non-road is less clear. The result is a higher overall accuracy
due to the improved consistency along borders, but at the expense of precision. Thus,
the trade-off here is between achieving smoother, more visually consistent road bound-
aries and maintaining the precision of road classification. The CRF methods excel in
the former, but face challenges in the latter.

4.6.2 Evaluation on Birds Eye Perspective

In our road segmentation study, the evaluation of the test set was conducted using
the KITTI benchmark’s birds-eye view (BEV) perspective. This method involves
projecting the images onto the ground plane based on the known camera geometry,
a standard procedure in the KITTI benchmark evaluation. The results of this eval-
uation, as showcased in Table 4.2, are systematically categorized into four distinct
road types: UM, UMM, UU, and URBAN by KITTI. These classifications, integral
to the KITTI benchmark’s assessment framework, allow for a detailed analysis of the
model’s performance across various urban road scenarios.
The evaluation results, along with illustrative figures, are provided at the end by
the KITTI benchmark website for the test set. This external validation on a diverse
set of test images is crucial for an unbiased assessment of the model’s capabilities.
In Figure 4.12, we present three samples from the test set evaluation in both image
and BEV perspectives, demonstrating the effectiveness of our model in segmenting
streets, while also highlighting areas of false detections, typically in regions where
shadows cover the street.

In the bird’s-eye view (BEV) perspective of our evaluated road segmentation images,
the areas marked in red (false negatives) and blue (false positives) appear notably
larger compared to the standard image perspective. This is a result of the perspective
warping process required to transform these images into BEV. During this transfor-
mation, objects and regions closer to the camera get stretched more significantly to
represent a top-down view. Consequently, small misclassified areas in the original
image, such as shadows or road edges, become more prominent and enlarged in BEV.
This stretching effect is essential to provide a comprehensive overhead view but can
exaggerate the size of error regions, highlighting the model’s segmentation challenges,
especially along road boundaries.
In this comparative analysis, the segmentation along road borders is markedly smoother,
with the elimination of the stair-step artifacts, that were previously observed. This
refinement is particularly evident in high-contrast areas where road surfaces meet
grass or curb edges. Our current methodology demonstrates a heightened precision
in delineating the road from adjacent non-road elements. This is especially prominent
in the third image of the set, where regions surrounding the ego-lane are densely pop-
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Benchmark MaxF AP PRE REC FPR FNR

UM_ROAD 83.22 % 72.94 % 77.11 % 90.39 % 12.23 % 9.61 %

UMM_ROAD 90.96 % 84.63 % 87.86 % 94.29 % 14.32 % 5.71 %

UU_ROAD 80.02 % 67.93 % 77.56 % 82.64 % 7.79 % 17.36 %

URBAN_ROAD 85.97 % 77.81 % 82.04 % 90.31 % 10.89 % 9.69 %

Table 4.2: This table presents the evaluation results on the KITTI test set for the
Mean-Field CRF method. The evaluation metrics used here, MaxF (Max-
imum F-Measure) and AP (Average Precision), are those prescribed by the
KITTI benchmark. MaxF represents the highest F1 score (the harmonic
mean of precision and recall) achieved across different decision thresholds,
indicating the optimal balance between precision and recall. AP measures
the average precision achieved across varying recall levels.

ulated with stones. Despite the complex texture, our algorithm accurately segments
these areas, a testament to the sophistication of the approach.
The first image highlights the challenges posed by shadows on the road surface, which
can lead to false positives or negatives in detection. Nevertheless, the transition from
road to grass and curb remains distinctly captured, showcasing an improvement in
detection under varied lighting conditions.
In the second image, we observe highly accurate road segmentation, albeit with minor
instances of false negatives. Notably, the proportion of false positives is somewhat el-
evated compared to the other two images, yet the delineation remains refined, devoid
of the stair-shaped artifacts characteristic of our previous models. This particular
artifact correction is noteworthy. The areas with a similar texture to the road, had
been erroneously classified as part of the road by the SP-CNN method due to textural
challenges—demonstrate our method’s evolution. Our initial approach struggled to
exclude such textures from the ego road due to their close resemblance to the road
surface. The introduction of the Conditional Random Field (CRF) method has been
pivotal in this context. By focusing on pairwise potentials and enforcing consistency
among neighbouring pixels, the CRF method has inadvertently led to a more gen-
erous interpretation of what constitutes the road. This approach has resulted in a
smoother, more contiguous road segmentation, albeit at the cost of increasing false
positives. These false positives manifest as an artifact of the CRF’s inclination to
homogenize the textural features, thereby integrating these regions into the road seg-
ment. This outcome underscores the nature of the CRF method in our segmentation
process. While it has enhanced the smoothness of the segmentation contours, it has
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also reintroduced previously excluded areas back into the road category due to their
textural resemblance to the road surface.

Figure 4.12: Road segmentation result from official KITTI test set in baseline and
bird eye view perspectives. Here, red denotes false negatives, blue is
false positives and green represents true positives.

In the comprehensive evaluation of road segmentation models using the KITTI bench-
mark test set, a comparison between our SP-CNN method (See Table.3.3) and the
CNN with CRF-Mean Field smoothing (See Table.4.2) reveals notable improvements
in segmentation performance. Overall, across the four categories of UM_ROAD,
UMM_ROAD, UU_ROAD, and URBAN_ROAD, the integration of CRF smooth-
ing has led to an average increase of 3.17% in the MaxF score and 4.08% in the
Average Precision (AP). These enhancements highlight the effectiveness of CRF in
refining the segmentation quality, particularly in terms of achieving a balanced preci-
sion and recall (as indicated by the MaxF score) and consistently improving precision
across varying recall levels (as reflected in the AP score).
When we focus on the UMM_ROAD category specifically, the benefits of CRF
smoothing become even more apparent. In this category, there is an improvement
of approximately 5% compared to our CNN classifier and the MaxF score rises from
85.07% to 90.96%, and the AP from 79.86% to 84.63%. This significant improvement
in both metrics suggests, that the CRF method is particularly adept at delineating
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road areas in more complex urban and multi-lane settings. The higher MaxF score
indicates a strong balance between accurately identifying road pixels (precision) and
capturing most of the actual road areas (recall). These results underscore the effi-
cacy of CRF smoothing in enhancing the model’s ability to distinguish between road
and non-road areas, especially in challenging urban environments. The ability of the
CRF-enhanced model to maintain high precision without significantly sacrificing re-
call demonstrates its potential in applications, where accurate road segmentation is
critical.
In our study, we carefully analysed the variance in accuracy levels between the birds-
eye view (BEV) projection (Table 4.2) and the image perspective evaluation (Table
4.1). This analysis revealed, that the BEV projection initially showed marginally
lower accuracy compared to the image perspective. A significant factor contributing
to this discrepancy is the inherent diversity and complexity of the test set, which
features challenging scenarios such as prevalent shadows and detailed curbstone pat-
terns on road surfaces, posing obstacles to accurate segmentation. While initially
BEV projection demonstrated weaker accuracy, primarily due to the way errors are
amplified in this perspective, our focused refinement efforts significantly improved its
performance. Errors originating from inaccurately defined superpixels along the road
borders, which in BEV tend to expand over a larger area, were particularly addressed.
By enhancing the precision of superpixel segmentation, especially at road boundaries,
we effectively mitigated the spread of these errors.

4.6.3 Run-time Analysis

This section presents a comprehensive comparative analysis of our semantic segmen-
tation approach against several state-of-the-art methods, highlighting runtime effi-
ciency. This comparative study is crucial to demonstrate the practicality and per-
formance of our approach, particularly in environments with significant hardware
constraints.
Our method effectively employs superpixels in conjunction with a streamlined CNN
network to generate coarse pixel-based segmentation. This is refined by an optimized
pixel-wise CRF technique, applied selectively to area around the road contour, achiev-
ing an ideal balance between accuracy and computational efficiency. Our approach,
optimized for CPU-based systems, contrasts with other methods dependent on high-
powered GPUs.
In Table 4.3, we delve into a detailed comparison of our semantic segmentation ap-
proach with some of the top-performing methods in the field. Notably, LODNN
[Caltagirone et al., 2017], is a high-end method operating on the NVIDIA GTX980Ti
6 GPU, showcasing exceptional accuracy and efficiency in segmentation. It stands
out with an impressive MaxF score of 96.05%, which is about 5% higher than our final
approach and achieves a rapid runtime of just 0.018 seconds, highlighting the advan-
tages of advanced GPU processing. However, this high performance comes with the
need for substantial computational resources, as indicated by its AI-Score of 16038.
This score indicates that LODNN ’s processing capabilities are approximately 11.46
times greater than that of our CPU-based system.
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While other methods like UP_CONV_POLY [Oliveira et al., 2016] and DDN [Mo-
han, 2014] also demonstrate high MaxF scores (surpassing ours by nearly 3%), they
similarly rely on powerful GPU hardware, such as the NVIDIA Titan X, to achieve
their fast processing times. These methods, although efficient and accurate, under-
score the dependence on high-end GPUs for optimal performance.
In contrast, our CPU-based approach, even without CRF integration, achieves a
MaxF of 85.07% and an AP of 79.86% with a remarkable runtime of only 0.019 sec-
onds on an Intel Core i7-4790K CPU with the lower AI-Score of 1400, indicating
significant efficiency for a less powerful system. Integrating CRF further enhances
our method’s MaxF to 90.96% and AP to 84.63%, albeit with a slightly longer run-
time of 0.21 seconds. Overall, our method demonstrates a balanced trade-off between
accuracy and runtime efficiency, making it a compelling choice for systems with lim-
ited hardware capabilities.

Method Processor MaxF AP Runtime(s) AI-Scores

LODNN NVIDIA GTX980Ti
GPU, 6GB memory

96.05 % 95.03% 0.018 16038

UP_CONV_POLY NVIDIA Titan X GPU. 95.52 % 92.86 0.083 24870

DDN NVIDIA GTX980Ti
GPU, 6GB memory

94.17 % 92.70 % 2 16038

Ours (without CRF) Intel(R) Core(TM)
i7-4790K CPU @4GHz

85.07 % 79.86 % 0.019 1400

Ours (With CRF) Intel(R) Core(TM)
i7-3770 CPU @

3.40GHz

90.96 % 84.63 % 0.21 1400

Table 4.3: Comparative Performance of SP-CNN and CRF-Refined methods on
the KITTI UMM test set, against advanced approaches. only re-
sults of published methods are reported. LODNN: [Caltagirone et al.,
2017], UP_CONV_POLY [Oliveira et al., 2016], DDN [Mohan, 2014].AI-
Scores:https://ai-benchmark.com/ranking_deeplearning.html

4.7 Conclusion
This chapter has detailed an cohesive approach for fine-grained semantic segmenta-
tion, enhancing our previous work, that synergized superpixels with convolutional
neural networks (CNN). We refined this approach to improve segmentation maps de-
rived from a superpixel-based CNN for urban scene segmentation tasks, making it
particularly suitable for applications in robotics and related embedded systems that
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4.7 Conclusion

demand real-time visual scene understanding.
A key focus of our work was to enhance segmentation accuracy, especially at critical
area such as road boundaries, while maintaining low execution times and computa-
tional demands, utilizing cost-effective resources. Our methodology merged the robust
capabilities of CNN with Conditional Random Fields (CRF), a probabilistic graphi-
cal model extensively applied in structured prediction tasks within Computer Vision,
including semantic segmentation. Initially, our superpixel-based CNN model pro-
vided dense, albeit coarse, scene labelling. We then integrated the potential derived
from the CNN into a sophisticated CRF model, aimed at refining these segmentation
outcomes. Recognizing the necessity for real-time system applicability, we embarked
on a thorough examination of three adaptive CRF techniques. This exploration was
driven by the need to find a harmonious balance between accuracy and operational
efficiency. Our analysis culminated in the selection of a particular CRF solution that
demonstrated superior performance, efficiently addressing the challenges of semantic
segmentation.
The algorithm we developed, strikes a well-balanced trade-off between accuracy and
efficiency.It is not only suited for real-time CPU-based applications, but also shows
commendable results when compared with top-performing GPU-based CNN models,
particularly in the KITTI dataset, a well-known public benchmark for semantic road
segmentation. Notably, our approach achieves these promising outcomes with signifi-
cantly lower memory and computational requirements, underscoring its viability and
effectiveness in resource-constrained environments.
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5 Enhancement of the superpixel-CNN
based road segmentation using
semi-supervised Modified-CycleGAN

In our quest for advanced semantic segmentation solutions, we previously explored
methods heavily reliant on comprehensive supervision and the incorporation of pair-
wise dependency modelling. While these approaches have their merits, they are ham-
pered by the high costs associated with acquiring extensive annotated data and their
limited adaptability to new, unseen data scenarios. Despite the utility of Conditional
Random Fields (CRFs) in improving road segmentation with manageable computa-
tional demands, we identified persistent challenges in accurately capturing complex
elements such as unpaved roads, shadows, grass, and side-walks. These challenges
arise from either the scarcity of training data or the inherent limitations of CRF
models, particularly in terms of pairwise potential.
Recognizing these challenges, we propose a refined strategy using a modified version
of the Cycle Generative Adversarial Network (CycleGAN) [Zhu et al., 2017]. Our
approach significantly improves adaptability, enabling the capture of the underlying
distribution of data beyond the fixed constraints of traditional CRF models. This
adaptability results in enhanced generalizability, making our method more robust
against variations in data, including unseen scenarios. Our strategy leverages the
principles of unpaired image-to-image translation to refine initial semantic segmen-
tation predictions, with a specific focus on street scenes crucial for automated map-
ping. Our contributions include a streamlined generative model based on CycleGAN
with reduced parameters, an innovative "RGB-L" dataset (standard RGB channels
with an additional ’L’ channel for segmentation labels), and an enhanced Cycle-
GAN objective function. Preliminary results on the KITTI benchmark demonstrate
an improvement in segmentation performance. Experimental results on the KITTI
public road segmentation benchmark demonstrate a 4-7% improvement in accuracy
over our previous superpixel-CNN approach, achieving comparable performance with
top-performing algorithms in recent un/semi-supervised semantic segmentation tasks.

This chapter presents portions of the research, that have previously been disseminated
in the studies referenced as [Zohourian and Pauli, 2022b] and [Zohourian and Pauli,
2022a].
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5.1 Introduction

Rapid and precise determination of pixel labels in semantic segmentation is crucial
for real-time systems like road detection in autonomous driving, where accurate inter-
pretation of road environments is vital for ensuring vehicle safety and operational effi-
ciency. Various methods for semantic segmentation have predominantly depended on
a) comprehensive supervision, involving extensive training images with detailed pixel-
level annotations, and b) the incorporation of pairwise dependency modelling to refine
segmentation outcomes. These methods, thoroughly explored in preceding chapters,
as highlighted in seminal works [LeCun et al., 2015, Schmidhuber, 2015, Krizhevsky
et al., 2017, Farabet et al., 2013, Long et al., 2015, Krähenbühl and Koltun, 2011].
While effective to a certain extent, these approaches face significant challenges in
terms of data acquisition costs and adaptability to new, unseen scenarios.
In our previous work, we have utilized Conditional Random Fields (CRFs) to enhance
road segmentation capabilities with manageable computational demands. However,
these traditional CRF methods encountered difficulties in accurately capturing com-
plex elements like unpaved roads, cast shadows, grass, and side-walks adjacent to road
boundaries. These challenges primarily arose from insufficient training data or inher-
ent limitations within the CRF models, especially in terms of their pairwise potential
capabilities. The original CRF models struggled with capturing long-range dependen-
cies among pixels in different regions of the image [Lafferty et al., 2001, Krähenbühl
and Koltun, 2011, Murphy et al., 1999, Rother et al., 2004]. Attempts to incor-
porate hierarchical connectivity and higher-order potentials into region-based CRF
approaches led to slight improvements, but the models remained computationally
intractable and lacked sufficient accuracy [Kohli et al., 2009, Ladickỳ et al., 2009].
Fully connected CRF models addressed some of these issues, but at a significantly
higher computational cost [Krähenbühl and Koltun, 2011].
To overcome these limitations, we propose a novel approach utilizing a modified ver-
sion of the Cycle Generative Adversarial Network (CycleGAN) [Zhu et al., 2017],
which enforces object connectivity and spatial relationship dependency consistency
without being limited to a very specific class of pairwise potential. This method
demonstrates a remarkable capacity to adaptively learn and capture the underlying
distribution of data, surpassing the fixed constraints of traditional CRF models. The
adaptability of this approach significantly enhances its generalizability, making it ro-
bust against variations in data, including scenarios not encountered during training.
This approach is critical for maintaining high efficiency in real-time system integra-
tion, especially for street scenes crucial in automated mapping.
Our approach introduces a streamlined CycleGAN, optimized with a reduced param-
eter set to enhance performance and reduce computational demands. Additionally,
we have innovated by introducing a unique "RGB-L" dataset. Each image in this
dataset comprises standard RGB channels augmented with an additional ’L’ chan-
nel carrying segmentation labels derived from our SP-CNN segmentation technique.
This enriched dataset provides our network with comprehensive information, facili-
tating a more informed and accurate learning process. Furthermore, we have refined
the CycleGAN’s objective function by integrating a supplementary term that calcu-
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lates the Manhattan distance (L1) between a subset of our RGB-L images and their
corresponding targeted labels. This modification serves as a guiding mechanism for
the network’s learning process, ensuring the generation of semantically accurate im-
ages with higher fidelity. By limiting the adversarial learning procedure to the road
boundaries predicted in our recent work and utilizing a limited number of annotated
images, we have significantly boosted segmentation performance. To summarize, our
current approach makes the following pivotal contributions:

1. Modified-CycleGAN Model: Introduction of a Modified Cycle Consistency
Generative Adversarial Network, which significantly improves road segmenta-
tion results derived from our superpixel-based CNN in a semi-supervised setting.

2. "RGB-L" Dataset Innovation: Utilization of the novel "RGB-L" dataset for
advanced contextual and spatial analysis. The proposed adversarial method
enforce cycle consistency to learn the mapping between an unpaired "RGB-L"
dataset and a label domain. The full architecture is shown in Fig. 5.1.

3. Optimization for Computational Efficiency: This optimization involves
two main alterations. First, the redesigning of the CycleGAN’s residual blocks
to reduce the complexity, and second limitation of the adversarial learning pro-
cedure to previously predicted road boundaries to boost segmentation perfor-
mance.

4. Objective Function Refinement:Optimization of the CycleGAN’s objective
function with an added L1 loss component between a subset of paired images and
their corresponding targets, ensuring more precise and accurate segmentation.

The remainder of this chapter is organised as follows. In Section 5.2, we explore the
latest advancements in semantic segmentation within the deep learning domain, high-
lighting the role of adversarial learning-based approaches in this field. This section
serves to contextualize our work within the broader spectrum of current research and
technological developments. Following this, Section 5.3 offers an in-depth overview of
Generative Adversarial Networks (GANs) as a pivotal element in unsupervised ma-
chine learning. This section aims to lay the foundational and theoretical groundwork
essential for understanding the subsequent contributions detailed in this chapter. It
includes an exploration of the domain translation technique, its key components, and
an examination of various GAN architectures. In Section 5.4, we provide a detailed
description of our proposed method. This section covers the entire framework, begin-
ning with a brief explanation of our superpixel-based CNN approach, which forms the
core concept for our semantic segmentation task. We then delve into the specifics of
our modified-CycleGAN, designed to enhance the results of our segmentation efforts.
Section 5.5 is dedicated to elucidating the implementation and training aspects of our
proposed adversarial model. This section is crucial for understanding the practical
application and operational nuances of our model. Our analysis of the experimental
results, focusing on both accuracy and time-efficiency, is presented in Section 5.6.
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This section evaluates the effectiveness of our proposed method, supported by empir-
ical data and comparative analysis. The chapter concludes with Section 5.7, where
we summarize our findings.

5.2 Related Works
The effectiveness of segmentation models is often compromised by various factors such
as occlusions, changes in illumination, extensive paved areas, shadows, and the over-
lapping of objects, all of which hinder the generalization capabilities of these models.
Despite the considerable success of networks based on fully convolutional architec-
tures [Long et al., 2015, Ronneberger et al., 2015, Badrinarayanan et al., 2017] and
the use of Conditional Random Fields (CRFs) for enhanced semantic segmentation
[Chen et al., 2014, Farabet et al., 2013, Papandreou et al., 2015, Schwing and Urta-
sun, 2015, Zheng et al., 2015], their performance is highly contingent on maintaining
a consistent data distribution between training and testing datasets. However, the
real-world scenario often presents a disparity between these datasets. Moreover, most
cutting-edge methods are fully supervised and thus require a substantial amount of
labeled training data to achieve optimal performance. Although data augmentation
is a common strategy to increase the volume of training data, the disparity in data
distribution between training and testing sets can likewise lead to suboptimal results.
To mitigate this issue and enhance the adaptability of methods for better generaliza-
tion, unsupervised techniques have emerged as a powerful tool. These techniques aim
to improve the generalizability of deep learning models to new image domains with-
out relying on labeled data in the target domain [Isola et al., 2017, Zhu et al., 2017]
and without integrating specific relational dependencies or higher-order terms directly
into the model, unlike in CRF-based approaches [Zheng et al., 2015, Krähenbühl and
Koltun, 2011]. The objective is to learn the hidden distribution of data without the
need for labeled data. Generative Adversarial Networks (GANs)[Goodfellow et al.,
2020] represent a class of unsupervised learning where the goal is to generate new
samples from an unlabeled distribution. GANs consist of two networks, namely the
Generator (G) and the Discriminator (D), which are trained concurrently in an ad-
versarial manner to implicitly discover the underlying distribution of the training
examples. Various types of GANs have been proposed, including Conditional GANs
(cGANs) [Mirza and Osindero, 2014], Deep Convolutional GANs (DCGANs) [Rad-
ford et al., 2015], and Pix2pix [Isola et al., 2017]. DCGANs utilize deep convolutional
and convolutional-transpose layers in the discriminator and generator, respectively,
to learn from unlabeled image data. cGANs [Mirza and Osindero, 2014] use images as
conditional inputs, feeding them into both the generator and discriminator. Pix2pix
[Isola et al., 2017], an extension of the cGAN architecture, employs a U-Net-based
[Ronneberger et al., 2015] network as the generator and the PatchGAN [Isola et al.,
2017] architecture as the discriminator. Pix2pix has evolved with the introduction of
CycleGAN [Zhu et al., 2017], which uses a cycle consistency loss for domain transla-
tion without requiring paired data.
Recently, various GAN-based post-processing approaches have been developed to
achieve smoother road semantic segmentation results, primarily for aerial images.
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Luc [Luc et al., 2016] proposed a convolutional semantic segmentation network cou-
pled with an adversarial network to surpass the performance of traditional networks.
StreetGAN [Hartmann et al., 2017] trains on arbitrarily-sized road patches in aerial
images through a GAN network to analyze and enhance attributes in challenging
road extraction areas. A modified cycle GAN proposed in [Cho et al., 2020] aims to
improve semantic segmentation for low-light images. A Dual-Hop Generative Adver-
sarial Network (DH-GAN) [Costea et al., 2017] first segments roads and intersections
in aerial images, followed by a smoothing-based graph optimization procedure to fit
an optimal road graph. In [Zhang et al., 2019], a Multi-conditional Generative Adver-
sarial Network (McGAN) is introduced to refine road topology and generate complete
road network graphs. McGAN is designed to handle multiple conditions or factors
simultaneously, encompassing various aspects of road topology such as structure, con-
nectivity, and surrounding features, leading to more accurately refined road topology
in the generated images.

5.3 Fundamentals of Generative Adversarial Nets(GANs)

In this section, we delve into the fundamentals of Generative Adversarial Networks
(GANs), starting with an overview of their core principles and architecture. Our
exploration begins with the conceptual framework and architecture of GANs, where
we provide a detailed explanation of the components and mechanisms that define
GANs, including their discriminators, generators, and pivotal loss functions. We then
transition to examining the technical challenges of GANs, addressing common hurdles
such as Mode Collapse and Non-Convergence encountered during GAN training. The
final subsection focuses on key variants of GANs, where we discuss three significant
GAN-based models such as cGAN, Pix2pix, and CycleGAN. This comprehensive
overview aims to provide a clear understanding of GANs’ theoretical and practical
aspects, thereby establishing a solid base for a more profound understanding of the
proposed approach detailed in the following sections.

5.3.1 Conceptual Framework and Architecture of GANs

Generative Adversarial Networks (GANs) [Goodfellow et al., 2020], a unique subset of
deep neural networks, fall under the broader category of generative models. Diverg-
ing from discriminative models, which are tailored to distinguish between different
classes, GANs and other generative models are designed to learn the distribution of
input data through unsupervised learning. This characteristic allows GANs to create
new, synthetic data samples that closely mimic the original input data.
In GANs, as depicted in figure 5.1, the adversarial process involves two main com-
ponents, a generator (G) and a discriminator (D). The generator G(z; θg), a multi-
layer perceptron with learnable parameters θg, generates synthetic data G(z) from
a random input noise vector z drawn from a distribution p(z). The ’latent’ space,
represented by Z, serves as the basis for generating new data samples. The discrimi-
nator network D(y; θd), another multilayer perceptron with learnable parameters θd,
evaluates whether the given samples are real. It processes both real data samples y
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from the real data distribution pdata(y) and synthetic data G(z) from the generator,
outputting a probability estimate D(y) for real data and D(G(z)) for generated data.
For simplicity and ease of discussion, subsequent references to the generator and dis-
criminator functions will omit the explicit mention of their parametrization by θg and
θd, respectively. Thus, G(z) will refer to the output of the generator, when applied
to noise vector z, and D(y) will denote the discriminator’s output for a given data
sample y, without explicitly detailing the underlying parameters.
The adversarial relationship between G and D drives the learning in GANs. The
generator’s goal is to closely mimic real data in the domain Y to ’deceive’ the dis-
criminator, while the discriminator aims to distinguish real data in Y from synthetic
data generated from Z. This dynamic resembles a contest between counterfeiters
(generator) and detectives (discriminator).
The objective function of GANs, defining this adversarial game, is formalized in a
minimax equation, where the optimal generator G∗ and discriminator D∗ are derived
from the following optimization:

G∗, D∗ = arg min
G

max
D

V (G,D)

V (G,D) = Ey∼pdata(y)[logD(y)] + Ez∼p(z)[log(1−D(G(z)))]
(5.1)

In this equation, E represents the expectation, and V (G,D) is the value function,
that G seeks to minimize and D aims to maximize. To train G, D is held constant,
focusing only on synthetic data from G. This setting implies that G is trained to
minimize log(1 −D(G(z))), effectively tricking D into classifying the synthetic data
as real. According to Goodfellow et al. [Goodfellow et al., 2020], the GAN reaches an
equilibrium when the generator (G) creates data so realistic that the discriminator
(D) cannot tell if it is real or synthetic, ultimately assigning a probability of 0.5 to
all samples. This leads to a 50% accuracy rate, which indicates total uncertainty.

5.3.2 Technical Challenges of GANs

The two most common challenges faced by GANs during training are Mode Collapse
and Non-Convergence.
Mode collapse is a problem that can occur in GANs during training, where the gener-
ator produces limited variations of the same output, rather than producing a diverse
set of outputs. Generative models should be able to capture all modes of the target
data distribution. When the GAN fails to do this, mode collapse occurs. This occurs
when the generator learns to exploit a weakness in the discriminator and produces
samples that the discriminator is unable to distinguish from real samples. As a result,
the generator stops producing new and diverse samples, leading to a collapse of the
diversity of the generated samples. If the mode starts to collapse, the similarity of
generated images increases . It means, probably there is an image or a small sub-set
of images, that minimize loss for the generator and the generator maps each input
to that point only. mode collapse is common when the generator and discriminator
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Figure 5.1: Basic Architecture of a Generative Adversarial Network (GAN), featuring
two primary components, a Generator and a Discriminator. The Genera-
tor creates samples from a source of random noise, often referred to as the
’latent’ space, while the Discriminator evaluates these samples alongside
real data, learning to differentiate between real and fake. This itera-
tive and competitive training process underlines the adversarial nature of
GANs, essential for generating increasingly realistic images. Figure from
[Dash et al., 2021].

architectures are not well-designed or when the training dataset is not diverse enough.
Non-convergence is another problem that can occur in GANs during training, where
the generator and discriminator do not reach an equilibrium, and the training process
never reaches a steady state. This can occur for a variety of reasons, such as poor
choice of network architecture, poor hyper-parameter selection, or poor quality of the
training data. Non-convergence can also happen if the generator and discriminator
are not well-matched in terms of capacity or if the training process is not properly
regularized. This leads to unsatisfactory results, in which the generated images are
not able to imitate real images and by spending more time on training, the model
does not improve.
In addressing the prevalent issues of mode collapse and non-convergence in GAN
training, several strategies can be employed for more effective training. Firstly, em-
ploying a diverse dataset is crucial to ensure a wide range of training samples, which
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helps in avoiding over-fitting to specific patterns. Secondly, the selection of an ap-
propriate architectural design for the neural network is key, as it must align with the
learning objectives and complexities of the model. Thirdly, integrating robust regu-
larization techniques is important to stabilize the training process. Lastly, using an
effective loss function can significantly guide and improve the model’s learning tra-
jectory towards successful convergence. These combined strategies are instrumental
in enhancing the overall efficacy of GAN training.
This thesis directly confronts these challenges in two key subsections. The Data
Preparation subsection (5.5.1) outlines our approach to data input augmentation, en-
hancing the diversity and complexity of training data, which is crucial for preventing
over-fitting and mode collapse. Additionally, the Model Analysis subsection (5.6.1)
delves into the performance and stability of the model, providing insights that are key
to ensuring effective convergence. These sections collectively underscore the strategic
measures taken to mitigate common challenges in GAN training.

5.3.3 Types of Generative Adversarial Networks
Since its inception in 2014 by Ian Goodfellow et al. [Goodfellow et al., 2020], the orig-
inal GAN architecture has evolved considerably. What began as a relatively basic
framework has been extensively modified and refined, adapting to a myriad of tasks
and applications. This progression underscores GANs’ remarkable flexibility and
their growing significance in deep learning. Numerous GAN variants have emerged,
each tailored to particular data types, tasks, or to surmount specific training hurdles.
This section delves into some of these variants, especially those most pertinent to our
proposed methodology.

cGAN

In traditional GANs, reaching the global optimum often proves difficult, as the dis-
criminator typically excels at distinguishing between real and synthetic images, out-
performing the generator’s performance. Additionally, the primary goal in these
GANs is usually to trick the discriminator, rather than to ensure the generated data
meets specific domain requirements or characteristics. This focus might not suit
certain applications, like autonomous driving, where the generator’s role is to cre-
ate highly accurate, domain-specific imagery for simulating varied driving conditions,
including diverse road environments or changes in weather and lighting. Here, the
emphasis shifts from deception to the precision and relevance of the generated con-
tent, marking a significant deviation from the conventional GAN framework.
Conditional Generative Adversarial Network (cGAN), an extension of GANs, ad-
dresses some inherent limitations in the basic GAN framework. cGANs condition
both the generator G(z|x; θg) and discriminator D(y|x; θd) on additional information
x, such as class labels or other modalities, which correlates with the training examples.
This method directs the generated data G(z|x) more precisely towards the intended
domain. The discriminator D(y|x), in turn, evaluates the authenticity of the data
y, taking into account the same conditional information x, which allows for a more
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Figure 5.2: Illustration of the training procedure of a cGAN model. Adapted from
[Mirza and Osindero, 2014] and [Mathwork.com].

nuanced assessment of the generated data’s relevance to the desired domain. Figure
5.2 illustrates the architecture of a basic conditional adversarial network, showcasing
how it integrates additional conditional elements into its structure. The objective
function of cGAN is defined as:

G∗, D∗ = arg min
G

max
D

V (G,D)

V (G,D) = Ey∼pdata(y)[logD(y|x)] + Ez∼p(z)[log(1−D(G(z|x)))]
(5.2)

In cGAN, the generator G and discriminator D not only learn to create and evaluate
data based on the latent space z and the real data distribution pdata(y), but also
take into account the conditional data x. This integration results in producing more
targeted and domain-specific outputs, shifting the focus from merely deceiving the
discriminator to generating data that adheres to specific criteria or domains.
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Figure 5.3: Architecture of the Pix2Pix model (Source: [Isola et al., 2017]). This
model demonstrates a conditional GAN, that is specifically trained to
convert edge into photorealistic images. The discriminator, D, is trained
to distinguish between pairs of fake images generated by the generator and
real edge-photo pairs. Simultaneously, the generator, G, aims to produce
images that are realistic enough to mislead the discriminator. Notably,
both G and D have access to the input edge maps during the training
process.

Pix2Pix

GANs conditioned on an input image can be used for image-to-image translation.
Image-to-image translation problems often map an image to a different image. These
networks can be trained supervised [Isola et al., 2017], semi-supervised [Gan et al.,
2017], or unsupervised [Zhu et al., 2017].
Pix2Pix, a specific form of a conditional Generative Adversarial Network (cGAN), is
designed for a supervised image-to-image translation task. In Pix2Pix, the generator
G transforms a conditional input image x into an output image G(x), which aims
to closely resemble the target image y in the training dataset. Figure 5.3 shows the
Pix2Pix model architecture. Instead of mapping a random noise vector to an image,
the Generator in Pix2Pix maps an image to another representation of the same image.
The discriminator D in Pix2Pix evaluates the authenticity of the generated images.
It examines pairs of images, where one pair consists of the real combination x and y,
and the other pair comprises the conditional input x and the generated image G(x).
The discriminator’s role is to distinguish between these real and generated pairs.
The objective function of Pix2Pix combines the cGAN loss with an L1 loss. The
cGAN loss ensures that the generated images are realistic, while the L1 loss maintains
a pixel-level similarity between the generatedG(x) and target y images. Drawing from
the previously defined cGAN framework in equation 5.2, the objective function for
the Pix2Pix model is articulated as follows:

LPix2Pix(G,D) = LcGAN (G,D) + λ · LL1(G) (5.3)
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Where LcGAN and LL1 are calculating as following:

LcGAN (G,D) =Ex,y∼pdata(x,y)[logD(x, y)]+
Ex∼pdata(x),z∼p(z)[log(1−D(x,G(z|x)))]

LL1(G) =Ex,y∼pdata(x,y)[||y −G(x)||1]

(5.4)

In this equation, ‖ · ‖1 represents the L1 norm, which calculates the absolute pixel-
wise difference between the generated image G(x) and the target image y. The
expectation Ex,y is over the distribution of the data. The cumulative objective for
the Pix2Pix model is thus expressed as:

G∗, D∗ = arg min
G

max
D

LcGAN (G,D) + λLL1(G) (5.5)

Here, the generator G is tasked with minimizing the combined objective function,
striving to generate images that closely match the target images in a pixel-wise sense.
Conversely, the discriminator D aims to maximize the same function, focusing on
accurately distinguishing between real and generated image pairs. The parameter λ
in the equation plays a crucial role as a balancing factor, harmonizing the adversarial
nature of the GAN loss with the pixel-level accuracy enforced by the L1 loss. This
balanced approach enables the Pix2Pix model to effectively generate high-quality,
realistic images that are closely aligned with their corresponding targets.
The generator in the Pix2Pix model utilizes the U-Net architecture, as detailed in
[Ronneberger et al., 2015]. This architecture fundamentally comprises an Encoder-
Decoder framework, enhanced with skip connections that link equivalent layers in the
Encoder to their counterparts in the Decoder. A distinctive feature of the Pix2Pix
model during the testing phase is that the generator operates similarly to how it does
during the training phase. This means that techniques like Dropout are still utilized,
and batch normalization relies on statistics from the test batch instead of those from
the training batch. The discriminator, confronts both the source(conditional) input
image (x) and the target image (y). It evaluates, whether the target image (y) is a
plausible transformation of the source image (x). This setup enables the discrimi-
nator to understand the relationship between the input and output images, thereby
obligating the generator to learn and replicate this relationship as well. The discrim-
inator examines two pairs of images, one pair consisting of the input image (x) and
the target image (y), and the other comprising the input image (x) and the generated
image (G(x)).
The Pix2Pix model introduces an innovative discriminator architecture known as
PatchGAN, specifically designed to enhance the detailing of high-frequency compo-
nents in generated images. High-frequency details pertain to the finer aspects, such
as edges and textures, which are crucial for the sharpness and realism of the image.
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On the other hand, low-frequency components, which the L1 loss effectively captures,
relate to the broader and smoother areas, like large uniform regions and background
colours. While the L1 loss ensures that the overall structure and colors align well
with the target image, it often falls short in preserving the finer details, leading to a
somewhat blurred effect in the generated images.
PatchGAN addresses this challenge by evaluating smaller, patches of size P × P
from the input image. Unlike a Fully Convolutional Network (FCN) that assesses
the entire image in one go, PatchGAN’s patch-based approach concentrates on the
high-frequency elements within these patches. Each patch is analysed independently
to determine its authenticity, focusing on the sharpness and texture details. This
process is applied in a convolutional manner across the entire image, with the final
discriminator output being an aggregation of the decisions made for each patch. This
methodology ensures that the generator is not only accountable for the general resem-
blance but also for the replication of fine details throughout the image. Consequently,
PatchGAN fosters the generation of images with more precise and realistic textures
and edges, overcoming the common issue of detail loss associated with low-frequency
focused approaches. The patch-based strategy also results in a more efficient discrim-
inator, characterized by fewer parameters and faster operation compared to those
assessing the entire image.

CycleGAN

In considering the various GAN techniques discussed earlier, it’s important to ac-
knowledge the challenges associated with preparing paired datasets, a necessity for
supervised methods like Pix2pix. This process is resource-intensive and often imprac-
tical for real-world applications, highlighting the need for alternative image-to-image
translation techniques that operate effectively without paired data. To address this,
CycleGAN [Zhu et al., 2017], offers a novel approach for Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks. CycleGAN seeks to match
the performance of Pix2pix but without requiring paired data, utilizing an adaptive
cycle constraint in its optimization process for translating between two domains.

In Pix2Pix, a supervised domain translation method, corresponding image pairs (x, y)
from domains X and Y are necessary. The generator G : X → Y in Pix2Pix trans-
lates an image x from domain X to a corresponding image y in domain Y . In this
setup, the number of samples in both domains X and Y is equal, as each image x from
domain X is paired with a corresponding image y in domain Y . Conversely, Cycle-
GAN achieves similar translations but operates under a different paradigm, handling
unpaired data. In CycleGAN, the datasets from domains X and Y do not necessarily
have an equal number of samples, denoted as N and M respectively. This reflects
the unpaired nature of the data in CycleGAN, where the model learns to translate
between domains X and Y without relying on one-to-one correspondence between
individual samples. CycleGAN introduces an additional generator F : Y → X for
reverse direction translation, facilitating a back-translation process to evaluate the
fidelity of the translation. As illustrated in Figure 5.4, CycleGAN features a symmet-
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Figure 5.4: CycleGAN model architecture. The model includes two mapping func-
tions G : X → Y and F : Y → X, along with their associated adversarial
discriminators DY and DX . DY encourages G to translate images from
domain X into outputs that are indistinguishable from domain Y , and
vice versa for DX and F . Two cycle consistency losses are introduced for
further regulation of these mappings. Cycle-consistency loss Y ensures
that x → G(x) → F (G(x)) ≈ x, and cycle-consistency loss X ensures
that y → F (y) → G(F (y)) ≈ y. Adapted from [Zhu et al., 2017] and [Ji
et al., 2020].

ric structure with two generators, G and F . Generator G maps inputs from domain
X to Y (GX→Y ), while generator F performs the reverse (FY→X). Accompanying
these generators are two discriminators, DY and DX . Discriminator DY differenti-
ates between images from domain Y and those translated by G from X (i.e., G(X)),
and DX performs a similar role for domain X and translations by F from Y (i.e.,
F (Y )). The ideal outcomes in a well-functioning CycleGAN model are DY (y) ≈ 1
and DY (G(X)) ≈ 0. These responses would indicate that DY is effectively distin-
guishing between real images from domain Y and generated images from G(X), while
G is continuously striving to generate images that are increasingly difficult for DY

to classify as fake. The model aims to reach a point where G improves to such an
extent that DY (G(X)) gradually approaches 1, signifying that the generated images
are nearly indistinguishable from real images.
In the standard architecture of CycleGAN, each generator comprises an encoder that
downsamples the input, followed by a series of layers for feature transformation and
processing. These layers, often referred to as "transformer block" within this context,
typically include residual blocks that aid in maintaining essential content during the
transformation. After processing the features, a decoder upsamples them to construct
the output image. The combination of these components allows the CycleGAN gen-
erators to learn complex mappings from the input to the output domain. On the
discriminator side, the networks are fully convolutional, classifying sections of the
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image, known as patches, as real or fake. This patch-based approach enables a more
nuanced assessment of image authenticity, differentiating the CycleGAN from other
architectures that evaluate the image in its entirety.
In order to overcome the unpaired image-to-image translation problems and to pre-
serve key attributes between the input and the translated image, CycleGAN incor-
porates two key loss components, Adversarial Loss for aligning the distribution of
generated images with the target domain, and Cycle Consistency Losses for ensuring
fidelity in the translations. The adversarial losses for each mapping function are:

Ladv(G,DY , X, Y ) =Ey∼pdata(y)[logDY (y)]+
Ex∼pdata(x)[log(1−DY (G(x)))]

(5.6a)

Ladv(F,DX , Y,X) =Ex∼pdata(x)[logDX(x)]+
Ey∼pdata(y)[log(1−DX(F (y)))]

(5.6b)

Adversarial losses alone are insufficient to ensure that the mappings G and F in
CycleGAN accurately translate an input to the desired output. To address this,
CycleGAN employs cycle consistency loss, incorporating both forward and backward
consistency terms. This loss ensures that an image can be translated from one domain
to another and then back again, closely resembling its original form. It prevents
contradictions in the mappings G and F and maintains the integrity of the image
translation process across domains. The cycle consistency loss is defined as follows:

Lcyl(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖1]+
Ey∼pdata(y)[‖G(F (y))− y‖1]

(5.7)

The overall CycleGAN objective function is:

LCycleGAN(G,F,DX , DY ) =Ladv(G,DY , X, Y )+
Ladv(F,DX , Y,X)+
λLcyl(G,F )

(5.8)

Here, λ balances the adversarial loss and the cycle-consistency loss. The training
optimizes this function:

G∗, F ∗ = arg min
G,F

max
DX ,DY

LCycleGAN(G,F,DX , DY ) (5.9)
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5.4 Proposed Method: Superpixel-CNN Enhancement with Semi-Supervised Modified-CycleGAN

In the upcoming sections, we will delve into the final contribution of this thesis,
which is inspired by the principles of image-to-image translation and the CycleGAN
framework. We propose a novel method that serves as a post-processing technique.
This method is specifically designed to enhance the initial semantic segmentation
predictions outlined in Chapter 3, with a focus on refining road segmentation results.
Additionally, it addresses and resolves certain limitations identified in our earlier work.
This approach exemplifies the practical application of advanced image translation
concepts in improving the accuracy and reliability of segmentation tasks.

5.4 Proposed Method: Superpixel-CNN Enhancement with
Semi-Supervised Modified-CycleGAN

This section outlines our comprehensive method, which integrates the Superpixel-
based Convolutional Neural Network (SP-CNN) discussed in Chapter 3, with a Semi-
Supervised Modified-CycleGAN technique to achieve advanced road segmentation in
urban scenes. The full architecture of our approach is illustrated in Figure 5.5, cap-
turing the synergy between the two modules, Module A (SP-CNN) and Module B
(Semi-Supervised Modified-CycleGAN).
Initially, Module A employs SP-CNN method for initial segmentation. The specifics
of this module, rooted in the foundational work of Chapter 3, are summarized in
section 5.4.1. It starts with the segmentation of images into superpixels, with similar
features to form a structured and efficient input for the specialized CNN. Then, the
CNN classifies these superpixels, providing an initial, coarse semantic segmentation
of the road, which serves as a foundational layer for further refinement.
Subsequently, section 5.4.2 explores Module B, which builds upon groundwork of
Module A. Here, the Semi-Supervised Modified-CycleGAN is introduced to refine the
initial segmentation results. This refinement process, inspired by our earlier work with
the CRF model as mentioned in Chapter 4, is specifically targeted at superpixels near
the predicted road boundaries. This selective approach significantly improves segmen-
tation accuracy, while maintaining computational efficiency. Module B employs the
innovative "RGB-L" dataset, an extension of standard RGB channels with additional
segmentation labels, to improve the identification and rectification of segmentation
inaccuracies. These advancements collectively address the challenges outlined in 5.1,
representing a significant leap in our segmentation capabilities. The overarching steps
of our proposed method are as follows:

Module A: SP-CNN Steps

1. Segmenting the image into superpixels using SP-CNN method, forming groups
of pixels with similar characteristics for more coherent segmentation.

2. Developing comprehensive image descriptors for each superpixel, covering a
range of image features.
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3. Projecting superpixels onto a regular grid structure, facilitating effective con-
volutional processing.

4. pixel-wise classification of superpixels, using a tailored CNN for initial road
segmentation.

Module B: Semi-Supervised Modified CycleGAN Steps

5. Generating a 4-band imagery dataset, named "RGB-L", by merging specific
areas around road boundaries from the original images with their CNN label
masks. This process enriches the segmentation data with an additional layer of
detail.

6. Segmenting each RGB-L image into overlapping local patches building a new
augmented training data set from a single region to balance segmentation ac-
curacy with computational efficiency.

7. Refining segmentation results with our uniquely modified CycleGAN, distin-
guished from the original CycleGAN by its enhanced objective function and a
newly designed generator network with a reduced parameter set. This modi-
fication specifically targets improvement of segmentation accuracy along road
boundary areas.

8. Merging the segmented local patches produced by the modified-CycleGAN to
reconstruct the image at its original scale, thereby creating the comprehensive
final segmentation output.

By structuring our approach into these two modules, we offer a detailed yet cohesive
view of our methodology, from initial segmentation to refined outputs. The subse-
quent sections will provide a deeper insight into each module, showcasing their indi-
vidual contributions and their combined impact on enhancing road segmentation task.
The proposed system obtained comparable performance among the top-performing
algorithms on the KITTI [Fritsch et al., 2013b] road benchmark and its fast inference
makes it particularly suitable for deployment in ADAS.
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(a) Architecture of module A

(b) Architecture of module B

Figure 5.5: Architecture Overview of the Proposed Method. Module A performs
initial road segmentation by dividing images into superpixels for CNN
feature analysis discussed in chapter 3. Module B then refines this seg-
mentation using a semi-supervised, adapted CycleGAN, focusing on edge
accuracy. The forward pass involves an "RGB-L" dataset (RGB images
with CNN labels), which is segmented into smaller patches to create an
expanded training set. These patches are processed by a modified Cy-
cleGAN for precise road boundary prediction, and finally reassembled to
produce a detailed and accurate road segmentation.
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5.4.1 Condensed Overview of SP-CNN (Module A)

Module A revisits the core elements of our Superpixel-based Convolutional Neural
Network (SP-CNN), introduced in Chapter 3 and revisited in 4.4.1. This module
plays a pivotal role in the initial phase of our segmentation process, focusing on
achieving efficient semantic segmentation of images, even with limited computational
resources. Utilizing a modified SLIC algorithm [Achanta et al., ], SP-CNN ensures
each superpixel is a coherent assembly of pixels with similar features, creating an op-
timal input structure for the CNN. These superpixels are then projected onto a mesh
grid, facilitating streamlined convolutional processing by the CNN. Additionally, each
superpixel is enriched with a 69-dimensional feature descriptor, which includes colour,
position, and Local Binary Patterns, significantly boosting segmentation precision.
Our CNN architecture, tailored for this superpixel input, strikes a balance between
computational efficiency and effective pixel-wise classification. It comprises a se-
quence of convolutional and fully convolutional layers, culminating in an initial road
segmentation prediction. This initial output is integral for the subsequent refinement
process in Module B. In essence, SP-CNN forms the foundation of our segmentation
methodology, providing baseline results, that are subsequently enhanced in Module
B through the Semi-Supervised Modified-CycleGAN. Figure 5.6 illustrates an exam-
ple of road segmentation prediction on a KITTI urban scene image, showcasing the
effectiveness of our SP-CNN method as developed in Chapter 3.

5.4.2 Segmentation Refinement with modified Cycle-Consistent
Adversarial Networks

While the superpixel-based convolutional network, detailed in Chapter 3, has signif-
icantly reduced computational demands and obtained a satisfactory accuracy level,
challenges in achieving a balance between precision and computational speed persist.
Complex road environments, featuring occlusions, ambiguous shadows, and extensive
paved surfaces, complicate the task of precise road segmentation. Roads that are not
well-maintained, along with areas such as grass or side-walks, are prone to misclas-
sification as part of the road boundaries, as exemplified in figure 5.7. Furthermore,
the independent prediction of label variables in CNNs fails to account for the de-
pendencies and relationships among output variables, which are crucial for achieving
seamless semantic segmentation.
Although our CRF-based refinement method, introduced in Chapter 4, addresses
some of these issues by capturing the inter-variable relationships, it does not always
perform optimally due to variations in the distribution of training and real-world
testing data. Adequate training data could mitigate this problem, yet the labour-
intensive nature of manual annotation presents a significant barrier. In addition,
CRF techniques are often constrained by their reliance on specific relational models,
which can limit their applicability across diverse scenarios.
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Figure 5.6: Sample result from the KITTI dataset using the Superpixel-CNN method.
In the final row, white areas indicate pixels incorrectly predicted by our
approach.
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Figure 5.7: Predominant Errors Along Road Boundaries. This example highlights
how similar textures between the road and its side result in incorrect
predictions, with the road boundary being misidentified as part of the
road.

To this end, we introduce a semi-supervised modified CycleGAN with a special em-
phasis on enhancing road segmentation performance. The original CycleGAN [Zhu
et al., 2017], as described in Section 5.3.3, leverages unpaired data from two distinct
domains, X and Y , to facilitate image-to-image translation. This translation pro-
cess is governed by a bidirectional mechanism, the forward pass (X to Y to X) and
the backward pass (Y to X to Y), ensuring cycle consistency. Specifically, images
from domain X (in our case, "RGB-L" images) are first translated to domain Y using
the mapping function GX→Y , and then cycled back to domain X using FY→X . The
backward pass follows a similar cycle, but starting with domain Y. This bidirectional
cycle consistency is crucial, especially in the absence of paired data, to maintain the
integrity of the translation process.
Our modification to the original CycleGAN architecture is tailored to better suit
road border segmentation. Unlike the standard CycleGAN, which typically deals
with standard RGB images, our source domain consists of 4-band imagery, combin-
ing RGB data with an additional label channel (RGB-L). This integration of label
information is aimed at enhancing the translation relevance for segmentation tasks.
Additionally, our semi-supervised model introduces a paired L1 loss function, applied
to a subset of our input domain (the RGB-L images) and their corresponding targets
in the ground truth database. This modification is intended to improve the precision
of fine segmentation, a critical aspect for accurate road delineation. Furthermore,
to increase the efficiency of our segmentation task, we have optimized the genera-
tor network in the original CycleGAN, reducing its computational demands without
compromising performance. These adaptations collectively form our ’modified’ Cy-
cleGAN. The detailed architecture of the discriminator and generator in our modified
CycleGAN, along with the adaptations made, will be elaborated in sections 5.4.2 and
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5.4.2. Subsequently, section 5.4.2 will discuss the adapted adversarial loss function,
highlighting the nuances of our semi-supervised approach.

Figure 5.8: The architecture of discriminator DY adapted from [Isola et al., 2017, Zhu
et al., 2017], consisting of five convolutional layers with a kernel size of
4 × 4. The first three layers use a stride of (2, 2), successively halve
the input’s spatial dimensions, resulting in Dim/2, Dim/4, and Dim/8
respectively, whereDim is the dimension of the input image. The final two
layers employ a stride of (1, 1), with ’same’ padding applied, to maintain
the spatial dimensions of the preceding feature maps. This results in an
output of size 32 × 32 from an input of size 256 × 256 × 1, providing a
dense prediction that classifies 70x70 patches of the input image as real
or fake.

Discriminator Network

Our CycleGAN employs two discriminators, DX and DY , with Figure 5.8 specifically
illustrating the structure of DY . The discriminators are modelled on the PatchGAN
framework [Isola et al., 2017, Zhu et al., 2017], which enhances the quality of gen-
erated images by concentrating on individual sections, or "patches", rather than the
entire image. This approach allows for a more nuanced discrimination process, where
the focus is on the texture and style of localized areas of the image.
In our network, each discriminator outputs a 32× 32 matrix, processing overlapping
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70 × 70 input image patches. This results in a detailed map, where each 32 × 32
element corresponds to a 70 × 70 receptive field in the input. The PatchGAN dis-
criminator, in this work, comprises a fully convolutional network featuring five layers.
The network reduces the spatial dimensions of the input image through the first three
layers using a stride of 2. The last two layers use a stride of 1, which, combined with
’same’ padding, preserves the dimensions of the feature maps. As a result of this
architectural strategy, the spatial resolution of the input is methodically condensed
by an overall factor of 8 through the network. The final layer outputs a single-channel
32× 32 matrix, with values between 0 and 1, indicating the likelihood of each patch
being real or fake.
Each convolutional layer is followed by a "Leaky ReLU" activation function. Unlike
the standard ReLU, Leaky ReLU allows a small, non-zero gradient, when the unit is
not active. This helps to maintain a gradient flow through the network and ensures,
that even neurons that would otherwise be inactive can continue to adapt during
training, thus improving the robustness of the network. Following the Leaky ReLU,
instance normalization is applied, normalizing the outputs of each feature map inde-
pendently. This differs from batch normalization, which normalizes across the entire
batch of data. In the context of the discriminator, it encourages the model to focus on
structural patterns rather than being influenced by contrast or lighting differences,
which can vary significantly between real and fake images. Notably, the first con-
volutional layer does not include instance normalization. This is often a deliberate
design choice since instance normalization can remove valuable information about the
overall distribution of pixel intensities when applied too early in the network. It is
important to retain some of the raw information from the initial features, as these
can be crucial for the discriminator to make accurate assessments.
For discriminator DY , the input consists of single-channel images, either real images
from domain Y (ground truth) or fake images (generated ground truth), having a size
of 256×256×1 according to our dataset. Each output element of 32×32 reflects the
authenticity of a corresponding 70× 70 patch in the input. DX , although similar in
architecture, differs in that it processes four-channel RGB-L images from our dataset,
each of size 256 × 256 × 4. The output size remains the same, ensuring a consistent
evaluation across domains. The objective function for each discriminator is designed
to measure the accuracy of the network in classifying real and fake patches. For real
images, the objective is to align the discriminator output with a matrix of ones, in-
dicating ’real’. Conversely, for synthetic images, the objective aligns with a matrix of
zeros, denoting ’fake’. Through this adversarial process, the discriminators become
adept at evaluating the veracity of localized image regions, thereby contributing to
the overall image synthesis framework.

Generator Network

The generator network in our approach, diverges significantly from the original Cycle-
GAN, which is typically characterized by a encoder-transformer-decoder architecture.
In the original CycleGAN, the encoder employs three downsampling blocks (begin-
ning with a stride-1 7×7 convolution, followed by two stride-2 3×3 convolutions, each
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coupled with instance normalization and ReLU) to decrease feature map dimensions.
The transfer stage comprises nine residual blocks, which process residual features rel-
ative to the input at each layer. The decoder, mirroring the encoder, incrementally
increases the spatial dimensions of the feature maps through three upsampling blocks,
aligning the output scale with the input.
Our modifications to the generator target the enhancement of road segmentation.
We have altered the residual blocks, as illustrated in figure 5.9. Unlike the origi-
nal design, our modified blocks consist of three convolutional layers with dimensions
1×1×128, 3×3×128, and 1×1×256, respectively. Each layer is followed by instance
normalization, with the first two also incorporating Rectified Linear Units (ReLU)
for activation. The filter count in the first two convolutional layers is halved to 128,
compared to the original CycleGAN, and the last layer has 256 filters. Additionally,
we’ve reduced the number of residual blocks from nine to six. These changes lead
to a substantial decrease in the overall model complexity, with our generator having
2, 038, 337 parameters, a significant reduction from the 11, 380, 289 parameters in the
original CycleGAN’s generator. This optimization reduces computational costs by
approximately a factor of 5, while enhancing performance.
In refining our generator, we paid particular attention to the choice of activation func-
tions within the residual blocks. In exploring different activation functions within
the generator’s residual blocks, we observed that some, particularly Leaky ReLU
(LReLU), tended to result in the network learning unintended features related to the
mesh grid boundaries used in Module A, rather than the more crucial road bound-
aries. This often resulted in a coarse, stair-shaped appearance in road boundary
predictions. To address this, we opted for Rectified Linear Units (ReLU), which
proved more effective in focusing the learning process on the finer, true road bound-
aries, rather than the superimposed mesh grid. This choice was crucial in reducing
the stair-step artifacts and achieving a segmentation that more accurately reflects the
actual road contours, as opposed to the stair-step patterns imposed by the mesh grid.

Adversarial Training

This section focuses on the distinct objective function integral to our network, which is
an adaptation of the CycleGAN framework, particularly suited for specific image-to-
image translation tasks. In the CycleGAN framework, as elaborated in section 5.3.3,
a notable innovation is the use of an objective function that combines unique loss
components, including full cycle consistency, which proves invaluable for unpaired
image-to-image translation tasks. CycleGAN utilizes two generators, G : X → Y
and F : Y → X, along with two discriminators, DY and DX . The effectiveness of
a generator is measured by its ability to produce images that are indistinguishable
from real images by the discriminator. The ideal scenario for a generator is when the
discriminator classifies its generated images as real (closer to 1).
We have redefined the total objective function of the original CycleGAN, previously
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Figure 5.9: The architecture of the residual Blocks in original CycleGAN(a) and our
Modified residual Blocks(b)

outlined in equation 5.8, to tailor it more specifically to our needs. Our reformulated
objective function is as follows:

Ltotal(G,F,DX , DY , X, Y ) =LLSadv(G,DY , X, Y )+
LLSadv(F,DX , Y,X)+
λLcyc(G,F )+
ηLp(G,F ),

(5.10)
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In this equation, Ltotal represents a composite of several critical loss components.
LLSadv is the adversarial loss based on the Least Squares GAN approach, as introduced
in [Mao et al., 2017], and is specifically adapted for our generators G and F . The
cycle consistency loss, Lcyc, ensures coherent image translation between domains,
maintaining the essential characteristics of each domain. Furthermore, we introduce
Lp, an innovative paired loss designed to exploit the benefits of a subset of paired
training data. Detailed formulations of these loss components, which contribute sig-
nificantly to the overall effectiveness of our model, will be discussed in the following
sections. The hyper-parameters λ and η act as balancing factors in this formulation,
fine-tuning the influence of the cycle consistency and paired losses, respectively, dur-
ing the training process. In this setup, X represents our unique 4-channel domain,
encompassing RGB data augmented with coarse CNN segmentation results, whereas
Y signifies the target domain, characterized by its unpaired ground truth data.

In line with the original CycleGAN methodology, our model employs the Least
Squares GAN (LSGAN) approach [Mao et al., 2017] for calculating the adversarial
loss in equation 5.6. The LSGAN-based adversarial loss (LLS

adv) functions are defined
as follows:

LLSadv(G,DY , X, Y ) =1
2Ey∼Pdata(y)[(DY (y)− 1)2]

+1
2Ex∼Pdata(x)[(DY (G(x))− 0)2]

(5.11a)

LLSadv(F,DX , Y,X) =1
2Ex∼Pdata(x)[(DX(x)− 1)2]

+1
2Ey∼Pdata(y)[(DX(F (y))− 0)2]

(5.11b)

This choice was motivated by the enhanced stability and effectiveness of training,
that LSGAN provides over traditional log-likelihood or cross-entropy loss methods
commonly used in GANs. LSGAN methodology, characterized by its focus on mini-
mizing Pearson χ2 divergence [Mao et al., 2017], offers smoother gradient flows than
the log-likelihood or cross-entropy methods. This attribute is crucial for ensuring
consistent and effective feedback to the generator, particularly against a strong dis-
criminator. This method avoids excessively penalizing outputs, that are close to the
target value, leading to more stable training dynamics and reducing the risk of mode
collapse. Such an approach is in harmony with our model’s goal of generating high-
quality, detailed images.
The respective loss functions for the discriminator DY and the generator G within
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the LSGAN framework, by using the 0-1 binary coding scheme, are formulated as
follows, with analogous calculations applied for DX and F :

LDY
=1

2Ey∼pdata(y)[(DY (y)− 1)2]+
1
2Ex∼pdata(x)[DY (G(x))2],

(5.12a)

LG =1
2Ex∼pdata(x)[(DY (G(x))− 1)2], (5.12b)

In the 0-1 binary scheme of LSGAN, the value 1 represents the label for ’real’ images,
while 0 represents ’fake’ images. The discriminator loss function, LDY

for DY and
analogously LDX

for DX , aims to assign a score of 1 to real images and 0 to fake
images produced by the generators. The generator loss function LG, specifically for
G, and its counterpart LF for F , are designed to encourage the generators to produce
images, that the corresponding discriminators will score as 1, indicating they are in-
distinguishable from real images.
In traditional GANs, the min-max optimization relies on KL divergence, which mea-
sures the deviation of one probability distribution from another. In this setup, the
discriminator maximizes the log-likelihood of correctly classifying real and generated
(fake) data, while the generator minimizes its likelihood leading to produce data in-
distinguishable from the real data. In contrast, the LSGAN approach diverges from
this paradigm by having both the generator and discriminator work towards mini-
mizing their loss functions. This method emphasizes reducing the squared differences
between the real and generated image distributions, streamlining and improving the
training process.
The adversarial loss ensures that the generated outputs conform to the appropri-
ate domain characteristics, focusing on domain alignment rather than precise input-
generated output pair matching. To address this issue, we introduce our cycle consis-
tency loss, denoted as Lcyl and defined by equation 5.7. This loss is calculated using
the Mean Absolute Error (MAE) between the reconstructed and original input data,
ensuring that domain translations uphold their integrity and fidelity.

A significant adaptation in our model is the inclusion of Lp, a paired loss, which
diverges from the LL1 loss used in the Pix2Pix model (see section 5.3.3). While LL1

in Pix2Pix is applied over the entire dataset, emphasizing pixel-level accuracy for
paired images, our Lp loss is calculated as the L1 distance between the generated
output and the target for only a specific subset of paired training data, denoted as
Q. This subset, Q = {(xqi , y

q
i )}

NQ

i=1, where NQ is the number of paired samples in
Q, allows us to leverage the precision of paired training on crucial aspects of the
model’s performance, even with a limited amount of paired data. This strategic use
of paired data, albeit in smaller quantities, allows our adapted CycleGAN model to
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5.5 Implementation Details

benefit from the accuracy of paired training, while retaining the flexibility offered by
its unpaired data training capabilities. More details will be discussed in section 5.6.

Lp(G,F ) = 1
NQ

NQ∑
i=1

[‖G(xqi )− y
q
i ‖1 + ‖F (yqi )− x

q
i ‖1] , (5.13)

In this equation, (xqi , y
q
i ) represents each paired sample within the Q subset from

domains X and Y , respectively. The Lp loss is dedicated to minimizing the L1 dis-
tance for these specific paired samples, ensuring a close correspondence between the
generated images and their paired targets within this subset.

Having established the intricate details of our modified CycleGAN architecture and
its adversarial training regimen, we now transition to the practical application of this
framework in our proposed method. For a deeper understanding of the architectural
complexities discussed in this chapter, along with detailed diagrams and explanations,
please refer to Appendix II.
The process begins with the generation of patches from the ’RGB-L’ imagery. These
patches, carefully extracted and enriched with label information, serve as the input to
our modified CycleGAN. Here, the enhanced generator and discriminator networks,
fine-tuned through our semi-supervised learning approach, work in tandem to refine
the segmentation of each patch. Subsequently, the refined patches, now possessing
improved segmentation accuracy, especially along the intricate road boundaries, are
meticulously reassembled. This reassembly process is a pivotal step, where we ensure
that the patches are merged seamlessly to reconstruct the image at its original scale.
The result is a comprehensive segmentation output, that not only retains the original
image resolution but also exhibits a significantly higher level of detail and precision
at the road edges.
In essence, our approach harnesses the power of our proposed SP-CNN architecture
to transform initial, coarse segmentations into finely detailed maps. The subsequent
sections will delve deeper into the practical implementation of this method, providing
a clearer perspective on how each step in our approach contributes to the overarching
goal of achieving highly precise and smooth road segmentation.

5.5 Implementation Details

5.5.1 Data Preparation

Our semi-supervised modified CycleGAN method was rigorously tested on the KITTI
dataset [Fritsch et al., 2013b], a staple in road segmentation research. Detailed dis-
cussions about this dataset and the corresponding evaluation metrics are presented
in Section 3.4.1. For robust evaluation across varied urban environments, the KITTI
dataset categorizes road scenes into Urban Unmarked (UU), Urban Marked (UM),
and Urban Multiple Marked Lanes (UMM), with an additional combined category
named ’Urban’ that encompasses all three. This diverse categorization ensures a com-
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prehensive evaluation of our method across different road conditions. The training
set comprises 289 images split across these categories, while the test set contains 290
images, with ground truth labels provided only for the training images. To ensure a
balanced evaluation, we divided the training set further into training and validation
subsets, respecting the diversity of urban scenarios. Importantly, the images desig-
nated for the validation subset were specifically chosen from distinct video sequences,
separate from those used in the training subset. This approach ensures that the val-
idation process is robust and representative, free from potential biases that might
arise from overlapping or similar content between the training and validation sets.
The consistency in our approach is maintained by adhering to the same data prepa-
ration parameters as outlined in our previous works (chapters 3 and 4). This includes
using SLIC parameters for superpixel creation and projecting segmented images onto
a lattice for CNN processing, ensuring comparability across our methods. For the
current approach, we concentrated on the road boundary areas in the KITTI im-
ages, by selecting those superpixels, which are touching the road border. The KITTI
images vary in size, with widths and heights ranging within {1226, 1238, 1241, 1242}
and {370, 374, 375, 376} pixels, respectively. Based on that, we generated averages
around 6 overlapping patches per image, each of size 256× 256 pixels with a stride of
s = 196. This overlap and stride were deliberately carefully chosen to balance com-
prehensive coverage and computational efficiency, while also aligning seamlessly with
the architectural demands of our Modified-CycleGAN network. This sizing ensures
compatibility with the input dimensions necessary for both the discriminator, which
employs a PatchGAN architecture with a receptive field size of 70×70 and an output
dimension of 32 × 32, and the generator in our network. By selecting these dimen-
sions, we effectively accommodate the intricacies of our discriminator and generator,
ensuring that each patch is optimally processed for detailed local analysis as well as
comprehensive coverage across the larger image segments.
Each RGB sub-image patch, combined with coarse CNN segmentation data to create
a 4-channel input, represents our source domain for the CycleGAN. Concurrently, a
similar process generated unpaired target domain patches, representing ground truth,
which is derived from the training set. To ensure our focus was on the most relevant
segments for road boundary analysis, patches containing less than 2% boundary pix-
els were excluded. Out of the 1200 samples derived from the original KITTI training
set, 1020 were allocated for training. These samples are particularly pivotal in our
semi-supervised CycleGAN approach, where the paired loss Lp is applied to a subset
of the training data, blending the advantages of both supervised and unsupervised
learning. The remaining 180 samples form our validation set, playing a vital role
in the model’s performance assessment and refinement. Furthermore, 1422 samples
were generated from the test set to augment our source domain. The effectiveness
of our approach, particularly in smoothing road boundaries, was then benchmarked
against state-of-the-art methods and our prior works, using both image perspective
and bird’s eye view analyses on the KITTI dataset.
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5.6 Evaluation and Discussion

5.5.2 Training Details

In training our modified-CycleGAN model, we employed a comprehensive strategy
that included the KITTI training set, excluding the validation subset, alongside the
KITTI test set. The deliberate addition of 1422 samples from the test set was cru-
cial in diversifying the input scenarios within the source domain. This diversification
enriches the model’s learning context significantly. By creating this disparity in data
volumes (enriching the source domain with test set samples while keeping the target
domain limited to training set data), we reinforce the semi-supervised nature of our
learning strategy. This approach effectively broadens the model’s exposure to various
road conditions.
Our training process predominantly involved unpaired mapping between these do-
mains, aligning with the fundamental principles of the CycleGAN framework. To
enhance our approach, the paired loss component (Lp), as outlined in equation 5.13,
was selectively applied only to the training set samples. This was because these
samples uniquely possessed corresponding ground truth labels. This selective use of
paired loss in conjunction with the CycleGAN’s unsupervised process optimally uti-
lizes the supervised training. This hybrid approach is instrumental in achieving a
more precise translation from the source to the target domain, thereby elevating the
segmentation accuracy and overall performance of the model.

For the optimization of our modified-CycleGAN model, we employed Mini-batch
Stochastic Gradient Descent (SGD) coupled with the Adam optimizer [Kingma and
Ba, 2014], setting the momentum parameters to β1 = 0.5 and β2 = 0.999, with an
epsilon of 1E − 08. The batch size was configured to 1, and the initial learning rate
was established at 0.0002. The balance parameters λ and η, crucial to our model’s
performance as outlined in equation(5.10), were set to 10 and 1, respectively (de-
tailed analysis in section 5.6.1). Filter weights were initialized following a Gaussian
distribution with a mean of 0.0 and a standard deviation of 0.02, and the data was
normalized within the range of [−1, 1]. All experiments were conducted using Python
on Google Colab with TensorFlow framework (version 2.0). Figure 5.10 illustrates
the output from our modified CycleGAN on some various patches.

5.6 Evaluation and Discussion

This section delves into a comprehensive analysis of our model. Initially, we examine
various model variants and their empirical outcomes to elucidate the rationale behind
our final model’s configuration. Key variations explored include a) adjustments in
network layering with respect to computational time and accuracy, b) the impact of
incorporating the paired loss in the total objective function calculation, c) the effect
of varying the number of residual blocks in the Generator network, and d) fine-tuning
the penalty values for paired and cycle consistency losses.
Subsequently, we assess the performance of our semi-supervised modified CycleGAN
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Figure 5.10: Visualization of road segmentation enhancement from a 4-band im-
agery dataset domain to unpaired ground truth domain, using modified-
CycleGAN across eight Sample Patches. ’Input’ columns display RGB
images overlaid with blue to indicate initial CNN-based coarse segmen-
tation, creating the RGB-L inputs for the source domain. ’Translated’
columns depict the unsupervised refinement results after the model trans-
lates from RGB-L to the target domain. ’Reconstructed’ columns present
the cycle consistency enforcement, depicted here without the RGB con-
text for visual clarity. ’Ground Truth’ columns are provided for reference,
representing the ideal target domain segmentation, noting that these are
not directly correlated with the ’Input’ images during the model’s unsu-
pervised learning process. To assess the model’s effectiveness, compare
the ’Translated’ column to the ’Ground Truth’, noting improvements in
segmentation accuracy and alignment with the target domain.

(the final model). This evaluation entails a comparison with the pixel grid accuracy
from the superpixel-based convolution network described in Chapter 3, our previous
work on road segmentation enhancement using the CRF technique (Chapter 4), and
the original CycleGAN [Zhu et al., 2017]. In alignment with the KITTI evaluation
protocol [Fritsch et al., 2013b], these comparisons are conducted from both an image
perspective and a bird’s eye view, utilizing the dataset provisions of KITTI.

5.6.1 Model Analysis in Different Scenarios

Our model analysis, performed on the KITTI validation set with a focus on image
perspective (referenced in section 5.5.1), was aimed at identifying the optimal config-
uration for detailed road segmentation. We investigated six different scenarios, de-
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Method Generator
network

Total Objective Function num_residual_blocks Regularisation
Parameters

V1 Fig.5.11.(a)

Ltotal(D,G,X, Y ) = LLSadv(G,DY , X, Y )+

LLSadv(F,DX , Y,X)+

λLcyl(G,F )

9 λ = 10

V2 Fig.5.11.(b)

Ltotal(D,G,X, Y ) = LLSadv(G,DY , X, Y )+

LLSadv(F,DX , Y,X)+

λLcyl(G,F )

6 λ = 10

V3 Fig.5.11.(c)

Ltotal(D,G,X, Y ) = LLSadv(G,DY , X, Y )+

LLSadv(F,DX , Y,X)+

λLcyl(G,F )

6 λ = 10

V4 Fig.5.11.(d)

Ltotal(D,G,X, Y ) = LLSadv(G,DY , X, Y )+

LLSadv(F,DX , Y,X)+

λLcyl(G,F )

6 λ = 10

V5 Fig.5.11.(d)

Ltotal(D,G,X, Y ) = LLSadv(G,DY , X, Y )+

LLSadv(F,DX , Y,X)+

λLcyl(G,F )+

ηLP (G,F )

6 λ = 10, η = 5

V6 Fig.5.11.(d)

Ltotal(D,G,X, Y ) = LLSadv(G,DY , X, Y )+

LLSadv(F,DX , Y,X)+

λLcyl(G,F )+

ηLP (G,F )

6 λ = 10, η = 1

Table 5.1: The Comparison of the different scenarios, which leads to propose our final
semi-supervised modified CycleGAN. Method V1 is the Original cycleGAN
and the method V6 is our proposed SP-CNN-Modi-CycleGAN

tailed in Table 5.1, ranging from the original CycleGAN (V1), titled SP-CNN-Orig-
CycleGAN, to our advanced model (V6), titled SP-CNN-Modi-CycleGAN.
The variations among these scenarios are categorized into four main aspects:

1. Generator Network Transfer Blocks: Detailed in the first column of Table 5.1
and illustrated in Figure 5.11, we explored different configurations of the transfer
blocks in the generator’s encoder-transfer-decoder architecture. This crucial
part of our study, aimed at finalizing the design, is also presented in Figure 5.9,
where we compare our modified blocks with the original CycleGAN’s design.
Our focus was on two primary architectures that differ from the original, with
the goal of enhancing both segmentation accuracy and processing efficiency. We
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also examined various activation functions to improve the network’s ability to
learn complex patterns.

2. Objective Function Formulation: The second column of Table 5.1 describes
each scenario’s total loss function. All methods, from V1 to V6, incorporate
the Least Square GAN (LSGAN) loss (LLSadv) for better learning stability and
faster convergence. In our enhanced versions, V5 and V6, we incorporated the
proposed paired loss (Lp) into the total objective function.

3. Residual Blocks Count: The third column of Table 5.1 specifies the number
of residual blocks in each version’s generator network. To optimize computa-
tional efficiency, we chose to use six residual blocks, in contrast to the original
CycleGAN’s nine.

4. Regularization Parameter Weighting: Displayed in the last column of the table
are the varied values for the regularization parameters λ and η within the to-
tal loss function. After thorough testing, we established λ = 10 as the most
effective value, following the recommendation in the original CycleGAN paper.
Additionally, the paired loss was fine-tuned with different values, finding the
most successful implementations in versions V5 and V6.

Our comprehensive analysis has definitively shown that incorporating Lp in versions
V5 and V6 greatly enhances our Modified-CycleGAN’s performance. This improve-
ment stems from blending supervised learning elements into the CycleGAN’s unsu-
pervised framework. By using a subset of the training data with known ground truth,
the model effectively integrates the strengths of both learning approaches, resulting
in superior segmentation results. Additionally, the unsupervised nature of CycleGAN
is particularly advantageous for the KITTI dataset’s limited size, ensuring optimal
use of available data. The strategic inclusion of Lp complements this approach, lever-
aging supervised learning to expedite the learning process. This hybrid methodology
not only addresses the dataset’s constraints but also improves learning efficiency and
segmentation accuracy.

5.6.2 Comparative Results Across Model Scenarios
The empirical findings resonate with the theoretical advantages we anticipated. In
our quest to identify the model that best balances accuracy with time efficiency, we
conducted a series of detailed experiments using image projection on the validation set
for each scenario. These experiments, summarized in Table 5.2, provide a comparative
evaluation based on the KITTI benchmark metrics. This comparison assesses both
performance efficacy and computational demand, the latter gauged by the number
of parameters (#Params) in each model’s generator network. Additionally, Figure
5.12 visually demonstrates the road segmentation results from the KITTI validation
set for each of the six scenarios.
Our analysis of the generator architectures from V3 to V6 reveals a notable improve-
ment in time-efficiency and accuracy over the V1 (original CycleGAN) and V2 models.
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5.6 Evaluation and Discussion

Figure 5.11: Comparative architecture of residual blocks in generator networks across
models. (a) Model V1: Original CycleGAN Architecture, (b) Model V2,
(c) Model V3, (d) Models V4 to V6, represented as SP-CNN-Modi-
CycleGAN, showcasing our modified approach.

The use of Leaky ReLU (LReLU) in V2 and V3, while offering a minor gradient ben-
efit for negative inputs, inadvertently led to heightened sensitivity to artifacts. This
issue, as highlighted in Figure 5.12 and discussed in section 5.4.2, manifests in the
models learning gradients along superpixel boundaries, imposed by mesh grid, rather
than the actual road boundaries.
An analysis of the evaluation results from V1 to V4 indicates, that the integration of
the Lp loss in V5 and V6 results in marginal but noteworthy improvements in road
segmentation performance. This improvement is notably pronounced when dealing
with varying levels of complexity within different image distributions, especially when
it is applied to the test set rather than the validation set. While it is true that the
improvements in accuracy (ACC) and maximum F-measure score(MaxF) in V5 and
V6 over V3 and V4 are minimal, these incremental gains are significant in the context
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of image segmentation, where even small improvements can be crucial for robust per-
formance. It leads to the small improvements in the road segmentation performance
and the robustness of the varying degrees of complexity in the underlying distribu-
tions of the different images.
The slight advantage in precision, that V6 offers over V5 and V4 justifies its selec-
tion as the final model, particularly for applications where minimizing false positives
and ensuring highly accurate road segmentation is crucial. While V5 might be ad-
vantageous in scenarios requiring the maximization of true road segment detection
(higher recall), potentially at the cost of increased false positives, V6’s superior pre-
cision makes it more suitable for contexts like autonomous driving, where precision is
paramount. This careful consideration led to the choice of V6, detonated SP-CNN-
Modi-CycleGAN, as the optimal model, prioritizing the precision and reliability of
road identification in segmented outputs, as supported by the analysis in Table 5.2
and Figure 5.12.

Method ACC MaxF PRE REC #Params

V1 95.95% 92.74% 93.41% 92.10% 11.38× 106

V2 96.02% 92.60% 95.15% 90.47% 3.85× 106

V3 97.24% 95.15% 94.90% 95.41% 2.04× 106

V4 97.29% 95.21% 95.20% 95.23% 2.04× 106

V5 97.31% 95.24% 95.28% 95.20% 2.04× 106

V6 97.33% 95.26% 95.58% 94.96% 2.04× 106

Table 5.2: The comparison of the evaluation results on the KITTI validation set by ap-
plying our different proposed scenarios. Method V1 is the Original Cycle-
GAN and the method V6 is our final proposed SP-CNN-Modi-CycleGAN
method.
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5.6 Evaluation and Discussion

Figure 5.12: Road segmentation results achieved by models V1 to V6

5.6.3 Modified CycleGAN vs. Our Prior Methods on Image Perspective

Following the selection of our V6 model for its precision and computational effi-
ciency, this section transitions to a comparative performance analysis against exist-
ing methodologies within the KITTI dataset framework. We evaluate the V6 model’s
performance, evaluated from an image perspective, with results from our foundational
SP-CNN model, our preceding CRF-based enhancement, and the original CycleGAN
architecture. The ensuing discussion, detailed in Table 5.3 and visually complemented
by Figure 5.13, aims to highlight the significant strides made by our modified Cycle-
GAN in augmenting road segmentation accuracy across diverse urban environments
encapsulated in the validation set.
The comparative analysis, using the KITTI validation set, reveals a progressive im-
provement in segmentation performance from the base SP-CNN method through to
the SP-CNN-Modi-CycleGAN approach. The modified CycleGAN method showcased
a significant improvement, enhancing accuracy by approximately 3% to an impressive
97.33%, in contrast to the baseline SP-CNN model. This advancement extends ap-
proximately 0.5% to 1.5% increase in road segmentation accuracy over the CRF-based
method and the original CycleGAN respectively. Notably, the modified CycleGAN
method outperforms all previous methods by achieving the highest MaxF score of
95.26%. This score signifies a remarkable balance between precision and recall, in-
dicating a significant enhancement in accurately identifying road segments, while
minimizing false positives and false negatives. In terms of precision, it excels with
a rate of 95.58%, surpassing all prior methods and emphasizing its ability to reduce
false positives. Simultaneously, it achieves a recall rate of 94.96%, indicating its ef-
fectiveness in capturing a substantial portion of actual road segments. Illustrated in
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Figure 5.13, these results vividly demonstrate the considerable progress achieved with
our modified approach, highlighting its efficacy in refining segmentation outcomes.

Method ACC MaxF PRE REC FPR FNR

SP-CNN 94.41% 94.28% 91.41% 97.34% 8.59% 2.60%

SP-CNN-CRF 96.85% 91.47% 92.30% 90.65% 7.70% 2.10%

SP-CNN-Orig-CycleGAN (V1) 95.95% 92.74% 93.41% 92.10% 1.96% 6.48%

SP-CNN-Modi-CycleGAN (V6) 97.33% 95.26% 95.58% 94.96% 1.43% 8.65%

Table 5.3: Comparative Analysis of Road Segmentation on KITTI Validation Set.
This table outlines the performance metrics of various segmentation ap-
proaches, including our SP-CNN method, CRF enhancement, the orig-
inal CycleGAN, and our advanced semi-supervised modified CycleGAN
method.

5.6.4 Modified CycleGAN vs. State-of-the-Art Methods on Bird’s Eye
View

In this section, we delve into the evaluation of our road segmentation methods from
the birds-eye perspective. This evaluation involves projecting images onto the ground
plane using known camera geometry, with a focus on the KITTI benchmark Test
dataset. The results of this assessment are presented in Table 5.4, and our analysis
spans across different road types, including UM (Urban Minor), UMM (Urban Minor
Major), UU (Urban Unmarked), and URBAN categories. The findings from our eval-
uation offer valuable insights into the performance of our advanced proposed method,
highlighting their respective strengths and areas of improvement.
Our baseline method, SP-CNN, demonstrates promising performance, achieving a
maximum F1 (MaxF) of 81.60% for UM_ROAD, showcasing its ability to accurately
detect road segments. However, this method exhibits a relatively higher false negative
rate (FNR) of 14.60%, indicating instances where road segments were missed.
Building upon SP-CNN, the incorporation of Conditional Random Fields (CRF) in
SP-CNN-CRF yields substantial improvements. Notably, it achieves an enhanced
MaxF of 83.22% for UM_ROAD, underscoring CRF’s potential in mitigating false
negatives and enhancing road segmentation.
Our advanced approach, SP-CNN-Modi-CycleGAN, emerges as the most promising
method in our evaluation. It attains the highest MaxF across almost all road types,
with notable improvements of 85.01% in UM_ROAD and 91.80% in UMM_ROAD.
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Figure 5.13: Comparative visual analysis of road segmentation results across meth-
ods on KITTI validation set. The figure illustrates the original im-
age, focused ’Sub-image’ segments on road boundaries alongside with
the ground truth and segmented outputs from SP-CNN, SP-CRF, SP-
CNN with Original CycleGAN, and the improved SP-CNN with our pro-
posed Modified CycleGAN. . Each method’s fidelity to ground truth in-
creases progressively, with SP-CNN-Modi-CycleGAN achieving the clos-
est match.

This signifies the efficacy of our modified CycleGAN approach in accurately iden-
tifying road segments and reducing false negatives. Intriguingly, our evaluation re-
veals a noteworthy aspect in the performance of the SP-CNN-CRF method within
the UU_ROAD category, where it marginally outperforms our latest SP-CNN-Modi-
CycleGAN approach. This outcome warrants further investigation to understand the
distinctive characteristics of UU roads in the KITTI dataset. UU, denoting Urban
Unmarked roads, presents a challenge due to the absence of lane markings, particu-
larly in urban environments. The slightly better performance of the SP-CNN-CRF
method in the UU_ROAD category could be attributed to CRF’s ability to capture
contextual information, potentially aiding road boundary delineation in the absence
of lane markings. Additionally, factors like road texture distribution, objects, and
unique lighting conditions in UU_ROAD scenarios may play a role in these results.
In summary, our comparative evaluation on the KITTI test set reveals significant en-
hancements in road segmentation accuracy, when employing SP-CNN-Modi-CycleGAN.
Compared to the baseline SP-CNN, we observe an approximate 4% improvement in
MaxF across all urban categories, indicating the effectiveness of our proposed method.
Furthermore, in comparison to our recent CRF-based approach, we achieve an im-
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provement of approximately 1%. Particularly noteworthy is the impressive 7% im-
provement observed in the UMM_ROAD category, relative to the same category in
our SP-CNN technique. This suggests that our approach effectively addresses pre-
vious inaccuracies attributed to superpixels at the road border. To provide a visual
perspective, Figure 5.14 presents a visual comparison of two samples in the birds-
eye view on the KITTI test set. This illustration underscores the proficiency of our
SP-CNN-Modi-CycleGAN approach in accurately segmenting roads. While the seg-
mentation is generally precise, occasional false detections may occur, often when the
algorithm misinterprets shadows covering the street.

Method Benchmark MaxF AP PRE REC FPR FNR

SP-CNN

UM_ROAD 81.60 % 69.62 % 78.13 % 85.40 % 10.89 % 14.60 %

UMM_ROAD 85.07 % 79.86 % 85.97 % 84.20 % 15.11 % 15.80 %

UU_ROAD 78.47 % 65.18 % 74.20 % 83.25 % 9.43 % 16.75%

URBAN_ROAD 82.36 % 72.31 % 80.48 % 84.33 % 11.27 % 15.67 %

SP-CNN-CRF

UM_ROAD 83.22 % 72.94 % 77.11 % 90.39 % 12.23 % 9.61 %

UMM_ROAD 90.96 % 84.63 % 87.86 % 94.29 % 14.32 % 5.71 %

UU_ROAD 80.02 % 67.93 % 77.56 % 82.64 % 7.79 % 17.36 %

URBAN_ROAD 85.97 % 77.81 % 82.04 % 90.31 % 10.89 % 9.69 %

SP-CNN-Modi-CycleGAN

UM_ROAD 85.01 % 76.86 % 86.98 % 83.13 % 5.67 % 16.87 %

UMM_ROAD 91.80 % 89.25 % 92.94 % 90.70 % 7.58 % 9.30 %

UU_ROAD 79.49 % 68.66 % 85.19 % 74.51 % 4.22 % 25.49 %

URBAN_ROAD 86.90 % 79.61 % 89.41 % 84.52 % 5.52 % 15.48 %

Table 5.4: Comparative performance on KITTI test set, assessing our proposed SP-
CNN, CRF-Enhanced SP-CNN, and modified CycleGAN. The evaluation
metrics including Maximum F-measure (MaxF) or F1, Average Precision
(AP), Precision (PRE), Recall (REC), False Positive Rate (FPR), and
False Negative Rate (FNR). Further details can be found in Section 3.4.1.

5.6.5 Run-time Analysis

This section evaluates the computational efficiency and processing time of our en-
hanced method, which integrates both coarse segmentation and refinement processes.
We compare the efficiency of our modified CycleGAN against the original model
by examining the number of parameters (#Params) and floating-point operations
(#FLOPs). These metrics help determine which version is more computationally
economical and faster. According to the data presented in Table 5.5, computed us-
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Figure 5.14: Road segmentation results on Bird’s Eye View (BEV) from the KITTI
Test set, comparing SP-CNN and our Modified CycleGAN approach.
False positives are depicted in blue, false negatives in red, and true pos-
itives in green.

ing TensorFlow’s profiler library (version 2.6), our modifications have significantly
optimized the model. By redesigning the generator’s residual blocks to be more com-
pact and decreasing their quantity from nine to six, as detailed in section 5.4.2, we’ve
achieved substantial reductions in computational resources. Specifically, our approach
demonstrates a decrease in #Params and #FLOPs by factors of approximately 5.58
and 4.42, respectively, when compared to the original CycleGAN model.

Method #Params #FLOPs
Original CycleGAN 11.38× 106 98.85× 109

Our Modified CycleGAN 2.04× 106 22.32× 109

Table 5.5: The Computational cost of our proposed modified CycleGAN method com-
pare to the original CycleGAN

Our comparison extends to evaluating both the accuracy of road segmentation and
the average processing time per image against leading semantic segmentation meth-
ods. The details are consolidated in Table 5.6, which includes AI_Scores to indicate
the computational capabilities of the GPUs used. Our evaluations were conducted on
the KITTI UMM test set. Our novel method, SP-CNN-Modi-CycleGAN, leverages
superpixels and a streamlined CNN architecture, augmented with a refined cycle-
consistent adversarial network. Our refinement method focuses on a carefully chosen
subset of pixels adjacent to road boundaries, substantially reducing computational
loads. It takes just 0.10 seconds for this process, leading to an overall processing
time of merely 0.12 seconds for each image, once superpixel segmentation and CNN
processing times are included. This streamlined approach ensures efficiency without
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Method Processor MaxF AP AI-Scores Runtime(s)

LidCamNet [Caltagirone et al., 2019] NVIDIA GTX1080 GPUs 96.03 % 93.93 % 17383 0.15

RBNet [Chen and Chen, 2017] NVIDIA Tesla K20c 5 GB 94.97 % 91.49 % - 0.18

LODNN [Caltagirone et al., 2017] NVIDIA GTX980Ti GPU, 6GB 94.07 % 92.03% 16038 0.018

UP_CONV_POLY [Oliveira et al., 2016] NVIDIA Titan X GPU 93.83 % 90.47 20089 0.083

Ours (SP-CNN) [Zohourian et al., 2018b] Intel(R) Core(TM) i7-4790K CPU @4GHz 85.07 % 79.86 % 1400 0.019

Ours (SP-CNN-Modi-CycleGAN) NVIDIA T4 GPU 91.80 % 89.25 % 14558 0.10

Table 5.6: Comparative analysis of road segmentation performance on the KITTI
UMM test set, featuring our SP-CNN and SP-CNN-Modi-CycleGAN
methods, against leading state-of-the-art methods. Metrics include Maxi-
mum F-score (MaxF) or F1, Average Precision (AP), and execution times,
with AI-Scores indicating processor computational capabilities. Only peer-
reviewed publications are considered for this comparison. For detailed AI-
Scores, visit AI Benchmark.

compromising on precision. This efficiency, achieved on the specified GPU setup,
underscores our method’s viability for real-time applications, effectively mitigating
performance degradation while optimizing processing speed and maintaining a desir-
able balance between accuracy and time efficiency.

5.7 Conclusion

In this chapter, our objective was to propose an innovative approach aimed at further
enhancing the accuracy of semantic segmentation, building upon the foundations laid
in the initial work. We desired to advance the capabilities of semantic segmentation
by leveraging the potential of a Superpixel-based Convolutional Neural Network. Our
overarching goal remained the achievement of real-time performance for a diverse set
of semantic segmentation tasks, all while ensuring practical applicability for real-time
systems. To demonstrate the practicality and effectiveness of our approach, we fo-
cused our efforts on road segmentation, employing the KITTI dataset as the proving
ground for our experiments. Our key emphasis was on addressing the limitations
posed by challenging conditions, including factors like shadows on the road surface,
variations in illumination, and the presence of neighbouring patterns such as side-
walls. These challenges had previously hampered our earlier approaches.
To mitigate these issues, we introduced a novel semi-supervised modified CycleGAN
technique aimed at enhancing road segmentation accuracy, even when dealing with
limited annotated data. Our method deviates significantly from conventional solu-
tions based on CNNs or CRFs, that rely on large sets of annotated training images
or specific high-order potentials to model the pairwise dependencies in segmentation
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5.7 Conclusion

outcomes. Instead, our proposed semi-supervised modified CycleGAN leverages cycle
consistency during the learning process and reduces the burden of human annotation
by using only a fraction of annotated images. Notable distinctions from the original
CycleGAN include alterations to the generator architecture and the incorporation of
a paired loss in the overall objective function. This approach significantly improves
road segmentation performance, while reducing computational demands compared
to the original CycleGAN. Despite the higher resource requirements of our current
GPU-based method compared to earlier CPU-based models, comparative analyses
using the KITTI dataset reveal our approach surpasses the Superpixel-based Con-
volutional Neural Network by 4− 7% and achieves competitive results against more
sophisticated semantic road segmentation techniques.
In summary, this chapter presents a promising solution for real-time semantic segmen-
tation, applicable to a diverse array of tasks beyond road segmentation. Our proposed
smoothness method enhances the performance of our Superpixel-based Convolutional
Neural Network, offering a practical solution for real-world applications.
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6 Summery and Outlook

In this concluding chapter, we consolidate the principal contributions and discover-
ies of our research, as detailed in this thesis. Additionally, we engage in a critical
discussion of the unresolved issues and propose prospective avenues for forthcom-
ing investigations. This discourse is particularly pertinent given the persistent and
substantial hurdles facing real-time automated scene segmentation.

6.1 Summery
Deep learning has pushed the boundaries of almost every vision-related subdomain
with the help of parallel computing power (in particular highly parallel GPU archi-
tectures) and large-scale datasets. Semantic image segmentation, which is in the
core of the field of Computer Vision and scene understanding, has been studied and
boosted by the extraordinary ability of Convolutional Neural Networks (CNN), as a
kind of deep learning model, to generate high-level, semantic image features. The
performance of CNN-based methods has drastically improved with deeper network
architectures and more training data. However, the power consumption and sheer size
of such models prevent their use in robotic applications. The demand for Computer
Vision applications with real-time capabilities has stimulated research interest in the
study of efficient and effective object recognition algorithms, where methods are able
to provide an output solution with a time budget, which can be run on embedded
devices with limited resources and amount of time. In this thesis, we focus on this
fundamental task and present efficient methods, both in terms of required time and
resources, on the task of semantic image segmentation, which constitute valuable as-
sets for real-time applications such as autonomous driving.
In the scope of this work a CNN-based neural network for semantic segmentation
task has been developed. The work was embedded in the context of autonomous
driving, where an effective and efficient method for road scene understanding from
various complex urban environments is devised. However, the overall approach is
transferable to other use cases. The goal was to provide an accurate understanding
of the objects in the environment by pixel-wise segmentation approach in an efficient
way. Pixel-wise semantic segmentation is a well-known representation for road scene
understanding in autonomous driving applications due to its ability in describing a
wide variety of scenes. Despite many problems, this main goal has been achieved and
the final model has obtained competitive results with advanced methods. To achieve
this goal, we have designed fully coarse to fine semantic segmentation pipelines and
improved the efficiency and robustness of the entire system in adverse environmental
conditions.
In the initial stages of this thesis, specifically in Chapter 2, we embarked on an ex-
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tensive exploration of the foundational aspects of deep neural networks, along with a
comprehensive review of seminal works in the realm of semantic segmentation. This
set the stage for the ensuing chapters (3, 4, 5), where we delved into the core contri-
butions of our research.
Our investigation was structured around three pivotal objectives. First, we aim
to develop a semantic segmentation approach that is not only efficient in terms of
computational resources but also quick to execute, making it suitable for real-time
applications. Second, we focus on improving the segmentation accuracy, transition-
ing smoothly from coarse to fine-grained analysis. Third, we strive to enhance the
system’s ability to generalize across different scenarios, particularly those with varia-
tions in data distribution not covered by the training dataset, without relying solely
on pixel-specific annotations. Our efforts have been directed towards fulfilling these
objectives, with a particular focus on system efficiency, thereby contributing to each
domain significantly.

6.2 Contributions and Discussion

The main contribution of this thesis was presented in the following three chapters:

Objective 1: Budget-aware method in terms of Time, Resource and
computational costs

Chapter 3: Our first contribution in Chapter 3 focused on the learning a supervised
semantic segmentation model with memory-efficient and a time budget, which makes
it suitable to be used successfully for real-time applications. In particular, this con-
tribution has been developed for the use case of autonomous driving applications like
road segmentation. We divided the pipeline of our semantic segmentation approach
in three key steps, namely over-segmentation, feature extraction, pixel-wise classifi-
cation based on CNN.
We constructed an special input data model based on superpixels (for an efficient
over-segmentation of the image) and high dimensional feature channels. superpixel
creation starts from a grid partition of the image, and then, refines the partitioning
by moving the boundaries of the superpixels towards the object boundary to obtain
irregular but roughly hegemons segmentations. The core idea is to reduce the compu-
tational complexity by segmenting the image into homogeneous regions (superpixels)
and feed image descriptors extracted from these regions into a CNN rather than
working on the pixel grid directly. Feeding a network with almost well segmented "
superpixel" units enables the network to learn local information like contrast, shape,
texture, etc. much better rather than using raw image pixels. In addition, spatial
relationship information is preferentially preserved in the proposed method due to
the use of superpixels rather than patch-wise model or pooling methods.
For the feature extraction we extracted manually a group of efficient features that en-
ables us to model better relevant object characteristics in each superpixels and speed
up the computations. We tested different combinations of features and decided on a
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particular combination, which gives the best performance.
To enable the necessary convolution operations on the irregular arranged superpixels,
we introduce a lattice projection scheme as part of the superpixel creation method,
which composes neighbourhood relations and forces the topology to stay fixed during
the segmentation process. Reducing the input to the superpixel domain allows the
CNN’s structure to stay small and efficient to compute while keeping the advantage of
convolutional layers. This results in significant reduction of the computational costs
for a densely labelled map prediction. The method is generic and can be easily gen-
eralized for segmentation tasks other than road segmentation. The proposed method
comprises the following steps:

• First, segmenting the image into superpixels, wherein the superpixels are coher-
ent image regions comprising a plurality of pixels having similar image features.

• Then determining image descriptors for the superpixels, wherein each image
descriptor comprises a plurality of image features.

• The superpixels are assigned to corresponding positions of a regular grid struc-
ture extending across the image.

• This lattice together with the image descriptors are fed to the convolutional net-
work based on the assignment to classify the superpixels of the image according
to semantic categories.

Experiments conducted on two widely-used challenging datasets with different res-
olution sized of images comprising urban scenarios, i.e., the KITTI [Fritsch et al.,
2013a] and the Cityscapes [Cordts et al., 2016] datasets. The results show that our
proposed method greatly improves segmentation efficiency with very limited compu-
tational resources, while achieving accuracy comparable to expensive state-of-the-art
methods.

Objective 2: A refinement strategy to compensate the trade-off between
accuracy and efficiency

Chapter 4: In our second contribution towards an efficient solution to the se-
mantic segmentation task, we improved the performance of the previously proposed
method by injecting spatial context into our segmentation results obtained from our
superpixel-based semantic segmentation convolutional neural network(CNN). In pre-
vious chapter, we discussed our memory-efficient and fast semantic segmentation
model (SP-CNN) able to run in CPU at acceptable frame-rates with consumption
very low computation resources. Despite our great achievement to obtain low com-
putational time in both training and testing phases, some problems such as lower res-
olution of the superpixel domain, variation in brightness and appearance apart from
occlusion, and inability of CNNs to capture the global context information caused
naturally lower accuracy compared to high cost state of the art methods. In other
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words, label prediction by CNN-based method is done for each local neighbouring in-
terdependently without including the information from surrounding labels, whereas
the labels produced by CNN at nearby pixels are correlated, due to the overlap of
their receptive fields. Such dependencies are not explicitly modelled and produce
coarse outputs.
The increase in segmentation performance from previous chapter, achieved by utiliz-
ing a probabilistic graphical model called Conditional Random Field (CRF) [Lafferty
et al., 2001] as post-processing step to model various pixel label dependencies and
refine weak and coarse segmentation outputs. The total framework comprised two
aspects for coupling local and global evidences. We combined the local image classifi-
cation information extracted from CNN part with global information of neighbouring
pixels obtained from CRF to decide accurate pixel label. Experiments show that
without using of global classification, the segmentation performs poorly, especially in
inhomogeneous superpixels. However, with a hypothetical solution, the segmentation
outperforms the CNN results and achieves comparable segmentation accuracy with
other state of the arts methods. Reducing the input to the superpixel domain allows
the CNN’s structure to stay small and efficient to compute, while keeping the ad-
vantage of convolutional layers and makes them eligible for ADAS. Employing CRF
mitigates the balance between accuracy and computational expense. The proposed
system obtained comparable performance among the top-performing algorithms on
the publicly available road benchmarks and it’s fast inference makes it particularly
suitable for real-time applications.

Objective 3: Enhance system adaptability to unseen Data and Lower annotation
requirements through unsupervised domain translation

Chapter 5: In this chapter, we delve into our pioneering approach within the realm
of unsupervised semantic segmentation, marking a significant stride towards achiev-
ing Objective 3. Our approach leverages a sophisticated strategy of unpaired domain
translation to significantly improve the system’s adaptability, enabling it to cap-
ture the underlying distribution of varied data domains. This capability allows our
model to generalize effectively to new, unseen data without the stringent require-
ment for extensive, pixel-level annotations that strong supervision demands. In the
preceding chapters, we introduced methods for rapid and efficient semantic segmen-
tation that are grounded in strong supervision, necessitating a substantial corpus of
well-balanced, pixel-annotated training images. While such detailed annotations can
push the boundaries of network performance, they come at a high cost in terms of
both financial resources and human efforts. Moreover, the prevalent benchmarks in
Computer Vision typically adhere to a closed set evaluation framework, assuming
that the training and test datasets are drawn from identical distributions. This as-
sumption, however, does not hold in many practical scenarios, such as in robotics
and autonomous driving, where the environment is dynamic and unpredictable. The
presence of data, that is either not represented in the training set or is unevenly dis-
tributed can significantly reduce the learning process. Consequently, the availability
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of a diverse dataset and the development of a model capable of adeptly adjusting to
novel and unseen data become crucial for enhancing performance, while simultane-
ously minimizing the reliance on extensive annotation.
In this chapter, we introduce a semi-supervised post-processing approach that lever-
ages the principles of unpaired image-to-image translation to enhance our model’s
generalizability, while keeping its efficiency high for embedding in real time systems.
Our technique employs a tailored version of the Cycle Generative Adversarial Net-
work (CycleGAN), which relies on a limited set of annotated images to dramatically
decrease the need for extensive manual labelling. This approach is particularly bene-
ficial in fields, where acquiring annotated data is challenging, such as in robotics and
the medical domain. Our experimental framework focuses on urban street scenes,
aiming to refine road segmentation under various difficult conditions, including shad-
ows, diverse surface textures like unpaved areas, and areas where the road surface
closely resembles adjacent patterns, such as side-walks. The method encompasses the
following key contributions:

1. We introduce a modified cycle consistence generative adversarial network to
enhance the semantic segmentations result ,obtained from our first proposed
approach, in semi-supervised learning.

2. The proposed adversarial method enforce cycle consistency to learn the map-
ping between unpaired 4-D channel images and the label (ground truth) do-
main. These 4-D channel images comprise the original RGB layers augmented
with a fourth channel, that represents the segmented areas derived from our
superpixel-based CNN semantic segmentation technique. By processing these
images through our enhanced CycleGAN model, we are able to extract detailed
and fine-grained segmentation results.

3. The computational cost is reduced in two ways. First by redesigning the resid-
ual blocks of the original CycleGAN into a shorten structure and reducing their
number of parameters to keep the computational effort low. Second, the ad-
versarial learning procedure is limited to the road boundary for boosting the
segmentation performance.

4. Contrary to the original CycleGAN, we used a semi(un)paired dataset and we
performed segmentation enhancement by applying L1 loss between the output
and target. Consequently, the enhancement quality improves better than the
original CycleGAN and previous methods.
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6.3 Outlook
We believe that the following research avenues can use the works developed in this
thesis:

1. To better understand the implications of these research, the work presented in
this thesis can be further extended to estimate the semantic segmentation into
several classes. It only requires an annotated superpixel dataset for different
classes and investigating the appropriate initial number for the grid partition
of the image based on the size of the images in the respective dataset.

2. The work was embedded in the context of autonomous driving, where an effec-
tive and efficient method for road scene understanding from various complex
urban environments is devised. However, the end goal is to obtain the effi-
cient and robust system capable of fine-grained pixel-wise segmentation with
the high level of generalizability for any unseen but similar images and reduced
human and resource costs for embedding in real time systems. This paradigm
of less labels or computational effort is basically suitable respectively in those
domains where image collection is cumbersome, such as the medical field or
robot navigation systems, where in-time responding is critical.

3. The simplicity of implementation, integrating in real-time systems, and gener-
alizability are very challenging problems for autonomous driving or any real-
time applications. In this thesis we explored different supervised,unsupervised
and semi supervised scenarios for fine-grained semantic segmentation task. We
combined the advantages of a kind of classical clustering-based image segmenta-
tion technique with supervised CNN network to obtain pixel-wise classification
label and later on explored unsupervised probabilistic graphical model and ad-
vanced unsupervised domain translation methods to enhance the segmentation
results. Due to the comprehensive study and results explored in this thesis,
expensive cost of pixel-level annotations, and the lack of generalizability of the
fully supervised machine learning methods, we believe that the future works
will still concentrate on lowering the annotation and computational cost using
semi-supervised or fully unsupervised systems through domain translation tech-
niques, and improving the performance by focusing on optimization parameters
such as decaying the weight of cycle consistency loss as training progresses, or
weighting cycle consistency loss by the quality of generated images.

4. Building upon above foundation, a promising avenue for future research emerges
from the integration of Conditional Random Fields (CRF) with Cycle Genera-
tive Adversarial Networks (CycleGAN) in semantic segmentation. Integrating
CRF with CycleGAN leverages CRF’s ability to model spatial consistency and
enforce smoothness in segmented regions, enhancing the integrity and coherence
of segmentation outcomes. This synergy is academically significant as it com-
bines CycleGAN’s strength in adapting models across domains without paired
examples with CRF’s capacity to maintain spatial relationships and reduce noise
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by considering the contextual interactions between pixels or segments. Such an
integration also facilitates more effective learning from limited annotations by
leveraging unlabelled or weakly labelled data, exploiting structural information
to make the model more robust to variations and ambiguities.

5. Although our semi-supervised method (proposed in chapter 5) achieved satis-
factory results, there still remain inherent drawbacks of such methods. First,
the trade-off between prediction accuracy and cost-effectiveness remains chal-
lenging. The lower accuracy may induce from either wrong-predicted superpixel
(apart from those along the road border) or saturation of CNN-model learning
ability due to the small-sized of annotated dataset. The higher computational
effort comes from unsupervised generative adversarial model complexity. Sec-
ond, in general, the training data in the supervised CNN-based model strongly
affects the stability of the segmentation model, and a large number of well-
balanced and high-quality labelled images are required to have a stable and
high-performance system. With this concept in mind, we will focus on the op-
timal network architecture for semantic segmentation as a future perspective.
Inspired by the recent advance in unsupervised domain translation, it would be
interesting to investigate a complete end-to-end semantic segmentation strategy
based on our superpixel CNN-based model, that is capable of segmentation and
refinement in one pipeline within a time budget.
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Math-Symbols

W Weight vector in an ANN, comprising learnable

weights [w1, . . . , wn], associated with a single neu-

ron, containing the weights for each input to that

neuron.

11

b Bias term in an ANN, a scalar added to the input’s

weighted sum to adjust the neuron’s output

11

f Activation function in an ANN, introducing non-

linearity to determine the neuron’s output rele-

vance

11

z Result of a neuron’s linear transformation in an

ANN, serving as the input to the activation func-

tion

12

a Output of a neuron in an ANN post-activation, in-

dicating the neuron’s contribution to the network’s

output

12

B The series of bias vectors in the neural network,

where b[l] represents the bias vector for the l-th

layer

17

n[l] The number of neurons in layer l 17

W[l] The weight matrix associated with the layers l and

l − 1

17

b[l] The vector of biases associated with the layer l 18
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Math-Symbols

a[l] The vector of activations of the neurons in the layer

l

18

z[l] The vector of the sum of the weighted output of the

neurons in the layer l

18

f[l] The activation function applied to the the neurons

in the layer l

18

C The loss(cost) function 18

η The learning rate 19

∂ The partial derivative 19

δ
[l]
j The error in the jth neuron in the lth layer 20

ν The variance of a distribution, quantifying the dis-

persion or spread of its values around the mean

22

nin The number of neurons in the preceding layer 22

nout The number of neurons in the subsequent layer 22

σHe The standard deviation for "He" initialization

method, used to initialize weights effectively for lay-

ers with ReLU activation functions

22

L1 Lasso regularization term, adding the absolute val-

ues of the weights as a penalty to the loss func-

tion to promote sparsity and prevent over-fitting

by driving many coefficients to zero

23

L2 Ridge regularization term, adding the square of the

weights as a penalty to the loss function to prevent

over-fitting by encouraging a distribution of smaller

weights

23

λ Regularization parameter controlling the impact of

the regularization terms L1 and L2 on the loss func-

tion, balancing the trade-off between fitting the

training data and maintaining a simple model

23
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Math-Symbols

∈ A mathematical notation denoting membership, in-

dicating that an element belongs to a set or a col-

lection

23

R The set of real numbers, indicating that the regu-

larization parameter λ can take any real value

23

ẑ
[l]
j The normalized version of the aggregated weighted

inputs z[l]
j for the j-th neuron in layer l, ready for

the activation function

24

µ
[l]
j The empirical mean of the aggregated weighted in-

puts z[l]
j for the j-th neuron in layer l, computed

across a batch of M samples

24

ν
[l]
j The empirical variance of the aggregated weighted

inputs z[l]
j for the j-th neuron in layer l, computed

across a batch of M samples

24

ε A small constant added to ensure numerical stabil-

ity

24

z
[l](i)
normj The intermediate normalized version of the aggre-

gated weighted inputs z[l]
j for the i-th sample and

j-th neuron in layer l, before scaling and shifting

24

γ A learnable scale factor in batch normalization, al-

lowing the network to adjust the normalization ef-

fect

24

β A learnable shift factor in batch normalization, al-

lowing the network to adjust the normalization ef-

fect

24

LCE Cross-Entropy loss 25

N The total number of samples in the dataset or the

batch over which the loss function is computed

25

log(·) Natural logarithm function 25

LMSE Mean Squared Error loss 26
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Math-Symbols

Softmax A function used mostley as an activation function,

that converts logits or raw scores from the neural

network’s output layer into probabilities, ensuring

the output probabilities sum to 1

26

e Euler’s number, a mathematical constant approxi-

mately equal to 2.71828, used as the base for the

exponential function

26

LSoftmax Softmax loss or categorical cross-entropy loss 26

Fh The height of a filter or kernel in a convolutional

layer

29

Fw The width of a filter or kernel in a convolutional

layer

29

z
[l]
i,j The output at position (i, j) in the feature map of

the l-th convolutional layer, computed before ap-

plying the activation function

29

Xij The input data or multi-dimensional feature matrix 29

W[l] The weight matrix of a filter in the l-th convolu-

tional layer

29

Hfm The height of a feature map in a Convolutional

Neural Network

30

Wfm The width of a feature map in a Convolutional Neu-

ral Network

30

Hout The height of the output feature map produced by

a transposed convolution operation

32

Wout The width of the output feature map produced by

a transposed convolution operation

32

s The stride of the transposed convolution operation,

indicating the step size for moving the filter across

the input feature map

32

Npx The total number of pixels in the image 49
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Math-Symbols

Nsp The desired number of superpixels 49

S The interval between superpixel centers on a grid,

calculated as
√
N/K, which approximates the size

of a superpixel

50

Centi The 5D vector representing the cluster center of the

i-th superpixel, consisting of CIELAB colour space

values li, ai, bi and spatial coordinates xxi, yyi

50

(xp, yp) The coordinates of the pixel 50

mslic A compactness parameter in SLIC superpixel seg-

mentation that controls the balance between colour

similarity and spatial proximity

50

dcolor The Euclidean distance in CIELAB colour space

between a pixel and a superpixel center

50

dSpatial The Euclidean distance in the spatial domain be-

tween a pixel and a superpixel center

50

Ds The combined distance measure for SLIC super-

pixel segmentation, incorporating both colour and

spatial distances, with spatial distances normalized

by the grid interval S

50

(P,R) In the context of the extended Local Binary Pat-

terns (LBP) operator, (P,R) defines the neighbour-

hood around a central pixel, where P is the number

of sampling points and R is the radius from the cen-

tral pixel to the sampling points

54

τ The threshold function used in the Local Binary

Patterns (LBP) operator

54

P (Y |X) Probability distribution of the label configuration

Y given the input data X, typically represented

within the framework of a Conditional Random

Field (CRF) using a Gibbs distribution.

88
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Math-Symbols

E(Y |X) Gibbs energy of a labeling Y given the input data

X

90

CG Set of cliques in the graph G = (V,E), where a

clique is a subset of nodes in the graph that are

completely connected.

90

Z(X) Normalization factor in the Gibbs distribution of a

CRF, ensuring that the probabilities sum up to one

over all possible label configurations.

90

ϕ(xi, yi) Unary potential function for node i in a Conditional

Random Field (CRF), representing the cost or like-

lihood of node i taking a specific label based on the

observed data

90

ψij Pairwise potential function between nodes i and j

in a Conditional Random Field (CRF), represent-

ing the interaction or dependency between these

nodes

91

Y (t) The label configuration for all pixels in the image

at iteration t in an iterative optimization algorithm,

where t denotes the iteration number

96

MaxItr Maximum number of iterations 96

T The energy threshold specified as a termination cri-

terion in an iterative optimization algorithm

96

∆E The minimum change in energy required between

iterations to continue in an iterative optimization

algorithm

96

∆E(t)
i The potential energy change for pixel i at iteration

t, when considering a new label in an iterative op-

timization algorithm

96

183



Math-Symbols

k̄ An auxiliary vector in GMM, that assigns each

pixel to one of the K GMM components, indicat-

ing the specific component, that best represents the

pixel’s characteristics.

97

ki The GMM component assigned to the i-th pixel,

based on whether the pixel is associated with the

road or non-road class in the Adaptive ICM algo-

rithm

97

µ The mean vector of a GMM component, typically

representing the average RGB value for the pixels

associated with that component.

97

Σ The covariance matrix parameter of a Gaussian

Mixture Model component, capturing the variance

and correlation of pixel intensities

97

π The weighting coefficient in a Gaussian Mixture

Model, determining the mixing proportion of each

component in the model

97

θ̄ Parameters of the Gaussian Mixture Model within

the ICM algorithm, including means, covariances,

and mixing coefficients

97

k∗i The optimal GMM component assignment for the

i-th pixel in GMM

98

θ̄∗ The optimized set of GMM parameters (µ, Σ, and

π) after learning in the Adaptive ICM algorithm

98

N Denotes the Gaussian (or normal) distribution

function, characterized by a mean (µ) and covari-

ance (Σ), used in the context of Gaussian Mixture

Models to represent the components of the mixture

99

mi→j(yj) Message from node i to node j regarding

state(label) yj in the LBP method

102
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Math-Symbols

bi(yi) The belief at node i regarding its potential label yi
in Loopy Belief Propagation, calculated based on

incoming messages from neighboring nodes,except

the one from which it is currently sending a message

to

102

O It is a mathematical notation, that describes the

algorithm’s complexity, helping to quantify perfor-

mance as the input size grows.

105

ω A parameter in the pairwise potential function,

that penalizes label discrepancies between adjacent

pixels, promoting label consistency in adjacent re-

gions

107

σα A parameter in the pairwise potential function of

a Conditional Random Field (CRF), related to the

appearance kernel, controlling the influence of spa-

tial distance in the mean-field approximation

109

σβ A parameter in the pairwise potential function of

a Conditional Random Field (CRF), related to

the appearance kernel, controlling the influence of

colour similarity in the mean-field approximation

109

σγ A parameter in the pairwise potential function of

a Conditional Random Field (CRF), related to the

smoothness kernel, controlling the emphasis on spa-

tial proximity in the mean-field approximation

109

G Generator function in CycleGAN 127

D Discriminator function in CycleGAN 127

θg The learnable parameters of the generator in a Gen-

erative Adversarial Network

127
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Math-Symbols

G(z) Output of the generator G in a GAN, where z rep-

resents a random input noise vector drawn from a

distribution

127

p(z) The distribution from which the random input

noise vector z is drawn in a Generative Adversarial

Network

127

θd The learnable parameters of the discriminator in a

Generative Adversarial Network

127

pdata(y) The real data distribution from which real data

samples y are drawn in a Generative Adversarial

Network

128

D(y) The probability estimate output by the discrimina-

tor D for real data samples y

128

D(G(z)) The probability estimate output by the discrimi-

nator D for synthetic data samples generated by

G(z)

128

G∗ The optimal generator in a Generative Adversar-

ial Network, achieved when the adversarial training

process converges, producing synthetic data indis-

tinguishable from real data by the discriminator

128

D∗ The optimal discriminator in a Generative Ad-

versarial Network, achieved when the adversarial

training process converges, perfectly distinguishing

between real and synthetic data

128

E The expectation operator, used in the context of

Generative Adversarial Networks to calculate the

expected value over a probability distribution

128

186



Math-Symbols

V (G,D) Value function in GANs defining the adversarial

game, where G seeks to minimize this function and

D aims to maximize it, based on the expectation

over real data distribution and synthetic data from

G.

128

G(z|x) The output of the generator in a Conditional Gen-

erative Adversarial Network, where the generation

process is conditioned on additional information x

130

D(y|x) The output of the discriminator in a Conditional

Generative Adversarial Network, evaluating the au-

thenticity of data y conditioned on additional infor-

mation x

130

LL1 The L1 loss function, ensuring pixel-level similar-

ity between the generated and target images, thus

preserving content accuracy in the image transla-

tion process

133

‖ · ‖1 A mathematical notation used to denote the sum

of absolute values of the elements in a vector or

the absolute differences between corresponding el-

ements in two vectors

133

GX→Y The mapping function in a CycleGAN framework

that translates images from domain X to domain Y

135

FY→X The mapping function in a CycleGAN framework,

that translates images from domain Y back to do-

main X, ensuring cycle consistency in the transla-

tion process

135

DY In CycleGAN, DY is the discriminator tasked with

distinguishing between real images from domain

Y and fake images generated by the generator G

translating images from domain X to domain Y

135
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Math-Symbols

DX In CycleGAN, DX is the discriminator responsible

for differentiating between real images from domain

X and fake images produced by the generator F

translating images from domain Y to domain X

135

Ladv(G,DY , X, Y ) The adversarial loss for the generator G in Cycle-

GAN, calculated with respect to the discriminator

DY , ensuring generated images from domain X are

indistinguishable in domain Y

136

Ladv(F,DX , Y,X) The adversarial loss for the generator F in Cycle-

GAN, calculated with respect to the discriminator

DX , ensuring generated images from domain Y are

indistinguishable in domain X

136

Lcyl(G,F ) The cycle consistency loss in CycleGAN, ensuring

that an image translated from one domain to an-

other and back again closely resembles the original

image, preserving content integrity across transla-

tions

136

LLS
adv Least Squares GAN (LSGAN) adversarial loss 147

LG Loss function for the generator G 148

LF Loss function for the generator F 148

Lp Paired loss introduced in the Modiefied-CycleGAN

model to leverage a subset of paired training data,

enhancing the model’s performance by focusing on

the L1 distance between the generated output and

the target within this subset

148

Q A specific subset of the training data consisting of

paired samples, where each pair (xqi , y
q
i ) is used to

calculate the paired loss Lpaired in the Modiefied-

CycleGAN model

148
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Math-Symbols

NQ The number of paired samples in the subset Q, used

in the calculation of the paired loss Lpaired in the

Modiefied-CycleGAN model

148

(xqi , y
q
i ) A paired sample in the subset Q used in the

Modiefied-CycleGAN model, where xqi is from do-

main X and yqi is its corresponding target image

from domain Y

149
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Acronyms

2D Two-dimensional

3D Three-dimensional

4−D Four-Channel

ACC Accuracy

ADAS Advanced Driver-Assistance Systems

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

AP Average Precision

BEV Bird’s Eye View

BP Back Propagation

BP Belief Propagation

CE Cross-Entropy

CG Computer Graphics

cGAN Conditional Generative Adversarial Network

CIE International Commission on Illumination

CIELAB CIE L*a*b* Color Space
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Acronyms

CMYK Cyan, Magenta, Yellow, Key/Black

CNN Convolutional Neural Network

COCO Common Objects in Context

CPU Central Processing Unit

CRF Conditional Random Field

CycleGAN Cycle Consistence Adversarial Network

DCNN Deep Convolutional Neural Network

DDN Deep Deconvolutional Networks

DNN Deep Neural Network

EM Expectation Maximization

FCN Fully Convolutional Network

FN False Negative

FP False Positive

FPV First Person View

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

GT Ground Truth

HOG Histogram of Oriented Gradients

HSV Hue, Saturation, Value

ICM Iterated Conditional Mode
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Acronyms

IoU Intersection-over-Union

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute

Lab lightness, a( green / magenta ), b (blue / yellow )

LBP Local Binary Patterns

LBP Loopy Belief Propagation

LIDAR Light Detection and Ranging

LReLU Leaky Rectified Linear Units

MAE Mean Absolute Error

MAP Maximum A Posterior

MaxF Maximum F-measurement

ML Machine Learning

MRF Markov Random Field

MSE Mean Squared Error

PASCAL Pattern Analysis, Statistical Modelling and Computational Learning

Pix2Pix Pixel to Pixel

PRE Precision

REC Recall

ReLU Rectified Linear Units

RGB Red, Green, Blue

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent
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Acronyms

SIFT Scale-Invariant Feature Transform

SP − CNN Superpixel-based Convoloutional Neural Network

SVM Support Vector Machine

TN True Negative

TP True Positive

UM Urban Markings

UMM Urban Multiple Marked

UU Unmarked Urban

V OC Visual Object Classes
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Glossary

Accuracy Is a metric that describes how the model performs across all classes..

Activation Functions Non-linear transformation functions within ANNs that define

decision boundaries by setting thresholds, crucial for enabling ANNs to solve

complex, non-linear problems.

Adversarial Loss A loss function used in training GANs, that quantifies how well

the generator can deceive the discriminator into believing its outputs are real,

encouraging the generator to produce increasingly realistic images.

Adversarial Training A training methodology where models, typically in a GAN

framework, learn to generate data by competing against an adversarial model

that tries to distinguish generated data from real data, enhancing the generative

model’s ability to produce realistic outputs.

AI-Scores A performance metric designed to evaluate and compare the efficacy of

different hardware systems in executing deep learning tasks, with higher scores

indicating superior performance in terms of computational speed, efficiency, and

the ability to process complex AI algorithms.

Artificial Neural Networks (ANNs) Computational models inspired by the human

brain, designed to process relationships between data sets, consisting of neurons,

weights, biases, and activation functions.

Average Precision (AP) Ameasure used in object detection to quantify the precision

of predictions across different recall levels, effectively summarizing the precision-
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recall curve into a single value by computing the average precision values for

recall levels over the interval [0, 1].

Backpropagation A method used in artificial neural networks to calculate the error

contribution of each neuron after a batch of data is processed, essential for the

network’s learning process.

Batch Normalization A technique to improve the performance and stability of arti-

ficial neural networks by normalizing the inputs of each layer so that they have

a mean output activation of zero and a standard deviation of one.

Belief Propagation An algorithm for performing inference on graphical models, such

as Bayesian networks and Markov random fields, by passing messages between

nodes to compute marginal distributions, thereby facilitating decision-making

based on probabilities.

Binary Classifier A type of classification algorithm, that divides instances into two

groups or classes.

Bird’s Eye View A perspective from above, akin to observing from a bird’s high

vantage point, offering a comprehensive overview of a scene or area. This view-

point is particularly useful for creating detailed layouts, maps, or architectural

designs, providing a clear, top-down perspective that facilitates spatial under-

standing and planning..

Complexity (O) In computational theory, complexity, denoted as O, refers to the

Big O notation that describes the upper bound of an algorithm’s running time

or space requirement in terms of the size of the input.

Computational Efficiency A measure of the computational resources required to per-

form a task, with higher efficiency indicating lesser resource use for the same

task, critical in real-time systems.

Conditional GAN (cGAN) A variant of the GAN, where both the generator and dis-

criminator are conditioned on some additional information such as class labels
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or data from other modalities, allowing the model to generate images that are

conditioned on this information, leading to more controlled and diverse gener-

ation processes.

Conditional Random Field (CRF) A Probabilistic model for segmenting and label-

ing data, utilized in semantic segmentation to consider the spatial relationship

between pixels for refined output..

Convolutional Layers The building blocks of CNNs that apply convolution opera-

tions to the input, capturing features like edges and textures in the image.

Convolutional Neural Networks (CNNs) A class of deep neural networks, particu-

larly effective in analyzing visual imagery, characterized by their use of con-

volutional layers to automatically and adaptively learn spatial hierarchies of

features.

Cycle Consistency Loss In the context of CycleGAN, a loss function that ensures the

original input image can be reconstructed after a round-trip translation (source

to target and back to source domain), helping to preserve key attributes across

translations.

CycleGAN A Generative Adversarial Network variant for image-to-image translation

in unsupervised learning, without requiring paired examples between domains.

Data Augmentation A technique for increasing the amount of training data by ap-

plying various transformations to the existing data, such as rotation, scaling,

and flipping, to create new and diverse examples.

Deconvolutional Layers Layers that perform the inverse of the convolution opera-

tion, often used in CNNs to upsample feature maps and learn dense represen-

tations in tasks like semantic segmentation.

Deep Learning A subset of machine learning involving neural networks with many

layers, enabling the automatic learning of complex patterns in data for tasks

like image and speech recognition.
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Dense Conditional Random Field (Dense CRF) An extension of the traditional CRF

model, that considers a fully connected graph where every pixel in the image is

connected to every other pixel, significantly improving the ability to model fine

details and capture long-range dependencies in image segmentation tasks.

Discriminator Networks In the context of Generative Adversarial Networks (GANs),

a discriminator network is a model that learns to distinguish between real data

(from the dataset) and fake data (generated by the generator network). Its goal

is to accurately classify the inputs as real or fake.

Domain Adaptation The task of adapting a model trained on one domain (source)

to effectively perform on a different, but related domain (target), especially

important in situations where labeled data in the target domain is limited or

unavailable.

Dropout Layers A regularization technique where randomly selected neurons are ig-

nored during training, helping to prevent overfitting by making the network’s

architecture less sensitive to the weights of individual neurons.

Effectiveness Is the ability to produce a better result, one that delivers more value

or achieves a better outcome..

Efficiency Is the ability to produce an intended result in the way that results in the

least waste of time, effort, and resources.

Energy Function In the context of CRFs and other graphical models, an energy func-

tion quantifies the compatibility of a particular labeling of the image with the

observed data and prior knowledge, where lower energy values indicate more

probable label configurations.

Expectation Maximization (EM) A statistical algorithm used to find maximum like-

lihood estimates of parameters in probabilistic models with latent variables, by

iteratively applying expectation (E) and maximization (M) steps.
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F1-Score Is the weighted average of Precision and Recall. F1 is usually more useful

than accuracy, especially if you have an uneven class distribution. .

Feature Extraction The technique of identifying and selecting significant features

from raw data, crucial for the performance of machine learning applications.

Feature Maps Outputs from the convolutional layers in a CNN, representing the

features detected in the input images, such as edges or textures.

Fine-Grained Segmentation A detailed level of segmentation, that aims to distin-

guish between very similar sub-categories or instances within a broader class,

providing more nuanced and precise segmentation results.

Fine-Tuning A process in machine learning where a pre-trained model is adapted

to a new, but similar task by continuing the training process. This involves

making minor adjustments to the weights of an already trained network, which

can significantly improve performance on the new task with relatively little

additional data.

Floating Point Operations (FLOP) In computational terms, FLOP refers to the

number of Floating Point Operations performed by an algorithm or a model. In

the context of deep learning, it’s a measure of the computational complexity and

efficiency, often used to evaluate the performance and resource requirements of

neural network models during training and inference.

Forward Propagation The process in neural networks where input data is passed

through the network layers to generate an output. This phase involves the

calculation of the weighted sum of inputs, followed by the application of an

activation function at each layer.

Fully Connected Layers Layers in a neural network where all neurons from the pre-

vious layer are connected to each neuron, often used toward the end of CNNs

to flatten the output and make predictions.
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Fully Convolutional Networks (FCN) A type of neural network architecture where

all layers are convolutional and capable of processing input images of any size

to produce correspondingly-sized output maps. This is particularly useful in

tasks like semantic segmentation where the goal is to classify each pixel of the

image.

Gaussian Mixture Models (GMM) A probabilistic model, that assumes all the data

points are generated from a mixture of a finite number of Gaussian distribu-

tions with unknown parameters, widely used for clustering applications, density

estimation, and as a component in more complex models.

Generative Adversarial Networks (GANs) A framework for estimating generative

models via an adversarial process, involving a system of two neural networks—generator

and discriminator—that contest with each other.

Generator Networks In GANs, the generator network is a model, that learns to

generate data that is similar to some real data. It tries to fool the discriminator

network into classifying its generated outputs as real.

Gibbs distribution Gibbs distribution representing the conditional probability of a

specific label configuration given the input data and model parameters in CRFs,

used in energy-based segmentation methods.

Gibbs Energy In the context of graphical models, Gibbs energy is a function that rep-

resents the total energy of a system configuration, used to model the probability

distribution of states in Markov random fields and CRFs.

Global Information In the context of image segmentation, refers to the high-level,

holistic features and relationships within an image, that help inform more ac-

curate and contextually aware segmentation decisions, as opposed to local in-

formation derived from immediate pixel neighborhoods.

Gradient Descent An optimization algorithm used for minimizing the cost function

in machine learning and deep learning algorithms.
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Graph Cut Optimization An optimization technique used in image segmentation,

that models the segmentation problem as a graph and finds the minimum cut

that separates the graph into disjoint subsets, effectively partitioning the image

into object and background segments.

High-Dimensional Feature Channels Feature channels derived from image data that

encapsulate detailed information across multiple dimensions, such as color, tex-

ture, and spatial location, to enhance the performance of machine learning

models.

Higher-Order CRF An extension of the Conditional Random Field framework, that

includes potentials over larger sets of variables, not just pairs, allowing for

more complex interactions and dependencies to be modeled in tasks like image

segmentation.

Hyperparameters Settings or configurations external to the model, that govern the

training process, such as learning rate, number of epochs, and architecture

design choices. Unlike model parameters, hyperparameters are not learned from

the data but are set prior to training to guide the learning process.

Image Descriptors Quantitative representations of basic characteristics within an

image, such as edges, textures, or colors, used to describe and identify regions

of interest in image processing and analysis.

Image Perspective (Egocentric View) A photographic or visual perspective, which

reflects the scene as observed from the viewpoint of the camera or the person

capturing the images..

Image-to-Image Translation A process in computer vision where the goal is to learn

the mapping between an input image and an output image, often used for tasks

such as photo enhancement, colorization, and style transfer.
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Inference The process of deducing unknown properties of a probabilistic model given

observed data, often involving calculating marginal distributions, expectations,

or finding the most probable state of the model.

Instance Segmentation An advanced form of segmentation that identifies and dif-

ferentiates between individual objects of the same class within an image.

Intersection over Union (IoU) A metric used to evaluate the accuracy of an object

detector on a particular dataset. It measures the overlap between the predicted

bounding box and the ground truth bounding box.

Iterated Conditional Modes (ICM) A deterministic algorithm used to find a local

maximum of the posterior distribution in Markov random fields, by iteratively

updating each variable to the mode of its conditional distribution, often used

for image segmentation tasks.

L1 Loss L1 loss, also known as Mean Absolute Error (MAE), is a metric used in

regression and machine learning tasks, that calculates the mean of the absolute

differences between the target values and the predicted values. It is robust to

outliers as it does not square the errors, making it useful in applications where

it is important to treat all deviations from the target equally, regardless of their

direction..

L2 Loss L2 loss, also known as Mean Squared Error (MSE), is a commonly used

metric in regression and machine learning, that calculates the mean of the

squares of the differences between the target values and the predicted values.

This approach penalizes larger errors more heavily than smaller ones, which can

lead to smoother predictions and is sensitive to outliers due to the squaring of

the errors.

Label Consistency A desired property in segmentation tasks, where similar regions

or adjacent pixels within an image are assigned the same or coherent labels,

contributing to the overall accuracy and visual coherence of the segmentation

result.
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Latent Space In the context of GANs and other generative models, the latent space

represents a high-dimensional space of encoded representations from which the

generator creates new data instances. Points in this space can be thought of

as compressed representations of the data, and interpolating between points in

this space can lead to the generation of new data instances.

Lattice Projection A method to organize superpixels into a regular grid structure,

facilitating the application of convolutional operations on the otherwise irregu-

larly shaped superpixels.

Least Squares GAN (LSGAN) Least Squares GAN (LSGAN) is a variant of the

Generative Adversarial Network, that uses the least squares instead of log-

likelihood loss function for the discriminator. This modification leads to mini-

mizing the Pearson χ2 divergence, resulting in the generation of higher quality

images by stabilizing the training process and addressing the vanishing gradients

problem found in standard GANs..

Local Binary Patterns (LBP) A feature descriptor used in computer vision and im-

age processing for texture classification. LBP operates by comparing each pixel

with its surrounding neighborhood and encoding this relation into a binary

code, effectively capturing local texture information.

Loopy Belief Propagation (LBP) An inference algorithm for graphical models that

estimates node marginal distributions by passing messages in a graph with

loops, used in CRFs.

Loss Functions Functions that measure how well a machine learning model performs,

indicating the difference between the model’s predictions and the actual data.

Markov Random Fields (MRF) A type of undirected probabilistic graphical model,

that represents the joint distribution of variables with a graph, where nodes rep-

resent variables and edges represent dependencies, with the Markov property

implying that a variable is conditionally independent of others given its neigh-
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bors, widely applied in spatial data analysis and image processing to model

local interactions.

Max-Product Message Passing A variant of the message passing algorithm, that

focuses on the most probable outcomes by maximizing the product of incoming

messages and potentials.

Maximum A Posteriori Probability (MAP) A principle in Bayesian inference used

to estimate an unknown quantity as the mode of its posterior distribution, effec-

tively combining observed data with prior knowledge to find the most probable

value of the unknown parameter given the data.

Mean-Field Approximation A computational technique used to simplify complex

probabilistic models by approximating them with a simpler model, where each

part of the system is assumed to interact only with an "average" effect of the

rest, often used in the context of variational inference to make the problem of

estimating probability distributions more tractable.

Message Passing A technique used in algorithms for inference in graphical models,

where nodes (variables) exchange information (messages) to compute marginal

distributions or perform other inference tasks.

Min-Sum Message Passing A variation of the max-product algorithm, where op-

erations are performed in the log domain, converting products into sums and

maximization into minimization.

Mode Collapse A common issue in GAN training, where the generator learns to

produce a limited variety of outputs, or even the same output, regardless of

the input noise. This is undesirable as it indicates that the generator is not

capturing the full diversity of the data distribution.

Modified CycleGAN A variation of the standard CycleGAN architecture, adapted to

enhance performance for specific tasks such as road segmentation, often involv-

ing adjustments to the network’s structure, loss functions, or training regime.
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Multi-Layer Perceptrons (MLP) A class of feedforward artificial neural network that

consists of at least three layers of nodes: an input layer, one or more hidden

layers, and an output layer. MLP utilizes a supervised learning technique called

backpropagation for training.

Number of Parameters (#param) In the context of neural networks, the number of

parameters (#param) refers to the total count of trainable weights and biases

within the model. This metric is indicative of the model’s capacity, complexity,

and potential for overfitting or underfitting, depending on the size and diversity

of the training data.

Object Detection A computer vision technique for locating instances of objects within

images or videos. It involves identifying and outlining objects in an image with

a bounding box and labeling them.

Optimization Algorithms Algorithms used to adjust the parameters of a neural net-

work to minimize the loss function. Common examples include Stochastic Gra-

dient Descent (SGD), which updates parameters for each training example, and

Adam, an algorithm that computes adaptive learning rates for each parameter.

Optimization Strategy (CRF) A methodological approach within Conditional Ran-

dom Fields aimed at finding the most probable labeling of image regions that

minimizes a given energy function, balancing accuracy and computational effi-

ciency.

Overfitting A modeling error in machine learning that occurs when a function is too

closely aligned to a limited set of data points, affecting its performance on new

data.

Pairwise Potentials Components of the energy function in CRFs that define the cost

associated with assigning a pair of neighboring pixels or regions to particular
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labels, used to enforce spatial consistency and smoothness in the segmentation

output.

Patch In image processing and computer vision, a patch refers to a small, contiguous

block of pixels within an image. Patches are used to analyze local features,

textures, or patterns.

PatchGAN PatchGAN refers to a discriminator architecture used in certain GAN

models, that classifies patches of an image as real or fake, rather than the entire

image or each pixerl. This approach focuses on the structure at the scale of

these patches and is effective for tasks like image-to-image translation, allowing

the model to capture and preserve high-frequency details..

Pearson χ2 Divergence Pearson χ2 divergence is a statistical measure used to quan-

tify the difference between two probability distributions, emphasizing the squared

difference between observed and expected data. In the context of GANs, mini-

mizing this divergence helps in improving the fidelity of the generated data to

the real data distribution.

Pooling Layers Layers within a CNN that reduce the spatial dimensions (width and

height) of the input volume for the next convolutional layer, helping to decrease

computation and control overfitting.

Precision Is calculated as the ratio between the number of Positive samples correctly

classified to the total number of samples predicted as Positive (either correctly

or incorrectly)..

Real-Time Applications Applications that require immediate processing and response

to input data, where any significant delay would result in a failure to meet the

application objectives, such as in advanced driver-assistance systems.

Recall Is calculated as the ratio between the number of Positive samples correctly

classified as Positive to the total number of Positive samples. The recall mea-

sures the model’s ability to detect Positive samples. The higher the recall, the

more positive samples detected..
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Recurrent Neural Networks (RNNs) A type of neural network where connections

between nodes form a directed graph along a temporal sequence, allowing it to

exhibit temporal dynamic behavior and use internal state memory to process

sequences of inputs.

Refinement Procedures Techniques applied to initial segmentation results to im-

prove their quality, often involving the optimization of label assignments based

on additional criteria such as spatial consistency, achieved through methods like

CRFs.

Regularization A technique used to prevent overfitting in machine learning models by

adding a penalty on the complexity of the model, often through a regularization

term in the loss function.

Reinforcement Learning An area of machine learning concerned with how agents

ought to take actions in an environment to maximize the notion of cumulative

reward.

ReLU (Rectified Linear Unit) A type of activation function that is defined as the

positive part of its argument. Where an input is positive, ReLU outputs the

same value; where it is negative, ReLU outputs zero. It introduces non-linearity

in the neural networks and helps them to learn complex patterns.

RGB-L A dataset used in semi-supervised CycleGAN for road segmentation, consist-

ing of RGB images augmented with CNN-derived labels. This dataset facilitates

precise boundary prediction and segmentation enhancement by providing both

color information and pre-segmentation cues.

Semantic Categories Classifications within an image that correspond to meaningful

categories in the context of the scene, such as roads, vehicles, and pedestrians,

used in semantic segmentation tasks.
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Semantic Segmentation The process of partitioning a digital image into distinct

segments, making the image’s representation simpler and more meaningful for

analysis.

Semantic Segmentation Refinement The process of enhancing the accuracy of ini-

tial semantic segmentation predictions, often by incorporating additional post-

processing techniques such as Conditional Random Fields (CRFs) to incorporate

spatial context and improve the delineation of object boundaries.

Semi-Supervised Learning A learning approach that involves a small amount of la-

beled data and a large amount of unlabeled data during training. It combines

supervised and unsupervised learning techniques to improve learning accuracy.

Simple Linear Iterative Clustering (SLIC) An efficient algorithm for superpixel seg-

mentation that adapts k-means clustering to group pixels into superpixels based

on their color similarity and proximity in the image space.

Softmax A mathematical function that converts a vector of numbers into a vector

of probabilities, where the probabilities of each value are proportional to the

exponentials of the input numbers. Often used in the output layer of a classifier

to provide a probabilistic interpretation of class membership.

Spatial Context Information related to the arrangement and relationship of objects

within an image. In semantic segmentation, incorporating spatial context helps

in achieving more coherent and accurate segmentation results by considering

the interactions between neighboring pixels or regions.

Superpixel Segmentation The process of partitioning an image into clusters of pix-

els, called superpixels, which are more perceptually meaningful and homoge-

neous than individual pixels, often used to reduce computational complexity in

image analysis.

Superpixels Clusters of pixels in an image based on their color and spatial proximity,

used to decrease image complexity for more efficient analysis.

207



Glossary

Supervised Learning A machine learning approach where the model is trained on a

labeled dataset, which includes both input data and the corresponding correct

outputs.

Support Vector Machine (SVM) A powerful and versatile supervised learning algo-

rithm used for classification and regression tasks, which constructs a hyperplane

or set of hyperplanes in a high-dimensional space to separate different classes

with as wide a margin as possible.

Ternary Classifier A classification model that categorizes instances into one of three

possible classes.

Unary Potentials In CRFs, unary potentials represent the cost of assigning a specific

label to an individual pixel or superpixel, based solely on the observed data at

that location, without considering the labels of neighboring pixels.

Underfitting A scenario in machine learning where a model cannot capture the un-

derlying trend of the data. Underfitting would occur if the model is too simple

to understand the complex structure of the data.

Unpaired Image Translation A process in image processing, where the goal is to

learn a mapping between two image domains without requiring corresponding

images in each domain, allowing for the transformation of images from one style

or set of characteristics to another in the absence of direct pairings.

Unsupervised Learning A type of machine learning that looks for previously unde-

tected patterns in a dataset with no pre-existing labels and with minimal human

supervision.

Urban Scene Segmentation The process of dividing an urban environment image

into semantically meaningful parts, such as roads, buildings, and vehicles, often

using techniques like CNNs for applications like autonomous driving.
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Vanishing or Exploding Gradient Problems that occur when training deep neural

networks, where gradients can become too small (vanish) or too large (explode),

making the network hard to train and affecting the convergence of the model.
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Appendix I: Additional Segmentation
Examples

In this appendix, we provide additional segmentation examples related to the tech-
niques discussed in Chapter 3. These examples serve to further illustrate the results
and outcomes of our methods. Specifically, we showcase additional samples of road
segmentation achieved through our SVM methods, as explained in Section 3.4.2,
and also present more samples of road segmentation utilizing our SP-CNN method
described in Section 3.4.2. Below are the additional segmentation examples:

Figure 1: Additional samples of road segmentation using our SVM methods from
Section 3.4.2.
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Appendix I: Additional Segmentation Examples

Figure 2: Additional samples of road segmentation using our SP-CNN method from
Section 3.4.2.
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Appendix II: Detailed Generator and
Discriminator Architectural Diagrams

In this second appendix, we delve into the intricate architectural details of the com-
ponents discussed in Chapter 5. These detailed diagrams provide a comprehensive
view of the inner workings of our proposed Generators GX→Y , and FY→X and cor-
responding discriminators DY , DX , each split across multiple pages for clarity. The
diagrams presented here serve as supplementary material, offering readers a closer
look at the design and structure of these crucial elements within our research.
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Appendix II: Detailed Generator and Discriminator Architectural Diagrams

Figure 1: Architecture of our proposed Discriminator DY (part1).
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Figure 2: Architecture of our proposed Discriminator DY (part2).
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Appendix II: Detailed Generator and Discriminator Architectural Diagrams

Figure 3: Architecture of our proposed Discriminator DX (part1).
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Figure 4: Architecture of our proposed Discriminator DX (part2).
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Appendix II: Detailed Generator and Discriminator Architectural Diagrams

Figure 5: Architecture of our proposed Generator GX→Y (part1).
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Figure 6: Architecture of our proposed Generator GX→Y (part2).
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Appendix II: Detailed Generator and Discriminator Architectural Diagrams

Figure 7: Architecture of our proposed Generator GX→Y (part3).
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Figure 8: Architecture of our proposed Generator FY→X (part1).
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Appendix II: Detailed Generator and Discriminator Architectural Diagrams

Figure 9: Architecture of our proposed Generator FY→X (part2).
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Figure 10: Architecture of our proposed Generator FY→X (part3).
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