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ABSTRACT 

1    Introduction 

This work aims to conduct a comprehensive analysis of the kinematics, dynamics, motion planning, and nonlinear control design 

for a basic two-link planar robot arm (Fig. 1). As interest in robotics continues to grow, the two-link arm remains fundamental for 

the development and control of more advanced serial robotic manipulators [1] and humanoid robots [2]. In this study, the system 

dynamic model is first developed using Lagrange’s equations [3] in a non-conservative format. Additionally, an inverse kinematic 

analysis is conducted to determine the target joint variables for executing circular motion in the task plane. The dynamic model is 

then integrated with a feedback controller based on the nonlinear, Sliding Mode Control (SMC) strategy [4]. The tracking 

performance of the proposed controller is tested in closed-loop numerical simulations, in which the target trajectories are set to the 

joint variables obtained from the inverse kinematic study. Furthermore, the dynamic model is slightly altered in the simulation by 

adding 5% extra weights to the links in order to assess the controller's robustness against external disturbances.  

Figure 1: A sketch of the 2-link (RR) planar robot 

Table 1: A list of the model parameters 

Parameter Value Description 

𝐿1, 𝐿2 0.50 m Lengths of the links 

𝐿𝑚1
, 𝐿𝑚2 0.25 m CoM lengths of the links 

𝑚1, 𝑚2 3.00 kg Masses of the links 

𝐼1, 𝐼2 0.25 kg∙m2 Moments of inertias of the links 

𝑟 0.25 m Radius of the circular path 

𝜔 100 °/s End-effector rotational speed 

𝑥𝐶 0.00 m Abscissa of the center point, C. 

𝑦𝑐 0.50 m Ordinate of the center point, C. 

𝜃1(𝑡), 𝜃2(𝑡) − Angular positions of the links 

𝜏1(𝑡), 𝜏2(𝑡) − Torque inputs on the joints 

2    Dynamic Model 

Lagrange’s equations are applied in a non-conservative format to develop the dynamic model for a torque input scenario. As 

Lagrange modeling relies on energy principles, it was essential to derive the expressions for the total kinetic and potential energy of 

the robot, along with the total work done by the non-conservative factors such as the torque inputs. By selecting angles 𝜃1 and 𝜃2

(Fig. 1) as the independent generalized coordinates, the dynamic model can be written compactly in the following matrix form [3]: 

[
𝐴11 𝐴12

𝐴21 𝐴22
] [

�̈�1(𝑡)

�̈�2(𝑡)
] + [

0 𝐵12

𝐵21 0
] [

�̇�1
2(𝑡)

�̇�2
2(𝑡)

] + [
𝑐1
𝑐2

] = [
𝜏1(𝑡)
𝜏2(𝑡)

] (1) 

where, the elements of the matrices 𝐴, 𝐵, 𝑐 in (1) are related to the link inertia, geometry and joint variables (Table 1) as follows: 

𝐴11 = 𝐼1 + 𝑚2𝐿1
2  (2) 𝐵12 = −𝐵21 = 𝑚2𝐿1𝐿𝑚2

sin(𝜃1 − 𝜃2) (5) 

𝐴12 = 𝐴21 = 𝑚2𝐿1𝐿𝑚2
cos(𝜃1 − 𝜃2) (3)                   𝑐1 = (𝑚1𝑔𝐿𝑚1

+ 𝑚2𝑔𝐿1) cos 𝜃1 (6) 

𝐴22 = 𝑚2𝐿𝑚2
2 + 𝐼2 (4)                   𝑐2 = 𝑚2𝑔𝐿𝑚2

cos 𝜃2 (7) 
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3    Inverse Kinematic Analysis  

One possible configuration of the robot for this motion plan is sketched in Fig. 1. Forming a vector chain along the links (𝑂𝐴⃗⃗⃗⃗  ⃗ + 𝐴𝐵⃗⃗⃗⃗  ⃗), 

and a separate vector chain avoiding the links (𝑂𝐶⃗⃗⃗⃗  ⃗ + 𝐶𝐵⃗⃗⃗⃗  ⃗), a Loop Closure Equation (LCE) could be obtained. Separation of the 

horizontal and vertical components of the LCE leads to the following two nonlinear equations for the joint variables (𝜃1, 𝜃2): 

                                                                 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃2 = 𝑟 cos 𝛼(𝑡) (8) 

𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃2 = 𝑦𝐶 + 𝑟 sin 𝛼(𝑡) (9) 

where, 𝛼(𝑡) = 𝜔𝑡 assuming a constant rotational speed, 𝜔 while tracing the circle. The time evolution of the angular positions 

(𝜃1, 𝜃2) of the links are obtained and plotted in Fig. 2 as the “target” trajectories to achieve in the closed-loop control simulations. 

4    Sliding-Mode Control Design and Simulation Results 

To initiate control design, the Lagrange model (1) is first re-organized in the following explicit form: 

Θ̈(𝑡) = 𝑓(Θ, Θ̇, 𝑡) + 𝑢(𝑡) (10) 

where, Θ = [𝜃1 𝜃2]
𝑇 is the state vector,  𝑓(Θ, Θ̇, 𝑡) = −𝐴−1𝐵Θ̇2 − 𝐴−1𝑐, and 𝑢(𝑡) = 𝐴−1𝜏(𝑡) is the control input. To quantify the 

tracking performance, a cost function is also defined by combining position tracking error and velocity tracking error as follows: 

𝑒(𝑡) = (Θ̇ − Θ̇𝑑) + 𝜆(Θ − Θ𝑑)  ,   (𝜆 > 0) (11) 

where, Θ𝑑 refers to the desired (target) trajectories. Note that error-free tracking implies: 𝑒 = 0 (or, �̇� = 0). Hence, after taking the 

first derivative of (11), and then substituting the dynamic model (10), the control input 𝑢(𝑡) is obtained as follows: 

𝑢(𝑡) = Θ̈𝑑 − 𝑓(Θ, Θ̇, 𝑡) − 𝜆(Θ̇ − Θ̇𝑑) − 𝐾sat[𝑒(𝑡)/𝜙] (12) 

The last term on the right side of (12) is added to provide state feedback action to enable control switching for robustness. The 

saturation function eliminates input chattering due to repetitive switching action especially when the states are very close to their 

respective targets [4]. The results of the closed-loop control simulation are provided in Figs. 2-3. Perfect tracking is achieved despite 

the 5% increase on the link masses, which validates the robustness of the proposed control law against external disturbances.  

 

Figure 2: Time evolution of the joint variables 

 

Figure 3: Time evolution of the torque inputs 
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