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ABSTRACT 

1    Introduction 

The 2022 global report on assistive technology of the World Health Organization and the United Nations Children’s Fund (UNICEF) 

estimates that more than 2.5 billion people globally require the use of one or more assistive devices, and this number is expected to 

rise to 3.5 billion in 2050 [1]. The use of assistive devices presents crucial functional benefits for subjects with permanent or 

temporary disability, as they not only improve independence, but also enable and enhance the participation in social activities and 

reduce the need for hospitalization [2]. 

An option for patients with mobility disabilities is to use crutches to restore the mobility lost due to the disability and regain some 

degree of independence [3]. Crutches  are utilized as an aid to locomotion by patients with a variety of pathologies, providing them 

with a good level of mobility and flexibility. They are utilized to increase the patients’ balance and base of support, and to partially 

or fully unload the lower limbs by transferring the body weight to the upper extremities [4]. 

Despite the existing investigation, the study of crutch-assisted locomotion has not become an established routine yet, and difficulties 

still exist in understanding how it may impact clinical interventions. Hence, this work aims to develop an advanced biomechanical 

model of the human movement within the framework of multibody system methodologies in order to study crutch-assisted 

locomotion with focus on the interaction that occurs between the model and the device. The knowledge on this topic may help 

provide promising options for the development of mobility assistive devices tailored to the needs of each subject. 

2    Biomechanical multibody model 

A three-dimensional biomechanical multibody model of the human body (see Figure 1) was developed in MATLAB using an 

in-house code named MUBODYNA. The model is composed of 18 rigid bodies, which are kinematically connected to each other 

using 17 geometrically ideal joints. Table 1 presents a complete description of the bodies and joints of the considered biomechanical 

model. As inferred from the observation of Table 1, the model has a total of 39 degrees of freedom (DoF), which are guided using 

experimental data of one adult female subject acquired at the Lisbon Biomechanics Laboratory of Instituto Superior Técnico. A 

kinematic consistency procedure is applied to obtain kinematically consistent positions and velocities, avoiding constraint violation. 

Table 1: Bodies and joints of the considered biomechanical multibody model 

Body (nr.) Joint (nr.) Joint type DoF Connected bodies 

Lower Trunk (1) Hip (1, 5) Spherical 3 Lower Trunk – Thigh 

Thigh (2, 6) Knee (2, 6) Revolute 1 Thigh – Leg 

Leg (3, 7) Ankle joint complex (3, 7)  Modified universal [5] 2 Leg – Main Foot 

Main Foot (4, 8) Metatarsophalangeal (4, 8) Revolute 1 Main Foot – Toes 

Toes (5, 9) Back (9) Spherical 3 Lower Trunk – Upper Trunk 

Upper Trunk (10) Glenohumeral (10, 14) Spherical 3 Upper Trunk – Humerus 

Humerus (11, 15) Humeroulnar (11, 15) Classical universal 2 Humerus – Ulna 

Ulna (12, 16) Radioulnar (12, 16) Body-follower 0 Ulna – Radius 

Radius (13, 17) Radiocarpal (13, 17) Spherical 3 Radius – Hand 

Hand (14, 18) 

Figure 1: Multibody model  DoF – degrees of freedom 
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3    Crutch-model interaction 

The crutches are introduced into the model using two approaches. First, a fixed joint is considered between the hand and the crutch 

to prevent the relative motion between these bodies, removing six DoF. The kinematic constraint equations are expressed as 
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where P

kr  is the global position vector of point P located on body k, rk is the global position vector of the center of mass of body k,

P

ks is the global position vector of point P located on body k with respect to the body’s local coordinate system. The last three 

constraint equations of Eq. (1) are considered in order to establish a constant orientation between vectors ai, bj, ci, dj, ei and fj and 

their coordinates in the initial configuration (ai,0, bj,0, ci,0, dj,0, ei,0 and fj,0). 
(f ,6) refers to a fixed (f) joint constraint with six (6) 

equations. The contribution of the joint to the Jacobian matrix and right-hand side of the acceleration equations is, respectively, as 
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where I is the identity matrix, (~) is the skew symmetric matrix, (.) is the derivative with respect to time,  is the angular velocity vector. 

It is assumed that (i) point P on the hand is located on its center of mass, (ii) point P on the crutch is located on its handle, and (iii) 

the orientation of the hand relative to the crutch is constant during the analysis and equal to the orientation in the first time instant. 

The second approach utilized in this work to deal with the crutch-model interaction is to use a spherical joint between the crutch 

and the hand. To formulate this joint, the first row of Eqs. (1)-(3) is utilized. In this situation, since relative motion between the two 

bodies is allowed, the number of DoF is adjusted, yielding a biomechanical multibody model with a total of 45 DoF. 

4    Results and discussion 

Figure 2 depicts the z-coordinate of the center of mass of the right crutch, hand and radius. There are no significant differences in 

the crutch and hand plots, but some differences are visible in the radius. Since there is no relative motion between the hand and the 

crutch in the fixed approach, in reality, these two segments act as a unique body of the biomechanical model. In this situation, the 

crutch can be considered an extension of the hand. In the spherical case, three rotational degrees-of-freedom exist between the hand 

and the crutch and, thus, relative movement between these bodies is allowed. The results for the left side are identical. 

(a) (b) (c) 

Figure 2: Evolution of the z-coordinate of the right (a) crutch, (b) hand and (c) radius throughout the gait cycle. 
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