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ABSTRACT

1 Introduction
In this article, we propose a data-driven parameter tuning method for industrial robot systems with input shapers. The demand
for high-speed and high-acceleration in pick-and-place (PaP) tasks, has made residual vibrations increasingly severe, negatively
affecting the working accuracy of industrial robots. The input shaping technique, as an active vibration suppression technology,
can effectively mitigate residual vibrations without altering existing control systems or requiring additional materials, making it
particularly suitable for commercial industrial robots with unchangeable controllers.

Although input shapers have been proven effective for residual vibration suppression, their performance heavily depends on the dy-
namic characteristics of robot systems, i.e., natural frequencies and damping ratios. However, accurately determining these dynamic
characteristics is nearly impossible, whether through numerical modelling or experiments. Furthermore, the natural frequencies of
robot systems are functions of configurations of robots [1], which indicates that simply using the natural frequency of a specific con-
figuration to design an input shaper cannot guarantee optimal performance across motions. While input shapers can reduce residual
vibrations, they also lead to trajectory deformation. Although trajectory shape is less critical than positioning accuracy in PaP tasks,
trajectory deformation may cause robots to encounter singularities or exceed their workspace limits, especially when the trajectory
traverses some sensitive positions [2]. Therefore, designing an optimal input shaper that can not only attenuate residual vibration
but also adhere to constraints on trajectory deformation is of significant practical importance.

Compared to designing input shapers by theoretical metrics, data-based metrics provide a more effective and accurate reflection of
the real-world performance and conditions of robot systems. These metrics also imply that the optimization objectives are unknown,
leading to a black-box optimization problem. Bayesian optimization (BO) is a data-driven, model-free approach that efficiently
identifies the globally optimal design variables within relatively few experiments, where the unknown optimization objectives are
represented by a surrogate model usually Gaussian process regression (GPR) [3]. BO has been applied in various fields, including
controller tuning, hyperparameter optimization, parameter optimization of robots, etc. [4] proposed a sample-efficient joint tuning
algorithm for a contour control system using BO, which can enable a trade-off between tracking accuracy, vibration and traversal
time. [5] presented a model-free, data-driven parameter tuning method for a PID cascade controller by constrained Bayesian op-
timization (CBO), where a barrier-like term was introduced into the objective to guarantee safety requirements. BO leverages an
acquisition function to determine the next evaluation point, where the acquisition function enables a trade-off between exploitation
and exploration [6].

We propose a data-driven parameter tuning approach for input shapers in industrial robot systems performing PaP tasks, aiming to
attenuate residual vibrations and improve positioning accuracy. This approach leverages a data-based metric to reflect the actual
residual vibrations in the systems. We introduce a constraint to restrict the trajectory deformation. We use GPR to model both the
metric and the constraint. We conduct a series of high-fidelity simulations to prove the performance of the proposed auto-tuning
method.

2 Main Results
The residual vibration suppression performance of input shapers depends on the design parameters θ := [ fn,ξ ,kt ]

T ∈ Θ ⊂R3, where
Θ is the feasible set to be predefined,. fn and ξ denote the natural frequency and damping ratio, respectively. kt is a parameter related
to the time lag of the impulse sequence. These parameters also determine the degree of trajectory deformation. Therefore, we encode
an optimization problem with constraints to achieve a trade-off between the residual vibration suppression and trajectory deformation
as follows: minθ∈Θ f (θ) and s.t. g(θ) ≤ qm,, where f (θ) represents the optimization objective that reflects the residual vibration,
while g(θ) is the constraint function that reflects trajectory deformation. qm is the maximum trajectory deformation defined by
users. Data measured by sensors usually contains noise, hence, we assume that the real metric is defined as f (θ) = f̄ (θ)+ε , where
ε ∼ N(0,σ2

ε ) is the measurement noise with zero mean and variance σ2
ε .

The simulation is conducted by Simscape. The Delta robot is required to operate a PaP trajectory, where the total time of the
reference trajectory is 0.8s and the total time of the simulation is set to be 1.2 s. The sampling time is chosen as dt = 0.001s. The

performance metric is defined as follows f̄ (θ) =
√

1
m ∑

m
i=1 ||arv,i||2, where arv,i ∈ R3, i = 1,2, · · · ,m denotes the acceleration vector

of residual vibrations at sampling time t = idt after the trajectory is finished. The standard deviation is selected as σε = 0.001. m is
set to be 100 in this article. The constraint is defined as the difference between the reference trajectory and the trajectory after the

input shaper, i.e., g(θ) =
√

1
ϖ ∑

ϖ
i=1 ||qs,i −qr,i||2, where ϖ denotes the total number of sampling points. qr,i and qs,i are the original

reference trajectory and the trajectory after input shapers at ith sampling point, respectively.
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Figure 1: The predicted mean and experimental values over
iterations.
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Figure 2: Constraints over iterations for two methods.

We use the constrained Expected Improvement (EI) acquisition function to determine the next point to be evaluated [4]. In order
to stop the iteration timely, a stopping criterion is necessary during the real experiment. In addition to setting a fixed number
of iterations, motivated by [5], we introduce the following criterion aCEI,i ≤ η maxi≤κ−1 aCEI,i i = κ,κ + 1,κ + 2, where κ ≥ 2
denotes κth iteration, and η is a positive threshold. The above inequality implies that once consecutive three expected improvements
cannot improve the performance metric effectively compared to all previous iterations, we terminate the optimization process timely.
We use consecutive three iterations instead of one to prevent premature termination before finding the optimal value due to a single
error. Here, we select η as η = 0.02.

Fig. 1 illustrates the convergence of the CBO algorithm and the variance of the constrained EI maximum at each iteration. In
this case, we set the initial data set to contain 5 experiments. The variance is relatively large at the beginning, because GPR lacks
sufficient information for accurate predictions with high confidence. This also explains why the initial prediction is less than zero,
which is obviously unreasonable. As the tuning process converges, the predicted mean closely aligns with the experiment value,
which demonstrates the accuracy and effectiveness of the GPR model after accumulating enough information. The experiment value
increases and decreases twice during the entire optimization process, and then converges to the optimum from 9th iteration. The
optimal parameters that can minimize the performance metric and not violate the constraints are found at 12th iteration. At the
same time, starting from 12th iteration, the following three consecutive constrained EIs meet the stopping criterion. Although the
constrained EI also satisfies the threshold at 10th iteration as well, the optimization process continues thanks to the stopping criterion.
The experiment value at 8th iteration deviates from the optimum to a large degree, likely because the constrained EI adopts a set of
parameters with more exploration information.

The change in constraints g(θ) throughout the tuning process is illustrated in Fig. 2, where the results of normal BO with EI are
introduced for comparison. It can be found that although we use the constrained EI as acquisition function, the constraint is not
always satisfied during the tuning process. Note that the principle of constrained EI is to increase the expected improvement in
regions where the constraint has a high probability of being satisfied, and reduce the expected improvement in the other regions,
which means it is affected by performance of the GPR model for constraints. As the tuning process converges, the results of CBO
are close to the boundary of the constraint without exceeding it. On the contrary, standard BO with EI fails to meet the constraint
requirements.
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