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Abstract

Numerical methods are an integral part of the design process of modern turbomachinery and
contribute to a significant increase in time and resource efficiency. Numerous methods used
for this purpose are based on the assumption of a calorically perfect gas, which enables a suit-
able approximation of the real fluid properties in the context of conventional working media
such as air. In utilising alternative energy sources, such processes are becoming increasingly
relevant for which the choice of working medium can be tailored to the application. The
fluids used due to their special thermophysical properties can only be described inadequately
by the model of the calorically perfect gas and are therefore classified as non-ideal. Since
it is often impossible to take this non-ideality or possible phase change phenomena into ac-
count using established numerical methods, a design of related turbomachinery first requires
the development of suitable methods. The approach for calculating numerical flux terms
presented in this work contributes to that and can be applied to single-phase and two-phase
flows of non-ideal fluids. In addition to high numerical robustness against discontinuities,
it is characterised in particular by its applicability to arbitrary equations of state. Various
modelling approaches can be used to describe the dispersed phase formed during a phase
change in different degrees of detail. Thus, the droplet size distribution can be modelled as
either monodispersed or polydispersed, whereby, in the latter case, it is described through
its statistical moments. Furthermore, the developed method enables the consideration of ve-
locity differences between the phases, which lays the foundation for a detailed investigation
of the movement of the dispersed phase in the flow field. By tabulating the thermophysi-
cal quantities, it is also possible to achieve an increase in calculation time efficiency that is
relevant in the context of the design process. The associated loss in terms of accuracy of de-
scription is minimised by using a Taylor series approach for interpolation. A verification and
validation based on a representative selection of test cases demonstrates the applicability of
the developed method to single-phase and two-phase flows of compressible non-ideal fluids
of different molecular complexity. In particular, the phase change based on homogeneous
non-equilibrium condensation is described in high agreement with results of experimental
investigations.
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T isothermal change of state
t total quantity
tab evaluation using tables
v isochoric change of state
x,y,z cartesian spatial directions
τ partial derivative by dimensionless temperature
Φ Helmholtz based
∞ quantity evaluated for v→ ∞

⊥⊥⊥ orthogonal

0 ideal part
iter iterative routine
k order of statistical moments
n temporal discretisation
r real part
∗ correction to meet the entropy condition
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Mathematical Operators und Constants

Symbol Description
d exact differential
∆ difference
δ unspecific partial differential
∂ partial differential
F symbolic function
˜ Roe averaging
ᵀ transposition
∞ infinity

kb m2 ·kg/
(
s2 ·K

)
Boltzmann constant

NA 1/mol Avogadro constant
R J/(mol·K) universal gas constant
π ratio of a circle’s circumference to its diameter

Abbreviations

Symbol Description
AIAA American Institute of Aeronautics and Astronautics
CDV Converging Diverging Verification
CFD Computational Fluid Dynamics
DLR German Aerospace Center
DNS Direct Numerical Simulation
E-E Eulerian-Eulerian frame of reference
E-L Eulerian-Lagrangian frame of reference
EPGIRoe Explicit Phase Generalised Ideal Roe
GIRoe Generalised Ideal Roe
HLL Harten Lax van Leer
IAPWS International Association for the Properties

of Water and Steam
IWSMP International Wet Steam Modelling Project
LES Large Eddy Simulation
M Mixture based
Mono Monodispersed
MUSCL Monotonic Upstream-centered Scheme for

Conservation Laws
NASA National Aeronautics and Space Administration
NICFD Non-Ideal Compressible Fluid Dynamics
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NIST National Institute of Standards and Technology
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P Phase based
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RANS Reynolds Averaged Navier Stokes
S Slip
sCO2 supercritical CO222

SST Shear Stress Transport
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1 Introduction

While experimental and theoretical fluid dynamics findings can be traced back to the time
of Hellenistic Greece, the first application of numerical methods to investigate flow phe-
nomena can only be proven based on anecdotal evidence. According to this, Lewis Fry
Richardson [121] devised a method for numerical weather forecasting at the beginning of
the 20th century. To calculate a weather forecast for a period of eight hours, he spent six
weeks of his time and failed in the end. His observation of a very high computational effort
prompted him to design a potential solution. This describes a collection of 64,000 people,
each equipped with a mechanical calculator, which he calls a forecast factory. To coordi-
nate the calculation process, Richardson envisaged a person visible to all, who would use
coloured light signals and telegraphic communication techniques. Even the grumpiest user
of today’s computer-aided fluid dynamics (CFD), who sits alone in front of his computer and
can achieve a converged solution for most problems within minutes or hours, will at least
smile internally at this thought. In the next moment, he will probably realise the analogy
to the high-performance computers available to us nowadays. The human computers are re-
placed by processor cores and the coordinator equipped with tools is replaced by a system
for process parallelisation. Even before the first high-performance computers were designed,
researchers were already working on developing computer-aided methods. Contemporary
military conflicts and exploring our planet’s vast expanses were a particular driving force.
With this in mind, NASA employees in Los Alamos developed numerous methods for the
numerical description of currents in the 1960s. The rapidly advancing technical development
of computers made it possible to establish commercial CFD methods in relevant branches of
industry, such as the turbomachinery sector, as from the early 1980s. In the context of the
design and optimisation of modern turbomachinery, numerical solution methods have now
become indispensable. However, their application to fluid flows, characterised by a deviation
of their thermophysical properties from the model of the perfect gas, remains a challenge.
The areas of investigation summarised under the field of Non-Ideal Compressible Fluid Dy-
namics (NICFD) include single-phase flows of non-ideal fluids as well as two-phase flows.
In classic steam turbine applications, condensation effects in the low-pressure stages pose
particular challenges for numerical modelling. Due to the increasing interest in the utilisa-
tion of alternative energy sources, organic fluids and carbon dioxide in a supercritical state
(sCO2) are also becoming the focus of numerical investigations. For such fluids, which are
to be modelled as non-ideal, large gradients of thermophysical quantities can be observed
both in the context of phase change processes and for changes of state in the vicinity of the
critical point. Therefore, the CFD methods for calculating corresponding flows must ensure
a high modelling accuracy of the state quantities with simultaneous robustness against large
gradients in the flow field. The present work aims to contribute to the development of such
numerical methods. The focus is on describing the phase change processes of compressible
non-ideal fluids. To make the approaches presented in this work accessible to the scientific
community and industrial applications, the derived schemes are implemented in the Turbo-
machinery Research Aerodynamic Computational Environment (TRACE). It is a CFD solver
developed by the German Aerospace Centre (DLR). Since TRACE uses an implicit method
for the temporal integration of the system of equations, the methods presented in this the-
sis for determining the convective flux terms are also validated using a three-dimensional
method implemented by the author using an explicit temporal integration approach.
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The present work is structured as follows:
The State of the Art is documented with a focus on the fields relevant to this work and mo-
tivates the research question. The relevance of the investigation of compressible non-ideal
fluids is demonstrated based on their areas of application. Different numerical methods for
describing single-phase and two-phase flows are compared and their suitability for describ-
ing phase change processes is categorised.
The Thermodynamic Description of Compressible Non-Ideal Fluids introduces the ther-
modynamics concepts relevant to this work. For this purpose, a distinction is first made
between thermodynamic state areas and their characteristics. To make these accessible to a
mathematical description, various types of equations of state are presented. The classifica-
tion of a fluid as compressible and non-ideal is based on a selection of suitable parameters.
Before the special properties of the working media investigated in this thesis are highlighted,
the models used to describe the phase change are detailed.
Subsequently, the Numerical Modelling of the systems of equations to be solved to inves-
tigate single-phase and two-phase flows of compressible non-ideal fluids is outlined. The
mathematical derivation of an extension of the Roe scheme for the application to the cal-
culation of single-phase and two-phase flows of different complexity represents the main
contribution of the present work and is introduced for a compact presentation in one dimen-
sion. The way of implementing the resulting schemes in the flow solver TRACE, as well as
methods for the evaluation of numerical solutions, are presented.
The results obtained in the course of a Application of the Model to Various Validation
Cases of single-phase and two-phase flows are discussed. A numerical investigation of the
expansion of CO2 and the organic fluid MDM in Laval nozzles is followed by an analysis
of the compression of CO2 in a supercritical state using the geometry of a sCO2 compres-
sor. The condensation of steam and CO2 in Laval nozzles serves to validate the models
implemented to describe the phase change process. The numerical investigation of a turbine
cascade with steam flowing through it is used to investigate the interactions between the liq-
uid and gaseous phases in detail.
Summary and Outlook serve to categorise the knowledge gained from the present work
and point out possible aspects for further investigations.
The Appendix contains a tabular list of the thermophysical model equations used and an
analysis of their evaluation in the two-phase region as well as the equations and matrices
for an implementation of the presented method for calculating convective flux terms in three
dimensions.



3

2 State of the Art

This thesis aims to contribute to the development of numerical methods for the investigation
of phase change processes of compressible non-ideal fluids. To achieve this, a combination
of the concepts and findings of thermophysics, fluid dynamics, and numerical mathematics is
necessary. Firstly, the areas of application and special properties of compressible non-ideal
working fluids in the context of turbomachinery must be considered. The methods required
for the numerical investigation of such fluids need to enable the description of single-phase
and two-phase flows. An overview of the state of the art represented by the relevant technical
literature is used to select approaches to be pursued in subsequent sections. The investigation
of phase change processes imposes special requirements on the selected numerical method,
which are discussed for the specification of the objective.

2.1 Areas of Application for Compressible Non-Ideal Working Media

Thermal energy conversion into mechanical or electrical energy has historically been achieved
using cycles powered by conventional working media such as steam or air. Usually, the
combustion of a fossil fuel serves as the heat source. The utilisation of other heat sources
is significantly limited by a lack of flexibility with regard to changes in operating condi-
tions. In addition to attempts to overcome these limitations by adapting existing processes,
approaches that develop technologies tailored to the respective process boundary conditions
appear particularly promising. The possibility of choosing the working medium represents
an additional degree of freedom for the latter. Due to their specific thermophysical prop-
erties, compressible non-ideal working media can be found in many of these applications.
In addition to their relevance for compression processes in left-hand circuits of refrigeration
and heat pump technology, their potential is also evident in the context of right-hand Rank-
ine circuits. The working media used for these Organic Rankine Cycles (ORC) are organic
compounds or mixtures. The advantage of organic fluids is largely based on the possibility
of chemically producing an optimal working medium for the application in question. Due
to their low thermal resistance, they are mostly used near low-temperature heat sources. In
addition to the utilisation of industrial waste heat, the areas of application of ORC cycles also
include biomass [119], solar thermal [47] and geothermal power plants [46]. When speci-
fying the optimum fluid properties, operating conditions in terms of prevailing temperature
levels and power requirements can be considered.
Carbon dioxide in a supercritical state is another working fluid that is characterised by its
non-ideality of thermodynamic states. The idea of using this fluid in a Brayton cycle goes
back to the work of Angelino [5]. The liquid-like fluid properties of carbon dioxide near its
critical point make it possible to reduce the power required for compression. Unlike in the
case of ORC applications, sCO2 cycles are found in particular in the environment of high-
temperature heat sources such as heat removal in nuclear power plants [39], industrial waste
heat utilisation [95] and the conversion of concentrated solar energy [108].
The spread of cycles whose working media can be classified as non-ideal is significantly hin-
dered by a lack of experience in the design of their components and a deficit of experimental
evidence. In this respect, the design of turbomachinery is of particular relevance due to its
influence on cycle efficiency, as demonstrated by Colonna et al. [32] and Allison et al. [2].
The extent to which it is possible to adapt the design guidelines established for conventional
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media to organic fluids and CO2 in a supercritical state cannot yet be conclusively clarified
due to the fluid properties that deviate greatly from the model of the perfect gas. To be
able to investigate these questions in more detail, numerical methods for describing flows
of non-ideal fluids are required in addition to experimental approaches. Applying numeri-
cal methods enables a time- and cost-efficient design of turbomachinery and is, therefore, a
necessary criterion for establishing associated energy conversion processes. Numerical in-
vestigations of expansion and compression processes of compressible non-ideal fluids are,
therefore, the focus of numerous current publications.
The non-ideality of organic media in the vicinity of the dew line and the critical point, as
documented by Thompson and Lambrakis [147] for example, is taken by Romei et al. [126]
as an opportunity for comprehensive numerical investigations of the expansion process in
this region of state. They consider the supersonic flow through a turbine cascade with the
organic fluid hexamethyldisiloxane. In contrast to subcritical states, the flow characteristics
for supercritical inlet states deviate strongly from those of ideal gas dynamics. The authors
conclude that established design rules for ORC turbines are applicable for inlet conditions
below the critical point and that further investigation is required for expansions of super-
critical states. The increase in Mach number above an oblique shock in flows of non-ideal
molecularly complex fluids described by Gori et al. represents such a deviation of the flow
characteristics from ideal gas dynamics. For the design of turbines, the underestimation or
overestimation of flow losses due to deviating flow characteristics is of particular importance.
Tosto et al. [151] carry out numerical investigations of an axial turbine cascade for the media
CO2 and hexamethyldisiloxane. They observe a dependence of the deviations of the flow
characteristics on the molecular complexity and the non-ideality of the fluid. They can also
correlate the flow losses that occur with the fluid properties and, as a result, the occurrence
of shock waves and wake vortices in the area of the blade’s trailing edge.
The compression of carbon dioxide in a supercritical state poses three particular challenges
for numerical design. Close to the critical point, the thermophysical quantities exhibit con-
siderable gradients, which require a high degree of accuracy in describing the state. Further-
more, no clear separation of liquid and gaseous states can be made above the critical point.
The continuous second-order phase transition takes place along the Widom line, which is
surrounded by areas of large gradients. Finally, a drop into the two-phase region and the
formation of a second phase can occur within the vane passage of the compressor. Pečnik
et al. [116] and Rinaldi et al. [122] demonstrate these special features of the flow of CO2
in a supercritical state within a radial compressor using numerical investigations. The ge-
ometry considered is the compressor of the experimental sCO2 cycle of the Sandia National
Laboratories [168]. Numerous other authors (see, for example, [3, 132]) carry out detailed
studies using this geometry and show limitations in the form of a poor convergence of the
methods they use and a high computing time requirement for evaluating the thermophysical
quantities. Baltadjiev et al. [15] investigate the influence of the non-ideality of the fluid as
well as condensation on the leading edge of the blade on the performance parameters of the
compressor. For the operating point they investigated, the authors conclude that the ratio of
the time required for droplet formation and the residence time of the droplets in the flow is
too small to induce a relevant influence of condensation on the operation of the compressor.
The need for numerically stable and computationally efficient methods for the description
of compressible non-ideal single-phase and two-phase flows is thus clearly demonstrated by
the above investigations.
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2.2 Numerical Methods for the Description of Single- and Two-Phase Flows

The mathematical description of a flow is based on the conservation laws of mass, momen-
tum, and energy. To be able to describe the flow phenomena occurring in turbomachinery
as comprehensively as possible using numerical methods, the flow is usually modelled as
viscous and compressible. The resulting system of equations is characterised by partial non-
linear differential equations. These equations are also known as Navier-Stokes equations.
To solve them numerically, the way in which turbulent fluctuations in the flow field are taken
into account is of particular importance. In a direct numerical simulation (DNS) of a flow,
the turbulent fluctuations in space and time are fully resolved. Due to the very fine spatial
and temporal resolution of the flow quantities, this requires a high accuracy of the physi-
cal representation and results in a very high demand for computing resources. Large eddy
simulations (LES) reduce the required computing capacity by applying a spatial filter to the
Navier-Stokes equations. This results in a complete resolution of larger vortex structures,
while smaller vortices are only described approximately using fine structure models. The
prioritisation of large-scale over small-scale components in the course of the LES leads to a
reduction in description accuracy compared to the DNS. A temporal or Reynolds averaging
of the Navier-Stokes equations (RANS) represents a further simplification. The turbulent
fluctuations are considered as part of the viscous flux terms using additional terms described
by so-called turbulence models. For numerous turbomachinery applications, the solution of
the RANS equations provides a sufficiently accurate description while requiring significantly
less computing time. Since the focus of the present work is on the advancement of a method
for the calculation of convective flux terms of the Navier-Stokes equations, a limitation to
the RANS equation system appears to be sufficient.
Using a system of hyperbolic partial differential equations such as the RANS equations,
an initial value problem can be formulated as a Riemann problem. This is defined using a
finite volume approach for two neighbouring spatially discrete volumes. The work of Go-
dunov [56] forms the starting point for the development of approaches for solving such initial
value problems, whereby the flux across the volume boundaries is an essential target vari-
able. A large number of authors deal with the formulation of approximate solution methods.
A comparative selection of these can be found in van Leer et al. [90]. The methods differ
significantly in their ability to represent the wave types that characterise the Riemann prob-
lem. The approach of Lax and Friedrich [87] does not contain any information about the
wave structure of the Riemann problem. It is consequently only insufficiently suitable for
the description of shock waves, contact discontinuities, and expansion fans. The Riemann
solver, according to Harten, Lax, and van Leer (HLL) [70], the methods of flux vector split-
ting (cf. exemplary [88]) and the approach according to Rusanov [128] are each able to
capture specific wave types with high accuracy. In contrast, a complete representation of the
wave structure can be achieved with the approaches according to Osher [110], Roe [124] or
further developments of the HLL approach (cf. [149, 43]).
Compared to other methods, the Roe formulation is characterised by a very high accuracy
in the resolution of discontinuities. This is due, in particular, to the absence of additional
numerical damping terms. Therefore, it is preferred to describe complex flow fields with
large gradients of flow quantities. Peery and Imlay [112] document the occurrence of the
so-called carbuncle phenomenon for the Roe scheme, which describes numerical instabil-
ities in the vicinity of a shock under hypersonic conditions. The flux calculation scheme
developed by Roe violates the entropy condition and consequently allows unphysical solu-
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tions. However, this can be corrected by an appropriate limitation involving a modification
of the eigenstructure [69]. The restriction of Roe’s approach to the model of the perfect gas
caused by its derivation poses a further challenge. The linearised system of equations is no
longer uniquely determined when considering an equation of state of a non-ideal fluid. As a
result, the formulation of the pressure partial derivatives contained in the Jacobi matrix and
the resulting definition of the Roe-averaged state are of central importance.
Grossman and Walters [58] retain the relationships derived under the assumption of a perfect
gas. The influence of modelling the gas as non-ideal is limited to determining an equivalent
ratio of specific heat capacities as a function of density and internal energy. Glaister [55],
Vinokur [155] and Liou et al. [93], on the other hand, concentrate on an exact determina-
tion of the partial derivatives of the pressure. However, this means that the derivation and,
thus, the resulting expressions depend on the type of equation of state. Mottura et al. [103]
provide an overview of such adaptations of the Roe scheme for different equations of state.
According to Abgrall [1], the number of Roe-averaged state quantities required increases
with increasing complexity of the equation of state. The robustness of the method adapted
for non-ideal fluids also decreases compared to the original formulation due to the need to
solve complex non-linear equations. To counter this, Cinella [27] proposes a series of spe-
cific simplifications concerning the averaging of the quantities. This work is also based on
an extension of the Roe scheme that attempts to minimise the complexity of the formulation
while retaining the accuracy and robustness of the original approach. The approach referred
to below as Generalised Ideal Roe (GIRoe) [142] can be applied to equations of state of any
complexity. Its special feature is the evaluation of the Roe-averaged speed of sound based
on the selected equation of state.
The methods presented so far for calculating the convective flux terms are limited to single-
phase flows. In the case of two-phase flows, the definition of the convective flux is directly
related to the type of phase modelling and the selected frame of reference of the dispersed
phase. If the conservation equations are formulated separately for each phase using an Eu-
lerian frame of reference, there is at least a doubling of the equations to be solved. In the
approach also known as the two-fluid model, the interaction of phases and, in particular,
phase changes are taken into account by corresponding source terms. Increasing the level of
detail of the modelling by considering different droplet sizes and a fluid-specific equation of
state has a strong influence on the complexity of the Jacobian matrix. As Ndjinga et al. [107]
show, a numerical diagonalisation of the matrix using conventional methods is no longer
possible. Simplifying the Jacobian matrix for a specific equation of state can meet this chal-
lenge [73]. However, the system of equations remains highly complex, and its applicability
is limited to just one working medium.
Another option for modelling the two-phase system is to use a mixing approach, which is
particularly common for flows with low wetness fractions. If the dispersed phase is de-
scribed in a Lagrangian frame of reference, it is possible to subdivide the numerical solution
procedure into conservation and transport equations. The methods for determining the con-
vective flux for single-phase flows can be applied to the system of conservation equations.
The quantities characterising the liquid phase are determined either using source terms [50]
or by coupling a separate system of equations [53]. In both cases, no adaptation of the flux
calculation scheme is necessary, which preserves the robustness of the single-phase method.
A description of the dispersed phase in an Eulerian frame of reference also increases the
number of equations to be solved when applying the mixing approach. At the same time,
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however, considering velocity differences between the phases and parallelisation of the cal-
culation method is simplified. By modelling the droplet size distribution using statistical
moments as proposed by Hill [72] for the formation of a liquid dispersed phase, the number
of additional equations can be significantly reduced compared to a discrete droplet size dis-
tribution. Irrespective of this, however, there is a need to adapt the method for determining
the convective flux terms. Halama et al. [67] formulate such an adaptation for a thermally
perfect gas, while Zhu et al. [175] strive for an adaptation that is independent of the equation
of state. In both cases, the complete system of equations is taken into account. Analogous
to the challenges discussed in the context of two-fluid models, this prevents the application
of equations of state of high complexity. For a perfect gas, Mei and Guha [98] present a
simplification of the system of equations. Only the differential equation of the wetness frac-
tion remains in the main equation system, while the remaining three differential equations of
the moments are solved separately. The coupling of the two systems can be ensured by the
wetness fraction.
The extensions of Roe schemes documented in the literature for application to two-phase
flows of non-ideal fluids are significantly limited by two criteria. These are the restriction to
describing the dispersed phase in a Lagrangian frame of reference and a conflict of objectives
between the lowest possible complexity of the system of equations and the simultaneous use
of highly complex equations of state. Therefore, this thesis aims to present an approach that
can be applied to both Eulerian and Lagrangian frames of reference and minimises the for-
mulation’s complexity, irrespective of the equation of state selected. Here, the accuracy and
robustness of the method are significantly influenced by the numerical implications of the
occurrence of phase change processes.

2.3 Special Requirements for Numerical Schemes in the Context of Phase
Change Processes

When solving the Riemann problem described above, the thermodynamic states in two spa-
tially neighbouring volumes are considered. If there are large local gradients near their
interface, special requirements arise for the solution method. For substantial spatial and tem-
poral differences in the conservation quantities of the flow, numerical oscillations may occur
during the iterative solution, which jeopardise convergence and, thus, stability. In addition
to approaches to avoid or attenuate such oscillations using so-called limiter, which limit the
maximum permissible change, the approach chosen to determine the convective flux terms
itself also influences the method’s stability. In the case of single-phase flows of non-ideal
fluids, large gradients are found in the flow field, especially for changes of state in the im-
mediate vicinity of the critical point as well as the dew line as well as in the vicinity of
discontinuities such as shock fronts.
Phase change processes from the gaseous to the liquid phase are often initiated in turboma-
chinery by spontaneous homogeneous nucleation. A liquid dispersed phase is formed in a
very short time interval. Due to the differences in the thermophysical properties of liquid
and gaseous media, this mechanism also leads to locally large gradients. The spatial extent
of their occurrence is referred to as a condensation front. Its propagation speed is directly
dependent on the speed of sound, which, according to Guha [62], is not uniquely defined for
a two-phase flow in the absence of thermodynamic equilibrium. Since the speed of sound
plays a central role in solving the Riemann problem, its modelling is particularly important.
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To model the phase change process as accurately as possible concerning the condensation
front, the flux calculation scheme must be robust against numerical oscillations analogous to
discontinuities in single-phase flows. On the other hand, it must allow a description of the
state quantities and, in particular, the speed of sound of the non-ideal fluid for both phases
with high accuracy. Due to the specific suitability of the approach according to Roe for
the description of shocks and the extension of this approach for arbitrary non-ideal fluids in
terms of the GIRoe scheme, the present work aims at a further numerical generalisation with
regard to the modelling of phase change processes of varying complexity.
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3 Thermodynamic Description of Compressible Non-Ideal Fluids

To be able to describe the thermodynamic properties of compressible non-ideal fluids, it is
first necessary to introduce basic terms and concepts. For this purpose, except for the repre-
sentations used in Chapter 3.5, only fluid-unspecific representations are shown. As the work-
ing media analysed in this work are all pure substances, the occurrence of chemical reactions
can be negated. However, intermolecular interactions can occur between the molecules of a
pure substance. The strength of the forces causing these interactions is central to the defini-
tion of the term fluid. In the case of a solid, the forces prevailing between the molecules are
so strong that they arrange themselves in a spatial grid and thus assume an almost station-
ary position. Between the molecules of a liquid, on the other hand, there are significantly
lower forces that allow relative movement while maintaining the relative distance to the next
molecule. The relative distance between two gas molecules is even variable due to very small
intermolecular interactions. A fluid is a substance whose intermolecular interactions enable
a relative movement of the molecules. As a result, liquid and gaseous substances can be
summarised under the term fluids. Solids form the complement of fluids [71].
In addition to the microscopic approach used in the above definition, a macroscopic descrip-
tion of fluids is also possible. In this case, a defined volume is considered rather than a
specific number of molecules as before. The choice of the size of this volume is limited by
a lower and an upper threshold case. If the volume is chosen too small, the observed prop-
erties of the fluid are subject to statistical fluctuations due to molecular movements across
the volume limits. If the volume is too large, on the other hand, spatial changes in fluid
properties are no longer adequately resolved. Continuum theory postulates a homogeneous
distribution of fluid properties within the volume for a volume whose size is chosen so that
it just exceeds the lower limiting case. This volume thus forms the smallest possible macro-
scopic representation of the fluid and can also be described as an infinitesimal fluid element.
Each physical volume in space can be interpreted accordingly Figure 1 as a finite set of fluid
elements, whereby the properties of the fluid can be determined for any point in space. [83]
If the boundaries of a thermodynamic system are chosen so that they exactly enclose a fluid
element, the thermodynamic properties of the fluid can be quantified using physical quan-
tities. The system is in a well-defined thermodynamic state if this state can be described
unambiguously at any time by an independent set of variables [10]. Such variables are then
also referred to as state quantities, whereby a distinction can be made between extensive and
intensive quantities. Intensive state quantities are characterised by the fact that their values
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Figure 1: Different perspectives on the concept of a fluid
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are independent of the size of the homogeneous system. The two best-known representatives
of intensive state quantities are the pressure p and the temperature T . [139]
As a fluid element always has a homogeneous distribution of fluid properties by definition,
it can also be classified as a phase, according to Gibbs [51]. If there is more than one phase
within the system boundaries, the system is described as heterogeneous due to the abrupt
changes in thermodynamic properties at the phase boundaries. Three criteria must be met
for the phases of such a heterogeneous system to be in thermodynamic equilibrium. There-
fore, the two phases have the same temperature and are in thermal equilibrium. In addition,
there is mechanical equilibrium between the phases in that the pressure of the phases is the
same. Finally, the chemical potentials µ of the two phases are the same, so a material equi-
librium prevails. [10]
For a system that is in such a thermodynamic equilibrium, Gibbs [51] derives an equation to
determine the degrees of freedom of the system:

F =C+2−P (3.1)

The degree of freedom of the system F is determined by the number of components in the
system C and the number of phases present P. This work considers only single-component
systems so that C takes the value one. This results in a degree of freedom of two for single-
phase systems, while two-phase systems only have a degree of freedom of one.
The degree of freedom can be interpreted using the phase diagram in Figure 2. First, how-
ever, the characteristic points and lines of the phase diagram should be briefly explained.
Figure 2 shows a plot of the reduced pressure pr against the reduced temperature Tr for an
exemplary single-component system. The three phases, solid, liquid, and gaseous, in which
the fluid can exist, are shown as surfaces. The boundary curves between the phases represent
the respective phase equilibria at which coexistence of the two neighbouring phases is possi-
ble. The melting curve separates the solid from the liquid phase, while the sublimation curve
separates the solid from the gaseous phase. The vapour pressure curve separates the liquid
phase from the gaseous phase and is therefore the most relevant for the investigation of fluids.
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Figure 2: Phase diagram of a pure substance in reduced representation
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Its beginning is defined by the triple point at which all three phases are in thermodynamic
equilibrium. The end of the vapour pressure curve is marked by the critical point, whose
state quantities are indicated by the letter c. Thermodynamic states with a reduced pressure
and a reduced temperature greater than one are referred to as supercritical. As explained in
detail in the next section, they cannot be definitively assigned to either the liquid or gaseous
phase due to the lack of a defined phase boundary. [174]
If a single-phase system is considered, both the pressure and the temperature can be var-
ied independently within the limits enclosing this phase. This corresponds to the degree of
freedom of two previously determined using Equation 3.1. If, on the other hand, a heteroge-
neous system consisting of two different phases is considered, a thermodynamic equilibrium
only exists between the two phases if the state of the system lies on the curve separating the
phases. As this boundary curve forms a relationship between pressure and temperature, only
one of the two intensive state quantities can be freely selected, which results in a degree of
freedom of one. If a state is reached that is no longer on the boundary curve, a coexistence
of the two phases is no longer possible. There is then a phase transition to the phase in which
the system’s current state lies.

3.1 Thermodynamic Ranges of State and Their Characteristics

In order to define the thermodynamic state of a single-phase system, an extensive quantity
is required in addition to two intensive state quantities. This quantity, which is often repre-
sented by the mass m or the volume V , only describes the system’s spatial size. If the system
volume is divided by its mass, this results in a further intensive state quantity, the specific
volume v. The reciprocal of the specific volume is known as the density ρ . As two inde-
pendent intensive state quantities define the intensive state of a single-phase system, there
must be a mathematical relationship between the pressure, the temperature, and the specific
volume:

T = F (v, p) (3.2)

Equation 3.2 defines the temperature as a function of pressure and specific volume and is
therefore referred to as the thermal equation of state. The variables contained in it are also
called thermal state quantities. In Figure 3, this relationship is shown by means of a p-
v diagram. Three selected isotherms visualise the temperature. In addition to the critical
isotherm (Tr = 1), the curve of a subcritical and a supercritical isotherm is shown. The
boundary between the liquid and gaseous phases does not take the form of a line but that
of a surface, also known as a two-phase region. Within the two-phase region, assuming
thermodynamic equilibrium for the mixture of liquid and gaseous phase, there is a clear
relationship between pressure and temperature, which is already known from the vapour
pressure curve in Figure 2. The boiling line delimits the two-phase region towards the liquid
phase, while the dew line forms the boundary to the gaseous phase. The liquid phase near
the boiling line is also referred to as subcooled liquid, the gaseous phase in the vicinity of the
dew line as superheated vapour. The point at which the boiling line and the tau line meet is
the critical point. The isotherm of the reduced temperature of one consequently runs through
this point. Suppose the pressure of a system in a gaseous state is raised along a subcritical
isotherm (Tr < 1). In that case, the system enters the two-phase region when the vapour
pressure is reached, forming a liquid phase. The physical processes that characterise this
phase transition are described in detail in Chapter 3.4. It should be noted that a further change
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Figure 3: Ranges of state of a fluid in a reduced p-v diagram

in pressure cannot achieve the crossing of the two-phase region along the isotherms. Since
pressure and temperature are not independent in the two-phase region, an additional quantity
must be used to define the state. Besides the specific volume, the vapour quality x or its
reciprocal value the wetness fraction y is often used for this purpose. Therefore, exemplary
isolines of the wetness fraction are also shown in Figure 3. An increase in pressure within
the system along a supercritical isotherm (Tr > 1), on the other hand, does not lead to an
entry into the two-phase region. When the critical pressure is exceeded, the system reaches
a state known as supercritical. Besides describing the system using thermal state quantities,
caloric state quantities can also be used for this purpose. These are variables that represent
the energy contained in the system. A link between a caloric quantity and two thermal state
quantities is known as a caloric equation of state:

e = F (v,T ) (3.3)

The specific energy e of the system can be formulated in this way using the specific volume
and the temperature. A differentiation of Equation 3.3 yields:

de =
(

∂e
∂T

)
v
dT +

(
∂e
∂v

)
T

dv (3.4)

The exact differential is divided into two terms, each containing a differential coefficient.
Assuming a change of state at constant volume, the second term in Equation 3.4 is omitted.
The remaining differential coefficient is also referred to as the specific isochoric heat capacity
cv and is another quantity characterising the state of the system:

cv =

(
∂e
∂T

)
v

(3.5)

In addition to the specific internal energy, the specific enthalpy h is also one of the caloric
state quantities. It results from the addition of the specific energy and the product of pressure
and specific volume:

h = e+ pv = F (p,T ) (3.6)
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Enthalpy can also be described by means of a caloric equation of state as a function of two
thermal state quantities. A differentiation analogous to Equation 3.4 leads to the definition
of another state quantity, the specific isobaric heat capacity cp:

cp =

(
∂h
∂T

)
p

(3.7)

The second law of thermodynamics introduces the concept of entropy to assess the reversibil-
ity of changes of state. The specific entropy s is a state quantity often considered separately
from the classical thermal and caloric state quantities. If the entropy is formulated as a func-
tion of two thermal state quantities, this relationship is referred to as an entropy equation of
state:

s = F (p,T ) (3.8)

To fully describe the thermodynamic properties of a system, a set of thermal, caloric and
entropy equations of state can be used. According to Gibbs, an equation that combines the
three types of equations of state in a single formulation is known as a fundamental equation:

e = F (s,v) (3.9)

Two other fundamental equations, which are at the centre of the following considerations,
can be derived by applying a Legendre transformation [9] to Equation 3.9:

f = F (v,T ) = e−T s (3.10)

g = F (p,T ) = h−T s (3.11)

Here, f denotes the specific Helmholtz energy, while g defines the specific Gibbs energy. The
chemical potential introduced in the context of the definition of thermodynamic equilibrium
is identical to the molar Gibbs energy in the case of a single-component system. Therefore,
the classification of phase transitions according to Ehrenfest can be formulated in the present
case using the differentials of the Gibbs energy [81]. Following Ehrenfest [42], a first-order
phase transition is present if a discontinuity is formed for one of the first partial derivatives
of the Gibbs energy at the phase boundary. According to Table 1, the first-order derivatives
of the Gibbs energy can be expressed by the specific volume and the entropy.
In Figure 3, such a discontinuity of the specific volume is recognisable in the form of the sub-
critical isotherms (Tr < 1) running vertically in the two-phase region. Therefore, the order of
the phase transition between the gaseous and the liquid phase along the vapour pressure curve
is one. According to Ehrenfest’s classification, a second-order phase transition is present if
the first-order derivatives do not show any discontinuity but the second-order derivatives do.
A second-order phase transition can thus be identified according to Table 1 on the basis of a

Table 1: First and second order derivatives of the specific Gibbs energy

First order
(

∂g
∂ p

)
T
= v

(
∂g
∂T

)
p
=−s

Second order
(

∂ 2g
∂ p2

)
T
=−vκT

(
∂ 2g
∂T 2

)
p
=−

cp

T

(
∂ 2g

∂ p∂T

)
= vαp
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discontinuity in the specific isobaric heat capacity, the isothermal compressibility κT or the
thermal isobaric expansion coefficient αp. According to Ansermet and Brechet [6], such a
discontinuity exists at the critical point. The description of the supercritical state with regard
to the phases present thus requires detailed consideration.

Supercritical range of state

In the supercritical range of state, it is no longer possible to distinguish between the liquid
and gaseous phases due to the lack of a first-order phase transition. However, both experi-
mental (see [109], [133]) and theoretical (see [45], [23]) investigations show that liquid-like
and gas-like states can be distinguished in this range. According to Banuti et al. [16], the
approaches to distinguishing states in the literature can be divided into microscopic and
macroscopic descriptions.
The methodology for analysing the types of states at the microscopic level is based on molec-
ular motion. As already mentioned in the definition of the term fluid, there are stronger in-
termolecular interactions between the molecules of a liquid phase than in the gas phase. As
a result, gas molecules move along a straight trajectory until they collide with another gas
molecule. The movement of the molecules in the liquid phase, on the other hand, is domi-
nated by the stronger intermolecular forces. This results in a diffusive movement similar to
the movement of gas molecules and an oscillatory behaviour similar to that of solids [28].
An increase in temperature or a decrease in pressure leads to a decrease in the relaxation
time, which is a parameter for describing the characteristics of these oscillations [23]. If the
relaxation time approaches its minimum, the oscillatory component of the molecular motion
is eliminated. The state points, which are characterised by a minimum of the relaxation time,
offer a possibility to define the so-called Frenkel line [28]. In addition to this formulation,
there are also approaches that describe the points of the Frenkel line using a relationship be-
tween the isochoric heat capacity of an atom and the Boltzmann constant kb [24]. However,
according to Pipich and Schwahn [117], different definitions and methods for determining
the defining quantities also result in different curves of the Frenkel line. Irrespective of this,
the Frenkel line allows fluid states to be classified even at a great distance from the critical
point due to its definition for arbitrarily high pressures and temperatures.
For the description of supercritical states near the critical point, which are particularly rel-
evant for this work, however, macroscopic approaches are mainly used. These investigate
the pressure and temperature dependence of the formation of molecular clusters based on
density fluctuations. According to Widom [166], the spontaneous density fluctuation can be
used to describe the size of the clusters using a so-called correlation length. The local den-
sity fluctuates as a function of time around a certain mean value. The set of points in which
the local density corresponds to this mean value at a certain point in time forms the basis of
a geometric definition of the correlation length [127]. The second derivatives of the Gibbs
energy form thermodynamic response functions of this correlation length. The link between
the response functions and the subdivision of the supercritical range of states into liquid-like
and gas-like states can be made using Figure 4.
In the left part of the figure, the reduced pressure is plotted against the reduced temperature
for a region surrounding the critical point. The critical point marks the end of the vapour
pressure curve and, thus, the section for which a distinction between the states is to be in-
vestigated using the response functions. If, as an example, a reduced pressure of pr = 1.2
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is selected, the first and second derivatives of the Gibbs energy can be determined along the
reduced temperature. A plot of the quantities related to their respective maximum value oc-
curring in the definition range over the reduced temperature can be found on the right-hand
side of Figure 4. The curves of the first derivatives normalised in this way are shown in black
on the left-hand ordinate, while the curves of the second derivatives are visualised in red on
the right-hand ordinate. The curves of the specific volume and the specific entropy show no
discontinuity in the temperature interval shown. This confirms the absence of a first-order
phase transition in the supercritical state range. The second-order derivatives also show no
discontinuity so that no second-order phase transition can be assumed. However, a maximum
can be recognised for all three curves at a value of the reduced temperature of approximately
Tr = 1.03. Determining these maxima for further values of the reduced pressure and plotting
the resulting pairs of values in a pressure-temperature diagram leads to the so-called Widom
lines [171]. Two Widom lines are shown in the left part of Figure 4.
The lower of the two curves represents the maxima of the specific isobaric heat capacity eval-
uated for different temperatures at constant pressure. If the maxima of the specific isobaric
heat capacity are analysed for different pressures at constant temperature, a different shape
of the Widom line results. As Brazhkin et al. [25] show, the curves also differ depending
on the selected response function. The deviation between the Widom lines increases with
the distance to the critical point. This also becomes clear for the two curves shown. Up to
the point of intersection with the isobars selected as an example, the two Widom lines show
a very similar shape but diverge as the distance from the critical point increases. Also, the
response functions for arbitrarily high pressures and temperatures do not necessarily show
corresponding maxima. The Widom lines are therefore not suitable for differentiating be-
tween the states at a large distance from the critical point, but provide sufficient information
in the range shown. Consequently, the Widom line of the specific isobaric heat capacity is
analysed at constant pressure for the further investigations in this work to subdivide the su-
percritical state region. The liquid-like states are labelled as liquid, and the gas-like states as
gaseous, for clear naming, as illustrated in Figure 4.
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Figure 4: Subdivision of the supercritical range of states into liquid and gaseous (left) and curves of
the derivatives of the Gibbs energy for a reduced pressure of pr = 1.2 (right)
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The states of the system considered so far are all characterised by the existence of a stable
thermodynamic equilibrium. The term stable characterises a state of equilibrium that returns
to its original state following a disturbance. On the other hand, an unstable thermodynamic
equilibrium exists when a disturbance of the system leads to a permanent change in the state.
Two influencing factors play a unique role in distinguishing between stable and unstable
equilibrium states. Firstly, the extent of the disturbance must be assumed to be relatively
small, as otherwise, all real equilibrium states could be classified as unstable. Secondly, the
time scale on the basis of which the system behaviour is observed must be selected accord-
ing to a time scale characteristic of the system. If an equilibrium state is only stable for very
small perturbations and time scales, it is referred to as metastable. Since metastable states
are particularly present in the context of phase change processes, a detailed consideration of
the metastable range of states is necessary for further explanations.

Metastable range of state

According to Gibbs [51], a stable thermodynamic equilibrium exists when the system is
in a state of maximum entropy. Such a global maximum of entropy is equivalent to a global
minimum of Gibbs energy [38]. Equilibrium states in which there is a local minimum of
Gibbs energy are referred to as metastable. If a small and very short-lasting disturbance oc-
curs in such a system, the system returns to its original metastable state [10]. However, if the
perturbation is more significant or lasts longer, the system returns to a stable thermodynamic
state. Mathematically, the existence of a minimum of a function is defined by a necessary
and a sufficient criterion:

δg
∣∣

p,T = 0 Necessary criterion

δ
2g
∣∣

p,T > 0 Sufficient criterion
(3.12)

The sufficient criterion can also be formulated as follows using Table 1:

δ
2g
∣∣

p,T =

(
∂ 2g
∂ p2

)
T
=−vκT =

(
∂v
∂ p

)
T
=−

(
∂ p
∂v

)
T
> 0 ⇔

(
∂ p
∂v

)
T
< 0 (3.13)

A state of stable or metastable equilibrium of a phase thus exists if the pressure decreases
with increasing specific volume along an isotherm. A graphical interpretation of this defi-
nition can be made using Figure 5. The sufficient criterion from Equation 3.13 is fulfilled
for all liquid and gaseous state points along the isotherm shown. Beyond the two-phase re-
gion, only stable states are found. It should be noted that the isotherm is extrapolated into
the two-phase region to illustrate the validity of the stability criterion for metastable states
beyond the boiling or dew line. The black dashed lines can thus be physically interpreted as
spontaneous changes of state on a very short time scale. This corresponds to the definition
of the metastable state according to Skripov [134], which assumes a crossing of the vapour
pressure curve without the onset of a phase change. As soon as the partial differential from
Equation 3.13 reaches a value of zero, an unstable state is present, which is exclusively the-
oretical due to the endeavour of every system to reach a stable equilibrium state.
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The resulting criterion for distinguishing between metastable and unstable states can also
be formulated based on isothermal compressibility:

δ
2g
∣∣

p,T =

(
∂ 2g
∂ p2

)
T
=−vκT = 0 ⇔ κT = 0 (3.14)

The line connecting all state points that fulfil this criterion is referred to as spinodal or spin-
odal limit. There is one such limit for the liquid phase and one for the gaseous phase. The
state region of the metastable liquid phase can be identified in Figure 5 as the blue area be-
tween the boiling line and the spinodal limit of the liquid phase. Similarly, the metastable
gas phase can be found in red between the dew line and the spinodal limit of the gas phase.
The area within the two-phase region that lies beyond the boundaries of the metastable state
regions is called the unstable region [30]. In this region, the separate existence of one of the
two phases is impossible, even for a short time.
It can be observed that the boundaries of the metastable state regions approach the bound-
aries of the two-phase region with increasing pressure. At the critical point, the spinodal
limits of the liquid and gas phases meet the boiling and dew line. In the immediate vicinity
of the critical point, the extent of the metastable state regions thus tends towards zero.
In the supercritical range, the fluid states can be divided into liquid and gaseous according
to the definition of the Widom line given above. However, the existence of a spinodal limit
according to Equation 3.14 beyond the critical point can neither be found in the right part of
Figure 4 nor in the literature (cf. [23]). Also, the strictly monotonically decreasing course
of the supercritical isotherm in Figure 3 does not indicate a violation of the criterion from
Equation 3.12, so that the supercritical range of states can be assumed to be thermodynami-
cally stable.
All state quantities introduced so far in this subchapter can be uniquely defined, taking into
account the respective phases present in the entire range of states of the fluids. This does not
apply to the state quantity of the speed of sound, so its definition requires a detailed descrip-
tion.
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Definition of speed of sound

The speed of sound a describes the speed of propagation of a sound wave in a medium.
According to Baehr and Kabelac [10], a sound wave is a periodic longitudinal pressure and
density fluctuation of small amplitude. Similar to the consideration of metastable states,
the speed of sound relates to a disturbance occurring in the system. It is assumed that two
properties characterise this disturbance. Firstly, the magnitude of the pressure fluctuation is
much smaller than the value of the equilibrium pressure of the system, so that the distur-
bance has a sufficiently small amplitude. Secondly, the short-term change in state caused
by the fluctuation should be reversible. A wave characterised in this way propagates in the
fluid through the collision of moving molecules. Intermolecular interactions between the
molecules subsequently have a strong influence on the speed of sound [49]. Due to the pos-
tulated reversibility, the propagation of the disturbance in the fluid can be modelled as an
isentropic process. Under this assumption, the thermodynamic state of the system and the
sound wave itself are not influenced by the propagation. The speed of propagation of a sound
wave modelled in this way defines the isentropic speed of sound:

a =

√(
∂ p
∂ρ

)
s

(3.15)

Based on this formulation as a function of two independent intensive quantities, the associ-
ation of the speed of sound with the thermodynamic state quantities becomes obvious. An
evaluation of the expression in Equation 3.15 is initially conceivable for any fluid state. How-
ever, suppose a second phase is formed, as is possible for states within the two-phase region.
In that case, the above modelling of wave propagation is not necessarily sufficient due to the
system’s heterogeneity. As according to Radovskii [120], the propagation of the sound wave
in such a system is additionally influenced by the interaction of the phases, it is recommended
to take this into account for modelling. He specifies the interaction as the simultaneous oc-
currence of phase change processes, heat transfer, and momentum exchange between the
phases. Petr [113] describes these processes induced by the propagation of the sound wave
as irreversible. Depending on its frequency, the acoustic wave thus causes different degrees
of disturbance to the thermal and mechanical equilibrium within the system. According to
Bakhtar et al. [14], the reciprocal interaction of the sound wave and the two-phase mixture
can also influence the stability of the thermodynamic equilibrium. The determination of the
speed of sound for states within the two-phase region is, therefore, directly dependent on the
phase change processes that occur. A detailed analysis is hence carried out in the context of
the numerical application.

3.2 Mathematical Description of State Quantities

So far, the thermodynamic state quantities have only been described using symbolic rela-
tionships. However, in order to be able to calculate the state of a fluid as part of numerical
investigations, it is necessary to introduce concrete modelling. The derivation of a definition
of compressible non-ideal fluids should take the form of a successive delimitation.
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A fluid is described as incompressible if its specific volume remains almost constant under
the influence of an external force or pressure.

v = const. (3.16)

Consequently, there is no pressure or temperature dependence of the specific volume or the
density. The isothermal compressibility of a fluid modelled in this way also takes on the
value zero. The model of the incompressible fluid represents a strong idealisation, which is
mainly applied to liquids. Therefore, a fluid is described as compressible if the model of the
incompressible fluid cannot suitably describe it. The specific volume of compressible fluids
has to be determined as a function of pressure and temperature. [139]

Model of perfect gas

Another substantial simplification of real fluids is the model of perfect gases. According
to its name, this can be applied to gaseous fluids whose state is characterised by a very low
static pressure. The thermal equation of state of perfect gases is also known as the law of
ideal gases:

pv = RsT with Rs =
R
M

(3.17)

The quotient of the universal gas constant R and the molar mass M defines the specific gas
constant Rs. The law of ideal gases combines the laws of Boyle-Mariotte, Charles, and Avo-
gadro, whereby the first two are only valid for p→ 0. Boyle-Mariotte’s law is based on three
assumptions of the kinetic theory of gases, which can, therefore, also be used to specify the
model of perfect gases at the molecular level. Accordingly, the gas consists of molecules that
move in random directions in space. In addition, the size of the molecules can be neglected
due to their relative spatial distance from each other. Ultimately, the interaction between
the molecules is limited to elastic collisions, which can be interpreted as a negation of inter-
molecular interactions. [8]
The caloric equation of state of perfect gases can be derived using Equation 3.4. As Gay-
Lussac and Joule experimentally prove, the specific internal energy of perfect gases at con-
stant temperature shows no dependence on the specific volume. Accordingly, the second
differential coefficient can be set to zero, and the result is:

de = cvdT (3.18)

By combining this equation with a reformulation of Gibbs’ fundamental equation from Equa-
tion 3.9, the change in entropy of a perfect gas can be written as follows:

ds =
1
T

de+
p
T

dv = cv
dT
T

+Rs
dv
v

(3.19)

The equations of state of the perfect gas can thus be completely defined on the basis of
a specific heat capacity and the specific gas constant. From the definition of enthalpy in
Equation 3.6, a further relation characteristic of a perfect gas can also be derived:

cp = Rs + cv (3.20)
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The definition of specific heat capacities leads to a subdivision of the model of perfect gases
into two groups. A gas is described as calorically perfect if its specific heat capacities assume
a constant value for any temperature. The monatomic noble gases can be described with
sufficient accuracy using this model assumption. However, if the specific heat capacities
are temperature-dependent, the gas modelled this way is described as thermally perfect. It
should be noted that this distinction does not affect the validity of the law of ideal gases.
The derivation of an expression for the speed of sound of perfect gases uses the formulation
of Gibbs’ fundamental equation from Equation 3.19, whereby the specific enthalpy is used as
the caloric defining quantity instead of the specific internal energy. Inserting Equation 3.17
and Equation 3.20 into this equation under the isentropic assumption valid for the speed of
sound results in:

0 = cv
d p
p

+ cp
dv
v

⇔ d p
p

=−
cp

cv

dv
v

=−κ
dv
v

(3.21)

The ratio of specific isobaric and isochoric heat capacity is referred to as the isentropic
exponent of the perfect gas κ . A reformulation of the definition of the speed of sound from
Equation 3.15 with regard to the specific volume in combination with Equation 3.21 leads to
an expression for the isentropic speed of sound of perfect gases:

a =

√
−v2

(
∂ p
∂v

)
s
=
√

κ pv =
√

κRsT (3.22)

This formulation shows that knowledge of the static temperature is sufficient to determine the
speed of sound of a perfect gas. If the state quantities of a fluid are all known, the deviation
from the model of perfect gases can be quantified using a rearrangement of Equation 3.17:

Z =
pv

RsT
(3.23)

A compressibility factor Z of one thus indicates complete agreement with the model assump-
tions of the perfect gas. However, most fluids show a deviation of the compressibility factor
from one, at least in parts of their region of state. For this reason, van der Waals [157] devel-
oped the first thermal equation of state, which, on the one hand, allows such a deviation from
the model of the perfect gas and, on the other hand, can describe both liquid and gaseous
states.

Cubic equations of state

The van der Waals equation of state is the best-known representative of the so-called cu-
bic equations of state. The name of this group of model equations is based on their property
that a rearrangement to the specific volume results in a third-degree function. The deviation
from the model of perfect gases is taken into account through correction factors:(

p+
a
v2

)
(v−b) = RT (3.24)
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The coefficients a and b are called van der Waals coefficients. A comparison of the structure
of Equation 3.24 and Equation 3.17 allows a physical interpretation of the correction factors.
The term a/v2 represents the consideration of intermolecular forces and is also referred to as
cohesive pressure. The coefficient b represents a correction for the volume of the molecules
and is therefore also known as the covolume. Other representatives of the cubic equations
of state, such as the approaches according to Peng-Robinson or Soave-Redlich-Kwong, in-
troduce an additional correction factor. This acentric factor takes into account a deviation of
the molecular structure from the shape of a sphere. An exemplary van der Waals isotherm is
shown in Figure 6 in comparison to the hyperbola that characterises the law of ideal gases.
Unlike the isotherm of the perfect gas, the van der Waals isotherm passes through the two-
phase region. Therefore, a distinction between liquid and gaseous states requires a definition
of the boiling and dew line. This can be done using a criterion named after Maxwell:

gs,l = gs,g ⇔ ps(vs,g− vs,l) = fs,l− fs,g =
∫ vs,g

vs,l

pdv (3.25)

As introduced above, the Gibbs energies of the liquid and gaseous phases are equal along the
vapour pressure curve for a one-component system in thermodynamic equilibrium. States
along the vapour pressure curve are also referred to as saturation states and are indexed be-
low by a s in combination with the phase. Quantities of the liquid phase have the index l,
while the index g characterises the gas phase. According to the expression in Equation 3.25,
the saturation vapour pressure can be determined iteratively using a geometric construction.
The area below the isobaric connection line between the specific volume of the saturated liq-
uid and that of the saturated gas phase must equal the area below the van der Waals isotherms
in this volume interval [129]. This is equivalent to an equality of the areas coloured grey in
Figure 6. The only isobar that fulfils this criterion is that of the saturation vapour pressure,
meaning that it is uniquely defined by the Maxwell criterion. The Maxwell criterion is a
generally necessary criterion for the formulation of thermal equations of state, which should
be valid in the entire state region of a fluid [10]. This becomes particularly relevant in the
context of multi-parameter equations of state.

Critical point
Boiling line
Dew line

Isotherm perfect gas
van der Waals isotherm

Specific volume

S
ta

ti
c 

pr
es

su
re

Figure 6: Comparison of the model of perfect gases and the van der Waals equation of state using
isotherms in a p-v diagram



22 Thermodynamic Description of Compressible Non-Ideal Fluids

Multi-parameter equations of state

While the law of ideal gases and the cubic equations of state are physical modelling ap-
proaches for describing the thermal state quantities of the fluid, multi-parameter equations
of state are fundamental equations that are approximated on the basis of experimental data.
Pollak [118] formulates the first such fundamental equation, which is defined for the entire
state region of a fluid for the medium water:

Φ =
f

RsT
(3.26)

For this purpose, he introduces the dimensionless parameter Φ, referred to as the dimension-
less Helmholtz energy. Splitting this parameter into two terms results in:

Φ(δ ,τ) = Φ
0(δ ,τ)+Φ

r(δ ,τ) with δ =
vc

v
=

ρ

ρc
∧ τ =

Tc

T
(3.27)

Here, Φ0 describes the so-called ideal part, while Φr represents the residual part of the di-
mensionless Helmholtz energy. According to the definition of the Helmholtz energy in Equa-
tion 3.10, this is formulated using the specific volume and the temperature. In Equation 3.27,
the dimensionless density δ and the dimensionless temperature τ are therefore independent
variables. Any state quantities of the fluid can be determined using expressions depending
on the dimensionless Helmholtz energy and its derivatives. For example, the enthalpy can be
written as:

h(δ ,τ) = RsT
(
1+ τ(Φ0

τ +Φ
r
τ)+δΦ

r
δ

)
(3.28)

The use of τ as an index denotes the partial derivative with respect to the dimensionless
temperature, while the partial derivative for the dimensionless density is indexed by δ . The
Maxwell criterion from Equation 3.25 for defining the saturation quantities can also be ex-
pressed using the dimensionless Helmholtz energy and must be complied with when speci-
fying the fundamental equation:

ps

RsT

(
1

ρs,g
− 1

ρs,l

)
− ln

(
ρs,l

ρs,g

)
= Φ

r(δs,l,τ)−Φ
r(δs,g,τ) (3.29)

In order to be able to evaluate this equation or Equation 3.28, explicit expressions for the
ideal and the residual part of the dimensionless Helmholtz energy are required. The ideal
part can be determined using the values of the specific enthalpy and the specific entropy in a
state defined as a reference, as well as the temperature dependence of the specific isochoric
heat capacity as a function of dimensionless temperature and density. The data required for
this must be collected experimentally. The formulation of the residual part is also based on
measurements of thermodynamic state quantities. However, the amount of data required is
significantly larger than in the case of the ideal part, as not only the specific isochoric heat
capacity must be considered, but almost all state quantities of the fluid. The function for the
residual part of the fundamental equation determined from this approximation of the mea-
sured values is subsequently a polynomial of a higher degree. The inclusion of measurement
data along the vapour pressure curve and in the immediate vicinity of the critical point has a
considerable influence on the accuracy of the model.
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In addition to such Helmholtz-based equations of state, it is also possible to formulate equa-
tions of state based on the Gibbs energy. This type of equation of state uses pressure and
temperature as independent variables in accordance with the definition in Equation 3.11.
The procedure for determining the functional relationship is the same as that described for
Helmholtz-based approaches. However, a Gibbs-based equation of state is not able to cover
the entire range of states of fluids, as pressure and temperature are not independent along
the vapour pressure curve. In the context of fluids, Gibbs-based approaches can, therefore,
only be found in combination with Helmholtz-based equations of state, whereby the region
of state is divided into individual areas. [9]
The model types of equations of state presented in this subsection show that the complexity
of the description of thermodynamic state quantities depends on the model. With an increas-
ing number of parameters used to characterise the fluid, the accuracy of the description of
the actual state increases. While the law of ideal gases only takes into account the molar
mass of the fluid, cubic equations of state already utilise at least two fluid-specific param-
eters in the form of correction factors. Multi-parameter equations of state are based on the
approximation of experimental data sets and consequently achieve the highest degree of ac-
curacy. Accordingly, the state quantities resulting from their evaluation show a very high
degree of agreement with the real thermodynamic quantities. However, their formulation is
complex compared to the other two physical models. If fluids are analysed whose thermal
state quantities can be described in good approximation by means of the law of ideal gases,
it does not appear to make sense to use equations of state of higher complexity. However, if
the state quantities calculated using the law of ideal gases show considerable deviations from
the experimentally determined quantities, the fluids in the considered state range are labelled
as non-ideal. Modelling of the thermal state quantities, which takes this non-ideality of the
fluid into account, is then necessary. The extent of the deviation determines the complexity
level of the equation of state to be selected.

3.3 Parameters for Classifying a Fluid as Non-Ideal

In order to quantify such a deviation and subsequently classify a compressible fluid as non-
ideal, selecting suitable parameters is crucial. In addition to the thermodynamic properties
of the fluid, it seems sensible to include the molecular structure as a criterion in the param-
eter selection. In this way, in addition to the assessment dependent on the state quantities, a
categorisation based on material properties is also possible.

Compressibility factor

The compressibility factor, already defined in Equation 3.23, is the simplest way to quan-
tify a deviation from the law of ideal gases. For this purpose, the terms of the left and right
sides of the thermal equation of state of perfect gases are divided. The factor defined in this
way takes the value one for a perfect gas. If the compressibility factor is determined for any
given state of a fluid, it can have values both greater and less than one. To illustrate this,
the compressibility factor for different reduced temperatures is plotted against the reduced
pressure in Figure 7. Generally, gases at low pressures have a range of states in which the
compressibility factor is approximately one. The interactions between the gas molecules are
only very weak here due to the large relative distances between the molecules. On the other
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hand, compressibility factors greater than one can be detected for very high pressures, which
indicates the presence of a larger specific volume than in the case of a gas modelled as per-
fect. This is due to the dominance of repulsive intermolecular forces in the high-pressure
range, which can be attributed to the decrease in relative molecular distances with increasing
pressure. In the transition range between low and high pressures, the compressibility factor
shows a strong temperature- and fluid-dependent behaviour. While some fluids have com-
pressibility factors greater than one for any temperature, most fluids have compressibility
factors less than one at certain temperatures. For the latter group, attractive intermolecular
forces dominate in a defined state range. [8]
In order to analyse the influence of temperature on the compressibility factor, it is helpful
to make a division based on the critical isotherm, as described in Figure 7. As can be seen
from the left-hand side of this figure, the compressibility factor increases with temperature
at constant pressure in the supercritical case (Tr > 1). The formation of a transition region
with compressibility factors less than one can only be observed up to a certain temperature,
which is referred to as the Boyle temperature. Above this temperature, the profile of the
compressibility factor along the pressure only shows values greater than one, as is also the
case for the uppermost isotherm. The course of the critical isotherm (Tr = 1) is characterised
by large gradients of the compressibility factor and represents the boundary to the subcritical
isotherms (Tr < 1) in the right part of Figure 7. Unlike the supercritical isotherms, these have
a discontinuity, which assigns two different compressibility factors to a pair of pressure and
temperature and represents the two-phase region. The discontinuities of the isotherms can
thus be used to define equivalent curves of the tau and boiling lines. The difference between
the compressibility factors at the boundaries of the two-phase region decreases with increas-
ing subcritical temperature and reaches a value of zero at the critical point. In the range of
supercritical pressures, the subcritical isotherms tend towards the same value as the critical
isotherm. Using Figure 7, it can be seen that the lowest compressibility factors of gaseous
fluid states can be found in the immediate vicinity of the dew line and near the critical point.
These areas are, therefore, particularly relevant for the investigation of compressible non-
ideal fluids.
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Figure 7: Graph of the compressibility factor over the reduced pressure for supercritical (left) and
subcritical (right) isotherms
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Isentropic pressure-volume exponent

Another parameter that can be used to classify a compressible fluid as non-ideal is the isen-
tropic pressure-volume exponent κpv. According to Kouremenos and Kakatsios [85], this
is an expression equivalent to the isentropic exponent of the perfect gas. If the entropy is
expressed as a function of pressure and specific volume, an exact differential can be formu-
lated:

ds =
(

∂ s
∂ p

)
v
d p+

(
∂ s
∂v

)
p
dv (3.30)

The isentropic change in pressure over the specific volume can be derived by applying the
Maxwell relations [96] according to this equation:
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Using the definition of the isentropic exponent based on Equation 3.21, the isentropic pressure-
volume exponent of non-ideal fluids can now be defined:

κ =− v
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(3.32)

If the law of ideal gases is inserted into this expression, the isentropic pressure-volume ex-
ponent becomes the isentropic exponent of the perfect gas, which confirms the consistency
of the method. Unlike the isentropic exponent of perfect gases, the value of the isentropic
pressure-volume exponent varies along a change of state. Wheeler and Ong [161] there-
fore derive an alternative expression for the isentropic pressure-volume exponent, which
describes the deviation from the isentropic exponent using a statistical correction factor. In
order to quantify such a deviation, Giuffré and Pini [54] propose using an averaged value.
Both the isentropic exponent and the isentropic pressure-volume exponent take on exclu-
sively positive values due to their definition. However, the value range of the two exponents
differs significantly. While the isentropic exponent adopts values greater than one in the
entire range of states of a fluid, values less than one can also be observed for the isentropic
pressure-volume exponent in the vicinity of the critical point. According to Tosto et al. [151],
the deviation of the two exponents can be used as a measure of the non-ideality of a fluid.
Deviations characterised by larger or smaller values of the isentropic pressure-volume expo-
nent compared to the isentropic exponent must be considered equally.

Fundamental derivative of gas dynamics

A parameter closely related to the isentropic pressure-volume exponent is the fundamental
derivative of gas dynamics Γ. This parameter defined by Thompson [146] is a dimensionless
quantity for the curvature of the isentropes in a surface that is spanned by the pressure and
the specific volume:

Γ =
a4

2v3

(
∂ 2v
∂ p2

)
s

(3.33)
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Using the definition of the speed of sound in Equation 3.15, the fundamental derivative can
also be described using the change in the speed of sound over the density along an isentropic
change of state:

Γ = 1+
ρ

a

(
∂a
∂ρ

)
s
=

1
2

[
κpv +1− v

κpv

(
∂κpv

∂v

)
s

]
(3.34)

For a perfect gas, the isentropic pressure-volume exponent is known to tend towards the isen-
tropic exponent. The expression in Equation 3.34 thus takes the value Γ = (κ + 1)/2 for a
perfect gas, which is always greater than one. For the classification of a compressible fluid
based on the fundamental derivative, an isentropic increase in pressure is considered. Based
on the perfect gas, a fluid is described as ideal if the value of the speed of sound increases
in the course of a pressure increase. In this case, the fundamental derivative assumes values
greater than one. If the value of the speed of sound decreases along with an increase in isen-
tropic pressure, the fluid is classified as non-ideal. According to Equation 3.34, the negative
sign of the differential of the speed of sound leads to values of the fundamental derivative
less than one. Cramer [34] demonstrates such states for fluorocarbons near the critical point.
Nannan et al. [106] extend this observation to the two-phase region of a large number of flu-
ids directly below the respective critical point. According to Harinck et al. [68], the decrease
in the speed of sound as the pressure increases can be attributed to the interaction of attrac-
tive and repulsive intermolecular forces. If the decrease in the speed of sound is so great that
the fundamental derivative assumes negative values, the fluid is described as non-classical.
Single-phase gaseous fluids in this category can also be found in the literature under Bethe-
Zel’dovich-Thompson fluids. However, as Vimercati et al. [154] note, experimental proof of
this group, unlike in the case of two-phase fluids, is still pending. Based on the fundamental
derivative, it is possible to categorise the fluids into three groups, summarised and compared
in Table 2.

Table 2: Classification of fluids based on the fundamental derivative of gas dynamics

Γ≥ 1 (∂a/∂ρ)s ≥ 0 classical ideal

0≤ Γ < 1 −a/ρ ≤ (∂a/∂ρ)s < 0 classical non-ideal

Γ < 0 (∂a/∂ρ)s <−a/ρ non-classical

According to Colonna et al. [31], this classification is directly related to the molecular com-
plexity of the fluid, as both the speed of sound and its isentropic change with density are
influenced by this. Accordingly, the classical ideal case corresponds to a low molecular
complexity, while classical non-ideal fluids have a high molecular complexity.

Parameters of molecular complexity

The distinction between ideal and non-ideal compressible fluids should, therefore, also in-
clude the molecular complexity of the fluid. According to Colonna and Guardone [29], this
can be expressed by the number of active degrees of freedom N:

N =
2

δ c
∞

=
2cv,∞

Rs
= M

2cv,∞

R
(3.35)
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The factor δ c
∞ denotes the dimensionless reciprocal value of the specific isochoric heat ca-

pacity defined by Bethe [20], which is evaluated at the critical temperature and assuming
no intermolecular interactions. Therefore, many active degrees of freedom are associated
with a high molecular complexity. According to Equation 3.35, the number of active de-
grees of freedom is directly proportional to the molar mass of the molecule. However,
Tosto et al. [150] clarify that this relationship is weakened by the antiproportionality of
specific isochoric heat capacity and molar mass stated by classical gas kinetics. Between
the molecular complexity of a fluid and the isentropic pressure-volume exponent, there is
also a reciprocal relationship. On the other hand, the ratio of specific heat capacities and the
compressibility factor are not significantly influenced by the molecular complexity. Another
approach to assessing molecular complexity by Guardone and Argrow [60] uses the mini-
mum of the fundamental derivative along the dew line as a criterion. Likewise, the Grüneisen
parameter Gr is used to describe molecular complexity. This parameter, originally defined to
describe relations between thermodynamic quantities and the grid vibration within a solid, is
generalised by Arp et al. [7] for application to fluids:

Gr =
1

ρcv

(
∂ p
∂T

)
v
=− v

cv

(
∂ s
∂v

)
T
= κpvκpT with κpT =

p
T

(
∂T
∂ p

)
s

(3.36)

Using Maxwell’s relations, it is also possible to formulate the Grüneisen parameter using
only the isentropic pressure-volume exponent and the isentropic pressure-temperature expo-
nent κpT . The latter can be defined analogue to the procedure presented for the isentropic
pressure-volume exponent for non-ideal fluids. If the Grüneisen parameter is evaluated at
the critical temperature, its value for a perfect gas tends towards the factor δ c

∞ [150]. This
dependence can also be shown for a non-ideal fluid if its deviation from the model of the
perfect gas is quantified by the compressibility factor:

Gr =
1

δ c
∞

cv,∞

cv

[
Z +T

(
∂Z
∂T

)
ρ

]
(3.37)

The Grüneisen parameter shows a maximum at the critical point for fluids with low molecular
complexity, while it does not show an extremum for fluids with high molecular complexity.
In order to describe the molecular complexity of fluids that are analysed in the context of a
phase change, Invernizzi [80] defines a further parameter:

σ =
Tc

Rs

(
ds
dT

)
s,v,Tr=0.7

(3.38)

The value of σ is proportional to the slope of the dew line in a surface spanned by temper-
ature and entropy. For fluids with low molecular complexity, σ has a negative value, which
results in a negative slope of the dew line. According to this criterion, molecularly complex
fluids can be identified by a positive slope of the dew line in a plot of temperature versus
entropy.

In order to classify a compressible fluid as non-ideal, various parameters can be used, which
differ significantly in their objective. The compressibility factor describes the deviation from
the law of ideal gases. It can thus not only provide a binary classification regarding the non-
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ideality of a fluid, but also a quantification of this non-ideality. It thus represents a similarity
parameter that enables the comparison of thermodynamic states as well as different fluids.
As the counterpart of the isentropic exponent of perfect gases, the isentropic pressure-volume
exponent is particularly suitable for distinguishing between ideal and non-ideal fluids in the
context of analysing changes of state. It can also be used as an auxiliary parameter to de-
fine the fundamental derivative of gas dynamics, which emphasises the influence of wave
propagation on the classification of the fluid. The Grüneisen parameter, which is linked to
the number of active degrees of freedom via Equation 3.37, aims to quantify the molecular
complexity as a function of a thermodynamic state. In addition, the fundamental derivative
or the isentropic pressure-volume exponent and the molecular complexity are in a reciprocal
relationship.
All the parameters introduced indicate that the non-ideality of a compressible fluid near the
dew line is particularly significant. If there is a slight variation in pressure or temperature
in this region of state, the dew line can be crossed into the two-phase region, which makes
thermophysical modelling of the phase change process necessary.

3.4 Thermophysical Modelling of Phase Change

Given the study’s emphasis on compressible media, the primary focus is on the phase change
from the gaseous to the liquid phase. Consequently, the condensation process, which in-
volves the formation of a liquid phase as the vapour pressure curve is crossed, is of particular
importance. Two different types of condensation can be observed experimentally. Homo-
geneous condensation occurs when the liquid phase forms spontaneously as condensation
nuclei directly from the gas phase. In contrast, heterogeneous condensation begins at the
surface of solid particles, which serve as nucleation sites for the liquid phase. Heteroge-
neous condensation, occurring only in two- or multi-component systems, is therefore not
considered in this work.
In addition to distinguishing between different physical condensation processes, various
modelling approaches can be considered. Homogeneous condensation can be modelled by
either assuming thermodynamic equilibrium or by negating it. These models differ signifi-
cantly in their underlying assumptions and the mathematical descriptions of the phase change
process. While the equilibrium model provides a highly abstracted representation, the non-
equilibrium model offers a detailed description of homogeneous condensation, particularly
through additional modelling steps.

Equilibrium Model of Homogeneous Condensation

The equilibrium model of homogeneous condensation assumes the existence of thermo-
dynamic phase equilibrium. Thus, the liquid phase formed during condensation has the
same specific Gibbs energy, temperature, and pressure as the gaseous phase. To describe
the composition of the two-phase system, the wetness fraction y is introduced in the context
of condensation. This fraction relates the mass of the liquid phase to the total mass of the
system:

y =
ml

ml +mg
(3.39)
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Figure 8: Definition of the wetness fraction for the equilibrium model of homogeneous condensation
in a p-v diagram (left) and schematic representation of separation of phases (right)

If the equilibrium condition is met, the two phases present in the system can only reach
saturated states. The extensive system volume can, therefore, be formulated as a function of
the masses of the phases and the saturation quantities:

Vm = mlvs,l +mgvs,g ⇔ vm =
mlvs,l +mgvs,g

ml +mg
(3.40)

In Figure 8, this relationship between mixture and saturation quantities is illustrated through
a pressure-volume diagram. If the pressure of a system that is initially gaseous is increased
along the exemplary subcritical isotherm, the system enters the two-phase region when the
saturation vapour pressure is reached, and a liquid phase is formed. The resulting state point
is indicated in the diagram by the specific volume of the phase mixture vm and the saturation
vapour pressure. According to the equilibrium model of homogeneous condensation, the
phases are separated by a single phase boundary. The state of each phase can be described
by the saturation quantities along the boiling or dew line. The proportion of the blue liquid
phase in the total system shown on the right in Figure 8 can also be expressed as the ratio of
the specific volumes:

y =
vs,g− vm

vs,g− vs,l
⇔ vm = vs,g− y(vs,g− vs,l) (3.41)

This expression for the wetness fraction, which is derived graphically using the lever rule,
can be formulated in the same way by combining Equation 3.39 and Equation 3.40. If a
distribution is carried out using the lever rule for a large number of isotherms, the points
constructed in this way can be connected to lines of constant wetness fraction. In addition
to the specific volume, other state quantities, such as the specific enthalpy or the specific
entropy, can be used as definition quantities:

hm = hs,g− y(hs,g−hs,l) = hs,g− yhv (3.42)

The difference between the specific enthalpies of the saturated gas and liquid phases is re-
ferred to below as the specific enthalpy of vaporisation hv. This quantity, also known as
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latent heat, quantifies the energy the system releases during a complete isothermal phase
change from liquid to gaseous. An analytical determination of the state quantities of the two-
phase system, particularly the wetness fraction, is thus possible in the case of the equilibrium
model. However, the high degree of abstraction of the model compared to the physical for-
mation of a liquid phase becomes clear from the theoretical definition of the phases. The
physical processes that characterise the phase change are also not considered in the equilib-
rium model.

Non-equilibrium model of homogeneous condensation

In the course of homogeneous condensation, a metastable supersaturated or subcooled state
initially occurs in natural processes when the vapour pressure curve is exceeded. This can
be described both using the degree of saturation S and by means of the subcooling ∆T :

S =
p

ps(Tg)

 ∆T = Ts−Tg (3.43)

Here, Ts denotes the saturation temperature defined by the vapour pressure curve. The pres-
sure is not indexed as a gas quantity due to the presence of mechanical equilibrium and the
resulting equality of phase and mixture pressure. For a degree of saturation greater than one
or a subcooling greater than 0 K, fluctuations in density lead to the formation of clusters.
However, these are not sufficiently stable for conditions of low supersaturation and disinte-
grate immediately. When a state known as critical supersaturation is reached, a large number
of stable clusters, known as condensation nuclei, spontaneously form. This physical process
of spontaneous nucleation is the initial step in the formation of a liquid phase. Therefore,
the state of critical supersaturation marks the Wilson point, in which condensation can be
measured for the first time in a phenomenological way using droplets. The condensation
nuclei, usually modelled as spherical, are dispersed in the continuous gas phase.
Further molecules accumulate on their surface, causing the dispersed phase to grow. The
energy released causes an increase in temperature within the gas phase, which, according
to Equation 3.43, decreases the subcooling and inhibits nucleation. A combination of nu-
cleation and droplet growth consequently leads to a self-regulation of the system, which
strives to restore a thermodynamic equilibrium. After the onset of nucleation, nucleation,
and droplet growth occur in parallel so that droplets with different radii r are present in the
gas phase at a defined point in time. In order to be able to represent the dispersed phase
mathematically, it is therefore necessary to divide it into a finite number of groups.
Each group i is characterised by the equality of its physical properties and, in particular, its
radius. The wetness fraction can then be formulated as the ratio of the sum of the mass
fractions of the individual groups to the total mass:

y = ∑yi = ∑
ml,i

mm
= ∑

ni

mm
· 4

3
πr3

i ·ρl,i (3.44)

Where ni denotes the number of droplets in the i-th group. The product of the volume of a
sphere and the density of the liquid phase expresses the mass of a droplet. The state quantities
of the two-phase mixture, such as the specific volume, for example, can be expressed based
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on the wetness fraction and the quantities of the gas and liquid phases:

vm = (1− y)vg +∑yivl,i (3.45)

Unlike in the case of the equilibrium model, however, it is not possible to determine the
state quantities of the individual phases analytically based on the saturation quantities. The
processes of nucleation and droplet growth cause a time-resolved change in the phase com-
position and, consequently, in the wetness fraction. In addition, the distribution of the formed
droplets to the individual size groups also varies during condensation. The influence of nu-
cleation and growth on the change in the wetness fraction over time t can be mathematically
separated:

dy
dt

=
dyNucleation

dt
+

dyGrowth

dt
(3.46)

The mechanism of nucleation can be quantified using the nucleation rate J. This represents
the number of new nuclei that form per unit of time in a defined volume. The classical
nucleation theory is based on the insight of Gibbs [52] that the energy ∆G required to form a
cluster can be divided into a volumetric term ∆Gv and a surface term ∆Gs:

∆G = ∆Gv +∆Gs =
4
3

πr3
ρl(gl−gg)+4πr2

σlg (3.47)

Here, σlg denotes the surface tension of the liquid phase at gas temperature. It should be
noted that the difference between the specific Gibbs energies of the liquid and gaseous phases
is usually simplified to gl − gg = RsTg ln(S) when applying the law of ideal gases. The
maximum of the energy difference from Equation 3.47 represents the energy barrier ∆Gcrit ,
which must be overcome to form a stable cluster, i.e., a nucleus. Based on this condition, an
expression for the minimum nucleus radius or critical radius rcrit can be formulated:

rcrit =
2σlg

ρlRsTg ln(S)
⇔ ∆Gcrit =

4
3

πσlgr2
crit (3.48)

Given this energetic description, Volmer and Weber [156] formulate an initial expression for
the nucleation rate. They state that the nucleation rate is exponentially linked to the height of
the energy barrier. The works of Becker and Döring [19], Frenkel [48], and Zeldovich [173]
form the classical nucleation theory, which models the nucleation rate using an approach
based on the Arrhenius equation:

J = J0 · exp
(
−∆Gcrit

kbTg

)
with J0 = qc

√
2σlgN3

A
πM3 ·

ρ2
g

ρl
(3.49)

In this equation, qc denotes the condensation coefficient, whose value is set to one in the fol-
lowing, and NA denotes Avogadro’s constant. The classical nucleation theory assumes that
the gas phase in which nucleation is about to occur and the remaining gas volume have the
same temperature. In reality, however, the gas phase is at a higher temperature just before
nucleation occurs, so the isothermal assumption should not be maintained. To account for
this when determining the nucleation rate, Kantrowitz [82] proposes introducing a correction
factor φ .
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According to Bakhtar and Zidi [12], the heat transfer between the phases must be taken
into account when formulating this:

φ = φ0 ·
(

h2
v

RsT 2
g
− hv

2Tg

)
with φ0 = qc

ρg

αcrit

√
RsTg

2π
(3.50)

The heat transfer coefficient for a nucleus with critical radius αcrit is, for the sake of con-
sistency, defined together with the description of the heat transfer during droplet growth by
Equation 3.52. In the literature (see [13]), the correction factor φ is often simplified under
the assumption of a perfect gas, though this simplification is dispensable for the purposes of
this work. The change in the wetness fraction due to nucleation can then be formulated as a
combination of Equation 3.49, Equation 3.50, and Equation 3.44:

dyNucleation

dt
=

4
3

πr3
crit

ρl

ρm
· J

1+φ
(3.51)

Since nucleation events always occur at nuclei with a critical radius, further size groups do
not need to be considered for this term, so the summation from Equation 3.44 is omitted. The
division by the density of the mixture takes into account the change from volume-related nu-
cleation rate to mass-related wetness fraction.

The droplet growth of the i-th size group is quantified using the growth function G(ri),
which describes the change in radius per unit of time. The approach used in this work,
according to Young [172], is a further development of the relationship originally formulated
by Gyarmathy [63]. Gyarmathy models the time derivative of the radius change as the rate
at which the evaporation enthalpy released during droplet growth is transferred to the gas
phase:

G(ri) =
dri

dt
=

αi

ρlhv
(Ti−Tg) with αi =

λg

ri(1+3.18 ·Kn)
(3.52)

Thereby, αi denotes the heat transfer coefficient at the interface of the i-th droplet size group,
which is described using a Nusselt correlation valid for low Reynolds numbers of water. In
this correlation, λg denotes the heat conductivity of the gas phase. The Knudsen number
relates the mean free path l̄ to a characteristic length:

Kn =
l̄

2ri
with l̄ =

3
√

π ·ηg ·
√

RsTg√
8p

(3.53)

Since the mean free path is defined as the average distance a molecule can travel before col-
liding with another molecule, the diameter of the i-th group appears to be a suitable choice
for the characteristic length of the droplet growth. The symbol ηg denotes the dynamic vis-
cosity of the gas phase.
To evaluate the approach formulated in Equation 3.52, knowledge of the liquid phase tem-
perature of each drop size group would be necessary. Alternatively, Gyarmathy suggests an
approximation of the temperature difference:

Ti−Tg = ∆T
(

1− rcrit

ri

)
(3.54)
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By comparing the model defined by Gyarmathy, which combines Equation 3.52 and Equa-
tion 3.54, with experimental findings, Young extends it by three empirical model parameters
α , β and ν :

dri

dt
=

λg∆T (1− rcrit
ri
)

ρlhvri

(
1

1+2βKn +3.78(1−ν)Kn
Pr

) with Pr =
ηgcp,g

λg
(3.55)

The Prandtl number Pr describes the ratio of momentum transport to heat transport within
the gas phase. While the parameters α and β are initially set to α = 11 and β = 0 based
on the selection by Starzmann et al. [138], Young gives an explicit equation for the third
parameter:

ν =
RsTs

hv

(
α−0.5− 2−qc

2qc

(
κ +1

2κ

)(
cp,gTs

hv

))
(3.56)

By suitably reformulating Equation 3.46, the contribution of droplet growth to the temporal
change in wetness fraction can be formulated by differentiating Equation 3.44 with respect
to radius ri:

dyGrowth

dt
=

dyGrowth

dri
· dri

dt
= ∑

ni

mm
·4 ·πr2

i ρi ·G(ri) (3.57)

Adding Equation 3.51 and Equation 3.57 yields the differential equation for the wetness
fraction for the non-equilibrium model using the mass-based nucleation rate J̄:

dy
dt

=
4
3

πr3
critρl ·

J̄
1+φ

+∑
ni

mm
·4 ·πr2

i ρi ·G(ri) with J̄ =
J

ρm
(3.58)

To solve this, an explicit description of the droplet radius distribution is needed. Assuming
a monodispersed distribution, all droplets have the same mean radius, so only a single group
is needed for modelling. The temporal change of the wetness fraction is obtained by substi-
tuting i = 1 in Equation 3.58.
However, due to the time lag between nucleation and droplet growth, the droplet radii, in re-
ality, show a polydispersed distribution at any given time. Such a distribution is exemplarily
shown in Figure 9. The critical radius characterises the group with the smallest diameter. As
more and more molecules accumulate, the droplets grow and form groups of larger radii ri.
Due to the coagulation of droplets in the medium size range of the distribution, only a few
droplets reach above-average radii.
For the mathematical description of such a droplet radius distribution, Hulburt and Katz [78]
and Hill [72] propose modelling based on the central statistical moments. The kth moment
of the distribution can be formulated by a Taylor series expansion of the number density
function f (r):

µk =
∫

∞

0
rk f (r)dr −→ ∂ µk

∂ t
= k

∫
∞

0
rk−1G(r) f (r)dr+ J̄rk

crit (3.59)

In order to be able to close the system of equations of the moments, White [162] gives three
possible approximations for the expression of the growth rate. In this work, the approach that
evaluates the growth function using the surface-averaged radius r20 is chosen from these.
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Figure 9: Exemplary polydispersed droplet radius distribution (left) and schematic distinction be-
tween the continuous and the dispersed phase (right)

If the integral in Equation 3.59 is replaced by a linear combination of µk and µk−1, which is
omitted for k = 0, this results in:

∂ µk

∂ t
= kµ

k−1G(r20)+ J̄rk
crit with r20 =

√
µ2

µ0
(3.60)

To avoid the use of such a closing condition and thus increase the accuracy of the method,
McGraw [97] introduces weighting factors of the moments in Equation 3.59. These factors
are then determined using an n-th order Gaussian quadrature. According to White and Houn-
slow [164], a description of the droplet radius distribution using the first four moments
k ∈ {0,1,2,3} is usually sufficiently accurate even without such weighting.
The zeroth moment can be physically interpreted as the number of droplets per unit volume
of the two-phase mixture. In addition, the Sauter radius r32 and the wetness fraction are in a
proportional relationship to the third moment of the radius distribution:

r32 =
µ3

µ2
∧ y =

4
3

πρlµ3 (3.61)

In the case of the non-equilibrium model of homogeneous condensation, determining the
wetness fraction requires an iterative solution of the system of differential equations of the
statistical moments. The modelling of the mechanisms occurring during condensation, which
form the basis for specifying the system of equations, relies on a large number of thermo-
physical properties. It, therefore, seems appropriate to consider the unique features of the
working fluids examined in the context of this work and to describe their thermophysical
properties.
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3.5 Special Properties of the Investigated Working Media

The determination of the thermophysical quantities of the working media considered below
uses fluid-specific multi-parameter equations of state. Since the selection of these equations
is highly relevant for the reproducibility of the results presented, a tabular overview of all
model equations used for water, carbon dioxide, and octamethyltrisiloxane (MDM) can be
found in Appendix A.

Water - H2O

Water molecules consist of one oxygen atom and two hydrogen atoms. They exist as a liquid
at standard atmospheric conditions. The three phases, solid, liquid, and gaseous, are in equi-
librium at the triple point at a temperature of Ttrip = 273 K and pressure of ptrip = 6.12 mbar.
The critical point of water is defined by a temperature of Tc = 647 K and a critical pressure
of pc = 220 bar. When considering water as a working fluid, the area around the vapour
pressure curve and the two-phase area are of particular relevance.
For this reason, this area is the focus of the analysis in Figure 10 in the form of a pressure-
volume diagram and a pressure-temperature diagram. The p-v diagram (left) shows the
distinction between the two-phase region and the single-phase state areas using the boil-
ing line (blue) and the dew line (red). The metastable region extends from these boundary
curves to the spinodal limits of the liquid and gaseous phases. In the illustrated range, the
compressibility factor varies between values close to zero and one. The global minimum of
this parameter is found in the liquid region. On the other hand, if only the gas phase is con-
sidered, the minimum of the compressibility factor lies in the vicinity of the critical point.
Moderate pressures and temperatures, as they occur in the investigations of the condensation
of water in the context of this work, are expected to cause only a slight non-ideality of the
fluid.
The two-phase region is represented in the right part of Figure 10 by the vapour pressure
curve (black). This separates the liquid from the gaseous phase and ends at the critical point.
In order to determine the thermodynamic state quantities for the medium water, the equa-
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liquid and gaseous phase based on the speed of sound a and the definition ranges of the IAPWS-IF97
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tion of state named by the International Association for the Properties of Water and Steam
(IAPWS) in 1997 as the Industrial Formulation (IAPWS-IF97) [160] is used in this work.
The equation is characterised by a split of its definition range into sub-ranges. Circled num-
bers in Figure 10 indicate the regions relevant for further consideration. In order to favour
the determination of the state quantities in industrial practice for the ranges 1 and 2, the cor-
responding equations are formulated using a Gibbs-based approach. On the other hand, the
equation of state for region 3 uses a Helmholtz-based formulation. Another unique feature
of the IAPWS-IF97 is the extension of region 2 to include the metastable region 2s, which
is limited by the spinodal limit of the gas phase. A Gibbs-based equation of state is also
available for this region, but unlike the other equations, it is not determined on the basis of
experimental data. Rather, it is extrapolated from the single-phase region 2 using a specific
equation of state for low-density gases [159]. By applying such an equation, the discontin-
uous transition of the state quantities from the gaseous to the liquid phase, as exemplarily
shown in the right part of Figure 10 for the speed of sound, can be attenuated when consid-
ering phase change processes.

Carbon dioxide - CO2

The structure of a carbon dioxide molecule (CO2) consists of a linear arrangement of a car-
bon atom and two oxygen atoms. At standard atmospheric conditions, the fluid exists in the
gaseous phase. Its triple point is defined by a temperature of Ttrip = 217 K and a pressure of
ptrip = 5.2 bar. A special feature of CO2 relevant for technical applications is its critical state
quantities. The critical temperature of Tcrit = 304 K is close to typical ambient conditions
and, in combination with a critical pressure of pcrit = 73.8 bar, enables efficient utilisation
of the properties near the critical point.
In Figure 11, the state region around the critical point of CO2 is therefore shown in a
temperature-entropy diagram and a pressure-temperature diagram. In addition to the curves
already presented for the medium water, which characterise the two-phase region, the Widom
line is also plotted. The compressibility factor, visualised as a contour on the left side of the
figure, varies in this region between approximately 0.1 and 0.7. In the immediate vicinity of
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the critical point, the compressibility factor has a value of slightly above 0.2. In the literature
(see [54], [150]), this region is often referred to as non-ideal in the sense of deviating from
the law of ideal gases. However, the values of the fundamental derivative are above one, as
shown by the isolines, which makes the influence of the parameter choice on the classifica-
tion as non-ideal evident.
The equation of state according to Span and Wagner [136], on which the calculations of the
state quantities of CO2 are based, shows a high degree of accuracy in the sense of agreement
with experimental data, particularly in the supercritical state range. Due to its Helmholtz-
based formulation using a single function for the entire domain, it can also be easily im-
plemented. An evaluation of this equation in terms of density is shown in the right part of
Figure 11. The visible distinction between liquid and gaseous states above the critical point
using the Widom line is particularly striking.

Octamethyltrisiloxane (MDM) - C8H24O2Si3

As its name suggests, octamethyltrisiloxane is characterised by eight methyl groups and
three silicon atoms. In the nomenclature of siloxanes, a combination of three methyl groups
and one silicon atom forms an M group. In comparison, two methyl groups and one sili-
con atom together characterise a D group. This results in the abbreviation MDM, which is
most commonly used in the literature due to its brevity. The fluid, which is liquid at stan-
dard atmospheric conditions, has a temperature of Ttrip = 187 K and a pressure of about
ptrip = 0.01 mbar at the triple point. The critical point is defined by a temperature of
Tcrit = 565 K and a pressure of pcrit = 14.4 bar.
The characteristics of the thermodynamic state ranges of MDM are illustrated in Figure 12.
In the left part of the figures, the gaseous and liquid state ranges, as well as the two-phase
region, are shown in a plot of static pressure versus specific volume. Starting from the triple
point, which is located near the origin, the value of the compressibility factor increases with
increasing pressure and volume. Similar to the findings for water, the global minimum of
this parameter is found in the liquid phase, while the minimum for gaseous states is found
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Figure 12: Variation of the compressibility factor Z and boundary of the non-ideal range of states in a
p-v diagram (left) and deviation of the isentropic pressure-volume coefficient from the heat capacity
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at the critical point. In contrast to the other two working media, a non-ideal state range can
be defined for MDM by a fundamental derivative of less than one. This is located in the gas
phase and runs almost along the entire dew line. It is noteworthy that the compressibility
factor in this range has values between 0.3 and 1.0.
An evaluation of the Helmholtz-based equation of state according to Thol et al. [145] in terms
of pressure forms the basis for the plot of static temperature over specific entropy shown in
the right part of Figure 12. The deviation of the isentropic pressure-volume exponent from
the ratio of specific heat capacities ∆κ is shown by two isolines. While the difference near
the critical point assumes negative values, it shows positive values with increasing pressure.
However, independently of its sign, the difference classifies significant deviations for the
considered state region. Based on the representation of a T -s diagram, the negative slope of
the dew line is also directly recognisable, which, in addition to its relevance for ORC appli-
cations in equivalence to the σ parameter, also indicates a high molecular complexity.

In order to examine this aspect comparatively for the three working media under consid-
eration, the Grüneisen parameter and the isentropic pressure-volume exponent are plotted
along the critical isotherm in the left part of Figure 13. The parameters shown are each re-
lated to their value when evaluated for a specific volume tending towards infinity. The curve
of the Grüneisen parameter shows very different properties for the three fluids. While the
curve for water falls monotonically, it rises monotonically for MDM. In the case of CO2, a
maximum is formed shortly before the critical pressure is reached. Also, the characteristics
of the isentropic pressure-volume exponent differ considerably. While the curve for MDM
falls monotonically, the curve for water shows almost no slope. The curves for water and
CO2 are very similar at low pressures. However, the isentropic pressure-volume exponent
for CO2 increases more steeply from a reduced pressure of about pr = 0.6.
The results for MDM and CO2 align with the findings of Tosto et al. [150]. According to
them, the formation of a maximum in the curve of the Grüneisen parameter indicates mod-
erate molecular complexity. In contrast, a monotonically increasing Grüneisen parameter
and a monotonically decreasing isentropic pressure-volume exponent are characteristic of a
fluid with high molecular complexity. The classification of the medium water thus indicates

Water

Water

Reduced pressure

Figure 13: Variation of the Grüneisen parameter Gr and the isentropic pressure-volume coefficient
κpv along the critical isotherm for the media water, CO2 and MDM (left) and the molecular structure
of the investigated fluids (right)
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low molecular complexity but is not unambiguous. Therefore, an examination based on the
molecular structures in the right part of Figure 13 seems helpful. The MDM molecule not
only has the highest molar mass of M = 237 g/mol but also a significantly more complex
branched structure. The molecules of CO2 with a molar mass of M = 44 g/mol and water
with M = 18 g/mol are comparatively simple in structure. The order of the working me-
dia selected in this subchapter consequently also corresponds to the order of their molecular
complexity.
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4 Numerical Modelling

Starting from the thermodynamic description of compressible non-ideal fluids using the con-
cept of a spatially fixed fluid element presented in the previous chapter, the flow of a contin-
uous fluid will now be examined. To do so, it is necessary to consider a finite number of fluid
elements moving in three-dimensional space. Since each fluid element, in addition to differ-
ent thermophysical properties, also potentially has its own direction and speed of movement,
it is crucial to choose suitable system boundaries for modelling the flow. In continuation
of the approach from Figure 1, for further considerations, this falls analogously to the fluid
element on an infinitesimal control volume dV .
The motion of a continuous medium can be described by means of a vector field, which is
also referred to as a flow field. A curve in space, whose point set is tangential to the velocity
vectors of the flow field, defines a streamline. When considering a stationary volume, the
motion of the fluid along such a streamline causes a flow across the bounding surfaces. This
is illustrated in a Cartesian coordinate system in Figure 14.
Applying the fundamental physical principles of conservation of mass, momentum, and en-
ergy to the spatially fixed infinitesimal volume takes into account not only the spatial change
but also the temporal dimension. Due to its relevance for further explanations, the concept
of flux is exemplified by the conservation of mass:

ṁ = ρ ·vvv⊥⊥⊥ ·A = const. (4.1)

The mass flow rate ṁ can be formulated using the product of the density, the component
of the velocity vector perpendicular to the flow direction vvv, and the area A through which
the flow passes. A division of the mass flow rate into its Cartesian components leads to a
definition of three flux terms, which are expressed using the three velocity components u,v,
and w. The x-component of the mass flux ρu enters the volume over the surface dy · dz.
On the complementary surface displaced by dx, the quantity changed by (∂ (ρu)/∂x) · dx
exits accordingly. The same applies to the other two spatial directions based on Figure 14.
The sign convention defines a positive flow direction based on the outward-pointing normal
vectors on the boundary surfaces of the volume. [4]

Flow field

Figure 14: Infinitesimal control volume in a flow field (left) and fluxes across the volume boundaries
as an example for the conservation of mass (right)
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The variation of the mass with time is recorded over the entire control volume dV . Balancing
the temporal change within the volume and the spatial change represented by the fluxes over
the volume boundaries results in:

∂ρ

∂ t
(dx ·dy ·dz)+

[
ρu+

∂ (ρu)
∂x

·dx
]
·dy ·dz− (ρu) ·dy ·dz

+
[
ρv+

∂ (ρv)
∂y

·dy
]
·dx ·dz− (ρv) ·dx ·dz

+
[
ρw+

∂ (ρw)
∂ z

·dz
]
·dx ·dy− (ρw) ·dx ·dy = 0

(4.2)

A division of Equation 4.2 by dx ·dy ·dz and a subsequent transformation yields the partial
differential equation of mass conservation. The flux terms can be found in this notation in
the numerator of the partial spatial derivatives:

∂ρ

∂ t
+

∂ (ρu)
∂x

+
∂ (ρv)

∂y
+

∂ (ρw)
∂ z

= 0 (4.3)

Applying the approach presented for the conservation of mass to the conservation quantities
in the momentum equation in the three spatial directions, as well as the energy, leads to the
following equations:

∂ (ρu)
∂ t

+
∂

∂x
(ρu2 + p− τxx)+

∂

∂y
(ρuv+ τyx)+

∂

∂ z
(ρuw+ τzx)−ρ fx = 0

∂ (ρv)
∂ t

+
∂

∂x
(ρvu+ τxy)+

∂

∂y
(ρv2 + p− τyy)+

∂

∂ z
(ρvw+ τzy)−ρ fy = 0

∂ (ρw)
∂ t

+
∂

∂x
(ρwu+ τxz)+

∂

∂y
(ρwv+ τyz)+

∂

∂ z
(ρw2 + p− τzz)−ρ fz = 0

(4.4)

∂

∂ t

[
ρ ·
(

e+
1
2

vvv2
)]
−ρ · (u fx + v fy +w fz)−ρ q̇r

+
∂

∂x

[
ρu ·

(
h+

1
2

vvv2
)
− (uτxx + vτxy +wτxz)−λg ·

∂T
∂x

]
+

∂

∂y

[
ρv ·

(
h+

1
2

vvv2
)
− (uτyx + vτyy +wτyz)−λg ·

∂T
∂y

]
+

∂

∂ z

[
ρw ·

(
h+

1
2

vvv2
)
− (uτzx + vτzy +wτzz)−λg ·

∂T
∂ z

]
= 0

(4.5)

In these, fx, fy and fz denote the Cartesian components of the body forces, while q̇r represents
the heat flow due to radiation and τi j the shear stress. The stress components act on a surface
orthogonal to index i in the direction of index j. They can be specified using the relations
formulated by Stokes [141]. The velocity vector can also be formulated by its Cartesian
components vvv2 = u2 + v2 +w2. The set of mass conservation in Equation 4.3, momentum
conservation in Equation 4.4, and energy conservation in Equation 4.5 form the complete
Navier–Stokes equations.
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4.1 Conservation and Transport Equations for Single- and Two-Phase Flows

This work numerically solves the Reynolds-averaged Navier-Stokes equations to describe
continuous flows. These equations can be derived from the complete Navier-Stokes equa-
tions by applying Favre averaging to the physical quantities. The conserved quantities con-
sequently result in the sum of a temporal mean and a fluctuation quantity. In the course of the
averaging, the number of unknowns in the system of equations increases so that additional
models are needed to describe the turbulent fluctuations [44]. Since the formal structure
of the complete and the Reynolds-averaged Navier-Stokes equations match and the viscous
terms are not the focus of further consideration, the averaged quantities will not be explicitly
marked. In addition to a formulation as a system of partial differential equations, the Navier-
Stokes equations can also be represented in vector form. In the context of deriving numerical
solution methods, this appears particularly suitable due to its structured representation and
similarity to the operators of linear algebra:

∂

∂ t
UUU +

∂

∂x
(FFFc−FFFv)+

∂

∂y
(GGGc−GGGv)+

∂

∂ z
(HHHc−HHHv) =QQQ (4.6)

with

UUU =


ρ

ρu
ρv
ρw
ρE

 , FFFc =


ρu

ρu2 + p
ρvu
ρwu
ρuH

 , FFFv =


0

τxx

τxy

τxz

λg · ∂T
∂x +uτxx + vτxy +wτxz

 ,

GGGc =


ρv
ρuv

ρv2 + p
ρwv
ρvH

 , GGGv =


0

τyx

τyy

τyz

λg · ∂T
∂y +uτyx + vτyy +wτyz

 , HHHc =


ρw

ρuw
ρvw

ρw2 + p
ρwH

 ,

HHHv =


0

τzx

τzy

τzz

λg · ∂T
∂ z +uτzx + vτzy +wτzz

 , QQQ =


0

ρ fx

ρ fy

ρ fz

ρ · (u fx + v fy +w fz +ρ q̇r)
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UUU is referred to as the conservation vector and QQQ as the source term vector, while FFF, GGG and
HHH represent the flux vectors. The total specific internal energy E and the total specific in-
ternal enthalpy H are introduced for better readability. The splitting of the flux vector into
a convective part FFFc and a viscous part FFFv allows a separate consideration of the methods
used to calculate these terms. Due to the minor importance of heat conduction, heat radia-
tion, and body forces in the present investigations, these terms are neglected in the following
equations. Furthermore, the previous relationships are limited to single-phase flows. Before
a detailed investigation of different formulations of the equation systems of two-phase flows,
it seems useful to introduce the quantities required to model the interaction between phases.

Exchange of momentum between liquid and gaseous phase

If the liquid phase is dispersed in the gaseous continuous phase, the flow field causes an
exchange of momentum between the two phases. This results in the formation of various
aerodynamic force components. In addition to drag, these include, for example, buoyancy,
Basset force, virtual mass effect and Magnus force [35]. The modelling of the momentum
exchange is limited to drag in the following, which results in the other force components
being neglected. In addition, it is assumed that the liquid phase in the form of droplets does
not interact with each other.
A droplet moving in the flow field at velocity vvvl experiences a force due to the flow around
it at velocity vvvg. According to Newton’s third law, an force of equal magnitude acts on the
continuous gas phase in the opposite direction. In this way, the drag force causes the two
phase velocities to approach each other. Assuming spherical droplets, it can be formulated
using Newton’s second law:

FD =
1
2

ρgAsCD(vvvg−vvvl)|vvvg−vvvl| with As = πr2 (4.7)

In this equation, As denotes the surface area of a droplet, and CD is the dimensionless drag
coefficient, primarily determined by the Reynolds number prevailing in the flow. To formu-
late the ratio of the inertial forces acting on a droplet to the viscous force components on the
basis of the Reynolds number, the velocity difference between the two phases is used as the
velocity, and the droplet radius is used as the characteristic length:

Re =
2r|vvvg−vvvl|ρg

ηg
(4.8)

For Reynolds numbers smaller than one, Stokes [140] derives an anti-proportionality of the
drag coefficient to the Reynolds number. The approach, according to Schiller and Nau-
mann [131], multiplies this by a correction term and thus enables modelling of the drag
coefficient for Reynolds numbers up to 1000:

CD,SN =
24
Re
·
(

1+0.15 ·Re0.687
)

for 1 < Re < 1000 (4.9)

The description, according to Stokes, assumes that the velocity difference at the surface of the
drop approaches a value of zero. This assumption is not fulfilled for drops whose diameter is
of a similar order of magnitude to the mean free path of the gas. Cunningham [36] therefore
proposes an empirical correction factor CC that depends on the Knudsen number. Knudsen
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and Weber [84] found that the model constant AC derived by Cunningham also depends
on the Knudsen number. The parameters additionally introduced by them are determined
by Davies [37] using a weighted average of experimental results, leading to the following
formulation:

CC =
1

1+2 ·AC ·Kn
with AC = 1.257+0.4 · e−1.1· 1

2·Kn (4.10)

By combining Equation 4.9 and Equation 4.10, the drag coefficient can be determined taking
into account the influence of the Reynolds and Knudsen numbers:

CD =CD,SN ·CC (4.11)

The droplet radius can be identified as one of the dominant factors influencing the magnitude
of the drag force using the above equations in combination with the definition of the Knudsen
number from Equation 3.53. Small droplet radii are therefore regularly cited as justification
for neglecting the drag force (see, for example, [165]). Another way to estimate the relevance
of considering the drag force is to evaluate the Stokes number:

St =
2r|vvvg−vvvl|ρl

9ηg
· 24

Re ·CD
(4.12)

It describes the ratio of the relaxation time of a droplet to a characteristic time scale of the
flow. The relaxation time is the time it takes for the droplet to return to an equilibrium state
with respect to its mass inertia. The second term in Equation 4.12 allows for the previously
introduced correction factors [61]. If St < 0.1, the droplets follow the flow with a maximum
deviation of 1% [153]. Therefore, the drag force is only taken into account in the modelling
for St > 0.1.

Modelling approaches for two-phase flows

Two different frames of reference can be used to describe flows. The Eulerian frame of
reference subdivides a volume through which flow passes into a finite number of spatially
discrete points, each representing a fluid element. The change in the flow quantities over
time is recorded at each of these fixed points. This makes it possible to describe the flow as
a field characterised by streamlines and is the reason why the Eulerian frame of reference is
used to describe continuous flows. In contrast to the fixed Eulerian frame of reference, the
reference system moves with the flow when a Lagrangian frame of reference is applied. The
temporal change of the flow quantities of a specific particle is described along its trajectory.
Due to the necessity of identifying individual particles, the applicability of the Lagrangian
approach for continuous flows is severely limited. However, a Lagrangian frame of reference
appears to be a possible option for describing the dispersed phase of a two-phase flow. In this
case, a particle is represented by a group of droplets of the same size, which are influenced
along their trajectory by the mechanism of droplet growth. Since the flow of the continuous
phase continues to be described in an Eulerian frame of reference, the differential equations
can be solved separately for each phase. This enables a numerical integration of the system
of equations of the dispersed phase that is independent of the grid discretisation and the time
step used for the gas phase. The possibility of under-relaxation can also positively affect the



Numerical Modelling 45

solution process of the coupled differential equations. Due to a separate consideration of the
droplet size groups, it is not necessary to model possible group changes. The applicability of
the combination of a Lagrangian frame of reference for the dispersed phase with an Eulerian
approach for the continuous phase is significantly limited by the difficulty of parallelising the
calculation steps. This is due to a constant change between the frames of reference, which
negatively influences calculation time efficiency.
If the dispersed phase is described in an Eulerian frame of reference, this favours paralleli-
sation. However, the number of equations to be solved increases compared to an Eulerian-
Lagrangian approach (E-L). This leads to a high dimension of the equation system, especially
when a large number of discrete droplet size classes are taken into account. Furthermore, the
spatial discretisation must be chosen more finely than in the single-phase case due to the de-
scription of nucleation and droplet growth. The strong coupling of the differential equations
of the two phases does not allow for classical under-relaxation and can endanger the stability
of the solution process for supersonic flows in the vicinity of shocks. In addition, modelling
the dispersed phase in an Eulerian frame of reference raises the question of how the change
of a droplet between two size groups can be described as part of the modelling. On the other
hand, considering a velocity difference between the phases is favoured by the choice of an
Eulerian-Eulerian approach (E-E).
In addition to the choice of the frame of reference, the formulation of the system of equa-
tions must also be distinguished with regard to mixture-based or phase-based quantities. In
the case of a mixture-based formulation (M), the number of differential equations required is
reduced using additional closure conditions, as exemplarily defined in Equation 3.45. This
seems particularly useful if the investigation aims to determine global quantities such as pres-
sure or wetness fraction. If, on the other hand, the flow quantities of the individual phases
are the focus of the investigation or if the velocity difference between the phases, also known
as the slip (S), is to be taken into account, a phase-based formulation (P) is used.
Another factor influencing the number of equations to be solved is the type of modelling
of the dispersed phase. While the assumption of a monodispersed droplet size distribu-
tion (Mono) can be taken into account using two additional differential equations, a poly-
dispersed description (Poly) based on statistical moments of the distribution requires four
additional equations. The options explained in this paragraph concerning the frame of refer-
ence of the dispersed phase, the formulation of the physical quantities, and the modelling of
the dispersed phase result in a multitude of possible combinations.
From these, four variants are selected, the specification of which can be found in Table 3. In
addition to the model limitations explained above, the selection criteria include, on the one
hand, the relevance for the validation cases presented in Chapter 5. On the other hand, the
variants are selected in such a way that the derivations presented below can be applied to the
remaining combinations.
The combinations of modelling approaches listed so far aim to describe the phase change
using the model of homogeneous non-equilibrium condensation. If, on the other hand, the
model of homogeneous equilibrium condensation is to be used, no separate modelling of a
dispersed phase is required due to the lower physical level of detail. The system of equations
for single-phase flow, using a mixture-based formulation in the form of the closing condi-
tions formulated in Equation 3.41 and Equation 3.42, is sufficient for describing two-phase
flow under this assumption.
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Table 3: Selected combinations of modelling approaches for the description of two-phase flows

Frame of reference Physical Droplet size
Slip

of dispersed phase quantities distribution
Eulerian Lagrangian Phase Mixture Poly Mono Yes No

E-L-M-Poly x x x x
E-E-M-Mono x x x x
E-E-M-Poly x x x x
E-E-P-Poly-S x x x x

Specification of the systems of equations to be analysed

Due to the objective of deriving a scheme for calculating the convective flux terms, the
specification of the systems of equations to be examined in the following is limited to the
relevant vector quantities from Equation 4.6. For the sake of a compact presentation, the
derivations are also explained in only one dimension. The vectors and matrices required for
a formulation in three dimensions can be found in Appendix B. Starting with the definition
of the system of equations for a single-phase flow, the variants are detailed in order of in-
creasing model complexity.

Single-phase:

UUU =

 ρ

ρu
ρE

 , FFFc =

 ρu
ρu2 + p

ρuH

 , QQQ =

0
0
0

 (4.13)

The system of equations describing a single-phase flow represents the starting point for the
consideration of a second phase presented in this work. In addition, any two-phase mod-
elling approach must reduce to the single-phase model for y = 0 ∧ (n = 0 ∨ µk = 0). If, in
Equation 4.13, the mixture density ρm and the specific internal energy of the mixture em are
used instead of the single-phase quantities, whereby the phase change is described using the
model of homogeneous equilibrium condensation, it is even possible to model a two-phase
flow. By combining the use of the mixture density with a description of the dispersed phase
in a Lagrangian frame of reference, the physical level of detail can also be increased by ap-
plying the model of non-equilibrium homogeneous condensation.

E-L-M-Poly:

∂

∂ t
MMM =QLQLQL with MMM =


y

µ0

µ1

µ2

 , QQQL =


ΛN +ΛW

J̄
µ0G(r20)+ J̄rcrit

2µ1G(r20)+ J̄r2
crit

 (4.14)

with:
ΛN =

4
3

πρl J̄r3
crit , ΛG = 4πρlµ2G(r20)
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In the case of modelling the droplet size distribution as polydispersed, the differential equa-
tions of the wetness fraction and the statistical moments are solved separately from the sys-
tem of equations of the continuous phase from Equation 4.13. Due to the moving frame of
reference, a temporal integration of the quantities of the dispersed phase represented by MMM is
necessary for this. When defining the source term in the Lagrangian frame of reference QQQL,
the mass transfer between the phases is divided into a term related to nucleation ΛN and a
term related to droplet growth ΛG.

E-E-M-Mono:

UUU =


ρm

ρmu
ρmEm

ρmy
ρmNT

 , FFFc =


ρmu

ρmu2 + p
ρmuHm

ρmuy
ρmuNT

 , QQQ =


0
0
0

ρm(ΛN +4πr2ρlNT G(r20))

ρmJ̄

 (4.15)

Choosing an Eulerian frame of reference to describe the dispersed phase leads to two ad-
ditional differential equations if monodispersed droplets are assumed. The quantity NT is
introduced for the number of droplets per unit mass of the mixture, which for i = 1 corre-
sponds to the known expression from Equation 3.44. Unlike in the case of a Lagrangian
approach, the equations of the two phases are now directly coupled.

E-E-M-Poly:

UUU =



ρm

ρmu
ρmEm

ρmy
ρmµ0

ρmµ1

ρmµ2


, FFFc =



ρmu
ρmu2 + p
ρmuHm

ρmuy
ρmuµ0

ρmuµ1

ρmuµ2


, QQQ =



0
0
0

ρm(ΛN +ΛG)

ρmJ̄
ρm(µ0G(r20)+ J̄rcrit)

ρm(2µ1G(r20)+ J̄r2
crit)


(4.16)

If a polydispersed droplet size distribution is assumed, the number of equations to be solved
increases compared to the monodispersed consideration. However, the remaining structure
of the system of equations in the Eulerian approach does not change.
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E-E-P-Poly-S:

UUU =



ρm(1− y)
ρm(1− y)ug

ρm(1− y)Eg

ρmy
ρmyul

ρmyEl

ρmµ0

ρmµ1

ρmµ2


, FFFc =



ρm(1− y)ug

ρm(1− y)u2
g +

ρm
ρg
(1− y)p

ρm(1− y)ugHg

ρmyul

ρmyu2
l +

ρm
ρl

yp

ρmyulHl

ρmulµ0

ρmulµ1

ρmulµ2


, (4.17)

QQQ =



−ΛN−ΛG

−ΛGuint− 3
4

ρmy
ρlπr3 FD

−ΛG(Hg,int−hv)

ΛN +ΛG

ΛGuint +
3
4

ρmy
ρlπr3 FD

ΛGHl,int

ρmJ̄
ρm(µ0G(r20)+ J̄rcrit)

ρm(2µ1G(r20)+ J̄r2
crit)


with



uint = yul +(1− y)ug

Hg,int = hs,g +uintug− 1
2u2

g

Hl,int = hs,l +uintul− 1
2u2

l

A further increase in the level of detail of the modelling is achieved by writing the system of
equations separately for each phase. In addition to considering the mechanisms of nucleation
and droplet growth, as already found in the previous variants, the influence of momentum
exchange due to a prevailing velocity difference and heat exchange between the phases is
now also modelled. The definition of the velocity uint as well as the specific total enthalpy of
the gaseous Hg,int and liquid phase at the phase interface Hl,int is based on the formulations
proposed by Wróblewski and Dykas [169]. Due to the assumptions made for the model of
homogeneous non-equilibrium condensation, a pressure difference at the phase interface is
neglected.
In order to solve the non-linear system of equations defined by Equation 4.13, Equation 4.15,
Equation 4.16 and Equation 4.17, a scheme for determining the convective fluxes across the
cell boundaries of the infinitesimal control volume is required in addition to numerical meth-
ods for spatial and temporal integration. The following subchapter is therefore focused on
the extension of an established flow calculation scheme for single-phase flows of ideal fluids
to the description of non-ideal single- and two-phase flows, where approaches of different
complexity describe the phase change according to the presented equation systems.
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4.2 Extension of a Roe Scheme for Application to Single- and Two-Phase
Flows of Varying Complexity

The numerical integration of the hyperbolic system of equations defined by Equation 4.13
can be illustrated by restricting to a first-order method using an explicit formulation of the
conservation vector at the next discrete point in time:

UUUn+1
j =UUUn

j −
∆t
∆x

(
FFFc, j+ 1

2
−FFFc, j− 1

2

)
with ∆t = tn+1− tn, ∆x = x j+1− x j (4.18)

The temporal dimension is denoted by a superscript index, where the integration takes place
between two points in time n and n+1 separated by the time step ∆t. The spatial integration
takes into account two adjacent infinitesimal control volumes, which are identified by the
indices j and j+1. The difference in the spatial coordinates between their centres is used to
define the grid point spacing ∆x. Equation 4.18 is closed by the unknown quantities of the
fluxes across the two cell boundaries.
A visualisation of the nomenclature used can be found in the left part of Figure 15. In
order to be able to determine the quantities of the next time step UUUn+1

j based on the known
conserved quantities UUUn

j , knowledge of these flux terms is thus necessary. A solution of
the Riemann problem defined by combining Equation 4.13 with the following initial value
condition represents a suitable approach for this:

∂

∂ tUUU + ∂

∂xFFFc =QQQ

UUU(x, t = 0) =

{
UUUL, x < x j+ 1

2

UUUR, x > x j+ 1
2

 (4.19)

The spatial coordinate with the subscript j + 1
2 marks the boundary between the two in-

finitesimal control volumes under consideration. The flux vector represents the change in
the quantities between the non-linear waves shown in the right part of Figure 15, which
are separated by an interface. The conservation quantities on the left side of the domain
bounded by these waves form the vector UUUL, while the conservation vector UUUR contains the
quantities on the right side. For the boundary at the spatial coordinate indexed by j− 1

2 an
Riemann problem equivalent to Equation 4.19 can be formulated. In most cases, these initial
value problems are solved using approximative methods such as the approach formulated by
Roe [124].

Left non-
linear wave Right non-

linear wave

Interface

c

Figure 15: Nomenclature to describe the convective flux across the cell boundary of two adjacent
control volumes (left) and general definition of a Riemann problem (right)
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For this purpose, the system of equations is first linearised, whereby the convective flux
vector is to be formulated as a function of the conservation vector:

∂

∂ t
UUU +AAA(UUU) · ∂

∂x
UUU =QQQ with AAA(UUU) =

∂FFFc

∂UUU
(4.20)

The matrix AAA(UUU) denotes the Jacobian matrix and is defined by the partial derivatives of the
entries of the flux vector with respect to the components of the conservation vector. Roe
replaces the Jacobian matrix by a constant matrix ÃAA(UUUL,UUUR), which describes the locally
prevailing quantities of the states to the left and right of the interface.
This has to fulfil the following conditions:

(i) ÃAA defines a linear transformation of the conservation vector UUU onto the flux vector FFFc.

(ii) For UUUL→UUU ∧ UUUR→UUU applies ÃAA(UUUL,UUUR)→AAA(UUU).

(iii) FFFc(UUUL)−FFFc(UUUR) = ÃAA · (UUUR−UUUL) for any UUUL and UUUR.

(iv) ÃAA has only real eigenvalues λ̃ and a complete system of linearly independent right
eigenvectors R̃RR. It is therefore diagonalisable.

As Toro [148] shows, the definition of a matrix that fulfils these conditions is very compli-
cated for systems of equations that exceed the complexity of the three-dimensional Euler
equations.
The approach proposed by Roe and Pike [125] avoids this obstacle by defining the eigen-
structure required to determine the convective flux terms using the exact Jacobian matrix
and then inserting selected algebraically averaged quantities. The eigenvalues of the exact
Jacobian matrix can be determined as the roots of the characteristic polynomial:

det
(
AAA(UUU)−λIII

)
= 0 −→ AAA(UUU)RRR = λRRR ⇔

(
AAA(UUU)−λIII

)
RRR = 0 (4.21)

Here, III denotes the unit matrix. The eigenvectors are determined with the help of their defin-
ing property by solving a system of linear equations for each eigenvalue. As a result, the
eigenstructure of the exact Jacobian matrix is uniquely determined in the form of the eigen-
values and eigenvectors. The definition of so-called Roe-averaged quantities q̃ algebraically
links the quantities on the left and right sides:

ρ̃ =
√

ρLρR, q̃ =

√
ρLqL +

√
ρRqR√

ρL +
√

ρR
with q ∈ {u,H,a} (4.22)

If these are inserted into the equations of the eigenstructure of the exact Jacobian matrix
determined from Equation 4.21, the eigenstructure of the matrix ÃAA results. In this way,
an explicit derivation of this matrix is not necessary. The convective flux across the cell
boundary is formulated by Roe using the following expression:

FFFc, j+ 1
2
=

1
2
(
FFFc(UUUL)+FFFc(UUUR)

)
− 1

2

3

∑
d=1

α̃d
∣∣λ̃d
∣∣∗R̃RRd (4.23)
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Where α̃ denotes the wave strength and
∣∣λ̃ ∣∣∗ denotes the corrected eigenvalue. The tilde

over the formula symbols indicates that the respective quantity is determined by substituting
the Roe-averaged quantities. A correction of the eigenvalues is necessary because of the
possibility of violating the entropy condition for the method formulated by Roe. The entropy
condition requires that the change of entropy over a shock must always be positive. To
ensure this, Harten and Hyman [69] propose a correction of the eigenvalues according to the
following case distinction:

∣∣λ̃i
∣∣∗=


∣∣λ̃d
∣∣ ∣∣λ̃d

∣∣≥ δ ∗d
1
2

(
λ̃ 2

d
δ ∗d

+δ ∗d

) ∣∣λ̃d
∣∣< δ ∗d

with δ
∗
d =max

[
0, λ̃d−λL,d,λR,d− λ̃d

]
(4.24)

The parameter δ ∗ serves as a measure for the violation of the entropy condition. It is defined
using a maximum function, which, in particular, ensures the positivity of the parameter. The
function parameters λL and λR are determined by inserting the conservation quantities of
the left and right sides, respectively, into the expressions of the eigenvalues derived from
Equation 4.21. The evaluation is carried out separately for each equation d. If the absolute
value of the Roe-averaged eigenvalue is greater than the value of δ ∗, the entropy condition
is not violated, and consequently, no correction is necessary. However, if the absolute value
is smaller, the eigenvalue is corrected using the expression in Equation 4.24.
The wave strengths can be determined by projecting the change in the conservation quan-
tities between the left and right sides, as defined by a jump, onto the Roe-averaged right
eigenvectors:

∆UUU =UUUR−UUUL =
3

∑
d=1

α̃dR̃RRd (4.25)

They result as coefficients of the linear system of equations defined by this equation. In order
to calculate the convective flux terms using the method formulated by Roe in the context of a
numerical flow solver, it is necessary to determine analytical expressions for the eigenvalues,
the eigenvectors, and the Roe-averaged quantities, as described in Equation 4.23. An explicit
formulation of the Jacobian matrix must also be formulated using a linearisation of the par-
tial differential equations defining the Riemann problem to determine the eigenstructure.
Roe provides corresponding expressions for the three-dimensional Euler equations under the
assumption of a perfect gas.
For the extensions presented below for single- and two-phase flows of non-ideal fluids, equiv-
alent formulations can be derived. In order to be able to make a statement in these cases about
the fulfilment or violation of the conditions required by Roe for the matrix ÃAA, this can be de-
termined by applying a matrix transformation to the diagonal matrix of the Roe-averaged
eigenvalues Λ̃ΛΛ:

ÃAA = ẼEEΛ̃ΛΛẼEE−1 −→ α̃αα = ẼEE−1
∆UUU (4.26)

The columns of the eigenvector matrix ẼEE contain the eigenvectors of the Jacobian matrix
AAA, which are defined by inserting the Roe-averaged quantities. Due to the property of the
eigenvectors as a linearly independent basis, the eigenvector matrix is invertible. This allows
an alternative way of calculating the wave strengths, which form the entries of the vector α̃αα .
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Extension for application to single-phase non-ideal flows

As already discussed in Chapter 2.2, numerous approaches for extending Roe’s original for-
mulation to include single-phase non-ideal flows can be found in the literature. In most
cases, the derivation focuses on a formulation of the partial derivatives of pressure contained
in the Jacobian matrix that is as exact as possible, as well as on a unique definition of the
Roe-averaged quantities. On the one hand, such an approach causes the scheme to depend
on the type of the selected equation of state due to the specification of the defining quantities.
On the other hand, the resulting formulation of the Jacobian matrix and its eigenstructure is
highly complex, which can negatively affect the applicability and robustness of the method.
The aim of the GIRoe scheme (Generalised Ideal Roe) [142] is, therefore, to ensure applica-
bility to arbitrary equations of state while keeping the complexity of the formulation low and
the robustness of the method as high as possible. To this end, it is first assumed, for the sake
of simplicity, that the influence of the equation of state on the eigenstructure of the Jacobian
matrix can be neglected. The derivation is thus carried out using the laws of perfect gases:

p = (κ−1)ρe, a2 =
κ p
ρ

(4.27)

By combining this approach with an evaluation of the thermodynamic quantities using an
equation of state that deviates from the law of ideal gases, only a violation of the by Roe
required condition (iii) (see page 52) is possible. The approach presented here thus belongs
to the class of simplified Roe schemes.
The convective flux vector can be uniquely determined as a function of the conservation
vector and the isentropic exponent:

FFFc(UUU) =


u2

1
2(3−κ)

u2
2

u1
+u3(κ−1)

κ
u2u3
u1
− 1

2(κ−1)u3
2

u2
1

 (4.28)

The systematic differentiation of the vector components with respect to the components of
the conservation vector yields the following expression for the Jacobian matrix:

AAA(UUU) =

 0 1 0
1
2(κ−3)u2 (3−κ)u κ−1

1
2(κ−2)u3− a2u

κ−1
3−2κ

2 u2 + a2

κ−1 κu

 (4.29)

Using Equation 4.21, the eigenstructure of the matrix can be determined as the set of its
eigenvalues and eigenvectors:

λ̃1 = ũ− ã, λ̃2 = ũ, λ̃3 = ũ+ ã (4.30)

R̃RR1 =

 1
ũ− ã

H̃− ũã

 , R̃RR2 =

 1
ũ

1
2 ũ2

 , R̃RR3 =

 1
ũ+ ã

H̃ + ũã

 (4.31)
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The evaluation of the Roe-averaged speed of sound is carried out using an equation of state
that can be chosen freely. In addition to the classic Roe-averaged density from Equation 4.22,
an additional thermodynamic state quantity is required for this. For Gibbs or Helmholtz-
based multi-parameter equations of state, the Roe-averaged temperature is therefore intro-
duced:

T̃ =

√
ρLTL +

√
ρRTR√

ρL +
√

ρR
−→ ã = aEOS(ρ̃, T̃ ) (4.32)

If the method is to be applied to a different equation of state, the definition of Roe-averaging
from Equation 4.22 must be applied to the respective pair of defining quantities. Regard-
less of the chosen equation of state, the thermodynamically consistent determination of the
Roe-averaged state must be ensured. Since a thermodynamic state in the case of a single-
phase flow is uniquely determined by an independent pair of state quantities, exactly two
Roe-averaged thermodynamic quantities are to be determined using the expression from
Equation 4.22. All other Roe-averaged thermodynamic quantities must be determined by
evaluating the respective equation of state.

The way the Roe-averaged speed of sound is defined, as shown in Equation 4.32, has a
significant influence on the stability of the method. An approach that seems comparable at
first glance, which dispenses with the introduction of the Roe-averaged temperature, reads:

aL = aEOS(ρL,TL), aR = aEOS(ρR,TR) −→ ã =

√
ρLaL +

√
ρRaR√

ρL +
√

ρR
E (4.33)

However, it turns out that such an approximation of the Roe-averaged speed of sound based
on the respective quantities on the left and right sides causes numerical oscillations to de-
velop. These negatively affect the convergence of the method and could be due to the intro-
duction of a further numerical error caused by approximation. When extending the GIRoe
scheme to the description of two-phase non-ideal flows of different complexity, the determi-
nation of the Roe-averaged quantities according to Equation 4.32 is therefore of particular
relevance.

Extension for two-phase non-ideal flows of varying complexity

If the GIRoe scheme is to be used to describe two-phase flows, the way in which the phase
transition is modelled determines the necessity and extent of any adjustments to be made. If
the phase change is described using the model of homogeneous equilibrium condensation,
the system of equations to be solved does not change, and thus, the formulation of the flux
calculation scheme also remains unchanged.

E-L-M-Poly:

If the phase change is to be considered using the model of the non-equilibrium homogeneous
condensation, the choice of the reference system of the dispersed phase decides whether the
scheme needs to be extended.
If a Lagrangian frame of reference is chosen, it is possible to solve the conservation equa-
tions of the two-phase mixture and the transport equations of the dispersed phase separately.
As a result, it is not necessary to adapt the GIRoe scheme. Instead of the quantities of the
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single-phase flow, the mixture quantities must be used. An explicit Euler method can be
used for the temporal integration of the partial differential equations of the moments of the
polydispersed droplet size distribution defined in Equation 4.14:

MMMn+1 =MMMn +
∆x
un

m
·QQQn

L (4.34)

The selected step size establishes a link between the spatial grid point spacing and the locally
prevailing velocity of the two-phase mixture. Since the flow velocity is a solution variable of
the conservation equations, a one-sided coupling of the iteration progress is possible in this
way.

E-E-M-Mono:

If the dispersed phase is described in an Eulerian frame of reference, the system of equa-
tions is extended, which requires an adaptation of the flux calculation scheme. In the case of
the mixture-based approach formulated by Equation 4.15, assuming a monodispersed droplet
size distribution, two additional equations must be solved. Analogous to the procedure of the
GIRoe scheme, the Jacobian matrix is derived using simplifying assumptions:

p = pg = pl = ρg(κ−1)eg, a2
m =

pκ

ρm
1
ρl
� 1 → ρg = (1− y)ρm, em = (1− y)eg + yel

(4.35)

With the help of the enthalpy of evaporation, an analytical expression can be formulated for
the pressure prevailing in the two-phase mixture:

hv =
p

ρg(κ−1)
+

p
ρg
− 1

y

(
em−

(1− y)p
ρg(κ−1)

)
⇔ p =ρm

(1− y)(κ−1)
(1+ y(κ−1))

(
yhv +Em−

1
2

u2
m

) (4.36)

The vector components of the flux vector from Equation 4.15 can thus be represented as a
function of the components of the conservation vector:

FFFc(UUU) =



u2

u2
2

u1
+(κ−1)

1− u4
u1

1+ u4
u1

(
κ−1
)(u3− 1

2
u2

2
u1
+u4hv

)
u2

[
u3
u1
+(κ−1) 1− u4

u1

1+ u4
u1

(
κ−1
)(u3

u1
− 1

2
u2

2
u2

1
+ u4

u1
hv

)]
u4u2
u1

u5u2
u1


(4.37)
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The derivation of the Jacobian matrix results in the following expression:

AAA(UUU) =


0 1 0 0 0

a21 2um−um(κ−1)ε2 (κ−1)ε2 a24 0
a31 a32

κum
κy−y+1 a34 0

−yum y 0 um 0
−NT um NT 0 0 um

 (4.38)

with a21 =yε1 +

(
1
2
(κ−1)ε2−1

)
u2

m, a24 = (κ−1)ε2hv− ε1,

a31 =um

(
yε1 +(κ−1)ε2u2

m−
(
1+(κ−1)ε2

)
Em− (κ−1)ε2yhv

)
,

a32 =
(
1+(κ−1)ε2

)
Em +(κ−1)ε2yhv−

3
2
(κ−1)ε2u2

m,

a34 =um
(
(κ−1)ε2hv− ε1

)
(4.39)

The two parameters ε1 and ε2 are auxiliary quantities that have been introduced for better
readability:

ε1 =
a2

m
(1− y)(1+ y(κ−1))

, ε2 =
(1− y)2

a2
m

ε1 (4.40)

Given that y = 0 ∧ (n = 0 → NT = 0) it is required that the Jacobian matrix from Equa-
tion 4.38 transforms into the matrix of the one-phase flow from Equation 4.29. The only
exceptions to this are the columns associated with the transport equations since these are
automatically dropped due to the zero rows of the flux vector involved in the matrix mul-
tiplication. Inserting the following limiting relations into Equation 4.38 and Equation 4.39
yields the proof:

ε1(y = 0) = a2
g, ε2(y = 0) = 1 (4.41)

The eigenstructure of the Jacobian matrix results in:

λ̃1 = ũm−
√

ε2ãm, λ̃2 = ũm, λ̃3 = ũm +
√

ε2ãm, λ̃4,5 = ũm (4.42)

R̃RR1 =


1

ũm−
√

ε2ãm

H̃m− ũm
√

ε2ãm

ỹ
ÑT

 , R̃RR2 =


1

ũm
1
2 ũ2

m + ỹh̃v

ỹ
0

 , R̃RR3 =


1

ũm +
√

ε2ãm

H̃m + ũm
√

ε2ãm

ỹ
ÑT

 , (4.43)

R̃RR4 =


1

ũm

H̃m− (1− ỹ)h̃v

1
0

 , R̃RR5 =


0
0
0
0
1





56 Numerical Modelling

A comparison of these eigenvalues and eigenvectors with those for the case of a single-phase
flow in Equation 4.30 and Equation 4.31 shows a structural similarity. Furthermore, the
transferability to the single-phase limiting case can be demonstrated for the eigenstructure
analogous to the Jacobian matrix.
Due to the additional transport equations, the algebraic Roe-averaging is to be applied not
only to the temperature but also to the wetness fraction and the mass-related droplet number:

q̃ =

√
ρLqL +

√
ρRqR√

ρL +
√

ρR
with q ∈ {T,y,NT}

−→ ãm = aEOS(ρ̃m, T̃m), h̃v = hv,EOS(T̃m), κ̃ ≈ κpv,EOS(ρ̃m, T̃m)

(4.44)

Furthermore, in addition to the Roe-averaged speed of sound, the Roe-averaged evaporation
enthalpy must also be determined using the equation of state. A peculiarity is the multiplica-
tion of the speed of sound of the mixture by the root of the auxiliary parameter ε2. According
to Equation 4.40, this is defined both by the wetness fraction and by the isentropic exponent.
Due to the deviation of the isentropic pressure-volume exponent from the ratio of specific
heat capacities in the case of compressible non-ideal fluids, as shown in Chapter 3.3, the
use of the isentropic exponent, which is evaluated as the ratio of specific heat capacities, ap-
pears problematic. For this reason, the isentropic exponent is approximated by the isentropic
pressure-volume exponent. The sensitivity of the overall scheme with regard to the selected
formulation is checked as part of the validation.

E-E-M-Poly:

If the level of detail of the modelling of the dispersed phase is to be increased by describ-
ing the droplet size distribution as polydispersed, the number of equations increases further
compared to the monodispersed description. In addition to the conservation equations of the
mixture, the differential equation of the wetness fraction and the equations of the first three
statistical moments of the distribution must be solved simultaneously.
The assumptions made previously in Equation 4.35 for the monodispersed approach also re-
main valid for the polydispersed modelling. The flux vector shown in Equation 4.16 can thus
be formulated by analogy with the procedure explained above, using analytical expressions
of the components of the conservation vector:

FFFc(UUU) =



u2

u2
2

u1
+(κ−1)

1− u4
u1

1+ u4
u1

(
κ−1
)(u3− 1

2
u2

2
u1
+u4hv

)
u2

[
u3
u1
+(κ−1) 1− u4

u1

1+ u4
u1

(
κ−1
)(u3

u1
− 1

2
u2

2
u2

1
+ u4

u1
hv

)]
u4u2
u1

u5u2
u1

u6u2
u1

u7u2
u1


(4.45)
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Notably, the first three lines of the vector are identical to those of the flux vector of the
monodispersed approach in Equation 4.37. Since a mixture-based notation is used in both
cases and the flux terms of the mixture are linearly independent of the statistical moments
of the droplet size distribution, this observation seems plausible. As a result, the Jacobian
matrix can be divided into two diagonalisable submatrices:

AAA(UUU) =



0 1 0 0 0 0 0
a21 2um−um(κ−1)ε2 (κ−1)ε2 a24 0 0 0
a31 a32

κum
κy−y+1 a34 0 0 0

−yum y 0 um 0 0 0
−µ0um µ0 0 0 um 0 0
−µ1um µ1 0 0 0 um 0
−µ2um µ2 0 0 0 0 um


(4.46)

The symbolic matrix components ai j of the submatrix representing the conservation equa-
tions of the mixture match the expressions formulated in Equation 4.39 and Equation 4.40.
Consequently, proof of the convertibility of the scheme for the limiting case of single-phase
flow can be dispensed with. The following eigenvalues and eigenvectors give the eigenstruc-
ture of the Jacobian matrix:

λ̃1 = ũm−
√

ε2ãm, λ̃2 = ũm, λ̃3 = ũm +
√

ε2ãm, λ̃4,5,6,7 = ũm (4.47)

R̃RR1 =



1
ũm−

√
ε2ãm

H̃m− ũm
√

ε2ãm

ỹ
µ̃0

µ̃1

µ̃2


, R̃RR2 =



1
ũm

1
2 ũ2

m + ỹh̃v

ỹ
0
0
0


, R̃RR3 =



1
ũm +

√
ε2ãm

H̃m + ũm
√

ε2ãm

ỹ
µ̃0

µ̃1

µ̃2


, (4.48)

R̃RR4 =



1
ũm

H̃m− (1− ỹ)h̃v

1
0
0
0


, R̃RR5 =



0
0
0
0
1
0
0


, R̃RR6 =



0
0
0
0
0
1
0


, R̃RR7 =



0
0
0
0
0
0
1


The additional equations of the statistical moments require a further increase in Roe-averaged
quantities. Algebraic Roe-averaging is applied to the temperature, the wetness fraction, and
the first three statistical moments. The evaluation of the chosen equation of state also allows
the determination of the Roe-averaged speed of sound and the Roe-averaged evaporation
enthalpy.
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Analogous to the monodispersed case, the isentropic exponent required to determine the
auxiliary parameter ε2 is approximated by the isentropic pressure-volume exponent.

q̃ =

√
ρLqL +

√
ρRqR√

ρL +
√

ρR
with q ∈ {T,y,µ0,µ1,µ2}

−→ ãm = aEOS(ρ̃m, T̃m), h̃v = hv,EOS(T̃m), κ̃ ≈ κpv,EOS(ρ̃m, T̃m)

(4.49)

E-E-P-Poly-S:

In addition to a mixture-based notation, the conservation equations of the two phases can
also be formulated separately. The resulting phase-based system of equations from Equa-
tion 4.17 represents not only the highest level of detail in terms of modelling the dispersed
phase but also the highest degree of complexity of the system of equations. In particular, the
formulation of the conservation of momentum for both phases allows for the consideration
of different phase velocities. For the derivation of the Jacobian, the following simplifying
assumptions are made:

p =pg = pl = ρ(κg−1)eg, a2
g =

pκg

ρg
, ρm = (1− y)ρg + yρl, ρl = const. (4.50)

Unlike before, the liquid phase is now modelled as incompressible for the purpose of deriva-
tion. Since a derivative of the liquid density with respect to an arbitrary quantity always
yields the value zero under this assumption, the determination of the phase-based Jacobian
matrix can be simplified in this way. To ensure the equality of pressure required for the
phase-based notation as a result of the existence of a mechanical equilibrium, a procedure
that differs from the previous derivations is chosen when formulating the flux vector:

FFFc(UUU) =



u2
u2

2
u1
+ϕg p

u2
u1

(
u3 +ϕg p

)
u5

u2
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u4
+ϕl p

u5
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(
u6 +ϕl p

)
u7u5
u4

u8u5
u4

u9u5
u4



with


ϕg = (1− y)ρm

ρg

ϕl = yρm
ρl

(4.51)

Toumi [152] proposes a division of the flux vector into two types of terms to determine the
Jacobian matrix of a system of six differential equations, taking into account momentum ex-
change between the phases. While the majority of the entries of the flux vector are expressed
as before in terms of the components of the conservation vector, the pressure now also re-
mains as an explicit quantity.
The coefficients of the pressure terms can be expressed in terms of the volume fractions of
the gaseous phase ϕg and the liquid phase ϕl in order to simplify the structure. This ap-
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proach allows a unique analytical definition of the Jacobian matrix. The partial derivative of
the pressure terms required for this is first split using the product rule:

∂

∂ui

(
ϕg/l · p

)
i =

∂ϕg/l

∂ui
· p+ ∂ p

∂ui
·ϕg/l (4.52)

By subsequently applying the chain rule in combination with the assumptions made in Equa-
tion 4.50, the Jacobian matrix can be formulated as follows:

AAA(UUU) =



0 1 0 0 0 0 0 0 0
a21 a22 κg−1 a24 0 0 0 0 0
a31 a32 κgug 0 a35 0 0 0 0
0 0 0 0 1 0 0 0 0

a51 a52 a53 a54 2ul 0 0 0 0
a61 a62 a63 a64 a65 ul 0 0 0
0 0 0 −µ0ul

y
µ0
y 0 ul 0 0

0 0 0 −µ1ul
y

µ1
y 0 0 ul 0

0 0 0 −µ2ul
y

µ2
y 0 0 0 ul


(4.53)

with
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ρga2

g

κgρl
,

a31 =
1
2
(κg−2)u3

g−
a2

gug

κg−1
, a32 =

3−2κg

2
u2

g +
a2

g

κg−1
, a52 = (1−κg)

y
1− y

ρl

ρg
ug,

a64 = ul

(
a2

gρ2
g

κgρlρm(1− y)
−hl−

1
2

u2
l

)
, a35 =

ρga2
g

κgρl
, a51 =

(κg−1)
2

y
1− y

ρl

ρg
u2

g,

a53 = (κg−1)
y

1− y
ρl

ρg
, a54 =

y
1− y

a2
g

κg
−u2

l , a61 =
(κg−1)

2
y

1− y
ρl

ρg
u2

gul,

a62 = (1−κg)
y

1− y
ρl

ρg
ugul, a63 = (κg−1)

y
1− y

ρl

ρg
ul, a65 = hl +

1
2

u2
l −

ρga2
g

κgρl

Due to the separate formulation of the two phases, the transferability of the matrix for the
limiting case of single-phase flow can be easily recognised. If the physical quantities of
the liquid phase and the statistical moments are set to zero, the entries of the submatrix in
the upper left corner take on the values of the Jacobian matrix in the single-phase case. In
addition, the entries below this submatrix become zero without exception so that the matrix
merges completely into the system of equations of the single-phase flow.
The determination of the eigenstructure of the Jacobian matrix gives nine eigenvalues:

λ̃1 =ũg−
√

ε3ãg, λ̃2 = ũg, λ̃3 = ũg +
√

ε3ãg,

λ̃4 =2ũl− ũg, λ̃5 = ũl, λ̃6 = ũg, λ̃7,8,9 = ũl
(4.54)
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The corresponding eigenvectors are:

R̃RR1 =
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ρ̃l

(
1+ ũg−ũl√

ε3ãg
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(ũg−

√
ε3ãg)
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, (4.55)

R̃RR2 =
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ε3ãg
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ε3ãg

)
p̃
ρ̃l

0
0
0



,

R̃RR4 =



1
2ũl− ũg

p̃
ρ̃gãg
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Analogous to the previously introduced auxiliary quantities, the parameter ε3 serves to im-
prove readability. The determination of the variables required in addition to those Roe-
averaged quantities defined by Equation 4.22 is limited to the Roe-averaged speed of sound
of the gas phase and the Roe-averaged pressure, along with the typical representatives for
the polydispersed approach:

q̃ =

√
ρLqL +

√
ρRqR√

ρL +
√

ρR
with q ∈ {T,y,µ0,µ1,µ2}

−→ ãg = aEOS(ρ̃g, T̃g), p̃ = pEOS(ρ̃g, T̃g)

(4.56)

Especially in this case, however, the previously explained thermodynamic consistency must
be maintained due to the large number of quantities to be determined. A comparison of
the structure of the eigenvalues and eigenvectors of the phase-based notation with those of
the mixture-based approach in Equation 4.48, which is equivalent in terms of modelling the
droplet size distribution, illustrates the algebraic similarity. In both cases, the quantity of
the speed of sound, which is central to the Roe scheme, is multiplied by a factor that has a
dominant dependence on the wetness fraction.

A characteristic systematic of the eigenstructures can be recognized for all considered vari-
ants, including the single-phase formulation. With an increasing level of detail in the ther-
mophysical modelling of the phase change, only the number of variables and terms to be
considered increases. The derived extensions of the GIRoe scheme for two-phase non-ideal
flows of different complexity are thus characterised by three distinctive properties:

(i) Their derivation is based on simplifying assumptions regarding the modelling of the
thermodynamic state quantities so that the resulting matrices have relatively low com-
plexity.

(ii) By evaluating all thermophysical quantities based on an arbitrary, explicitly selected
equation of state, any simplifications are isolated to the area of derivation. This be-
comes particularly evident by determining selected Roe-averaged quantities by means
of the equation of state.

(iii) Each of the formulations presented above is transformed into the single-phase GIRoe
scheme by negating a liquid phase. In addition, their eigenstructures have a character-
istic structure that is retained regardless of the type of liquid phase modelling selected.

In the interests of uniform nomenclature the methods presented are therefore referred to
below as the Phase Generalised Ideal Roe (PGIRoe) scheme. Since the GIRoe scheme
is also incorporated into this designation, the PGIRoe scheme is able to describe single-
phase and two-phase flows of compressible non-ideal fluids. A variety of different modelling
approaches can be selected for modelling the liquid phase. In order to be able to validate
the introduced variants of flow calculation schemes using physical test cases, a modular
implementation in the flow solver TRACE is carried out.
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4.3 Implementation of the PGIRoe Scheme in the Flow Solver TRACE

TRACE is a density-based flow solver developed by the DLR specifically for use in turbo-
machinery. It is used in both academic and industrial environments to investigate research
questions in aerodynamics, aeroelastics, aeroacoustics, and aerothermodynamics. To this
end, the three-dimensional Reynolds-averaged Navier-Stokes equations are solved. While a
second-order Roe scheme is used to determine the convective flux terms, the viscous flux
terms are discretised using second-order central differences. Several methods with differ-
ent levels of accuracy are available for spatial discretisation. The second-order formula-
tions include, among others, a Monotonic Upstream-centred Scheme for Conservation Laws
(MUSCL). The temporal integration of the system of equations can be carried out using
a Gauß-Seidel approach or a predictor-corrector formulation based on implicit first- and
second-order methods. If the flow is to be investigated in a temporally resolved manner,
higher-order methods are used for the temporal integration. Moreover, TRACE is able to
calculate corresponding solutions of the flow field for both structured and unstructured grids,
as well as combinations of these two types. It also offers a variety of turbulence models to
choose from. However, the underlying modelling of thermophysical quantities represents a
significant limitation to the applicability of the flow solver.

Evaluation of thermophysical quantities in TRACE

The gas models in TRACE are limited to the models of the caloric perfect and the ther-
mally perfect gas. Consequently, the law of ideal gases is the only thermal equation of state
available. When modelling as a thermally perfect gas, the temperature-dependent specific
heat capacities are determined by polynomials characterised by fluid-specific coefficients. A
model equation formulated by Sutherland is used to calculate the dynamic viscosity, which
contains a fluid-specific constant and the temperature as parameters. However, it is not pos-
sible to describe the fluid as non-ideal on the basis of the models implemented in TRACE.
Therefore, due to the objective of the present work, an additional gas model for non-ideal
fluids is implemented first.
As shown in Chapter 3.2, multi-parameter equations of state allow the thermophysical quan-
tities to be determined with a high degree of accuracy. They are, therefore, selected for the
description of non-ideal fluids in TRACE. Since multi-parameter equations of state are fluid-
specific formulations, this choice requires the implementation of one equation of state per
fluid species. Furthermore, different combinations of state quantities arise in the course of
the iterative solution, so further iterative routines are needed alongside the explicit form of
the equation of state. If all these equations and routines are to be implemented directly in
TRACE, limiting the number of fluid species seems unavoidable. However, by integrating
the REFPROP database of the National Institute of Standards and Technology (NIST) [91],
such a limitation can be avoided. The results presented below are based on version 10 of this
database. It contains 147 pure substances as well as a large number of mixtures. In addition
to the equations of state and the iterative routines, the database also provides corresponding
model equations for determining the transport quantities for each fluid.
The routines in REFPROP for evaluating the thermophysical quantities can be called up
directly in TRACE via a corresponding interface. When selecting the routines, particular at-
tention should be paid to possible limitations concerning specific state ranges. In particular,
suitable routines must be used for the supercritical range as well as the two-phase region.
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Otherwise, unphysical values may be calculated. The metastable state range of the gas phase
can be evaluated by forcing a search for solutions in the gaseous state or by means of a bilin-
ear extrapolation. Since the REFPROP database only includes Helmholtz-based equations of
state FΦ, an additional equation of state for the medium water in terms of the IAPWS-IF97
is implemented directly in TRACE. Wagner and Kretzschmar [158] provide explicit polyno-
mial equations for this equation of state as a replacement for the required iterative routines.
The equations used to calculate the transport quantities of water are implemented according
to the sources given in Appendix A. In this way, the evaluation of the thermophysical quan-
tities of non-ideal fluids in general and those to be investigated in the context of this work
can be ensured in TRACE.
However, it turns out that a direct evaluation of the equation of state and, in particular, the
iterative calculation of state quantities is very computationally expensive. Since a large num-
ber of these operations have to be performed per iteration step and node of the spatial grid,
this leads to very long computing times when investigating non-ideal fluids. One way to
address this challenge is to store the thermophysical quantities in tables.

Storage of thermophysical quantities as tables

Such an approach is already established in the field of thermodynamics using classical steam
tables. For this purpose, arbitrary state quantities z are determined as a function of two in-
dependent quantities and stored in a table together with these. To be able to map a large
number of states, the two defining quantities are varied within selected intervals. The num-
ber of elements in these intervals determines the discretisation of the state range defined by
the interval boundaries. If an arbitrary state within these limits is to be evaluated, an interpo-
lation between the discrete entries in the table must be carried out.
In addition to the classic linear approach, various higher-order formulations are available.
These include the method proposed by Miyagawa and Hill [100], which expresses the quan-
tity z using a Taylor series expansion truncated after the second term. Consequently, it is a
second-order formulation that takes the following form for a Helmholtz-based equation of
state:

z = zi, j+(ρ−ρi)

(
∂ z
∂ρ

)
i, j
+(T −Tj)

(
∂ z
∂T

)
i, j

+
1
2
(ρ−ρi)

2
(

∂ 2z
∂ρ2

)
i, j
+

1
2
(T −Tj)

2
(

∂ 2z
∂T 2

)
i, j

+(ρ−ρi)(T −Tj)

(
∂ 2z

∂ρ∂T

)
i, j

(4.57)

The table used for storage can also be interpreted as a two-dimensional structure whose di-
mension is directly linked to the chosen discretisation of the tabulated state range. If an equal
number nT of different values is chosen for both defining quantities, then n2

T uniquely deter-
mined thermodynamic states result. Consequently, the resulting square matrix of the storage
structure must also have the dimension nT .
To be able to interpolate the state quantity z using Equation 4.57, all equation terms must be
known. These include, in particular, the required first and second-order derivatives.
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For a Helmholtz-based equation of state, a suitable memory structure would be as follows:
T1 · · · · · · TnT−1 +∆T

ρ1
...
...

ρnT−1 +∆ρ


z1,1,∆1,1 · · · · · · z1,nT ,∆1,nT

... . . . ...

... . . . ...
znT ,1,∆nT ,1 · · · · · · znT ,nT ,∆nT ,nT

 (4.58)

with ∆i, j =

{(
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}

For the sake of clarity, the set ∆ represents the derivative terms. Using such a matrix structure,
it is possible to store the terms required for the interpolation of any number of quantities z.
It is only necessary to ensure that the choice of defining quantities remains unchanged. Sep-
arate memory structures must be created for the quantities to be determined using iterative
routines F iter

Φ
. These differ from the form shown in Equation 4.58 in terms of their defining

quantities. Both the thermophysical equations and the iterative routines are evaluated multi-
ple times in each iteration step during CFD calculations.
According to an overview in the left part of Figure 16, three possible types of evaluation of
the thermophysical routines can be distinguished. In addition to a direct evaluation of any
quantity, a gradual use of memory structures, indicated by the index tab, is possible. The
latter distinguishes between tabulating all quantities or only those determined by the iterative
routines. The reason for such a gradual approach lies in the observation that a particularly
high computing time is required to evaluate the iterative routines.
In order to examine this in detail, the computing time for different numbers of queries nA to
be performed is examined as a function of the three types of evaluation, using the example
of the medium CO2. A representative set of routines, which TRACE runs through per spatial
and temporal iteration, forms the basis of the analysis. The random selection of different
thermodynamic states is carried out within a defined state range of CO2. The multiplication
of the number of selected states with the number of routines included in the set yields the
number of queries. To ensure the comparability of the test results, the three types of evalu-
ation are each subjected to identical queries. The tables generated for the considered state
range are also used in the same way for all types of evaluations. In addition, three repetitions
are carried out for each type of evaluation to determine the required computing times. The
respective results of these three runs are then arithmetically averaged.
The right part of Figure 16 shows a plot of the computing time obtained in this way versus
the number of queries in millions for direct evaluation and the two different levels of mem-
ory structure usage. As expected, storing all thermophysical quantities in the form of tables
leads to a significant decrease in computing time compared to direct evaluation. Since the
tables in TRACE are created before runtime and can be reused as often as required due to
their storage in the input file, the computing time of the tabulated variants includes reading
the storage structure into the main memory. However, even for the lowest number of queries
examined, the additional time required for this does not result in any disadvantage compared
to direct evaluation. If a linear regression is applied to the data points of the three evalua-
tion types, a high degree of correlation with the respective regression lines can be seen in
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Figure 16: Required computing time as a function of number of queries for different types of evalu-
ation of the thermophysical routines taking the medium CO2 as an example; dotted lines represent a
linear regression of data points

all three cases. The computing time thus scales approximately linearly with the number of
queries, whereby the slopes of the lines show strongly differing values. This is particularly
evident for the highest number of queries examined. In this case, using a table for the iter-
ative routines instead of a direct evaluation reduces the computing time by a factor of five.
If the remaining thermophysical routines are also stored in tabular form, a further reduction
in computing time by a factor of three can be achieved. However, the advantage in terms
of computing time is inevitably accompanied by a decrease in the accuracy of the evaluated
thermophysical quantities. The discretisation of the table and the gradients of the thermo-
physical quantities in the state range under consideration significantly influence the resulting
accuracy of the results.
To illustrate this, two state regions of CO2 are highlighted in colour in the left part of Fig-
ure 17, whose interval boundaries are characterised by equal pressure and temperature dif-
ferences. Region I in red encompasses the immediate vicinity of the critical point, which, in
addition to low values of the compressibility factor, also exhibits particularly large gradients
of the state quantities at the limiting curves of the continuous and discontinuous phase tran-
sitions. By selecting the blue region II at a suitable distance from the critical point, states
that are characterised by a less pronounced non-ideality can be found within its boundaries.
Suppose the same dimension of the table is selected when tabulating the thermophysical
quantities of the two regions. In that case, the definition-dependent equal pressure and tem-
perature differences also result in a corresponding discretisation. This property is now to be
used to examine the influence of the state region on the accuracy of the tabulated quantities
in isolation. In addition to the density, the speed of sound and the specific isobaric heat ca-
pacity are selected as parameters for investigation. As discussed in Chapter 3, the speed of
sound in the vicinity of the saturated vapour line and the isobaric heat capacity in the imme-
diate vicinity of the Widom line exhibit large gradients, making their evaluation particularly
sensitive.
For each of the two regions, the state quantities are tabulated according to their defining
quantities, with four different table dimensions being selected in each case. A dimension
of 100 represents the lowest resolution, while the table with the finest discretisation has a
dimension of 1000. Within the two regions to be examined, 250,000 different thermody-
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Figure 17: Definition of two investigation regions of CO2 in a p-T diagram (left) and graph of the
relative error of the evaluation of density, speed of sound and specific isobaric heat capacity using
tables of different dimensions (right)

namic states are randomly selected as representative sample sets. Their number is equivalent
to the already known quantity of the number of queries. The three examination parameters
are determined for each of these states by direct evaluation and interpolating the four tables.
For each query, the absolute difference between the interpolation results and the result of the
direct evaluation is calculated and related to the former. Subsequently, the related differences
are summed up for each parameter and table dimension. Dividing this result by the number
of queries yields the relative error of the tabular evaluation, which is plotted in percent in
the right part of Figure 17. The values for Region I are shown in red, corresponding to the
previous colour scheme, and the results for Region II appear in blue.
The relative error values of the table-based evaluation of the state for Region II are at least
five orders of magnitude smaller than for Region I, regardless of the table dimension consid-
ered. This observation seems plausible since Region I, unlike Region II, is characterised by
large gradients of the examination parameters. For both regions, the value of the relative er-
ror decreases with increasing table dimension, although this effect is much more pronounced
for low dimensions. In addition, the three test parameters show only slightly different val-
ues of the relative error for each selected region and table dimension, so the validity of the
derived conclusions can be assumed independently of the table type. While the tables gener-
ated for Region II all seem suitable for CFD calculations, this has to be checked for Region
I due to the comparatively high relative error values for the specific application. As part of
such an investigation, a table dimension suitable for compliance with a defined error bound
can be determined for any state region.
In particular, for a high number of queries, as they occur, for example, when using very fine
spatial grids, the evaluation using tabulated data shows great potential by combining a con-
siderable saving of computing time with sufficient result accuracy. In addition, a refinement
of the tables by simply increasing the dimension only leads to an increase in the time re-
quired for the initial reading of the memory structures and an increased demand for memory.
However, up to a dimension of 1000, the influence of these two factors appears negligible
for TRACE. The number of required memory structures, which depends on the type of flow
to be examined, must be taken into account. While two memory structures are to be pro-
cessed in the case of a single-phase flow, this number increases to five for two-phase flows.
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If the phase change is described using the model of homogeneous equilibrium condensation,
only the saturation quantities need to be stored alongside the gas quantities as an additional
structure. However, modelling the liquid phase as dispersed in the continuous phase requires
tabulating the state quantities comparable to that for the gas phase, using two additional
memory structures. This is one of many factors to be considered when conceptualising a
module to take a second phase into account in TRACE.

Conceptual design of a module to take into account a second phase

While the already introduced gas model of non-ideal fluids is integrated into the group of
gas models available in TRACE, the development of a separate module, called TwoPhase,
seems useful for taking a second phase into account. This is essentially motivated by three
aspects. Firstly, the separation of the routines enables a minimally invasive implementation.
If a two-phase flow is to be calculated with TRACE, the single-phase main code merely calls
the module once per spatial and temporal iteration, triggered by a binary parameter defined
in the input file. On the other hand, the module can be deactivated at any time without af-
fecting the functionality of the rest of the flow solver due to its self-contained nature. This
is particularly relevant because the developed implementation is an external enhancement of
the code quality assured by the DLR. Finally, the modular structure provides a way to de-
velop further and expand the modelling approaches that are almost entirely decoupled from
the developments in the main code.
To support the latter aspect, the module is divided into three sub-modules, as visualised in
Figure 18. The first of these sub-modules includes the evaluation of the thermophysical
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Figure 18: Structure of the module TwoPhase for the consideration of a second phase in TRACE
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quantities of both phases. While the routines for determining the quantities of the liquid
phase, the saturation states, the metastable state range, and the classical gas kinetics can be
found directly in this submodule, the evaluation of the gas quantities is based on an interface
to the gas model of the non-ideal fluid. The decision between a direct or tabulated evaluation
of the routines is made via a further binary parameter in the input file.
The routines associated with modelling the liquid phase can be found in the second sub-
module. These include, in particular, the modelling approaches of the phase change as
homogeneous equilibrium and non-equilibrium condensation. In the case of the latter, a
determination of different quantities of the classical nucleation and growth theory, as well
as a mathematical specification of the droplet size distribution, is necessary. Similar to the
binary parameter, which activates the consideration of a second phase at the beginning of
the calculation, further input options allow the user to choose between the different types of
phase change modelling and the respective sub-models.
The combination of these results in the formulation of the wetness fraction, which is part of
the routines of the third submodule for specifying the system of equations. The choice of
the reference system, which is also controlled by binary input file parameters, and the con-
sideration of momentum exchange between the phases, leads to a unique definition of the
modelling of the second phase. Based on this, the formulation of the system of equations to
be solved can be specified by the source terms and the PGIRoe scheme.
In combination with the routines available in TRACE for solving single-phase flows and the
boundary conditions adapted for considering a second phase, the iterative calculation of the
two-phase flow field is possible. In order to ensure the functionality of the single-phase im-
plementation for non-ideal fluids independently of the TwoPhase module, the GIRoe scheme
contained in the PGIRoe scheme is additionally implemented in the single-phase main code.
In this way, the desired type of flow modelling can be defined in the input file by combining
the binary parameters that act as mathematical switches. Before the extension of the flow
solver TRACE, with the inclusion of a second phase and thus the PGIRoe scheme contained
in it, is validated using a selection of physical test cases, it seems useful to introduce the
methods used to assess numerical solutions.

4.4 Methods for Evaluating Numerical Solutions

The nomenclature used in this context is based on the guideline formulated by the American
Institute of Aeronautics and Astronautics (AIAA) for verifying and validating CFD calcula-
tions. Verification ensures that the implementation correctly reproduces a solution derived
from the underlying models. An example of this could be comparing an analytically deter-
mined solution to a specific problem with the numerical calculation results. A plausibility
check based on fundamental physical relationships is also conceivable.
Validation, on the other hand, refers to a procedure that checks the extent to which the results
of a CFD calculation match the flow quantities observed in reality. The comparison of exper-
imentally collected data with the results of a corresponding CFD simulation can be used for
this purpose. In order to validate the model of the PGIRoe scheme and its implementation in
TRACE, a staged approach involving verification prior to validation is therefore required.
Since CFD methods inevitably simplify reality on the basis of a large number of different
model assumptions, the concept of error is at the centre of every verification and validation.
A distinction can be made between different types of error. If the source of the error can
be clearly identified, as is the case with programming or usage errors, the influence of the
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error on the calculation results can be eliminated by means of a corresponding correction.
However, if the error is based on an underlying assumption or procedural aspect of the mod-
elling, it remains intrinsic to the respective CFD method. In addition to discretisation errors,
approximation errors of physical models, and errors associated with the iterative solution of
the system of equations, this type of error also includes rounding errors caused by the use of
computers. These errors must be systematically investigated to assess the significance of the
numerical solution to a physical problem.
In order for a numerical representation of a physical test case to be considered validated, the
influence of the individual sources of error must either be negated, or it must be possible
to qualitatively and quantitatively classify them. For discretisation errors and errors caused
by the iterative solution, proof of the independence of a numerical solution from the source
of the error is often sought. Maintaining methodological consistency and falling below a
defined error threshold serve as sufficient criteria for this.

Independence of the solution from the spatial discretisation

Since the present work is concerned exclusively with calculating flows that can be assumed
to be stationary, the consideration of the classical discretisation errors is limited to the spatial
extent. For this purpose, the procedure documented by Roache [123] is followed.
Starting from a coarse spatial grid identified by index 4 in the following, a systematic grid
refinement is carried out. The respective number of nodes in the three spatial directions is
multiplied by a factor rG, which is to be chosen as an integer. The resulting medium grid is
designated by the index 2. A further refinement using the previously defined factor leads to
a further increase in the number of nodes and forms the finest grid with index 1.
Based on the spatial grids generated in this way, a flow solver can determine three numerical
solutions of the flow field for a specific case. The quantity z is chosen such that it repre-
sents a characteristic quantity for the case under consideration. By evaluating it for the three
different grids, an expression for calculating the convergence order of the grid θG can be
formulated:

θG = ln
(

z4− z2

z2− z1

)
/ ln(rG) (4.59)

The calculated convergence order can be compared with the theoretical convergence order
of the solution method. TRACE uses a second-order method for spatial discretisation so that
the theoretical convergence order also takes the value of two. To ensure the consistency of
the method, the calculated convergence order must, therefore, have a value of approximately
two.
If this criterion is met, an estimate can be made using a Richardson extrapolation, from which
node number onwards, a further grid refinement no longer has a relevant influence on the
numerical solution. By neglecting all terms with an order greater than two, Roache derives an
expression for the Richardson extrapolation zRE for the quantity under investigation, which
depends on the results of the medium and fine grid, as well as the grid refinement factor and
the order of convergence:

zRE = z1 +
z1− z2

rθG
G −1

(4.60)
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Its value can be interpreted as an approximation of the solution on a spatial grid with an
infinite number of nodes and, thus, a grid point spacing of zero. Since a comparison of the
Richardson extrapolation with an analytical solution is not possible for most numerical test
cases due to the lack of an analytical solution, it serves as a benchmark. The independence of
the solution from the spatial discretisation can be assumed for the corresponding grid if the
relative deviation of the characteristic quantity determined for the three grids from the value
of the Richardson extrapolation falls below a predefined error threshold. The error thresh-
old must be selected appropriately for the case under investigation. As shown earlier in this
chapter, evaluating tabulated data of thermophysical quantities also involves a discretisation
and, thus an associated error.

Independence of the solution from the discretisation of the tabulated quantities

Unlike the case of classical discretisation errors, there is no standardised procedure in the
literature for investigating this type of error. However, the property of a table as a two-
dimensional structure can also be used here by interpreting it as a grid in two spatial direc-
tions.
Similar to the procedure for examining spatial grid independence, a coarse table marked with
the index 4 is generated first. Multiplying the table dimension by an integer refinement fac-
tor rT results in a medium table marked with the index 2. The finest table indexed with 1
represents a further increase in dimension based on the previously selected factor. Unlike in
the context of spatial discretisation, the evaluation of characteristic quantities of a flow sim-
ulation does not appear to be sufficient here. Rather, an investigation of the independence of
the solution from the discretisation of the tabulated quantities aims at the deviation between
the direct evaluation and an evaluation based on tables. When quantifying this, it is essential
to use a representative sample size; otherwise, repeatability cannot be guaranteed.
The deviation χ averaged based on the number of queries is therefore used as a parameter. If
this is evaluated for the coarse, medium, and fine table, the order of convergence of the table
θT can be calculated as follows:

θT = ln
(

χ4−χ2

χ2−χ1

)
/ ln(rT ) with χ =

1
nA

∑ |FΦ,tab−FΦ| (4.61)

According to Equation 4.57, the interpolation of the tabulated quantities has a second-order
truncation error. Consequently, the theoretical convergence order of the table is two. To
ensure the consistency of the method, the calculated convergence order must not deviate
significantly from this value. If this criterion is met, a statement about the dimension required
for the independence of the results from the discretisation of the table can be derived using
the Richardson extrapolation χRE . The formulation for this follows the procedure presented
for spatial discretisation:

χRE = χ1 +
χ1−χ2

rθT
T −1

!−→ 0 (4.62)

Its value can be interpreted as the mean error of evaluating a representative set of samples
based on a table with infinite dimensions. As a result, the Richardson extrapolation must
inevitably tend towards a very small value. If the relative error determined based on a se-
lected table falls below a suitably chosen error threshold, it can be stated that the solution is
independent of the discretisation of the table.
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For this statement to be valid for associated CFD calculations, it must be ensured that the
thermodynamic states to be evaluated lie within the interval limits of the table. If the tabu-
lated range were to be left during the calculations, the thermophysical quantities would be
evaluated directly. Although this would not negatively affect the accuracy of the results, it
would question the purpose of the presented detailed analysis. In addition to the approaches
for examining the discretisation errors, an analysis of the error caused by the iterative nature
of the solution process also needs to be carried out.

Proving the convergence of the iterative solution procedure

When solving a mathematically defined problem iteratively, the underlying system of equa-
tions is repeatedly evaluated. The aim is to approximate the exact solution with the highest
possible accuracy in a reasonable number of iterations. If the calculated solution approaches
the exact solution during the iterative process, the procedure converges. However, a termina-
tion criterion must be defined since the exact solution cannot be achieved in a finite number
of iterations. This criterion must strike a balance between the two objectives of accuracy and
the number of iterations required.
The value of the residual is one way of assessing the deviation between the exact and the
approximated solution. This is determined for each iteration step, grid point, and equation
to be solved. It can be formed by subtracting the right-hand side from the left-hand side of
the system of equations. A normalisation of the residual is often used to make a statement
about the deviation for all the equations and node points of the grid. The L1 norm applied
below to assess convergence weights all the absolute values of the residual equally. For a
stationary approach, TRACE determines the residual ResL1 normalised in the above way
using the following equation:

ResL1 =
1

nV

nV

∑
j=1

nG

∑
d=1

∣∣∣∣∣ ∆t j

VV, j ·CFL

((
FFF j+ 1

2 ,d
−FFF j− 1

2 ,d

)
−QQQ j,d

)∣∣∣∣∣ (4.63)

Here, nV denotes the number of cells in the spatial grid, while nG represents the number
of equations to be solved. The locally prevailing time increment ∆t j and the respective cell
volume VV, j, which is defined by the local distances between the grid points, together with
the CFL number, represent the dimensionless parameters introduced in the course of spatial
and temporal integration.
The CFL number defined by Courant, Friedrichs, and Lewy [33] relates the step sizes of
spatial and temporal integration to a characteristic velocity:

CFL = a · ∆t
∆x

(4.64)

According to this definition, its value can also be interpreted as information propagation
speed per grid point and time step. An analysis of the stability of numerical methods accord-
ing to von Neumann [26] yields a stability criterion of CFL ≤ 1 for explicit formulations
of the temporal integration. Consequently, the information can propagate at a maximum of
the speed of sound. Implicit methods of time integration are not subject to this limitation
and also achieve stable solutions for CFL > 1. However, the required number of arithmetic
operations per iteration step increases compared to the explicit methods, in particular, due
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to the necessity of additional matrix inversions. In this context, the term stable refers to the
determination of a converged solution in the absence of strong numerical oscillations. A
solution is considered to have converged if the convergence criterion is met, as evidenced by
a defined value of the residuum. The absolute value of this criterion thus indicates the max-
imum permissible deviation of the iterative solution from the exact solution. An additional
indication of convergence can be derived by analysing the trends of global flow quantities.

Verification using a flow solver independent of TRACE

To minimise the influence of possible errors made during the implementation of the TwoPhase
module in TRACE and to also be able to validate the PGIRoe scheme for explicit methods
of temporal integration, a completely independent implementation from TRACE is carried
out using a separate density-based flow solver.
Unlike TRACE, this can solve the Reynolds-averaged Navier-Stokes equations as well as the
Euler equations not only in three but optionally also in one or two dimensions. While the
convective flux terms are determined with second-order accuracy using the PGIRoe scheme,
the viscous flux terms are calculated using second-order central differences. The spatial
discretisation is based on a second-order MUSCL scheme, where a limiter function formu-
lated by van Leer [89] is applied. An explicit second-order Runge-Kutta method is used
for the temporal integration. The turbulence modelling is based on the one-equation model
by Spalart and Allmaras [135]. By integrating the REFPROP database, the user can choose
between the gas models of the calorically perfect gas and the non-ideal fluid. For the latter,
tabulated thermophysical data can be used. The model equations for considering a second
phase contained in the TwoPhase module in TRACE can also be found in a comparable way
in the in-house implementation. This also serves as a development environment for the adap-
tations of the boundary conditions made in TRACE to take a second phase into account. The
applicability of the method is limited to structured grids and stationary flows.
The resulting flow solver is able to calculate single- and two-phase flows of compressible
non-ideal fluids, taking into account the formation of a second phase. In this way, it can be
applied in the same way as TRACE to all physical test cases examined for validation. For
the sake of clarity, the independently implemented flow solver will be referred to below as
Explicit Phase Generalised Ideal Roe (EPGIRoe) in combination with the number of spatial
dimensions chosen for modelling.
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5 Application of the Model to Various Validation Cases

Seven test cases were selected to verify and validate the PGIRoe scheme comprehensively.
These can be divided into three groups based on their underlying geometries. In addition to
the investigation of single- and two-phase flows in Laval nozzles, the compression of CO2 in
a supercritical state using a radial compressor and the interaction of the gaseous and liquid
phases in an axial turbine cascade are also investigated. The selection of the test cases is
motivated by different validation objectives for single- and two-phase flows.
In the single-phase case, it must first be demonstrated that the PGIRoe scheme is capable of
adequately describing arbitrary compressible non-ideal flows. Since the original Roe method
is characterised by a high degree of robustness and thus the ability to describe discontinu-
ities and, in particular shocks, with high accuracy, the preservation of this property must
be verified for the PGIRoe scheme. Laval nozzles are particularly suitable for this purpose
since the flow conditions prevailing in those can be easily varied by means of the applied
pressure ratio. In addition, the geometry data of a large number of Laval nozzles, such as
NASA’s Converging Diverging Verification (CDV) nozzle [92], are documented in the liter-
ature as part of established CFD validation cases. Due to their simple geometry compared
to three-dimensional turbomachinery, it is possible to characterise them solely in terms of
their area change along the nozzle axis, thus enabling the derivation of quasi-analytical so-
lutions. In the context of ORC turbines, Laval nozzles are of high practical relevance as
low-complexity substitute models for investigating the expansion from subsonic to super-
sonic conditions. The influence of non-ideality and molecular complexity of the working
fluid on the flow characteristics of the expansion can be considered in isolation from other
factors. An example of this is the experimental investigations by Spinelli et al. [137], which
are documented both in terms of the underlying geometry and the measurement data and
can, therefore, be used as a validation case in the context of this work. In order to analyse
the robustness of the PGIRoe scheme with respect to large gradients in the flow field, the
flow of CO2 in a supercritical state through a radial compressor is considered. The operating
range of the compressor designed by Hacks et al. [66] is in the immediate vicinity of the
critical point and, thus, also of the two-phase region. In addition, it is a three-dimensional
turbomachinery test case for which experimental measurement data is available.
After verification and validation of the PGIRoe scheme using these three single-phase test
cases, a similar process must be carried out for two-phase flows. First, the different config-
urations of the scheme with regard to the modelling of the liquid phase must be verified. In
particular, it is to be ensured that the PGIRoe scheme adequately reproduces the mechanisms
of nucleation and droplet growth and the resulting flow phenomena such as condensation
fronts. The extent to which the scheme is able to map the interaction of the phases and, thus,
the heat and momentum exchange also has to be examined. To this end, simple geometries in
the form of Laval nozzles are first analysed, similar to the single-phase case. These can be in-
terpreted as a substitute model of the blade channel of low-pressure steam turbines by setting
appropriate values for the expansion rate ṗ, the Mach number Ma, and the subcooling. For
the medium steam, a large number of experimental investigations are available, including,
in particular, the work of Moore et al. [101], Moses and Stein [102] and Barschdorff [17].
While the nozzle geometries of the first two mentioned make it difficult to consider con-
densation effects in isolation due to boundary layer effects and the formation of flow dis-
continuities, no original measurement data regarding the size of the droplets are available
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for the latter. However, since a validation, as shown by Young [172], should be carried out
using a combination of pressure and droplet radius curves, Maqueo Martinez et al. [94] carry
out supplementary measurements of the droplet radii for the nozzle geometry according to
Barschdorff. In addition, a complementary test case is chosen, which is the Mystery nozzle
that was numerically investigated as part of the International Wet Steam Modelling Project
(IWSMP) [138]. In order to validate the applicability of the PGIRoe scheme to two-phase
flows of different fluid species, a nozzle geometry experimentally investigated by Theis [144]
for CO2 is also analysed. Following the consideration of Laval nozzles, a further approach
to the three-dimensional flow prevailing in turbomachinery appears useful in the course of
validation. This is confirmed by the experimental evidence provided by numerous authors
(see [11, 170, 130]) of increased interaction between the dispersed and continuous phases
in the presence of flow discontinuities in the last stages of low-pressure steam turbines. An
axial turbine cascade investigated by White et al. [165] is particularly suitable as a basis
for a corresponding numerical test case due to its systematic variation of flow conditions.
Therefore, the quasi-two-dimensional investigation of this geometry rounds off the PGIRoe
scheme’s validation for two-phase flows.

5.1 Single-Phase Flows

Verification and validation of the PGIRoe scheme for single-phase flows are necessary pre-
requisites for investigating its applicability to the description of phase change processes.
The focus here is on three requirements. The thermophysical quantities of the flow must be
calculated correctly by the PGIRoe scheme. Furthermore, it needs to be able to describe dis-
continuities and gradients in the flow field as accurately as possible and achieve a converged
solution despite these. It must be demonstrated that it can be applied to any dimensional
modelling of the flow. Finally, the consistency of the procedure is to be checked by ensuring
that the PGIRoe scheme, regardless of the selected setting concerning a second phase, must
transition into the GIRoe scheme in the single-phase case.

5.1.1 Expansion of CO2 and MDM in Laval Nozzles

One challenge in selecting a test case to verify the PGIRoe scheme for single-phase flows
of non-ideal fluids is the availability of suitable reference data. While a large number of
established CFD test cases with corresponding analytical and experimental reference data
are available in the literature for ideal fluids, there is no comparable database for non-ideal
fluids. For this reason, the NASA CDV nozzle test case, which in its original formulation
requires a calorically perfect gas, is first adapted for the medium CO2 modelled as non-ideal.

Formation of a shock front in a Laval nozzle flowed through by CO2

The geometry of the NASA CDV nozzle can be found in the left part of Figure 19. As
the name suggests, it is a nozzle consisting of a convergent and a divergent part. Two param-
eters are introduced to enable a dimensionless consideration of the geometric characteristics.
The ratio of the cross-sectional area A and the nozzle’s narrowest cross-section A∗ denotes
the relative area, while the relative length refers to the coordinate along the nozzle axis x
in relation to the total length of the nozzle L. The NASA CDV nozzle is characterised by
a narrowest cross-section of 645.16 mm2 and a total length of 0.254 m, with the transition
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from the convergent to the divergent part occurring at half the nozzle length. The flow char-
acteristics within the nozzle can be varied by adjusting the ratio of static pressure at the outlet
pout to total pressure at the inlet pin. One parameter for classifying this variation is the Mach
number:

Ma =
vvv
a

(5.1)

It relates the flow velocity to the speed of sound and provides a way to distinguish between
different types of flow within the nozzle. A Mach number of one characterises the flow as
sonic. If the value of the Mach number is below one throughout the entire nozzle, then the
flow is purely subsonic. However, if the Mach number in the divergent part of the nozzle
exceeds one, the flow is locally referred to as supersonic. The limiting case in which sonic
conditions prevail only at the narrowest cross-section, while the rest of the flow remains sub-
sonic, is characterised by the critical pressure ratio. Falling below the critical pressure ratio
leads to the formation of a discontinuity in the form of a shock front in the divergent part of
the nozzle. While supersonic conditions prevail immediately in front of the shock front, the
flow downstream is subsonic. The position of the shock front moves towards the outlet of
the nozzle as the pressure ratio decreases. If the outlet is just reached, supersonic conditions
prevail throughout the entire divergent part of the nozzle.
Assuming an adiabatic and inviscid flow, two characteristic cases can be distinguished ac-
cording to Table 4. The case Isentropic is characterised by a purely supersonic flow through
the divergent part of the nozzle, whereby the specified pressure ratio of 0.08 results directly
from the nozzle geometry as well as the choice of fluid and the thermodynamic state at the
inlet. When a pressure ratio of 0.75 is set, a shock front forms for CO2, which indicates the
designation of the associated test case as Shock.
The inlet boundary condition is chosen in such a way that, on the one hand, the highest possi-
ble variation of the compressibility factor along the nozzle axis is achieved and, on the other
hand, the state at the outlet of the supersonic nozzle is in the vicinity of the critical point
and the two-phase region of CO2. The static thermodynamic states resulting from the total
quantities listed in Table 4 are shown in the right part of Figure 19 using a T -s diagram. Both
test cases have the same inlet state, characterised by a static pressure of 1120 bar. Starting
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Figure 19: Geometric characteristics of the NASA CDV nozzle [92] (left) and specification of two
test cases (◦ Isentropic and 4 Shock) in a T -s diagram of CO2 (right)
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Table 4: Boundary conditions for the NASA CDV nozzle for the medium CO2

pout/pt,in pt,in Tt,in

Isentropic 0.08
1200 bar 500 K

Shock 0.75

from this, an isentropic expansion occurs, which, for the case Isentropic marked by a circle,
proceeds up to a pressure of 96 bar. In the case Shock, which is symbolised by a cross in
a square, a shock occurs at a temperature of about 370 K, as a result of which the entropy,
pressure, and temperature increase. In both cases, a high variation of the compressibility
factor can be observed. In the case Isentropic, this takes on values between 0.5 and 1.5.
It should be noted that the results shown are the results of quasi-one-dimensional quasi-
analytical calculations, which will be used as a reference solution to verify the PGIRoe
scheme. The term quasi-one-dimensional indicates that only the change in area along one
dimension corresponding to the nozzle axis is considered in the course of the solution. Quasi-
analytical refers to a calculation that solves the flow field analytically, whereby the determi-
nation of selected thermodynamic state quantities must be carried out iteratively due to the
use of a multi-parameter equation of state.
To calculate the flow through the NASA CDV nozzle using the PGIRoe scheme implemented
in TRACE, a suitable spatial grid must first be selected. It should be noted that the TRACE
flow solver requires three-dimensional modelling of the nozzle for this purpose. In order to
minimise the influence of the resulting symmetry boundary condition on the flow along the
nozzle axis and thus to enable a quasi-two-dimensional description, the depth of the nozzle is
chosen to be 0.1L. Following the procedure presented in Chapter 4.4, a coarse structured grid
is generated first. The geometry of the NASA CDV nozzle is meshed with 100 node points in
the direction of the x-coordinate, 50 points in the direction of the y-coordinate, and 3 points
in the direction of the z-coordinate. The coarse grid thus has a total node count of 15,000.
The refinement factor is chosen to be rG = 2. Consequently, the middle grid is defined by
120,000 nodes and the fine grid by 960,000 nodes. A systematic list of the parameters for
investigating the discretisation error of the spatial grid can be found in the left part of Fig-
ure 20. For all three grids, a numerical solution for the case Isentropic is determined using
the flow solver TRACE. In doing so, both spatial and temporal methods with a second-order
accuracy are chosen so that the theoretical convergence order assumes the value two. The
convergence of the iterative solutions is ensured by falling below a convergence criterion of
ResL1 = 1.0× 10−6. The area-averaged Mach number at the outlet of the nozzle is cho-
sen as the characteristic quantity. An evaluation of this using the three calculated solutions
yields a convergence order of θG = 2.08 when applying Equation 4.59. Due to the only very
slight deviation of the calculated and theoretical convergence order, the consistency of the
method can be considered confirmed. Consequently, the Richardson extrapolation can be
calculated based on Equation 4.60. The resulting Mach number MaRE = 2.6764 is plotted
together with the values determined for the three spatial grids in the right part of Figure 20
represented by blue circles. The order of convergence is reflected in the parabolic shape of
the plotted points. The scale used shows that the variation of the Mach number is very small
for the three grids considered. Refinement beyond the medium grid only leads to a change
in the Mach number of 0.04%. Consequently, it can be assumed that the solution for the
medium grid is sufficiently independent of the spatial discretisation, which justifies its use
for further calculations.
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Figure 20: Systematic analysis of the discretisation errors of the NASA CDV nozzle spatial grid as
well as the tabulated thermophysical quantities of CO2 for p ∈ [90;1200] bar and T ∈ [300;500] K
using three levels of refinement and the Richardson extrapolation

Since the evaluation of the thermophysical quantities for the purpose of computing time ef-
ficiency is to be carried out using tabulated data, the associated discretisation error must
also be analysed. Similar to the approaches known from Chapter 4.3 and Chapter 4.4, the
state region to be tabulated must first be defined. This can be estimated using Figure 19
to p ∈ [90;1200] bar and T ∈ [300;500] K. The dimension of the coarse table is set to 250
so that the step size of the pressure has a value of ∆p = 4.44 bar and the step size of the
temperature has a value of ∆T = 0.8 K. The tables are refined with the factor rT = 2, which
results in a dimension of 500 for the medium table and 1000 for the fine table. A listing
of the corresponding step sizes of the tables can be found in the left part of Figure 20. The
number of randomly selected queries is nA = 250,000. Based on these, an evaluation of the
thermophysical quantities can be carried out for all three tables. As exemplarily shown in
Chapter 4.3, the relative errors of the individual quantities per table tend to similar values.
However, since this statement would have to be proven individually for each state region, the
variable with the highest relative error is chosen as the characteristic quantity. In the case
considered here, this is the speed of sound, whose mean error χ|a is therefore determined for
all three tables. Determining the convergence order based on Equation 4.61 yields a value of
θT |a = 1.96, which sufficiently approximates the theoretical convergence order of the table
θT = 2. From this, the Richardson extrapolation can be determined using Equation 4.62 to
be χRE |a = 1.13×10−6 m/s. When this is plotted together with the error values determined
for the three tables over the level of refinement, the parabolic trend shown in the right part of
Figure 20 using triangles results. According to the requirements formulated in Chapter 4.4,
the Richardson extrapolation and thus the mean error for an infinitely fine table tends to-
wards a very small value. However, due to the large extent of the state region to be tabulated,
caused by the low pressure ratio in the case Isentropic, only the finest table falls below an
error bound of 5.0× 10−5 m/s. Therefore, the final calculations are carried out using the
finest tables on the medium spatial grid.
Based on the presented results, it is assumed that for this combination, the solution is in-
dependent of the discretisation of the grid and the table. Since the investigations of the
discretisation errors show qualitatively comparable results for all test cases presented in this
work, a detailed description is omitted in the following in order to avoid repetition. The
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explanations are, therefore, limited to the specification of the spatial grids and the tables for
which independence of the solution from the discretisation can be ensured using the proce-
dure presented. A detailed overview of the parameters selected for the investigation of the
discretisation errors can be found in Appendix C.
The left part of Figure 21 shows the results of the PGIRoe scheme when solving the Euler
equations for the two test cases examined, depicted as the pressure ratio of static to total inlet
pressure over the relative length of the nozzle. The results of the test case Isentropic are rep-
resented by blue circles, while the blue squares symbolise the case Shock. In order to better
assess the resolution of the shock by the PGIRoe scheme, the number of points displayed
in the vicinity of the shock front is increased. For reference, the quasi-analytical solutions
are also plotted as black solid lines. For both cases, the results of the PGIRoe scheme show
a high degree of agreement with the respective quasi-analytical solution. This applies, in
particular, to the regions of the inlet and outlet boundary conditions. In the case Shock, the
position of the shock is mapped with very high accuracy by the PGIRoe scheme. Further-
more, no oscillations are visible in front of or behind the shock front. This indicates that
the robustness of the scheme formulated by Roe for calorically perfect gases with respect to
discontinuities is preserved for the PGIRoe scheme.
A further indication of this is the investigation of the Mach number, which is plotted on
the right side of Figure 21. Also, for the quotient of flow velocity and speed of sound, the
PGIRoe scheme shows a high degree of agreement with the quasi-analytical solution. The
curve of the compressibility factor Z, which is also plotted for the case Isentropic over the
nozzle length, confirms the expected variation between values from about 0.5 to 1.5. On the
one hand, this means that based on the compressibility factor the fluid can be classified as
non-ideal in large parts of the nozzle. On the other hand, the flow within the nozzle is charac-
terised by large gradients of the thermophysical quantities. This is particularly evident in the
vicinity of the shock front, where there is a sudden change in the compressibility factor of
about 0.5. However, the values of the fundamental derivative Γ only take on values greater
than one, which would indicate a classification as classically ideal. This confirms the de-
pendence of the classification of CO2 on the choice of the considered parameter, as already
shown in Chapter 3.5, and could be attributed to the aforementioned moderate molecular
complexity of CO2.
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Figure 21: Curves of pressure (left) and Mach number (right) for two test cases of the NASA
CDV nozzle based on a quasi-analytical calculation (line) and the PGIRoe scheme (symbols) for
the medium CO2; additional curves of compressibility factor and fundamental derivative
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The consistency of the PGIRoe scheme in the single-phase case can be checked by means of
a variation calculation. If the calculation of the case Isentropic is repeated with explicit ac-
tivation of the two-phase module in the input file, the deviation from the displayed results is
of the same order of magnitude as the machine accuracy for double precision. Consequently,
the PGIRoe scheme transitions to the GIRoe scheme in the single-phase case. Verification
using the quasi-analytical solution also indicates that the PGIRoe scheme can reproduce the
physical relationships of single-phase flows correctly and accurately describe shocks. For
this reason, a validation of the scheme using experimental data seems reasonable.

Comparison of experimental data of a Laval nozzle flowed through by MDM

For this purpose, a nozzle geometry experimentally investigated for the working fluid MDM
by Spinelli et al. [137] is prepared as a CFD test case. It is a Laval nozzle with a narrowest
cross-section of 314.16 mm2 and a total length of 0.1804 m. The contour of the nozzle can
be found on the left part of Figure 22. This figure also shows a detailed view of a special
feature of the nozzle consisting of a backward-facing step at the height of the nozzle throat.
The height of the step is about 0.1 mm and, for supersonic flow through the divergent part of
the nozzle, causes the formation of an oblique shock. The nozzle’s cross-section is rectan-
gular, with a depth of 18.7 mm.
Spinelli et al. investigate the flow experimentally by measuring the static pressure at nine
measuring points along the nozzle axis. The total conditions at the inlet of the nozzle are set
once before the start of the experiment by measurements in a still flow section in front of the
test section. At the start of the experiment, the fluid flows into the measuring section due to
the opening of a valve, causing a steady pressure drop in the pressure vessel. As a result, a
maximum pressure and a minimum compressibility factor prevail at the inlet of the nozzle
at the beginning of the experiment. For this point in time, the data of the measured static
pressure are available in the literature. Spinelli et al. also prove by comparing the relaxation
time of the nozzle with that of the emptying of the pressure vessel that the nozzle flow can
be assumed to be stationary at each measurement time.
Two different total inlet states are considered to investigate the influence of the non-ideality
of the molecular complex fluid MDM on the flow characteristics. Case L represents an inlet
state that is characterised by a low deviation from the law of ideal gases, while the compress-
ibility factor for Case H assumes a value that differs significantly from one. The static inlet
and outlet states for the two cases are plotted in a T -s diagram for the medium MDM in the
right part of Figure 22. The state at the outlet is approximated by assuming an isentropic flow
through the nozzle. The total inlet conditions, in combination with the total compressibility
factors characterising the test cases, are listed in Table 5.
Based on the coloured contour of the compressibility factor in the T -s diagram, it is easy to
see that, in line with the objective of the test case, no significant deviation from the law of
ideal gases is to be expected for Case L. However, the fundamental derivative shows values
smaller than one over the entire length of the nozzle, resulting in a classification as classi-
cally non-ideal. The same applies to Case H, where the compressibility factor for this case at
the inlet of the nozzle ranges around 0.7. For both cases, an increase of the compressibility
factor and of the value of the fundamental derivative along the nozzle axis is to be expected.
The non-ideality thus decreases in the direction of the flow.
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Figure 22: Geometric characteristics of the nozzle according to Spinelli et al. [137] (left) and speci-
fication of two test cases (◦ Case L and � Case H) in a T -s diagram of MDM (right)

In order to make the two test cases accessible to an investigation using CFD methods, the
geometry is completely reconstructed from the geometry data documented by Spinelli et al.
and a structured mesh is created. The resolution of the expected oblique shock in the diver-
gent part of the nozzle requires a sufficiently fine grid so that a grid refinement is carried out
for the range of relative length from 0.4 to 1.0. To be able to describe the separation at the
step appropriately, the number of nodes in this area is increased in particular. The Reynolds-
averaged Navier-Stokes equations are solved using the Shear Stress Transport (SST) turbu-
lence model according to Menter et al. [99], which is implemented in TRACE. Since using
wall functions to describe the turbulence near the wall is omitted, a rigid restriction of the
dimensionless wall distance y+, which represents a measure of the distance of the first grid
point from the wall, is necessary. The refinement of the grid near the walls is therefore
assumed to be sufficient if the criterion y+ < 1 is met. For a spatial grid with 1.92 mil-
lion nodes, the grid independence of the solution can be demonstrated by examining the
discretisation error. The tabulation of the thermophysical quantities is done for a pressure
interval of p ∈ [0.5;10] bar and a temperature range of T ∈ [490;550] K. Both test cases
are calculated using the specified spatial grid and a table with dimension 500. A residual of
ResL1 = 1.0×10−6 is chosen as the convergence criterion for the iterative solution.
Figure 23 compares the results calculated using the PGIRoe scheme with the experimen-
tal data. Red dots symbolise the experiment, while blue circles represent the results of the
PGIRoe scheme implemented in TRACE. For Case L, the ratio of static pressure to total in-
let pressure is plotted over the nozzle length in the left part of the figure. Experimental data
is available for eight measuring points along the nozzle axis. A comparison of these with
the values determined using the PGIRoe scheme shows qualitative agreement over the entire
nozzle length. However, the deviation increases in the divergent part and, thus, in the region
downstream of the step. This is particularly evident for the data point of the last measuring

Table 5: Boundary conditions for the nozzle according to Spinelli et al. for the medium MDM

pt,in Tt,in Zt,in

Case L 4.58 bar 520 K 0.83
Case H 9.02 bar 542 K 0.65
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point, which shows the highest deviation from the CFD results. The compressibility factor,
plotted on the right-hand ordinate, shows an increase of about 0.15 along the nozzle axis. At
the nozzle exit, its value tends towards a value close to one, which is in agreement with the
range of values shown in Figure 22.
Since the exact position of the oblique shock cannot be determined from the experimental
pressure data, a comparison of the results of the PGIRoe scheme with those of the EPGIRoe
scheme seems helpful. To ensure the comparability of the results and to take into account the
restriction of the EPGIRoe scheme to the Spalart and Allmaras turbulence model, the calcu-
lation of the PGIRoe scheme previously carried out with the SST model is repeated using the
Spalart and Allmaras model implemented in TRACE. Furthermore, the two-dimensional grid
for the calculations of the EPGIRoe scheme is chosen to have the same number of nodes and
structure in both spatial directions as the three-dimensional grid generated for the PGIRoe
scheme. The results of the EPGIRoe scheme are shown in Figure 23 by a dotted line. It
should be noted that the point density is sufficiently high due to the number of nodes of the
grid. Therefore, the influence of the linear interpolation on the representation of the results
can be negated. The change of the turbulence model from SST to Spalart and Allmaras
shows no influence on the pressure profile along the nozzle axis, so for the sake of clarity, no
additional data series is shown for the PGIRoe scheme. As can be seen from the close-up,
for Case L, the position of the intersection of the shock fronts caused by the upper and lower
steps of the nozzle geometry, which will be referred to in the following as the position of
the oblique shock, is predicted by both schemes to be the same. However, there is a slight
deviation in the characteristics of the pressure curves. The pressure change over the shock
front seems to be resolved with slightly higher accuracy by the EPGIRoe scheme. Neverthe-
less, the deviation is of such a small extent and local limitation that it seems explainable by
the differences between the two methods in terms of their underlying temporal discretisation
and their implementation. This can be interpreted as a plausibility check of the results of the
PGIRoe scheme.
A further indication of the validity of the results can be obtained from the investigations by
Gori et al. [57]. The authors use a CFD method to investigate the influence of fluid modeling
on the flow characteristics for Case L. They, too, do not find any relevant influence of the
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Figure 23: Comparison of the pressure curves for Case L (left) and Case H (right) of the nozzle
according to Spinelli et al. [137] based on the PGIRoe scheme (symbols) with the experimental data
(dots) for the medium MDM; additional curves of compressibility factor and pressure curves for the
two-dimensional EPGIRoe scheme (dotted line)
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choice of the turbulence model on the pressure curve along the nozzle axis. In addition, the
results they obtain are very similar to the results shown in the left part of Figure 23 in terms
of both the position of the oblique shock and the pressure characteristics in the divergent part
of the nozzle. This indicates that the deviation of the PGIRoe scheme results from the experi-
mental data in the divergent part of the nozzle is not due to the scheme itself. Rather, the CFD
calculations may underestimate the intensity of reflected shock waves. The schlieren images
documented by Spinelli et al. display the intersection points of two shocks reflected at the
nozzle walls, which are not determined with comparable intensity by the PGIRoe scheme, in
the vicinity of the last two measuring points. This could explain the local underestimation of
the static pressure. However, a further investigation is not possible due to the lack of a scale
for the experimental schlieren images.
Nevertheless, a possible influence of the non-ideality of the fluid on this observation can be
examined using the results shown for Case H in the right part of Figure 23. Here, too, the
red dots symbolise the experimental data, with Spinelli et al. only documenting correspond-
ing pressure data for six measuring points. The results of the PGIRoe scheme, shown as
blue circles, achieve similarly high agreement with the experimental data as in Case L. The
compressibility factor increases by about 0.3 along the nozzle axis, with the non-ideality of
the fluid likely influencing the flow characteristics, particularly in the convergent part of the
nozzle. If the results of the EPGIRoe scheme are also used to analyse the position of the
oblique shock in detail, it is noticeable that the two methods show a slight deviation in the
vicinity of the shock even for Case H. While the shock position is located similarly by both,
the EPGIRoe scheme seems to resolve the shock front with slightly higher accuracy in this
case as well. In addition, it predicts a slightly higher intensity for a further shock down-
stream of the first. However, the difference between the two methods is again very small and
limited to the oblique shock’s immediate vicinity. The deviation of the CFD results from the
experimental data in the divergent part of the nozzle, which has already been discussed for
Case L, can also be observed in a comparable way for Case H.
However, the generally high agreement between the results of the PGIRoe scheme and the
experimental data appears to be sufficient for validation. This is confirmed by the investi-
gation of two test cases, which are characterised by a different degree of non-ideality of the
fluid. It can thus be assumed that the PGIRoe scheme is able to describe flows of non-ideal
fluids of moderate and high molecular complexity in a suitable manner. It also excels at
resolving shock fronts with high accuracy. However, the previous investigations to validate
the PGIRoe scheme are limited to quasi-two-dimensional flows. To validate the method for
three-dimensional applications, the compression of CO2 in a supercritical state is now to be
investigated using the geometry of a radial compressor. The selected test case consequently
represents a rotating flow, for which large gradients in the flow field are to be expected due to
the proximity of their thermodynamic states to the critical point. In this way, it is particularly
suitable for demonstrating the numerical stability of the PGIRoe scheme.

5.1.2 Compression of CO2 in Supercritical State

The geometry under investigation is a single-stage centrifugal compressor for a turbomachine
developed as part of the sCO2-HeRo project. The compressor will, therefore, be referred to
as the HeRo compressor in the following. The inflow is parallel to the axis of rotation, with
a part of the inlet upstream of the rotor also rotating at rotor speed. The rotor itself consists
of 15 two-dimensional purely radial blades and has an outer diameter of about 40 mm. Its
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Figure 24: Geometry and setup of the analysed segment of the HeRo compressor with a detailed
view of the meshing strategy for the rotor (left) and specification of the analysed inlet states in a
T -s-diagram of CO2 (right)

dimensions are thus comparable to those of another radial compressor impeller frequently
examined in the literature, that of the Sandia sCO2 compression loop facility [168]. The
fluid flows out of the rotor into a parallel radial diffuser, which in turn diverts the flow into a
volute. With the exception of the volute, the design of the HeRo compressor can be seen in
the left-hand part of Figure 24 where ω denotes the angular velocity of the counterclockwise
rotation about the x axis. Hacks et al. [64, 65] conduct a large number of experimental in-
vestigations on the HeRo compressor, which form an extensive database of measured values.
In combination with the known geometry, these enable a further validation of the PGIRoe
scheme for two selected test cases.
A specification of the total thermodynamic states at the compressor inlet can be found in
Table 6. Since a pair of values consisting of pressure and density is measured in the exper-
iment, the given temperature values are quantities calculated using the equation of state. In
the right part of Figure 24, the defined inlet conditions of the test case Performance map are
shown by a square, and the case Gradient is shown as a circle in a T -s diagram of the medium
CO2. In order to be able to classify the states in relation to the gradients to be expected in
their surroundings in the flow field, the Widom line is also plotted as a red dash-dot line in
addition to the limiting curves of the two-phase region. Moreover, the coloured contour of
the compressibility factor and an isoline of the difference between the isentropic pressure-
volume exponent and the ratio of specific heat capacities, represented by a black dash-dot
line, allow an estimation of the non-ideality. For the test case Performance map, the com-
pressibility factor at the compressor inlet takes on a value of about 0.41. At the same time,
the state point is to the right of the critical point, and the Widom line, whereby the scaling
used greatly exaggerates the small distance to the critical point of about 3.5 bar and 3.5 K.
The case Gradient represents a further approaching of the critical point and is therefore in

Table 6: Boundary conditions for the HeRo compressor for the medium CO2

pt,in Tt,in ns ṁout

Performance map 77.3 bar 307.65 K 10,000 - 25,000 rpm 0.04 - 0.33 kg/s
Gradient 74.2 bar 304.39 K 30,392 rpm 0.31 kg/s
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close proximity to the two-phase region and the Widom line. With a compressibility factor
of about 0.28 at the inlet of the compressor, it exhibits a non-ideality comparable to that at
the critical point. The difference between the isentropic pressure volume exponent and the
ratio of specific heat capacities is approximately −288. This corresponds to a relative devia-
tion of the isentropic pressure volume exponent of about 100% and illustrates the significant
deviation from the model assumption of a calorically perfect gas at this point. Thus, for both
cases, Performance map and Gradient, the fluid states are classified as non-ideal. For the
case Gradient, according to its designation, large gradients of the thermophysical quantities
are to be expected in the flow field.
The flow through the HeRo compressor is examined for both test cases using a model sim-
plification. This involves reducing the geometry to a 24◦ segment, which requires the ap-
plication of a periodic boundary condition in the circumferential direction. However, since
the cross-sectional area of the volute exhibits a continuous change in this direction, it can no
longer be taken into account effectively using this approach. Consequently, it is neglected in
the modelling, just like the leakage mass flows that occur in the real machine. It should be
emphasised that these simplifying assumptions do not counteract the present objective. By
reducing the number of nodes by more than a factor of 15, the required computing time can
be significantly reduced. In addition, as a stationary component, the volute tends to have a
rather advantageous effect on the numerical stability of the solution, so even if it is neglected,
a corresponding gain in knowledge seems possible.
The faces of the inlet and outlet boundary conditions are shown in red in the left part of
Figure 24, while blue faces indicate the interfaces between the components. At the inlet, a
swirl-free inflow is assumed, which is characterised by a specified total pressure and a to-
tal temperature. The rotating components rotate at a defined rotor speed ns. In addition, a
specification of the mass flow ṁout serves as the outlet boundary condition. An overview of
the complete boundary conditions of the two test cases examined is given in Table 6. The
interfaces between the components can also be considered as boundary conditions, which are
described using the mixing plane model. Unlike the model of the frozen rotor, which calcu-
lates the boundary condition at the interface using a local snapshot of the rotation, the mixing
plane model allows the rotational movement to be taken into account. For this purpose, the
circular segments are subdivided into defined radial profiles within which the flow quantities
are averaged in the circumferential direction. This approach is applied to both sides of the
interface and leads to an update of the boundary condition in each iteration step.
The structured meshing of the geometry is carried out for each component, and thus, the
inflow, the rotor, and the diffuser separately. In doing so, a systematic grid refinement is car-
ried out for the near-wall regions. A close-up of the meshing strategy of the rotor is shown
in Figure 24.
Pečnik et al. [115] provide an overview of the challenges associated with turbulence mod-
elling of compressible non-ideal fluids in a supercritical state. A comparative study of differ-
ent eddy viscosity models with regard to their ability to describe turbulence effects in flows of
compressible non-ideal fluids is undertaken by Otero et al. [111]. They point out that the tur-
bulence models established for ideal fluids, such as the SST model, can provide insufficient
results for flows of non-ideal fluids, especially in the presence of large gradients in the flow
field. Only the model, according to Spalart and Allmaras, despite the simplicity of its formu-
lation, is in good agreement with the results obtained from DNS. For investigations of CO2
near the critical point, as in the case of the HeRo compressor, this model, therefore, appears
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to be an appropriate choice. Due to its ability to describe the turbulence up to the wall, the
viscosity-affected region of the boundary layer, in particular, must be sufficiently resolved
by the spatial grid. To ensure this, a criterion of y+ < 1 is selected for the dimensionless
wall distance. By meeting this condition, an investigation of the spatial grid-correlated dis-
cretisation error is carried out. Based on this, grid independence can be obtained for a grid
with 949,000 nodes. For the case Performance map, the tabulation of the thermophysical
quantities is carried out in a pressure interval of p∈ [65;95] bar and a temperature interval of
T ∈ [295;320] K. Due to the large gradients in the vicinity of the critical point, which place
particularly high demands on the discretisation of the table, a dimension of 1000 is chosen.
If the table exhibits insufficient resolution in the vicinity of the saturation vapour line, this
can endanger the stability of the iterative solution process. For this reason, a confidence
interval is stored together with the tabulated quantities within this range. If this interval is
exceeded, the equation of state is evaluated directly. In order not to jeopardise the objective
of tabulation, it is ensured that at least 95% of the states to be evaluated are determined on
the basis of the table. In the case Gradient, the tabulated range includes a pressure interval of
p∈ [65;90] bar and a temperature interval of T ∈ [295;315] K. Again, in accordance with the
above explanations, the table dimension is chosen to be 1000. A detailed description of the
investigations of the discretisation errors of the spatial grid and the tabulated thermophysi-
cal quantities in the case Gradient can be found in Tegethoff et al. [143]. The convergence
of the iterative solution is assessed using a criterion of ResL1 = 1.0× 10−6. An additional
indication can be obtained from the trend of global quantities during the iteration process.
Besides the mass flow at the inlet, the pressure ratio π is also suitable for this purpose:

π =
pout

pin
(5.2)

Neither of these quantities is directly dependent on the imposed boundary conditions and
can be used to characterise the flow fully. If constant values are reached for them, then no
further changes to the flow field seem to occur in the course of the iterative solution. Taking
into account the convergence criterion, this constitutes a converged solution.
For the case Performance map, a multitude of converged solutions are calculated in this way,
whereby both the rotational speed and the mass flow at the outlet are varied in a predefined
range. This makes it possible to determine a performance map for the HeRo compressor
numerically. The left part of Figure 25 shows a typical representation of such a map by plot-
ting the pressure ratio over the mass flow at the compressor inlet. Blue indicates a rotational
speed of 10,000 rpm, red a rotational speed of 20,000 rpm, and black a rotational speed of
25,000 rpm. Based on the investigations by Hacks et al. [65], the experimental data and the
associated error estimates are visualised using circles and error bars for the mass flow and
pressure ratio. Squares represent the results of the PGIRoe scheme, while triangles symbol-
ise the results of the three-dimensional EPGIRoe scheme. To ensure comparability of the
results obtained using the PGIRoe scheme and the EPGIRoe scheme, the results are calcu-
lated using identical spatial grids and tabulated state quantities. However, for the purpose of
visual differentiation, the calculations of the schemes usually differ slightly with regard to
the value of the mass flow boundary condition at the outlet.
A comparison of the experimental data with the results of the PGIRoe scheme shows a high
qualitative agreement of the resulting curves. In addition, the numerically determined values
are, without exception, within the ranges encompassed by the error bars, with the pressure
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Figure 25: Characteristic map of the HeRo compressor in the form of experimental data (◦) with
error bars, calculations of the PGIRoe scheme (�) and the three-dimensional EPGIRoe scheme (M)
(left) as well as coloured contour of the static pressure in the rotor of the compressor for the test case
Gradient calculated by the PGIRoe scheme (right)

ratio increasing with rotational speed as expected. The numerical investigations lead to an
overestimation of the pressure ratio, which can, however, be checked for plausibility using
the assumptions on which the model is based. Due to the pressure losses to be expected
as a result of a flow through the volute, which are neglected by the model investigated, the
pressure ratio would decrease. Neglecting the leakage mass flows could also shift the numer-
ically determined characteristic curves of constant rotational speed since the mass flow set
at the outlet, taking into account the leakage, no longer matches the mass flow at the inlet as
plotted in the performance map. The results of the PGIRoe scheme, therefore, appear plau-
sible both qualitatively and quantitatively. This is additionally confirmed by the similarity of
the characteristic curves of constant rotational speed determined on the basis of the PGIRoe
scheme and the EPGIRoe scheme. The PGIRoe scheme thus seems to be able to describe
three-dimensional flows of non-ideal fluids in turbomachinery.
By tabulating the thermophysical quantities, the computing time can also be reduced to a
magnitude suitable for practical application, which is illustrated by the number of data points
required for a performance map. When investigating the test case Gradient using the PGIRoe
scheme, achieving a converged solution can already be considered a success due to the state
range present within the compressor geometry. Proof of the convergence of the iterative so-
lution of this test case, as well as a detailed description of the procedure for achieving such
a solution, can be found in Tegethoff et al. [143].
The right part of Figure 25 visualises the static pressure contour in the rotor of the HeRo
compressor for the case Gradient. The colour scale indicates that the pressure value varies
between 68.2 bar and 83.7 bar. Localised regions of lower pressure can be seen near the lead-
ing and trailing edges of the blade. The pressure minimum is reached at the blade’s leading
edge and, with the pressure falling below the dew line, indicates the formation of a second
phase. Due to the restriction to single-phase considerations in this subchapter, the evalua-
tion of the equation of state by REFPROP is constrained to a gaseous fluid. This approach
enables a determination of the thermophysical quantities of the gas phase within the limits
of the gas-side metastable state range, even beyond the dew line. However, if the Spinodal
limit is exceeded, on the one hand the physical significance of the determined values must
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be doubted. On the other hand, the iterative determination of the pressure and temperature
can fail due to the lack of a converged solution. Therefore, a bilinear extrapolation of the gas
quantities into the two-phase region is carried out for this region.
If the pressure ratio for the test case Gradient is determined according to Equation 5.2 in this
way, the result is a value of π = 1.121. The pressure ratio calculated using the measurement
data documented by Hacks et al. [64] is π = 1.113. Thus, the numerical method leads to
a slight overestimation of the pressure ratio for this case as well, which can be verified by
means of the model simplifications explained above. An analysis of the compressibility fac-
tor within the geometry of the rotor shows a particularly high variation of the parameter at
the blade’s leading edge and the adjacent pressure-side blade profile. From this observation,
in combination with the indication of a local drop below the dew curve, a particular challenge
for the stability of the numerical method can be identified. The PGIRoe scheme thus seems
to be able to achieve a numerically stable solution even in the presence of large gradients of
the thermophysical quantities in the flow field and in the immediate vicinity of the two-phase
region. This can be interpreted as a validation of the PGIRoe scheme for flows of compress-
ible non-ideal fluids in the immediate vicinity of the critical point of CO2. Furthermore, this
test case highlights the necessity of including a second phase in the numerical model when
dealing with a real-life application.

5.2 Two-Phase Flows

Nevertheless, before the PGIRoe scheme can be applied to such a problem, it must first be
verified and validated using different test cases of two-phase flows. Three aspects are of par-
ticular relevance here. The configurations of the PGIRoe scheme, which differ significantly
in the way they describe a dispersed phase, are to be examined with regard to their ability
to numerically represent the phase change appropriately. In particular, the mechanisms of
nucleation and droplet growth must be correctly reproduced by the schemes. Moreover, it
must be ensured that the schemes can be applied to any non-ideal fluid. As part of the val-
idation, not only the non-ideality of the gas phase but also the way the speed of sound in
the two-phase region is determined must be taken into account. Finally, the PGIRoe scheme
shall be able to describe both condensation and shock fronts in multi-dimensional two-phase
flows as accurately as possible.

5.2.1 Condensation of Steam and CO2 in Laval Nozzles

Verifying different configurations of the PGIRoe scheme requires a test case for which a
wide range of comparative data on different modelling approaches for the dispersed phase is
available. However, since two-phase flows, in reality, always exhibit a polydispersed droplet
size distribution as well as velocity differences between the phases, experimental data appear
unsuitable for this purpose. Furthermore, it is not possible to derive analytical solutions for
practical problems due to interactions between the phases. This means that verification can
only be carried out on the basis of suitable numerical data. The numerical results published
in the IWSMP [138] are based on the use of fourteen different flow solvers, which differ,
among other things, in the choice of the reference system and the description of the droplet
size distribution. Based on this data, the influence of the modelling of the dispersed phase
on the numerical results of the PGIRoe scheme can thus be classified.
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Influence of the modelling of the dispersed phase on the numerical results

The geometry examined for this purpose is a Laval nozzle specially designed for the IWSMP’s
objective, through which steam flows. Due to its characteristic as a blind test case, it is called
the Mystery nozzle and is distinguished from other nozzle geometries by an operating sec-
tion free of discontinuities. In addition, it was designed to have an almost constant expansion
rate ṗ for single-phase flows.

ṗ =−1
p
· d p

dt
=−u

p
· d p

dx
(5.3)

According to its definition in Equation 5.3, the expansion rate is proportional to the tempo-
ral change of the pressure. If the flow velocity is interpreted as the differential of the local
coordinate with respect to time, it can also be formulated in terms of the pressure change
along the nozzle axis. A constant value of the expansion rate presupposes the continuity of
the pressure curve and thus indicates the absence of discontinuities.
The IWSMP is investigating two variants of the Mystery nozzle, from which the one with an
expansion rate of ṗ = 3500 1/s is selected for further consideration. A plot of the relative
area over the relative nozzle length can be found in the left part of Figure 26. The Mystery
nozzle has a narrowest cross-section of 40 mm2. It should be noted that, due to the purely
two-dimensional definition of the geometry, this is a pseudo-surface representing the height
of the nozzle throat. The length of the nozzle is 0.5 m and is divided into a convergent and a
divergent section in the ratio 0.3 to 0.7.
For the test case referred to below as Case M, the flow in the divergent section can be as-
sumed to be purely supersonic. Therefore, the explicit formulation of a boundary condition
at the outlet of the nozzle is omitted. The inlet boundary condition as a total pressure of
1.1 bar and a total temperature of 417 K is formulated together with the expansion rate char-
acterising the change of state within the nozzle in Table 7. The thermodynamic state defined
by the static quantities at the inlet is marked by a circle in the right part of Figure 26. It
can be seen that this is above the dew line and thus in the single-phase region of the gas
phase so that a wetness fraction of y = 0 can be selected as an additional boundary condition
at the inlet. Furthermore, the inlet condition is characterised by a compressibility factor of
about 0.99, indicating only a weak non-ideality of the single-phase flow. The deviation of
the isentropic pressure-volume exponent from the ratio of specific heat capacities is about
−0.013, corresponding to a relative deviation of 1% and confirming the indication of the
compressibility factor.
In order to meet the requirement of a geometry meshed in three dimensions, as necessitated
by the flow solver, while at the same time approximating the conditions of a two-dimensional
investigation, the depth of the nozzle is modelled as 0.1L, comparable to the approach used
for the NASA CDV nozzle. To compare the results with those of the IWSMP, turbulence
effects present in the flow are taken into account, which are described using the Spalart and
Allmaras turbulence model. Therefore, a criterion of the dimensionless wall distance of
y+ < 1 is chosen for the meshing of the geometry. An investigation of the spatial discretisa-
tion error shows the grid-independence of the solution for a spatial grid with 576,000 nodes,
which has appropriate refinements near the walls. The thermophysical quantities are tabu-
lated separately for the gas and liquid phases. For the gas quantities, a pressure interval of
p ∈ [0.1;1.15] bar and a temperature interval of T ∈ [300;430] K is selected.
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Figure 26: Geometric characteristics of the Mystery nozzle [138] (left) and specification of the test
Case M (◦) in a T -s diagram of water (right)

In contrast to a purely single-phase consideration, the determination of the thermophysi-
cal quantities in the two-phase region is now of particular importance. If the thermodynamic
state to be tabulated lies within the two-phase region, the first question to be answered is
which model should be used to describe the phase change. In the case of the model of ho-
mogeneous equilibrium condensation, it is not necessary to tabulate the states within the
two-phase region. Storing the thermophysical quantities of the gas phase and the saturation
quantities of the gas and liquid phases is sufficient to determine the state completely.
If the model of homogeneous non-equilibrium condensation is to be applied, it must first be
checked whether the state point to be tabulated falls within the boundaries of the metastable
range. If this is the case, the equation of state is evaluated with restriction to gaseous states.
If, on the other hand, the state point lies beyond the spinodal limit, it has no physical signifi-
cance, which is why the value minus one is stored in the table. If such a table entry is queried
during the iterative calculations of the flow solver, a warning message is issued. The neg-
ative sign is used to activate a bilinear extrapolation beyond the spinodal limit using direct
evaluation. Such a solution may only be used for a short-term stabilisation of the solution
process and makes it possible to achieve a convergent solution, especially in the vicinity of
the critical point, despite the very small extent of the metastable state range there. To ensure
the physical significance of the final calculation results, the activation of the bilinear extrap-
olation in the last 500 iterations is prevented. If the spinodal limit is exceeded at this stage of
the solution, the negative sign of the tabulated values causes the calculations to be aborted.
The tables of thermophysical quantities in the gas phase consequently consist of regions of
pure single-phase and metastable states in the two-phase region. In order to be able to re-
solve the delimitation of these areas with sufficient accuracy, the saturated vapour line and
the dew line within the considered definition range are additionally tabulated as a function
of temperature.

Table 7: Boundary conditions for the Mystery nozzle for the medium water

pt,in Tt,in ṗ
Case M 1.1 bar 417 K 3500 1/s
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Figure 27: Comparison of different models for describing condensation based on pressure curve
along the Mystery nozzle (left) and curves of characteristic quantities assuming homogeneous non-
equilibrium condensation (right) for the medium water

For the liquid phase, the thermophysical quantities are tabulated within a pressure interval of
p ∈ [0.1;0.55] bar and a temperature interval of T ∈ [310;355] K. Here, the equation of state
is evaluated with an explicit restriction to liquid states. The investigation of the discretisa-
tion error of the tables shows a peculiarity with regard to the table dimensions required for
a sufficient resolution of the state region. While the tables for the gas phase already show a
sufficiently low value of the mean error of the speed of sound for a dimension of 500, such
a value is only achieved for the liquid phase when using the next higher dimension of 1000.
Since the pressure and temperature interval for the gas phase covers a larger range of values,
this does not initially correspond to expectations. However, it turns out that the equation
of state of the IAPWS-IF97 for region 1 and thus liquid states within the examined interval
limits has significantly higher sensitivity with regard to changes in the definition parameters
than the equations of the regions 2 and 2s for the gas phase.
According to Chapter 3.4, a phase change can be described on the basis of different model
assumptions. To demonstrate that the PGIRoe scheme is able to correctly reflect the un-
derlying physical processes, the results of three modelling types are compared first. This
enables a plausibility check and also shows the phase change characteristics within the Mys-
tery nozzle for Case M. In the left part of Figure 27, the pressure curve of the dry flow of
steam is compared with the curves assuming homogeneous equilibrium condensation and
homogeneous non-equilibrium condensation. The focus of the diagram is on the divergent
part of the nozzle. To enable an analysis that is as isolated as possible from the influence of
the modelling of the phase change on the flow quantities, the effects of friction are not taken
into account for all three calculations by solving the Euler equations. As for all subsequent
calculations of this test case, the convergence of the iterative solution is assessed using a
criterion of ResL1 = 1.0×10−7.
The flow modelled as dry exhibits an isentropic characteristic and is represented by a black
dotted line. Its pressure curve resembles those already seen in Chapter 5.1 for Laval noz-
zles with supersonic outlet boundary conditions. The pressure curve of the PGIRoe scheme,
when describing the phase change using the model of homogeneous equilibrium condensa-
tion, represented by a black dashed line, initially matches that of the dry flow. However, with
the expansion along the nozzle axis, as a result of the decrease in pressure and temperature,
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the saturated vapour line is crossed at a defined position. In Figure 27, this is marked by a red
dot at a relative length of 0.32. According to the model of homogeneous equilibrium con-
densation, the resulting subcooling greater than zero marks the onset of condensation and,
thus, the formation of a second phase. Since the model assumes the existence of an equilib-
rium state between the phases, the thermodynamic state of the phase mixture downstream is
uniquely determined by the respective saturation quantities and the wetness fraction, result-
ing in a pressure curve approximately parallel to that of the dry flow.
However, the assumption of a phase equilibrium must be abandoned to describe the physi-
cal processes of condensation and the interaction of the phases. The pressure curve of the
PGIRoe scheme for the model of homogeneous non-equilibrium condensation, represented
by a blue line, should, therefore, be explained by the mechanisms of nucleation and droplet
growth. Initially, this curve also shows a characteristic similar to that of the dry flow. In
contrast to when assuming equilibrium condensation, however, falling below the saturated
vapour line does not immediately lead to the formation of a second phase. Instead, clusters
form first, but these are smaller than the critical nucleation radius and thus decay. As can be
seen in the right part of Figure 27, the subcooling continues to increase. A sudden nucleation
event then leads to the formation of a large number of stable condensation nuclei, forming a
liquid phase dispersed in the gas phase. The position along the nozzle axis at which such a
nucleation event occurs is highlighted by another red dot at a relative nozzle length of 0.52.
It marks the point of maximum subcooling, also known as the Wilson point, which, for Case
M, is at a pressure of about 0.31 bar and a subcooling of 33 K.
The enthalpy of evaporation released from the liquid phase during nucleation and droplet
growth causes the pressure and temperature of the gas phase to rise. As a result, the sub-
cooling decreases. In addition, the thermodynamic state of the phase mixture approaches
an equilibrium state. This can be seen both in the subcooling and in the pressure curve by
means of a characteristic pressure increase, often referred to as condensation front, and the
subsequent approximation to the pressure curve assuming an equilibrium state in the left part
of Figure 27. The droplet radius, which is plotted as the Sauter radius, increases downstream
of the Wilson point as a result of growth of the droplets, reaching values of up to just under
0.1 μm. Since nucleation is inhibited downstream of the condensation front due to the tem-
perature increase, the mechanism of droplet growth dominates from a relative nozzle length
of about 0.6 onwards. The value of the wetness fraction reaches a value greater than zero for
the first time at the Wilson point. It increases to a value of just over 0.06, which corresponds
to a wetness fraction of about 6% of the total mass of the phase mixture. The increase in the
droplet radii, which contribute to the volume of the liquid phase to the power of three and
are thus directly linked to the liquid mass, is consistent with a further increase in the wetness
fraction above a relative nozzle length of about 0.6.
The results of the PGIRoe scheme for the two different modelling types of condensation
shown in Figure 27 thus appear plausible in the context of the expected physical processes.
In particular, the PGIRoe scheme is able to correctly represent the physical mechanisms as-
sociated with condensation. In order to derive a statement about the quantitative agreement
of the results of the PGIRoe scheme with reference data and thus to be able to verify the
scheme, a choice must first be made regarding the configurations to be examined.
According to Chapter 4.1 the Stokes number can be interpreted as an indicator of the ability
of the dispersed phase to follow the continuous flow in terms of direction and magnitude of
the flow velocity. Based on its definition in Equation 4.12, it can be seen that its value is
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Figure 28: Curves of pressure and Sauter radius for Case M of the Mystery nozzle as determined
by the IWSMP [138] (grey lines), by a flow solver from the University of Cambridge (blue line) and
using the PGIRoe scheme (symbols) (left) as well as comparison of different types of modelling the
dispersed phase using the PGIRoe scheme (right)

influenced by the absolute value of the velocity difference between the phases. A calculation
of Case M using the PGIRoe scheme for the E-E-P-Poly-S configuration, taking frictional
effects into account, indicates that the maximum velocity difference between the phases is
reached at the walls of the nozzle in the immediate vicinity of the outlet. A calculation of the
Stokes number based on the flow quantities prevailing in this area yields a value of 0.09 and
thus does not fulfil the criterion of St > 0.1 formulated for the consideration of momentum
exchange.
For this reason, only the configurations E-L-M-Poly, E-E-M-Mono, and E-E-M-Poly will be
examined for the Mystery Nozzle in the following. The first two mentioned differ from the
latter only in one of the four categories of variation specified in Table 3. This allows an iso-
lated analysis of the influence of the choice of the reference system and the description of the
droplet size distribution by comparing it with the results of the configuration E-E-M-Poly.
However, beforehand, a verification of the configuration E-E-M-Poly based on reference data
from the IWSMP is required.
For this purpose, the ratio of static pressure to total inlet pressure is plotted on the left ab-
scissa of the left part of Figure 28. The values calculated using the PGIRoe scheme and
displayed in the form of blue circles are compared with the results of the IWSMP. An equiv-
alent procedure is followed using the right abscissa for the Sauter radius. For the sake of
clarity, the scatter of the IWSMP results is represented by a set of grey curves. It can be
seen that the different flow solvers show high deviations in terms of both the pressure curves
and the droplet radii. Although it should be noted that the section shown represents only a
small part of the nozzle geometry, the position and shape of the pressure increase, and, in
particular, the quantity of the droplet radii vary considerably. This can be partly explained by
the different types and implementations of the flow solvers examined. Starzmann et al. [138]
also mention differences in the models of nucleation and growth rates used, as well as in the
thermophysical model equations, as possible influencing factors. Since, consequently, the
verification of the PGIRoe scheme cannot be carried out solely on the basis of this scatter
range, the flow solver of the University of Cambridge is chosen as a reference for a more
extensive quantitative comparison of the results.
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This appears to be particularly suitable due to its similarity to the implementation of the
PGIRoe scheme in TRACE. It is based on the same modelling approaches of nucleation
and droplet growth, uses identical model parameters to describe droplet growth according to
Young, and evaluates the thermophysical quantities based on the same model equations. The
dispersed phase is described in an identical manner to the configuration E-E-M-Poly using
an Eulerian frame of reference in mixture-based notation, whereby the polydispersed droplet
size distribution is described using its statistical moments. Since the Spalart and Allmaras
approach is also chosen to model turbulence, besides the type of implementation, only two
differences to the PGIRoe scheme in TRACE can be identified. The flow solver from the
University of Cambridge uses an explicit method for the temporal integration of the system
of equations and calculates the numerical flux terms using a scheme that, by definition, adds
to the formation of numerical dissipation.
Despite these differences, the results of the PGIRoe scheme show a high degree of agree-
ment with the reference data, both in terms of the pressure curve and the Sauter radius. The
condensation starts marginally later for the PGIRoe scheme. This causes a slightly higher
subcooling and could lead to the formation of a larger number of droplets, which conse-
quently have smaller radii. However, the deviation of the results, especially in comparison to
the scatter range of the IWSMP, is so small that the configuration E-E-M-Poly of the PGIRoe
scheme can be considered verified. It should, therefore, now be used to verify two further
configurations.
For this purpose, the right part of Figure 28 shows a comparison of the results of the con-
figurations E-L-M-Poly and E-E-M-Mono with the already verified data. The calculations
using a description of the dispersed phase in a Lagrangian frame of reference are shown
as red circles, while black circles represent the results assuming a monodispersed droplet
size distribution. The nozzle section shown and the scales of the two abscissas are chosen
analogously to the results already presented. Both the pressure and the radius curves show
slight deviations between the configurations and from the reference data. When the frame of
reference of the dispersed phase is changed from Eulerian to Lagrangian, condensation sets
in a little further downstream, which, as explained above based on the presented results, can
lead to a reduction in the droplet radius.
However, compared to the investigations of a change of the frame of reference according to
White [162], the deviation between the results is very small. White suggests that the dis-
crepancy he observed may be due to an error introduced by the scheme for calculating the
numerical flux terms. The description of the dispersed phase in the Lagrangian frame of ref-
erence requires the solution of a system of equations that is separate from the conservation
equations of the continuous gas phase. As a result, the numerical flux terms are to be formu-
lated exclusively for the Navier-Stokes equations. This significantly reduces the influence
of the applied flux calculation scheme and its accuracy on the quantities of the liquid phase
compared to a formulation in the Eulerian frame of reference and could explain a deviation
between the results of different frames of reference. Since the formulation of the PGIRoe
scheme, unlike the method used by White, contains no artificial damping terms and, due to
its origin from the scheme according to Roe, does not tend to produce numerical dissipation,
this justification also seems suitable to explain the absence of a deviation and thus indicate
a verification. Despite the high degree of agreement between the results, it should be noted
that the use of an Eulerian frame of reference in the context of the implementation in TRACE
shows a significant advantage in terms of computing time.
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As expected, the description of the dispersed phase in the Lagrangian frame of reference
makes it possible to achieve a grid-independent solution even on a grid with a smaller num-
ber of nodes. However, the reduction in computing time associated with this is cancelled
out by the increased time required to achieve a convergent solution in TRACE. Solving the
differential equations of the statistical moments separately from the conservation equations
increases the number of iterations required to reach the convergence criterion. Since this
behaviour can be observed in a similar way for the EPGIRoe scheme, it seems unlikely that
this is due to the implementation. Rather, in the present case, the solution of the equations
coupled by an Eulerian frame of reference could lead to an acceleration of convergence with
no negative influence on stability.
A comparison of the results assuming a monodispersed droplet size distribution with the
already verified polydispersed configuration shows a stronger deviation than in the case of
a change of the frame of reference. The increase in pressure in the vicinity of the conden-
sation front appears slightly compressed. Also, the radius of the droplets is overestimated
compared to the E-E-M-Poly variant. It should be noted that the formulation of a volume-
averaged radius replaces the calculation of the Sauter radius in the monodispersed case due
to the lack of a way to determine the droplet surface. However, Starzmann et al. [138] show
that the way the droplet radius is averaged is of secondary importance for the accuracy of the
results in the case of nozzle flows. The compressed characteristic of the pressure curve also
corresponds to similar observations in the literature. White and Hounslow [164] attribute
this to an inadequate description of the heat exchange between the phases under the simpli-
fying assumption of a monodispersed droplet size distribution. The heat exchange between
the phases, which can be localised at the surface of the droplets, is thus directly dependent on
the surface area as a quantity that cannot be clearly determined in the monodispersed case.
The resulting error also affects the subcooling and the maximum of the nucleation rate. It
leads to an upstream shift in the onset of condensation, favouring an overestimation of the
droplet radii.
Since the configuration E-E-M-Mono of the PGIRoe scheme also matches the trends found in
the literature, all three configurations examined on the basis of Case M of the Mystery nozzle
can be assumed to be verified. Furthermore, based on the discussed relations between the
three configurations, it seems reasonable to limit a validation of the PGIRoe scheme to the
two variants E-E-M-Poly and E-E-P-Poly-S. To this end, the numerical results of the PGIRoe
scheme will now be compared with experimental data of a flow characterised by moderate
differences in phase velocities.

Comparison with experimental data of moderate difference in phase velocities

The geometry considered below was originally used by Barschdorff [17] to study con-
densation in supersonic flows of humid air when exposed to heat. In later experiments,
Barschdorff [18] also measured the expansion of pure steam using the same Laval nozzle,
with the focus again being on the phase change by means of condensation. Due to the
measurement methods used, his documented results are limited to pressure curves measured
along the nozzle axis. However, since validation of numerical methods requires not only
measurement data of the continuous phase but also measurement results of at least one quan-
tity of the dispersed phase, Maqueo Martinez et al. [94] investigate the nozzle geometry
according to Barschdorff both in terms of pressure and droplet radius.
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Figure 29: Geometric characteristics of the nozzle according to Barschdorff [17] (left) and specifica-
tion of two test cases (◦ Case B1 and � Case B2 ) in a p-v diagram of water (right)

The geometry they use corresponds to the circular arc nozzle with a rectangular cross-section,
which Barschdorff calls Düse II and which is characterised by a radius of curvature of
584 mm. The corresponding curve of the relative area along the relative length is shown
in the left part of Figure 29. Due to the shape of the arc, which appears slightly distorted
due to the plotting of the related quantities, there is a direct geometric dependency between
the length of the nozzle and the cross-sectional area at the inlet and outlet, given the radius,
the nozzle depth and the narrowest cross-section. This means that the characteristic of the
change in area along the nozzle axis remains the same regardless of the choice of nozzle
length. The narrowest cross-section of the nozzle, according to Barschdorff, is obtained by
multiplying the height of the nozzle throat of 60 mm by a nozzle depth of 50 mm, resulting in
3000 mm2. The length of the nozzle is modelled as 0.27 m, in accordance with Barschdorff’s
documentation. Unlike in the case of the Mystery nozzle, the expansion rate here is not con-
stant.
From the eleven inlet states measured by Barschdorff two test cases were selected to validate
the PGIRoe scheme. The total pressure at the inlet is 0.7839 bar in both cases. Case B1
is characterised by a total temperature at the inlet of 373.35 K, while for Case B2, a total
temperature of 380.55 K is specified. An overview of this data can be found in Table 8.
The static thermodynamic states resulting from the total quantities are plotted in the right
part of Figure 29 in a p-v diagram of the medium water. In this diagram, Case B1 is repre-
sented by a circle and Case B2 by a square. Both state points are above the dew line and thus
in the gaseous single-phase state region. A closer look at the compressibility factor, which is
shown as a coloured contour, reveals that no significant non-ideality of the gas phase is to be
expected for the test cases of the nozzle according to Barschdorff either. The compressibility
factor is in the range of about 0.987, with the value for Case B1 being slightly lower than in
Case B2.

Table 8: Boundary conditions for the Barschdorff nozzle for the medium water

pt,in Tt,in

Case B1
0.7839 bar

373.35 K
Case B2 380.55 K
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A special feature becomes apparent if the expected change of state along the nozzle axis for
Case B1 is visualised as a black line. Starting from the state at the inlet of the nozzle, which
is already in close proximity to the dew line, the expansion within the Laval nozzle leads to
an entry into the two-phase region. As already shown by the results for the Mystery nozzle,
the subcooling continues to increase downstream, although the spinodal limit, shown as a
red dashed line, is not exceeded. The state in which stable condensation nuclei first form is
characterised by reaching a maximum subcooling and can be located in the p-v diagram of
Figure 29 in the local minimum of the black curve.
As a result of the formation of a liquid phase, the evaporation enthalpy is released, which can
be interpreted as thermal energy. While the quantities of pressure and temperature increase,
the heat release causes a local drop in the Mach number. If this happens relatively close to
the narrowest cross-section of the nozzle, in which sonic conditions prevail, as in Case B1,
and if the heat release is sufficiently high, a localised subsonic area forms in the divergent
part of the nozzle. The heat load at which exactly a Mach number of one is reached in the
vicinity of the condensation front is referred to as the critical heat addition. If the released
amount of energy has a higher value, it is referred to as a supercritical heat addition and
causes large gradients in the flow field due to an abrupt change from subsonic to supersonic
conditions.
To be able to map these appropriately within the scope of the numerical investigations, the
spatial grid is refined in the divergent part of the nozzle. Analogous to the Mystery nozzle,
the Spalart and Allmaras model with a corresponding criterion of the dimensionless wall
distance is chosen for the turbulence modelling of the nozzle according to Barschdorff. On
the basis of an investigation of the discretisation error of the spatial grid, the grid indepen-
dence of the solution can be stated for a grid with 960,000 node points. The tabulation of the
thermophysical quantities of the gas phase and the saturation quantities is carried out for a
pressure interval of p ∈ [0.15;0.8] bar and a temperature interval of T ∈ [300;385] K, while
the quantities of the liquid phase are tabulated in a pressure interval of p ∈ [0.15;0.5] bar
and a temperature interval of T ∈ [300;360] K. An investigation of the independence of the
solution from the discretisation results in the choice of a table dimension of 500 for the gas
phase and 1000 for the liquid phase. The criterion for assessing the convergence of the iter-
ative solution is set to ResL1 = 1.0×10−7.
To be able to assess the necessity of considering the momentum exchange between the
phases, the Stokes number is evaluated for both test cases of the nozzle according to Barsch-
dorff. Calculations using the configuration E-E-P-Poly-S of the PGIRoe scheme show that
similar to the case of the Mystery nozzle, a maximum difference in phase velocities in the
vicinity of the walls close to the outlet boundary condition is to be expected. Based on the
quantities determined in this way, a Stokes number of 0.51 is obtained for Case B1 and of
0.37 for Case B2 using Equation 4.12. Thus, combined with the previously formulated crite-
rion of St > 0.1, it seems reasonable to take into account the momentum exchange between
the phases, especially for Case B1. At this point, it should be noted that when using the
configuration E-E-P-Poly-S of the PGIRoe scheme, the consideration of frictional effects in
the form of turbulence modelling is carried out exclusively for the gas phase.
To be able to compare the influence of the consideration of the momentum exchange between
the phases on the numerical results, the two test cases of the nozzle according to Barschdorff
are first calculated using the already verified configuration E-E-M-Poly. The results obtained
in this way are compared with the experimental data in the left part of Figure 30. The pres-
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Figure 30: Pressure and Sauter radius curves for Case B1 (◦) and Case B2 (�) of the nozzle according
to Barschdorff as measured by Barschdorff [18] (black lines), by Maqueo Martinez [94] (black dashed
line) and determined numerically using the PGIRoe scheme E-E-M-Poly (symbols) (left) as well as
comparison of different types of modelling of the dispersed phase using the PGIRoe scheme (right)
for the medium water

sure curves according to Barschdorff [18] are shown as black lines and are based on a digital
reconstruction of the measurement data published as a graphic. A similar approach is also
followed for the experimental data according to Maqueo Martinez et al. [94]. Black dashed
lines represent the resulting pressure and Sauter radius curves. Blue circles symbolise the re-
sults of the E-E-M-Poly configuration of the PGIRoe scheme for Case B1, while blue squares
indicate the curves calculated for Case B2. Since the narrowest cross-section lies at half the
nozzle length, its coordinates are selected as the origin of the ordinates.
Prior to the onset of condensation, all of the displayed pressure curves correspond well
with one another, with the numerical results being somewhat closer to the data according
to Barschdorff. The Wilson point for Case B1 is characterised by the PGIRoe scheme by a
pressure of about 0.38 bar and a maximum subcooling of 33 K. A comparison of the experi-
mental data sets against each other shows a deviation with regard to the onset of condensation
and the resulting pressure increase. The results of Maqueo Martinez et al. indicate an earlier
onset of condensation than the data according to Barschdorff, whereby the characteristic of
the pressure increase shows a similar shape for both data sets. The results of the PGIRoe
scheme fall within the range of the experimental data with regard to the onset of condensa-
tion. However, the pressure increase has a lower slope and, consequently, a lower maximum.
Since Case B1 is a test case with a supercritical heat addition, this deviation could indicate
an underestimation of the released thermal energy by the PGIRoe scheme. Downstream of
the pressure increase, the numerical results show agreement with the experimental data ac-
cording to Maqueo Martinez et al., while the data according to Barschdorff indicate slightly
higher values of the pressure. The trend of the droplet radius determined by the PGIRoe
scheme shows qualitative agreement with the experimental data over the entire measuring
section. In the last data point documented by Maqueo-Martinez et al., the Sauter radius de-
termined numerically for Case B1 shows a relative deviation of about 16%.
An investigation of Case B2 using the PGIRoe scheme leads to a determination of the Wil-
son point at a pressure of about 0.33 bar and a maximum subcooling of 34 K. Similar to
Case B1, the experimental data show a deviation concerning the onset of condensation. In
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Case B2, the results of the PGIRoe scheme again lie between the experimentally determined
pressure curves. The onset of condensation is predicted by the PGIRoe scheme both in terms
of the nozzle coordinate and the pressure level in a way that is comparable to the data from
Maqueo-Martinez et al.. However, the shape of the pressure increase shows a lower gradient
and a lower maximum in this case as well. Since Case B2 is not characterised by a supercriti-
cal heat addition, no specific cause can be identified for this so far. An analysis of the droplet
radii shows a qualitative agreement between the numerical results and the experimental data.
The relative deviation of the Sauter radius determined using the PGIRoe scheme in the last
data point documented by Maqueo Martinez et al. for Case B2 is about 7%. With reference
to the scatter range of numerical results demonstrated by the IWSMP for the Mystery nozzle
when investigating the condensation of steam in Laval nozzles, as well as the similarity of
the numerical results to the experimental measurement data in the case of the nozzle accord-
ing to Barschdorff, the configuration E-E-M-Poly of the PGIRoe scheme can be considered
validated.
Maqueo Martinez et al. show on the basis of their own numerical calculations that an adjust-
ment of the parameters of Young’s droplet growth model can lead to an improved agreement
with the experimental results. The values of α = 3 and β = 2 used by the authors are rather
unusual compared to the parameters recommended by the IWSMP of α = 11 and β = 0.
To investigate the influence of the droplet growth modelling on the numerical results of the
PGIRoe scheme, a case study is carried out in the right part of Figure 30 using Case B1. The
blue circles symbolise the results of the PGIRoe scheme using the configuration E-E-M-Poly
and the standard parameters of the droplet growth model, as before. The results when adjust-
ing the model parameters according to the choice of Maqueo Martinez et al. with otherwise
the same modelling of the dispersed phase are shown as black circles. A comparison of the
pressure curves reveals no relevant deviation until condensation sets in. This seems plausi-
ble since the adjustment of the droplet growth model parameters in the absence of droplets
must not influence the results. Based on the modified parameters, the onset of condensation
is predicted by the PGIRoe scheme further downstream. This is consistent with the trend
observed by Maqueo Martinez et al. and, in the case of the PGIRoe scheme, leads to an
approaching of the experimental data according to Barschdorff. The choice of parameters
does not significantly influence the shape of the pressure rise. Since the influence of nucle-
ation can be assumed to be dominant in this area, this is in line with the physical modelling.
As already explained for the Mystery nozzle, the later onset of condensation and the asso-
ciated higher subcooling lead to the formation of a larger number of droplets with a smaller
radius. An analysis of Equation 3.55 and Equation 3.56 shows that the adjustment of the
parameters of the droplet growth model proposed by Maqueo Martinez et al. in the present
case tends to lead to lower growth rate values than when using the default parameters. The
strong decrease in the droplet radii when adjusting the parameters can thus be explained by a
combination of a downstream displacement of the onset of condensation with a reduction in
the droplet growth rate. For the PGIRoe scheme, adjusting the parameters does not improve
the agreement with the experimental results. Rather, the droplet radii now deviate by up to
29%. The numerical calculations by Maqueo Martinez et al. are based on the assumption of
a monodispersed droplet size distribution, which, as shown for the Mystery nozzle and con-
firmed by Wróblewski and Dykas [169] for the Barschdorff nozzle, can lead to a numerical
overestimation of the radii. In their case, a reduction of the droplet radii, therefore, appears
expedient, in contrast to the configuration E-E-M-Poly of the PGIRoe scheme.
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Regardless of the effect achieved for the PGIRoe scheme, however, the variation of the model
parameters according to Young, illustrates the high sensitivity of the numerical solution with
respect to the model approaches used to describe the condensation. As indicated by the pre-
viously calculated Stokes numbers, the consideration of momentum exchange between the
phases is also likely to influence the numerical results. In the right part of Figure 30, in
addition to the data series already described, the results of the PGIRoe scheme of the config-
uration E-E-P-Poly-S for Case B1 are therefore also plotted using red circles. A comparison
of the pressure curve with the experimental data according to Maqueo Martinez et al. shows
a high degree of agreement both in terms of the onset of condensation and the shape of the
pressure increase. Only in the direct vicinity of the local pressure maximum, the PGIRoe
scheme underestimates the pressure. Compared to the configuration E-E-M-Poly, which de-
scribes the flow using the mixture quantities, the pressure rise shows a steeper characteristic
and a higher pressure value. The qualitative trend of the droplet radii is retained even when
momentum transfer between the phases is taken into account. However, the configuration
E-E-P-Poly-S calculates larger droplet radii. Although this seems plausible, given the con-
densation occurring comparatively further upstream, it leads to an increased discrepancy
with the experimental data. In this case, the droplet radii’s relative deviation is about 25%.
Dykas and Wróblewski [40] examine the Barschdorff nozzle for Case B1 using two model
approaches, where, similar to the PGIRoe scheme, only one of the variants takes into ac-
count the momentum exchange between the phases. They observe comparable tendencies
with regard to both the pressure curve and the droplet radii.
The results of all four configurations of the PGIRoe scheme thus appear physically consistent
and also qualitatively agree with corresponding investigations represented in the literature.
A comparison of the results of the PGIRoe scheme with experimental data for the nozzle ac-
cording to Barschdorff also shows a high level of quantitative agreement, particularly when
the momentum exchange between the phases is considered. A successful validation of the
PGIRoe scheme for Laval nozzles flowed through with steam can be derived from this. In
order to expand the scope of the scheme with regard to the working medium, a validation
based on a test case with a medium other than water seems promising. The choice of the
medium CO2 in combination with a state at the inlet of the Laval nozzle, which is close to
the usual operating limits of sCO2 compressors, allows a simplified investigation of con-
densation, as it occurs in particular at blade leading edges. For this purpose, similar to the
previously investigated case, a comparison of experimentally obtained results is carried out.

Comparison of experimental data of a Laval nozzle flowed through by CO2

Theis [144] conducts investigations into homogeneous condensation in flows of CO2 and
difluorodichloromethane using five different Laval nozzle geometries. The measurement
data he documented includes, in particular, Wilson lines plotted for various parameter com-
binations, which cover almost the entire state range between triple point and critical point.
Based on these findings, Bier et al. [21, 22] investigate flows of air-CO2 mixtures and other
refrigerants. Since the literature usually erroneously refers to Bier instead of Theis in the
context of the investigation of pure CO2, in the interests of integrity, the test case will be
referred to in the following as a combination of both authors’ names.
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Theis distinguishes the nozzles he examined based on the shape of their cross-sectional area
and their expansion rate. For the validation of the PGIRoe scheme, a nozzle designated by
Theis as B1 with a rectangular cross-section and an expansion rate of about 23,000 1/s is
selected. The latter quantity is an estimate by Theis, obtained by averaging along the nozzle
axis, and is therefore not a constant. In the left part of Figure 31, the relative area of the
nozzle is plotted over the relative length. The narrowest cross-section is 1.88 mm2 and is
composed of a height of 0.75 mm and a nozzle depth of 2.51 mm. The total length of the
nozzle is 34.4 mm, with the convergent and divergent parts in a ratio of 0.29 to 0.71.
For the nozzle investigated, the formation of a boundary layer is to be expected, which could
significantly influence the flow and, thus also, the phase change due to the very small dimen-
sions of the geometry. Theis therefore proposes to determine the effective flow cross-section
based on an experimentally determined pressure curve for the case of a dry flow. Assuming
an isentropic core flow, a quasi-analytical derivation of the effective cross-sectional area is
possible if the total inlet boundary condition and the static pressure along the nozzle axis are
known. Its course is shown as a dashed line in the left part of Figure 31. The difference
between the geometric and effective cross-sections can be interpreted as a flow displacement
resulting from a boundary layer. Accordingly, the wall friction acquires a particular signif-
icance from the narrowest cross-section of the nozzle onwards, which is further intensified
in the divergent part. In addition, there is an effective displacement of the narrowest cross-
section in the positive flow direction. Since the boundary conditions formulated by Theis,
which will be explained in more detail below, only apply in certain part of the nozzle, this is
highlighted in grey.
For the selected nozzle geometry, four test cases are examined using the medium CO2, where
the total pressure at the inlet is uniformly 45 bar. The total inlet temperatures vary between
300.12 K and 325.76 K. A complete overview of the inlet boundary conditions can be found
in Table 9. The static conditions at the geometric inlet of the nozzle for all four cases are
also shown in a T -s diagram in the right part of Figure 31. While Case T1 is symbolised by
a circle, a square marks Case T2. The initial condition for Case T3 is represented by a rhom-
bus, and that for Case T4 by a triangle. The critical isobar illustrates that the fluid conditions
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Figure 31: Geometric characteristics of the nozzle according to Bier and Theis [144] with grey shaded
test section and effective cross-section represented by a black dashed line (left) as well as specification
of four test cases in a T -s diagram of CO2 (right)
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Table 9: Boundary conditions for the nozzle according to Bier and Theis for the medium CO2

Case T1 Case T2 Case T3 Case T4
pt,in 45 bar
Tt,in 300.12 K 304.18 K 310.60 K 325.76 K

examined exhibit supercritical temperatures in some parts but a subcritical pressure value at
around 44.7 bar. Case T4 is characterised by Theis as a test case of a dry flow. However, it
should be noted that this assumption is only valid within the grey-shaded test section. As a
second phase also occurs for Case T4 in the further downstream course of the nozzle, it is
important to place the outlet boundary condition appropriately, particularly for determining
the effective cross-sectional area. For the other three test cases, as a result of condensation,
the entry into the metastable range of the two-phase region already occurs within the test
section.
An analysis of the compressibility factor based on the coloured contour shown on the right in
Figure 31 shows, unlike previously for the medium water, a relevant deviation from the value
Z = 1. With decreasing temperature at the inlet of the nozzle, the compressibility factor also
decreases at constant pressure. For Case T4, it has a value of about 0.81 and for Case T1 of
0.73. This results in a classification of the fluid states as non-ideal, so validating the PGIRoe
scheme for flows of non-ideal fluids with the formation of a second phase seems possible
using the nozzle according to Bier and Theis.
Due to the indicated influence of boundary layer effects, two different approaches are pur-
sued to investigate the flow. On the basis of the EPGIRoe scheme, which, unlike TRACE,
enables a quasi-one-dimensional description of the flow, the previously calculated effective
cross-sectional area can be used to dispense with explicit modelling of the wall friction. In
addition, the PGIRoe scheme implemented in TRACE is used in a similar way to the previ-
ous nozzle test cases to examine the flow in a quasi-two-dimensional manner, with explicit
consideration of friction. A comparison of the results obtained by these two approaches
could provide information about the sensitivity of the modelling of the phase change with
regard to the influence of frictional effects.
Since the turbulence model according to Spalart and Allmaras is chosen for the calculations
in TRACE and thus a criterion of the dimensionless wall distance smaller than one is to
be adhered to, a refinement of the spatial grid in wall proximity is carried out. In order to
ensure uniformity of the calculation approaches with regard to the spatial discretisation, an
identical number of nodes in the direction of the x-coordinate and thus along the nozzle axis
is selected for the quasi-one-dimensional description as for the quasi-two-dimensional mod-
elling. Based on an investigation of the spatial discretisation error, taking into account all
three spatial directions, the grid independence of the solution can be assumed for a grid with
638,000 nodes. The tabulation of the thermophysical quantities is carried out for the gas
phase and the saturation quantities in a pressure range of p ∈ [9;40] bar and a temperature
range of T ∈ [230;300] K. For the liquid phase, a pressure interval of p ∈ [9;23] bar and a
temperature interval of T ∈ [250;270] K are tabulated. For both phases, the solution can be
assumed to be independent of the selected discretisation for a table dimension of 500. To en-
sure the convergence of the iterative solution, a criterion of ResL1 = 1.0×10−7 is selected.
Performing a calculation of Case T1 based on the configuration E-E-P-Poly-S of the PGIRoe
scheme allows for the estimation of a Stokes number of 0.06. Consequently, it does not ap-
pear necessary to take into account the momentum exchange between the phases.
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Accordingly, a sufficiently high level of detail with regard to the description of the dispersed
phase can be achieved by modelling the droplet size distribution as polydispersed. Unlike
the previous investigations, no correction of the nucleation rate is applied with regard to the
presence of a temperature gradient in the gas phase immediately preceding nucleation. The
resulting neglect of the factor formulated in Equation 3.50 limits the influence of the model
adaptations verified exclusively for steam on the droplet growth model according to Young.
However, before an investigation of condensation can be carried out, a calculation of the dry
flow through the nozzle geometry according to Bier and Theis first has to be carried out. The
numerical results of the pressure for Case T4 are compared in the left part of Figure 32 with
the data experimentally collected by Theis [144]. Since the measurement data is only avail-
able in the literature as figures, the corresponding curves are digitally reconstructed. A black
line indicates the experimental values acquired in this way, while black triangles represent
the results of the quasi-one-dimensional calculation of the EPGIRoe scheme. The pressure
curve resulting from quasi-two-dimensional modelling based on the PGIRoe scheme is in-
dicated by blue triangles. Both the calculations of the EPGIRoe scheme and those of the
PGIRoe scheme are based on modelling the dispersed phase using the configuration E-E-M-
Poly. In the absence of a liquid phase, this transitions to the GIRoe scheme, as verified using
the test case of the NASA CDV nozzle.
The numerical results for Case T4 show high agreement with the experimentally determined
data. The EPGIRoe scheme almost precisely matches the measured pressure curve. How-
ever, this only confirms the consistency of the method since the effective cross-sectional area
used for the calculation was previously calculated using the same measurement data. The
results of the PGIRoe scheme, which are based on a description of the nozzle using its geo-
metric contour, also match the measured data in the convergent part of the nozzle to a good
approximation. Downstream of the narrowest cross-section, which is located at a relative
length of about 0.29, there is a slight deviation from the experimentally determined data.
This deviation increases along the nozzle axis and reaches a maximum of about 3%. In order
to check a potential influence of the numerical method, a quasi-two-dimensional calculation
is carried out using the EPGIRoe scheme while maintaining all boundary conditions. Since
the results obtained in this way show a maximum deviation of only 0.002% from the cal-
culations of the PGIRoe scheme, an additional data series is not shown. The description of
the area through which the flow passes using the effective cross-section thus seems to lead
to a slight overestimation of the influence of the boundary layer in the divergent part of the
nozzle. However, it should be noted that both the experimental pressure curve shown and the
nozzle contour are determined graphically and thus exhibit inaccuracies, which could affect
the comparison of results and at least partially explain the deviation. Due to the slight differ-
ence and qualitative similarity of the curves, further investigation using the PGIRoe scheme
seems justified.
The right part of Figure 32 therefore shows the results of the PGIRoe scheme of the test
cases for which a second phase occurs within the test section. Case T1 is represented by
blue circles, Case T2 by blue squares and Case T3 by blue diamonds. The Wilson point is
characterised by the PGIRoe scheme exemplarily for Case T1 by a pressure of about 20.3
bar and a maximum subcooling of 8 K. A comparison of this data pair with the Wilson line
determined by Theis confirms the low value of the maximum subcooling compared to the
test cases for steam examined so far.



Application of the Model to Various Validation Cases 103

P
re

ss
ur

e 
ra

ti
o

P
re

ss
ur

e 
ra

ti
o

Single-phase

Relative length Relative length

Case
Case Case

Case CaseCase

Figure 32: Pressure curves for Case T4 assuming a single-phase flow as determined experimentally
by Theis [144] and numerically using the PGIRoe scheme (blue symbols) and the EPGIRoe scheme
(black symbols) (left) as well as pressure curves for all four test cases taking into account a second
phase (right) for the medium CO2

A high degree of agreement with the experimental data can be seen for all three test cases.
For Case T3, for example, the values of the pressure calculated using the PGIRoe scheme
lie almost exactly on the measured pressure curve. The position of the Wilson point and
the subsequent pressure rise are also well approximated by the PGIRoe scheme. The rela-
tively low maximum subcooling is reflected in a flat pressure rise. In order to examine the
influence of the cross-sectional area on the onset of condensation and also to simplify com-
parison with investigations represented in the literature, the quasi-one-dimensional results
of the EPGIRoe scheme for Case T1 are also plotted in the right part of Figure 32 as black
circles. The Wilson point is predicted by the EPGIRoe scheme a little further upstream.
As a result, the condensation and the pressure increase associated with it occur at a slightly
higher pressure. This causes a quantitative deviation from the experimental measurement
data, which is more pronounced than in the case of the quasi-two-dimensional calculations
of the PGIRoe scheme. In order to be able to exclude an influence of the implementation
here as well, a quasi-two-dimensional comparative calculation is again carried out using the
EPGIRoe scheme.
The deviation from the results of the PGIRoe scheme is of a similar order of magnitude as in
the dry case and can, therefore, be neglected. The purely quantitative offset of the pressure
rise thus seems to be due to the way the influence of friction is modelled. This could be inter-
preted as an indication of the particular relevance of an exact modelling of the nozzle contour
and the boundary layer effects occurring on it in the context of phase change processes. An
influence of the interaction of the dispersed phase and the turbulent boundary layer cannot
be excluded either.
Since Theis does not measure the droplet radii, a final assessment of the results in terms of
the accuracy of description of the dispersed phase is unfortunately not possible. The neces-
sity of adapting the formulation of the critical radius from Equation 3.48 with regard to the
non-ideality of the gas phase, as stated by Petruccelli et al. [114], cannot be confirmed by the
present study. Using numerical calculations, the authors demonstrate that the way the critical
radius is modelled significantly influences the Wilson point. For this purpose, they exam-
ine a nozzle designated as B2 by Theis, which has a higher expansion rate. The underlying
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description of the nozzle geometry is based on an apparently inappropriate combination of
effective cross-sectional area and additional turbulence modelling. A comparison of the re-
sults presented by the authors with the experimental measurement data according to Theis
also shows considerable deviations, which unfortunately are not discussed.
In principle, an investigation of adaptations of the model approaches established for the
medium steam, which also assume the ideality of the gas phase, seems quite promising. In
addition to a detailed theoretical analysis of the gas-kinetic relationships, however, a corre-
sponding database is required to validate the developed model adaptations. In particular, the
lack of availability of measurement data for the droplet radii has a limiting effect, so that
such a consideration is dispensed with in the context of this work.
Since the speed of sound in particular, but also an expression equivalent to the isentropic
exponent of calorically perfect gases, are central parameters of the PGIRoe scheme, it seems
sensible to investigate these with regard to flows of non-ideal fluids forming a second phase.
It turns out that the way the speed of sound in the two-phase region is calculated has no
significant influence on the results of Case T1. Even an approximation of the isentropic ex-
ponent in Equation 4.49 that differs from the isentropic pressure-volume coefficient leads
only to a relative deviation of the pressure in the direct vicinity of the Wilson point of up
to 0.01 bar, which corresponds to a relative deviation of 0.05%. A detailed description of
the underlying investigation can be found in Appendix D. This indicates that the procedure
followed to determine the thermophysical state quantities in the two-phase region appears to
be valid, at least for the test cases examined in the context of this work.
The high degree of agreement between the results of the PGIRoe scheme and the experimen-
tal data for the medium CO2 obtained for the nozzle according to Bier and Theis also shows
that the PGIRoe scheme is able to describe the phase change in flows of non-ideal fluids in
a suitable manner. The previous numerical investigation of condensation in Laval nozzles
places the focus of validation on the accuracy of the description associated with modelling
the phase change. With the exception of the near-wall regions, the flows examined for this
purpose exhibit a quasi-one-dimensional characteristic, which, however, cannot be found
in real turbomachinery. To validate the PGIRoe scheme also for flows, which, in addition
to the formation of a second phase, are characterised by the presence of two-dimensional
discontinuities, an axial turbine cascade provides a suitable test case.

5.2.2 Phase Interaction of Steam in a Turbine Cascade

As a result of the flow around turbine blades, shock fronts can form at the trailing edge,
in the vicinity of which interaction between the dispersed and the continuous phase can be
observed in terms of an increased heat and momentum exchange. To be able to map the re-
sulting flow characteristics numerically and thus to estimate the occurring flow losses, high
demands are placed on the method used in terms of robustness and accuracy of description
of the phase change. White et al. [165] investigate the flow of steam within an axial turbine
cascade both experimentally and using a two-dimensional time-marching method developed
by White [163] that describes the dispersed phase in a Lagrangian frame of reference.
The blade profiles used are the stator blades of the fifth stage of a real low-pressure steam
turbine. The cascade consists of four profiles arranged in parallel. Using an optical access in
the region of the trailing edges of the blades, the flow field can be visualised using Schlieren
images. Pressure taps along the suction and pressure sides of the two central profiles also en-
able a spatially resolved measurement of the static pressure on the blade surface. To enable a
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Figure 33: Geometry of the cascade according to White et al. [165], localisation of the boundary
conditions and detailed views of the meshing strategy at the leading and trailing edge of the blade
(left) as well as specification of two test cases (◦ Case H2 and � Case L2) in a T -s diagram of water
(right)

validation of two-dimensional numerical methods, the depth of the passage with 152 mm is
chosen in such a way that no relevant influence from the limitation in depth is to be expected
in the spatial symmetry plane. The mean expansion rate is given by White et al. as 1156 1/s
and matches the value of the actual turbine due to the choice of blading.
In order to make the test case accessible to investigation using CFD methods, the flow chan-
nel around one of the four blades is modelled. Homogeneous distribution of the flow quanti-
ties at the inlet is ensured by positioning the inlet boundary condition at a sufficient distance
from the blade’s leading edge. In addition, maintaining an appropriate distance between the
trailing edge of the blade and the outlet prevents the shock systems to be expected in the wake
area of the blade from affecting the outlet boundary condition. The physical total length of
the modelled section, which is shown in the left part of Figure 33, is 300 mm. The definition
of the delimiting surface, which is almost parallel to the blade contour of the pressure side,
as a periodic boundary condition makes it possible to describe the complete flow field within
the cascade using only one profile.
White et al. define 22 test cases, which are classified both by the subcooling at the inlet and
the Mach number at the outlet. They distinguish between low, medium, high, and very high
subcooling, where the latter always assumes positive values and is therefore also referred to
as superheat. For each of these groups, the Mach number at the outlet is varied by controlling
the back pressure of the condenser. The test case with the highest Mach number and, thus,
the lowest outlet pressure is indicated by the number one, while the lowest Mach number
and the highest outlet pressure are achieved for the test case with the number three.

Table 10: Boundary conditions for the cascade according to White et al. for the medium water

pt,in Tt,in pout

Case H2 0.419 bar 378.5 K 0.177 bar
Case L2 0.409 bar 354.0 K 0.194 bar
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The validation of the PGIRoe scheme is carried out by means of two characteristic test cases.
These are notable for significant differences in their flow characteristics as well as sufficient
representation in the literature in the form of comparable numerical investigations. Both test
cases have a total inlet pressure of just over 0.4 bar. Case H2 is defined by White et al. as
having a total inlet temperature of 378.5 K and is classified as a test case with high superheat.
If it is determined based on the total quantities at the inlet, this yields a value of 28 K. The
number two in the designation indicates that the Mach number at the outlet corresponds to a
medium supersonic value for this group. The same applies to Case L2, where the total inlet
temperature of 354 K causes an overheating of 4 K and thus places the test case in the low
superheat group.
An overview of the inlet and outlet boundary conditions can be found in Table 10, where
the static pressure at the outlet is interpreted as an area-averaged value. The static inlet
conditions of the two test cases are also shown in the right-hand part of Figure 33 in a T -s di-
agram. A circle symbolises Case H2, while Case L2 is represented by a square. The already
highlighted distinction between the test cases based on superheat is made clear by different
distances of the illustrated inlet states from the dew line. For example, Case L2 as a result
of low superheat is different from Case H2 in that it is in close proximity to the dew line.
An analysis of the compressibility factor, which is represented by a coloured contour, shows
no significant deviation from the value of one for both initial states. This is consistent with
the validation cases examined so far for the medium water and indicates only a slight non-
ideality of the gas phase. The deviation of the isentropic pressure-volume exponent from
the ratio of specific heat capacities, plotted as a dashed isoline, and the dash-dot line of the
fundamental derivative also confirm this classification. The fundamental derivative takes on
a value greater than one for both test cases. The isentropic pressure-volume exponent dif-
fers only by about −0.01 and thus 0.83% from the ratio of specific heat capacities for both
Case H2 and Case L2.
A numerical investigation of the change of state within the turbine cascade requires a spatial
grid that is generated based on the geometry. To ensure sufficient resolution in the near-wall
region of the turbine blades and thus to comply with the criterion of the dimensionless wall
distance for the turbulence model according to Spalart and Allmaras, the grid is refined close
to the walls. Particular attention is paid to the structure in the vicinity of the leading and
trailing edges of the blade, which are shown enlarged in the left part of Figure 33. While a
sufficient resolution of the stagnation point is to be ensured at the blade’s leading edge, the
grid structure in the vicinity of the trailing edge of the blade is particularly relevant in the
context of the shock systems that form here. In order to ensure as high a level of accuracy
as possible in describing the flow characteristics, the grid is locally refined and optimised in
terms of the arrangement of its nodes. Based on an investigation of the spatial discretisation
error of the grid generated in this way, grid independence of the solution can be demonstrated
for a node number of 1.16 million.
The tabulation of the thermophysical quantities of the gas phase and the saturation quan-
tities is carried out in a pressure range of p ∈ [0.05;0.45] bar and a temperature range of
T ∈ [250;400] K. For the liquid phase, a pressure interval of p ∈ [0.05;0.35] bar and a tem-
perature interval of T ∈ [250;380] K are tabulated. The solution can be assumed to be inde-
pendent of the selected table discretisation with a table dimension of 500 for the gas phase
and a dimension of 1000 for the liquid phase. In addition, the iterative solution is considered
to have converged if a criterion of ResL1 = 1.0×10−6 is undercut.
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To assess whether considering the momentum exchange between the phases for the examined
test cases of the turbine cascade according to White et al. could provide additional insights,
a calculation of both cases is carried out using the configuration E-E-P-Poly-S of the PGIRoe
scheme. The highest difference between the velocities of the gas and liquid phases is pre-
dicted in the region of the flow separation at the blade’s trailing edge. A calculation of the
Stokes number at the point of maximum difference in phase velocities yields a value of 0.74
for Case H2, while a value of 0.92 is obtained for Case L2. As a result, both test cases fulfil
the criterion defined as St > 0.1, which is why the further calculations take into account a
momentum exchange between the phases by using the configuration E-E-P-Poly-S.
At this stage, it should be noted that the phase-based notation allows for a comprehensive
determination of the flow quantities of both phases and, thus, in particular, a description of
the droplet trajectories in the flow field. Thereby, considering a possible interaction of the
droplets with each other is omitted. Furthermore, the heat transfer at the interface between
the liquid phase and the blade surface is not modelled.
In the left part of Figure 34, the numerical results of the static pressure on the blade surface
for Case H2 are compared with the data experimentally obtained by White et al. [165]. For
this purpose, the ratio of static pressure to total inlet pressure is plotted over the relative arc
length of the profile, which is defined as the ratio of the coordinate in the x direction to the
arc length of the blade. The trailing edge of the blade, which, due to its shape, is defined
by a pressure-side and a suction-side coordinate, is excluded from the determination of the
relative arc length. While the experimental data points for Case H2 are shown as circular
symbols, the results of the PGIRoe scheme are represented by a blue line. It should be noted
that the representation of the CFD results as a continuous function requires a linear inter-
polation between the data points. However, due to the high node density in the vicinity of
the wall, any influence of this interpolation on the significance of the representation can be
neglected. The results of the PGIRoe scheme show a high degree of agreement with the
experimental data for Case H2.
Starting from the stagnation point, which forms the origin of the ordinate, the curve of
pressure-side static pressure on the blade surface closely matches the measured data points,
with the deviation decreasing along the relative arc length. Since the flow field near the
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Figure 34: Comparison of pressure curves along the blade surface for Case H2 (left) and Case L2
(right) of the cascade according to White et al. using the PGIRoe scheme (blue line) and the EPGIRoe
scheme (black line) with experimental data from White [163] (symbols) for the medium water
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pressure side of the profile is characterised by higher pressure and lower velocity values
compared to the suction side, condensation is not expected to influence the pressure curve
significantly. This is confirmed by the steady decrease in pressure along the relative arc
length. The suction-side pressure curve also shows a characteristic similar to the experimen-
tal data. A relevant deviation of the numerical results first becomes visible at a relative arc
length of about 0.6. Due to the prevailing supersonic conditions in the vicinity of the blade’s
trailing edge, oblique shock waves are formed as a result of its angular shape.
White et al. distinguish these shock fronts on the basis of their localisation in the flow field
into pressure- and suction-side discontinuities. An analysis of the two-dimensional flow field
determined by the PGIRoe scheme shows that a pressure-side shock originating from the pro-
file located above the investigated blade meets the suction side of the investigated profile at
about a relative arc length of 0.62. This is qualitatively consistent with the Schlieren images
documented by White et al., which are discussed in detail below in the context of Case L2.
Consequently, the local pressure rise, seen in the left part of Figure 34, can be explained by
an interaction between the flow near the blade and the shock front. However, there is a slight
deviation in terms of the position and slope of the pressure rise. The deviation also increases
downstream of the shock. Thus, the pressure downstream of the shock front is slightly over-
estimated, resulting in a maximum deviation of about 0.016 bar and thus 12%. However, the
qualitative similarity of the curves is maintained along the entire arc length.
A comparative calculation is carried out using the two-dimensional EPGIRoe scheme to in-
vestigate possible numerical factors influencing the prediction of the position of the pressure-
side shock. The results, which, with the exception of the flow solver used, are based on iden-
tical boundary conditions, are shown in Figure 34 as a black line. While, for the most part,
the results of the EPGIRoe scheme correspond almost exactly with the results of the PGIRoe
scheme, there is a noticeable deviation in the region of the pressure rise. The EPGIRoe
scheme predicts a slightly upstream shifted position of the shock front, which is reflected in
a corresponding offset of the pressure rise and leads to a higher agreement with the experi-
mental data. Downstream of the shock front, the results of the EPGIRoe scheme gradually
approach the values determined using the PGIRoe scheme. Similar to the single-phase case
of the nozzle according to Spinelli et al., the EPGIRoe scheme seems to be able to describe
the flow in the direct vicinity of shock fronts with slightly higher accuracy. However, a dis-
cussion of these seems necessary since no quantitatively comparable deviations are observed
for the investigations presented earlier in this chapter.
Unlike for the EPGIRoe scheme, the flow channel for the PGIRoe scheme implemented in
TRACE is modelled as three-dimensional. To investigate a possible influence of the spatial
depth on the numerical results, the calculation of Case H2 is therefore repeated using the
three-dimensional EPGIRoe scheme. For spatial discretisation, the grid already generated
for the calculations of the PGIRoe scheme is used. The results of the EPGIRoe scheme ob-
tained in this way show no significant deviation from the two-dimensional calculations and
are therefore not shown. Based on this, the modelling of spatial depth can be ruled out as the
cause of the observed deviation.
The other potentially relevant differences between the flow solvers considered in this study
are limited to the method used for temporal integration and the type of implementation.
However, without making significant changes to the existing structures, the influence of the
temporal integration can only be examined superficially. To do this, the implicit method
implemented in TRACE must be approximated to the integration conditions of the explicit
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approach. This is done by adjusting the CFL number, which, according to Equation 4.64,
is proportional to the time step of the integration. Lowering the CFL number to the value
of one does not lead to any relevant change in the results of the PGIRoe scheme. However,
from this, only the consistency of the implicit method for different integration step sizes can
be concluded. Due to the present study’s focus on validating the formulated flux calculation
scheme, an analysis going beyond the already presented approaches does not appear to be
useful at this point.
A greater gain in knowledge for the validation of the PGIRoe scheme promises the inves-
tigation of a further test case as Case L2. For this case, according to White et al., and in
contrast to Case H2, the condensation is expected to have an influence on the pressure curve
at the blade surface due to the lower superheat. A comparison of the results calculated us-
ing the PGIRoe scheme with the experimental data is shown in the right part of Figure 34.
Analogous to Case H2, the symbols, which have a quadratic shape for Case L2, represent the
measurement data, while a blue line indicates the numerical results of the PGIRoe scheme.
The trend of the pressure along the pressure side of the blade shows a high degree of agree-
ment with the experimental data comparable to Case H2. An increase in pressure can be
seen in the range of a relative arc length of about 0.58, which is again predicted by the
PGIRoe scheme to be slightly offset downstream. However, unlike in Case H2, the slope of
the pressure rise in this case resembles that indicated by the experiment. An examination of
the two-dimensional flow field, which will be described in detail below, shows the formation
of a condensation front on the suction side of the blade. It is located in close proximity to a
shock front emanating from the trailing edge of the neighbouring profile, which is why the
observed increase in pressure at the blade surface appears to be explainable by a combination
of both phenomena. This is confirmed by an analysis of the point of maximum subcooling on
the blade surface, which marks the local onset of condensation and, for the PGIRoe scheme,
coincides with the onset of the pressure rise. Further downstream, the deviation of the results
of the PGIRoe scheme from the experimental data increases similarly to Case H2.
However, unlike for the latter, both the measurement data and the numerical results show
a second, weaker pressure increase. According to White et al., the temperature increase in
the vicinity of the pressure-side shock causes the condensation front to split into two parts.
One part, which is in close proximity to the suction side, remains at the level of the shock
front, while the second part appears to be shifted downstream. A reaction of the latter on the
flow quantities of the suction side could cause a renewed increase in pressure. Again, this is
qualitatively represented by the PGIRoe scheme, whereby the deviation from the measured
data downstream assumes a maximum value of about 0.021 bar and thus 19%.
If the results of the PGIRoe scheme are also compared with those of the EPGIRoe scheme
for Case L2, a comparable picture to Case H2 emerges. A relevant deviation between the
implementations occurs exclusively in the vicinity of the shock. The EPGIRoe scheme again
matches the experimental data locally with slightly higher accuracy, whereby the deviation
from the PGIRoe scheme is smaller than in Case H2. This seems surprising at first glance
due to the somewhat more complex flow characteristics, but could be due to a reduced dom-
inance of the discontinuity caused by the condensation front.
In order to assess the deviations of the PGIRoe scheme shown in Figure 34 from the ex-
perimental data, a comparison with corresponding literature references is useful. The time-
marching method developed by White [163] shows deviations of up to 30% concerning the
pressure at the blade surface in Case H2. Dykas and Wróblewski [41] analyse two test cases
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complementary to Case L2 using a flow solver similar to the configuration E-E-P-Poly-S.
Unlike White, they take into account a momentum exchange between the phases. The re-
sulting maximum deviation of their results from the measurement data occurs in the vicinity
of the shock and amounts to about 29%. Grübel et al. [59] calculate Case L2 using different
model approaches to describe droplet growth. Irrespective of this variation, their results show
a maximum deviation in the region of the blade’s trailing edge of about 23%. The PGIRoe
scheme thus seems to describe the flow characteristics in both test cases with comparatively
high accuracy. The remaining deviation could further be explained by the assumption of a
periodic boundary condition, which, according to White [163], cannot necessarily be suffi-
ciently justified by the flow. Also, there are changes in the flow field over time as a result of
the flow through the cascade, which are not resolved by the method used.
In order to be able to conclusively assess the suitability of the PGIRoe scheme for describing
discontinuities and condensation fronts, as well as the resulting phase interaction, a study of
the two-dimensional flow field is required. Given the interaction between the shock and con-
densation front that has already been indicated, Case L2 appears particularly suitable for this.
To visualise the two-dimensional flow within the cascade based on the calculation results of
the PGIRoe scheme, the spatial density gradients are evaluated. A qualitative contour plot of
these can be found in the left part of Figure 35. Black-coloured areas represent a high value
of the density gradient and are thus characteristic of discontinuities, while low values of the
density gradient are shown in white. The periodic boundary condition and the blade contour
can be identified through the colouring used in Figure 33.
The comparison of a Schlieren image measured experimentally by White [163] in the right
part of Figure 35 allows a qualitative comparison. In contrast to the numerical Schlieren
image, the colour blue is used to indicate shocks in the experiment, while the colour green
indicates regions of small gradients. For better orientation, in addition to the periodic bound-
ary condition, the limits of the numerical Schlieren image are shown in the measured frame
as black dotted lines. On the pressure side of the blade profile, a discontinuity originating
from the trailing edge of the blade can be seen, which White refers to as the pressure-side
shock SDS and is already discussed in the context of the pressure curves in Figure 34. Both
the shock’s position and geometric orientation are consistent with the experimental results.
However, according to the numerical description, the shock front consists of two slightly
offset discontinuities. White points out that an oscillation of the shock fronts results in a
blurred representation in the experimental Schlieren images. This could also be a possible
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Figure 35: Qualitative contour plots of density gradients for Case L2 of the cascade according to
White et al. numerically calculated using the PGIRoe scheme (left) and experimentally measured by
White [163] (right)
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explanation for the deviation in the numerical results. Another shock front marked SSS can
be seen on the suction side of the blade profile. Unlike the shock SDS, this discontinuity is
described by the numerical calculations as clearly separated from the rest of the flow field.
Similar to SDS, there is a high degree of agreement with the experimental data in terms of
the position and orientation of the shock front.
As already shown by the pressure curve on the blade surface, a condensation front forms for
Case L2, which can also be seen from the numerical density gradients and is marked by the
letter C in Figure 34. It spreads from the suction side of the profile into the flow channel and
has a similar shape to that in the experimental Schlieren image. The onset of condensation
and, thus, the formation of a second phase in the direct vicinity of a discontinuity in the flow
appears to lead to a weakening of the shock intensity. In particular, there is no reflection
of SDS on the suction side of the profile, which could indicate an increased phase interac-
tion in this region. This is consistent with the observation of local maxima in the difference
in phase velocities calculated using the PGIRoe scheme. Immediately downstream of the
blade profile, the numerical results indicate regions of large density gradients, which are not
confirmed by the experiment. However, the experimental results also show regions of larger
gradients in the wake of the blade. An analysis of the wetness fraction downstream of the
blade’s trailing edge shows that the PGIRoe scheme also predicts large gradients for this.
The turbulent separation could cause the droplets to remain in this region for longer and, as
a result, lead to locally increased droplet growth.
The level of detail of the numerical Schlieren image illustrates the accuracy of the descrip-
tion achieved by the PGIRoe scheme. Both the two-dimensional discontinuities of the flow
and the phase change mechanisms are predicted in close agreement with the experimental
results. In combination with the validation of different configurations of the PGIRoe scheme
using Laval nozzles presented in Chapter 5.2.1, this indicates the applicability of the method
to problems of varying complexity and dimension.
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6 Summary and Outlook

The present work aims to contribute to the development of numerical methods for the in-
vestigation of phase change processes of compressible non-ideal fluids. For this purpose,
a method for calculating numerical flux terms originally formulated by Roe for calorically
perfect gases is extended for application to one- and two-phase flows of non-ideal fluids. The
resulting PGIRoe scheme is characterised by a low complexity based on its derivation and
can be applied to any equation of state. It also offers the possibility of describing a dispersed
phase formed during phase change using different modelling assumptions. In addition to the
frame of reference of the dispersed phase, the type of modelling of the droplet size distri-
bution can be selected as required. In addition, the PGIRoe scheme allows the momentum
exchange between the phases to be taken into account so that the movement of the dispersed
phase can be described separately from the continuous phase. By formulating different con-
figurations implemented in parallel and transitioning into one another in the single-phase
case, the scheme can map the level of detail required for a specific problem to a very high
degree of accuracy. A modular structure also enables using various models to describe the
phase change processes. By implementing the PGIRoe scheme in the three-dimensional flow
solver TRACE, the developed approach will be made accessible to the scientific community
and industrial applications. In this way, validation will be performed based on an estab-
lished flow solver for the calculation of turbomachinery flows. The option of tabulating the
thermophysical quantities can lead to a considerable increase in calculation time efficiency.
This results in an increase in availability and thus enables a potential use of the PGIRoe
scheme as part of the numerical design of turbomachinery. With this objective in mind, the
scheme is comprehensively verified and validated using a representative selection of suitable
single-phase and two-phase test cases. To prove the applicability of the PGIRoe scheme for
both implicit and explicit methods of temporal integration, additional validation is carried
out using a three-dimensional flow solver implemented independently of TRACE itself. In
addition, a validation staged according to the number of phases enables individual charac-
teristics to be analysed in as much isolation as possible. An investigation of the single-phase
flow through Laval nozzles shows that the PGIRoe scheme can describe discontinuities in
the flow with high accuracy. This can be demonstrated by analysing different working media
for fluids of both moderate and high molecular complexity and non-ideality. The robust-
ness of the PGIRoe scheme against large gradients in the flow field is also confirmed by
the investigation of the flow through a sCO2 compressor. Despite the direct proximity of
the operating points to the critical point and the two-phase region, a converged solution can
be achieved, showing sufficient agreement with the experimentally determined values. The
validity of the PGIRoe scheme for the description of single-phase flows indicated in this
way serves as the basis for the subsequent consideration of two-phase test cases. The dif-
ferent configurations of the scheme are analysed using condensation in Laval nozzles. This
shows that the PGIRoe scheme is able to describe the phase change using both the homoge-
neous equilibrium condensation model and the homogeneous non-equilibrium condensation
model. In addition, consistent results can be achieved for different modelling types of the
dispersed phase, which show only minor deviations from experimentally determined data,
both qualitatively and quantitatively. To enable verification of the models implemented to
describe nucleation and droplet growth, the droplet radius is also included in the validation
as a representative of the dispersed phase alongside a measured quantity of the continuous
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phase. The investigation of the flow through an axial turbine cascade shows that the PGIRoe
scheme describes both discontinuities and condensation fronts and the associated interaction
between the phases in agreement with experimental results. The PGIRoe scheme thus ap-
pears to be applicable to single-phase and two-phase flows of compressible non-ideal fluids
of different molecular complexity. A restriction to compressible media requires a dominance
of the gaseous phase within the flow, which limits the range of application with regard to
the wetness fraction y < 0.5. However, no practical limitation is expected for the investiga-
tion of homogeneous condensation in turbomachinery due to the low values of the wetness
fraction that can be observed. Therefore, determining the speed of sound in the two-phase
region, assuming a state of equilibrium, also appears to be sufficient. Since the condensation
of non-ideal fluids could lead to the local formation of higher values of the wetness fraction,
a possible influence on the determination of the speed of sound in the two-phase region must
be examined on a case-by-case basis. If the assumption of an equilibrium state can no longer
be justified, a formulation considering the wetness fraction can be used.
Initial studies on multi-component flows, which are not part of the present work, indicate the
validity of the PGIRoe scheme for mixtures. However, this should be proven in the future
through comprehensive validation. An investigation of the HeRo compressor with consid-
eration of a second phase also appears promising. As the single-phase calculations indicate
that the saturated vapour line is crossed near the blade’s leading edge, a second phase could
form in this area due to phase change processes. A calculation of the three-dimensional flow
field under the assumption of homogeneous non-equilibrium condensation enables a more
detailed analysis of the local changes of state. Considering a momentum exchange between
the phases by the PGIRoe scheme could also contribute to an ambiguity discussed in the
literature regarding the time scales associated with condensation.
Another way to describe such processes with even greater accuracy is to use LES methods.
An application of the PGIRoe scheme in this context appears to be possible with minor ad-
justments to the existing approaches in TRACE and could provide added value in terms of
modelling the fluid for a variety of issues. For example, the established turbulence models,
most of which are based on the assumption of a calorically perfect gas, could be checked for
application to non-ideal fluids using LES calculations and adapted if necessary. As a result,
an increase in the confidence range of the RANS calculations would be conceivable. In ad-
dition, LES calculations enable a time-resolved investigation of boundary layer effects. In
this way, a possible interaction of the boundary layer with the dispersed phase in the vicinity
of condensation fronts could be investigated in more detail using numerical methods. Such
investigations could also offer added value concerning the uncertainty mentioned above re-
garding the onset of condensation in the immediate vicinity of the critical point.
Due to the high technical relevance of evaporation in the context of a short-term increase in
compressor efficiency, modelling this physical process, which is complementary to conden-
sation, could also represent an interesting extension. By adapting the source terms accord-
ingly, the PGIRoe scheme can potentially describe any phase change processes. Due to the
modular implementation, a simple extension of the existing model equations can be realised,
whereby a reversal of the droplet growth could already be a first approach to describe evap-
oration. If, in addition to the aerodynamic drag force, further force components are taken
into account concerning the momentum balance of the phases, this could enable an increase
in the accuracy of the description for two-phase flows. Once again, an adaptation of the
source terms of the PGIRoe scheme for the configuration that allows momentum exchange



114 Summary and Outlook

between the phases appears to be a suitable starting point. In this way, an investigation of
the deposition of liquid droplets on walls and the resulting film formation would likewise be
conceivable.
Since the model equations for describing nucleation and droplet growth are based on the
assumption of a calorically perfect gas and are also historically optimised for describing the
medium of steam, a detailed theoretical study in the context of flows of non-ideal fluids
seems advisable. Such a study requires an analysis of the underlying molecular gas kinetics
and could lead to an adaptation of the existing models. However, the validation of these
models requires a corresponding experimental database, which is not currently available. In
particular, a need for experimental measurements of droplet radii in condensing flows of non-
ideal fluids can be derived from this. If such data is available, the PGIRoe scheme appears
to be particularly suitable for validating the adapted models based on the results outlined in
the present work.
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7 Appendix

A Thermophysical model equations

Table A.1: Thermophysical model equations used for the media water, CO2 and MDM in accordance
with the standards of IAPWS-IF97 or the REFPROP-10 implementation [91]

Fluid
Fundamental

equation
Dynamic
viscosity

Thermal
conductivity

Surface tension

Water IAPWS-
IF97 [160]

Huber et al. [76] Huber et al. [75]
IAPWS

2014 [79]

CO2
Span and

Wagner [136]
Laesecke and
Muzny [86]

Huber et al. [77]
Mulero

et al. [105]

MDM
C8H24O2Si3

Thol et al. [145] Huber [74] Huber [74]
Mulero and

Cachadina [104]
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B Vectors and matrices for implementing the PGIRoe scheme in three dimensions

Single-phase (GIRoe):

UUU =


ρ

ρu
ρv
ρw
ρE

 , FFFc =


ρuuu

ρuuuu+ pnx

ρvuuu+ pny

ρwuuu+ pnz

ρuuuH

 , QQQ =


0
0
0
0
0

 (B.1)

Jacobian matrix:

AAA(UUU) =


0 nx ny nz 0

1
2(κ−1)vvv2nx−uuuu uuu− (κ−2)unx uny− (κ−1)vnx unz− (κ−1)wnx (κ−1)nx
1
2(κ−1)vvv2ny− vuuu vnx− (κ−1)uny uuu− (κ−2)vny vnz− (κ−1)wny (κ−1)ny
1
2(κ−1)vvv2nz−wuuu wnx− (κ−1)unz wny− (κ−1)vnz uuu− (κ−2)wnz (κ−1)nz[1

2(κ−2)vvv2−h
]
uuu
(
h+ 1

2vvv2)nx− (κ−1)uuuu
(
h+ 1

2vvv2)ny− (κ−1)vuuu
(
h+ 1

2vvv2)nz− (κ−1)wuuu κuuu

 (B.2)

n2
x +n2

y +n2
z = 1, uuu = unx + vny +wnz, vvv2 = u2 + v2 +w2

Eigenstructure:
λ̃1 = ũuu− ã, λ̃2 = ũuu, λ̃3 = ũuu, λ̃4 = ũuu, λ̃5 = ũuu+ ã (B.3)

EEE =


1 1 0 0 1

ũ− ãnx ũ ny −nz ũ+ ãnx

ṽ− ãny ṽ −nx 0 ṽ+ ãny

w̃− ãnz w̃ 0 nx w̃+ ãnz

H̃− ãũuu 1
2ṽvv2 ũny− ṽnx w̃nx− ũnz H̃ + ãũuu

 (B.4)

Additional Roe-averaged quantity: T̃ =

√
ρLTL +

√
ρRTR√

ρL +
√

ρR
−→ ã = aEOS(ρ̃, T̃ ) (B.5)
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E-E-M-Mono:

UUU =



ρm

ρmu
ρmv
ρmw
ρmE
ρmy

ρmNT


, FFFc =



ρmuuu
ρmuuuu+ pnx

ρmvuuu+ pny

ρmwuuu+ pnz

ρmuuuH
ρmyuuu

ρmNTuuu


, QQQ =



0
0
0
0
0

ρm(ΛN +4πr2ρlNT G(r20))

ρmJ̄


(B.6)

Jacobian matrix:

AAA(UUU) =



0 nx ny nz 0 0 0
(yε1 +

1
2ε4vvv2)nx−uuuu uuu− (ε4−1)unx uny− ε4vnx unz− ε4wnx ε4nx (ε4hv− ε1)nx 0

(yε1 +
1
2ε4vvv2)ny− vuuu vnx− ε4uny uuu− (ε4−1)vny vnz− ε4wny ε4ny (ε4hv− ε1)ny 0

(yε1 +
1
2ε4vvv2)nz−wuuu wnx− ε4unz wny− ε4vnz uuu− (ε4−1)wnz ε4nz (ε4hv− ε1)nz 0(

yε1 +
1
2(ε4−1)vvv2−h

)
uuu
(
h+ 1

2vvv2)nx− ε4uuuu
(
h+ 1

2vvv2)ny− ε4vuuu
(
h+ 1

2vvv2)nz− ε4wuuu (1+ ε4)uuu (ε4hv− ε1)uuu 0
−yuuu ynx yny ynz 0 uuu 0
−NTuuu NT nx NT ny NT nz 0 0 uuu


n2

x +n2
y +n2

z = 1, uuu = unx + vny +wnz, vvv2 = u2 + v2 +w2 (B.7)

ε1 =
a2

(1− y)
(
1+ y(κ−1)

) , ε2 =
(1− y)2

a2 ε1, ε4 = (κ−1)ε2
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Eigenstructure:
λ̃1 = ũuu−

√
ε2ã, λ̃2,3,4,5,6 = ũuu, λ̃7 = ũuu+

√
ε2ã (B.8)

EEE =



1 1 0 0 1 0 0
ũ−√ε2ãnx ũ ny −nz ũ+

√
ε2ãnx 0 0

ṽ−√ε2ãny ṽ −nx 0 ṽ+
√

ε2ãny 0 0
w̃−√ε2ãnz w̃ 0 nx w̃+

√
ε2ãnz 0 0

H̃−√ε2ãũuu 1
2ṽvv2 ũny− ṽnx w̃nx− ũnz H̃ +

√
ε2ãũuu H̃− (1− ỹ)h̃v 0

ỹ ỹ 0 0 ỹ 1 0
ÑT 0 0 0 ÑT 0 1


(B.9)

Additional Roe-averaged quantities:

q̃ =

√
ρLqL +

√
ρRqR√

ρL +
√

ρR
with q ∈ {T,y,NT}

−→ ã = aEOS(ρ̃m, T̃ ), h̃v = hv,EOS(T̃ ), κ̃ ≈ κpv,EOS(ρ̃m, T̃ )

(B.10)
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E-E-M-Poly:

UUU =



ρm

ρmu
ρmv
ρmw
ρmE
ρmy

ρmµ0

ρmµ1

ρmµ2


, FFFc =



ρmuuu
ρmuuuu+ pnx

ρmvuuu+ pny

ρmwuuu+ pnz

ρmuuuH
ρmyuuu

ρmµ0uuu
ρmµ1uuu
ρmµ2uuu


, QQQ =



0
0
0
0
0

ρm(ΛN +ΛG)

ρmJ̄
ρm(µ0G(r20)+ J̄rcrit)

ρm(2µ1G(r20)+ J̄r2
crit)


(B.11)

Jacobian matrix:

AAA(UUU) =



0 nx ny nz 0 0 0 0 0
(yε1 +

1
2ε4vvv2)nx−uuuu uuu− (ε4−1)unx uny− ε4vnx unz− ε4wnx ε4nx (ε4hv− ε1)nx 0 0 0

(yε1 +
1
2ε4vvv2)ny− vuuu vnx− ε4uny uuu− (ε4−1)vny vnz− ε4wny ε4ny (ε4hv− ε1)ny 0 0 0

(yε1 +
1
2ε4vvv2)nz−wuuu wnx− ε4unz wny− ε4vnz uuu− (ε4−1)wnz ε4nz (ε4hv− ε1)nz 0 0 0(

yε1 +
1
2(ε4−1)vvv2−h

)
uuu
(
h+ 1

2vvv2)nx− ε4uuuu
(
h+ 1

2vvv2)ny− ε4vuuu
(
h+ 1

2vvv2)nz− ε4wuuu (1+ ε4)uuu (ε4hv− ε1)uuu 0 0 0
−yuuu ynx yny ynz 0 uuu 0 0 0
−µ0uuu µ0nx µ0ny µ0nz 0 0 uuu 0 0
−µ1uuu µ1nx µ1ny µ1nz 0 0 0 uuu 0
−µ2uuu µ2nx µ2ny µ2nz 0 0 0 0 uuu


n2

x +n2
y +n2

z = 1, uuu = unx + vny +wnz, vvv2 = u2 + v2 +w2 (B.12)

ε1 =
a2

(1− y)
(
1+ y(κ−1)

) , ε2 =
(1− y)2

a2 ε1, ε4 = (κ−1)ε2
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Eigenstructure:
λ̃1 = ũuu−

√
ε2ã, λ̃2,3,4,5,6,7,8 = ũuu, λ̃9 = ũuu+

√
ε2ã (B.13)

EEE =



1 1 0 0 1 0 0 0 0
ũ−√ε2ãnx ũ ny −nz ũ+

√
ε2ãnx 0 0 0 0

ṽ−√ε2ãny ṽ −nx 0 ṽ+
√

ε2ãny 0 0 0 0
w̃−√ε2ãnz w̃ 0 nx w̃+

√
ε2ãnz 0 0 0 0

H̃−√ε2ãũuu 1
2ṽvv2 ũny− ṽnx w̃nx− ũnz H̃ +

√
ε2ãũuu H̃− (1− ỹ)h̃v 0 0 0

ỹ ỹ 0 0 ỹ 1 0 0 0
µ̃0 0 0 0 µ̃0 0 1 0 0
µ̃1 0 0 0 µ̃1 0 0 1 0
µ̃2 0 0 0 µ̃2 0 0 0 1


(B.14)

Additional Roe-averaged quantities:

q̃ =

√
ρLqL +

√
ρRqR√

ρL +
√

ρR
with q ∈ {T,y,µ0,µ1,µ2}

−→ ã = aEOS(ρ̃m, T̃ ), h̃v = hv,EOS(T̃ ), κ̃ ≈ κpv,EOS(ρ̃m, T̃ )

(B.15)
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E-E-P-Poly-S:

UUU =



ρm(1− y)
ρm(1− y)ug

ρm(1− y)vg

ρm(1− y)wg

ρm(1− y)Eg

ρmy
ρmyul

ρmyvl

ρmywl

ρmyEl

ρmyµ0

ρmyµ1

ρmyµ2



, FFFc =



ρm(1− y)uuug

ρm(1− y)uguuug +
ρm
ρg
(1− y)pnx

ρm(1− y)vguuug +
ρm
ρg
(1− y)pny

ρm(1− y)wguuug +
ρm
ρg
(1− y)pnz

ρm(1− y)uuugHg

ρmyuuul

ρmyuuuul +
ρm
ρl

ypnx

ρmyvuuul +
ρm
ρl

ypny

ρmywuuul +
ρm
ρl

ypnz

ρmyuuulHl

ρmµ0uuul

ρmµ1uuul

ρmµ2uuul



, QQQ =



−ΛN−ΛG

−ΛGuint− 3
4

ρmy
ρlπr3 FD,x

−ΛGvint− 3
4

ρmy
ρlπr3 FD,y

−ΛGwint− 3
4

ρmy
ρlπr3 FD,z

−ΛG(Hg,int−hv)

ΛN +ΛG

ΛGuint +
3
4

ρmy
ρlπr3 FD,x

ΛGvint +
3
4

ρmy
ρlπr3 FD,y

ΛGwint +
3
4

ρmy
ρlπr3 FD,z

ΛGHl,int

ρmJ̄
ρm(µ0G(r20)+ J̄rcrit)

ρm(2µ1G(r20)+ J̄r2
crit)



(B.16)
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Jacobian matrix:

AAA(UUU) =



0 nx ny nz 0 0 0 0 0 0 0 0 0
a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 0 0 0 0 0 0 0
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 0 0 0 0 0 0 0
a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 0 0 0 0 0 0 0
a5,1 a5,2 a5,3 a5,4 a5,5 0 a5,7 a5,8 a5,9 0 0 0 0
0 0 0 0 0 0 nx ny nz 0 0 0 0

a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8 a7,9 0 0 0 0
a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 a8,9 0 0 0 0
a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8 a9,9 0 0 0 0
a10,1 a10,2 a10,3 a10,4 a10,5 a10,6 a10,7 a10,8 a10,9 uuul 0 0 0

0 0 0 0 0 −µ0uuul
y

µ0nx
y

µ0ny
y

µ0nz
y 0 uuul 0 0

0 0 0 0 0 −µ1uuul
y

µ1nx
y

µ1ny
y

µ1nz
y 0 0 uuul 0

0 0 0 0 0 −µ2uuul
y

µ2nx
y

µ2ny
y

µ2nz
y 0 0 0 uuul



(B.17)

n2
x +n2

y +n2
z = 1, uuug =ugnx + vgny +wgnz, uuul = ulnx + vlny +wlnz,

vvv2
g =u2

g + v2
g +w2

g, vvv2
l = u2

l + v2
l +w2

l
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with

a2,1 =
1
2
(κg−1)vvv2

gnx−uguuug, a2,2 = uuug− (κg−2)ugnx, a2,3 = ugny− (κg−1)vgnx, a2,4 = ugnz− (κg−1)wgnx, a2,5 = (κg−1)nx,

a2,6 =
p
ρl

nx, a3,1 =
1
2
(κg−1)vvv2

gny− vguuug, a3,2 = vgnx− (κg−1)ugny, a3,3 = uuug− (κg−2)vgny, a3,4 = vgnz− (κg−1)wgny,

a3,5 = (κg−1)ny, a3,6 =
p
ρl

ny, a4,1 =
1
2
(κg−1)vvv2

gnz−wguuug, a4,2 = wgnx− (κg−1)ugnz, a4,3 = wgny− (κg−1)vgnz,

a4,4 = uuug− (κg−2)wgnz, a4,5 = (κg−1)nz, a4,6 =
p
ρl

nz, a5,1 =

[
1
2
(κg−2)vvv2

g−hg

]
uuug, a5,2 =

(
hg +

1
2

vvv2
g

)
nx− (κg−1)uguuug,

a5,3 =

(
hg +

1
2

vvv2
g

)
ny− (κg−1)vguuug, a5,4 =

(
hg +

1
2

vvv2
g

)
nz− (κg−1)wguuug, a5,5 = κguuug, a5,7 =

p
ρl

nx, a5,8 =
p
ρl

ny, a5,9 =
p
ρl

nz,

a7,1 =
1
2
(κg−1)

y
1− y

ρl

ρg
vvv2

l nx, a7,2 =
y

1− y
ρl

ρg
(uuul−κgulnx), a7,3 =

y
1− y

ρl

ρg

(
ulny− (κg +1)vlnx

)
, a7,4 =

y
1− y

ρl

ρg

(
ulnz− (κg +1)wlnx

)
,

a7,5 = (κg−1)
y

1− y
ρl

ρg
nx, a7,6 =

y
1− y

p
ρg

nx−uluuul, a7,7 = uuul +ulnx, a7,8 = ulny + vlnx, a7,9 = ulnz +wnx,

a8,1 =
1
2
(κg−1)

y
1− y

ρl

ρg
vvv2

l ny, a8,2 =
y

1− y
ρl

ρg

(
vlnx− (κg +1)ulny

)
, a8,3 =

y
1− y

ρl

ρg
(uuul−κgvlny), a8,4 =

y
1− y

ρl

ρg

(
vlnz− (κg +1)wlny

)
,

a8,5 = (κg−1)
y

1− y
ρl

ρg
ny, a8,6 =

y
1− y

p
ρg

ny− vluuul, a8,7 = vlnx +ulny, a8,8 = uuul + vlny, a8,9 = vlnz +wlny,

a9,1 =
1
2
(κg−1)

y
1− y

ρl

ρg
vvv2

l nz, a9,2 =
y

1− y
ρl

ρg

(
wlnx− (κg +1)ulnz

)
, a9,3 =

y
1− y

ρl

ρg

(
wlny− (κg +1)vlnz

)
, a9,4 =

y
1− y

ρl

ρg
(uuul−κgwlnz),

a9,5 = (κg−1)
y

1− y
ρl

ρg
nz, a9,6 =

y
1− y

p
ρg

nz−wluuul, a9,7 = wlnx +ulnz, a9,8 = wlny + vlnz, a9,9 = uuul +wlnz,

a10,1 =
1
2
(κg−1)

y
1− y

ρl

ρg
vvv2

l uuul, a10,2 = (1−κg)
y

1− y
ρl

ρg
uguuul, a10,3 = (1−κg)

y
1− y

ρl

ρg
vguuul, a10,4 = (1−κg)

y
1− y

ρl

ρg
wguuul,

a10,5 = (κg−1)
y

1− y
ρl

ρg
uuul, a10,6 =

(
p

yρm
−hl−

1
2

vvv2
l

)
uuul, a10,7 = hl +

1
2

vvv2
l −

p
ρl

nx, a10,8 = hl +
1
2

vvv2
l −

p
ρl

ny, a10,9 = hl +
1
2

vvv2
l −

p
ρl

nz
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Eigenstructure:

λ̃1 = ũuug−
√

ε3ãg, λ̃2,3,4 = ũuug, λ̃5 = ũuug +
√

ε3ãg, λ̃6 = 2ũuul− ũuug, λ̃7,8,9 = ũuul, λ̃10 = ũuug, λ̃11,12,13 = ũuul (B.18)

EEE =



e1,1 1 0 0 e1,5 1 0 0 0 1 0 0 0
e2,1 ũg ny −nz e2,5 e2,6 0 0 0 ũg 0 0 0
e3,1 ṽg −nx 0 e3,5 e3,6 0 0 0 ṽg 0 0 0
e4,1 w̃g 0 nx e4,5 e4,6 0 0 0 w̃g 0 0 0
e5,1

1
2ṽvv2

g e5,3 e5,4 e5,5 e5,6 0 0 0 e5,10 0 0 0
e6,1 0 0 0 e6,5 0 0 0 0 0 0 0 0
e7,1 0 0 0 e7,5 0 ũl 0 0 0 0 0 0
e8,1 0 0 0 e8,5 0 0 ṽl 0 0 0 0 0
e9,1 0 0 0 e9,5 0 0 0 w̃l 0 0 0 0
e10,1 0 0 0 e10,5 0 0 0 0 0 0 0 0

0 0 0 0 0 µ̃0 0 0 0 µ̃0 1 0 0
0 0 0 0 0 µ̃1 0 0 0 µ̃1 0 1 0
0 0 0 0 0 µ̃2 0 0 0 µ̃2 0 0 1



(B.19)

ε3 =
(1− ỹ)ρ̃2

l + ỹρ̃2
g

ρ̃gρ̃l
, ε5 =

ũg− ũl√
ε3ãg



A
ppendix

125

with

e1,1 = (1− ỹ)(1− ε5)
ρ̃m

ρ̃g
, e1,5 = (1− ỹ)(1+ ε5)

ρ̃m

ρ̃g
, e2,1 = (1− ỹ)(1− ε5)

ρ̃m

ρ̃g

(
ũg−
√

ε3ãgnx
)
,

e2,5 = (1− ỹ)(1+ ε5)
ρ̃m

ρ̃g

(
ũg +
√

ε3ãgnx
)
, e2,6 = 2uuul−ug, e3,1 = (1− ỹ)(1− ε5)

ρ̃m

ρ̃g

(
ṽg−
√

ε3ãgny
)
,

e3,5 = (1− ỹ)(1+ ε5)
ρ̃m

ρ̃g

(
ṽg +
√

ε3ãgny
)
, e3,6 = 2uuul− vg, e4,1 = (1− ỹ)(1− ε5)

ρ̃m

ρ̃g

(
w̃g−

√
ε3ãgnz

)
,

e4,5 = (1− ỹ)(1+ ε5)
ρ̃m

ρ̃g

(
w̃g +

√
ε3ãgnz

)
, e4,6 = 2uuul−wg, e5,1 = (1− ỹ)(1− ε5)

ρ̃m

ρ̃g

(
H̃g− ũuug

√
ε3ãg

)
+ ỹ(1+ ε5)

ρ̃m p̃
ρ̃2

l
,

e5,3 = ũgny− ṽgnx, e5,4 = w̃gnx− ũgnz, e5,5 = (1− ỹ)(1+ ε5)
ρ̃m

ρ̃g

(
H̃g + ũuug

√
ε3ãg

)
+ ỹ(1− ε5)

ρ̃m p̃
ρ̃2

l
,

e5,6 =
p̃

ρ̃gãg

(
H̃g−

1
2

ṽvv2
g

)
−2uuuluuug +

1
2

ṽvv2
g, e5,10 =

p̃
ρ̃gãg

(
H̃g−

1
2

ṽvv2
g

)
+

1
2

ṽvv2
g, e6,1 = ỹ(1+ ε5)

ρ̃m

ρ̃l
, e6,5 = ỹ(1− ε5)

ρ̃m

ρ̃l
,

e7,1 = ỹ(1+ ε5)
ρ̃m

ρ̃l

(
ũg−
√

ε3ãgnx
)
, e7,5 = ỹ(1− ε5)

ρ̃m

ρ̃l

(
ũg +
√

ε3ãgnx
)
, e8,1 = ỹ(1+ ε5)

ρ̃m

ρ̃l

(
ṽg−
√

ε3ãgny
)
,

e8,5 = ỹ(1− ε5)
ρ̃m

ρ̃l

(
ṽg +
√

ε3ãgny
)
, e9,1 = ỹ(1+ ε5)

ρ̃m

ρ̃l

(
w̃g−

√
ε3ãgnz

)
, e9,5 = ỹ(1− ε5)

ρ̃m

ρ̃l

(
w̃g +

√
ε3ãgnz

)
,

e10,1 = ỹ(1+ ε5)
ρ̃m

ρ̃l

(
H̃l− ũuul

√
ε3ãg

)
− ỹ(1+ ε5)

ρ̃m p̃
ρ̃2

l
, e10,5 = ỹ(1− ε5)

ρ̃m

ρ̃l

(
H̃l + ũuul

√
ε3ãg

)
− ỹ(1− ε5)

ρ̃m p̃
ρ̃2

l

Additional Roe-averaged quantities:

q̃ =

√
ρLqL +

√
ρRqR√

ρL +
√

ρR
with q ∈ {T,y,µ0,µ1,µ2}

−→ ãg = aEOS(ρ̃g, T̃g), p̃ = pEOS(ρ̃g, T̃g)

(B.20)
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C Independence of the solutions from the discretisation of the spatial grid
and the thermophysical tables

Table C.1 summarises the characteristic quantities used to investigate the spatial discretisa-
tion error are summarised for all validation cases considered. Based on the procedure pre-
sented in Chapter 4.4, the maximum tolerated relative deviation of the characteristic quantity
when refining the grid by the refinement factor rG is designated as the criterion. The number
of nodes for which this error bound is undercut for the first time subsequently represents the
grid for which independence of the solution from the selected discretisation can be assumed.

Table C.1: Parameters for investigating the spatial discretisation error of all validation cases consid-
ered

Characteristic quantities Criterion Number of nodes

NASA CDV nozzle Mach number at outlet 0.1% 120,000

Nozzle according to
Spinelli et al. Mach number at outlet 0.01% 1.92 million

HeRo compressor Mach number at outlet 0.1% 949,000

Mystery nozzle Mach number and
Sauter radius at outlet

0.1% 576,000

Nozzle according to
Barschdorff

Mach number and
Sauter radius at outlet

0.1% 960,000

Nozzle according to
Bier and Theis

Mach number and
Sauter radius at outlet

0.1% 638,000

Cascade according to
White et al.

Mach number and
Sauter radius at outlet

0.1% 1.16 million

The parameters required for an investigation of the discretisation error of the tabulated ther-
mophysical quantities are listed in Table C.2 for the single-phase and in Table C.3 for the
two-phase validation cases. The mean error of the characteristic value is calculated within the
range of states defined by the limits of the pressure and temperature intervals. The thermo-
physical quantity with the most significant relative error in the range of states under consider-
ation is selected as a characteristic quantity. The solution can be assumed to be independent
of the selected table dimension if the mean error of the characteristic quantity falls below an
error limit defined as a criterion.
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Table C.2: Parameters for investigating the discretisation error of the tabulated thermophysical quan-
tities for the single-phase validation cases

NASA CDV
nozzle

Nozzle according
to Spinelli et al.

HeRo
compressor

Pressure interval [90;1200] bar [0.5;10] bar [65;95] bar

Temperature interval [300;500] K [490;550] K [295;320] K

Characteristic quantity Speed of sound Speed of sound
Isobaric heat

capacity

Criterion 5.0×10−5 m/s 5.0×10−5 m/s 0.1 J/(kg·K)

Table dimension 1000 500 1000

Table C.3: Parameters for investigating the discretisation error of the tabulated thermophysical quan-
tities for the two-phase validation cases

Gas phase
Mystery
nozzle

Nozzle
according to
Barschdorff

Nozzle
according to

Bier and Theis

Cascade
according to
White et al.

Pressure interval [0.1;1.15] bar [0.15;0.8] bar [9;40] bar [0.05;0.45] bar

Temperature
interval

[300;430] K [300;385] K [230;300] K [250;400] K

Characteristic
quantity

Speed of
sound

Speed of
sound

Speed of sound
Speed of

sound

Criterion 1.0×10−4 m/s 1.0×10−4 m/s 1.0×10−4 m/s 1.0×10−4 m/s

Table dimension 500 500 500 500

Liquid phase
Mystery
nozzle

Nozzle
according to
Barschdorff

Nozzle
according to

Bier and Theis

Cascade
according to
White et al.

Pressure interval [0.1;0.55] bar [0.15;0.5] bar [9;23] bar [0.05;0.35] bar

Temperature
interval

[310;355] K [300;360] K [250;270] K [250;380] K

Characteristic
quantity

Speed of
sound

Isochoric heat
capacity

Speed of sound
Isochoric heat

capacity

Criterion 1.0×10−4 m/s 0.1 J/(kg·K) 1.0×10−4 m/s 0.1 J/(kg·K)

Table dimension 1000 1000 500 1000
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D Evaluation of thermophysical parameters in the two-phase region

Since the speed of sound is not uniquely defined in the two-phase region, as already ex-
plained in Chapter 3.1, it seems necessary to investigate the influence of different ways of
formulation on the numerical solution. Here, the metastable region of state of the gas phase
is of particular relevance due to a consideration of phase change processes, which lead to
the formation of a liquid phase and, thus, an entry into the two-phase region to the right of
the critical point. If a thermodynamic state lies within the two-phase region but beyond the
spinodal limit, which delimits the metastable state region, it is unstable and, therefore, has
no physical significance. An investigation to determine the speed of sound in the two-phase
region can be limited to metastable states. In the present work, the speed of sound is calcu-
lated assuming an equilibrium state aeq. For this purpose, the equation of state is analysed in
the metastable region, restricting the calculation to gaseous states. The speed of sound values
determined in this way, and the pressure curves along the nozzle axis calculated on that basis
therefore serve as a reference in the following. In order to enable a comprehensive compar-
ison with other ways of formulating the speed of sound represented in the literature, three
approaches are selected. Firstly, a comparison with the speed of sound of a calorically per-
fect gas defined in Equation 3.22 appears to be useful, as it can be taken as an upper limit for
possible deviations. Another approach to describing the speed of sound is presented in detail
by Guha [62] and Petr [113]. According to them, the propagation of a sound wave results in
different degrees of disturbance of the thermal and mechanical equilibrium within the flow,
depending on its frequency. While a high-frequency sound wave has already passed through
the area under investigation before the flow is able to react to the local gradients caused by
it, low-frequency sound waves allow the flow quantities to be adjusted without disturbing
the state of equilibrium. The concept of frozen speed of sound represents the case of high-
frequency sound waves and leads to a formulation of the speed of sound as a function of the
saturation quantities. Šafarík [176] proposes an evaluation of the equation of state based on
the saturation state of the gas phase defined by its pressure:

Frozen: a = aEOS(ρs,g,Ts,g) (D.1)

While both the determination of the speed of sound in the equilibrium state and the concept
of frozen speed of sound assume dominance of the gaseous phase, the formulation according
to Wood [167] leads to an equivalent consideration of the proportions of both phases:

Wood: a =

√√√√ 1
ρm

(
1− y
ρga2

g
+

y
ρla2

l

)−1

(D.2)

The speed of sound of the gas and liquid phase included in this equation is determined by
evaluating the equation of state. By implementing the three approaches introduced for de-
termining the speed of sound in TRACE, a numerical solution for Case T1 of the nozzle
according to Bier and Theis can be calculated for each of the formulations using the PGIRoe
scheme. On this basis, a relative deviation of the speed of sound and the pressure from the
reference data is calculated for each point calculated along the nozzle axis. In the left part of
Figure D.1, the values of the deviation obtained for the three formulation types are plotted
against the relative nozzle length. While the relative deviation of the speed of sound can
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be found on the left-hand abscissa and is indicated by the colour blue, the right-hand ab-
scissa shows the relative deviation of the pressure in black. The data series labelled Ideal
and represented by a dash-dot line represents the calculations using the speed of sound of the
calorically perfect gas. The solution calculated using Equation D.1 is referred to as Frozen,
the deviation of which is characterised by a dashed line. Using the approach according to
Wood from Equation D.2 also allows the determination of relative deviations plotted as a
solid line. The position of the Wilson point for the test case described in detail in Chap-
ter 5.2.1 is marked as a red dashed line to provide orientation regarding the presence of a
second phase within the nozzle geometry. Since the qualitative trends of the deviations play
a subordinate role in an investigation of the influence of the type of speed of sound calcula-
tion, the focus of further considerations will be on a quantitative comparison. A systematic
analysis of the relative deviation of the speed of sound and thus the blue curves shows that
the highest value of around 10% is achieved for the data series Ideal. This seems plausible
since the assumption of a calorically perfect gas cannot be justified for the present test case.
The formulation Frozen leads to a maximum relative deviation of the speed of sound of about
1%, while Wood’s formula shows the smallest deviation of about 0.13%. It can also be seen
that the curve only starts at the Wilson point. Since a deviation of the calculated speed of
sound from the value in the equilibrium state according to Equation D.2 is only possible for
states with y > 0, this appears consistent. A comparison with the data series Ideal also shows
that the maximum deviations of the cases Frozen and Wood are relatively small. A closer
look at the associated relative deviations of the pressure makes it possible to estimate how
the speed of sound determined in the two-phase region affects the calculation of the flow
field. If the black curves are analysed for this purpose, a characteristic similar to the speed
of sound can be seen. While the highest deviation of 1.7% is achieved for the case Ideal,
the maximum deviation for the case Frozen is only 0.01%. The case Wood has the lowest
maximum value of 0.0004%. This makes it clear that the way in which the speed of sound is
determined in the two-phase region has no relevance, at least for the present case. With the
exception of the case Ideal, which only serves as a reference value, each of the formulations
leads to the calculation of an almost identical pressure curve. Moreover, since the speed of

Relative length

D
ev

ia
ti

on

D
ev

ia
ti

on
 o

f 
pr

es
su

re

D
ev

ia
ti

on
 o

f 
pr

es
su

re

Relative length

D
ev

ia
ti

on

Case

Figure D.1: Relative deviation of speed of sound and pressure along the nozzle according to Bier and
Theis for different ways of determining the speed of sound in Case T1 (left) and relative deviation
of isentropic pressure-volume exponent from ratio of specific heat capacities as well as the resulting
deviation of pressure (right)
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sound is not directly included in the modelling of the disperse phase, the influence of its
determination on the droplet radius can be estimated by the value determined on the basis of
the pressure. Wood’s formula indicates that for larger wetness fractions there could also be a
higher deviation in the speed of sound and thus the calculated flow quantities. For the phase
change processes investigated in the present work in the form of homogeneous condensation
in turbomachines, however, only wetness fractions of the order of 0.1 are usually achieved.
The maximum wetness fraction that can be achieved during homogeneous condensation is
also thermodynamically limited by the spinodal limit.
The isentropic pressure-volume exponent is another thermophysical quantity that must be
determined in the course of the calculations of the PGIRoe scheme. Due to its use as an
expression equivalent to the isentropic exponent, the influence of its formulation is to be
investigated in the same way as for the speed of sound. For this purpose, a calculation is
carried out for Case T1 of the nozzle according to Bier and Theis, which replaces the isen-
tropic pressure-volume exponent with the ratio of specific heat capacities. The deviation of
these results from the reference data is plotted in blue on the left abscissa in the right part of
Figure D.1. While the deviation prior to the onset of condensation has a value of just over
−50%, it decreases downstream of the Wilson point and reaches a value of −25% at the
outlet of the test section, which could indicate an approach to the equilibrium state. If the
effect of using the ratio of specific heat capacities on the pressure curve is considered using
the right-hand abscissa, a maximum deviation of around −0.05% is shown, which coincides
locally with the Wilson point. Since, in the context of the PGIRoe scheme, the analysed
quantity is only determined in the presence of a second phase, this also forms the starting
point of the curve. The deviation shown decreases steadily downstream and reaches a value
of around 0.01% at the exit of the test section. As a result, the type of approximation of
the isentropic exponent does not appear to have any relevant influence on the results. How-
ever, it should be noted that the above variation influences only the factor of the PGIRoe
scheme formulated in Equation 4.49. However, using the ratio of specific heat capacities in
the course of the modelling equations of condensation remains unaffected.
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