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Abstract
We describe an algorithm for generating fiber-filled volume elements for use in computational homogenization schemes
which accounts for a coupling of the fiber-length and the fiber-orientation. For prescribed fiber-length distribution and fiber-
orientation tensor of second order, a maximum-entropy estimate is used to produce a fiber-length-orientation distribution
which mimics real injection molded specimens, where longer fibers show a stronger alignment than shorter fibers. We derive
the length-orientation closure from scratch, discuss its integration into the sequential addition and migration algorithm for
generating fiber-filled microstructures for industrial volume fractions and investigate the resulting effective elastic properties.
We demonstrate that accounting for the length-orientation coupling permits to match the measured Young’s moduli in principal
fiber direction and transverse to it more accurately than for closure approximations ignoring the length-orientation coupling.

Keywords Short-fiber composite · Representative volume element · Length-orientation distribution coupling · Maximum
entropy closure · Sequential addition and migration

1 Introduction

1.1 State of the art

Lightweight components made of short-fiberreinforced plas-
tics and manufactured by injection molding combine advan-
tageous mechanical properties, a high design freedom and
short cycle times [1]. Due to the cylindrical reinforcements,
the effective mechanical properties of such a composite mate-
rial are anisotropic, in general, and depend on the fiber
characteristics, i.e., the fiber-volume fraction and the realized
orientation state [2–4]. Mechanically characterizing such a
material system may involve significant effort, essentially
due to the anisotropy of the material and the various attained
fiber-orientation states, in particular when long-term experi-
ments like creep or fatigue are involved [5–7].

To alleviate these costs, it may be beneficial to rely
on computational approaches complementing a few basic
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mechanical experiments. Quite a number of such computa-
tional multiscale methods have been developed, and we refer
to the pertinent review articles [9–11] for an overview of the
ideas underlying these developments.

These micromechanics methods consider the microstruc-
ture of the composite at the starting point, so that the
mechanical behavior of the material will emerge from this
microstructural construction plan if the proper mechanical
models for the fiber and the matrix (and, possibly, the inter-
face) are supplemented. The theoretical foundation for these
approaches is provided by the mathematical theory ofhomog-
enization [12, 13].

In case of fibercomposites, the considered microstructures
are actually random as a result of the manufacturing pro-
cess. Moreover, the microstructures often comes with a high
degree of complexity, see Fig. 1. Fortunately, modern digital
image processing methods like micro-computed tomogra-
phy [14–16] (µCT) offer detailed insights into these complex
microstructures.

Returning to the engineering design process of the desired
injection-molded components, it is imperative to have accu-
rate simulation tools of the injection-molding process at
hand. This process involves filling a cavity with a poly-
mer melt in which the fibers are suspended. Apart from
the obviously complex physics underlying a proper model-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-024-02447-7&domain=pdf
http://orcid.org/0000-0001-7017-3618


616 Computational Mechanics (2024) 74:615–640

ing approach of injection molding there is another challenge
concerning what we would nowadays call data management.
Indeed, the fiber-orientation state needs to be described at
every continuum point in space and time during the flow.
Advani and Tucker [17] proposed to use fiber-orientation
tensors, a compact tensorial characteristic of the fiber-
orientation state, as such a descriptor and useful basis
of injection-molding simulation. To this day, second-order
fiber-orientation tensors are most widely used for such sim-
ulations [18, 19]. In particular, they represent standard for
both industrial and academic injection-molding simulations.
However, both for modeling the flow and for estimating the
effective mechanical properties, fiber-orientation tensors of
higher order, possessing additional information, are required.
Clearly, this additional information cannot be recovered from
the second-order tensors. However, Folgar and Tucker [20]
proposed to use so-called closure approximations, i.e., rela-
tions which express the sought fiber-orientation tensors
of higher order as functions of the available lower-order
fiber-orientation tensor. This strategy bypassed the lack of
additional information by providing “plausible” higher-order
fiber-orientation tensors for given lower-order tensors based
on what may be called “expert’s knowledge”. Quite a num-
ber of these closure approximations were introduced [21–26],
leading to a robust simulation technology which is critical for
lightweight design.

The potential gains of multiscale modeling strategies will
be particularly high if the mechanical characterization is
rather expensive, e.g., when long time scales are involved
and geometric anisotropy is present. For instance, fatigue
experiments may take up to several weeks or even months
to complete [5, 6]. The accompanying multiscale techniques
need to account for the material degradation, and full-field
computational modeling approaches are necessary to resolve
fine details of this degradation like cracks emerging at fiber
tips and growing steadily [27–29]. For such approaches, it is
necessary to provide suitable computational cells serving as
the geometry to work on.

More often than not relying upon real digital images for
these geometries is not recommended. Indeed, apart from
the involved expenses there are a few disadvantages of real
images. For a start, these images typically involve artifacts.
Secondly, it is difficult to cover all the fiber-volume and fiber-
orientation states of interest with sufficientaccuracy. Last but
not least, real digital images are non-periodic by construc-
tion. In contrast, it is well-known that working with periodic
microstructures and periodic boundary conditions permits
to drastically reduce the computational effort of multiscale
methods [30–32].

These reasons motivate studying microstructure model-
ing and generation tools [33, 34]. For short-fiber composites,
simplistic approaches like random sequential adsorption [35–
37] fail to produce the high volume fractions used in industry

Fig. 1 3D µ-CT image of an SFRP [8]

for fiber-orientation states that are not well-aligned. There-
fore, a number of alternative, more sophisticated approaches
needed to be considered, e.g., based on full finite-element
models and an explicit compression simulation [38], random-
walk based models of curved fibers [39] or the shaking and
breaking approach of Li et al. [40].

Based on work for isotropic composites with spherocylin-
drical fibers [41], the Sequential Addition and Migration
(SAM) method [42] encodes the microstructure-generation
problem of short non-overlapping cylindrical fibers with
prescribed fiber-orientation tensor of fourth order as an opti-
mization problem and uses a gradient-descent method to
solve the problem. With some insights from computer sci-
ence, the method was demonstrated to produce short-fiber
microstructures with high fidelity and industrial filler frac-
tion in a robust manner [43, 44]. Subsequent extensions of
the method concerned accounting for a fiber-length distribu-
tion [45] and non-straight, i.e., curved fibers [46].

1.2 Contributions

Modern closure approximations [25, 26] provide a full fiber-
orientation distribution (estimate) for a given second-order
fiber-orientation tensor. Moreover, fiber-length data is often
available, e.g., from incineration [47, 48] or from segmented
µCT scans.

Suppose the results of an injection-molding simulation are
available, together with a fiber-length distribution (either dis-
crete or continuous). Then, to conduct mechanical multiscale
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simulations [7, 49, 50], it is required to generate appropriate
volume elements matching the desired composite charac-
teristics such as the fiber-volume fraction, the fiber-length
distribution and the fiber-orientation distribution. The stan-
dard approach [40, 45, 51] is to draw that fiber length and
the fiber direction independently, i.e., to assume that the fiber
length and the fiber direction are not correlated. Being even
more explicit this assumption means that if we restrict our
attention to very short fibers or to very long fibers, the emerg-
ing fiber-orientation distributions will be identical! However,
this is not what we observe in real short-fiber composites.

Let us take a look at µCT data from Müller’s thesis [8],
more precisely the microstructure shown in Fig. 1 and com-
prising a glass-fiber reinforced PBT, see Sect. 4 for further
details. The structure shows different layers in which fibers
are aligned differently. On top and on the bottom, the “skin”
layers are shown which emerge from the polymer flow close
to the wall. In the center, the so-called “core” layer is shown,
where the fiber orientation is typically completely different
from the skin layers [18, 19]. Moreover, we highlighted two
further “transitional” layers.

Figure 2 provides information about both the fiber-length
and the fiber-orientation distribution. Figure 2a shows the
fiber-length distribution present in the skin and the core layer.
We observe that the length distributions of both layers turns
out to be rather similar with a (number-weighted) mean fiber
length μ# of about 230µm.

Figure 2b shows the largest eigenvalue λ1 of the second-
order fiber-orientation tensor as a function of the fiber length
for both layers. Keep in mind that the fiber orientations of
both layers are rather unlike, i.e., the fibers tend to align in
flow direction in the skin layer, whereas an alignment trans-
verse to the flow is observed in the core layer. However, due
to the eigenvalue analysis, these orientational issues are fac-
tored out, and only the magnitude of fiber orientation in the
principal direction is shown.

In either case, Fig. 2b reveals a distinct coupling of the
fiber orientation and the fiber length. Indeed, if such a cou-
pling was not present, the fiber orientation ought to be a
constant function of the fiber length. In contrast, Fig. 2b
reveals shorter fibers to be more isotropic, i.e., with princi-
pal fiber orientations λ1 closer to 1/3 (corresponding to the
isotropic or cubic fiber-orientation state) and longer fibers
tending to be more aligned with λ1 ≈ 1. Moreover, we
observe that the principal fiber orientation is increasing with
the fiber length.

Incidentally, Fig. 2b reveals even more, namely that the
fiber length-orientation coupling in both the skin and the core
layer is very much alike. Thus, it appears reasonable to design
a model for the length-orientation function based on the fiber-
orientation state and the length distribution.

These experimental observations motivated the article at
hand. The purpose of this paper is to provide a closure

approximation of the full fiber length-orientation distribution
function based on the second-order fiber-orientation tensor
and a prescribed fiber-length distribution, see Sect. 2. We will
provide this approximation based on the maximum-entropy
estimate (MEE) which is well-studied in a different con-
text [52–54]. We discuss the integration of the model into the
SAM framework, see Sect. 3, and discuss the implications
for the emerging effective elastic properties, see Sect. 4.

2 Describing short-fiber microstructures

2.1 Fiber-orientation and fiber-length distributions

We consider short-fiber reinforced composites, i.e., we
assume that each fiber in such a composite may be described
by a straight cylinder with length �, principal axis p and
diameter D. Typically, the variations of the diameter between
different fibers of a composite is negligible, whereas both the
fiber length � and the fiber orientation p vary significantly.
The latter two characteristics may be described in terms of a
length-orientation distribution function

f : R>0 × S2 → R≥0, (�, p) �→ f (�, p), (2.1)

where S2 denotes the unit sphere in R3. The length-
orientation distribution function is a probability distribution,
i.e., non-negative and integrates to unity, which satisfies the
symmetry condition

f (�, p) = f (�,− p) for all � > 0 and p ∈ S2, (2.2)

which reflects the sign ambiguity when describing a cylinder
in terms of its principal axis.

In practice, the full length-orientation distribution func-
tion f is not known, and only partial information and
estimates are available. A classical way to estimate the
fiber-length distribution ψ : R>0 → R≥0, which may be
recovered from the length-orientation distribution (2.1) by
integrating over orientation space

ψ(�) =
∫
S2

f (�, p) dS, � > 0, (2.3)

proceeds via incineration of the matrix material (see, e.g.,
Table 1 in Goris et al. [55]), and counting the fiber length of
the individual fibers under the microscope. In particular, the
connection between fiber length and orientation is lost.

Fiber-orientation data is typically encoded via fiber-
orientation tensors [17, 56], which can be determined from
µCT images [39, 57–60]. Fiber-orientation tensors corre-
spond to moments of the length-orientation distribution f ,
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Fig. 2 Length and length-orientation distribution in two different layers of the specimen shown in Fig. 1

and the two most popular fiber-orientation tensors are of sec-
ond

A = 1
�̄

∫ ∞

0

∫
S2

� p ⊗ p f (�, p) dS d� (2.4)

and fourth order,

A = 1
�̄

∫ ∞

0

∫
S2

� p ⊗ p ⊗ p ⊗ p f (�, p). dS d� (2.5)

These tensors are normalized by the average fiber length

�̄ =
∫ ∞

0
�ψ(�) d� (2.6)

to ensure the normalization conditions

A : I = A and A : I = 1 (2.7)

to hold in terms of the second-order identity tensor I and
the double contraction which is denoted by a colon. Fiber-
orientation tensors have their roots in injection-molding
simulations where the second-order fiber-orientation tensor
A is often the only information available [18, 20]. Although
considering higher moments in the length variable � is con-
ceivable, the length-averaged forms (2.4) and (2.5) are the
most natural, as they arise from a volume averaging of the
cylinders. In particular, this form typically arises when com-
puting fiber-orientation tensors from µCT images [61].

Classically, for short-fiber reinforced composites, the
details of the fiber-length distribution are ignored, and only
the mean fiber length �̄ is considered. Put differently, this
means that the fiber-length distribution ψ is assumed to be
concentrated at the specific fiber length �̄. In this case, the

fiber-orientation distribution

ϕ : S2 → R≥0, p �→ ϕ( p), (2.8)

carries all relevant information about the length-orientation
characteristics of the composite.

Apparently, there is a gap between the data which is avail-
able and the data which would be necessary for estimating
the effective mechanical properties of short-fibercomposites.
For this purpose, a number of so-called closure approxima-
tions were developed, see Kugler et al. [25] for a recent
review. In the past, closure approximations were considered
as approximations of higher-order fiber-orientation tensors in
terms of lower-order fiber-orientation terms. However, this
point of view permitted certain pathologies, which lead to
unphysical or mathematically contradictory properties of the
estimated higher-order tensors. For instance, the quadratic,
the linear and the hybrid closure, introduced by Advani and
Tucker [17], do not arise from a fiber-orientation distribution,
in general.

Over time, it became apparent that it is more convenient
to consider closure approximations which provide an esti-
mate of the entire fiber-orientation distribution function ϕ

based on prescribed fiber-orientation tensors. The two most
popular closures of this type, taking the second-order fiber-
orientation tensor A as input are the exact closure [23, 24,
62], which is based on the fiber-orientation distribution func-
tion1

ϕACG
M ( p) = 1

4π

(
pT M p

)− 3
2
, p ∈ S2, (2.9)

1 Angular central Gaussian distribution [63].
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in terms of a symmetric, positive definite and unimodular2

3 × 3-matrix M, and the maximum entropy closure3 [3, 22]

ϕ
Bingham
M ( p) = exp

(
pT M p − c(M)

)
, p ∈ S2, (2.10)

with a symmetric 3 × 3-matrix M and the normalization
constant

c(M) = log
∫
S2

exp
(
pT M p

)
dS. (2.11)

The exact closure is based on an exact solution of the
fiber-orientation dynamics (with vanishing Folgar–Tucker
diffusivity [20]), see Montgomery-Smith et al. [23, 24],
whereas the maximum entropy closure [3, 22] maximizes
the information-theoretic entropy. In either of the two cases,
for prescribed second-order fiber-orientation tensor A, the
matrix M may be determined (numerically) as a solution of
the equation
∫
S2

p ⊗ p ϕ dS
!= A. (2.12)

Some care has to be taken if the fiber-orientation tensor
A is singular or close to singular, i.e., det A ≈ 0 holds.
In any case, with the estimated fiber-orientation distribution
ϕ at hand, the necessary higher-order information (like the
fourth-order fiber-orientation tensor A) can be extracted. Of
course, lost information cannot be recovered this way.

2.2 Amaximum-entropy length-orientation closure

We consider the following problem. Suppose that only
the fiber-length distribution ψ and the second-order fiber-
orientation tensor A are known. Then, we wish to infer a
suitable estimate for the length-orientation distribution func-
tion f which is compatible in the sense that Eqs. (2.3) and
(2.4) hold, i.e., the conditions
∫ ∞

0

∫
S2

� p ⊗ p f (�, p) dS d� = �̄ A and
∫
S2

f (�, p) dS = ψ(�), � > 0, (2.13)

are satisfied involving the mean length �̄ (2.6). A pragmatic
way of ensuring these conditions to hold proceeds by assum-
ing that the fiber length and fiber orientation are not coupled,
i.e., the functional form

f (�, p) = ψ(�)ϕ( p), � > 0, p ∈ S2, (2.14)

2 det M = 1
3 Bingham distribution [64].

is postulated. The relationship (2.14) means that, for each two
fiber lengths � and �′, the orientation distributions of fibers of
length � and �′, respectively, are completely identical. Experi-
mental evidence, see Wang et al. [65] and Müller [8], suggests
that this is not true, as shorter fibers are subject to fewer
geometrical restrictions compared to longer fibers and thus
tend to orient much faster during the flow, see also Sect. 1.
Still, the uncoupled model (2.14) is a simple and straight-
forward approach, and permits using previously established
technology, e.g., the exact and maximum entropy closure,
see Eqs. (2.9) and (2.10).

As an alternative, we will consider the maximum entropy
closure in the context of the length-orientation distribu-
tion, i.e., we seek a maximizer of the information-theoretic
entropy functional

H( f ) −→ max
such that (2.13)

with

H( f ) = −
∫ ∞

0

∫
S2

f (�, p) log f (�, p) − f (�, p) dS d�.

(2.15)

To solve this optimization problem, we enforce the con-
straints in terms of suitable Lagrange multipliers, a traceless,
symmetric 3 × 3-matrix B ∈ Sym0(3) and a function
ζ : R≥0 → R, and consider the Lagrangian function

L( f , B, ζ ) = −
∫ ∞

0

∫
S2

f (�, p) log f (�, p) − f (�, p) dS d�

+B :
(∫ ∞

0

∫
S2

� p ⊗ p f (�, p) dS d� − �̄ A
)

+
∫ ∞

0
ζ(�)

(∫
S2

f (�, p) dS − ψ(�)

)
d�.

(2.16)

Rearranging the terms in the expression of the Lagrangian,

L( f , B, ζ ) =
∫ ∞

0

∫
S2

− dS d� f (�, p) log f (�, p) + f (�, p)

+ � B : p ⊗ p f (�, p) + ζ(�) f (�, p)

− �̄ B : A −
∫ ∞

0
ζ(�)ψ(�) d�, (2.17)

the KKT conditions are readily identified. Of particular
importance is the stationarity of the Lagrangian L with
respect to the length-orientation distribution f , i.e., the van-
ishing of the variation with respect to the length-orientation
distribution f

0 = δL

δ f
( f , B, ζ ) ≡ − log f (�, p) + � B : p ⊗ p + ζ(�),

(2.18)
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which leads to the following functional expression

f MEE(�, p) = exp (ζ(�) + � B : p ⊗ p) (2.19)

of the maximum entropy closure or the maximum entropy
estimate of the length-orientation distribution. To stress that
the distribution function (2.19) arises from the maximum-
entropy estimate, we add a superscript MEE. The remaining
two KKT conditions are given by the constraints (2.13).
∫ ∞

0

∫
S2

� p ⊗ p f (�, p) dS d�

= �̄ A and
∫
S2

f (�, p) dS = ψ(�), � > 0, (2.20)

In view of the Bingham distribution (2.10), we may re-write
Eq. (2.19) in the form

f MEE(�, p) = exp (ζ(�) + � B : p ⊗ p)

= exp (ζ(�) + c(� B) + � B : p ⊗ p − c(� B))

= exp (ζ(�) + c(� B)) exp (� B : p ⊗ p − c(� B))

= exp (ζ(�) + c(� B)) ϕ
Bingham
� B ( p)

(2.21)

in terms of the normalization constant c(� B) of the Bingham
distribution (2.11). The second equation in the constraints
(2.20) provides the expression

f MEE(�, p) = ψ(�) ϕ
Bingham
� B ( p) (2.22)

for the length-orientation distribution function. In particular,
we observe that length and orientation are coupled via the
parameter M = � B of the Bingham distribution.

A few remarks are in order.

1. If the fiber-orientation tensor A is isotropic, it follows
that B = 0.

2. As the isotropic fiber-orientation state is described by the
Bingham parameter M = 0, the functional relationship
M = � B in the Bingham parameter specifies that shorter
fibers (� � �̄) are more isotropic than longer fibers
(� � �̄). Generally, the latter case approaches either a
uni-directional or a planar isotropic orientation state as
� → ∞. We will take a closer look at these effects in the
computational-experiments Sect. 4.3.

3. If we considered the constraint
∫ ∞

0

∫
S2

p ⊗ p f dS d� = A, (2.23)

where fiber lengths are ignored, instead of the length-
weighted constraint (2.13), the corresponding maximum-
entropy length-orientation closure would be uncoupled

(2.14). In turn, the uncoupled model (2.14) may be asso-
ciated to the (implicit) assumption (2.23).

4. The outlined procedure works in the case that the fiber-
orientation tensor A is non-degenerate, i.e., has a non-
vanishing determinant. If the degenerate case appears
in practice, we perturb the orientation tensor slightly to
make it non-degenerate.

3 Generating fiber-filled volume elements
withmaximum-entropy length-orientation
closure

3.1 Algorithmic overview

Algorithm 1 Algorithmic overview of the steps with inputs
described in section 3.1
1: Determine the parameters of the length distribution  See section

3.2
2: Determine the Bingham parameter B of the orientation-length dis-

tribution  See section
3.3

3: Sample the fiber lengths �1, . . . , �N to match the target fiber-volume
fraction φ  See Alg. 2

4: Sample the fiber directions p1, . . . , pN according to the Bingham
distribution  See section 3.4

5: Sample the fiber centroids x1, . . . , xN uniformly on the cell Y
6: while N < Ntotal do
7: Update the number N of currently considered fibers
8: Remove overlap  Gradient descent [42] for Eq. 3.41
9: end while

Before discussing the microstructure-generation algo-
rithm, it is essential to defineboth the inputs and the output(s)
of the procedure precisely. For a start, we suppose the fol-
lowing items to be provided:

• A fiber-length distribution ψ with identified parameters,
either definedexplicitly identified inversely based on cer-
tain targeted statistical quantities. In case of the latter
scenario and where the number-weighted mean and stan-
dard deviation are prescribed, details on the identification
procedure for commonly used distribution functions are
discussed in Sect. 3.2.

• A prescribed second-order fiber-orientation tensor A, i.e.,
a second order symmetric and positive semi-definite ten-
sor with unit trace.

• The fiber diameter D.
• The target volume fraction φ ∈ (0, 1).
• The (periodic) unit cell Y = [0, Q1]×[0, Q2]×[0, Q3].

The target is to generate a number Ntotal of fibers with
centroids xi ∈ Y , directions pi ∈ S2 and lengths, such that
the described cylinders are in a non-overlapping configura-
tion, their volume fraction matches φ, the length-weighted
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fiber-orientation tensor of fourth order

AN ≡ 1
�̄N

N∑
i=1

�i pi ⊗ pi ⊗ pi ⊗ pi , �̄N ≡ 1
N

N∑
i=1

�i , (3.1)

is sufficiently close to the prescribed fourth-order fiber-
orientation tensor

A = 1
�̄

∫ ∞

0

∫
S2

� p ⊗ p ⊗ p ⊗ p f MEE(�, p) dS d� (3.2)

corresponding to the maximum-entropy closure estimate
(2.22), together with certain statistical moments of the length
distribution

1
N

N∑
i=1

�mi ≈
∫ ∞

0
�m d�, m = 1, 2, . . . (3.3)

It is implicitly assumed that this problem is actually solv-
able, i.e., that the cell Y is sufficiently large and that the
volume fraction φ is small enough. Of course, whether the
problem is solvable or not, and whether the presented algo-
rithm is able to produce such a sought solution is a non-trivial
matter, and we will confine ourselves to empirical checks on
the convergence of the algorithm.

An overview of the actual workflow from the given quanti-
ties to the desired realization of the fiber-filledmicrostructure
is shown in Algorithm 1. There is a number of preprocessing
steps which are required to produce both the initial configura-
tion required for the modified SAM algorithm, see Sect. 3.5,
and the targeted fourth-order orientation tensor (3.2), result-
ing from the maximum-entropy length-orientation closure
f MEE, see Eq. (2.22). We will discuss the procedure to obtain
the parameters of a selected fiber-length distribution, such
that the number-weighted or volume-weighted mean and
standard deviation are matched, first, see Sect. 3.2. Once
the fiber-length distribution is known, the next step involves
computing the Bingham parameter B ∈ Sym0(3) solving
(right side of) the equation (2.20), see Sect. 3.3 for details.
Sampling the initial configuration is discussed in Sect. 3.4,
and an outline of the SAM algorithm comprises Sect. 3.5.

3.2 Identifying the length distribution

We suppose that a fixed fiber-length distribution ψ is given
which depends on K parameters. However, the values of the
K parameters are not known. Instead, only the first (nontriv-
ial) K moments of the distribution are known. Then, it is often
possible to identify the parameters inversely by matching the
prescribed moments.

For the manuscript at hand, we consider only the case with
K = 2 parameters and where the prescribed moments are
length-weighted. In fact, for fiber composites with uniform

diameter, statistics are typically obtained based on volume
averages, leading to length-weighted moments in a natural
way [45, §2.2].

To reduce the notational burden, we denote the expecta-
tion of a random variable Z with respect to the fiber-length
distribution ψ by angular brackets

〈Z〉 ≡
∫ ∞

0
Z(�) ψ(�) d�. (3.4)

We suppose that both a volume-weighted mean μ� and
a volume-weighted standard deviation σ� are given. Then,
we would like to identify the parameters of the fiber-
length distribution, such that the volume-weighted mean
μ� and the volume-weighted standard deviation σ� or the
number-weighted mean μ# and the number weighted stan-
dard deviation σ# are matched exactly, i.e., the equations

μ�

!=
〈
�2〉
〈�〉 and σ 2

�

!=
〈
(� − m)2�

〉
〈�〉 (3.5)

or in terms of number weighted means and standard devia-
tions,

μ#
!= 〈�〉 and σ 2

#
!=

〈
�2

〉
− 〈�〉2 (3.6)

should be satisfied. Straightforward algebraic manipula-
tions [45, Apx. A] lead to the equivalent conditions

μ�

!=
〈
�2〉
〈�〉 and σ 2

�

!=
〈
�3〉
〈�〉 − μ2

�. (3.7)

More often than not, this system of equations may be solved
for the two unknown parameters of the fiber-length distribu-
tion.

To illustrate the idea let us consider the lognormal distri-
bution [66]

ψlog(�) = 1
� σln

√
2π

exp

(
− (ln �/�0)

2

2σ 2
ln

)
, � > 0, (3.8)

which involves two parameters, �0 with dimension of lengths
and the non-dimensional standard deviation σln. Notice that
the probability distribution (3.8) has the correct dimension
one over length, such that its mean with respect to d� equals
(the dimension-less) unity. To proceed, we take a look at
explicit expressions for the moments [66, §2.3]

〈
�α

〉 = �α
0 eα2σ 2

ln/2 for α = 0, 1, 2, . . . (3.9)

Inserting these into the Eq. (3.7) yields the expressions

�0 e
3σ 2

ln/2 = μ� and �2
0 e

4σ 2
ln − μ2

� = σ 2
� . (3.10)
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and similarly from equation (3.6) it follows,

�0 e
σ 2

ln/2 = μ# and �2
0 e

2σ 2
ln − μ2

# = σ 2
# . (3.11)

Thus, Eqs. (3.10) and (3.11) yields

�0 = μ� e
−3σ 2

ln/2 = μ# e
−σ 2

ln/2, (3.12)

which might be inserted into the second equation to provide
the relation

eσ 2
ln − 1 = σ 2

�

μ2
�

= σ 2
�

μ2
#
, i.e., σln

=
√

log(1 + σ 2
� /μ2

�) =
√

log(1 + σ 2
# /μ2

#). (3.13)

In turn, the reference length �0 computes as

�0 = μ�

(
1 + σ 2

�

μ2
�

)−3/2

= μ#

(
1 + σ 2

#
μ2

#

)−1/2

, (3.14)

Other length distributions, e.g., the �-distribution [67],
admit similar explicit expressions. However, there are dis-
tributions where iterative methods appear to be imperative
when determining the necessary parameters like the Weibull
distribution [45, §2.2].

3.3 Determining the Bingham parameter

In Sect. 2.2 we derived an expression for the orientation-
length distribution function (2.22)

f MEE(�, p) = ψ(�) ϕ
Bingham
� B ( p) (3.15)

predicted by the maximum-entropy estimate (2.22), where
B ∈ Sym0(3) denotes a traceless and symmetric 3×3-matrix
which is determined by the first constraint in equation (2.20)

∫ ∞

0

∫
S2

� p ⊗ p f MEE(�, p) dS d� = �̄ A. (3.16)

As the fiber-length distribution is fixed and known, see
Sect. 3.2, the Bingham parameter B ∈ Sym0(3) must be
determined in the next step.

For a start, we notice the identity

∂c

∂B
(B) =

∫
S2

p ⊗ p ϕ
Bingham
B ( p) dS,

valid for any B ∈ Sym0(3), (3.17)

which follows from the definition (2.11) of the normalizing
constant. For later use, we also record the identity

∂2c

∂B2 (B) =
∫
S2

p ⊗ p ⊗ p ⊗ p ϕ
Bingham
B ( p) dS,

valid for any B ∈ Sym0(3). (3.18)

Using the identity (3.17), we may rewrite condition (3.16) in
the form

�̄ A =
∫ ∞

0
�

∫
S2

p ⊗ p f MEE(�, p) dS d�. (3.19)

Thus, the Bingham parameter B ∈ Sym0(3) is determined
from the condition

1
�̄

∫ ∞

0

∂c

∂B
(� B) �ψ(�) d� = A (3.20)

for prescribed second-order fiber-orientation tensor A.
To solve the condition (3.20) on a computer, it appears

necessary to approximately evaluate the integral in question.
In fact, for a given fiber-length distribution ψ , we suppose
an approximation by quadrature

ψ(�) d� ≈
Q∑

q=1
wq δ(� − �q) (3.21)

with Q quadrature lengths �q , suitable non-negative weights
wq and the Dirac distribution δ at zero, is given. Details
on designing an appropriate quadrature rule are given in
Sect. 3.4.

In the approximation by quadrature (3.21), the condition
(3.20) becomes

Q∑
i=q

wq �q

�̄

∂c

∂B
(�q B) = A. (3.22)

This equation may be solved by Newton’s method [68, §9.5],

B ← B + s �B, (3.23)

where the increment �B is determined by the linear equation

Q∑
q=1

wq �2
q

�̄

∂2c

∂B2 (�q B) : �B = A −
Q∑

q=1

wq �q

�̄

∂c

∂B
(�q B)

(3.24)

and s ∈ (0, 1] is a backtracking factor.
In practice, it is convenient to diagonalize the tensors A

and B jointly, to reorder the eigenvalues bi of B to b1 ≤ b2 ≤
b3 and to eliminate one of the eigenvalues via the constraint
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0 = b1 + b2 + b3. Then, only a 2 × 2 linear system needs to
be solved in every Newton step.

Moreover, due to the the identities (3.17) and (3.18), the
quantities ∂c/∂B and ∂2c/∂B2 required in Newton’s method
(3.24) correspond to second and fourth order moments of
the Bingham distribution. Efficient and accurate implemen-
tations are available for computing these moments. We rely
upon the implementation provided alongside the article by
Luo et al. [69].

Notice that the strict convexity of the entropy functional
(2.15), the minimizing distribution f is unique. Due to the
specificform (2.22) of the minimizer, the Lagrange multiplier
B is unique up to the addition of a multiple of the identity.
By fixing the trace of the tensor B to zero, solutions B ∈
Sym0(3), i.e., with trace zero, to the Eq. (3.16) are unique,
as well.

3.4 Length and orientation sampling

Algorithm 2 Sampling the length (φ,D,Y ,ψ)
1: φN ← 0
2: i ← 0
3: while φN < φ do
4: i ← i + 1
5: �i ← SAMPLEψ()  See Alg. 3
6: φN ← φN + π D2 �i/(4 Q1Q2Q3)
7: end while
8: N ← i
9: return (�1, �2, . . . , �N )

Algorithm 3 PPF-based length sampler SAMPLEψ using a
sampler SAMPLEU for U([0, 1])
1: p ← SAMPLEU ()  We use scrambled Sobol sequences [70]
2: � = �−1(p)

Once the fiber-length distribution ψ is identified, together
with the Bingham parameter B ∈ Sym0(3) entering
the maximum-entropy expression (2.22) for the length-
orientation distribution function f , the next task consists of
drawing fibers with centroids xi ∈ Y , orientations pi ∈ S2

and lengths �i > 0.
There are different ways to determine the number Ntotal

of fibers to be drawn. Suppose that we draw Ntotal fibers
with lengths �1, . . . , �N . In a non-overlapping configuration,
the resulting fiber-volume fraction φN computes as

φN = πD2

4

N∑
i=1

�i

/
vol(Y ) , (3.25)

where D refers to the fiber diameter and vol(Y ) = Q1Q2Q3
stands for the volume of the unit cell Y = [0, Q1]×[0, Q2]×
[0, Q3]. A strategy would be to replace the total length by
N �̄, leading to the estimate

Ntotal ≈ 4
π

vol(Y )

�̄D2 φ (3.26)

for the total number of fibers to be drawn. However, this
estimate suffers from the error in the sampled mean length
compared to the ensemble mean length �̄, which may be
rather large for small samples. Thus, we opt for an adaptive
strategy where fiber lengths are drawn successively until the
targeted volume fraction is exceeded. All in all, we are led to
the Algorithm 2, where we assume that there is some sam-
pling procedure SAMPLEψ() for the distribution ψ available.

In addition to matching the volume fraction, we would
like the drawn fiber lengths �1, . . . , �N to resemble the con-
tinuous distribution ψ as close as possible. For instance, the
empirical moments and the continuous moments should be
close

1
N

N∑
i=1

�α
i ≈

∫ ∞

0
�α d� (3.27)

for relevant exponents α ∈ N. To understand such a moment-
matching problem better, it is convenient to regard the
problem (3.27) as a quadrature rule with uniform weights
wi = 1/N . Then, one observes that a random sampling leads
to an error for the approximation (3.27) that scales as N−1/2.
Put differently, to reduce the quadrature error by one order
of magnitude, 100 times as many samples need to be drawn.
As a particular consequence, random sampling does not lead
to high accuracy.

To mitigate the problem, quasi-random sampling strate-
gies were introduced [71, 72], which are based on a deter-
ministic sequence x1, x2, . . . of points in the unit cube, such
that the integration error decreases as N−1 for sufficiently
smooth integrands, up to a logarithmic factor that depends
on the spatial dimension. With such a favorable scaling, only
ten times as many samples as required to reduce the error
by an order of magnitude, on average. Moreover, in case the
integrand is sufficiently smooth, an additional randomization
strategy, called scrambling [70], reduces the error decay to
N−3/2.

These quasirandom strategies are typically designed for
the uniform distribution on the unit cube, i.e., on the unit
interval for one-dimensional problems. To apply such a strat-
egy to problems of the form (3.27), it is convenient to use a
suitable transformation of coordinates. More precisely, sup-
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pose we wish to approximate the integral

I (Z) =
∫ ∞

0
Z(�)ψ(�) d� (3.28)

for a random variable Z : (0,∞) → R by an empirical
quadrature

IN (Z) = 1
N

N∑
i=1

Z(�i ). (3.29)

We introduce the cumulative distribution function

� : (0,∞) → (0, 1), � �→
∫ �

0
ψ(�̃) d �̃. (3.30)

In case the length-distribution function ψ is continuous
and positive, the cumulate length-distribution function �

is strictly monotone and continuously differentiable with
derivative �′ = ψ . Due to the strict monotonicity, the cumu-
lative distribution function � is actually a bijection, i.e.,
admits an inverse �−1 : (0, 1) → (0,∞). With these notions
at hand, we may use the mapping q = �(�̃) to transform the
integral (3.28)

I (Z) ≡
∫ ∞

0
Z(�)ψ(�) d� =

∫ 1

0
Z(�−1(q)) dq, (3.31)

where we used dq = �′ d �̃ ≡ ψ(�̃) d �̃. For a given quadra-
ture rule with points qi ∈ (0, 1) and weigths wi on the unit
interval, we may thus construct a quadrature rule for the inte-
gral (3.28) via

I (Z) ≈
N∑
i=1

wi Z(�−1(qi )). (3.32)

Thus, in case both the random variable Z and the inverse of
the cumulative distribution function � are sufficiently regu-
lar, we may use quasirandom numbers qi to obtain length
samples �i = �−1(qi ) such that the empirical approxi-
mations (3.29) approximate the integrals (3.28) with a rate
1/N . If scrambled quasi-random numbers are used, the rate
improves to N−3/2. The procedure is summarized in Algo-
rithm 3.

There is a second use of the transformation rule (3.32),
namely to provide a highly accurate quadrature rule (3.21)
for use in the Eq. (3.22) determining the Bingham param-
eter B ∈ Sym0(3). In this case, the number of quadrature
points is actually independent of the fiber count, and we will
use the letter M to designate this quadrature-point count.
In our implementation, we use the Gauss- Hermite quadra-
ture [73, Eq. (25.4.46)] of degree 35, which is available in
scipy [74]. Actually, using degree 35 is more than sufficient

for the applications at hand. To illustrate this statement, con-
sider drawing samples from a lognormal distribution (3.8)
with parameters μ# = 300 µm and σ# = 100 µm, which
we determine from (3.11). In particular, we may use the pre-
scribed parameters to assess the accuracy of the sampling.
More precisely, we study the empirical mean (3.27) of the
considered length distribution function ψlog and monitor the
relative deviation with respect to the prescribed mean μ#, see
Fig. 3. We observe a rapid decrease of the relative error up
to about M = 5 quadrature points, reaching a relative error
less than 0.01%. Higher quadrature order does not improve
this level of accuracy. However, the realized order of magni-
tude in error appears sufficient for engineering purposes. In
any case, using M = 35 quadrature points permits us to use
the Gauss-Hermite quadrature with confidence. Moreover,
implementations of the inverse cumulative length distribu-
tion �−1 are widely available, e.g. under the name “percent
point function” in scipy.stats.

Once the fiber lengths �1, �2, . . . , �N are identified, we
sample the fiber directions pi . For each index i = 1, . . . , N ,
the direction pi follows the Bingham distribution (2.10) with
parameter M i = �i B. Thus, a fast and robust sampling
procedure for essentially arbitrary Bingham distributions is
imperative. For the work at hand, we use a rejection sampling
based on the ACG distribution (2.9), as introduced by Kent et
al. [75], which requires solving a single nonlinear equation.

Once both the lengths and directions are sampled, it
remains to sample the centroids xi uniformly within the unit
cell Y = [0, Q1]×[0, Q2]×[0, Q3]. An intuitive idea would
be to sample three numbers ξ1, ξ2 and ξ3, each following the
uniform distribution U([0, 1]) on the unit interval and then
to use Qaξa (a = 1, 2, 3) for the coordinates of the centroid.
However, this naive procedure may not be optimal in case
of strong differences between the edge lengths Q1, Q2 and
Q3. Indeed, the Euclidean distances between the centroids
will not be uniform, but appear artificially distorted due to
the rescaling by the factors Qa .

This downside is readily mitigated by using a rejection
sampling strategy on the cube

[
0, max3

a=1 Qa
]3, i.e., one

draws xi following U
([

0, max3
a=1 Qa

]3
)

and accepts the
sample provided it is admissible, i.e., the condition xi ∈ Y
holds.

To conclude this section, let us emphasize that we use
classical random sampling for both the directions pi and the
centroids xi . Indeed, the SAM algorithm will reduce the mis-
match of the fiber-orientation state anyway, so that there is not
much of a problem. For the drawn fiber lengths, significantly
higher effort was required, as the number of sampled fibers
does not change after this preprocessing state, excluding any
possibility to correct any introduced errors later on.

We refer to Mehta and Schneider [45] for more back-
ground and details on the Weibull distribution.
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Fig. 3 Relative error in empirical mean fiber length from Gauss-
Hermite quadrature rule for μ# = 300µm and σ# = 100µm, depending
on the number of quadrature points M

3.5 Integration into the SAM framework

The sequential addition and migration (SAM) algorithm is
based on an extension of the overlap-removal technique
introduced by Williams and Philipse [41] in the mechanical-
contraction method (MCM). More precisely, the SAM algo-
rithm alternates two steps. In a first step, fibers are added to
the volume in a (possibly) non-overlapping configuration. In
the second step, the induced overlap is removed, taking into
account the desired fiber-orientation state. The SAM pro-
cedure differs from the MCM strategy in two key aspects.
For MCM, all objects are introduced from the very begin-
ning, but into a possibly very large cell. Then, the MCM
algorithm alternates between shrinking the cell, increasing
the volume-fraction in the process, and removing overlap.
This cell-shrinking procedure was introduced to generate
rather dense packings with an essentially isotropic orienta-
tion pattern. As the original overlap removal strategy does
not account for the orientation at all, care had to be taken
when shrinking the cell in order not to perturb the isotropy.

The SAM algorithm was designed with more general,
possibly anisotropic orientation states in mind. Therefore,
the fiber-orientation state, encoded by the fourth-order fiber-
orientation tensor (2.5) is accounted for during the overlap
removal. On the downside, the orientation state is only
enforced in terms of the used orientation measure. The advan-
tages are manifold. For a start, a much more aggressive
contraction strategy is feasible than for the original MCM
method [41], leading to much higher achievable volume frac-
tions [42]. Secondly, it is not necessary to account for all
fibers from the very beginning, as done for the MCM method,
and to work with a large cell. Rather, the target cell can be
used from the very beginning and the fibers are added in

portions. The latter strategy leads to a much better perfor-
mance, as the number of processed potential fiber collisions
is typically much small.

The first step is implemented in a simple way. Actually,
all Ntotal fibers are placed in the cell Y , as described in
Sect. 3. However, only a fraction of the fibers is actually
processed, i.e., the first N fibers are accounted for in the
overlap check with N ≤ Ntotal. Here N represents current
number of fibers. Once the overlap is removed, the integer N
is increased.

The heart of the SAM algorithm is the orientation-aware
overlap-removal strategy. It is convenient to consider fibers
as spherocylinders, i.e., as cylinders with spherical caps
attached, for the overlap removal. The i-th fiberwith centroid
xi , direction pi and length �i , and the increased diameter
D̃ > D is thus described by the set

Si =
{
x ∈ Y | distY

(
x, xi + s

2
�i pi

)

<
D̃

2
for some s ∈ [−1, 1]

}
, (3.33)

where distY denotes the periodic distance on the rectangular
cellY , i.e., all points which are sufficientlyclose to the central
line segment. Spherocylinders are used as they permit a par-
ticularly simple overlap check. Indeed, two spherocylinders
Si and S j overlap precisely if the distance

di j = min
{

distY
(
xi + s

2
�i pi , x j + s

2
� j p j

)

| si ∈ [0, 1], s j ∈ [0, 1]
}

(3.34)

between the two central line segments is smaller than the
diameter D̃. Put differently, the two spherocylinders Si and S j

are in a non-overlapping configuration provided the inequal-
ity

di j ≥ D̃ (3.35)

holds. Algebraic manipulations show that the condition
(3.35) is equivalent to the equation

δi j
!= 0 (3.36)

with the constraint qualifier

δi j = max
(

0, D̃ − δi j

)
. (3.37)

As the quantity δi j is non-negative, all fibers are in a non-
negative configuration provided the condition

∑
i< j

δ2
i j

!= 0 (3.38)
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holds. Moreover, we enforce the condition

AN
!= A, (3.39)

i.e., the empirical fiber-orientation tensor

AN = 1
N �̄N

N∑
i=1

�i p
⊗4
i with �̄N =

N∑
i=1

�i (3.40)

should match the prescribed fiber-orientation tensor (2.5),
which arises from the length-orientation closure (2.22). We
introduce the objective function

R(x1, . . . , xN , p1, . . . , pN ) = 1
2

∑
i< j

δ2
i j + λ̄

8
‖A − AN‖2

(3.41)

encoding the overlap removal with the prefactor

λ̄ = D̃2

2/3 + r̄a

[
r̄ 3
a

12
+ r̄ 2

a

6
+ 3 r̄a

16
+ 1

15

]
, (3.42)

involving the mean aspect ratio r̄a = �̄/D̃.
The function R in Eq. (3.41) is zero precisely if the

non-overlapping configurationcondition (3.35) and the fiber-
orientation constraint (3.39) are satisfied. Moreover, the
function (3.41) is continuously differentiable. The SAM
algorithm uses the associated gradient-descent method with
a suitable step size to find a configuration with sufficiently
small value of the function R, see Schneider [42] for details.

Notice that a minimum inter-fiber distance is easily
accounted for in the algorithm by increasing the fiber diam-
eter D̃ artificially for the overlap checks. Details on the
efficient implementation can be found in Schneider [42], and
we refer to Mehta and Schneider [45] for special considera-
tions required for handling long fibers.

Once the final fiber microstructure is obtained, the fiber
caps are removed, and only the cylinders are voxelated.

4 Computational investigations

4.1 Setup

We implemented the maximum-entropy closure approxima-
tion, see Eq. (2.13), into an existing serial fibergenerator [42,
45] implemented in Python with Cython extension. We made
use of the Algorithm [69] for computing the moments of
the Bingham distribution (2.9), more precisely, we used the
implementation provided with the article which was written
in the C programming language.

For a fixed unit cell Y = [0, Q1] × [0, Q2] × [0, Q3]
with given stiffness distribution C on Y , the apparent elastic
stiffness Capp arises as follows. For prescribed macroscopic
strain ε, we seek the periodic displacement fluctuation field
uε : Y → R3 which solves the balance equation

div C : (ε + ∇suε) = 0 (4.1)

on the unit cell Y . The corresponding apparent stress is
defined by

σε = 1
Q1Q2Q3

∫
Y
C : (ε + ∇suε) dx. (4.2)

Subsequently, the apparent stiffnessCapp is determined from
the equation

Capp : ε = σε (4.3)

for six linearly indendent strain-load cases, typically chosen
as uniaxial strain loading in the three coordinate directions
and three shear tests.

To discretize and solve Eq. (4.1) on a regular grid, we
employ FFT-based computational micromechanics solvers [77,
78], relying upon an in-house code written in Python with
Cython extensions [79]. We used the discretization on a
staggered grid [80], relied upon the conjugate gradient
method [81–83] for resolving the linear systems, and ter-
minated the iterations in case the convergence criterion [84,
§3.6] was lower than the prescribed tolerance tol = 10−5.
For the convenience of the reader, a short description of FFT-
based solvers was added to Appendix 1.

The timings both for the microstructure generation and
the subsequent computation of the apparent properties were
recorded on a PC with a six-core Intel i7 CPU with 32GB
RAM.

We will work with two material systems. For a start, we
consider a commercially available polybutylene terephtha-
late (PBT), reinforced with glass fibers, following Müller [2,
3]. Table 1 contains the corresponding elastic moduli and the
identified microstructure characteristics.

Moreover, we will investigate a glass-fiber reinforced
polyamide 6.6, where experimental data both for the mechan-
ical properties and for the length-orientation distribution is
available [76], see Table 2.

To ensure confidence in the computational results, a res-
olution study and an RVE study, where RVE stands for
representative volume element [30, 85, 86], are required.
These studies are necessary to ensure both a sufficiently fine
mesh and a sufficiently large considered cell [87, 88]. We
refer to Müller et al. [2] for these studies corresponding to
the PBT material system and to Mehta and Schneider [45] for
the PA6.6 system. The studies revealed that a voxel resolu-
tion of two micron yields sufficientlyaccurate result, whereas
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Table 1 Isotropic elastic moduli
of matrix as well as fibers (left)
and typical properties of the unit
cells for the glass-fiber
reinforced PBT [3]

Material E in GPa ν Fiber volume fraction 13.0%

E-glass fibers 73.0 0.22 Mean fiber length μ# 235.47µm
PBT matrix 1.70 0.35 Fiber diameter 12.70µm

Length distribution Lognormal

Table 2 Isotropic elastic moduli
of matrix as well as fibers (left)
and typical properties of the unit
cells for the glass-fiber
reinforced polyamide [76]

Material E in GPa ν Fiber volume fraction 19.3%

E-glass fibers 72.0 0.22 Mean fiber length μ# 275.70µm
PA6.6 matrix 3.0 0.4 Fiber diameter 10µm

Length distribution Weibull

the standard deviations of the apparent properties are rather
small, even for comparatively small volume elements, and
the systematic error is even smaller.

4.2 The necessary size of a representative volume
element

For materials with a random microstructure, the effective
mechanical properties emerge only on representative vol-
ume elements, i.e., unit cells which are so large that they
are typical for the statistics of the entire material and for
which the applied boundary conditions do not have an impact
on the results [85, 86]. In numerical practice, however,
the considered units cells are necessarily finite, and the
computed—so-called apparent properties are still to some
degree random.

To assess the degree to which the considered cell is repre-
sentative, we follow a statistical approach pioneered by Kanit
et al. [30] and later on put on a mathematically firm ground
by Gloria and Otto [89]. In fact, there are two quantities to
consider. The dispersion (or random error) measures the stan-
dard deviation of the computed apparent properties on unit
cells of fixed size. The bias (or systematic error) quantifies
the deviation between the mean apparent properties and the
effective properties. To assess the representativity, we thus
monitor both the empirical variance of the computed appar-
ent properties and the change of the mean apparent properties
for increasing unit-cell size.

Previous studies [32, 42, 45, 90] have shown that both the
random and the systematic error are minimal if periodized
volume elements [31] are used together with periodic bound-
ary conditions for the displacement field, see also the recent
works [91–93]. We wish to confirm these findings for the
case at hand.

We consider the Weibull fiber-length distribution [45,
§2.2] with mean fiber fiber length μ# = 250µm and a stan-
dard deviation σ# = 100µm, see Fig. 4b. For the extreme

second-order fiber-orientation tensors

Aiso = diag(1/3, 1/3, 1/3), Apiso = diag(1/2, 1/2, 0)

as well as Aud = diag(1, 0, 0), (4.4)

the elastic parameters of PA 6.6 (see Table 2) and a fiber-
volume fraction of 19.3%, the statistical data for ten runs is
summarized in Table 3, where we report on the orthotropic
engineering constants.

We observe that for each individual modulus, the stan-
dard deviation decreases upon increasing unit-cell length Q.
The highest observed standard deviation is approximately
0.52% for the planar isotropic case and the shortest edge
length Q = 300µm. Moreover, we observe that the sys-
tematic error is rather low. More precisely, the unidirectional
case shows the highest difference in the Young’s modulus E1
when comparing the largest and the smallest edge lengths.
Still, this difference is less than 1.6%.

Thus, we conclude that even the small cells may be con-
sidered representative for engineering accuracy. We wish
to stress that this apparent small size of the representative
volume element is a consequence of the combined use of peri-
odized volume elements, i.e., periodic boundary conditions
when generating the microstructures, periodic boundary
conditions for the displacement field and the high-fidelity
realization of the prescribed microstructure characteristics
like the fiber-volume fraction and the moments of the pre-
scribed fiber-length distribution.

4.3 The effect of the length-orientation coupling

First, we investigate the distribution of the realized fiber-
orientation tensors, considered as functions of the fiber-
length, resulting from the length-orientation coupling (2.22)

f MEE(�, p) = ψ(�) ϕ
Bingham
� B ( p) (4.5)

implied by the maximum-entropy length-orientation closure
(2.15). We will use the PBT system, see Table 1, for these
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Table 3 Orthotropic Young’s
moduli (mean ± standard
deviation for ten runs) for RVE
study with (volume–weighted)
mean fiber length μ# = 250µm
and standard deviation
σ# = 100µm

Orientation Q in µm E1 in GPa E2 in GPa E3 in GPa

iso 300 5.797 ± 0.014 5.803 ± 0.019 5.791 ± 0.012
600 5.795 ± 0.013 5.799 ± 0.005 5.802 ± 0.009
900 5.797 ± 0.004 5.799 ± 0.003 5.797 ± 0.004

piso 300 6.826 ± 0.025 6.833 ± 0.036 5.150 ± 0.007
600 6.830 ± 0.014 6.840 ± 0.008 5.141 ± 0.002
900 6.829 ± 0.005 6.832 ± 0.006 5.139 ± 0.001

ud 300 13.639 ± 0.035 4.813 ± 0.017 4.811 ± 0.017
600 13.425 ± 0.019 4.811 ± 0.004 4.812 ± 0.005
900 13.412 ± 0.010 4.810 ± 0.002 4.810 ± 0.003

Fig. 4 Effect of changing the standard deviation σ# at fixed mean μ#, both number weighted

investigations. In particular, we will focus on the lognormal
distribution for the fiber length, see Fig. 4a for an illustration.

We prescribe the fiber-length distribution together with
the second-order fiber-orientation tensor, and obtain the cor-
responding Bingham parameter by the procedure described
in Sect. 3.3. In the process of solving Eq. (3.16), a number of
integration weights and integration points are chosen based
on the specified fiber-length distribution ψ . To evaluate the
integral (3.16), the second-order fiber-orientation tensors at
these selected integration points, i.e., the individual lengths,
need to be computed anyway.

We will use these integration points to “probe” the fiber
length-orientation distribution as follows.

We prescribe a number of second-order fiber-orientation
tensors whose components are non-zero only on the diagonal
with respect to the previously selected Cartesian coordinate
system. As a result of the Bingham closure (2.19), the iden-
tified Bingham parameter B will be diagonal, as well. As a
consequence, the computed fiber-orientation tensors will be

diagonal. Following the classical convention [19], we will
denote these diagonal elements by λ1, λ2 and λ3. Moreover,
we will assume that these eigenvalues are ordered in a non-
increasing way, i.e., the inequalities

λ1 ≥ λ2 ≥ λ3 (4.6)

hold. As the second-order fiber-orientation tensor is positive
semidefinite and has trace unity, the eigenvalues λi (i =
1, 2, 3) are non-negative and sum to unity.

With these explanations at hand, we refer to Fig. 5 for
the effects of the length-orientation coupling on the realized
second-order fiber-orientation tensors. We considered a fixed
(number-weighted) mean fiber length μ# = 290µm and dif-
ferent standard deviations σ#. The case of vanishing variance
is indicated by bullets. We show the two largest eigenvalues
λ1 and λ2 only, as the third eigenvalue may be recovered
easily via the trace constraint, i.e.,

λ3 = 1 − λ1 − λ2. (4.7)
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Fig. 5 Effect on orientation length coupling for fixed mean length μ# = 290µm and different standard deviations σ# for different prescribed FOTs

Figure 5 reveals that there is no dependence of the fiber
orientation on the length for both the isotropic and the unidi-
rectional, i.e., aligned, fiber-orientation states. To understand
this effect, we take a look at the maximum-entropy closure
(2.10)

ϕ
Bingham
M ( p) = exp

(
pT M p − c(M)

)
, p ∈ S2. (4.8)

The fiber-orientation distribution function ϕ
Bingham
M depends

on the symmetric 3 × 3 matrix M and involves the normal-
ization constant (2.11)

c(M) = log
∫
S2

exp
(
pT M p

)
dS. (4.9)

The isotropic fiber orientation corresponds to the Bing-
ham parameter M ≡ 0. Thus, the rescaling implied by the
maximum-entropy method (4.5) has no effect for this orien-
tation state. Similarly, for the planar isotropic and the aligned
fiber-orientation states, no coupling effects appear, as these
correspond to maximum-entropy closures in two and one
dimensions, respectively. In particular, similar arguments as
for the (three-dimensional) isotropic fiber-orientation state
apply.

Apart from these “pathological” cases, Fig. 5 shows a dis-
tinct coupling of length and orientation. We observe that, as
the fibers get shorter, the orientation state approaches the
isotropic case. Indeed, as mentioned earlier, the isotropic
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orientation is described by a vanishing Bingham parame-
ter M = 0. Thus, due to the maximum-entropy coupling
(4.5), we automatically obtain a vanishing Bingham parame-
ter M ≡ �B for asmyptotically vanishing fiberlength � → 0.

Taking a look at increasing fiber length, we observe a
higher degree of alignment for longer fibers. Actually, it
appears that the orientation state approaches the unidirec-
tional state as � → ∞. However, there are also cases
where the planar isotropic fiber orientation is approached
as � → ∞.

Figure 5 also shows the influence of the imposed standard
deviation. For the largest eigenvalue λ1, increasing the stan-
dard deviation leads to a decrease. Indeed, due to the higher
variance, more “mass” is present for the longer fibers. To
ensure that the prescribed fiber-orientation tensor is recov-
ered, this increase needs to be counter-balanced with less
strongly oriented fiber states. The opposite trend emerges for
the second eigenvalue λ2.

To get an insight into the resulting effective mechanical
behavior we study the effective stiffness corresponding to
the PBT material system, see Table 1, and a second-order
fiber-orientation tensor

A = diag(0.74, 0.23, 0.03). (4.10)

This orientation state features an almost planar fiber ori-
entation with about three quarters of the fibers oriented in
principal direction and the remaining quarter approximately
pointing in the cross direction. To get an impression into
how corresponding unit cells look like, we showed a sample
in Fig. 7a. Such a fiber-orientation state is actually quite com-
mon for injection-molded short-fiber composites [18, 19].

To assess the fluctuations of the computed results, we con-
sidered ten different realizations for each scenario. Figure 6
shows the computed Young’s moduli in 1- and 2-direction,
comparing the uncoupled model (2.14) and the coupled
model (2.19), i.e., the based on the maximum-entropy
assumption. Here, the Young’s moduli E1 and E2 point in the
directions of the prescribed fiber-orientation tensor A corre-
sponding to the two largest eigenvalues. We also report on the
realized orthotropic shear moduli and corresponding Pois-
son’s ratios. Please note that we use the maximum-entropy
closure, i.e., the Bingham distribution, for the uncoupled
model, as well. The considered fiber-length distributions for
the different standard deviations are shown in Fig. 4a.

We notice that, except for close to vanishing standard
deviation, increasing the standard deviation decreases the
Young’s modulus E1 consistently. There is a considerable
drop between no standard deviation and a standard deviation
of σ# = 400µm, i.e., about one GPa - which corresponds
to about 20% of the stiffness. In contrast, the Young’s mod-
ulus E2, see Fig. 6b, turns out to be less influence by this

change in variance. Moreover, the standard deviations are
rather insignificant for all considered moduli.

Comparing the uncoupled and the coupled model, we
observe in Fig. 6a that the Young’s modulus E1 increases
significantly for the coupled model and non-zero stan-
dard deviation. This observation is a direct consequence of
the higher alignment of the longer fibers ensured by the
maximum-entropy length-orientation closure (2.19). Over-
all, the difference is no larger than 5%, reached at 200µm.
This relative difference is actually rather significant. How-
ever, due to the comparatively low filler content for the PBT
material system, the absolute differences are not that large,
i.e., about a quarter GPa. For the cross direction, shown in
Fig. 6b, the differences between the coupled and the uncou-
pled model are rather small. Taking a closer look on the shear
moduli and the Poisson’s ratios, we observe that the relative
deviations between the coupled and the uncoupled model are
on the same order of magnitude as the deviations observed
for the Young’s modulus E1.

For the convenience of the reader, we also included
selected mean-field estimates for the effective stiffness of
the fiber material system into Fig. 6. The first-order estimates
comprise the Voigt estimate, i.e., the volume average of the
constituent elasticity tensors, and the Reuss estimate, which
arises from a volume average of the constituents’ compliance
tensors. The Voigt estimates

EVoigt = 10.94GPa and GVoigt = 4.43GPa (4.11)

for the effective Young’s modulus and the effective shear
modulus turn out to be quite high, actually. As these values
are outside the limits of Fig. 6, we omitted them from the
presentation. The Reuss bounds

EReuss = 1.89GPa and GReuss = 0.72GPa (4.12)

turn out to be closer to the computational results, and are
included in Fig. 6. Still, the Reuss predictions for the direc-
tional Young’s moduli lead to an underestimation by about
1/3, at least.

We also included the Reuss estimate for Poisson’s ratio in
Fig. 6d. The Voigt and Reuss estimates for Poisson’s ratio
actually correspond to Poisson’s ratio of the Voigt/Reuss
average of the shear and compression moduli of the phases,
i.e., they do not arise from an average of the Poisson’s ratios
of the individual phases. Thus, some care has to be taken.
Higher fidelity is reached when using Hashin-Shtrikman
bounds, for instance, see Stefaunik et al. [94].

In addition to the first-order estimates, mean-field mod-
els with higher fidelity may be used. For the case at hand,
we report on the (orientation-averaged) Mori–Tanaka esti-
mate [76, 95], which coincide with the celebrated lower
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Fig. 6 Computed effective engineering constants for the PBT material system, see Table 1, fiber-orientation tensor A = diag(0.74, 0.23, 0.03) and
varying standard deviation for ten different realizations

Hashin-Shtrikman bounds under specific circumstances [2,
3].

For the material system at hand, the Mori–Tanaka model
provides a good agreement with the computational results
in case of the directional Young’s moduli and Poisson’s
ratio in case of vanishing standard deviation σ . The out-
of-plane shear modulus is severely overestimated, though.
We used a Mori–Tanaka model that is insensitive to the
details of the length-orientation distribution, but takes into
account the total fiber-orientation tensor of second order,
only, together with the fiber-orientation closure approxima-

tion used. Extending the Mori–Tanaka estimate to length-
orientation coupling is a possible direction of further research.

These findings should be contrasted with the investiga-
tions made for the second material system, shown in Table 2,
at hand. This composite comes with a significantly higher
filler content and a slightly larger aspect ratio. However,
the differences between the elastic parameters of fibers and
matrix are smaller. Notice that the Weibull distribution [96]
was shown to reproduce the length distribution of this com-
posite better [45, 76, 95]. This fact contrasts with the PBT
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Fig. 7 Sample images of a unit cell for the two distinct cases described in Tables 1 and 2

Fig. 8 Computed effective Young’s moduli for the polyamide material system, see Table 2, fiber orientation A = diag(0.78, 0.19, 0.03) and varying
standard deviation for 10 different realizations

system where the lognormal distribution provides a signifi-
cantly better match with experimental data.

The resulting Young’s moduli are shown in Fig. 8 for the
length distributions shown in Fig. 4b and the prescribed fiber-
orientation tensor

A = diag(0.78, 0.19, 0.03) (4.13)

of second order. A sample microstructure is shown in Fig. 7b.
We restrict to showing the Young’s moduli in 1- and 2-
directions, as these scenarios represented the extreme cases
for the material system we previously examined. We make
similar observations as for the PBT case - the coupled model
predicts significantly stiffer results compared to the uncou-
pled model for comparatively large standard deviations, at

123



Computational Mechanics (2024) 74:615–640 633

Table 4 Statistical data for the three layers of the PBT-GF composite [8]
shown in Fig. 1

Layer μ# μ� σ# A
in µm in µm in µm

Skin 228.78 543.58 268.42 diag(0.74, 0.23, 0.03)

Transition 207.30 478.34 183.32 diag(0.54, 0.41, 0.05)

Core 235.00 563.01 277.13 diag(0.21, 0.75, 0.04)

least for the Young’s modulus E1. The influence on the trans-
verse modulus E2 is small, as only the third significant digit
is affected.

However, due to the increased filler content, the absolute
differences in the computed Young’s moduli are much larger.
At a standard deviation of σ# = 200µm, the relative differ-
ence of about 5% between the coupled and the uncoupled
model translates into about half a GPa.

We also report on the first-order analytical estimates, the
Voigt and Reuss bounds

EVoigt = 16.65GPa and EReuss = 3.66GPa (4.14)

for Young’s modulus. We observe that the Voigt bound sig-
nificantlyoverestimates the appearing Young’s modulus. The
Reuss estimate is closer to the computed results, but under-
estimates the Young’s modulus in principal direction by a
factor of more than two.

For the convenience of the reader, we also include the
(orientation-averaged) Mori–Tanaka model [2, 3] into Fig. 8.
We observe that this analytical model overestimates the
Young’s modulus in principal direction by more than 10%.
This inferior accuracy compared to the PBT material system
may be a consequence of the significantly higher filler con-
tent, leading to higher stresses in the matrix, in particular in
regions where fibers are close to each other. Such a situation
is not directly included in the (conventional) Mori–Tanaka
estimates.

4.4 Comparison to experimental data

This section is devoted to applying the developed methodol-
ogy to industrial examples and comparing the ensuing results.
We will both consider the glass-fiber reinforced PBT mate-
rial system and the glass-fiber reinforced polyamide which
we considered previously.

We will treat the PBT composite first, drawing from the
experimental data of Müller [3]. Recall that at least three dif-
ferent layers could be distinguished in the micro-computed
computer tomography scan, see Fig. 1, corresponding to the
skin as well as the core layer with an additional transition
layer in between. In a first step, the discrete fiber-length data
was used to identify the parameters of a lognormal distribu-

tion by classical regression with a quadratic goodness of fit
objective function.

For each of the layers, the identified (number-weighted)
mean μ# and standard deviation are shown in Table 4 and
illustrated in Fig. 9a. We also have mentioned volume-
weighted mean μ� for reference. We observe that the three
identified lognormal distributions do not differ significantly
and match the fiber-length data with reasonable accuracy.
The experimental data reports a peak at about 100µm which
is not covered by the length distribution. This effect could
be, however, a result of the fiber-segmentation procedure.
Moreover, the fiber-length distribution appears to underes-
timate the fiber length in the region between 400µm and
800µm. However, we wish to remark a couple of things. For
a start, the Weibull distribution leads to a much worse fit.
Secondly, an identification based on the statistical moments
of the measured fiber-length data also leads to a much worse
fit, essentially due to the non-equispaced distribution of the
fiber-length data. Last but not least, it appears apparent that a
more sophisticated fiber-length distribution, e.g., based on a
mixture of models, could improve the fit, but may impoverish
the simplicity of the approach at hand.

We used the layer-wise identified second-order fiber-
orientation tensors recorded in Table 4 to compute the
maximum-entropy length-orientation coupling (2.19). The
results are shown in Fig. 9c in the following form. The largest
eigenvalue λ1 is shown as a function of the fiber length.
Moreover, the largest eigenvalue of the average second-order
fiber-orientation tensor is shown with a dashed line, as well.
The experimental data is indicated by thickened dots, corre-
sponding to each of the three layers at hand.

As the ordered eigenvalues of the second-order fiber-
orientations in both the skin and the core layers were similar,
together with the fiber-length distributions, the estimated
identified fiber length-orientation distributions are similar,
as well. This similarity is seen in the data, as well. In con-
trast, the data for the transition layers shows a much weaker
alignment, and this tendency is reflected by the proposed clo-
sure approximation, as well. We observe that the tendency of
the fibers to align more strongly at higher lengths is reflected
by the closed distribution, as well. Concerning the qualitative
agreement, we observe a rather good match for the transition
layer, whereas the alignment of to top and the core layers is
overestimated by the proposed model for the shorter fibers
with lengths up to 800µm.

With the identified fiber length-orientation distributions
we generated five-layered (skin-transition-core-transition-
skin) sandwich microstructures, e.g., shown in Fig. 9b. We
use a similar coloring of the layers as for the µCT scan
shown in Fig. 1 to enable a quick qualitative evaluation
of the generated microstructure. We generated this type of
microstructures for both the case coupled (2.19) and uncou-
pled (2.14) fiber length-orientation and compare the resulting
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Fig. 9 Length and orientation distribution of layered microstructure

engineering constants with the mechanical experiments in
Table 5. The Experimental data is taken from the work of
Müller [3]. For both the coupled and the uncoupled case,
five different realization were evaluated and averaged. E1 and
E2 represents the Young’s moduli in the e1 (longitudinal) and
the e2 (transverse) direction. From the table we observe that
the coupled model predicts the longitudinal Young’s modu-
lus (E1) more accurately than its uncoupled counterpart. On
the other hand, the Young’s modulus in transverse direction
(E2) is slightly over-estimated. However, both the coupled
and the un-coupled model lead to predictions lying within
the standard deviations of the measured effective properties.

To further validate the proposed model, we consider the
polyamide material system and the associated strongly dif-
ferent microstructure. The Material properties and other
relevant information are recorded in Table 2. In previous
work [45], it was shown that the fiber-length data could

Table 5 Runtimes and computed Young’s moduli versus experi-
ments [3] for the PBT-GF composite

Experiments Sandwich Sandwich
[3, Fig. 3.1] (uncoupled) (coupled)

E1 in GPa 4.48 ± 0.13 4.38 ± 0.02 4.51 ± 0.02
E2 in GPa 3.45 ± 0.07 3.45 ± 0.01 3.50 ± 0.01
runtime in s – 97.22 ± 25.92 75.59 ± 21.95

be rather accurately described by the Weibull distribution.
Moreover, only two layers could be clearly distinguished on
the µCT scan. Thus, a three-layers sandwich microstructure
(skin-core-skin) is considered in the computational model.
For more information about the Weibull length distribution
and the considered microstructure, we refer to our previous
paper [45]. Experimental data is taken from the work of Hess-
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Table 6 Statistical data for the layers of the PA-GF composite studied
by Hessman et al. [76, 95]

Layer μ# μ� σ# A
in µm in µm in µm

Skin 273.12 332.65 127.50 diag(0.86, 0.12, 0.02)

Core 273.12 332.65 127.50 diag(0.23, 0.74, 0.03)

Table 7 Runtimes and computed Young’s moduli versus experi-
ments [76, 95] for the PA-GF composite

Experiments Sandwich Sandwich
[76, Fig. 2] (uncoupled) (coupled)

E1 in GPa 10.34 ± 0.4 10.42 ± 0.03 10.10 ± 0.01
E2 in GPa 5.50 ± 0.1 5.78 ± 0.00 5.54 ± 0.00
Runtime in s - 69.00 ± 8.45 91.97 ± 12.5

man et al. [76, 95]. The previous material system showed that
the different layers show a rather similar length distribution.
We used this characteristic for the system at hand, as well,
and considered the same length distribution for both layers.
Information about different layers is presented in Table 6.

Following similar steps as for the previous PBT-based sys-
tem, we are led to computational results shown in Table 7.
We observe that the longitudinal Young’s modulus E1 is
slightly overestimated for the uncoupled model, but within
the experimental variance. In contrast, the transverse Young’s
modulus E2 is significantly overestimated, turning out to
exceed the confidence interval significantly. In contrast, the
coupled model matches the transverse Young’s modulus with
high accuracy. However, the longitudinal Young’s modulus
is slightly lower. All in all, we observe a smaller difference
between the longitudinal and the transverse Young’s modu-
lus for the coupled model compared to the uncoupled model.
In particular, the differences of the experimental results are
matched more accurately for the material system at hand
using the coupled model instead of the uncoupled model.

5 Conclusion

This work was devoted to establishing a closure approx-
imation for the full fiber length-orientation distribution
function for prescribed fiber-length distribution and second-
order fiber-orientation tensor. We proposed an information-
theoretic approach from first principles based on the well-
known maximization of the information-theoretic entropy.
The resulting distribution turned out to be a parametrized
version of the Bingham distribution, involving a non-trivial
coupling of the fiber length and the fiber orientation. We
discussed a robust and efficient numerical strategy for iden-
tifying the necessary model parameters. Once these are

identified, the maximum-entropy model automatically pre-
dicted that long fibers tend to align more than shorter fibers
do, which is in agreement with experimental findings.

We wish to highlight the flexibility of our strategy with
respect to the fiber-length distribution - both discrete and
continuous distributions may be used. We demonstrated the
ease of incorporating different (continuous) fiber-length dis-
tributions.

We integrated the proposed length-orientation model into
the sequential-addition and migration algorithm [42] based
on prescribing the closed length-averaged fiber-orientation
tensor [45, 46]. Using such a microstructure characteristic
led to a rather small variance of the computed effective elas-
tic properties, reinforcing the confidence in this assumption,
which might be of interest for microstructure reconstruc-
tion [97–99].

When comparing the results to experiments, we could
show that the proposed coupled model matches experimen-
tally measured Young’s moduli with higher accuracy than for
the uncoupled model, at least if a least-squares fit of the fiber-
length distribution based on measured data is considered.

The authors are not aware of a similar length-orientation
closure in the literature [100], and investigating a greater
variety of models, in particular extending existing orientation
closures, would be rather interesting. Moreover, covering a
wider class of material systems with fiber-like inclusions,
e.g., carbon nano-tubes [101] may be of interest, as well.
Last but not least, an integration into dedicated multi-scale
schemes [43, 44, 102] appears desirable.
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A FFT-based computational micromechanics
in a nutshell

The paragraph at hand seeks to provide an idea of the
inner workings of FFT-based computational micromechan-
ics methods [77, 78], whose computational efficiency led to a
variety of extensions and applications in the last decades [84,
103, 104].

We are concerned with a unit cell Y = [0, Q1]×[0, Q2]×
[0, Q3] in three spatial dimensions and suppose that a stiff-
ness distribution C is given on the cell Y . More precisely,
the stiffness distribution associates a stiffness tensor to each
microscopic point x ∈ Y in the unit cell. For the fiber-matrix
composites considered in the article at hand, all continuum
points within the fiber are associated with the stiffness Cf of
the fiber, whereas the matrix material is encoded by another
stiffness tensor Cm.

For a prescribed macroscopic strain tensor ε, periodic
homogenization seeks the periodic displacement fluctuation
field uε : Y → R3 which solves the balance equation

div C : (ε + ∇suε) = 0 (6.1)

on the unit cell Y , where neither inertial effects nor micro-
scopic body forces are considered and we restrict the
discussion to small strains.

Once the equation (6.1) is solved, the corresponding
apparent stress is defined by a volume average of the local
stress

σε = 1
Q1Q2Q3

∫
Y
C : (ε + ∇suε) dx. (6.2)

Subsequently, the solutions uε corresponding to different
imposed average strains are combined to form the apparent
stiffness Capp, implicitly determined from the identity

Capp : ε = σε. (6.3)

Thus, the essential problem is to resolve the equilibrium
equation (6.1). Classically, this is achieved by bringing the
balance equation (6.1) into weak form

∫
Y

∇sv : C : (ε + ∇suε) dx = 0 for all v ∈ H1
# (Y ;R3),

(6.4)

where H1
# (Y ;R3) denotes the first-order Sobolev space of

periodic vector fields. Then, a finite-element discretization
arises by choosing a specific finite-dimensional subspace
Vh ⊆ H1

# (Y ;R3), where h is a mesh-related parameter, and

to seek the solution uε,h ∈ Vh which solves the equation
∫
Y

∇svh : C : (ε+∇suε,h) dx = 0 for all vh ∈ Vh . (6.5)

Unfortunately, due to the inherent complexity of industrial-
scale microstructures, the resulting linear system

A
h
uh = f

h
(6.6)

turns out to be rather huge. In particular, the classical strat-
egy of assembling the finite-element stiffness matrix A

h
requires a significant chunk of memory, requiring high-
performance computing facilities to be used. To reduce the
memory footprint, matrix-free solution strategies may be
utilized. These strategies, however, require iterative solvers
like the conjugate-gradient method to be put into service.
The iteration count of such iterative solvers depends on the
condition number of the finite-element stiffness matrix A

h
.

Unfortunately, the iteration count of (optimal) solvers scales
inversely proportional to the mesh size h. Thus, a finer mesh
also requires more iterations - in addition to having to handle
more degrees of freedom. As a remedy, suitable (matrix-
free) preconditioning strategies may be used to cure the
mesh-spacing induced ill-conditioning of the finite-element
stiffness matrix, i.e., instead of the linear system (6.6), the
equivalent linear problem

P
h
A
h
uh = P

h
f
h

(6.7)

is solved, where P
h

is an invertible matrix, called precon-
ditioner. The essential insight is that the iteration count to
solve the preconditioned system (6.7) depends on the con-
dition number of the matrix P

h
A
h

(instead of the condition
number of the matrix A

h
for the original problem (6.6)).

Thus, by appropriately choosing the preconditioner P
h
, the

iteration count for solving the preconditioned problem (6.7)
may be significantly less than for solving the original prob-
lem (6.6). However, the challenge is to find a preconditioner
P
h

which is also inexpensive to compute.
Methods based on the fast Fourier transform (FFT) are

based on the following idea. If a discretization on a regular,
i.e., Cartesian, grid is used and periodic boundary conditions
are employed, then, for every homogeneous stiffness tensor
C0 and any field f h ∈ Vh , the finite-element problem

∫
Y

∇svh : C0 : ∇suh dx =
∫
Y

vh · f h dx for all vh ∈ Vh

(6.8)

may be solved explicitly using the FFT. The approach, which
works for any finite-element discretization, as long as it
employs a regular grid, is based on making an ansatz of
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the involved fields uh , vh and f h by suitable (truncated)
Fourier series and working out the corresponding coefficients
in Fourier space. We refer to the dedicated works [105–107]
for further details.

Writing down the auxiliary problem (6.8) in matrix–vector
form

A0
h
uh = f

h
, (6.9)

the FFT may thus be used to compute the inverse of the matrix
A0
h
. This inverse is then used as a preconditioner

P
h

=
(
A0
h

)−1
(6.10)

for the original problem (6.6). The resulting computational
strategy (6.7) comprises solvers whose iteration count is
bounded independently of the mesh spacing and which essen-
tially operate in place, i.e., come with a comparatively low
memory footprint.

There is actually an entire zoo of FFT-based methods,
which also comprise finite-difference discretizations [80,
108, 109] and spectral discretizations [110–112]. The dif-
ferent discretizations schemes were studied and compared in
great detail, see, for instance the work [113] on hourglass
control, or the review article [84].

Also, the equivalent so-called Lippmann–Schwinger form

uh =
(
A0
h

)−1 [
f
h

− (A
h

− A0
h
) uh

]
(6.11)

of the Eq. (6.7) for the choice (6.10) is rather popular and
serves as a frequent starting point of implementations.

For the work at hand, we use the discretization on a stag-
gered grid [80], which may be interpreted as a finite element
discretization with a special quadrature rule, as it combines
artifact-free high-quality solution fields and a low computa-
tional overhead.
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