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Abstract

Background: Single liquid biopsy analytes (LBAs) have been utilized for therapy selection in metastatic breast
cancer (MBC). We performed integrative statistical analyses to examine the clinical relevance of using multiple LBAs:
matched circulating tumor cell (CTC) mRNA, CTC genomic DNA (gDNA), extracellular vesicle (EV) mRNA, and cell-
free DNA (cfDNA).

Methods: Blood was drawn from 26 hormone receptor-positive, HER2-negative MBC patients. CTC mRNA and EV
mRNA were analyzed using a multi-marker qPCR. Plasma from CTC-depleted blood was utilized for cfDNA isolation.
gDNA from CTCs was isolated from mRNA-depleted CTC lysates. CTC gDNA and cfDNA were analyzed by targeted
sequencing. Hierarchical clustering was performed within each analyte, and its results were combined into a score
termed Evaluation of multiple Liquid biopsy analytes In Metastatic breast cancer patients All from one blood
sample (ELIMA.score), which calculates the contribution of each analyte to the overall survival prediction. Singular
value decomposition (SVD), mutual information calculation, k-means clustering, and graph-theoretic analysis were
conducted to elucidate the dependence between individual analytes.

Results: A combination of two/three/four LBAs increased the prevalence of patients with actionable signals.
Aggregating the results of hierarchical clustering of individual LBAs into the ELIMA.score resulted in a highly
significant correlation with overall survival, thereby bolstering evidence for the additive value of using multiple
LBAs. Computation of mutual information indicated that none of the LBAs is independent of the others, but the
ability of a single LBA to describe the others is rather limited—only CTC gDNA could partially describe the other
three LBAs. SVD revealed that the strongest singular vectors originate from all four LBAs, but a majority originated
from CTC gDNA. After k-means clustering of patients based on parameters of all four LBAs, the graph-theoretic
analysis revealed CTC ERBB2 variants only in patients belonging to one particular cluster.

Conclusions: The additional benefits of using all four LBAs were objectively demonstrated in this pilot study, which
also indicated a relative dominance of CTC gDNA over the other LBAs. Consequently, a multi-parametric liquid biopsy
approach deconvolutes the genomic and transcriptomic complexity and should be considered in clinical practice.
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Background
Liquid biopsy provides markers to assess the tumoral
heterogeneity across oncological treatments with min-
imal invasion [1]. In breast cancer (BC), the leading form
of cancer in women worldwide [2], diverse liquid biopsy
analytes (LBAs) have been proven to harbor relevance in
clinical practice. For example:
The number of circulating tumor cells (CTCs) [3, 4] as

well as the concentration of cell-free tumor DNA
(ctDNA) [5] has been proven to correlate significantly
with overall survival (OS).
Molecular characterization has identified stemness sig-

natures at a messenger RNA (mRNA) level in extracellu-
lar vesicles (EVs) to be associated with decreased
survival time in metastatic BC (MBC) patients [6].
Profiling CTCs revealed HER2 overexpression in the

blood of patients with HER2-negative primary tumors,
and although clinical effectiveness has not yet been con-
cretely proven, it points towards a possible targeted anti-
HER2 therapy based on blood testing [7–9].
A detailed characterization of variants occurring in the

ctDNA can be used for therapy monitoring, as shown by
the use of ESR1 variants (found in cell-free DNA
(cfDNA) and occurring during aromatase inhibitor ther-
apy) as indicators of disease progression [10, 11].
Additionally, cfDNA variant evaluation can also be

used for personalized therapy decisions in hormone
receptor-positive (HR+) MBC patients since Alpelisib, a
PI3Kα inhibitor, was approved for patients with PIK3CA
mutant tumors [12].
It is worth noting that most studies have focused on

single LBAs. Pairwise comparisons of maximally two
orthogonal LBAs in matched samples, especially with
regard to their molecular characterization, revealed the
additive value of the simultaneous use of more than one
LBA in MBC [13–19]. To extend these findings, we
speculated whether the insights hidden in numerous in-
dependent datasets—when integrated properly—might
be greater than their individual sums. Consequently, a
multi-parametric dataset might enable maximizing the
information available for deliberated therapy manage-
ment. Therefore, we sought to find an optimal way to
leverage and integrate transcriptional and genomic infor-
mation from multiple liquid biopsy reservoirs.
The resulting project was called ELIMA and stands for

Evaluation of multiple Liquid biopsy analytes In Meta-
static breast cancer patients All from one blood sample.
Practically, a workflow had to be implemented that en-
abled parallel isolation and analysis of CTC mRNA, EV
mRNA, CTC genomic DNA (gDNA), and cfDNA from a
minimized blood volume to guarantee patient compli-
ance. We then compared all four LBAs from blood
drawn at the time of disease progression in a stringent
HR+ HER2− MBC cohort (n=26) with descriptive and

rigorous statistical approaches (Fig. 1). A metric called
the ELIMA.score was defined to examine the prognostic
value of a multi-modal approach. This was followed by
further statistical analyses to examine the interplay be-
tween the LBAs.

Methods
Patients
Blood samples from 26 MBC patients were studied. All
participants were ≥18 years and had Eastern Cooperative
Oncology Group (ECOG) scores for performance status
of 0–2; no severe, uncontrolled co-morbidities, or medical
conditions; and no second malignancies. Prior treatment,
radiation, all kinds of surgical intervention, or any other
treatment of BC was permitted. MBC patients had estro-
gen (ER) and/or progesterone (PR) receptor-positive pri-
mary tumors [summarized as hormone receptor-positive
(HR+)]. Furthermore, all included patients had primary
tumors with (a) <10% of HER2 expressing tumor cells
(DAKO score 0) or (b) with HER2 expressing cells without
complete membrane staining (DAKO score 1) or (c) tu-
mors with DAKO score 2, but without ERBB2 overampli-
fication (by in situ hybridization) (n=22). Patients with
ER-positive and/or PR-positive and HER2-negative metas-
tases were also included if their ER, PR, and HER2 status
of the primary tumor was unknown (n=4). All patients
showed a progressive MBC at the time of blood draw eval-
uated by radiologic staging via CT or MRI. Patient charac-
teristics are available in Additional file 1: Table S1.
The study was conducted at the Department of

Gynecology and Obstetrics, in collaboration with the
Department of Medical Oncology, both at the University
Hospital Essen, Germany, with the Marienhospital Bot-
trop, Germany (for specimen recruitment), and with
QIAGEN GmbH, Hilden, Germany (for library prepar-
ation and sequencing analysis). In accordance with the
Declaration of Helsinki, written informed consent was
obtained from all participants at enrollment, and speci-
mens were collected using protocols approved by the
Ethics Committee of the University Hospital of Essen
(12-5265-BO).

Sample collection and liquid biopsy analyte extraction
Eighteen milliliters of EDTA blood was collected and
CTCs were isolated in duplicate from 5 ml of whole
blood by positive immunomagnetic selection (AdnaTest
EMT-2/StemCell SelectTM, QIAGEN) [13]. CTC-
depleted blood remaining after positive immunomag-
netic selection [20] as well as the remaining blood (not
used for CTC isolation) were centrifuged and stored.
EVs were isolated from pre-filtered plasma by affinity-
based binding to a spin column [13, 21]. Subsequently,
the total RNA was isolated and purified (exoRNeasy Kit,
QIAGEN). The mRNA was isolated from the CTC
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lysates and from the vesicular RNA eluates by Oligo(dT)25
beads [13]. The supernatant remaining from the CTC ly-
sates after incubation with the Oligo(dT)25 beads, called
the mRNA-depleted CTC lysate, was used to isolate the
gDNA using the AllPrep DNA/RNA Nano Kit prototype
(QIAGEN) [14]. cfDNA was isolated by affinity-based
binding to magnetic beads (QIAamp MinElute ccfDNA
Kit, QIAGEN) using plasma from CTC-depleted blood
[20]. Buffy coat DNA and normal tissue DNA that was
available (from 18 of the 26 patients) was used as matched
germline control. Detailed protocols are available in
Additional file 2.

Quantitative PCR
Purified mRNA was reverse transcribed. The AdnaTest
TNBC Panel prototype (QIAGEN), consisting of multi-
marker real-time quantitative PCR (RT-qPCR) assays,
has been described in detail [13]. Pre-amplified cDNA
was analyzed for one of the 17 transcripts with the
StepOnePlus™ (Life Technologies) real-time system. Po-
tential PCR inhibition and contamination were checked,
and data evaluation was performed with normalization
to PTPRC and data from healthy donor controls [13]
(Additional file 2).

Sequencing
The libraries were constructed with a customized QIA-
seq Targeted DNA Panel Kit (QIAGEN) targeting all ex-
onic regions of 17 genes. Library preparation using
cfDNA or CTC gDNA was previously described in detail
[14]. In brief, the preferred cfDNA input of 30–60 ng
and the entire CTC gDNA eluate (20 μl) was used for li-
brary preparation with no prior quantification. Library
preparation included end-repair, a-addition, and enzym-
atic fragmentation (only for CTCgDNA). The volumes
of barcoded adapters, including unique molecular indi-
ces (UMIs) and sample-specific indices, used for ligation
to CTCgDNA are five times the volumes required for
ligation to cfDNA. Targeted enrichment and universal
PCR amplification were performed. All pooled libraries
were analyzed by paired-end sequencing on an Illumina
NextSeq instrument.
Bioinformatical analysis of the raw sequencing data of

cfDNA and CTC gDNA was performed on the basis of
the pipeline previously described [14]. Exclusion criteria,
such as the minimal number of read fragments, a min-
imal UMI coverage, and a uniform UMI coverage of the
target regions, were defined and are listed in Additional
file 2. The input amount, library yield, and sequencing
quality parameters for each sample are summarized in
Additional file 3: Table S2. For the analysis, we used
QIAGEN’s GeneGlobe and Ingenuity Variant Analysis
(IVA; QIAGEN) for annotation, scoring, filtering, and
interpretation of the resulting variant files. All filter

Fig. 1 Study design. EV mRNA, CTC mRNA, CTC gDNA, and cfDNA
were isolated from only 18ml of blood and mRNA profiling or
variant profiling resulted in comparable data sets for comprehensive
integration. Integrative statistical analyses performed included the
analysis of the individual analytes and their prognostic value, while
the combination of the analytes was analyzed from the section
“Hierarchical clustering and the ELIMA.score” onwards. While
hierarchical clustering was performed with prior knowledge about
OS correlations, k-means clustering was performed without prior
correlation information. A prerequisite for k-means clustering was
determining the optimal number of stable clusters that could be
formed, which was found by the elbow method. Mutual information
and SVD analyses were carried out to determine whether or not it
was necessary to use all the LBAs. With the results of the k-means
clustering, we performed a graph-theoretic analysis to identify the
salient parameters within the clusters
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settings were described in detail [14] including the confi-
dence filter that excludes flagged variants from smCoun-
ter2 software, the common variant filter that excludes
variants with a prevalence of >3% in the normal popula-
tion, and the cancer driver variant filter that excludes,
among others, variants with a prevalence of >0.01% in
the TCGA or COSMIC databases.
Original raw sequencing data are available at the Euro-

pean Nucleotide Archive with the study accession num-
ber PRJEB39331 [22], and all called variants and their
corresponding allele frequencies are listed per patient
and per analyte in Additional file 4: Table S3.
Germline control samples were prepared with the

same library protocol as described for CTC gDNA, but
the sequencing depth for the germline controls was
lower when compared to cfDNA and CTC gDNA se-
quencing. In Additional file 4: Table S3, cfDNA and
CTCgDNA variants detected in the germline control
have been depicted using different colors.

The ELIMA.score and further statistical analyses
For improved readability, the order in which the integra-
tive statistical analyses used in this study were carried
out and their relationship to one another are depicted in
a flowchart (Fig. 1). The Kaplan–Meier estimator (log-
rank test) and Cox regression models were used to as-
sess OS.
Hierarchical clustering according to Ward’s method

with Euclidean distance was conducted as follows. Step
1: First, all LBAs were analyzed separately by means of
hierarchical clustering dividing the patient population
into four groups each as shown in Fig. 4. Step 2: The
clusters that differentiate the patients with favorable out-
come from those with unfavorable outcome were identi-
fied by permutations of all 2:2 or 1:3 cluster combinations
to identify the cluster combinations that resulted in the
lowest p-value in log-rank analysis (raw data of this per-
mutation analysis in Additional file 5: Table S4). Step 3:
Finally, the ELIMA.score was defined as the sum of the
separate LBA assignments. The calculation of the ELIM
A.score in the samples is shown in Additional file 5: Table
S4. The ELIMA.score can be understood as follows: a
given patient had an ELIMA.score of 0 when they were
not in the prognostically worst cluster for any of the LBAs;
they had an ELIMA.score = 1 when they were in the prog-
nostically worst cluster for one of the LBAs. Patients had
an ELIMA.score = 2 when they were in the prognostically
worst cluster for two of the LBAs, and so forth (further ex-
planations are available in Additional file 2).
Singular value decomposition (SVD) was used to iden-

tify the singular vectors of the dataset, which in our case
correspond to its most significant parameters [23]. To
assess the dependence of one LBA on the other, we used
mutual information [24]. In general, the higher the

mutual information, the greater the ability of one LBA
to describe the other (further explanations are available
in Additional file 2).
Lloyd’s k-means clustering was undertaken for the

sake of comparing its findings with those obtained by
hierarchical clustering [25]. To obtain the appropriate
number of clusters for a given dataset, we used the
elbow method [26]. This method resulted in the curves
shown in Additional file 6: Fig. S1.
Graph-theoretic analysis was conducted using the

open source software Gephi [27]. This analysis was sep-
arately performed for all four clusters obtained using k-
means clustering. The Yifan Hu (attraction–repulsion)
algorithm was used to adjust the layout of the resulting
network [28]. Then, a topology filter based on degree
range was used to highlight the prominent nodes. Be-
tweenness centrality, which is a measure of how often a
node appears on the shortest paths between nodes in
the network [29], was computed for each node to iden-
tify the parameters within a given cluster that play a
salient role.
Detailed descriptions of all of the statistical approaches

are available in Additional file 2. Diagrams were com-
puted with R, using the packages base [30], ggplot2 [31],
heatmap.plus [32], hmisc [33], infotheo [34], pca3d [35],
shiny [36], stats [30], survival [37], and venndiagram
[38] (R version 3.6.1), Gephi (version 0.9.2), OriginPro
version 2019 (OriginLab Corporation), and Microsoft
Excel (Microsoft Corporation).

Results
Multi-modal liquid biopsy approach with four liquid
biopsy analytes
ELIMA’s multi-parametric approach originally included
the analysis of five LBAs (ELIMA means five in Hawai-
ian) from the same blood sample with minimized blood
volume, namely EV mRNA, CTC mRNA, CTC gDNA,
cfDNA from CTC-depleted blood (Fig. 1), and cfDNA
from whole blood. However, since a direct comparison
of cfDNA variants from whole blood and matched CTC-
depleted blood revealed no significant differences in ei-
ther qualitative or quantitative measures [20], cfDNA
from whole blood was excluded from the final integra-
tion of the ELIMA project results.
The use of the same multi-marker qPCR for mRNA

profiling of CTCs and matched EVs, and the use of the
same targeted UMI-based panel for deep sequencing of
cfDNA and matched CTC gDNA, guaranteed a mean-
ingful comparison of the matched LBAs on a transcrip-
tomic and genomic level.
Since the workflow utilizes material that would usually

have been discarded (CTC-depleted blood and mRNA-
depleted CTC lysate), isolation and analysis of all four
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LBAs has successfully been established from only 18 ml
of blood.

A large dataset
The patient cohort consisted of 26 MBC patients with
HR+ HER2− status on the primary tumor tissue (Add-
itional file 1: Table S1). Blood was drawn at the time of
disease progression. At the time of data evaluation, 5/26
patients were alive with a median follow-up time of 113
months (interquartile range (IQR) 97).
The heatmap, plotting the clinical data of the cohort

and the alterations in all 68 parameters divided into four
different LBAs (Additional file 7: Fig. S2), depicts this
large dataset. A few observations were directly obvious
just by studying the heatmap. For example, the notice-
ably high prevalence of CTC gDNA variants, especially
MUC16 CTC gDNA variants. mTOR overexpression was
the most common alteration in the CTC mRNA frac-
tion, and AURKA overexpression signals showed the
highest prevalence in the EV mRNA fraction. ERBB2
and ERBB3 variants or overexpression signals were
tested in all four LBAs but were only present in the two
CTC fractions (CTC gDNA and CTC mRNA; Additional
file 7: Fig. S2).

Sensitivity and number of signals per patient
Among the patients, 77% (20/26) showed at least one
overexpression signal in EV mRNA, whereas 88% (23/
26) had at least one overexpression signal in CTC
mRNA or one CTC gDNA variant (Fig. 2a). Conse-
quently, the sensitivity was higher in the two CTC frac-
tions when compared to EV mRNA and cfDNA (85%;
22/26).
The range of the number of CTC gDNA variants per

patient was high. The mean number of alterations per
patient (± standard deviation) was the highest for CTC
gDNA (5.62 ± 5.87), followed by CTC mRNA (2.58 ±
1.94), cfDNA (1.88 ± 1.48), and EV mRNA (1.31± 1.23)
(Fig. 2b), respectively.

Prognostic value of individual parameters
All parameters occurring in more than two patients were
correlated with OS. Four parameters showed (at least a
borderline) significance (p ≤ 0.05) with OS. Three out of
these four parameters were cfDNA parameters and one
was a CTC gDNA parameter (Fig. 2c–f). More specific-
ally, prognostic value was documented for MUC16 vari-
ants in cfDNA (p=0.0086) and CTC gDNA (p=0.021;
Fig. 2c, d). ESR1 (p=0.05) and BRCA2 (p=0.05) variants

Fig. 2 Sensitivity of the four single liquid biopsy analytes and Kaplan–Meier curves of the individual parameters. a Sensitivity defined by the
prevalence of patients (in total n=26) with at least one variant (cfDNA or CTC gDNA) or one overexpression signal (CTC mRNA or EV mRNA). b
The number of variants or overexpression signals per patient in each individual analyte was compared. The mean and standard deviation were
indicated as solid lines and whiskers, respectively. c–f Data of patients with at least one variant/signal are depicted in red. Only significant
correlations [calculated by log-rank (Mantel–Cox) test (p-value ≤ 0.05)] are shown. cfDNA variants in three genes (c, e, f) and MUC16 variants in
CTCs (d) showed a significant correlation with OS
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in cfDNA showed borderline significance for a correl-
ation with OS (Fig. 2e, f). In contrast, none of the CTC
mRNA and EV mRNA parameters was significantly cor-
related with OS.

Actionable signals for targeted therapy decisions
To evaluate the usefulness of the multi-parametric ap-
proach for targeted therapy decisions, a literature re-
search was employed to define actionable signals whose
presence might skew the treatment decision in favor of a
targeted therapy (Additional file 8: Table S5 [39–45];).
In each fraction, seven out of 17 parameters were de-
fined as actionable, namely: AKT1, BRCA1, BRCA2,
PIK3CA, ESR1, ERBB2, and PTEN variants, and AR,
AURKA, ERCC1, ERBB2, ERBB3, PIK3CA, and SRC
overexpression signals.
Within each individual LBA, a similar fraction of pa-

tients [50% (EV mRNA) to 73% (CTC mRNA)] was identi-
fied with at least one actionable signal. The relevance of a
multi-parametric strategy in therapy decision-making was
validated by an increase in the percentage of patients with
at least one actionable signal with an increase in the num-
ber of LBAs combined: a combination of two LBAs re-
sulted in 81–92%, a combination of three LBAs resulted
in 92–96%, and all four LBAs resulted in 96% of patients
with actionable signals, respectively (Fig. 3).

Hierarchical clustering and the ELIMA.score
Within each fraction, patients were clustered using hier-
archical clustering by setting the number of clusters to

four (Fig. 4a–d). To differentiate patients from one an-
other based on the greatest difference in OS, permuta-
tions of the cluster combinations were conducted within
each fraction in order to select the combination of pa-
tient clusters whose correlation with OS was the highest
(Fig. 4a–d). Except for clustering based on CTC mRNA,
patient clusters that were significantly correlated with
OS were identified in all other fractions (Fig. 4a, b, d). A
combination of these fraction-specific data—by integrat-
ing the clustering results of all fractions into a global
ELIMA.score (see Additional file 2 for a detailed explan-
ation)—resulted in a highly significant prognostic value
(p=0.0024) (Fig. 4e). The OS decreased with an increase
in the ELIMA.score and thereby underscores its prog-
nostic value.

Mutual information and the Euler diagram
The combination of clusters obtained by hierarchical
clustering described in the section “Hierarchical cluster-
ing and the ELIMA.score” was carried out based on
prior knowledge about the OS correlations within the
LBAs, which—one could argue—carried with it a degree
of subjectivity. In order to assuage such concerns, in
what follows, the LBAs were evaluated using more ob-
jective methods to examine their interdependence.
With the intention of carrying out k-means clustering,

the elbow method was employed to examine whether
stable clusters could be formed using either individual
analytes or when all the four analytes were combined
and also to find the optimal number of clusters [26]

Fig. 3 Prevalence of actionable signals. The prevalence of patients (among 26 patients) with at least one actionable signal is plotted against the
evaluated analyte (combination). S1, each individual analyte; C2, any combination of two analytes; C3, any combination of three analytes; C4, a
combination of all four analytes. Whiskers represent the standard deviation
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Fig. 4 Hierarchical clustering and the prognostic value of the clusters. All LBAs were analyzed individually by means of hierarchical clustering by
dividing the patient population into four groups. The clusters that differentiate the patients with favorable outcome (marked in red) from those
with non-favorable outcome (marked in blue) were identified by permuting all cluster combinations to identify the cluster combination that
resulted in the lowest p-value in log-rank analysis. Kaplan–Meier curves of the best permutation within each analyte are depicted and showed
prognostic value (except for CTC mRNA-based clustering). A combination of the clustering results of all analytes, defined as the ELIMA.score,
revealed good prognostic relevance (e)
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(Additional file 2). Analysis of individual LBAs using the
elbow method showed that only CTC gDNA-based clus-
tering could result in the formation of stable clusters
(Additional file 6: Fig. S1), which led to the question: “if
stable clusters can be formed using only one of the LBAs
(CTC gDNA), does it imply that the other LBAs are
dependent on it?” To answer this question, we used mu-
tual information to assess dependence between the LBAs
[24] by a pairwise comparison of the individual LBAs
(Fig. 5b). In general, the higher the mutual information,
the greater the ability of one LBA to describe the other.
The extent of overlap between the individual LBAs

based on the mutual information values is depicted in
the Euler diagram (Fig. 5a). Since all the mutual infor-
mation values were non-zero, we can conclude that none
of the LBAs is independent of the others. However, from
the relatively low mutual information values, we see that
none of the LBAs can accurately describe the entire
dataset on their own. This further underscores the addi-
tive nature of all four fractions. From the areas of over-
lap (Fig. 5a) and the highlighted cells in Fig. 5b, we
construe that CTC gDNA is more dominant than the
other LBAs in this dataset but since its dominance is not
absolute, the other LBAs are necessary if one seeks to
maximize the information that can be gathered from this
data.

The analytes and their strongest singular vectors
Then, the question “which of the 68 parameters (con-
tained in the four LBAs) are the most influential” arose.
This was addressed by using SVD to identify the singular
vectors of the dataset [23]. The 10 most influential sin-
gular vectors were found distributed almost equally
across all four fractions, while the 15 strongest singular
vectors showed a relative dominance of the CTC gDNA
fraction over the three other fractions because 40% of
the top 15 singular vectors originated from CTC gDNA
(Fig. 5c), thereby validating the findings in the section
“Mutual information and the Euler diagram” that all
LBAs should be considered if one seeks to maximize the
information that can be gathered from this data.

Results of k-means clustering based on a combination of
all analytes
As mentioned in the section “Mutual information and
the Euler diagram”, we decided to employ k-means clus-
tering to analyze the data without using prior informa-
tion about OS correlations. In the sections “Mutual
information and the Euler diagram” and “The analytes
and their strongest singular vectors,” we examined the
scenarios in which stable clusters could be formed and
also examined the degree of dependence between the

Fig. 5 Mutual information (b) illustrated by an area-proportional Euler diagram (a) and singular value decomposition (c). a, b Pairwise comparison
revealed the greatest overlap between information contained in CTC gDNA with the information contained in the other three analytes (threshold
>0.8). The mutual information values were found to be rather low. Each analyte therefore added information that was absent in the other
analytes. c The steps to identify the 15 strongest singular vectors representing parameters of all four analytes. Singular value decomposition of
the input matrix resulted in an adjunct matrix of singular vectors. Normalization and sorting according to magnitude revealed that the 15
strongest singular vectors originated from all four analytes
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LBAs (Fig. 1). Here, we document the results of k-means
clustering (Fig. 6).
In the sections “Mutual information and the Euler dia-

gram” and “The analytes and their strongest singular
vectors”, we found that a combination of all four ana-
lytes resulted in stable clusters using the elbow method
(Additional file 6: Fig. S1) and that the results of the mu-
tual information analysis as well as SVD indicated that
clustering using all four analytes may be more inform-
ative than using the most suitable individual analyte,
CTC gDNA. Consequently, we then carried out k-means
clustering based on all four LBAs (Fig. 6a, b).
Interestingly, all patients with lobular histology sub-

type (n=2) and combinational histology subtype (n=2)
clustered together in separate clusters (cluster 2 and
cluster 3), while the patient with inflammatory BC clus-
tered together with patients with ductal or unknown
subtype in cluster 1 (Fig. 6c).
Subsequently, experimental liquid biopsy parameters

within the resulting clusters were also compared (Fig. 6d–
g). Cluster 1 was characterized by a large number of CTC
gDNA variants, while the mean number of cfDNA vari-
ants was the highest in cluster 4. Though both cluster 2
and cluster 3 harbored a small number of CTC gDNA
variants, cluster 2 contained a higher mean number of
CTC mRNA signals when compared to cluster 3.

Graph-theoretic analysis
To examine the salience of specific parameters within
the clusters formed using k-means clustering, a graph-
theoretic analysis was conducted (Fig. 6h). Importantly,
only nodes with at least three edges were included to
identify the most relevant nodes in the network. A com-
parison of the nodes, representing the parameters,
within the four networks resulted in the identification of
CTC MUC16 variants and CTC mTOR overexpression
as salient nodes in each network, but also resulted in the
identification of parameter nodes unique to one of the
four networks (Fig. 6i light green; 12 in total). We ob-
serve that the network of cluster 1 was predominantly
characterized by the presence of CTC variants and is the
only network that contained ERBB2 variants in CTCs.
The network of cluster 2 mainly consisted of CTC
mRNA parameters and CTC PIK3CA variants, and the
network of cluster 4 contained the ESR1 variants in
cfDNA and CTC ERBB2 overexpression nodes. A com-
parison of these findings with the raw data set revealed
that certain parameters, found to be unique nodes in a
given cluster, remained exclusive in their signal occur-
rence within the given cluster (CTC variants of ERBB2,
PIK3R1, AKT1, FGFR, and CTC ALK overexpression,
Fig. 6j; dark blue). The other parameters, found to be
unique nodes in a given cluster, were found to be at least

highly abundant features (Fig. 6j; light blue) with a
prevalence of ≥50%.

Discussion
Liquid biopsy is currently gaining momentum as a valu-
able source for cancer detection, therapy monitoring,
and treatment decision-making in oncology [12, 46–48].
However, most of these strategies utilized single LBAs.
Here, we established a workflow to isolate and analyze
four LBAs, namely CTC mRNA, CTC gDNA, EV
mRNA, and cfDNA, from a minimized blood volume.
With this successful protocol, in this hypothesis-
generating pilot study, we can now answer questions
about whether the information in one analyte can be
conveyed by another analyte, or whether the information
individual LBAs provide is unique, and ultimately, inves-
tigate whether it is worth conducting a multi-parametric
liquid biopsy test in clinical practice.
Some studies have already compared the value of using

cfDNA and CTCs for therapy management. The com-
bination of cfDNA and CTC counts improved sensitivity
and specificity as a diagnostic tool in non-MBC patients
[5, 49]. A decrease in ctDNA and CTC levels from the
baseline to the second cycle of paclitaxel and bevacizu-
mab in HER2− MBC patients was independent prognos-
tic markers, but with a stronger value for ctDNA when
compared to CTCs [50]. The comprehensive mutational
analysis of cfDNA and CTCs revealed the additive value
of the analytes [14, 51]. Variant analysis in CTCs was
shown to be able to identify newly emerging resistance
mutations in contrast to cfDNA, where resistance muta-
tions might only be detected after apoptosis of the cells
harboring new alterations [51], thereby highlighting the
potential benefits of variant analysis in CTCs over
cfDNA. The case study of a HR+ MBC patient with ser-
ial liquid biopsies across treatment over 4 years showed
the correlation of single CTC and cfDNA copy number
variants and mutations, but the authors argued that only
the analysis of variants in single CTCs deconvolutes the
subclonal evolution in cellular resolution [52].
The technical issues of a multi-parametric liquid bi-

opsy approach, including CTCs, cfDNA, EVs, and
miRNA, were recently studied by Schneegans et al. as
part of the Cancer-ID consortium [53]. They showed the
importance of the pre-analytical variables, especially the
choice of a blood collection tube for reliable data ana-
lysis. In cooperation with several companies specialized
in the evaluation of individual LBAs, Hodara et al. deter-
mined alterations in multiple liquid biopsy reservoirs of
prostate cancer patients from 22.5 ml blood [54]. Hodara
et al. reported a 13.8% overlap between variants of CTCs
and cfDNA, while we reported a 28% overlap for these
two LBAs in MBC patients [14]. It is worth emphasizing
that the ELIMA project examined not just tumor-
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specific variants but also variants in germline controls,
e.g., 48% of cfDNA and 35% of the CTCgDNA variants
were detected in the germline control (Additional file 4:
Table S3). Another recent multi-analyte liquid biopsy
study using 12.5 ml blood from 19 prostate cancer pa-
tients showed an increase in the probability of obtaining
tumor-related information [55]. Combinational analysis
of transcripts in CTCs, the same transcripts in whole
blood, and focal amplifications in cfDNA led to the iden-
tification of resistance mechanisms against prior therapy
in a larger fraction of patients when compared to the
evaluation using a single analyte [55]. The reported sen-
sitivity of only one analyte was around 50% and the sen-
sitivity of the multi-analyte strategy was 89% and is
similar to the results in this paper from 26 MBC patients
and four LBAs. Yang et al. recently studied the feasibility
of a multi-modal liquid biopsy approach, which included
tumor-associated EV miRNA and mRNA, cfDNA,
cfDNA KRAS mutations, and CA19-9, for early diagnosis
of pancreatic cancer in 204 subjects [56]. They devel-
oped an initial classification model using 14 biomarker
candidates, trained a machine-learning model, and
achieved a sensitivity of 88% and a specificity of 95% in
the validation cohort, thus validating the benefits of a
multi-modal approach using a completely different
method of analysis. A multi-modal liquid biopsy ap-
proach has also been tested as a predictive panel sup-
porting therapy decisions for immune therapy in lung
cancer patients. The integrated multi-sourced informa-
tion from ctDNA and circulating immune cells (called
the DIREct-On approach therein) resulted in better dif-
ferentiation of patients with durable response from those
without durable response (before initiation of therapy)
when compared to using information solely from indi-
vidual LBAs [57].
In the context of the ELIMA project, we have already

demonstrated the additive value of using CTC mRNA
profiling in addition to matched EV mRNA profiling
utilizing blood from HR+ HER2− MBC patients [13] and
the small overlap between identical variants in cfDNA
and matched CTC gDNA [14]. This work therefore brid-
ges the gap between transcriptomic and genomic

information, albeit in a small cohort (n=26) and without
a validation cohort.
The high prevalence of MUC16 variants in CTCs is

striking (Additional file 7: Fig. S2), and so is the correl-
ation of MUC16 variants (in both CTCs and in cfDNA)
with decreased OS (Fig. 2c–f). MUC16 variants have fre-
quently been reported in most cancer types [58, 59] but
considering the long coding sequence of this gene, the
mutational heterogeneity of MUC16 is not elevated in
BC [59, 60]. The other individual parameters which have
a significant correlation with OS, namely ESR1 and
BRCA2, are genes that are frequently discussed and har-
bor great clinical relevance in BC [39].
That is the reason why AKT1, BRCA1, BRCA2,

PIK3CA, ESR1, ERBB2, and PTEN variants were de-
scribed as harboring at least Tier III A level of evidence
for targeted therapy approaches by ESMO [39] and were
selected as actionable signals, despite generalizing an ef-
fect of mutations in one gene independent of their pos-
ition. We defined AR, AURKA, ERCC1, ERBB2, ERBB3,
PIK3CA, and SRC overexpression signals as actionable
signals by literature research as well; this definition,
however, is highly speculative, because most of the refer-
ences showed the predictive value only in animal models
[40–44]. Analysis of individual LBAs resulted in a dis-
covery of actionable signals in approximately half of all
patients, while a combination of two, three, or all four
LBAs revealed a dramatic increase in the prevalence of
patients with at least one actionable marker, hence pro-
viding evidence for the clinical relevance of this multi-
parametric approach.
The ELIMA.score provides additional insights into the

value of the multi-parametric approach. Grouping patients
according to their liquid biopsy data within a given LBA
(CTC gDNA, cfDNA, or EV mRNA) resulted in a division
of patients into cohorts with shorter versus longer OS, but
combining these hierarchical clustering results under-
scored the high prognostic value of integrating them.
In initial observations, CTC gDNA showed the highest

sensitivity and the highest number of signals per patient.
It was also the only LBA suitable for obtaining stable
clusters using k-means clustering (according to the

(See figure on previous page.)
Fig. 6 k-means clustering results based on the data from all four analytes and graph-theoretic analysis. a A 2D principal component analysis
(PCA) plot illustrates the clusters. b The cluster size, follow-up time, and cases of death are listed. c Correlations of clusters with the tumor
histology revealed that patients with a tumor histology other than the ductal type clustered together. d–g Number of alterations observed within
the four analytes, grouped according to clusters formed based on all analytes. h Networks for each of the four clusters illustrate nodes with a
degree ≥ 3 and directed edges between patients and parameters. The sizes of the nodes are proportional to the value of the (undirected)
betweenness centrality and the intensity of the shade of green is proportional to the number of incoming edges. i Parameter nodes shown
within the four networks were sorted based on their betweenness centrality. The 12 parameter nodes found in only one of the four networks
were marked in light green. j The prevalence of signals/variants in the 12 unique parameter nodes (in i) was tabulated based on their occurrence
in the four clusters. The cluster with the highest prevalence of a given parameter was marked in light blue and matched with the unique
parameter nodes in i. Signals/variants of parameters found exclusively in just one cluster were marked in dark blue
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elbow curves) and was the only LBA that—based on the
mutual information values—contained the greatest
amount of information about the other LBAs. However,
based on the fact that the absolute values of mutual in-
formation were rather low (< 3), it was found that using
CTC gDNA alone seems not to be sufficient.
The strongest singular vectors define the most influen-

tial parameters within this large dataset, and interestingly,
among the 10 strongest singular vectors, parameters from
all four LBAs were equally distributed, implying that at
least some factors might have clinical relevance despite
the analyte—as a whole—having low sensitivity. The 15
strongest singular vectors point to a relative dominance of
CTC gDNA among the LBAs since 40% of the 15 stron-
gest singular vectors originated from CTC gDNA. How-
ever, since a majority of the strongest singular vectors
stem from the other three LBAs, this analysis also found
that the information obtained from CTC gDNA could not
describe the overall picture alone.
The surplus information, obtained from the multi-

parametric liquid biopsy approach by integrating the
four LBAs, was mirrored not only by the prognostic
value of the ELIMA.score and the improved sensitivity
for actionable markers, but also by the low mutual infor-
mation values and a fairly even spread of data points
across the dimensions when k-means clustering based
on all four LBAs was carried out. k-means clustering
and graph-theoretical analysis of the resulting clusters
further highlighted the differences and identified some
unique features across the different LBAs in the four
clusters, thereby accentuating the relevance of the
integration of all four LBAs.

Conclusions
High sensitivity, a high mean number of CTC gDNA
variants, and the elbow curves used for k-means cluster-
ing revealed the CTC gDNA fraction to be compara-
tively more influential than the other three LBAs tested.
However, the ELIMA.score, mutual information, the

prevalence of the strongest singular vectors in all the
LBAs, k-means clustering based on all four LBAs, and
the prevalence of actionable signals in all four LBAs un-
covered their additive prognostic value and showed
that—though influential—using CTC gDNA alone does
not suffice.
We conclude that CTC gDNA, CTC mRNA, EV

mRNA, and cfDNA are complementary rather than
competitive and a multi-parametric liquid biopsy ap-
proach like the ELIMA project, which simultaneously in-
terrogates diverse LBAs, is worth using in clinical
practice, because it enables the generation of a high-
resolution snapshot of the genomic and transcriptomic
disease complexity.

Abbreviations
BC: Breast cancer; cfDNA: Cell-free DNA; ctDNA: Cell-free tumor DNA;
CTCs: Circulating tumor cells; ELIMA: Evaluation of multiple Liquid biopsy
analytes In Metastatic breast cancer patients All from one blood sample;
ER: Estrogen receptor; EVs: Extracellular vesicles; gDNA: Genomic DNA;
HR+: Hormone receptor-positive; IVA: Ingenuity Variant Analysis;
IQR: Interquartile range; LBAs: Liquid biopsy analytes; mRNA: Messenger RNA;
MBC: Metastatic breast cancer; OS: Overall survival; PR: Progesterone receptor;
PCA: Principal component analysis; RT-qPCR: Real-time quantitative PCR; RECI
ST: Response Evaluation Criteria in Solid Tumors; SVD: Singular value
decomposition; UMIs: Unique molecular indices

List of genes
AKT1: AKT serine/threonine kinase 1; AKT2: AKT serine/threonine kinase 2;
AR: Androgen receptor; AURKA: Aurora kinase A; BRCA1: BRCA1 DNA repair
associated; BRCA2: BRCA2 DNA repair associated; EGFR: Epidermal growth
factor receptor; EpCAM: Epithelial cell adhesion molecule; ERCC1: ERCC
excision repair 1, endonuclease non-catalytic subunit; ERCC4: ERCC excision
repair 4, endonuclease non-catalytic subunit; ERBB2: erb-b2 receptor tyrosine
kinase 2 coding for the HER2 protein; ERBB3: erb-b2 receptor tyrosine kinase
3; ESR1: Estrogen receptor 1; FGFR1: Fibroblast growth factor receptor 1;
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; KIT: KIT proto-
oncogene receptor tyrosine kinase; KRT5: Keratin 5; KRAS: KRAS proto-
oncogene, GTPase; MET: MET proto-oncogene, receptor tyrosine kinase;
mTOR: Mechanistic target of rapamycin; MUC16: Mucin 16, cell-surface asso-
ciated; NOTCH1: Notch 1; PARP1: Poly(ADP-ribose) polymerase 1;
PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha; PIK3R1: Phosphoinositide-3-kinase regulatory subunit 1;
PTEN: Phosphatase and tensin homolog; PTGFR: Prostaglandin F receptor;
PTPRC: Protein tyrosine phosphatase, receptor type, C (also known as CD45);
SOX17: SRY-box transcription factor 17; SRC: SRC proto-oncogene, non-
receptor tyrosine kinase; TGFB1: Transforming growth factor beta 1

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13073-021-00902-1.

Additional file 1: Table S1. Patient characteristics.

Additional file 2: Supplementary methods.

Additional file 3: Table S2. Sequencing quality parameters.

Additional file 4: Table S3. Called cfDNA and CTCgDNA variants, their
corresponding allele frequencies and indication of identical variants
detected in the germline control.

Additional file 5: Table S4. Hierarchical clustering results, their
permutations, and the ELIMA.score.

Additional file 6: Fig. S1. Elbow curves illustrating the ability of
individual analytes and the combination of all four analytes to form
stable clusters.

Additional file 7: Fig. S2. Heatmap.

Additional file 8: Table S5. Literature research for actionable marker in
breast cancer.

Acknowledgements
We highly appreciate the consent of all patients for their participation in this
research study. The authors thank all involved nurses and physicians from
the Department of Gynecology and Obstetrics, University Hospital of Essen,
Germany, for their commitment in sampling and educating the patients.

Authors’ contributions
Conceptualization, C.K., V.S., S.H., P.H., M.S.H., and S.K.B.; data curation, C.K. and
M.S.; formal analysis, C.K., V.S., S.H., and M.S.; resources, H.C.K., M.T., O.H., and
R.K.; software, V.S., S.H., and M.S.; supervision, S.H., P.H., M.S.H., and S.K.B.;
visualization, C.K., V.S., and S.H.; writing—original draft preparation, C.K.;
writing—review and editing, V.S., S.H., M.S., P.H., M.S.H., and S.K.B. All authors
read and approved the final manuscript.

Keup et al. Genome Medicine           (2021) 13:85 Page 12 of 14

https://doi.org/10.1186/s13073-021-00902-1
https://doi.org/10.1186/s13073-021-00902-1


Funding
The exoEasy kits, QIAamp MinElute ccfDNA kits, AllPrep DNA/RNA Nano
prototype, and QIAseq Targeted DNA Panel kits were kindly provided by
QIAGEN, Hilden, Germany. The sequencing analysis was funded by QIAGEN,
Hilden, Germany. Manuscript writing was supported by funding from the
Graduate School of Biomedical Science Postdoctoral Excellence Programme
(BIOME PEP) of the Medical Faculty University Duisburg-Essen to C.K. The
funding bodies had no role in the design of the study and collection,
analysis, and interpretation of data and in writing the manuscript other than
declared for the employees at QIAGEN in the “Authors’ contributions” sec-
tion. Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
Original raw sequencing data are available at the European Nucleotide
Archive with the study accession number PRJEB39331 (https://www.ebi.ac.
uk/ena/browser/view/PRJEB39331) [22]. The sequencing quality parameters
for each sample are summarized in Additional file 3: Table S2. All called
variants and their corresponding allele frequencies are listed per patient and
per analyte in Additional file 4: Table S3. The binary data (variant/
overexpression signal yes/no) of all patients (n=26) within all LBAs are listed
in Additional file 7: Fig. S2.

Declarations

Ethics approval and consent to participate
This study was approved by the Ethics Committee of the University Hospital
of Essen under the reference number 12-5265-BO. Written informed consent
was obtained from all participants at enrollment, and specimens were col-
lected using protocols approved by the ethics commission. This research
conformed to the principles of the Helsinki Declaration.

Consent for publication
Not applicable.

Competing interests
C.K. received support for travel expenses from QIAGEN, Hilden, Germany. V.S.,
S.H., M.S., P.H., and M.S.H are employees at QIAGEN, Hilden, Germany. H.C.K.
has received honoraria from Pfizer, Novartis, Roche, Genomic Health, Amgen,
AstraZeneca, Riemser, Carl Zeiss Meditec, TEVA, Theraclion, Janssen-Cilag,
GSK, LIV Pharma, Onkowissen, and SurgVision. H.C.K. received nonfinancial
support from Carl Zeiss Meditec, Novartis, Pfizer, Amgen, Roche, LIV Pharma,
Tesaro, Daiichi Sankyo, and Genomic Health. H.C.K. is a stockholder of Thera-
clion SA and Phaon scientific. O.H. received honoraria from Riemser, Roche,
Amgen, Pfizer, Eisai, Hexal, MSD, Daiichi Sankyo, and Novartis. R.K. has re-
ceived honoraria from Tesaro and AstraZeneca in the last 3 years, is part of
the advisory board from Medtronic and council of IGCS and president of
SERGS, and proctored and presented for Intuitive Surgical. S.K.B. is a consult-
ant for QIAGEN, Hilden, Germany. The remaining author M.T. declares that
she has no competing interests.

Author details
1Department of Gynecology and Obstetrics, University Hospital of Essen,
Hufelandstr. 55, 45122 Essen, Germany. 2QIAGEN GmbH, 40724 Hilden,
Germany. 3Department of Gynecology and Obstetrics, Marienhospital
Bottrop, 46236 Bottrop, Germany. 4Department of Medical Oncology,
University Hospital of Essen, 45122 Essen, Germany.

Received: 29 September 2020 Accepted: 30 April 2021

References
1. Venesio T, Siravegna G, Bardelli A, Sapino A. Liquid biopsies for monitoring

temporal genomic heterogeneity in breast and colon cancers. Pathobiology.
2017;85(1-2):146–54. https://doi.org/10.1159/000473882.

2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al.
Cancer incidence and mortality worldwide: sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. https://doi.
org/10.1002/ijc.29210.

3. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al.
Circulating tumor cells, disease progression, and survival in metastatic

breast cancer. N Engl J Med. 2004;351(8):781–91. https://doi.org/10.1056/
NEJMoa040766.

4. Bidard F-C, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, et al.
Clinical validity of circulating tumour cells in patients with metastatic breast
cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;
15(4):406–14. https://doi.org/10.1016/S1470-2045(14)70069-5.

5. Rossi G, Mu Z, Rademaker AW, Austin LK, Strickland KS, Costa RLB, et al. Cell-
free DNA and circulating tumor cells: comprehensive liquid biopsy analysis
in advanced breast cancer. Clin Cancer Res. 2018;24(3):560–8. https://doi.
org/10.1158/1078-0432.CCR-17-2092.

6. Rodríguez M, Silva J, Herrera A, Herrera M, Peña C, Martín P, et al. Exosomes
enriched in stemness/metastatic-related mRNAS promote oncogenic
potential in breast cancer. Oncotarget. 2015;6:40575–87. https://doi.org/10.1
8632/oncotarget.5818.

7. Georgoulias V, Bozionelou V, Agelaki S, Perraki M, Apostolaki S, Kallergi G,
et al. Trastuzumab decreases the incidence of clinical relapses in patients
with early breast cancer presenting chemotherapy-resistant CK-19mRNA-
positive circulating tumor cells: results of a randomized phase II study. Ann
Oncol. 2012;23(7):1744–50. https://doi.org/10.1093/annonc/mds020.

8. Cabel L, Proudhon C, Gortais H, Loirat D, Coussy F, Pierga J-Y, et al.
Circulating tumor cells: clinical validity and utility. Int J Clin Oncol. 2017;
22(3):421–30. https://doi.org/10.1007/s10147-017-1105-2.

9. Wang C, Mu Z, Ye Z, Zhang Z, Abu-Khalaf MM, Silver DP, et al. Prognostic
value of HER2 status on circulating tumor cells in advanced-stage breast
cancer patients with HER2-negative tumors. Breast Cancer Res Treat. 2020;
181(3):679–89. https://doi.org/10.1007/s10549-020-05662-x.

10. Takeshita T, Yamamoto Y, Yamamoto-Ibusuki M, Tomiguchi M, Sueta A,
Murakami K, et al. Analysis of ESR1 and PIK3CA mutations in plasma cell-free
DNA from ER-positive breast cancer patients. Oncotarget. 2017;8:52142–55.
https://doi.org/10.18632/oncotarget.18479.

11. Clatot F, Perdrix A, Beaussire L, Lequesne J, Lévy C, Emile G, et al. Risk of
early progression according to circulating ESR1 mutation, CA-15.3 and
cfDNA increases under first-line anti-aromatase treatment in metastatic
breast cancer. Breast Cancer Res. 2020;22(1):56. https://doi.org/10.1186/s13
058-020-01290-x.

12. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al.
Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast
cancer. N Engl J Med. 2019;380(20):1929–40. https://doi.org/10.1056/
NEJMoa1813904.

13. Keup C, Mach P, Aktas B, Tewes M, Kolberg H-C, Hauch S, et al. RNA profiles
of circulating tumor cells and extracellular vesicles for therapy stratification
of metastatic breast cancer patients. Clin Chem. 2018;64(7):1054–62. https://
doi.org/10.1373/clinchem.2017.283531.

14. Keup C, Storbeck M, Hauch S, Hahn P, Sprenger-Haussels M, Hoffmann O,
et al. Multimodal targeted deep sequencing of circulating tumor cells and
matched cell-free DNA provides a more comprehensive tool to identify
therapeutic targets in metastatic breast cancer patients. Cancers (Basel).
2020;12:1084. https://doi.org/10.3390/cancers12051084.

15. Beije N, Sieuwerts AM, Kraan J, Van NM, Onstenk W, Vitale SR, et al. Estrogen
receptor mutations and splice variants determined in liquid biopsies from
metastatic breast cancer patients. Mol Oncol. 2018;12(1):48–57. https://doi.
org/10.1002/1878-0261.12147.

16. Shaw JA, Guttery DS, Hills A, Fernandez-Garcia D, Page K, Rosales BM, et al.
Mutation analysis of cell-free DNA and single circulating tumor cells in
metastatic breast cancer patients with high circulating tumor cell counts. Clin
Cancer Res. 2017;23(1):88–96. https://doi.org/10.1158/1078-0432.CCR-16-0825.

17. Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Politaki E, Voutsina A, et al.
ESR1 methylation: a liquid biopsy-based epigenetic assay for the follow-up
of patients with metastatic breast cancer receiving endocrine treatment.
Clin Cancer Res. 2018;24(6):1500–10. https://doi.org/10.1158/1078-0432.
CCR-17-1181.

18. Chimonidou M, Strati A, Malamos N, Georgoulias V, Lianidou ES. SOX17
promoter methylation in circulating tumor cells and matched cell-free DNA
isolated from plasma of patients with breast cancer. Clin Chem. 2013;59(1):
270–9. https://doi.org/10.1373/clinchem.2012.191551.

19. Chimonidou M, Strati A, Malamos N, Kouneli S, Georgoulias V, Lianidou E.
Direct comparison study of DNA methylation markers in EpCAM-positive
circulating tumour cells, corresponding circulating tumour DNA, and paired
primary tumours in breast cancer. Oncotarget. 2017;8:72054–68. https://doi.
org/10.18632/oncotarget.18679.

Keup et al. Genome Medicine           (2021) 13:85 Page 13 of 14

https://www.ebi.ac.uk/ena/browser/view/PRJEB39331
https://www.ebi.ac.uk/ena/browser/view/PRJEB39331
https://doi.org/10.1159/000473882
https://doi.org/10.1002/ijc.29210
https://doi.org/10.1002/ijc.29210
https://doi.org/10.1056/NEJMoa040766
https://doi.org/10.1056/NEJMoa040766
https://doi.org/10.1016/S1470-2045(14)70069-5
https://doi.org/10.1158/1078-0432.CCR-17-2092
https://doi.org/10.1158/1078-0432.CCR-17-2092
https://doi.org/10.18632/oncotarget.5818
https://doi.org/10.18632/oncotarget.5818
https://doi.org/10.1093/annonc/mds020
https://doi.org/10.1007/s10147-017-1105-2
https://doi.org/10.1007/s10549-020-05662-x
https://doi.org/10.18632/oncotarget.18479
https://doi.org/10.1186/s13058-020-01290-x
https://doi.org/10.1186/s13058-020-01290-x
https://doi.org/10.1056/NEJMoa1813904
https://doi.org/10.1056/NEJMoa1813904
https://doi.org/10.1373/clinchem.2017.283531
https://doi.org/10.1373/clinchem.2017.283531
https://doi.org/10.3390/cancers12051084
https://doi.org/10.1002/1878-0261.12147
https://doi.org/10.1002/1878-0261.12147
https://doi.org/10.1158/1078-0432.CCR-16-0825
https://doi.org/10.1158/1078-0432.CCR-17-1181
https://doi.org/10.1158/1078-0432.CCR-17-1181
https://doi.org/10.1373/clinchem.2012.191551
https://doi.org/10.18632/oncotarget.18679
https://doi.org/10.18632/oncotarget.18679


20. Keup C, Storbeck M, Hauch S, Hahn P, Sprenger-Haussels M, Tewes M, et al.
Cell-free DNA variant sequencing using CTC-depleted blood for
comprehensive liquid biopsy testing in metastatic breast cancer. Cancers
(Basel). 2019;11:238. https://doi.org/10.3390/cancers11020238.

21. Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M,
et al. Characterization of RNA from exosomes and other extracellular
vesicles isolated by a novel spin column-based method. Plos One. 2015;
10(8):e0136133. https://doi.org/10.1371/journal.pone.0136133.

22. Keup C. Multi-parametric liquid biopsy approach: CTC gDNA, CTC mRNA,
cfDNA, EV mRNA. 2020. https://www.ebi.ac.uk/ena/browser/view/PRJEB39331.

23. Strang G. Introduction to linear algebra. 4th ed. Wellesley: Wellesley-
Cambridge Press; 2009.

24. Cover TM, Thomas JA. Elements of information theory. 2nd ed. Hoboken:
Wiley-Interscience; 2006.

25. Lloyd S. Least squares quantization in PCM. IEEE Trans. Inform. Theory. 1982;
28(2):129–37. https://doi.org/10.1109/TIT.1982.1056489.

26. Ketchen DJ, Shook CL. The application of cluster analysis in strategic
management research: an analysis and critique. Strateg Manage J. 1996;
17(6):441–58. https://doi.org/10.1002/(SICI)1097-0266(199606)17:6<441::AID-
SMJ819>3.0.CO;2-G.

27. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for
exploring and manipulating networks; 2009.

28. Hu Y. Algorithms for visualizing large networks. In: Schenk O, editor.
Combinatorial scientific computing: Chapman and Hall/CRC; 2012. p. 525–
549. doi:https://doi.org/10.1201/b11644-20

29. Freeman LC. A set of measures of centrality based on betweenness.
Sociometry. 1977;40(1):35. https://doi.org/10.2307/3033543.

30. R Core Team. R: A language and environment for statistical computing.
2019. https://www.R-project.org/.

31. Wickham H. ggplot2: elegant graphics for data analysis. Cham: Springer;
2016. https://doi.org/10.1007/978-3-319-24277-4.

32. Galili T, O’Callaghan A, Sidi J, Sievert C. heatmaply: an R package for
creating interactive cluster heatmaps for online publishing. Bioinformatics.
2018;34(9):1600–2. https://doi.org/10.1093/bioinformatics/btx657.

33. Harrell FE, with contributions from Charles Dupont and many others. Hmisc:
Harrell miscellaneous: R package version 4.3-0. 2019. https://CRAN.R-project.
org/package=Hmisc.

34. Meyer PE. infotheo: information-theoretic measures: R package version 1.2.0.
https://CRAN.R-project.org/package=infotheo. Accessed 26 Jul 2014.

35. Weiner J. pca3d: three dimensional PCA plots: R package version 0.10.1.
2019. https://CRAN.R-project.org/package=pca3d.

36. Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J. shiny: web application
framework for R. R package version 1.4.0. 2019. https://CRAN.R-project.org/
package=shiny.

37. Therneau T. A package for survival analysis in R: R package version 3.2-10.
2021. https://CRAN.R-project.org/package=survival.

38. Chen H. VennDiagram: generate high-resolution Venn and Euler plots: R
package version 1.6.20. 2018. https://CRAN.R-project.org/package=VennDiagram.

39. Condorelli R, Mosele F, Verret B, Bachelot T, Bedard PL, Cortes J, et al.
Genomic alterations in breast cancer: level of evidence for actionability
according to ESMO Scale for Clinical Actionability of molecular Targets
(ESCAT). Ann Oncol. 2019;30(3):365–73. https://doi.org/10.1093/annonc/
mdz036.

40. Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D’Amato NC,
et al. Role of the androgen receptor in breast cancer and preclinical analysis
of enzalutamide. Breast Cancer Res. 2014;16(1):R7. https://doi.org/10.1186/
bcr3599.

41. Cirak Y, Furuncuoglu Y, Yapicier O, Aksu A, Cubukcu E. Aurora A
overexpression in breast cancer patients induces taxane resistance and
results in worse prognosis. J Buon. 2015;20(6):1414–9.

42. EL Baiomy MA, El Kashef WF. ERCC1 expression in metastatic triple
negative breast cancer patients treated with platinum-based
chemotherapy. Asian Pac J Cancer Prev. 2017;18:507–13. https://doi.
org/10.22034/APJCP.2017.18.2.507.

43. Adamczyk A, Grela-Wojewoda A, Domagała-Haduch M, Ambicka A, Harazin-
Lechowska A, Janecka A, et al. Proteins involved in HER2 signalling pathway,
their relations and influence on metastasis-free survival in HER2-positive
breast cancer patients treated with trastuzumab in adjuvant setting. J
Cancer. 2017;8(1):131–9. https://doi.org/10.7150/jca.16239.

44. Peiró G, Ortiz-Martínez F, Gallardo A, Pérez-Balaguer A, Sánchez-Payá J,
Ponce JJ, et al. Src, a potential target for overcoming trastuzumab resistance

in HER2-positive breast carcinoma. Br J Cancer. 2014;111(4):689–95.
https://doi.org/10.1038/bjc.2014.327.

45. AGO Breast Committee. Diagnosis and treatment of patients with primary
and metastatic breast cancer.: Recommendations 2020. 2020. https://www.a
go-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_ma
mma/2020/Alle_aktuellen_Empfehlungen_2020.pdf. Accessed 30 Mar 2020.

46. Bidard F-C, Jacot W, Dureau S, Brain E, Bachelot T, Bourgeois H, et al.
Abstract GS3-07: clinical utility of circulating tumor cell count as a tool to
chose between first line hormone therapy and chemotherapy for ER+
HER2- metastatic breast cancer: results of the phase III STIC CTC trial. In:
Abstracts: 2018 San Antonio Breast Cancer Symposium; December 4-8,
2018; San Antonio, Texas: American Association for Cancer Research;
02152019. GS3-07-GS3-07. doi:10.1158/1538-7445.SABCS18-GS3-07.

47. Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT,
et al. Feasibility of blood testing combined with PET-CT to screen for cancer
and guide intervention. Science. 2020;369(6499):eabb9601. https://doi.org/1
0.1126/science.abb9601.

48. Wan JCM, Heider K, Gale D, Murphy S, Fisher E, Mouliere F, et al. ctDNA
monitoring using patient-specific sequencing and integration of variant
reads. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aaz8084.

49. Wang W, Liang M, Ma G, Li L, Zhou W, Xia T, et al. Plasma cell-free DNA
integrity plus circulating tumor cells: a potential biomarker of no distant
metastasis breast cancer. Neoplasma. 2017;64(04):611–8. https://doi.org/1
0.4149/neo_2017_417.

50. Pierga J-Y, Silveira A, Tredan O, Tanguy M-L, Lorgis V, Dubot C, et al.
Multimodality liquid biopsy for early monitoring and outcome prediction in
first-line metastatic HER2-negative breast cancer: final results of the
prospective cohort from the French Breast Cancer InterGroup Unicancer
(UCBG)— COMET study. J Clin Oncol. 2019;37(15_suppl):3019. https://doi.
org/10.1200/JCO.2019.37.15_suppl.3019.

51. Liu HE, Vuppalapaty M, Wilkerson C, Renier C, Chiu M, Lemaire C, et al.
Detection of EGFR mutations in cfDNA and CTCs, and comparison to tumor
tissue in non-small-cell-lung-cancer (NSCLC) patients. Front Oncol. 2020;10:
572895. https://doi.org/10.3389/fonc.2020.572895.

52. Welter L, Xu L, McKinley D, Dago AE, Prabakar RK, Restrepo-Vassalli S, et al.
Treatment response and tumor evolution: lessons from an extended series of
multianalyte liquid biopsies in a metastatic breast cancer patient. Cold Spring
Harb Mol Case Stud. 2020;6(6):a005819. https://doi.org/10.1101/mcs.a005819.

53. Schneegans S, Lück L, Besler K, Bluhm L, Stadler J-C, Staub J, et al. Pre-
analytical factors affecting the establishment of a single tube assay for
multiparameter liquid biopsy detection in melanoma patients. Mol Oncol.
2020;14(5):1001–15. https://doi.org/10.1002/1878-0261.12669.

54. Hodara E, Morrison G, Cunha A, Zainfeld D, Xu T, Xu Y, et al. Multiparametric
liquid biopsy analysis in metastatic prostate cancer. JCI Insight. 2019;4(5).
https://doi.org/10.1172/jci.insight.125529.

55. Hofmann L, Sallinger K, Haudum C, Smolle M, Heitzer E, Moser T, et al. A multi-
analyte approach for improved sensitivity of liquid biopsies in prostate cancer.
Cancers (Basel). 2020;12:2247. https://doi.org/10.3390/cancers12082247.

56. Yang Z, LaRiviere MJ, Ko J, Till JE, Christensen T, Yee SS, et al. A multi-
analyte panel consisting of extracellular vesicle miRNAs and mRNAs, cfDNA,
and CA19-9 shows utility for diagnosis and staging of pancreatic
adenocarcinoma. Clin Cancer Res. 2020;26(13):3248–58. https://doi.org/10.11
58/1078-0432.CCR-19-3313.

57. Nabet BY, Esfahani MS, Moding EJ, Hamilton EG, Chabon JJ, Rizvi H, et al.
Noninvasive early identification of therapeutic benefit from immune
checkpoint inhibition. Cell. 2020;183(2):363–376.e13. https://doi.org/10.1016/
j.cell.2020.09.001.

58. Kim N, Hong Y, Kwon D, Yoon S. Somatic mutaome profile in human
cancer tissues. Genomics Inform. 2013;11(4):239–44. https://doi.org/10.5808/
GI.2013.11.4.239.

59. Tan H, Bao J, Zhou X. Genome-wide mutational spectra analysis reveals
significant cancer-specific heterogeneity. Sci Rep. 2015;5(1):12566.
https://doi.org/10.1038/srep12566.

60. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al.
Mutational heterogeneity in cancer and the search for new cancer-associated
genes. Nature. 2013;499(7457):214–8. https://doi.org/10.1038/nature12213.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Keup et al. Genome Medicine           (2021) 13:85 Page 14 of 14

https://doi.org/10.3390/cancers11020238
https://doi.org/10.1371/journal.pone.0136133
https://www.ebi.ac.uk/ena/browser/view/PRJEB39331
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
https://doi.org/10.1201/b11644-20
https://doi.org/10.2307/3033543
https://www.r-project.org/
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1093/bioinformatics/btx657
https://cran.r-project.org/package=Hmisc
https://cran.r-project.org/package=Hmisc
https://cran.r-project.org/package=infotheo
https://cran.r-project.org/package=pca3d
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=VennDiagram
https://doi.org/10.1093/annonc/mdz036
https://doi.org/10.1093/annonc/mdz036
https://doi.org/10.1186/bcr3599
https://doi.org/10.1186/bcr3599
https://doi.org/10.22034/APJCP.2017.18.2.507
https://doi.org/10.22034/APJCP.2017.18.2.507
https://doi.org/10.7150/jca.16239
https://doi.org/10.1038/bjc.2014.327
https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/Alle_aktuellen_Empfehlungen_2020.pdf
https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/Alle_aktuellen_Empfehlungen_2020.pdf
https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/Alle_aktuellen_Empfehlungen_2020.pdf
https://doi.org/10.1126/science.abb9601
https://doi.org/10.1126/science.abb9601
https://doi.org/10.1126/scitranslmed.aaz8084
https://doi.org/10.4149/neo_2017_417
https://doi.org/10.4149/neo_2017_417
https://doi.org/10.1200/JCO.2019.37.15_suppl.3019
https://doi.org/10.1200/JCO.2019.37.15_suppl.3019
https://doi.org/10.3389/fonc.2020.572895
https://doi.org/10.1101/mcs.a005819
https://doi.org/10.1002/1878-0261.12669
https://doi.org/10.1172/jci.insight.125529
https://doi.org/10.3390/cancers12082247
https://doi.org/10.1158/1078-0432.CCR-19-3313
https://doi.org/10.1158/1078-0432.CCR-19-3313
https://doi.org/10.1016/j.cell.2020.09.001
https://doi.org/10.1016/j.cell.2020.09.001
https://doi.org/10.5808/GI.2013.11.4.239
https://doi.org/10.5808/GI.2013.11.4.239
https://doi.org/10.1038/srep12566
https://doi.org/10.1038/nature12213


This text is made available via DuEPublico, the institutional repository of the University of
Duisburg-Essen. This version may eventually differ from another version distributed by a
commercial publisher.

DOI:
URN:

10.1186/s13073-021-00902-1
urn:nbn:de:hbz:465-20240815-123639-8

This work may be used under a Creative Commons Attribution 4.0
License (CC BY 4.0).

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.1186/s13073-021-00902-1
https://nbn-resolving.org/urn:nbn:de:hbz:465-20240815-123639-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients
	Sample collection and liquid biopsy analyte extraction
	Quantitative PCR
	Sequencing
	The ELIMA.score and further statistical analyses

	Results
	Multi-modal liquid biopsy approach with four liquid biopsy analytes
	A large dataset
	Sensitivity and number of signals per patient
	Prognostic value of individual parameters
	Actionable signals for targeted therapy decisions
	Hierarchical clustering and the ELIMA.score
	Mutual information and the Euler diagram
	The analytes and their strongest singular vectors
	Results of k-means clustering based on a combination of all analytes
	Graph-theoretic analysis

	Discussion
	Conclusions
	Abbreviations
	List of genes
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note
	Leere Seite

