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1  | INTRODUC TION

Biodiversity assessments using DNA metabarcoding are increasingly 
applied in ecological research and environmental monitoring. In par-
ticular for arthropod bioassessments, bulk sample metabarcoding is 
frequently used for both aquatic and terrestrial environments. The 
method typically uses homogenized or lysed tissue from specimens as 

input. Specimens are either collected from traps (Basset et al., 2020; 
Braukmann et al., 2019; Hardulak et al., 2020; Yu et al., 2012), from 
manual net catches (Elbrecht et  al.,  2017; Kuntke et  al.,  2020; Zizka 
et al., 2020), or from litter or soil samples (Arribas et al., 2016; Porter 
et  al.,  2019). Furthermore, DNA extracted from the sample fixative 
(Erdozain et al., 2019; Martins et al., 2019; Zizka et al., 2018) or directly 
from environmental samples (eDNA) (Hajibabaei, Porter, Robinson, 
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Abstract
DNA metabarcoding is a powerful tool to assess arthropod diversity in environ-
mental bulk samples such as Malaise trap, pitfall trap, or hand net samples. While 
comparative performance tests for different extraction protocols, primers, and Taq 
polymerases have been made, the effect of different PCR volumes on bulk sample 
metabarcoding performance is less explored. Although using small PCR volumes re-
duces overall costs, they may lead to decreased taxon recovery or higher replicate 
variability due to increased pipetting imprecision, PCR stochasticity (PCR drift), or in-
hibition when using high amounts of template community DNA. We here performed 
a simple DNA metabarcoding experiment to test if species detection and the con-
sistency of technical replicates decrease with decreasing PCR volume in standard 
reaction tubes. We used a mock community sample consisting of different amounts 
of DNA from 35 arthropod species, and a Malaise trap sample composed of many 
thousand insect specimens. PCR volumes tested were 5, 10, 15, 20, 25, and 50 µl. 
Both samples were replicated 14 times in the first PCR step with two technical repli-
cates each in the second PCR step. Our data show that small PCR volumes did neither 
have systematically lower species detection or richness values, nor lower consistency 
between PCR replicates. We therefore recommend low volumes primarily depending 
on handling constraints. Further, we emphasize the importance of sequencing depth 
for taxon recovery.

K E Y W O R D S

amplicon sequencing, biomonitoring, bulk sample, Malaise trap, PCR bias

http://www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0002-8499-5863
https://orcid.org/0000-0002-5465-913X
https://orcid.org/0000-0002-7088-4644
http://creativecommons.org/licenses/by/4.0/
mailto:dominik.buchner@uni-due.de
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.7753&domain=pdf&date_stamp=2021-06-11


|  9093BUCHNER et al.

et al., 2019; Leese et al., 2020; Mächler et al., 2014, 2019) can be used 
as an input for DNA metabarcoding-based species detection (see e.g., 
Blackman et  al.,  2019 for an overview). Different extraction meth-
ods have been tested and good practice solutions exist (Majaneva 
et al., 2018). Likewise, suitable primers have been identified for differ-
ent purposes (Elbrecht et al., 2019; Elbrecht & Leese, 2017; Hajibabaei 
et al., 2019; Leray et al., 2013; Tab erlet et al., 2018) and robust metabar-
coding Taq polymerases have been suggested (Nichols et al., 2018).

One aspect that has so far received little attention in bulk sam-
ple metabarcoding is the role of different PCR volumes of DNA me-
tabarcoding performance. Current studies typically use 10 µl to 50 µl 
total PCR volumes (Aylagas et al., 2014; Clarke et al., 2017; Elbrecht 
et  al.,  2017; Kuntke et  al.,  2020). Some arthropod metabarcoding 
studies, however, also successfully used volumes below 10 µl, for ex-
ample, Braukmann et al., (2019) used 6 µl total reaction volumes for 
Malaise trap metabarcoding. Volume recommendations for a very 
reliable PCR mastermix identified for DNA metabarcoding in Nichlos 
et al. (2018), that is, the Qiagen MasterMix, is even 50 µl. For com-
paratively high DNA concentrations, which are typically achieved 
from bulk samples, larger reaction volumes (or smaller template:-
mastermix ratios) are sometimes recommended to minimize inhibi-
tion (see e.g., Elbrecht, Vamos, et al., 2017). This, however, leads to 
substantially higher costs, especially for large sample sizes and when 
considering sample replication (Balint et al., 2018). Even if inhibition 
does not impact on amplification, there is a risk of increased PCR 
stochasticity when miniaturizing PCR volumes, for example, due to 
reagent–tube interactions and because in miniaturized PCR volumes 
smaller absolute volume deviations have a stronger effect compared 
to large PCR volumes. For bacterial 16S amplicon sequencing, Minich 
et al., (2018) systematically tested for this effect. They found that, if 
input DNA was not too low, the detected number of operational tax-
onomic units (OTUs) was not lower and PCR stochasticity not higher 
in small (2.5 and 5 µl) compared to standard 25 µl reaction volumes. 
For metazoan bulk samples, sometimes referred to as “biodiversity 
soup” (sensu Yu et al., 2012), no systematic tests have so far been 
published and recommendations vary among researchers.

In this study, we therefore tested if species detection and richness, 
as well as the robustness of PCR, decreases with decreasing reaction 
volume. To test this, we used two different sample types, (i) a mock bulk 
sample composed of 35 different arthropod species and (ii) a complex 
arthropod sample composed of thousands of specimens from hundreds 
of insect species from a German Malaise trap sample. We replicated 
samples 14 times to obtain robust results and analyze PCR stochasticity.

2  | MATERIAL AND METHODS

2.1 | DNA extraction, PCR, and library preparation

Two different sample types were used in this study: (i) a mock com-
munity consisting of 35 distinct macroinvertebrate DNA extracts 
of known species and concentration and (ii) a size-sorted sam-
ple of a Malaise trap (see Figure S1), that had been set up in the 

Rhine-Main-Observatory for 2 weeks in July 2019, which consisted 
of several thousand specimens. The Rhine-Main-Observatory is a 
Long-Term Ecological Research (LTER) site (Haase et al., 2016; Mirtl 
et  al.,  2018) east of Frankfurt, Germany (https://deims.org/9f9ba​
137-342d-4813-ae58-a6091​1c3abc1). Prior to extraction, the 
Malaise trap sample was divided into two size classes (small <4 mm; 
large ≥4 mm), which were pooled in a 5:1 ratio (small:large) prior to 
extraction to maximize species recovery. While the specimens and 
species of the small size class contribute most to the diversity of the 
sample, their biomasses are substantially lower compared to those 
from the large size class. By increasing the amount of template of 
the small, species-rich fraction, this fraction gets much better repre-
sented and increases species recovery (Elbrecht, Vamos, et al., 2017, 
Elbrecht et al. 2020). To estimate the detection threshold, DNA ex-
tracts with a known copy number were spiked into the Malaise trap 
sample (50, 500, 5,000, 50,000 mitochondrial copies per PCR assay 
from Gammarus pulex, Gammarus fossarum, Ephemera danica, and 
Oecismus monedula). Both sample types were extracted with a modi-
fied version (Appendix S1) of the NucleoMag Tissue kit (Macherey 
Nagel, Düren, Germany).

For amplification of both sample types, 6 different assay vol-
umes (5, 10, 15, 20, 25, and 50 µl) with 14 replicates per volume were 
used in the first PCR. All PCR pipetting steps were conducted on a 
Biomek FXp liquid handling workstation (Beckmann Coulter, Bread, 
CA, USA) with custom protocols. Samples were randomly distrib-
uted among four 96-well 0.2 ml PCR plates as shown in Figure 1 in-
cluding one negative control (PCR-grade water) per volume per plate 
(32 in total) to control for contamination that might happen during 
robotic pipetting. These sample plates and volumes are typical for 
arthropod bulk metabarcoding. Samples were amplified using the 
Qiagen Multiplex PCR Plus Kit (Qiagen, Hilden, Germany) with a final 
concentration of 1x Multiplex PCR mastermix, 1x CoralLoad Dye, 
100 nmol / L of each primer (fwhF2, fwhR2n; Vamos et al., 2017) 
and 5 ng DNA. Tubes were filled up to the respective final volume 
with PCR-grade water. For amplification, a touchdown protocol was 
used: 95℃ for 5 min initial denaturation, 10 cycles of 95℃ for 30 s 
denaturation, 68–59℃ for 30 s annealing (1℃ decrease per cycle), 
and 72℃ for 30 s elongation, followed by 20 cycles with 58℃ for 
annealing, ending with 68℃ for 10 min as a final elongation step. For 
subsequent demultiplexing, all samples from the same plate were 
tagged with a 4– to 6-bp inline tag and a universal tail attached to 
the primer (Table S1; Leese et al., 2020). In the second PCR, all sam-
ples from the first PCR step were replicated twice. For each plate, 
each well was indexed individually with primers consisting of the 
respective matching universal tail sequence and an i5/i7 8-bp index 
sequence. Samples were amplified with the same concentrations as 
in the first PCR, with the exception that, depending on the assay 
volume, 1–10 µl of the first step was used as template (less for the 
smaller volumes, more for larger ones to compensate for the dilution 
effect). For amplification, the following protocol was used: 95℃ for 
5 min initial denaturation, 25 cycles of 95℃ for 30 s denaturation, 
and 72℃ for 1 min elongation concluded by 68℃ for 10 min final 
elongation. Amplification success was verified on a 1% agarose gel.

https://deims.org/9f9ba137-342d-4813-ae58-a60911c3abc1
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Assay volume was normalized to 50 µl with PCR-grade water 
and DNA concentration was measured using a Qubit 2.0 (High 
Sensitivity Kit, Thermo Fisher Scientific, Beverly, USA). All 
uniquely indexed samples were pooled with equimolar concentra-
tions into one library. The library was concentrated in a vacuum 
centrifuge (Eppendorf Concentrator Plus, Eppendorf, Hamburg, 
Germany) and cleaned up with a double-sided size selection with 
a ratio of 0.75x/0.6x using the NucleoMag Kit (Macherey Nagel, 
Düren, Germany) to remove any nonspecific products. The library 
was sequenced on an Illumina MiSeq (V3 kit, 2x300 bp) at CeGat 
GmbH (Tübingen, Germany).

2.2 | Bioinformatic analysis

Raw data of the sequencing run were delivered demultiplexed 
by index reads. Further demultiplexing of the inline tag was done 
with the python script “demultiplexer” (https://github.com/Domin​
ikBuc​hner/demul​tiplexer). Reads were then further processed 
with the JAMP pipeline (v0.67; https://github.com/Vasco​Elbre​

cht/JAMP). First, paired-end reads were merged using Usearch 
(v11.0.667, Edgar,  2010) through the command U_merge (fastq_
pctid=75). Primer sequences were trimmed using Cutadapt (v2.5, 
(Martin, 2011), and only reads with a length of 205 bp (±10) were 
retained. Prior to OTU clustering using a similarity threshold of 97%, 
reads were dereplicated and singletons excluded. Only clusters 
with at least 0.01% abundance in one sample were used in further 
analysis. Taxonomic assignment was carried out using BOLDigger 
(v1.2.1; https://github.com/Domin​ikBuc​hner/BOLDi​gger; Buchner 
& Leese, 2020). The best hit was determined with the BOLDigger 
method, which selects the most common hit above a 98% similarity 
threshold. For all subsequent analysis steps, the resulting read table 
(Table S2) combined with the taxonomic assignment was used.

2.3 | Data filtering and statistical analysis

All subsequent filtering and analysis steps were done using a custom 
python script (Appendix  S2). To reduce noise introduced by incom-
plete entries in the BOLD database, all OTUs without species-level 

F I G U R E  1   Plate design for the 1st step PCR. Numbers indicate the PCR assay volume. Red: Mock community, green: Malaise trap, black: 
no template control (NTC)
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assignment were discarded as well as species names that contained 
numbers or special characters (i.e., “sp.” or falsely entered epithet in-
formation). To account for tag-switching and cross-contamination, the 
maximum reads for every species in the 32 negative controls were sub-
tracted from the respective species’ read numbers. After computing 
sequencing depth and the number of shared species for the technical 
replicates in the second PCR, only species that were present in both of 
these replicates were retained for further analysis. To further account 
for possible low-level cross-contamination only those species were re-
tained, that were found in at least 2 of the 14 replicates in the first PCR.

Datasets were checked for normality using the Shapiro–Wilk 
test. Since only a small fraction of the datasets were normally distrib-
uted, nonparametric tests were used in the downstream analysis. To 
check for correlation of assay volume and species richness or mean 
overlap between replicates, the Spearman rank-order correlation 
was used. Possible systematic deviations in the means for groups 
were checked using the Kruskal–Wallis test. In case of significant dif-
ferences between groups, the Dunn's test was applied to compute 
all pairwise comparisons and significance levels were Bonferroni 
corrected to account for multiple testing. All statistical tests were 
conducted using the python packages “scipy” and “scikit_posthocs” 
(Terpilowski, 2019; Virtanen et al., 2020) and all plots were created 
with the python package “seaborn” (Waskom et al. 2020).

3  | RESULTS

Sequencing yielded 12,234,306 read pairs. After demultiplexing and 
filtering, we retained on average 20,935 read pairs (55,91–32,906) 
per sample. PCR volume had a significant effect on the obtained 

read count per sample for both the mock community (Kruskal–Wallis 
test, p  <  0.001; Table  S3; Figures S2, S3) and the Malaise sample 
(p =0.004). For mock community samples, read counts of 5 and 50 µl 
volumes were significantly lower than for all other tested volumes 
(Dunn's test, p  <0.001–p  =0.044, Table  S4; Figures S2, S3), but 
did not significantly differ from each other. In comparison, for the 
Malaise trap samples, read counts of the 50 µl volume samples also 
differed significantly from all other volumes (Dunn's test, p <0.005–
p =0.041, Table S4; Figures S2, S3) except for 5 µl, but the latter did 
not significantly differ from any other volume.

Despite these differences in read counts per assay volume, there 
was no correlation of tested PCR volumes and recovered species rich-
ness for mock community (Spearman's ρ, p =0.825; Table S5, Figure 2) 
or Malaise trap samples (p  =0.534). Additionally, species richness 
was not systematically different in any assay volume (mock commu-
nity: Kruskal–Wallis test, p =0.722; Malaise trap: p =0.073; Table S3, 
Figure 2 and Figure S4), further supporting the former result.

When comparing consistency of technical PCR replicates (all 
14 “assay volume replicates” were run in PCR replicate pairs), we 
observed no significant differences in shared species richness be-
tween replicates for the different assay volumes (mock commu-
nity: Kruskal–Wallis test, p =0.15; Malaise trap: p =0.057; Table S3, 
Figures S5, S6). In comparison, with on average 92% (range: 80%–
100%; Figure 3) shared species, the relative number of shared spe-
cies across all 14 samples per assay volume was higher for the less 
diverse mock community than for the species-rich Malaise trap sam-
ples with an average of 73% (range: 56% to 86%). When comparing 
the consistency of species richness across all tested assay volumes, 
we detected a weak correlation of shared species between repli-
cates and assay volumes in both the mock community (Spearman's ρ, 

F I G U R E  2   Species richness per PCR assay volume of mock community (left) and Malaise trap samples (right). The box indicates the 25th–
75th percentile, with the whiskers showing 1.5 times the interquartile range. The middle line shows the median of the data
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p =0.037, ρ = 0.089; Figure 3, Figures S7, S8; Table S5) and Malaise 
trap samples (p <0.001, ρ = −0.145).

As a quantitative measure for the two different sample types, 
mock community samples were checked for detection success of 
mock community species and Malaise trap samples were spiked with 
a known number of mitochondrial copies of four different species 
not expected to be present in a Malaise trap. Of all 35 mock com-
munity species, 23 species were detected in all replicates of all assay 
volumes, while four species were not detected a single time and the 
detection success of the remaining eight species averaged 70% (27%–
99%) across all tested assay volumes (Table S6). Results of the spike-in 
controls indicate that sequencing depth was too low to recover rare 
templates (i.e., rare or small species). We did not find any reads of 
Gammarus pulex or Ephemera danica in the samples (50 and 5,000 mi-
tochondrial copies per PCR replicate and assay volume, respectively). 
For Gammarus fossarum (500 mitochondrial copies per PCR replicate 
and assay), we found on average 5.5 reads (range: 2 to 11) per repli-
cate and assay, and a detection rate between 0.21 (15 and 25 µl) and 
0.43 (10 µl), and for Oecismus monedula (50,000 copies per replicate 
and assay) between 13 (93%) and 14 (100%) with an average of 131.7 
reads (range: 7 to 310) per replicate and assay (Table  S7). In both 
cases, species or spike-in detection rate was not correlated with the 
assay volume (Spearman's ρ, p =0.67/0.92, ρ = 0.03/−0.02; Table S5).

4  | DISCUSSION

In this DNA metabarcoding study, we tested if species detection 
or richness from arthropod bulk sample DNA (5  ng total DNA) is 
positively correlated with the used PCR reaction volume for a short 

amplicon (205 bp) and the Qiagen Multiplex PCR Plus Kit in 0.2 ml 
standard reaction tubes with 100 nmol/L primer concentration. All 
samples were successfully amplified at first attempt regardless of 
the volume used. Further, we found that reaction volume is uncor-
related with species or spike-in detection rate or species richness 
regardless of sample type. This confirms findings made for 16S bac-
terial communities (Minich et  al.,  2018), where OTU richness was 
also similar between 2.5, 5, and 25 µl reactions. When comparing the 
two different sample types used, we found the overlap among the 
14 PCR replicates to be higher in the less complex mock community 
sample than in the Malaise trap sample, but also here, consistency 
between replicates did not increase with reaction volume, but was 
similarly high for all volumes. To obtain a similarly high consistency 
among replicates for the extremely species-rich Malaise trap sample, 
a greater sequencing depth would be needed, or pooling would need 
to be adjusted to better reflect the expected species diversity in the 
different sample types.

For 50 µl volumes of both sample types, we obtained a signifi-
cantly lower number of reads after filtering, while for the mock 
community sample read numbers were also significantly lower for 
the 5 µl reaction. The lower sequencing depth for 50 µl reactions 
was probably a result of the used laboratory workflow. Because un-
specific amplification (e.g., primer dimer) was generally low, we de-
cided to directly measure concentrations with Qubit Fluorometer 
and pooled equimolarly depending on the concentrations mea-
sured. However, for the 50 µl reactions, a higher primer:template 
ratio was used (as input template amount was standardized), which 
likely led to a systematically higher unspecific amplification, over-
estimating the target template concentration when using Qubit 
for quantification. Therefore, probably less target template was 

F I G U R E  3   Proportion of shared species between replicates of mock community (left) and Malaise trap samples (right). The box indicates 
the 25th–75th percentile, with the whiskers showing 1.5 times the interquartile range. The middle line shows the median of the data
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pooled in comparison to the other reaction volumes. For some 
5 µl reactions, measured concentrations were slightly lower than 
needed for equimolar pooling, which might have influenced se-
quencing depth here for the mock community samples. In both 
cases, the issue could be overcome by using any clean-up method 
prior to pooling or using a quantification method that accounts 
for amplicon size (e.g., Bioanalyzer, Fragment Analyzer). However, 
the difference in read numbers is not directly correlated with the 
reaction volume.

For the mock community, sufficient sequencing depth can easily 
be tested by analyzing the detection rates for the different species. 
This is not possible for samples with unknown species composition. 
However, these samples can either be controlled by checking rep-
licate consistency or detection rate of spike-ins with known DNA 
template copy numbers. While the first method only allows distin-
guishing between sufficient or insufficient sequencing depth, the 
latter additionally allows estimating a threshold for the amount of 
input DNA needed for species detection. This method is already ap-
plied in PCR-free study designs (Chen et al. 2016, Yu et al. 2020), 
and we here tried to adapt it to our metabarcoding workflow. Even 
though this method had worked in principle, primer bias has to be 
better considered when choosing species as we could detect the 
500 copy spike-in in some replicates, but not the 5.000 copy spike-in 
probably due to primer bias. This issue could be overcome, for exam-
ple, by using a synthetic DNA template (Lutzmayer et al., 2017) that 
is not affected by primer bias.

We conclude that the outcome of metabarcoding studies, es-
pecially for arthropod bulk samples with little inhibition, is not sys-
tematically influenced by the PCR volume used. Thus, studies using 
different PCR volumes should lead to comparable results. Even 
though all PCRs amplified successfully at first attempt, inhibition 
might be a concern when scaling down PCR assay volumes as a re-
sult of either high template or inhibitor concentration introduced 
by different sample types (e.g., soil or litter samples, Schrader et al. 
2012). While both issues can be solved by dilution of template DNA, 
it might be beneficial to increase PCR volume for such samples with 
high inhibitor concentrations, or to use inhibitor removal protocols 
prior to PCR (Schrader et al. 2012, Hu et al. 2015).

While further exploration is needed for individual sample types 
and the practicability in laboratory handling has to be considered, 
our results encourage the use of small PCR volumes in metabarcod-
ing studies. The cost savings up to an order of magnitude open up 
possibilities to increase the number of biological replicates.
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