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Quantum electromechanics with levitated nanoparticles
Lukas Martinetz1, Klaus Hornberger 1, James Millen2, M. S. Kim3 and Benjamin A. Stickler 1,3✉

Preparing and observing quantum states of nanoscale particles is a challenging task with great relevance for quantum technologies
and tests of fundamental physics. In contrast to atomic systems with discrete transitions, nanoparticles exhibit a practically
continuous absorption spectrum and thus their quantum dynamics cannot be easily manipulated. Here, we demonstrate that
charged nanoscale dielectrics can be artificially endowed with a discrete level structure by coherently interfacing their rotational
and translational motion with a superconducting qubit. We propose a pulsed scheme for the generation and read-out of motional
quantum superpositions and entanglement between several levitated nanoparticles, providing an all-electric platform for
networked hybrid quantum devices.
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INTRODUCTION
Opto- and electromechanical systems are at the cutting edge of
modern quantum devices1–3, with great potential for technological
application and fundamental tests4–6. Levitating nanoscale objects
almost perfectly isolates them from their surroundings, enabling
superior force sensitivity and coherence times7. Optically levitated
nanoparticles have been successfully cooled into their motional
quantum groundstate8, opening the door to free-fall center-of-
mass9–11 and rotational12,13 quantum superposition tests.
Quantum experiments with trapped nanoparticles7 require

schemes to control their rotational and translational quantum
states. Continuous-wave optical techniques are limited by the
detrimental impact of photon scattering decoherence14 and by
internal heating due to photon absorption15,16. In addition, the
fact that nanoscale particles lack the discrete internal spectrum of
atoms or other microscopic quantum systems makes it difficult to
address them coherently with laser pulses.
Here, we demonstrate that the states of a superconducting

qubit can be used to manipulate and read out the quantum
dynamics of a charged nanoparticle levitated in a Paul trap
(see Fig. 1). While this has been achieved with clamped
oscillators2,17–19, for levitated nanoparticles it requires decoupling
their rotations from their center-of-mass motion. We argue that
this task can be realistically achieved in the all-electrical setup
proposed here. Electrically levitated nanorotors are thus ideally
suited for trapped superposition experiments with a wide variety
of particle geometries and charge distributions, and present a
versatile alternative to other nanoparticle-qubit setups20–23.
Quadrupole ion traps provide exceptionally stable confinement

for charged nanoparticles24. Moreover, the particle motion
induces an electric current in the endcap electrodes25–27. We
propose to use this current for first cooling the nanoparticle to
milliKelvin temperatures and then interfacing its motion with a
superconducting circuit. The resulting coupling between super-
conductor and particle scales as charge over square root mass28,29

and can thus be as strong as for a single atomic ion for realistic
charge distributions.
We show that the proposed all-electrical platform enables

cooling and interference experiments with levitated nanorotors,
making it well suited for generating and reading-out entanglement

between several particles and superconducting qubits, thus
forming a building block of a larger quantum network. The
motional quantum state can be prepared and observed by qubit
manipulations with an ultra-fast pulsed scheme, operating on a
timescale much shorter than the mechanical period and within the
coherence time of the charge qubit. This pulse scheme allows to
speed-up the observation of nanoscale quantum interference in a
variety of opto- and electromechanical setups20,21,30,31.

RESULTS
Ro-translational macromotion
A charged nanoparticle is suspended in a hyperbolic Paul trap of
endcap distance 2z0 and radius

ffiffiffi
2

p
z0, where the ring electrode is

put to the time-dependent potential UPTðtÞ ¼ Udc þ Uac cosðΩactÞ
with respect to the floating endcaps (see Fig. 1). Due to the
quadrupole symmetry of the electric field, the rotational and
translational particle motion is fully determined by its total charge
q, orientation-dependent dipole vector p(Ω), and quadrupole
tensor Q Ωð Þ. Here, Ω denotes the orientational degrees of
freedom of the particle, e.g. parametrized by Euler angles; its
center-of-mass position is r.
In general, the resulting time-dependent force and torque will

lead to complicated and unstable dynamics of the nanoparticle.
However, if the trap is driven sufficiently fast, its micromotion can
be separated, and one obtains a time-independent effective
trapping potential for the macromotion (see “Methods”)
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qrþ pð Þ � A2 qrþ pð Þ:

(1)

Here, M is the particle mass and the Paul trap symmetry axis is
aligned with ez, such that A= 1− 3ez⊗ ez. The Ii denote the
moments of inertia with ni the associated directions of the rotor
principal axes. We dropped the orientation dependence of p, Q,
and ni for compactness.
The effective potential (1) describes the coupled rotational and

translational macromotion of an arbitrarily charged and shaped
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nanoparticle in a quadrupole ion trap, and is thus pertinent for
ongoing nanoparticle experiments24,31,32. It shows that stable
trapping can be achieved for sufficiently small bias voltages Udc

(with frequencies ωz ¼ qUac=
ffiffiffi
2

p
MΩacz20 and ωx,y=ωz/2). In addi-

tion, the rotational and translational motion decouple for particles
with vanishing dipole moment. Note that if the particle has a finite
quadrupole moment its rotation dynamics can still be strongly
affected by the trapping field. This may provide means to
manipulate the rotation dynamics of nanoscale particles, a
challenging task due to the nonlinearity of rotations32–36.

Particle-circuit coupling
The rotational and translational motion of the particle induces
mirror charges in the endcap electrodes. The latter can be
quantified by extending the Shockley−Ramo theorem to arbitrary
charge distributions (see “Methods”), yielding the capacitor charge
Qind=−kez ⋅ (qr+ p)/z0+ CV, given the endcap capacitance C and
voltage drop V. The geometry factor k, with values of 0 < k≲ 1/2
for realistic electrode geometries, determines the approximately
homogeneous field −kV/z0ez close to the trap center in the
absence of the particle. (A perfect plate capacitor corresponds
to k= 1/2).
The induced capacitor charge only depends on the total

motional dipole moment qr+ p along the Paul trap axis, and is
thus independent of the particle quadrupole moment. A circuit
connecting the electrodes picks up the ro-translational motion of
the particle via the current I= dQind/dt. At the same time, the
particle feels a voltage-dependent electrostatic force and torque
depending on the circuit state. This can be used for resistive
cooling and for coherently interfacing the particle with a
superconducting qubit.
Nanoparticle resistive cooling can be achieved by joining the

endcaps with a resistance R. The dissipation of the induced current
in the resistor leads to thermalization of the particle motion at
the circuit temperature. The timescale of this resistive cooling can
be tuned by adding an inductance in series to the circuit29. In the
adiabatic limit, it reacts almost instantaneously to the particle

motion. Thus, the circuit degrees of freedom can be expanded to
first order in the particle velocity and rotation speed, yielding the
effective total cooling rate

γad ¼ Rk2

z20

q2

M
þ
X3
i¼1

1
Ii
ni � ðp´ ezÞ½ �2

 !
: (2)

This quantifies how fast an initially occupied phase-space
volume contracts, predicting the timescale of rotational and
translational thermalization with the circuit. The rate (2) is always
positive and exhibits a q2/M-scaling, indicating that charged
nanoparticles can be cooled as efficiently as atomic ions.

Interfacing nanoparticle and charge qubit
The levitated nanoparticle can be coherently coupled to a
superconducting Cooper-pair box37 by attaching the latter to the
endcap electrodes (see Fig. 1), as also proposed for atomic ions28,38.
The nanoparticle motion towards the endcaps modifies the voltage
drop over the Cooper-pair box, whose charge state determines the
force and torque acting on the particle. Preparing the Cooper-pair
box in a superposition of charge states37 thus entangles the
nanoparticle motion with the circuit. This can be used to generate
and verify nanoscale motional superposition states.
The combined nanoparticle-Cooper-pair box Hamiltonian can

be derived in a lengthy calculation from Kirchhoff’s circuit laws
(see “Methods”). Operating the Cooper-pair box in the charge
qubit regime37 of N and N+ 1 Cooper pairs yields the nanorotor-
qubit coupling

Hint ¼ � 2ek
CΣz0

ðN þ σþσ�Þðqrþ pÞ � ez; (3)

where CΣ is the effective capacitance of the circuit and the qubit
raising and lowering operators are denoted by σ+, σ−. This
interaction couples the charge eigenstates of the box to the
motional dipole moment of an arbitrarily shaped and charged
nanorotor, implying that qubit charge states are conserved by the
interaction and that rotations of the quadrupole or higher multipole
moments of the nanoparticle are not coupled by the qubit.
In the experimentally realistic situation that the nanoparticle is

almost homogeneously charged and inversion symmetric, its
dipole moment is negligibly small (see “Methods”). The rotational
and translational macromotion in the Paul trap (1) then decouple
even for large quadrupole moments. The center-of-mass motion
along the Paul trap axis further decouples from the transverse
degrees of freedom, since only the motion towards the electrode
is affected by the Cooper-pair box. The particle trapping potential
in z-direction is slightly shifted and stiffened due to the charge
qubit (with N ≠ 0), yielding the effective Hamiltonian

H1D ¼ Ecσ
þσ� þ _ωaya� _κσþσ� aþ ay

� �
; (4)

with charge energy Ec and coupling strength
κ ¼ 2ekq=CΣz0

ffiffiffiffiffiffiffiffiffiffiffiffi
2M_ω

p
, where the nanoparticle oscillation with

frequency ω2 ¼ ω2
z þ q2k2=CΣMz20 is described by the ladder

operators a, a† (see “Methods”).
The Hamiltonian (4) demonstrates the important fact that

the qubit can be used to generate quantum states as if the
nanoparticle were non-rotating18,20,21,30. The absence of discrete
internal transitions can thus be compensated by the nonlinearity
provided by a superconducting circuit. The nanoparticle-qubit
coupling strength is proportional to charge over square root mass,
yielding appreciable coupling for highly charged nanoscale
objects (see “Methods”).
Note that a finite bias voltage Udc applied to the ring electrode

will not affect the Cooper-pair box, but produce an additional,
approximately linear potential at the shifted trap center zs. It adds
the term −Vext (a+ a†) to (4), with Vext ¼ qUdczs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=2Mωz40

p
. This

term will be used below to control the relative phase of the

Fig. 1 Proposed setup. The rotational and translational motion of a
charged nanoparticle (blue) levitated in a Paul trap induces an
electrical current between the superconducting endcap electrodes.
The latter can be coherently interfaced with a charge qubit formed
by a superconducting island (red). This Cooper-pair box can be used
to generate and read-out spatial superpositions of the nanoparticle.
The system constitutes the basic element for networking levitated
nanoparticles into hybrid quantum devices based on superconduct-
ing circuitry.

L. Martinetz et al.

2

npj Quantum Information (2020) 101 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



nanoparticle superposition state. The linear approximation is valid
as long as the thermal width

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=Mω2

p
is much smaller than zs.

Generating and observing superpositions
Quantum interference of the nanoparticle motion on short
timescales can now be performed by a rapid sequence of
qubit rotations and measurements. At the beginning of the
interference scheme, the charge qubit is prepared in its
groundstate Nj i, while the nanoparticle is cooled to temperature
T, ρ0 ¼ Nj i Nh j � expð�_ωaya=kBTÞ=Z. After this initial state
preparation Vext is switched to a constant value. The free dynamics
governed by (4) with the external potential is then intersected by
σx-rotations of the qubit at four different times:

(i) a π/2-pulse at t= 0, which prepares the qubit in a
superposition of charge states,

(ii) a π-pulse at t= t1, which flips the qubit state,
(iii) another π-pulse at t= t2, and
(iv) a π/2-pulse at t= t3 with subsequent measurement of the

qubit occupation σ+σ−.

With a symmetric pulse scheme, i.e. t1= t3− t2= τ, it is always
possible to find a Δτ≡ t2− t1 such that the nanoparticle state
evolves into a superposition and then recombines with maximal
overlap (see “Methods”). The corresponding phase-space trajec-
tories are illustrated in Fig. 2. In this case, the particle motion is
first entangled with the qubit, generating a motional quantum
superposition. This superposition is then reversed by steps (ii) and
(iii), and finally recombined, undoing the entanglement. Through
this sequence, the phase imprinted on the nanoparticle motion
through the external voltage Vext is transferred onto the qubit
state and read-out via its population,

σþσ�h i ¼ cos2
κ2

ω
þ 2κVext

_ω
� Ec

_

� �
τ � Δτ

2

� �� �
: (5)

Varying Vext and observing the corresponding modulation of
the qubit population can thus be used to verify that the
nanoparticle existed in a spatial superposition state. The final
population also oscillates as a function of the pulse time τ.
This pulse scheme enables the generation and observation of

nanoscale quantum superpositions in harmonic potentials
with pulse separations τ much shorter than the particle
oscillation period. It is therefore applicable to various opto-

and electromechanical systems20,30,31. The required accuracy of
the pulse times, determined by the qubit frequency and the
particle temperature T, must ensure that the phase κVext(2τ−
Δτ)/�hω is measurable.
To illustrate that nano- to microsecond motional superpositions

can be realistically prepared and observed on the coherence
timescale of a charge qubit39, we show in Fig. 3 the expected
interference signal of a 106 amu particle at T= 1mK. The
nanoparticle is assumed to be cylindrically shaped, with a
homogeneous surface charge of q= 200e and a realistic dipole
moment (see “Methods”). It is stably levitated inside a sub-
millimeter Paul trap, its motion well approximated by a harmonic
oscillation with ω= 138 kHz. We find that the resulting strong
coupling to the Cooper-pair box of κ= 16.8 MHz renders the
nanoparticle particle sensitive to the presence or absence of a
single Cooper-pair. A voltage of Udc= 25 V then suffices to imprint
a relative phase on the motional superposition that shifts the
interference pattern by a full fringe.

Networking levitated nanoparticles
The proposed interference protocol can be extended to transfer
qubit entanglement to nanoparticles. Levitated objects may thus
be coherently integrated into superconducting quantum net-
works, e.g. for sensing and metrology applications. Here we
illustrate how to entangle the nanoparticle with a second,
separated charge qubit, or with another nanoparticle levitating
in a distant Paul trap.
Entanglement of the nanoparticle with a second qubit is

achieved by replacing the initial π/2-pulse with an operation that
prepares a maximally entangled two-qubit state40,41. To verify the
involvement of the particle in the nonlocal dynamics, one carries
out the above interference protocol by performing all pulses on
both qubits. During the pulse sequence one qubit is coupled to
the nanoparticle, while the other qubit is isolated and can in
principle be located at large distances. The occupation of the
separated qubit, conditioned on having found the directly
coupled one in the groundstate, is then given by

σþσ�h i ¼ cos2 χ τ � Δτ

2

� �� �
; (6)

with χ= κ2/ω+ 2κVext/�hω− (Ec1− Ec2)/�h. This assumes that the
qubits were initially prepared in the singlet state Ψ�j i. The

Fig. 2 Interference protocol. An initial π/2-pulse on the Cooper-pair box generates a charge superposition in the endcap electrodes, so that
the charged nanoparticle feels a superposition of a spatially shifted and an unshifted harmonic potential. The time evolution (4) gives rise to
two wave packets traveling on separate position and momentum trajectories. The corresponding classical trajectories are shown here. To
verify this motional superposition state, the wave packets must be reunited. This can be achieved by applying two π-pulses, each
interchanging the potentials felt by the two branches, in such a way that the trajectories finally coincide in position and momentum. (a) In the
simplest case all pulses are separated by one sixth of the harmonic oscillation period and the particle is initially at rest. The π/2-pulse then
leaves one branch unaffected (red dashed line), while the other one is accelerated (blue line). The first π-pulse accelerates the resting branch
and decelerates the moving one to a standstill at the time of the second π-pulse. After that, the blue trajectory remains at rest while the red
one is decelerated until it reaches the blue one with zero velocity. (b) Even for arbitrary pulse times τ the separation Δτ between the π-pulses
can be chosen such that the corresponding paths in phase space coalesce for all initial states at 2τ+Δτ. (c) The scheme works for time
durations much shorter than the oscillation period, which makes it particularly suitable for limited coherence times. In this short time limit the
accelerations are essentially constant and Δτ= 2τ.
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external potential Vext, acting only on the nanoparticle, thus serves
to fully control the measurement outcome of the distant qubit.
Having established that the coherent dynamics extends from the
particle to the distant qubit, entangled states of these two systems
can be produced by carrying out step (iv) and the subsequent
measurement of the directly coupled qubit at t3 < 2τ+ Δτ, i.e.
before the particle wave packets overlap.
An all-electrical protocol to entangle two distant levitated

nanoparticles works along the same lines: We consider two distant
nanoparticle-qubit setups of identical frequency ω, where
the qubits are again initially in the state Ψ�j i. To verify the
involvement of both particles in the nonlocal dynamics,
one carries out the protocol on each nanoparticle-qubit setup
until the time t3= 2τ+ Δτ of wave packet overlap. The occupation
of the second qubit, conditioned on having found the first one in
the groundstate, is then given by (6), with χ= χ1− χ2, where
χ i ¼ κ2i =ωþ 2κiV i=_ω� Eci=_. The interference pattern thus
depends on the difference of the local nanoparticle phases. By
measuring both qubits before the wave packets overlap, e.g. at
τ+ Δτ < t3 < 2τ+ Δτ the two oscillators can be projected onto an
entangled motional state (see “Methods”).

DISCUSSION
The coherent control of charged nanoparticles by superconduct-
ing qubits offers a new avenue for quantum superposition
experiments with massive objects. The nanoparticle superposition
state is generated and read-out by pulsed qubit rotations and
measurements, enabling interference experiments on ultra-short
time scales. All-electric trapping, cooling, and manipulation avoids

photon scattering and absorption, the dominant decoherence
sources in laser fields. In addition, the nanoparticle rotations
decouple from the center-of-mass motion for realistic particle
shapes and charge distributions, rendering this setup widely
applicable. It holds the potential of bridging the mass gap in
quantum superposition tests from current experiments with
massive molecules42 to future guided interferometers with super-
conducting microscale particles43. Moreover, these hybrid quan-
tum devices can serve as building blocks for larger networks
connected by superconducting circuitry, distributing entangle-
ment between multiple nanoparticles.
The presented qubit-nanoparticle coupling scheme is feasible

with available technology for realistic particles. Beyond that, if it
were possible to achieve qubit coherence times on the order of the
oscillator period, the generation of more complex mechanical
superposition states might become possible44. Similarly, combining
qubit rotations with variable interaction times might enable
implementing nonlinear phase gates acting on the nanoparticle
state45. In addition, the degree of quantum control can be enhanced
by fabricating particles with tailored dipole and quadrupole
moments and by combining electric with optical techniques46–49.
This may give rise to the observation of coherent effects between
the rotational and translational nanoparticle degrees of freedom,
and provide a platform for studying charge-induced decoherence in
an unprecedented mass and complexity regime.

METHODS
Ro-translational macromotion in a Paul trap
An arbitrarily charged nanoparticle moving and revolving at position R and
orientation Ω in a hyperbolic Paul trap is subject to the time-dependent
potential

VðR;Ω; tÞ ¼ UPTðtÞ
2z20

q
2
R � ARþ p � AR� 1

2
ez � Qez

� �
; (7)

with A= 1− 3ez⊗ ez. Here, the dipole moment p and the quadrupole
tensor Q depend on the principal axes Ni of the nanoparticle with the
associated moments of inertia Ii. The effective potential for the
macromotion is obtained by setting R= r+ ϵ, and Ni= ni+ δ × ni, serving
to separate the center-of-mass macromotion r from the much faster
micromotion ∣ϵ∣ ≪ ∣r∣ varying with zero mean. Similarly, the rotational
micromotion ∣δ∣ ≪ 1 varies much faster than ni. The center-of-mass and
angular momentum obey

m€R ¼ �UPTðtÞ
2z20

A qRþ pð Þ (8A)

and

_J ¼ �UPTðtÞ
2z20

p ´ARþ ez ´Qezð Þ: (8B)

Taking macromotion to be approximately constant on the time scale of
the micromotion and neglecting all small terms yields

ϵ � Uac cosðΩactÞ
2Mz20Ω

2
ac

A qrþ pð Þ (8C)

and

δ � Uac cosðΩactÞ
2z20Ω

2
ac

X3
i¼1

1
Ii
ni ½ni � p ´Arþ ez ´Qezð Þ�: (8D)

The dipole and quadrupole moments here only include the macromo-
tion, i.e. p= ∑pini and Q= ∑Qijni⊗ nj, in contrast to (8A and 8B). The
Mathieu parameter Uacq=2MΩ2

acz
2
0 and its rotational analogs

Uacjpj=2MΩ2
acz

2
0lcm, UacjQ‘mj=2IiΩ2

acz
2
0 and Uacjpjlcm=2IiΩ2

acz
2
0 in (8C and

8D) determine when the micromotion ϵ and δ is small. Here lcm is the
length scale of the center-of-mass motion.
The effective force and torque of the macromotion can be obtained by

inserting (8C and 8D) into (8A and 8B) and averaging over one
micromotion cycle. A lengthy but straightforward calculation demonstrates
that they can be expressed through the time-independent effective
potential (1). We remark that the same potential (1) can also be derived

Fig. 3 Interference signal. The Cooper-pair box occupation (24)
shows a pronounced interference signal for experimentally realistic
parameters if π-pulses are applied at t1= 21.7 ns and t2= 65.1 ns.
The interfering trajectories then coalesce at 86.9 ns. (a) The envelope
of the interference pattern is determined by the overlap of the two
associated nanoparticle wave packets. Its width decreases with
increasing temperature. Even at 1mK, corresponding a mean
phonon number of 945, more than a thousand fringes can be
expected. We assume a qubit dephasing time of 1/γd= 100 ns,
dominating all other decoherence mechanisms on the timescale of
the experiment (see “Methods”). (b) The frequency of the
interference signal is mainly determined by the charge energy Ec
of the qubit. A bias voltage Udc= 5 V applied on the ring electrode
imprints a phase on the nanoparticle, which shifts the interference
pattern by about 2π/5 (dashed line).
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quantum mechanically by adapting the method outlined in ref. 50 for the
combined rotational and translational motion of the nanoparticle.

Generalized Shockley−Ramo theorem
To calculate the current induced by an arbitrary, rigidly bound charge
distribution moving and rotating between the endcap electrodes we use
Green’s reciprocity theorem,Z

V
dV ϕrefρþ

Z
∂V
dAϕrefσ ¼

Z
V
dV ϕρref þ

Z
∂V
dAϕσref : (9)

It relates the particle charge density ρ, the electrode surface charge
density σ and the electrostatic potential ϕ to those of a reference system.
Choosing the reference system to have no particle in the trap volume V , a
vanishing potential on the ring electrode, and opposite potentials on the
endcaps leads to an approximately linear potential ϕref near the trap
center. This results in

k
z0

ez �
Z

V
dV xρðxÞ þ Q1 � Q2

2
¼ CV ; (10)

where Q1 and Q2 are the total charges on the top and bottom endcap and
x originates from the trap center. The remaining integration yields the
capacitance charge Qind= (Q1−Q2)/2=−kez ⋅ (qr+ p)/z0+ CV, and its
time derivative the induced current.

Cooper-pair box-nanoparticle Hamiltonian
Figure 4 shows how the Paul trap is connected with the circuit. The latter
consists of a superconducting loop with two Josephson junctions modeled
as a capacitance CJ and a tunneling junction in parallel. The loop of
vanishing inductance encloses an external magnetic flux Φ.
The quantum state of the circuit is described by a macroscopic wave

function whose phase jumps φ1, φ2 at the Josephson junctions satisfy φ2−
φ1+ 2πΦ/�h= 2πm with m an integer. Josephson’s equations IJi ¼ Ic sinφi
and UJi ¼ _

2e
_φi relate them to the tunneling current and the voltage drop

in each junction i= 1, 2. The loop is coupled capacitatively to the endcaps
via Cc, and can be controlled with the external voltage U, applied via the
gate capacitance Cg. The circuit equations of motion can be obtained
starting from Kirchhoff’s laws,

V þ UJ1 þ Uc1 þ Uc2 ¼ 0; (11A)

UJ1 þ U þ Ug ¼ 0; (11B)

Ic1 þ IJ1 þ Ic2 þ IJ2 ¼ I þ Ig: (11C)

Inserting the capacitance charge (10) into (11A), differentiating with
respect to time and using that Uci=Qci/Cc and that I ¼ _Qind ¼ _Qci yields

_Qind ¼ � k
z0

Ceff

C
q_rþ _pð Þ � ez � Ceff

CJ

_QJ1; (12)

with the effective capacitance Ceff= CCc/(Cc+ 2C). In addition, (11B) and

(11C) yield the relations

_Qg ¼ �Cg

CJ

_QJ1 � Cg _U; (13)

_Qind þ _Qg ¼ _QJ1 þ _QJ2 þ Ic sinφ1 þ Ic sinφ2: (14)

Inserting (12) and (13) into (14), using flux quantization, and defining
φ= φ1− eΦ/�h finally yields the circuit equation of motion,

€φ ¼ � 4eIc
_CΣ

cos eΦ
_

� �
sinφ� 2eCeffk

_CCΣz0
q_rþ _pð Þ � ez

� 2e
_CΣ

Cg _U þ Ceff þ Cg
� � €Φ

2

h i
;

(15)

with CΣ= Ceff+ Cg+ 2CJ.
The ro-translational motion of the particle is driven by the endcap

voltage V via the force F=−kVqez/z0 and the torque N= kVez × p/z0, in
addition to the Paul trap force and torque. In the relevant limit of large Cc
the Hamiltonian generating the coupled dynamics of circuit and particle
takes the form

H ¼ 2e2
CΣ

Π
_ � k

2ez0
ðqrþ pÞ � ez � ng

h i2
� EJ cosφ

� k _Φ
2z0

qrþ pð Þ � ez þ Hrb þ Veffðr;ΩÞ ;
(16)

where the canonical momentum Π conjugate to φ quantifies the number
of Cooper pairs on the island and Hrb is the free rigid body Hamiltonian for
the center-of-mass motion and rotation. Equation (16) involves the
voltage-induced number of Cooper pairs ng ¼ CgU=2eþ C þ Cg

� �
_Φ=4e,

and the Josephson energy EJ ¼ _Ic cos eΦ=_ð Þ=e.
We choose the flux Φ and applied voltage U so that the Cooper-pair box

can be treated as an effective two-level system51 with N or N+ 1 Cooper
pairs on the island, Π= �h(N+ σ+σ−). Tuning ng, EJ, and _Φ to zero yields the
Hamiltonian

H ¼ 2e2
CΣ

ð2N þ 1Þσþσ� � 2ek
CΣz0

ðN þ σþσ�Þðqrþ pÞ � ez
þ k2

2CΣz20
½ðqrþ pÞ � ez �2 þ Hrb þ Veffðr;ΩÞ;

(17)

which leaves the charge eigenstates of the box unaffected. The charge-
dependent potential shift given by the second term yields the nanorotor-
qubit coupling (3) and will drive the particle into a ro-translational
superposition if the charge states are superposed.
Neglecting the dipole moment and separating the nanoparticle

transverse motion and rotations finally yields (4) with the potential
minimum shifted to zs= 2ekNq/CΣz0Mω2 and the charge energy Ec=
2e2(1+ 2N− kqzs/ez0)/CΣ.

Time evolution and measurement outcome
The time evolution generated by (4) with external potential Vext can be
written, up to a global phase, as a combination of a qubit-dependent
phase, qubit-dependent particle displacements and the free time evolution
of the harmonic oscillator,

UðtÞ ¼ exp �it Ec
_ � κ2

ω � 2κVext
_ω

	 

σþσ�

h i
´ exp κ

ω σ
þσ� þ Vext

_ω

� �
ay � a
� �� �

´ exp �iωtaya
� �

´ exp � κ
ω σ

þσ� þ Vext
_ω

� �
ay � a
� �� �

:

(18)

The qubit is initially prepared in its groundstate while the nanoparticle
is in a thermal state of temperature T. A π/2-pulse rotates the qubit into
the superposition Nj i þ i N þ 1j ið Þ= ffiffiffi

2
p

, so that the system after time t is
given by ρt ¼

P1
n¼0 exp �_ωn=kBTð Þ Ψnj i Ψnh j=Z with Ψnj i ¼ Nj iUgðtÞþ

�
i N þ 1j iUeðtÞÞ nj i= ffiffiffi

2
p

. This involves particle time-evolution operators
associated with the ground and the excited state of the qubit,

UgðtÞ ¼ D
Vext

_ω

� �
exp �iωtaya
� �

D � Vext

_ω

� �
(19)

and

UeðtÞ ¼ exp �it Ec
_ � κ2

ω � 2κVext
_ω

	 
h i
D κ

ω þ Vext
_ω

� �
´ exp �iωtaya

� �
D � κ

ω � Vext
_ω

� �
;

(20)

where DðαÞ ¼ exp αay � α�a
� �

is the displacement operator. The
scheme with π-pulses at times t1 and t2 then results in Ψnj i ¼

Fig. 4 Circuit diagram. The tunable Cooper-pair box is coupled to
the particle via the trap capacitor. The dashed line indicates the
superconducting island from which Cooper pairs can tunnel onto
the endcap electrode. The arrows indicate the direction of
increasing electrostatic potential for positive U’s and of the electron
flow for positive I’s.
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Nj iUþ þ i N þ 1j iU�ð Þ nj i= ffiffiffi
2

p
at time t3, where

Uþ ¼ Ugðt3 � t2ÞUeðt2 � t1ÞUgðt1Þ; (21A)

U� ¼ Ueðt3 � t2ÞUgðt2 � t1ÞUeðt1Þ: (21B)

The charge occupation of the box after a final π/2-pulse is thus given by

σþσ�h i ¼ 1
2
þ 1
2Z

X1
n¼0

< nh jUy
þU� nj i

h i
exp � _ωn

kBT

� �
: (22)

Noting that Uy
þU� displaces the particle state in phase space and using

1
Z

P1
n¼0

nh jDðαÞ nj i exp � _ωn
kBT

	 

¼ exp � coth _ω

2kBT

	 

jαj2
2

h i
;

(23)

one obtains

σþσ�h i ¼ 1
2 þ 1

2 exp � κ2

2ω2 coth _ω
2kBT

	 

jdðt1; t2; t3Þj2

h i
´ cos κ

ω
κ
ω þ 2Vext

_ω

� �
Im dðt1; t2; t3Þ

�
� κ2

ω þ 2κVext
_ω � Ec

_

	 

ð2t1 � 2t2 þ t3Þ

i
;

(24)

where dðt1; t2; t3Þ ¼ 2eiωt1 � 2eiωt2 þ eiωt3 � 1. Qubit dephasing is the
dominant decoherence mechanism in Fig. 3 and is modeled by taking
ng in (16) to be a random number with Lorentzian distribution of width
γdCΣ�h/(2e)

2. This effectively modifies the charge energy and thus the qubit
oscillation frequency between the pulses, resulting in an exponential factor
expð�γdt3Þ multiplied to the second term in (24).
Equation (24) shows that the envelope of the qubit occupation assumes

its maximum at d(t1, t2, t3)= 0 and that the particle temperature
determines the width of the peak. Operating the interference protocol at
the point of maximal envelope (corresponding to a maximal overlap in the
particle state of both superposition branches) can be achieved with the
symmetric choice t1= τ, t2= τ+ Δτ and t3= 2τ+ Δτ, where

Δτ ¼ 1
ω
arctan

2 sinðωτÞ½2� cosðωτÞ�
½2� cosðωτÞ�2 � sin2ðωτÞ

" #
(25)

and τ < π/ω. Evaluating (24) for these times finally yields (5).

Generation of nanoparticle entanglement
The time evolution involving two nanoparticles can be described by means
of the respective particle operators

UðiÞ
þ nj i ¼ eiϕ

ðiÞ
þ DiðαiÞ nj i; (26A)

UðiÞ
� nj i ¼ eiϕ

ðiÞ
� DiðβiÞ nj i: (26B)

where the Di are phase-space displacement operators acting on
nanoparticle i.
To entangle the particles one prepares the qubits in a Bell state and

performs the trapped interference scheme on both subsystems. Measuring
both qubits before the wave packets overlap, e.g. at τ+ Δτ < t3 < 2τ+ Δτ

projects the two oscillators onto the outcome-conditioned state

ρ0 /
X1
n;m¼0

exp � _ω

kBT
ðnþmÞ

� �
Ψnmj i Ψnmh j; (27)

where

Ψnmj i ¼ D1ðα1ÞD2ðβ2Þ± eiϕD1ðβ1ÞD2ðα2Þ
� �

nj i1 � mj i2: (28)

The amplitudes αi, βi and the phase ϕ ¼ ϕð1Þ
� þ ϕð2Þ

þ � ϕð1Þ
þ � ϕð2Þ

�
depend on the pulse times, whereas the sign in (28) is fixed by the
outcome of the qubit measurements. The values of αi and βi determine the
amount of entanglement of the state (27), as quantified by a suitable
entanglement measure.

Experimental parameters
For calculating the interference pattern in Fig. 3 we consider a cylindrically
shaped silicon nanoparticle (diameter of 4.7 nm, length of 42 nm,
homogeneously and positively charged with q= 200 e 52. A 106 amu particle
with this charge exhibits the same coupling strength as a doubly charged

strontium ion. The proposed interference scheme works also for other
particle shapes with appropriately adjusted trap and circuit parameters.
We assume a dipole moment of ∣p∣= 200 eÅ, motivated by randomly

distributing charges on the cylinder surface and accounting for the
opposed internal polarization field induced by the charges. This dipole
moment is well within the regime where rotations are negligible (see
below), and exceeds reported values of a few 10 eÅ for neutral particles of
the same size53–56.
The Paul trap, with an endcap distance of 2z0= 0.5 mm and geometry

factor k= 0.4 29,57, is driven by an AC voltage of Uac= 1 kV with frequency
Ω= 2π × 250 MHz 58.
The empty Cooper-pair box has a capacitance of CΣ= 4.4 fF, yielding a

charge energy of 2e2/CΣ ≈ 72 μeV. A relatively high occupation N= 10 shifts
the potential minimum by the distance zs= 1.17 μm from the trap center.
The fast box oscillations then require a measurement time resolution on
the ps-scale51. The total duration of the experiment of 87 ns is on the
expected coherence time scale of a charge qubit39. Specifically, qubit
dephasing with timescale 1/γd= 100 ns decreases the visibility by 60% (see
Fig. 3). Other decoherence sources such as gas collisions, black-body
scattering, or thermal emission can be neglected on the short time scale of
the experiment (see Supplementary Note II). For instance, on average only
0.016 gas collisions occur during the pulse sequence in a room-
temperature nitrogen gas at 10−4 mbar.
An initial motional temperature of the particle of T= 1mK can be

achieved via resistive cooling29,59,60 (and potentially by electric feedback
cooling29,46,47 or optical techniques8). Assuming a resistance of R=
100MΩ, the adiabatic cooling rate is 163 Hz, corresponding to 1.54 × 105

quanta per second in thermal equilibrium. Surface noise61 for the present
system with endcap electrodes at 77 K would yield a particle heating rate
of 170 �hω/s, which does not noticeably raise the temperature or lead to
decoherence on the time scale of the experiment.

Impact of dipole moments
In the effective potential (1) the initial thermal state shows no
correlations between rotations and center-of-mass motion at mK
temperatures, because even a dipole moment of 2000 eÅ suppresses
all coupling terms. In addition, these rotational and translational
coupling terms can also be neglected compared to the direct rotation-
qubit interaction with rate κrot= ek∣p∣/�hz0CΣ; see Eq. (3). Approximating
the cylinder as a linear rotor and ignoring the kinetic terms due to the
large moment of inertia yields that the rotations affect the measurement
outcome by (i) adding a phase to the cosine function in (24), which is
negligible since q2/M≫ ∣p∣2/I, and by (ii) reducing the contrast of the
interference signal, which can be conservatively estimated as sinc
[2κrot(2t1− 2t2+ t3)]. This reduction is negligibly small for the proposed
setup (see Supplementary Note I).
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