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Abstract: Background: This study aimed to evaluate the impact of an AI-assisted fracture detection
program on radiology residents’ performance in pediatric and adult trauma patients and assess its
implications for residency training. Methods: This study, conducted retrospectively, included 200 ra-
diographs from participants aged 1 to 95 years (mean age: 40.7 ± 24.5 years), encompassing various
body regions. Among these, 50% (100/200) displayed at least one fracture, totaling one hundred
thirty-five fractures, assessed by four radiology residents with different experience levels. A machine
learning algorithm was employed for fracture detection, and the ground truth was established by con-
sensus among two experienced senior radiologists. Fracture detection accuracy, reporting time, and
confidence were evaluated with and without AI support. Results: Radiology residents’ sensitivity for
fracture detection improved significantly with AI support (58% without AI vs. 77% with AI, p < 0.001),
while specificity showed minor improvements (77% without AI vs. 79% with AI, p = 0.0653). AI
stand-alone performance achieved a sensitivity of 93% with a specificity of 77%. AI support for
fracture detection significantly reduced interpretation time for radiology residents by an average of
approximately 2.6 s (p = 0.0156) and increased resident confidence in the findings (p = 0.0013). Con-
clusion: AI support significantly enhanced fracture detection sensitivity among radiology residents,
particularly benefiting less experienced radiologists. It does not compromise specificity and reduces
interpretation time, contributing to improved efficiency. This study underscores AI’s potential in
radiology, emphasizing its role in training and interpretation improvement.

Keywords: X-rays; fractures; bone; artificial intelligence; diagnostic imaging; quality improvement

1. Introduction

The number of patients presenting to emergency departments is experiencing a per-
sistent upward trend [1]. Radiographs are commonly used to diagnose trauma-related
injuries [2,3]. With its wide availability, low radiation exposure, and low costs, radio-
graphy offers distinct advantages in the initial diagnosis of fractures in the emergency
department [1,4]. Reporting of radiographs is often delayed due to increased workload
or results in diagnostic errors due to missed fractures [3,5]. In addition, the interpretation
of radiographs is often assigned to experienced residents [3]. Accurate interpretation of
radiographs requires a substantial level of expertise in the field of radiology. However, ra-
diology residents, who are still in the early stages of their training, have limited experience.
Consequently, they encounter challenges and uncertainties when interpreting radiographs,
which can potentially result in misdiagnosis. The lack of extensive experience among
radiology residents, in particular, contributes to the increased likelihood of errors and
inaccuracies in reading radiographs. Hence, providing assistance to radiology residents
in interpreting radiographs outside of normal working hours, when support from senior
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radiologists is sparse, becomes even more crucial. In the past, a number of different AI-
based programs have been tested to assist in the diagnosis of fractures in radiographs of the
extremities. Previous studies have already demonstrated enhanced sensitivity in fracture
detection using AI-based programs. However, these studies have predominantly focused
on single body regions, particularly extremities [3,4,6–16]. In the daily clinical setting of
the emergency department, radiologists are confronted with a variety of radiographs from
different body regions, not just those of extremities. This study distinguishes itself by
adequately representing the wide array of radiographs in the clinical setting of the emer-
gency department, thus providing a realistic picture of the use of AI in fracture detection
across a broad cross-section of body regions. This comprehensive approach highlights the
novel contribution of our work to the field, expanding the application of AI beyond the
limitations of previous studies focused on specific body parts.

This study aimed to evaluate the impact of an AI-assisted fracture detection pro-
gram as a tool for radiology residents in pediatric and adult trauma patients to improve
sensitivity, specificity, and reading speed. The objective was to investigate the extent to
which assistance from AI-based programs can enhance diagnostic accuracy in fracture
detection and reduce radiology residents’ uncertainty, thus improving feelings of safety in
fracture detection.

2. Materials and Methods
2.1. Study Population and Design

The study cohort consisted of a total of 200 radiographic examinations involving
95 female and 105 male participants. The participants ranged in age from 1 to 95 years,
with a mean age of 40.7 ± 24.5 years. The sample included individuals across a wide age
spectrum, encompassing both pediatric and adult populations (Figure 1).
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Figure 1. Age distribution of the patient cohort for the 200 radiographic images used.

A single-center in-house search was conducted for conventional radiographic images.
A total of 100 radiographic images with at least one fracture and 100 images without a
fracture were randomly selected from July 2022 to August 2022. Among the 100 images with
1 or more fractures, a total of 135 fractures were identified. The body regions investigated
covered a wide range of the body, including the hand, wrist, arm, elbow, shoulder, scapula,
clavicle, ribs, spine, pelvis, hip joints, legs, knees, ankles, and feet. The frequency of
different body regions is presented in Figure 2. The frequency of radiographs of various
body regions of patients with a wide range of ages is based on the frequency of occurrence
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in the emergency department of the examining hospital, which allows a wide range of
findings to be analyzed.
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Figure 2. Distribution of radiographic images in the cohort across different body regions.

After assembling the collective, the radiographic images were evaluated by four ra-
diology residents with different levels of training in the radiology residency program,
ranging from 4.5 to 24.5 months of experience. The residents evaluated the 200 radio-
graphs according to various criteria, including the presence of fractures, the number of
fractures, the bones involved, the time required for diagnosis, and the degree of certainty
of the diagnosis.

To assess the confidence levels of the residents, a 6-point Likert scale was used, with
responses ranging from 1 (representing ‘I feel very confident’) to 6 (representing ‘I feel very
uncertain’). Half of the images were shown with AI support, and the other half without
AI support. To exclude bias, two residents were shown 100 images with and 100 images
without AI support, and the other two residents were shown exactly the opposite.

2.2. Ground Truth

The radiographs were reviewed by two consultant radiologists with 7 and 10 years of
experience in musculoskeletal imaging. Consensus-based decisions were made during the
evaluation process. In cases of indeterminacy, supplementary imaging modalities, such as
magnetic resonance imaging (MRI) and computed tomography (CT) scans, were viewed
whenever accessible to establish an unequivocal diagnosis. In assessing whether a fracture
was present, the criterion was to evaluate only acute fractures, while older fractures were
not considered.

2.3. Algorithm

This study was conducted using the Gleamer BoneView© (Gleamer, Paris, France)
algorithm. This program utilizes an algorithm based on a deep convolutional neural
network built on the “Detectron 2” framework [17]. The primary objective of this algorithm
is to detect and display fractures on digital radiographs. For programming and training
purposes, a dataset consisting of 60,170 radiographic images was used. This dataset
comprised radiographs obtained from trauma patients and was collected from 22 different
healthcare facilities over several years, from 2011 to 2019. The dataset was randomized,
with 70% of the data used for training, 10% for validation, and 20% for internal validation
purposes [14,15]. Findings identified by the AI and categorized as “doubt” were considered
to be fractures. This categorization was based on the AI recognizing the possibility of a
fracture in these cases.

2.4. Ethics Statement

This study was conducted in accordance with all guidelines established by the approv-
ing review board of the investigating hospital (approval code: 23-11109-BO).
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2.5. Statistical Analysis

This study evaluated the performance of radiology residents in fracture detection on
radiographs, both with and without the assistance of an AI-powered fracture detection
system. The accuracy of fracture detection was of particular interest in assessing the
performance of the radiology residents.

To evaluate the accuracy of fracture detection, several parameters were determined:

• True positive (TP): a fracture was detected when a fracture was present.
• False negative (FN): no fracture was detected when a fracture was present.
• False positive (FP): a fracture was detected when no fracture was present.
• True negative (TN): no fracture was detected when no fracture was present.
• Sensitivity: the proportion of true positive cases correctly identified as fractures by the

radiology residents.
TP

TP + FN

• Specificity: the proportion of true negative cases correctly identified as non-fractures
by the radiology residents.

TN
TN + FP

• Positive predictive value (PPV): the proportion of cases identified as fractures by the
radiology residents that were confirmed as true fractures.

TP
TP + FP

• Negative predictive value (NPV): the proportion of cases identified as non-fractures
by the radiology residents that were confirmed as true non-fractures.

TN
TN + FN

These parameters were calculated based on the comparison of the radiology residents’
interpretations with the reference standard, which was established by expert radiologists.
In addition, the parameters for the performance of the AI compared to the ground truth
were determined. The corresponding 95% confidence interval (95% CI) was determined for
each diagnostic accuracy measurement. The analysis of the rates was conducted both with
and without AI assistance, as well as a separate evaluation of the AI’s performance on its
own. This comprehensive examination allows for direct comparison and understanding of
the impact of AI assistance on the diagnostic accuracy of radiology residents.

Statistical analyses were conducted using GraphPad Version 10.0.0 (131) (© 1994–2023
GraphPad Software, LLC, Boston, MA, USA). A p-value of less than 0.05 was considered
statistically significant. The Shapiro–Wilk test was used to determine the normality of the
data. The data were not normally distributed. Therefore, to test the data for significant
differences, the non-parametric Mann–Whitney test for non-normally distributed unpaired
groups was performed. The hybrid Wilson/Brown method was used to compute the
confidence interval.

3. Results

In this study, the accuracy of radiology residents’ findings with and without AI
support, AI stand-alone performance, and the approved report in the radiology information
system (RIS) were analyzed. The time required by radiology residents to report findings
and their confidence in reporting were also assessed.

The sensitivity of radiology residents was significantly higher with AI support
(77% [95% CI: 72–82]) than without AI support (58% [95% CI: 52–64]; p = 0.001). There was
little difference in specificity between the two groups (77% [95% CI: 71–81] vs.
79% [95% CI: 73–84]). The PPV was 7% higher with AI support (81% [95% CI: 76–86] vs.
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74% [95% CI: 67–79]) and the NPV was 13% higher with AI support (75% [95% CI: 69–80]
vs. 62% [95% CI: 56–67]). The most experienced radiology resident (24.5 months; Resident
1) showed only minor improvements in diagnostic performance with AI support. For the
less experienced radiology residents (4.5–18.5 months; Residents 2–4), the differences with
and without AI support were markedly higher (Table 1). Therefore, the overall diagnostic
performance of the radiology residents (Residents 1–4) showed a clear improvement as a
result of the AI support. These differences were particularly evident in the less experienced
radiology residents (4.5–18.5 months; Residents 2–4). In contrast, the most experienced
radiology resident (24.5 months; Resident 1) showed almost a deterioration in diagnostic
performance with AI support (Table 1).

Table 1. Comparison of diagnostic performance between radiology residents without AI support and
performance with support from the AI fracture detection tool. The difference is calculated based on
the improvement or deterioration between the diagnostic performance without AI support and with
AI support.

Without AI Support AI Supported Difference

Resident 1
Sens (95% CI) 81% (69–89) 82% (72–89) 1%
Spec (95% CI) 82% (71–90) 69% (56–79) −13%
PPV (95% CI) 81% (69–89) 78% (68–85) −3%
NPV (95% CI) 82% (71–90) 74% (61–84) −8%

Resident 2
Sens (95% CI) 48% (36–61) 70% (59–79) 22%
Spec (95% CI) 75% (64–84) 77% (64–87) 2%
PPV (95% CI) 64% (49–76) 82% (71–89) 18%
NPV (95% CI) 62% (51–72) 64% (52–75) 2%

Resident 3
Sens (95% CI) 57% (46–68) 78% (65–86) 21%
Spec (95% CI) 78% (65–87) 89% (79–95) 11%
PPV (95% CI) 79% (66–87) 88% (77–94) 9%
NPV (95% CI) 56% (45–67) 80% (68–88) 24%

Resident 4
Sens (95% CI) 49% (38–60) 79% (67–88) 30%
Spec (95% CI) 71% (58–81) 81% (69–89) 10%
PPV (95% CI) 69% (56–80) 79% (67–88) 10%
NPV (95% CI) 51% (40–62) 81% (69–89) 30%

Residents 1–4
Sens (95% CI) 58% (52–64) 77% (72–82) 19%
Spec (95% CI) 77% (71–81) 79% (73–84) 2%
PPV (95% CI) 74% (67–79) 81% (76–86) 7%
NPV (95% CI) 62% (56–67) 75% (69–80) 13%

Note: Presentation of diagnostic performance measures, including sensitivity (Sens), specificity (Spec), positive
predictive value (PPV), and negative predictive value (NPV) and their associated 95% confidence intervals
(95% Cis).

Compared with AI alone, residents without AI support detected significantly fewer
fractures (p < 0.0001). Substantial differences were observed in the sensitivity of residents
without AI support (58% [95% CI: 52–64]) and AI stand-alone performance (93% [95% CI:
87–96]). For NPV, the results of the AI stand-alone performance were also considerably higher
(62% [95% CI: 56–67] vs. 89% [95% CI: 82–94]). The difference between the two groups was
low for PPV at 9% (74% [95% CI: 67–79] vs. 83% [95% CI: 77–88]). Specificity was identical in
both groups on average (77% [95% CI: 71–81] vs. 77% [95% CI: 69–84]) (Table 2).
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Table 2. Comparison of diagnostic performance between radiology residents without AI support,
with AI support, and the AI fracture detection tool.

Residents without AI
Support Residents with AI Support AI

Sens (95% CI) 58% (52–64) 77% (72–82) 93% (87–96)
Spec (95% CI) 77% (71–81) 79% (73–84) 77% (69–84)
PPV (95% CI) 74% (67–79) 81% (76–86) 83% (77–88)
NPV (95% CI) 62% (56–67) 75% (69–80) 89% (82–94)

Note: Presentation of diagnostic performance measures, including sensitivity (Sens), specificity (Spec), positive
predictive value (PPV), and negative predictive value (NPV) and their associated 95% confidence interval (95% CIs).

When residents were assisted by the AI, only slight differences were observed com-
pared to AI stand-alone performance. The largest differences were seen in sensitivity at
16% (77% [95% CI: 72–82] vs. 93% [95% CI: 87–96]) and NPV at 12% (75% [95% CI: 69–80]
vs. 89% [95% CI: 82–94]). Specificity (79% [95% CI: 73–84] vs. 77% [95% CI: 69–84]) and
PPV (81% [95% CI: 76–86] vs. 83% [95% CI: 77–88]) showed marginal differences between
the two groups (Table 2).

When comparing the approved radiological reports in the RIS, where the radiographs
were initially interpreted by a radiology resident and then corrected by an experienced
radiologist, with the AI stand-alone performance, only minor differences could be observed
between the groups. The groups differed by less than 10% in all four diagnostic performance
measurements. Specifically, the sensitivity of the AI stand-alone performance was 8% higher
(93% AI vs. 85% RIS), while the specificity of AI alone was slightly lower compared to the
RIS findings (82% AI vs. 89% RIS). Table 3 shows the differences between AI and approved
radiological reports.

Table 3. Comparison of diagnostic performance of initial radiological findings and the AI tool for
fracture detection.

RIS AI Difference

Sens (95% CI) 85% (78–90) 93% (87–96) 8%
Spec (95% CI) 83% (75–89) 77% (69–84) −6%
PPV (95% CI) 86% (79–91) 83% (77–88) −3%
NPV (95% CI) 82% (74–88) 89% (82–94) 7%

Note: Presentation of diagnostic performance measures, including sensitivity (Sens), specificity (Spec), positive
predictive value (PPV), and negative predictive value (NPV) and their associated 95% confidence intervals (95% CIs).

When residents were supported by the AI during reporting, they required an average
of 29.6 s (standard deviation (SD) ± 19.8 s). When residents were not supported by the AI,
they needed an average of 32.2 s (SD ± 20.8 s). The difference in reporting time between
the two groups was significant (p = 0.0156). When AI support was used, residents felt more
confident in making findings (1.53 ± 0.91) than when AI support was not used (1.72 ± 1.02)
(p = 0.0013) (Table 4).

Table 4. Comparison of resident diagnostic time and confidence with and without AI support.

Reporting Time Reporting Time Confidence Confidence

AI Supported without AI
Support AI Supported without AI

Support

Resident 1 45.8 s 48.6 s 1.53 1.55
Resident 2 26.6 s 25.2 s 1.64 1.52
Resident 3 23.1 s 28.9 s 1.48 2.14
Resident 4 23.1 s 26.1 s 1.36 1.59

Residents 1–4 29.6 s ± 19.8 s 32.2 s ± 20.8 s 1.53 ± 0.91 1.72 ± 1.02
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4. Discussion

The purpose of this study was to evaluate AI support for fracture detection in pediatric
and adult trauma patients and to investigate the impact on sensitivity, specificity, and
confidence of residents.

When radiology residents received AI support, their ability to detect fractures exhib-
ited a significant improvement in sensitivity, reaching 77% vs. 58% when they relied solely
on their expertise without AI support. These results are consistent with the findings of
previous studies that have reported the potential of AI in improving radiologists’ sensitiv-
ity [4,11,12,14–16]. For example, Nguyen et al. found that the sensitivity of experienced
and young radiologists in diagnosing fractures of the appendicular skeleton in children
and young adults increased from an average of 73.3% to 82.8% with the use of AI [16].
In a multi-center cross-sectional diagnostic study aimed at detecting adult appendicular
skeletal fractures by emergency physicians and radiologists, Duron et al. observed a signifi-
cant increase in sensitivity, with the introduction of AI support resulting in a statistically
significant enhancement from 70.8% to 79.4% [14].

The slightly lower sensitivity in fracture detection in this study may be related to
the study’s focus on radiology residents and the improvement in radiology training. In
contrast, other studies have evaluated the performance of radiologists, some of whom
possess many years of experience [15,16]. Furthermore, other studies often focus on a
specific region of the body [11,14,16]. This study, in contrast, was designed to cover a wide
range of different body regions based on the frequency of occurrence in the emergency
department of the investigating hospital.

The radiology resident with the most extensive experience demonstrated only slight
improvements with AI assistance, whereas the remaining residents exhibited tremendous
improvements with AI support. A possible explanation for this discrepancy could be a
higher level of expertise in fracture detection, resulting in no benefit from AI support.
Consequently, less experienced residents may benefit more from AI support to improve
their skills. Furthermore, it is conceivable that more experienced residents with greater
knowledge may be less dependent on AI. Further studies with a larger and more diverse
group of radiology residents would be needed to confirm these hypotheses.

In this study, AI exhibited superior sensitivity compared to all radiology residents. AI
achieved a sensitivity of 93% when operating independently. The results emphasizing the
high sensitivity of AI in stand-alone performance are consistent with the current literature,
which frequently reports AI sensitivities exceeding 80% [8,9,14,18–24]. In this study, there
was only a minor difference in specificity between the two groups (77% vs. 79%). This is in
line with the existing literature, which also reported no significant decrease in specificity
when using AI for fracture detection [14–16]. The performance of stand-alone AI did not
exhibit a statistically significant difference from the radiological findings in RIS, where
an initial assessment by a resident is followed by correction by an experienced specialist.
However, there was a non-significant increase in sensitivity observed in the AI stand-
alone performance, with a sensitivity of 93% compared to 85% in the approved reports
(p = 0.2809). Conversely, the specificity in the RIS findings was higher at 83% compared to
the stand-alone AI performance of 77%.

The improvement in fracture detection with AI support underscores the potential of
AI tools in radiology. Furthermore, it is important to investigate whether this increase in
sensitivity and specificity of residents is associated with a significant increase in the time
required for radiograph interpretation. In this study, we also recorded the reading time
per case. Here, a small but significant difference in reading time was identified between
the groups (p = 0.0156). With AI support, the mean time per case was 29.6 s (SD ± 19.8 s),
whereas without AI support, it was 32.2 s (SD ± 20.8 s). Overall, the utilization of AI in the
interpretation of radiographs by radiology residents leads not only to increased sensitivity
but also to a reduction in interpretation time. In line with this, Guermazi et al. also observed
a significant time saving along with a significantly improved sensitivity, similar to this
study [15]. Duron et al. also reported a reduction in average reading time with AI support,
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in line with our findings [14]. One explanation for this reduction in time may be attributed
to the increased confidence that residents experienced in using AI support during the
evaluation process, which was also demonstrated in this study.

Integrating AI into radiological education brings considerable advantages, such as
instant feedback and a deeper understanding of radiological patterns. Nonetheless, it poses
challenges, such as the possible erosion of diagnostic skills in the absence of AI and the
hazard of affirming incorrect interpretations. Thoughtful planning is crucial for embedding
AI into the curriculum in a way that supplements, rather than supplants, traditional
teaching methods. Despite these obstacles, AI has the potential to greatly enhance the
educational experience. Future studies should focus on fine-tuning the balance between
AI-enhanced and traditional learning to amplify benefits and curtail disadvantages.

In summary, this study revealed an enhancement in sensitivity among radiology resi-
dents in the interpretation of radiographs of trauma patients, accompanied by a reduction
in reporting time and increased confidence in their interpretations, attributable to the
use of AI support during the interpretation process. The potential of educational tools
in the further professional training of resident physicians has been several times [25–27].
AI assistance in the interpretation of radiographic images could represent an additional
component in the professional advancement of resident physicians.

Several limitations should be noted. The assessment of radiographs relies on essential
clinical information. Due to substantial variability in the quality and availability of clinical
data, we opted not to incorporate it entirely in this study. Furthermore, the selection
of regions for examination was based on the frequency of cases seen in the emergency
department of the single-center institution where the study was conducted, aiming to
provide a realistic representation of trauma patients. However, the distribution of cases may
significantly differ in other hospital settings. Multi-center study designs could address this
variability in future investigations. As captured in this study, the performance of radiology
residents may vary significantly on an individual basis. Future research should include
a larger cohort of radiology residents from different healthcare facilities. Additionally, a
larger sample size could enable a more precise analysis of different anatomical regions and
accommodate the varying complexity of fracture detection. Additionally, the retrospective
nature of this study should be considered, which entails specific limitations, including the
potential for biases, that could restrict the generalizability of the results to other contexts.
It should also be noted that the ground truth was established by experienced radiologists
rather than cross-sectional imaging. Available cross-sectional imaging was deliberately not
set as an inclusion criterion, as it is typically reserved for cases with uncertain fractures
and could introduce bias by over-representing challenging radiographs. Finally, future
investigations could examine the performance of the same radiology residents with and
without AI support, especially in the context of ongoing resident training.

5. Conclusions

In conclusion, this study demonstrated that AI support significantly improved fracture
detection sensitivity and specificity among less experienced radiology residents. Addi-
tionally, AI reduced interpretation time, likely due to improved resident confidence. This
study highlights the potential of AI in radiology to improve sensitivity and efficiency, with
implications for training and interpretation.

Author Contributions: Conceptualization, M.M., L.S., B.M.S., M.F., L.U., F.N. and J.H.; methodology,
M.M., L.S. and J.H.; software, M.M. and J.H.; validation, M.M., L.S. and J.H.; formal analysis, M.M.,
B.M.S., L.U., M.F. and J.H.; investigation, M.M. and L.S.; data curation, M.M., L.S., N.B., L.K.,
C.D.Z., S.M. and R.H.; writing—original draft preparation, M.M., L.S. and N.B.; writing—review
and editing, L.U., F.N., M.F. and J.H.; visualization, M.M.; supervision, L.U., F.N., M.F. and J.H.;
project administration, M.M. and J.H. All authors have read and agreed to the published version of
the manuscript.



Diagnostics 2024, 14, 596 9 of 10

Funding: M.M. received financial support from the Junior Clinician Scientist Program of the Uni-
versity Medicine Essen Clinician Scientist Academy (UMEA), and J.H. received financial support
from the Clinician Scientist Program of the University Medicine Essen Clinician Scientist Academy
(UMEA), which is funded by the German Research Foundation (DFG) (FU 356/12-2). The DFG did
not have any influence on the study design, data collection, data interpretation, data analysis, or
report writing.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board University Hospital Essen (Approval
code: 23-11109-BO, date of approval 7 February 2023).

Informed Consent Statement: Patient consent was waived due to the retrospective nature based on
existing routine imaging.

Data Availability Statement: Data generated or analyzed during this study are available from the
corresponding author by request.

Acknowledgments: We acknowledge support from the Open Access Publication Fund of the Univer-
sity of Duisburg-Essen.

Conflicts of Interest: Outside of the submitted work, J.H. has received a speaker honorarium from
Siemens Healthineers, Boston Scientific, Novartis, and Novo Nordisk Pharma GmbH. Outside of
the submitted work, B.M.S. received a research grant from the Else Kröner-Fresenius-Foundation
and PharmaCept GmbH for an undergoing investigator-initiated study, a speaker honorarium from
AstraZeneca, and a travel grant from Bayer AG. The other authors declare no potential conflicts of
interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation
of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Arasu, V.A.; Abujudeh, H.H.; Biddinger, P.D.; Noble, V.E.; Halpern, E.F.; Thrall, J.H.; Novelline, R.A. Diagnostic Emergency

Imaging Utilization at an Academic Trauma Center from 1996 to 2012. J. Am. Coll. Radiol. 2015, 12, 467–474. [CrossRef] [PubMed]
2. Lendrum, R.A.; Lockey, D.J. Trauma System Development. Anaesthesia 2013, 68, 30–39. [CrossRef] [PubMed]
3. Regnard, N.-E.; Lanseur, B.; Ventre, J.; Ducarouge, A.; Clovis, L.; Lassalle, L.; Lacave, E.; Grandjean, A.; Lambert, A.; Dallaudière,

B.; et al. Assessment of Performances of a Deep Learning Algorithm for the Detection of Limbs and Pelvic Fractures, Dislocations,
Focal Bone Lesions, and Elbow Effusions on Trauma X-rays. Eur. J. Radiol. 2022, 154, 110447. [CrossRef] [PubMed]

4. Canoni-Meynet, L.; Verdot, P.; Danner, A.; Calame, P.; Aubry, S. Added Value of an Artificial Intelligence Solution for Fracture
Detection in the Radiologist’s Daily Trauma Emergencies Workflow. Diagn. Interv. Imaging 2022, 103, 594–600. [CrossRef]

5. Harvey, H.B.; Tomov, E.; Babayan, A.; Dwyer, K.; Boland, S.; Pandharipande, P.V.; Halpern, E.F.; Alkasab, T.K.; Hirsch, J.A.;
Schaefer, P.W.; et al. Radiology Malpractice Claims in the United States From 2008 to 2012: Characteristics and Implications. J.
Am. Coll. Radiol. 2016, 13, 124–130. [CrossRef]

6. Blüthgen, C.; Becker, A.S.; Vittoria de Martini, I.; Meier, A.; Martini, K.; Frauenfelder, T. Detection and Localization of Distal
Radius Fractures: Deep Learning System versus Radiologists. Eur. J. Radiol. 2020, 126, 108925. [CrossRef]

7. Xue, L.; Yan, W.; Luo, P.; Zhang, X.; Chaikovska, T.; Liu, K.; Gao, W.; Yang, K. Detection and Localization of Hand Fractures Based
on GA_Faster R-CNN. Alex. Eng. J. 2021, 60, 4555–4562. [CrossRef]

8. Kim, D.H.; MacKinnon, T. Artificial Intelligence in Fracture Detection: Transfer Learning from Deep Convolutional Neural
Networks. Clin. Radiol. 2018, 73, 439–445. [CrossRef]

9. Cheng, C.-T.; Ho, T.-Y.; Lee, T.-Y.; Chang, C.-C.; Chou, C.-C.; Chen, C.-C.; Chung, I.-F.; Liao, C.-H. Application of a Deep Learning
Algorithm for Detection and Visualization of Hip Fractures on Plain Pelvic Radiographs. Eur. Radiol. 2019, 29, 5469–5477.
[CrossRef]

10. Chung, S.W.; Han, S.S.; Lee, J.W.; Oh, K.-S.; Kim, N.R.; Yoon, J.P.; Kim, J.Y.; Moon, S.H.; Kwon, J.; Lee, H.-J.; et al. Automated
Detection and Classification of the Proximal Humerus Fracture by Using Deep Learning Algorithm. Acta Orthop. 2018, 89,
468–473. [CrossRef]

11. Cohen, M.; Puntonet, J.; Sanchez, J.; Kierszbaum, E.; Crema, M.; Soyer, P.; Dion, E. Artificial Intelligence vs. Radiologist: Accuracy
of Wrist Fracture Detection on Radiographs. Eur. Radiol. 2023, 33, 3974–3983. [CrossRef] [PubMed]

12. Lindsey, R.; Daluiski, A.; Chopra, S.; Lachapelle, A.; Mozer, M.; Sicular, S.; Hanel, D.; Gardner, M.; Gupta, A.; Hotchkiss, R.; et al.
Deep Neural Network Improves Fracture Detection by Clinicians. Proc. Natl. Acad. Sci. USA 2018, 115, 11591–11596. [CrossRef]
[PubMed]

13. Dupuis, M.; Delbos, L.; Veil, R.; Adamsbaum, C. External Validation of a Commercially Available Deep Learning Algorithm for
Fracture Detection in Children. Diagn. Interv. Imaging 2022, 103, 151–159. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jacr.2014.11.018
https://www.ncbi.nlm.nih.gov/pubmed/25622765
https://doi.org/10.1111/anae.12049
https://www.ncbi.nlm.nih.gov/pubmed/23210554
https://doi.org/10.1016/j.ejrad.2022.110447
https://www.ncbi.nlm.nih.gov/pubmed/35921795
https://doi.org/10.1016/j.diii.2022.06.004
https://doi.org/10.1016/j.jacr.2015.07.013
https://doi.org/10.1016/j.ejrad.2020.108925
https://doi.org/10.1016/j.aej.2021.03.005
https://doi.org/10.1016/j.crad.2017.11.015
https://doi.org/10.1007/s00330-019-06167-y
https://doi.org/10.1080/17453674.2018.1453714
https://doi.org/10.1007/s00330-022-09349-3
https://www.ncbi.nlm.nih.gov/pubmed/36515712
https://doi.org/10.1073/pnas.1806905115
https://www.ncbi.nlm.nih.gov/pubmed/30348771
https://doi.org/10.1016/j.diii.2021.10.007
https://www.ncbi.nlm.nih.gov/pubmed/34810137


Diagnostics 2024, 14, 596 10 of 10

14. Duron, L.; Ducarouge, A.; Gillibert, A.; Lainé, J.; Allouche, C.; Cherel, N.; Zhang, Z.; Nitche, N.; Lacave, E.; Pourchot, A.; et al.
Assessment of an AI Aid in Detection of Adult Appendicular Skeletal Fractures by Emergency Physicians and Radiologists: A
Multicenter Cross-Sectional Diagnostic Study. Radiology 2021, 300, 120–129. [CrossRef]

15. Guermazi, A.; Tannoury, C.; Kompel, A.J.; Murakami, A.M.; Ducarouge, A.; Gillibert, A.; Li, X.; Tournier, A.; Lahoud, Y.; Jarraya,
M.; et al. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology 2022,
302, 627–636. [CrossRef]

16. Nguyen, T.; Maarek, R.; Hermann, A.-L.; Kammoun, A.; Marchi, A.; Khelifi-Touhami, M.R.; Collin, M.; Jaillard, A.; Kompel, A.J.;
Hayashi, D.; et al. Assessment of an Artificial Intelligence Aid for the Detection of Appendicular Skeletal Fractures in Children
and Young Adults by Senior and Junior Radiologists. Pediatr. Radiol. 2022, 52, 2215–2226. [CrossRef]

17. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; Girshick, R. Detectron2 2019. Available online: https://github.com/facebookresearch/
detectron2 (accessed on 26 May 2023).

18. Olczak, J.; Fahlberg, N.; Maki, A.; Razavian, A.S.; Jilert, A.; Stark, A.; Sköldenberg, O.; Gordon, M. Artificial Intelligence for
Analyzing Orthopedic Trauma Radiographs. Acta Orthop. 2017, 88, 581–586. [CrossRef]

19. Urakawa, T.; Tanaka, Y.; Goto, S.; Matsuzawa, H.; Watanabe, K.; Endo, N. Detecting Intertrochanteric Hip Fractures with
Orthopedist-Level Accuracy Using a Deep Convolutional Neural Network. Skeletal. Radiol. 2019, 48, 239–244. [CrossRef]

20. Yang, S.; Yin, B.; Cao, W.; Feng, C.; Fan, G.; He, S. Diagnostic Accuracy of Deep Learning in Orthopaedic Fractures: A Systematic
Review and Meta-Analysis. Clin. Radiol. 2020, 75, 713.e17–713.e28. [CrossRef]

21. Yoon, A.P.; Lee, Y.-L.; Kane, R.L.; Kuo, C.-F.; Lin, C.; Chung, K.C. Development and Validation of a Deep Learning Model Using
Convolutional Neural Networks to Identify Scaphoid Fractures in Radiographs. JAMA Netw. Open 2021, 4, e216096. [CrossRef]

22. Yamada, Y.; Maki, S.; Kishida, S.; Nagai, H.; Arima, J.; Yamakawa, N.; Iijima, Y.; Shiko, Y.; Kawasaki, Y.; Kotani, T.; et al. Automated
Classification of Hip Fractures Using Deep Convolutional Neural Networks with Orthopedic Surgeon-Level Accuracy: Ensemble
Decision-Making with Antero-Posterior and Lateral Radiographs. Acta Orthop. 2020, 91, 699–704. [CrossRef] [PubMed]

23. Murata, K.; Endo, K.; Aihara, T.; Suzuki, H.; Sawaji, Y.; Matsuoka, Y.; Nishimura, H.; Takamatsu, T.; Konishi, T.; Maekawa,
A.; et al. Artificial Intelligence for the Detection of Vertebral Fractures on Plain Spinal Radiography. Sci. Rep. 2020, 10, 20031.
[CrossRef] [PubMed]

24. Krogue, J.D.; Cheng, K.V.; Hwang, K.M.; Toogood, P.; Meinberg, E.G.; Geiger, E.J.; Zaid, M.; McGill, K.C.; Patel, R.; Sohn, J.H.;
et al. Automatic Hip Fracture Identification and Functional Subclassification with Deep Learning. Radiol. Artif. Intell. 2020, 2,
e190023. [CrossRef] [PubMed]

25. Salhöfer, L.; Haubold, J.; Gutt, M.; Hosch, R.; Umutlu, L.; Meetschen, M.; Schuessler, M.; Forsting, M.; Nensa, F.; Schaarschmidt,
B.M. The Importance of Educational Tools and a New Software Solution for Visualizing and Quantifying Report Correction in
Radiology Training. Sci. Rep. 2024, 14, 1172. [CrossRef]

26. Kalaria, A.D.; Filice, R.W. Comparison-Bot: An Automated Preliminary-Final Report Comparison System. J. Digit. Imaging 2016,
29, 325–330. [CrossRef]

27. Sharpe, R.E.; Surrey, D.; Gorniak, R.J.T.; Nazarian, L.; Rao, V.M.; Flanders, A.E. Radiology Report Comparator: A Novel Method
to Augment Resident Education. J. Digit. Imaging 2012, 25, 330–336. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1148/radiol.2021203886
https://doi.org/10.1148/radiol.210937
https://doi.org/10.1007/s00247-022-05496-3
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1080/17453674.2017.1344459
https://doi.org/10.1007/s00256-018-3016-3
https://doi.org/10.1016/j.crad.2020.05.021
https://doi.org/10.1001/jamanetworkopen.2021.6096
https://doi.org/10.1080/17453674.2020.1803664
https://www.ncbi.nlm.nih.gov/pubmed/32783544
https://doi.org/10.1038/s41598-020-76866-w
https://www.ncbi.nlm.nih.gov/pubmed/33208824
https://doi.org/10.1148/ryai.2020190023
https://www.ncbi.nlm.nih.gov/pubmed/33937815
https://doi.org/10.1038/s41598-024-51462-4
https://doi.org/10.1007/s10278-015-9840-2
https://doi.org/10.1007/s10278-011-9419-5


This text is made available via DuEPublico, the institutional repository of the University of
Duisburg-Essen. This version may eventually differ from another version distributed by a
commercial publisher.

DOI:
URN:

10.3390/diagnostics14060596
urn:nbn:de:hbz:465-20240808-110203-1

This work may be used under a Creative Commons Attribution 4.0
License (CC BY 4.0).

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.3390/diagnostics14060596
https://nbn-resolving.org/urn:nbn:de:hbz:465-20240808-110203-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Study Population and Design 
	Ground Truth 
	Algorithm 
	Ethics Statement 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

