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Abstract: Non-contrast computed tomography (CT) is commonly used for the evaluation of various
pathologies including pulmonary infections or urolithiasis but, especially in low-dose protocols,
image quality is reduced. To improve this, deep learning-based post-processing approaches are
being developed. Therefore, we aimed to compare the objective and subjective image quality of
different reconstruction techniques and a deep learning-based software on non-contrast chest and
low-dose abdominal CTs. In this retrospective study, non-contrast chest CTs of patients suspected
of COVID-19 pneumonia and low-dose abdominal CTs suspected of urolithiasis were analysed.
All images were reconstructed using filtered back-projection (FBP) and were post-processed using
an artificial intelligence (AI)-based commercial software (PixelShine (PS)). Additional iterative re-
construction (IR) was performed for abdominal CTs. Objective and subjective image quality were
evaluated. AI-based post-processing led to an overall significant noise reduction independent of the
protocol (chest or abdomen) while maintaining image information (max. difference in SNR 2.59 ± 2.9
and CNR 15.92 ± 8.9, p < 0.001). Post-processing of FBP-reconstructed abdominal images was even
superior to IR alone (max. difference in SNR 0.76 ± 0.5, p ≤ 0.001). Subjective assessments verified
these results, partly suggesting benefits, especially in soft-tissue imaging (p < 0.001). All in all, the
deep learning-based denoising—which was non-inferior to IR—offers an opportunity for image
quality improvement especially in institutions using older scanners without IR availability. Further
studies are necessary to evaluate potential effects on dose reduction benefits.

Keywords: computed tomography; image reconstruction; image quality; chest; abdomen; urolithiasis;
COVID-19; deep learning

1. Introduction

Obtaining excellent image quality on the one hand and reducing radiation exposure to
the patients on the other hand is an ongoing challenge in modern computed tomography
(CT) [1,2]. In this context, low-dose computed tomography (LD-CT) is an important
diagnostic tool in clinical routine for detecting various pathologies including pulmonary
infections or urinary stones [3,4]. Here, a lower radiation dose reduces the carcinogenic
risk by ionizing radiation based on the assumption of the linear no-threshold model [5,6].
On the other hand, this leads to a weaker signal received by the image detector, which
generally results in a lower image resolution [1]. However, the final image quality depends
on the reconstruction algorithm applied to the raw image data.

A traditional method for image reconstruction is filtered back-projection (FBP), which
is based on the idea that a projection consisting of measurements at multiple angles can
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be back-projected into a model of the scanned object using an inverse radon transforma-
tion with a high-pass filter [7]. The advantages of FBP are a high computational efficacy,
stability, and speed in image reconstruction; while on the other hand, a high noise level
and significant artifacts in low-contrast structures occur, especially in LD-CT. However, its
advantages make it a widespread reconstruction method for old-generation CT scanners.
Another modern approach is iterative reconstruction (IR), which requires more computa-
tional power and time but reduces image noise by cyclic imaging processing [8,9]. This
leads to an overall better image quality, particularly in LD-CT, but can result in a plastic-like
smooth appearance of the images [10].

With further increasing computational power within the last years, modern approaches
to image noise reduction have been developed that are based on imaging post-processing
including machine learning techniques [2,7,11]. A promising commercially available soft-
ware solution is PixelShine v. 1.3.004 (AlgoMedica, Inc., Sunnyvale, CA, USA), which is
based on a deep learning approach, trained by a high amount of imaging data [12].

First, clinical data in low-dose abdominal, pediatric thoracal, or midfacial trauma CT
imply a significant noise reduction following PixelShine image reconstruction compared to
FBP, but additional studies are necessary to evaluate its impact in different settings [13–16].
In our study, we evaluated the impact of the novel deep learning-based reconstruction
algorithm on image quality in abdominal LD-CT for the detection of urinary stones as well
as in chest CT for COVID-19 pneumonia diagnostics and compared it to FBP and IR.

2. Materials and Methods
2.1. Patients and Image Acquisition

Patient data were collected at two different sites of one radiological institution (site
I (primary care): St. Marien-Hospital, Mülheim an der Ruhr, Germany; site II (tertiary
care): University Hospital Essen, Essen, Germany). The institutional database of site I
was searched for patients who underwent non-contrast thoracal between September 2020
and October 2021 for evaluation of pulmonary status for suspected COVID-19 pneumonia.
Only examinations with the lowest available dose protocol were included. Because of the
old scanner model (SOMATOM Emotion 6, Siemens Healthineers, Erlangen, Germany),
this was not a real low-dose protocol as available in modern scanners. Twenty-nine patients
were identified, of which three were excluded due to a different protocol (n = 2) and missing
dose sheet (n = 1), leading to a final study population of 26 patients (8 female, 18 male)
(Figure 1A). At site II, most thoracal CTs for suspected SARS-CoV-2 pneumonia were
pulmonary artery CTs or full-dose thoracal CTs, mainly because of more severe disease or
additional suspected pulmonary embolism. Therefore, no comparison was made between
the sites.

Furthermore, the PACS of site I and institutional databases of site II were evaluated
for patients with suspected urolithiasis who received low-dose, non-contrast abdominal
CT between June 2019 and July 2021. A total of 48 patients from site I (17 female, 31 male)
and 48 patients (17 female, 31 male) from site II were included (Figure 1B).

All scans (chest and abdomen) at site I were performed using SOMATOM Emotion
6 (Siemens Healthineers, Erlangen, Germany), while scans at site II were obtained using
SOMATOM Force (Siemens Healthineers, Erlangen, Germany), a dual-source scanner
which was used in single-source mode. Technical CT parameters were extracted from
the DICOM header, and dose sheets were stored in the PACS and are summed up in
Table 1. Raw image data of lung scans were reconstructed using FBP, using lung kernel
(B70) and soft-tissue kernel (B40). Abdominal imaging was reconstructed using FBP (site
I and site II) and IR with strengths 3 of 5 (site II only), applying a soft-tissue kernel. To
reduce image noise, all reconstructed images (FBP and IR) were post-processed using
the commercially available deep learning software PixelShine v. 1.3.004 (AlgoMedica
Inc., Sunnyvale, CA, USA), resulting in PixelShine-processed FBP (FBP + PS) and IR
(IR + PS) images. Following software reconstruction, parameters were used according
to the manufacturer’s recommendations as follows: for the lung kernel, streak artifact
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reduction of R1, target noise level 12 (based on Hounsfield unit, HU), maximum strength of
noise reduction A7, and lung kernel L6; for the soft-tissue kernel, streak artifact reduction
of R2, sharpening P3, and target noise level 12 (based on Hounsfield unit, HU).
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Figure 1. Patient flowchart and study design for assessment of thoracal (A) and abdominal LD-CT (B).

Table 1. Technical protocols for non-contrast thoracal and abdominal CT.

Thorax Abdomen

Site I Site I Site II

Scanner model SOMATOM Emotion 6
(Siemens Healthineers)

SOMATOM Emotion 6
(Siemens Healthineers)

SOMATOM Force
(Siemens Healthineers)

Scanner slices 6 6 192
Scanner mode sequential sequential spiral

Tube potential (kVp) 130 130 150 or 100
Reference tube current time product (mAs) 70 40 40 or 244

Reconstructed slice thickness (mm) 2.5 5 5
Single collimation width (mm) 2 2 0.6
Total collimation width (mm) 12 12 57.6

Pitch factor - - 0.9

2.2. Objective Image Quality Analysis

For an objective analysis of thoracal and abdominal CTs, different regions-of-interest
(ROIs) were evaluated (Figure 2). For thoracal CT, seven ROIs were defined as follows:
ascending aorta (AAC), pulmonary trunk (TRP), descending aorta (ADE), lung (LUN),
autochthonous back muscle (AUM), subcutaneous fat tissue (FAT), and air (AIR). Six ROIs
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were used for abdominal CT as follows: left liver lobule (LLL), spleen (SPL), descending
aorta (AOD), autochthonous back muscle (AUM), subcutaneous fat tissue (FAT), and air
(AIR). For each ROI, mean CT number and noise (SD of CT number as a surrogative
parameter) were measured by evaluating a circular ROI (99.0 mm2 ± 1.18 [thorax] and
99.2 mm2 ± 1.22 [abdomen]). ROI annotation was performed on the FBP-reconstructed
scan and was then automatically copied to each scan to ensure that all ROIs in each scan
had the same annotation location. A custom tool written in Python was used for this.
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Figure 2. Axial CT slices reconstructed with FBP showing the positions of seven evaluated ROIs
(green circle) for thoracal CT (A) and six ROIs for abdominal CT (B). AAC = ascending aorta, ADE =
descending thoracal aorta, AOD = descending abdominal aorta, AIR = air, AUM = autochthonous
muscle, FAT = subcutaneous fat, LLL = left liver lobule, LUN = lung tissue, TRP = pulmonary trunk,
SPL = spleen.

Furthermore, the contrast-to-noise ratio (CNR) as well as the signal-to-noise ratio
(SNR) were calculated using the following formulas [13]:

CNRROI =

∣∣∣CTROI − CT f at

∣∣∣
SD f at

(1)

SNRROI =
|CTROI |
SDROI

(2)

2.3. Subjective Image Quality Analysis

Three radiologists with 5 years (D.B., M.O.) and over 10 years (K.N.) of experience in
CT independently evaluated the image quality of different methods for the reconstruction
of thoracal as well as abdominal CT using a self-developed web-based application. In a
blinded fashion, two differently reconstructed images showing the same slice of the same
study were presented to the rater simultaneously in a randomized order (Figures 3 and 4).
Raters were able to vary the zoom level. Firstly, the rater had to rank the images using 1
for the better and 2 for the worse images. Equality could be expressed using 1 for both.
Secondly, each image was rated with the help of a 5-point Likert scale (“excellent”, “com-
pletely acceptable”, “mostly acceptable”, “suboptimal”, and “unacceptable”). For thoracal
CT, FBP and FBP + PS were compared for the lung as well as for the soft-tissue kernel.
Comparisons of abdominal CTs were made between FBP and FBP + PS (site I + site II) as
well as FBP + PS and IR (site II only) only for the soft-tissue kernel.
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Figure 3. Axial CT of a 65-year-old patient with COVID-19 pneumonia comparing FBP reconstruction
(A,C) and post-processing with PS (B,D) using soft-tissue (A,B) and lung kernel (C,D). Window
width (W) and centre (C) are given.
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Figure 4. Axial CT of a 63-year-old patient suspected of urolithiasis comparing FBP reconstruction
(A), FBP post-processed with PS (B), IR (C), and IR post-processed with PS (D). Window width (W)
and centre (C) are given.

2.4. Statistical Analysis

The objective and subjective image quality of FBP + PS and FBP were compared for
thoracal and abdominal CTs. An additional comparison of abdominal CTs between IR + PS
and IR, as well as IR and FBP + PS, was performed for site II only, due to the unavailability
of IR in site I. Mean and standard deviation (SD) or median and interquartile range (IQR)—
in cases lacking a normal distribution—were used to report descriptive statistics. To
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compare demographics, Wilcoxon or χ2 tests were used. Concordance between subjective
ratings were evaluated using Kendall’s coefficient of concordance W. A p-value < 0.05 was
considered statistically significant. Statistical analysis was performed using R v4.2.0 and
commercially available software (Microsoft Excel 2021, Redmond, WA, USA and SPSS 29.0,
Inc., Chicago, IL, USA).

3. Results
3.1. Patient Cohort

Thoracal non-contrast CTs of 26 patients with suspected SARS-CoV-2 pneumonia
(17 male, 9 females, median age 77.0 IQR: 16.5 years) and abdominal non-contrast LD-CTs
of 48 patients (31 male, 17 female) at site I and site II, each suspected of urolithiasis, were
evaluated (Table 2). For thoracal scans, median DLP was 301.4 mGy·cm (IQR: 188.6). For
abdominal CT, median DLPs were 178.4 mGy·cm (IQR: 108.1) at site I and 60.0 mGy·cm
(IQR: 40.2) at site II.

Table 2. Patient characteristics and radiation dose.

Thorax Abdomen

Site I Site I Site II
Patients 26 (9 female/17 male) 48 (17 female/31 male) 48 (17 female/31 male)

Median age (years) 77.0 (IQR 16.5) 55.5 (IQR 25) 39.0 (IQR 18)
Median tube Current time product (mAs)

[Tube potential kVp] 86.5 (IQR 45) [130] 32.0 (IQR 18) [130] 220 (IQR 89.0) [100]
50 (IQR 25) [150]

Median scan length (cm) 32.1 (IQR 4.8) 47.6 (IQR 6.1) 49.6 (IQR 11.1)
Median CTDIvol (mGy) 9.5 (IQR 4.9) 3.5 (IQR 1.9) 1.21 (IQR 0.6)
Median DLP (mGy·cm) 301.4 (IQR 188.6) 178.4 (IQR 108.1) 60.0 (IQR 40.2)

3.2. Objective Image Quality of Thoracal CT

Objective image quality was assessed by evaluating mean CT values and their standard
deviation (as surrogate parameters for image noise) as well as SNR and CNR. Regarding
thoracal CT, the mean difference of CT numbers between FBP + PS and FBP measured
within the soft-tissue kernel varied between 1.11 HU (FAT) and −0.09 HU (AUM) and
1.98 HU (FAT) and 0.08 HU (ADE) for the lung kernel (Table 3). Significantly different CT
values were detected only for lung, fat, and air independently of the kernel (<±2 HU).
Noise (SD) was significantly reduced following PS processing in all ROIs in both kernels,
with differences between −9.68 (ADE) and −2.33 (LUN) [lung kernel] and −28.98 (ADE)
and −14.69 (FAT) [soft-tissue kernel]. Furthermore, all evaluated ROIs revealed significantly
higher SNRs as well as CNRs in PS-post-processed images compared to FBP alone for both
lung and soft-tissue kernels (Tables 3 and S1).

Table 3. Mean differences of CT values, noise, CNR, and SNR between FBP and FBP + PS recon-
structed thoracal CT with lung and soft-tissue kernels. Significant p-values (<0.05) are in bold.

Ascending
Aorta

Pulmonary
Trunk

Descending
Aorta Lung Autochthonous

Muscle Fat Air

B40 [soft-tissue kernel]

CT FBP + PS vs. FBP −0.08 ± 0.4
p = 0.116

−0.01 ± 0.4
p = 0.708

0.06 ± 0.5
p = 0.423

0.52 ± 0.5
p ≤ 0.001

−0.09 ± 0.6
p = 0.94

1.11 ± 0.4
p ≤ 0.001

0.79 ± 0.4
p ≤ 0.001

Noise FBP + PS vs. FBP −8.72 ± 3.4
p ≤ 0.001

−9.28 ± 3.2
p ≤ 0.001

−9.68 ± 3.4
p ≤ 0.001

−2.33 ± 2.3
p ≤ 0.001

−6.49 ± 2.1
p ≤ 0.001

−4.10 ± 2.1
p ≤ 0.001

−6.53 ± 2.6
p ≤ 0.001

SNR FBP + PS vs. FBP 1.69 ± 0.6
p ≤ 0.001

1.61 ± 0.5
p ≤ 0.001

1.30 ± 0.5
p ≤ 0.001

2.59 ± 2.9
p ≤ 0.001

0.34 ± 0.3
p ≤ 0.001

−2.11 ± 1.2
p ≤ 0.001 -

CNR FBP + PS vs. FBP 2.99 ± 1.7
p ≤ 0.001

2.96 ± 1.7
p ≤ 0.001

2.92 ± 1.7
p ≤ 0.001

15.92 ± 8.9
p ≤ 0.001

2.60 ± 1.4
p ≤ 0.001 - -
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Table 3. Cont.

Ascending
Aorta

Pulmonary
Trunk

Descending
Aorta Lung Autochthonous

Muscle Fat Air

B70 [lung kernel]

CT FBP + PS vs. FBP 0.17 ± 0.6
p = 0.328

0.19 ± 0.5
p = 0.054

0.08 ± 0.7
p = 0.861

1.63 ± 0.8
p ≤ 0.001

0.58 ± 0.9
p = 0.002

1.98 ± 0.4
p ≤ 0.001

1.78 ± 0.6
p ≤ 0.001

Noise FBP + PS vs. FBP −27.95 ± 12.7
p ≤ 0.001

−28.91 ± 12.0
p ≤ 0.001

−28.98 ± 10.6
p ≤ 0.001

−5.59 ± 8.3
p = 0.001

−20.60 ± 8.3
p ≤ 0.001

−14.69 ± 8.9
p ≤ 0.001

−14.93 ± 6.8
p ≤ 0.001

SNR FBP + PS vs. FBP 0.46 ± 0.2
p ≤ 0.001

0.44 ± 0.2
p ≤ 0.001

0.38 ± 0.2
p ≤ 0.001

1.63 ± 2.4
p = 0.001

0.14 ± 0.1
p ≤ 0.001

−0.66 ± 0.46
p ≤ 0.001 -

CNR FBP + PS vs. FBP 0.95 ± 0.6
p ≤ 0.001

0.94 ± 0.6
p ≤ 0.001

0.93 ± 0.6
p ≤ 0.001

5.22 ± 3.4
p ≤ 0.001

0.83 ± 0.5
p ≤ 0.001 - -

3.3. Objective Image Quality of Abdominal CT

The analysis of abdominal CTs delivered similar results when comparing FBP and
FBP + PS in site I and site II (Tables 4 and S2). PS led to small differences in CT values
which were again only significant for fat (1.00 ± 0.5 [site I] and 1.08 ± 0.6 [site II]) and
air (0.83 ± 0.4 [site I] and 0.65 ± 0.5 [site II]). Noise was significantly reduced in all ROIs
while SNR and CNR increased overall. Comparing IR + PS and IR, PS post-processing
also decreased image noise and elevated SNR and CNR significantly, independently of
the analysed ROI. Additionally, differences in CT values were low but significant not only
for fat (0.92 ± 0.2) and air (0.98 ± 0.3) but also for the descending aorta (0.31 ± 0.4) and
autochthonous muscle (0.10 ± 0.2). Finally, a comparison of FBP + PS and unprocessed IR
images revealed that noise was also lower in FBP + PS while SNR was higher. Differences
were significant for all ROIs except fat. No significant differences were seen with regard to
CNR. Again, CT values were significantly altered for fat (1.15 ± 0.5) and air (1.68 ± 0.7).

Table 4. Mean differences of CT values, noise, SNR, and CNR comparing FBP + PS vs. FBP at site I
and II and, additionally, IR + PS vs. IR and FBP + PS vs. IR reconstructed abdominal LD-CT at site II
only. Significant p-values (<0.05) are in bold.

Left Liver
Lobule Spleen Descending

Aorta
Autochthonous

Muscle Fat Air

Site I

FBP + PS vs. FBP CT 0.05 ± 0.5
p = 0.532

−0.15 ± 0.7
p = 0.189

−0.05 ± 0.5
p = 0.579

−0.09 ± 0.5
p = 0.367

1.00 ± 0.5
p ≤ 0.001

0.83 ± 0.4
p ≤ 0.001

Noise −11.35 ± 5.3
p ≤ 0.001

−8.67 ± 4.5
p ≤ 0.001

−11.15 ± 4.6
p ≤ 0.001

−7.00 ± 4.1
p ≤ 0.001

−5.32 ± 3.5
p ≤ 0.001

−6.80 ± 3.4
p ≤ 0.001

SNR 1.37 ± 0.5
p ≤ 0.001

1.41 ± 0.5
p ≤ 0.001

1.10 ± 0.4
p ≤ 0.001

1.00 ± 0.5
p ≤ 0.001

3.16 ± 2.32
p ≤ 0.001 -

CNR 4.68 ± 3.3
p ≤ 0.001

4.51 ± 3.1
p ≤ 0.001

4.46 ± 3.2
p ≤ 0.001

4.31 ± 2.9
p ≤ 0.001 - -

Site II

FBP + PS vs. FBP CT 0.09 ± 0.7
p = 0.772

−0.11 ± 0.7
p = 0.291

0.26 ± 0.7
p = 0.008

−0.13 ± 0.6
p = 0.154

1.08 ± 0.6
p ≤ 0.001

0.65 ± 0.5
p ≤ 0.001

Noise −11.92 ± 2.8
p ≤ 0.001

−9.98 ± 2.5
p ≤ 0.001

−10.44 ± 2.9
p ≤ 0.001

−8.25 ± 2.7
p ≤ 0.001

−6.93 ± 2.3
p ≤ 0.001

−6.55 ± 1.5
p ≤ 0.001

SNR 1.87 ± 0.5
p ≤ 0.001

1.72 ± 0.6
p ≤ 0.001

1.41 ± 0.5
p ≤ 0.001

1.50 ± 0.6
p ≤ 0.001

1.89 ± 0.9
p ≤ 0.001 -

CNR 3.12 ± 1.5
p ≤ 0.001

3.01 ± 1.4
p ≤ 0.001

2.80 ± 1.3
p ≤ 0.001

3.03 ± 1.5
p ≤ 0.001 - -

IR + PS vs. IR CT 0.10 ± 0.3
p = 0.06

0.01 ± 0.25
p = 0.495

0.31 ± 0.4
p ≤ 0.001

0.10 ± 0.2
p = 0.001

0.92 ± 0.2
p ≤ 0.001

0.98 ± 0.3
p ≤ 0.001

Noise −4.03 ± 1.6
p ≤ 0.001

−2.69 ± 1.3
p ≤ 0.001

−3.32 ± 1.5
p ≤ 0.001

−1.69 ± 1.3
p ≤ 0.001

−1.13 ± 1.1
p ≤ 0.001

−1.94 ± 1.3
p ≤ 0.001

SNR 1.00 ± 0.4
p ≤ 0.001

0.72 ± 0.4
p ≤ 0.001

0.73 ± 0.4
p ≤ 0.001

0.47 ± 0.3
p ≤ 0.001

−0.41 ± 0.5
p ≤ 0.001 -

CNR 0.71 ± 0.7
p ≤ 0.001

0.69 ± 0.7
p ≤ 0.001

0.65 ± 0.7
p ≤ 0.001

0.70 ± 0.7
p ≤ 0.001 - -
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Table 4. Cont.

Left Liver
Lobule Spleen Descending

Aorta
Autochthonous

Muscle Fat Air

FBP + PS vs. IR CT 0.09 ± 0.6
p = 0.636

0.05 ± 0.6
p = 0.715

−0.09 ± 0.8
p = 0.367

−0.07 ± 0.5
p = 0.351

1.15 ± 0.5
p ≤ 0.001

1.68 ± 0.7
p ≤ 0.001

Noise −3.21 ± 1.9
p ≤ 0.001

−1.96 ± 1.9
p ≤ 0.001

−2.36 ± 1.9
p ≤ 0.001

−0.90 ± 1.9
p = 0.004

0.20 ± 1.9
p = 0.373

−3.54 ± 1.3
p ≤ 0.001

SNR 0.76 ± 0.5
p ≤ 0.001

0.55 ± 0.5
p ≤ 0.001

0.48 ± 0.4
p ≤ 0.001

0.27 ± 0.5
p = 0.001

0.05 ± 0.8
p = 0.221 -

CNR −0.01 ± 1.3
p = 0.378

−0.02 ± 1.3
p = 0.322

−0.03 ± 1.2
p = 0.278

−0.02 ± 1.3
p = 0.362 - -

3.4. Subjective Image Quality of Thoracal CT

Subjective image quality, comparing FBP + PS and FBP, was evaluated in thoracal
CTs using the soft-tissue and lung kernels (Figure 3). All three raters preferred the PS
post-processed images over the unprocessed ones for both the lung as well as the soft-tissue
kernels. The agreement between the raters was moderate for the lung kernel (Kendalls’s
W = 0.5, p = 0.01, Table 5) and perfect for the soft-tissue kernel (Kendalls’s W = 1, p < 0.001).
The rating of the image quality on a 5-point Likert-scale could not deliver such a strong
tendency. Regarding the lung kernel, two raters did not find any difference in image
quality (mean difference = 0) while the third rated the FBP + PS just slightly better than
FBP (mean difference 0.08). For the lung kernel, again one rater did not detect any quality
difference while the others rated FBP + PS higher than FBP (mean differences 0.04 and 0.89,
respectively). Interrater reliability was moderate for both kernels (Kendall’s W = 0.51 for
soft tissue and 0.40 for lung) and was only significant for the soft-tissue kernel (p = 0.006).

Table 5. Evaluation of subjective image quality ranking. Mean differences in ranking are shown for
each rater (Raters 1–3) individually. Positive values indicate that the images of the first method were
ranked higher. Interrater reliability was evaluated using Kendall’s W (W) and its p-value (p).

Rater 1 Rater 2 Rater 3 W p

Thorax
B40 (FBP + PS vs. FBP) 1 1 1 1 <0.001
B70 (FBP + PS vs. FBP) 0.04 0.35 0.65 0.50 0.01

Abdomen (Site I)
FBP + PS vs. FBP 0.96 1 1 0.98 <0.001

Abdomen (Site II)
FBP + PS vs. FBP 1 0.96 1 0.98 <0.001
FBP + PS vs. IR −0.81 0.44 0.79 0.19 1

3.5. Subjective Image Quality of Abdominal CT

In abdominal CTs, subjective image quality was compared using the soft-tissue kernel
only (Figure 4A,B) and delivered similar results (Table 5). All raters strongly preferred
FBP + PS over FBP (mean difference between 0.96 and 1) with an almost perfect interrater
reliability for both sites (Kendall’s W = 0.98, p < 0.001).

In addition, a comparison betweem FBP + PS and IR was performed at site II
(Figure 4C,D). Here, two raters ranked FBP + PS higher than IR (mean differences 0.44
and 0.79, respectively), while the third favoured IR over FBP + PS (mean difference −0.81),
leading to a low interrater-reliability with a Kendall’s W of 0.19 (p = 1). Regarding the sub-
jective quality rating, all observers strongly preferred FBP + PS over FBP (mean difference
0.63 to 0.96), with a significant interrater agreement (p < 0.001) (Table 6). Moreover, two
observers preferred FBP + PS over IR (mean difference in rating: 0.5 and 0.19, respectively),
while the third one did not show any preference. This resulted in moderate agreement,
with a Kendall’s W of 0.44 (p = 0.02).
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Table 6. Evaluation of subjective image quality rating on a 5-point Likert scale. Mean ratings ± SD
and mean differences in rating are shown for each rater (Raters 1–3) individually. Positive difference
values indicate that the images of the first method were rated higher. Interrater reliability was
evaluated using Kendall’s W (W) and its p-value (p).

Rater 1 Rater 2 Rater 3 W p

Thorax
B40 (FBP + PS vs. FBP)

Mean difference
4.0 ± 0 vs. 4.0 ± 0

0
4.0 ± 0 vs. 3.6 ± 0.5

0.38
4.0 ± 0.4 vs. 3.1 ± 0.3

0.88 1 <0.001

B70 (FBP + PS vs. FBP)
Mean difference

4.0 ± 0 vs. 4.0 ± 0
0

4.1 ± 0.3 vs. 4.0 ± 0.2
0.08

3.4 ± 0.8 vs. 3.4 ± 0.8
0 0.50 0.01

Abdomen (Site I)
FBP + PS vs. FBP
Mean difference

4.4 ± 0.5 vs. 3.6 ± 0.5
0.80

4.3 ± 0.4 vs. 3.7 ± 0.6
0.63

4.2 ± 0.6 vs. 3.3 ± 0.5
0.92 0.59 <0.001

Abdomen (Site II)
FBP + PS vs. FBP
Mean difference

4.1 ± 0.4 vs. 3.2 ± 0.5
0.96

4.1 ± 0.3 vs. 3.3 ± 0.5
0.85

3.95 ± 0.3 vs. 3.0 ± 0.1
0.94 0.98 <0.001

FBP + PS vs. IR
Mean difference

3.0 ± 0 vs. 3.0 ± 0
0

4.0 ± 0.2 vs. 3.8 ± 0.4
0.19

4.6 ± 0.6 vs. 4.1 ± 0.6
0.5 0.19 1

4. Discussion

In this retrospective analysis, the impact of AI-based post-processing of non-contrast
chest and low-dose abdominal CT images was evaluated by comparing the commercial
software PixelShine with unprocessed FBP and IR images in thoracal and abdominal CTs,
showing the non-inferiority of PS post-processing compared to IR alone and therefore
offering an opportunity for image quality improvement in institutions using older scanners
without IR availability.

4.1. Objective Image Quality

Different CT reconstruction methods have various effects on image quality and noise.
FBP is an efficient and stable approach but results in a high noise level and significant
artifacts in low-contrast structures [17]. On the other hand, IR shows a better noise reduction
but can result in a plastic-like smooth appearance of the images [7]. These differences in
reconstruction techniques are foremost observed in chest and abdominal protocols [18]. The
post-processing of FBP or IR images with PixelShine is advertised as reducing image noise
but maintaining image information. However, published data on the impact of PixelShine
on image quality are scarce.

As expected, image information was maintained using PixelShine as determined by
changes in the CT values as a surrogative parameter. Small but significant alterations
were only seen regarding fat, air, and lung tissue. This could be explained by their overall
lower density and higher contrast between containing structures, which is affected by
smoothing as it is caused by PixelShine more easily. However, since the differences were
small (<±2 HU) and did not alter the visual impression, these are not considered clinically
relevant, as similarly stated by Steuwe et al. [15].

Our study revealed an overall significant reduction of image noise on the one hand and
a significant increase of CNR and SNR while maintaining image information for thoracal
as well as abdominal non-contrast CT scans by post-processing FBP reconstructed images
using PixelShine.

These findings were mostly independent of the applied kernel and the examined
tissues/organs. These results are in line with previous reports. Brendlin et al. also
stated that PixelShine improves the image quality of FBP-reconstructed thoracal LD-CT in
paediatric patients, while Wisselink et al. described noise reduction, especially in air and
emphysema, evaluating a COPDGene phantom [14,19]. But to our knowledge, our study
is the first evaluation of PixelShine in adult chest CT in vivo—especially in the context
of COVID-19 pneumonia. Regarding abdominal LD-CT, a study comparable to ours but
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with a lower number of patients was performed by Steuwe et al. and concluded that
PixelShine reduces image noise and shows improved SNR and CNR [13]. Also, for other
CT protocols including pelvic arterial phase CT or midfacial trauma imaging, image quality
improvement was described by comparing FBP + PS and FBP resp. IR [16,20,21].

Importantly, we were also able to show that the image quality of PixelShine-processed
images was at least not inferior to that of iteratively reconstructed abdominal CTs, as we
found that noise and SNR were improved, while no significant differences were observed re-
garding CNR. Similar observations had earlier been made by Brendlin and Steuwe [13–15].
Although PixelShine is recommended by the vendor for quality improvement of FBP-
reconstructed images, our additional analysis of PS-post-processed IR images also showed
an optimization of CNR and SNR. But further studies are necessary to evaluate its clinical
relevance. Therefore, additional subjective analyses are recommended and an evaluation
of the plastic-like smooth appearance of IR images following PS-post-processing would
especially be of interest [7].

4.2. Subjective Image Quality

Our subjective imaging evaluation confirmed the results from the objective analysis
to a large extent. Imaging ranking as well as ranking on a 5-point Likert scale revealed a
strong preference of the raters towards FBP + PS in abdominal LD-CT and in the thoracal
CT image regarding the soft-tissue kernel. However, with regard to the lung kernel,
no superiority of FBP + PS was seen. As this is the clinically relevant kernel in patients
suspected of pneumonia, FBP + PS does not deliver a subjective benefit for these indications,
which contrasts with observations made in paediatric chest CTs by Brendlin et al. [14].
But this could be explained by the patient selection, because Brendlin et al. evaluated
ultra-low-dose CTs in children while we examined non-contrast CTs in adults with higher
doses. Furthermore, the raters confirmed the non-inferiority of FBP + PS compared to
IR-processed abdominal CT. This is important because modern CT scanners usually offer
IR algorithms but there are still institutions with older machines where FBP is the only
available reconstruction method; for these institutions especially, PixelShine could also
offer a suitable opportunity for CT image quality improvement.

Another possible benefit of PixelShine is a further reduction of radiation exposure.
Brendlin et al. could show, in a retrospective analysis of whole-body LD-staging CTs in
melanoma patients using simulation software, that a dose reduction of up to 30% could be
achieved without image quality loss using DL-based post-processing with PixelShine [22].
Although prospective data are not available yet, these findings underline the opportunities
for dose reduction offered by DL-based post-processing software, which is especially
important for commonly used protocols including thoracal and LD-abdominal CTs.

4.3. Limitations

We evaluated the usage of PixelShine in very narrowly defined CT indications (ex-
amination of suspected COVID-19 and urolithiasis), leading especially to a quite small
population size for the thoracal imaging. This makes a generalization of our results dif-
ficult, although they are mostly in line with previous studies as described above. Due
to the commercial character of the software, we had no insight into the detailed under-
lying algorithm, so our information on that fully relies on the vendor. A comparison
with other commercial or non-commercial DL approaches such as ClariCT.AI (ClariPi,
Seoul, Republic of Korea) [23–25], AiCE (advanced intelligent Clear-IQ Engine, Canon,
Tokyo, Japan) [26–28], or TrueFidelityTM (GE Healthcare, Chicago, IL, USA) would be
favourable [29,30]. Moreover, we used the software’s parameters as recommended by the
vendor. A detailed analysis comparing different software parameters was not feasible. In
terms of image analysis, we assessed subjective image quality based on the raters’ overall
impressions of the images and an additional ranking. No detailed analysis regarding
the textural properties or visibility of artifacts was performed. Moreover, low-contrast
features were not explicitly considered in our study as they were expected to play an overall
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minor role in low(er) dose CTs. Generally, a subjective assessment with a broader range
of radiologists is recommended for future studies to evaluate its usability in clinical rou-
tines more specifically. With regard to future studies, a longitudinal follow-up of patients
could be beneficial for investigating the impact of AI-based post-processing on clinical
outcomes including diagnostic accuracy, changes in patient management, and potential
dose reduction benefits.

In conclusion, we show that using PixelShine for deep learning-based post-processing
of non-contrast thoracal and non-contrast, low-dose abdominal CT scans that were recon-
structed using filtered back-projection leads to a significant increase in objective image
quality and in subjective image quality, depending on the kernel in thoracal imaging and
with the strongest effects in soft-tissue imaging. However, this post-processed image quality
was not inferior to iterative reconstruction techniques, making it a promising approach for
medical institutions where IR reconstruction methods are not available. Further studies are
necessary to evaluate whether AI-based post-processing could allow for a further reduction
of radiation dose while maintaining image quality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics14060612/s1, Table S1. Mean relative differences of CT
values, noise, SNR and CNR comparing FBP + PS vs. FBP reconstructed thoracal CT. Table S2. Mean
relative differences of CT values, noise, SNR and CNR comparing FBP + PS vs. FBP, IR + PS vs. IR
and FBP + PS vs. IR reconstructed abdominal LD-CT in Site I and Site II.
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