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Abstract: Currently, innovations in mechatronic products often occur at the system level, requiring
consideration of component interactions throughout the entire development process. In the earlier
phases of development, this is accomplished by coupling virtual prototypes such as simulation
models. As the development progresses and real prototypes of certain system components become
available, real-virtual prototypes (RVPs) are established with the help of network communication.
However, network effects—all of which can be interpreted as latencies in simplified terms—distort
the system behavior of RVPs. To reduce these distortions, we propose a coupling method for RVPs
that compensates for latencies. We present an easily applicable approach by introducing a generic
coupling algorithm based on error space extrapolation. Furthermore, we enable online learning by
transforming coupling algorithms into feedforward neural networks. Additionally, we conduct a
frequency domain analysis to assess the impact of coupling faults and algorithms on the system
behavior of RVPs and derive a method for optimally designing coupling algorithms. To demonstrate
the effectiveness of the coupling method, we apply it to a hybrid vehicle that is productively used
as an RVP in the industry. We show that the optimally designed and trained coupling algorithm
significantly improves the credibility of the RVP.

Keywords: real-virtual prototypes; real-time simulation; co-simulation; hardware-in-the-loop; functional
mock-up interface; FMI; DCP; distributed simulation; latency compensation; discontinuity detection

1. Introduction

Many innovations in established and technologically advanced mechatronic products
go beyond individual components and, instead, occur at the system level through a holistic
approach. This involves combining information from different domains or connecting
multiple independent products from different ecosystems, which increases the complexity
of the product under development [1]. The automotive industry offers significant potential
for innovations at the system level, as modern vehicles interact in an ecosystem with
other vehicles, consumer electronics, or energy systems, such as charging infrastructure.
However, the successful implementation of cross-domain features, such as advanced driver
assistance systems, requires reliable coordination and interaction between various vehicle
components, such as driving dynamics, steering, and braking. For the efficient and cost-
effective development of cross-domain features, it is crucial to consider the interactions
between the different domains already at the early stages of the development process [2].
This is achieved by implementing virtual prototypes in the form of simulation models of
the individual components of the mechatronic system and coupling them together to create
large model-in-the-loop (MIL) simulation environments using co-simulation methods [3].
In the last decade, the functional mock-up interface (FMI) standard [4], for which version
3.0 has recently been published [5], has established itself as a widely adopted interface
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format for virtual prototypes. It facilitates the creation of MIL and software-in-the-loop
(SIL) simulations by enabling the coupling of virtual prototypes, containerized as functional
mock-up units (FMUs), across different simulation tools.

While simplified simulation models may be sufficient for MIL simulations at the start of
new product developments, the models become increasingly detailed as the requirements
become more precise over the course of product development. Given the significant
investment of time and resources in creating virtual prototypes during the earlier stages of
the development process, their reusability in all phases of the development process must be
ensured, especially as the development cycles of products continue to shorten [6]. During
the later stages of development, such as the verification and validation phase, when the
first components of the product are already available as real, physical hardware prototypes,
it becomes necessary to couple real and virtual prototypes, resulting in what is known
as real-virtual prototypes (RVPs) [7]. We use the term RVP instead of hardware-in-the-
loop (HIL) [8] or X-in-the-loop (XIL) [9] to emphasize that the virtual prototypes of RVPs
are the original soft real-time simulation models implemented during earlier phases of
the development process, rather than optimized real-time simulation models specifically
designed to be coupled with hardware components, such as test benches.

The mentioned continuity from purely virtual MIL to RVPs is the subject of research
in various industries. Starting from a cross-domain MIL simulation, the authors of [10]
demonstrate the transition to an RVP by replacing the simulation model of an internal
combustion engine with an engine test bench. In [11], an RVP was implemented to validate
real relays within smart power grids, and the authors of [7] present information on how
RVPs are utilized in the maritime domain for the development of position controllers for
container ships [12]. RVPs can also incorporate a human interface, such as coupling detailed
simulation models with a driving simulator to assess the effects of various vehicle configu-
rations on the driver [13]. Furthermore, RVPs are often spatially distributed, as multiple
real prototypes on different test benches are coupled, which requires communication via
a network to exchange signals and enables interactions between the coupled prototypes.
For example, in Europe, an RVP containing five test benches is being established for the
development of electric vehicles [14,15].

A lot of research has been dedicated to the practical integration and configuration of
the coupling between real and virtual prototypes, which has resulted in the development
of the distributed co-simulation protocol (DCP) specification [16]. Just as the FMI facilitates
the setup of co-simulations, the DCP standardizes the configuration and operation of
the network communication between coupled prototypes, which enables the efficient
setup of RVPs, even when the coupled prototypes originate from different vendors [17,18].
Since its introduction, the DCP has been improved several times, for example, in [19],
where the DCP was combined with an already existing co-simulation interface to increase
its compatibility with certain hardware platforms. Amongst others, the DCP has been
successfully adopted by the authors of [20] to couple an electric machine and a combustion
engine test bench, in [21], for coupling a 3D environment simulation to a vehicle simulation,
and in our previous contribution [22] to couple a real and a virtual prototype across a large
distance. However, even with the standardized configuration of RVPs through the DCP,
not all challenges in terms of their usage are resolved. One remaining challenge lies in the
occurrence of coupling faults in the communication between the prototypes due to network
effects. The resulting coupling errors can negatively affect the system’s behavior, thus
constraining the applicability of RVPs. Therefore, there is a need for research to enhance
the coupling of RVPs by compensating for coupling faults.

This contribution presents a coupling method that enables increased utilization of
RVPs in product development by reducing coupling errors through the compensation of
dominant network effects during data exchange between prototypes. The focus is on ensur-
ing the method’s simplicity for general application without requiring the modification of
the coupled virtual and real prototypes. Instead, the compensation of network effects shall
solely rely on coupling signals and directly measurable information within the network.
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In order to achieve this, we first introduce real-time co-simulation in Section 2.1,
which is the methodological basis for describing the coupling process of RVPs. We identify
that network effects leading to coupling faults in RVPs can be interpreted in a simplified
manner solely as latencies. Additionally, we define a general form of linear coupling
algorithms considered in this contribution to compensate for these latencies. Afterward, in
Section 2.2, we present a novel procedure for extrapolation in the error space and derive
a new, generic coupling algorithm from it. Notably, the proposed coupling algorithm is
generally applicable without requiring knowledge of the RVP’s system behavior. This
constitutes a significant difference from previous works, where the coupling algorithm
relies on precise mathematical models of all coupled prototypes, such as the utilization of a
Smith predictor [23], a Luenberger observer [24], or model predictive control methods [25]
for latency compensation.

Subsequently, in Section 2.3, we build upon our approach that was previously pub-
lished in [26] to utilize small neural networks as coupling algorithms. In the present
contribution, instead of applying neural networks as standalone coupling algorithms,
we use them to enhance existing generic coupling algorithms. Through online learning,
we enable algorithms to adapt to the coupling signals of RVPs, with the goal of further
reducing coupling errors. As with the concept of hybrid models [27], by starting from
generic coupling algorithms, this approach aims to leverage as much a priori knowledge
as possible before utilizing machine learning methods for the further improvement of our
coupling algorithms. This is a key difference to methods that require mandatory online
training, such as in [28], where an FIR filter serves as the foundation for the learning
approach or the coupling algorithm proposed by the authors of [29], which employs a PD
controller function as the basis for training. Following that, in Section 2.4, we extend the
frequency domain analysis of the entire coupling process of RVPs as well as the method to
determine optimal coupling algorithms based on it, which both originate from our previous
publication [26] to conform to our defined general form of coupling algorithms.

A well-known issue with coupling algorithms is the limitation in their usability for
coupling signals with changing frequency components, such as those caused by discontinuities,
especially stateful methods, such as the PD controller mentioned above, as well as other
approaches, such as the model-based coupling element utilized in [30] and analyzed in [31] or
the sliding-mode observer for latency compensation proposed by the authors of [32,33]; these
perform poorly when applied to such signals, as they tend to impose oscillations.

For our stateless coupling algorithms, we address this issue in Section 2.5 by introduc-
ing a novel method for detecting and handling discontinuities in coupling signals. This
approach aims to prevent significant coupling errors that would occur when applying a
coupling algorithm at a discontinuity and, thus, increase the range of applicability of these
coupling algorithms.

After the implementation of the entire coupling method using the FMI standard in
Section 2.6, we demonstrate our proposed coupling method in Section 3 by applying it
to an RVP of a hybrid electric vehicle, which is used productively in industry, and by
outlining the benefits achieved through the use of the coupling method. We conclude the
contribution by summarizing the main results and identifying potential starting points for
future work in Section 4.

2. Materials and Methods
2.1. Real-Time Co-Simulation for Real-Virtual Prototypes

Real-time co-simulation combines methods for coupling prototypes under existing
real-time requirements, where the prototypes are spatially distributed and communicate
over a network during run-time. Consequently, the data exchange of the prototypes of an
RVP can be formulated as a real-time co-simulation [34].
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The data exchange between prototypes under real-time conditions over a network, as
depicted in Figure 1, occurs similarly to the data exchange between the simulation models
in a co-simulation (see Section 1) at specific time points, represented by the sequence

tn = n∆T (1)

with the time t, constant macro step size, ∆T, and n ∈ N. In addition to sampling, net-
work effects, such as time-varying communication latency τ(t) and packet loss, affect the
coupling signals negatively [35]. As a result, the ideal coupling equation

u(t) = y(t) (2)

for an input, u, that is connected to an output, y, of another prototype is never fulfilled.
Instead, due to the communication latency, it holds

u(t) = ŷ(t) = yn−k with tn ≤ t < tn+1 (3)

and

k = min{s ∈ N|s ≥ τ(tn)

∆T
} with τ > 0 (4)

Thereby, k stands for the number of macro steps delay, in the current macro step due to
latency. For the RVPs in the literature, the dependency between ∆T and k from Equation (4)
is resolved by choosing the macro time step in such a way that, on average, it holds that
k ≤ 10 [28,34–36]. Furthermore, as in offline co-simulation, the macro step size in a real-
time co-simulation must be chosen to be much smaller than the Nyquist frequency to avoid
aliasing [37].
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Figure 1. Schematic representation of a real-virtual prototype (RVP), consisting of one real and one
virtual prototype, with a focus on the coupling faults during data exchange due to network effects,
marked in red. Packet loss is indicated by the red flash. Based on [28].

The packet loss mentioned, which is inevitable during data exchange over an insecure
network, such as the internet, can be interpreted as an additional short-term increase in
latency. This is due to the fact that in the case of a single packet loss at tn, the message
received at tn−1 remains the latest until a new message arrives at tn+1, increasing the latency
by ∆T. Real-time violations of the virtual prototypes can also lead to temporary latency
increases. This occurs when a virtual prototype fails to complete its calculations before the
next macro step, causing the message to be sent late and, subsequently, received later by a
coupled prototype. The authors of [38] discuss these time discrepancies between real and
virtual prototypes in detail and propose a mechanism for detecting them. Additionally,
noise occurring during signal measurement in real prototypes affects the roundtrip time
between prototypes, as filters, which are optimized for the sensors used, are often utilized
to compensate for the noise. These filters also contribute to the latency, as they introduce a
phase shift to the coupling signal. Consequently, the network errors can be represented in a
simplified form as pure variable latency.
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The discrepancy between the ideal coupling described in Equation (2) and the actual
coupling with latency represented by Equation (3) is referred to as the coupling error. For
an arbitrary coupling signal, it is defined as

e(t) = d(y(t), ŷ(t)) with tn ≤ t < tn+1 (5)

in this work and it is calculated using a suitable distance function, d(·). Many different
distance functions are possible. For instance, the authors of [28] chose the absolute error for it.

In order to reduce the coupling error and, thus, improve the significance of the results
achieved with RVPs, coupling algorithms are utilized. These algorithms aim to enhance the
accuracy of the coupling process by compensating for the latency and by reconstructing
the continuous coupling signal. In this work, stateless, linear coupling algorithms of the
general form

ŷ(t) =
m−1

∑
i=0

aiyn−k−i +
m−1

∑
l=0

Alyn−k−l
t − tn

∆T
with tn ≤ t < tn+1 (6)

are considered. Both terms are an autoregressive model [39]. The first compensates for
the latency by estimating the signal value for the current macro time tn, and the second
reconstructs the continuous signal up to the beginning of the next macro time point, which
is exactly the task of an extrapolation algorithm used in non-iterative offline co-simulation.
The reconstruction is necessary to allow for calculating input values for the prototypes
between the time points defined by the macro step size, as the internal micro step size
of virtual prototypes or the frequency of actuation of real prototypes may differ from the
macro step size chosen for the RVP. Coupling algorithms that correspond to the form in
Equation (6) differ in the values of their weighting vectors, a and A, as well as in the number
of past signal values used, m.

As for example in [31], the commonly used naïve coupling algorithm zero-order-hold
(ZOH) is defined as

ŷ(t) = yn−k for tn ≤ t < tn+1 (7)

and it estimates the current signal course, ŷ(t), by simply taking the latest available signal
value (see Equation (3)), making it easy to implement; therefore, it is commonly used.
It is derivable from Equation (6) using the parameters a = 1, A = 0, and m = 1. The
first-order-hold (FOH) coupling algorithm that is sometimes used in co-simulation for
physical signals that do not contain discontinuities [37] is also extendable for compensating
latencies in real-time simulation. For FOH, the estimated signal course is given by

ŷ(t) = yn−k + (yn−k − yn−k−1)

(
k +

t − tn

∆T

)
for tn ≤ t < tn+1, (8)

which conforms to Equation (6) for the parameters a = [k + 1,−k]T , A = [1,−1]T , and
m = 2. The signal is continued based on the first derivative calculated with the backward
differentiation coefficient. Besides ZOH and FOH, the stateless coupling algorithms from
the literature, such as the one from [28], that were introduced in Section 1 also correspond
to the general form in Equation (6). However, stateful algorithms [29,30,32], often based on
an autoregressive model, do not conform to this form; therefore, the methods presented in
this contribution are not applicable to them.

2.2. Error Space Extrapolation

In this contribution, we first propose a novel method for constructing a new class of
coupling algorithms that, like ZOH and FOH, are generically applicable to the coupling
signals of RVPs, as they do not require system knowledge of the prototypes of the RVP.
Instead of compensating for latency by estimating signal characteristics, such as the first
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derivative, the proposed method explicitly focuses on the primary objective of a coupling
algorithm (see Section 2.1), which is minimizing the coupling error.

Starting from a set of curves, fp(yk,m, k, t), the method chooses the curve f p̂(yk,m, k, t)
that shall be used for extrapolation until the next macro step. When applying the selected
curve, the extrapolated coupling signal results in

ŷ(t) = f p̂

(
yk,m, k, t

)
with yk,m =


yn−k

yn−k−1
...

yn−k−m+1

for tn ≤ t < tn+1, (9)

whereby the parameter vector p̂ ∈ Dp defines the shape of the curve. The objective of
the method is to select f p̂(t) in such a manner that the estimated coupling error from
Equation (5) at the end of the current macro time step

ên+1 = d(yn+1, ŷn+1) (10)

is minimized based on an appropriate distance function, d(·).
Given a set of available signal curves, fp, with p ∈ Dp and the distance function, the

method predicts (at each macro time step) the value p̂ of the parameter p that minimizes
the absolute value of the estimated coupling error, ên+1, resulting in

p̂ : min
p∈Dp

ên+1(p) = min
p∈Dp

d
(

yn+1, fp

(
yk,m, k, tn+1

))
. (11)

The core of the method is the estimation of p̂ through the analysis and extrapolation of the
past signal curve not in the signal space but in the error space. The procedure is divided
into a sequence of four steps that are executed once at every macro time step.

1. Estimation of (hypothetical) coupling errors from previous macro steps. Based on
the given historical time series of the coupling signal, yk,m, at each of the last q ≥ 1
time points, a set of possible extrapolation errors ei(p) with n − k − q < i ≤ n − k is
determined. This can be carried out either analytically according to Equation (10) or
by approximation, where ei(p) is evaluated exactly for si supporting points pi,j and
the curve of ei(p) between the supporting points are determined by curve fitting to
functions gi.

2. Estimate future coupling errors. Using the computed q error curves, ei(p) and an
appropriate extrapolation method, E, the error curve ên+1(p) for the next time step
is estimated by applying E to ei(p). Similar to the previous step, the error curve
ên+1(p) can either be calculated analytically or approximated by evaluating ên+1(p)
for sn+1 supporting points pn+1,j and determining the curve of ên+1(p) between the
supporting points en+1

(
pn,j
)

through curve fitting using the functions gn+1.
3. Find the smallest future coupling error. With the estimation of the future error curve,

ên+1(p), p̂ is determined by finding an approximation of the solution of Equation (11).
4. Extrapolate the coupling signal. By using p̂, the future coupling signal curve is

approximated according to Equation (9).

This general method can be varied in the following aspects:

• The choice of the set of curves, fp(t);
• The choice of the distance function, d(·);
• The number, q, of past time points considered;
• The choice of the method, E, for estimating ên+1(p) using ei(p);
• The choice of the method for solving Equation (11).

If the error curves ei(p) or ên+1(p) cannot be computed analytically, two additional
aspects need to be determined:

• The number, s, of supporting points at which the error curves will be precisely evaluated;
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• The choice of functions, gi, for curve fitting between the supporting points.

Depending on how these variation points are chosen, many of the steps in the proposed
method can be combined, resulting in a coupling algorithm, the execution of which requires
little computing time. This will be demonstrated below by deriving a specific coupling
algorithm using the proposed method.

For our coupling algorithm, a chosen first-degree polynomial defines the set of curves as

fp

(
yk,m, k, t

)
= p0 + p1

(
k +

t − tn

∆T

)
for tn ≤ t < tn+1. (12)

Thus, with Equation (9), the extrapolated coupling signal curve results in

ŷ(t) = yn−k + p̂1

(
k +

t − tn

∆T

)
für tn ≤ t < tn+1. (13)

When choosing the last known signal value as a point on the polynomial p̂n,0 = yn−k, make
sure the estimated signal curve is continuous. In order to determine p̂1 using extrapolation
in the error space, the Taylor series expansion

ên+1(p) = en−k(p) + (k + 1)∆T
d
dt

en−k(p) +
1
2
((k + 1)∆T)

2( d
dt

)2
en−k(p) + . . . (14)

is chosen as method E, using the backward difference quotient to approximate the deriva-
tives. For the specific coupling algorithm derived here, the Taylor series expansion is
stopped after the first order, whereby

ên+1(p) = en−k(p) + (k + 1)(en−k(p)− en−k−1(p)) (15)

applies. By choosing the absolute error as the distance function, d(·), the required error
curves can be obtained analytically as

ei(p) = ŷi(p)− yi = yi−k−1 + p1(k + 1)− yi, (16)

eliminating the need for curve fitting in this case. Thus, the q = 2 past error curves required
by Equation (15) result in

en−k(p) = yn−2k−1 + p1(k + 1)− yn−k and
en−k−1(p)
= yn−2k−2 + p1(k + 1)− yn−k−1.

(17)

This allows for the analytical computation of the absolute minimum of the future coupling

error by solving Equation (11) with ên+1(p) !
= 0. With the solution

p̂1 =
k + 2
k + 1

yn−k − yn−k−1 −
k + 2
k + 1

yn−2k−1 + yn−2k−2 (18)

and Equation (13), the derived coupling algorithm is defined as

ŷ(t) = yn−k +
(

k+2
k+1 yn−k − yn−k−1 − k+2

k+1 yn−2k−1 + yn−2k−2

)(
k + t−tn

∆T

)
for tn ≤ t < tn+1.

(19)

In this contribution, we name this coupling algorithm error space extrapolation (EROS).
Just like ZOH and FOH, EROS is a generic coupling algorithm that conforms to the general
form of the coupling algorithms of Equation (6) using the parameters

a =

[
1 +

k + 2
k + 1

,−1, . . . ,− k + 2
k + 1

, 1
]T

, A =

[
k + 2
k + 1

,−1, . . . ,− k + 2
k + 1

, 1
]T

and m = k + 3. (20)
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It does not require any parametrization and can, therefore, be applied without system
knowledge about the RVP or its coupling signals. Furthermore, the calculation formula
of EROS is directly dependent on k, making it suitable for variable latency while keeping
the computational effort constant, as it does not need to be applied recursively. Another
interesting property of EROS is that the indices of the m past signal values used increase
with increasing k. This fulfills a common rule of thumb in forecasting to “Look Back Twice
as Far as You Look Forward” [40]. In Section 2.4, EROS is analyzed in more detail.

Certainly, countless other coupling algorithms with different properties (see Section 2.4)
can be constructed using the presented method. However, in this contribution, our focus is
specifically on EROS.

2.3. Adding Learning Ability to Coupling Algorithms by utilizing Feedforward Neural Networks

In a previous contribution [26], we introduced the concept of utilizing feedforward
neural networks (FFNNs) as a coupling algorithm that can adapt to the coupling signal of
RVPs through online learning. Thus, the FFNN coupling algorithm can predict the behav-
ior of coupling signals resulting from the nonlinear behavior of the coupled prototypes,
such as discontinuities, which is not achievable with linear coupling algorithms. In this
contribution, we revisit this approach. However, we extend and generalize the method by
constructing the FFNN in such a way that its initial input-output behavior can be chosen
to be exactly equal to the behavior of any algorithm conforming to the general rule from
Equation (6). In this way, we enhance coupling algorithms, such as the newly proposed
EROS algorithm from Section 2.2, by online learning capabilities.

The starting point is a standard FFNN consisting of multiple fully connected layers.
As defined in [41], the h-th layer computes its output vector

xh = σ
(

Whxh−1 + Θh
)

(21)

using the input vector xh−1 with a generally nonlinear activation function, σ(·) per neuron.
The dimension of the weight matrix, Wh, and the offsets vector, Θh, depends on the
dimension of the input vector and the number of neurons, which is equal to the dimension
of the output vector of the h-th layer. The input vector of the FFNN is the m most recent
past signal values of the coupling signal, and the output is the predicted signal value for
the current macro time step, ŷn.

As early as 1996, the authors of [42] observed that any arbitrarily large FFNN of the
form in Equation (21) that is used for predicting univariate time series could be simplified
as the autoregressive model

ŷn = c +
m

∑
i=1

aiyn−i (22)

when the linear activation function, σlin(x) = x, is used in each neuron of every layer. In
this case, the vector a and the constant c correspond exactly to the weights and offset of
the individual neuron. Since Equation (22) is an autoregressive model, it is the same as
the first term of the generic form in Equation (6). Consequently, the latency compensation
term of any generic coupling algorithm conforming to Equation (6) is transformable into
an FFNN consisting of a single neuron and linear activation function. Thereby, the offset
vector, Θh, of the single neuron will be set to zero as it is commonly assumed that c = 0 for
all coupling algorithms, as otherwise, a coupling error would occur for the simple case of
applying the coupling algorithm to a constant signal.

In order to increase the complexity of the FFNN and, thus, enhance the FFNN’s
ability to adapt to coupling signals arising from the complex nonlinear behavior of an RVP,
the method of “Network Morphism” [43] is used. This involves increasing the number
of neurons and layers, as well as introducing nonlinear activation functions within the
FFNN while preserving its input-output behavior. First, the layers and neurons with linear
activation functions are added by utilizing the net2net method [44]. Then, the nonlinear
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behavior is introduced into the network by replacing single neurons with a linear activation
function with two neurons with the LRELU activation function

σlrelu(x) =
{

x if x ≥ 0
αx if x < 0

(23)

with the commonly used factor α = 0.01 [45] via the relation

σlin(x) =
1

1 + α
(σlrelu(x) + σlrelu(−x)). (24)

In order to provide the FFNN with enough flexibility to adapt to individual coupling signals
while keeping computational complexity and online training time low, the number of neurons
in the final FFNN architecture must be chosen carefully. In this contribution, the first layer
consists of four, each fully connected to the input vector composed of the past signal values of
the coupling signal. The second layer comes with two neurons before the scalar prediction of
the time series is computed as the output of the output layer with a single neuron. All the
neurons of the first and the last layers use the linear activation function.

If the coupling signal that the FFNN coupling algorithm is applied to contains discon-
tinuities, the LRELU activation function should be selected for the neurons of the second
layer. This choice enables the FFNN algorithm to have nonlinear behavior by permitting it
to learn to switch between different behaviors, thereby predicting discontinuities. However,
in the absence of discontinuities, the linear activation function can also be utilized in the
second layer, resulting in linear behavior for the FFNN, thus simplifying the analysis of its
behavior (see Section 2.4).

The FFNN coupling algorithm only addresses the compensation for latency, which is
the first part of Equation (6), and not the reconstruction of the continuous signal; for that,
two options are available. Either the reconstruction part of the coupling algorithm that
was the basis for the FFNN is used or ZOH is simply taken to prevent the amplification of
potential discontinuities (see Section 2.4).

The resulting FFNN is already applicable as a coupling algorithm without training,
as its behavior exactly corresponds to the generic coupling algorithm (e.g., ZOH, FOH, or
EROS), which is used as the initial parametrization of the network. In addition, based on
this already good initial parameterization, it is possible to train the FFNN online during the
run-time of an RVP with little computational effort to adapt to a specific coupling signal
using its past course as training data and by utilizing highly efficient training procedures
specifically designed for the structure of FFNNs, e.g., as discussed in [46]. In [26], we
demonstrated that this approach enables the prediction of discontinuities in the coupling
signal that results from the nonlinear behavior of the coupled prototypes.

2.4. Coupling Process Analysis and Optimization in the Frequency Domain

As explained in Section 2.1, the system behavior of RVPs is influenced by coupling
faults, such as latency, and the coupling algorithms used to minimize the coupling error. In
the following, the influence of the overall coupling process consisting of coupling faults
and a coupling algorithm on the system behavior of RVPs is examined in the frequency
domain. This analysis aims to derive an upper bound on the bandwidth of the coupling
signal for which the generic coupling algorithms are applicable. In addition, it is the basis
with which to develop a method for calculating optimal coupling algorithms with respect
to the bandwidth of the coupling signals of a specific RVP.

While the authors of [37], along with ourselves in our own publication [26], conduct
an analysis of the coupling process, including coupling algorithms, the former focuses
specifically on non-iterative offline co-simulation. Consequently, it does not consider the
coupling faults caused by the real-time requirement of RVPs, which are crucial for the
analysis of RVPs, as they represent the primary negative effect on their behavior (see
Section 2.1). The latter only considers coupling algorithms of the form in Equation (22) and
not the general form of linear algorithms, including the reconstructions in Equation (6),
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which limits the analysis and can lead to imprecise results. Therefore, the analysis and
the calculation of the optimal coupling algorithms are based on it, which both originate
from [23]; these are generalized and are hereby improved upon in the following section
to provide a more precise estimation of the RVP’s behavior due to coupling faults and
coupling algorithms.

2.4.1. Transforming the Coupling Process into the Frequency Domain

When assuming the inputs and outputs of all the prototypes of an RVP are time-
continuous, it is reasonable to interpret the coupling process as a time-continuous element.
Consequently, the Laplace transform is applicable for calculating its transfer function. As
shown in Figure 2, the transfer function of the coupling process

Gp(s) = Gr(s)Gl(s)Gs(s) (25)

is split into three parts: sampling, latency, and the coupling algorithm, including compensa-
tion for the latency and reconstruction of the continuous signal. Each part is
calculated independently.
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names, which are utilized in the derivation of the overall transfer function.

The effects of sampling on a continuous signal in the frequency domain are derived in
detail in [47]. There, the signal sampled with the macro step size, ∆T, is represented as

ys(t) =
∞

∑
n=−∞

ynδ(t − n∆T) (26)

using the Dirac function, δ(·). The transfer function of this sampling results in

Gs(s) =
Ys(s)
Y(s)

=
1

∆T
(27)

under the assumption that the macro step that was chosen is small enough to avoid
aliasing, which is not a limitation, as aliasing must be avoided anyway to allow for the
correct operation of an RVP (see Section 2.1). The Laplace transformation of the sampled
signal can also be expressed in terms of the sampled signal values yn = y(n∆T) as

Ys(s) =
∞

∑
n=0

yne−sn∆T (28)

by applying the Laplace transform pair δ(t − n∆T)
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𝑠 Δ𝑇
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1
𝑠Δ𝑇

𝑡𝑒
1
𝑠

𝑛𝑒  

𝐴 𝑒
1 1 𝑠Δ𝑇 𝑒

𝑠 Δ𝑇
𝑒 𝑦 𝑒 . 

(33)

𝐺 𝑠
𝑌 𝑠
𝑌 𝑠

𝑎 𝑒
1 𝑒

𝑠
𝐴 𝑒

1 1 𝑠Δ𝑇 𝑒
𝑠 Δ𝑇
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e−sn∆T .



Electronics 2024, 13, 1077 11 of 29

For the second part of the coupling process transfer function—the transfer function of
the latency—it holds that

Gl(s) =
Yl(s)
Ys(s)

= e−sk∆T (29)

as a constant latency k∆T (see Section 2.1) has the effect of a time shift in the frequency domain.
In order to calculate the Laplace transformation of the coupling algorithms, which is

the third part of the coupling process, the general form of the coupling algorithms from
Equation (6)

ŷ(t) =
m−1

∑
i=0

aiyn−k−i︸ ︷︷ ︸
ŷ1(t)

+
m−1

∑
l=0

Alyn−k−l
t − tn

∆T︸ ︷︷ ︸
ŷ2(t)

with tn ≤ t < tn+1, (30)

is utilized. It generalizes, among others, the commonly used methods ZOH and FOH and
the newly introduced EROS coupling algorithm from Section 2.2, as well as the linear FFNN
from Section 2.3. Due to the piece-wise definition of ŷ(t), applying the Laplace transform,
together with y(t) = 0 for t < 0, leads to

Ŷ(s) =
∞

∑
n=0

(n+1)∆T∫
n∆T

ŷ(t)e−stdt. (31)

The linearity property of the Laplace transform allows us to solve this by independently
transforming the two terms ŷ1(t) and ŷ2(t) from Equation (30). For the first term, after
performing the integration, this results in

L{ŷ1(t)} =
m−1

∑
i=0

aie−(k+i)s∆T
∞

∑
n=0

yn

[
−1

s
e−st

](n+1)∆T

n∆T
=

m−1

∑
l=0

aie−is∆T 1 − e−s∆T

s
e−ks∆T︸ ︷︷ ︸

Gl(s)

∞

∑
n=0

yne−sn∆T

︸ ︷︷ ︸
Ys(s)

(32)

and for the second term, it leads to

L{ŷ2(t)} =
m−1
∑

l=0
Ale−(k+l)s∆T

∞
∑

n=0
yn

[
− 1

s2∆T e−st − 1
s∆T te−st + 1

s ne−st
](n+1)∆T

n∆T

=
m−1
∑

j=0
Ale−ls∆T 1−(1+s∆T)e−s∆T

s2∆T e−ks∆T︸ ︷︷ ︸
Gl(s)

∞

∑
n=0

yne−sn∆T

︸ ︷︷ ︸
Ys(s)

. (33)

After adding Equations (32) and (33), the transfer function of the general form of the
coupling algorithms is calculated as

Gr(s) =
Ŷ(s)
Yl(s)

=
m−1

∑
i=0

aie−is∆T 1 − e−s∆T

s
+

m−1

∑
l=0

Ale−ls∆T 1 − (1 + s∆T)e−s∆T

s2∆T
(34)

using Yl(s) = Gl(s)Ys(s) (refer to Figure 2).
Combining the three parts of the transfer function of the coupling process of RVPs,

taking into account coupling faults and the coupling algorithm, results in

Gp(s) = Gr(s)Gl(s)Ga(s) =

(
m−1

∑
l=0

ale−ls∆T 1 − e−s∆T

s∆T
+

m−1

∑
j=0

Aje−js∆T 1 − (1 + s∆T)e−s∆T

s2∆T2

)
e−ks∆T (35)

By substituting the parameter vectors a and A from Equations (7), (8) and (19) into
Equation (35), the transfer function for the coupling process is calculated for the coupling
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algorithms ZOH, FOH, and EROS. The resulting transfer functions are depicted as Bode
plots in Figure 3 for an exemplary latency of k = 3 macro time steps. An ideal coupling
algorithm would compensate for the phase error caused by the latency, resulting in a
neutral magnitude |GP(jωm)| = 1 and a zero-phase

∣∣∠Gp
(

jωp
)∣∣ = 0

◦
in response to the

coupling process for all frequencies below the Nyquist frequency. FOH and EROS achieve
this at low frequencies, but this comes at the cost of high-magnitude amplification for
higher frequencies due to the waterbed effect [48]. This is the reason why these methods
are not applicable when high frequencies (for example, due to discontinuities) are present
in the coupling signal. ZOH cannot compensate for the latency at all but it also does not
amplify high frequencies.
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Figure 3. Bode plot of the coupling process of RVPs for an exemplary latency of k = 3, normalized to
the frequency with respect to the macro step as a percentage of the Nyquist frequency (compare to [37]
for non-iterative co-simulation) for the coupling algorithms zero-order-hold (ZOH), first-order-hold
(FOH), and error space extrapolation (EROS): (a) overview; (b) focus on low frequencies. Magnitude
and phase limits as introduced by the authors of [37] are shown as a dashed line.

In order to define the frequency ranges for which the coupling algorithms are suitable
and to compare different coupling algorithms, the authors of [37] introduce heuristic limits
for the maximum deviation from the ideal transfer behavior. For the magnitude gain,
they choose |GP(jωm)| < 1.03, and for the phase shift,

∣∣∠Gp
(

jωp
)∣∣ < 3

◦
, resulting in an

upper bound of the frequency range ω∆T = min
{

ωm∆T, ωp∆T
}

, for which a coupling
algorithm is to be used. Table 1 shows this upper bound of the frequency range for the
considered coupling algorithms for different latency values. For lower latency values, the
frequency range for all coupling algorithms expands, whereas for higher latency values,
it significantly narrows. The newly proposed EROS algorithm is applicable in the widest
frequency range, primarily due to its good balance between magnitude and phase errors.
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Table 1. Upper bounds of the magnitude and phase conditions for different coupling algorithms as a
percentage of the Nyquist frequency for various latency times, k∆T. The resulting upper bound of
the frequency range ω∆T = min

(
ωa∆T, ωp∆T

)
is marked in bold in each case.

Latency k=0 Latency k=1 Latency k=3 Latency k=6

ωm∆T ωp∆T ωm∆T ωp∆T ωm∆T ωp∆T ωm∆T ωp∆T

ZOH 27.13 3.33 27.13 1.11 27.13 0.48 27.13 0.25
FOH 8.66 18.20 4.01 9.10 1.97 4.55 1.11 2.57
EROS 18.15 16.28 8.75 7.61 4.14 3.86 2.29 2.26

The analysis shown in this section is limited to coupling signals with a constant latency,
whereas, in general, the latency in RVPs is time-varying due to jitter and packet losses (see
Section 2.1). However, when setting up an RVP, efforts are made to keep the latency as
close to being constant as possible, as a constant latency increases the comparability of the
results from multiple runs of the RVP. Moreover, as we previously presented in [26], the
transfer function of the coupling process also allows for a stability analysis of RVPs using
the Nyquist stability criterion, provided that a transfer function of each coupled prototype
is available and the latency is constant. An approach to achieving a constant latency is by
carefully selecting the macro step size (see Equation (4)) or optimizing the alignment of
the sampling sequences between different prototypes, as demonstrated in our patented
method [49].

2.4.2. Calculating an Optimal Coupling Algorithm

In contrast to the previous section, where the analysis method was used to derive
the validity ranges for existing coupling algorithms, it is now reversed and utilized to
determine an optimal coupling algorithm for a given bandwidth of a specific coupling
signal of an RVP.

The idea is to formulate an optimization problem containing the derived transfer
function of the coupling process from which the vectors a and A of the general form of a
coupling algorithm (Equation (6)) are obtained. The optimization problem reads as

min
a,A

J(a, A) = αJm + βJp + γJr, subject to Gp(0) = 1, (36)

whereby the constraint Gp(0) = 1 with s = jω = 0 ensures that a constant coupling signal
is accurately reproduced by the resulting coupling algorithm. The cost function J(a, A)
consists of the three summands:

Jm =
∫ ωu

ωl

1−|Gp(jω)|
ωu−ωl

dω, Jp =
∫ ωu

ωl

∠Gp(jω)
ωu−ωl

dω and

Jr =
∫ ωl

0 max
(∣∣Gp( jω)|, 1)dω − ωl +

∫ 2π
∆T

ωu
max(

∣∣Gp(jω)
∣∣− ( ω

ωu

) 1
2 r

, 0) dω
(37)

each of which penalizes a different aspect of the transfer function of the overall coupling
process to ensure that the coupling faults are compensated for by the bandwidth of the
coupling signal ωb ∈ [ωl , ωu].

• Jm penalizes a derivation from the neutral magnitude
∣∣Gp(jω)

∣∣ = 1 within the band-
width of the coupling signal;

• Jp penalizes a derivation from zero-phase shift ∠Gp(jω) = 0◦ within the bandwidth;
• Jr penalizes a magnitude amplification outside of the bandwidth of the coupling signal.

For frequencies lower than the bandwidth, it simply penalizes a magnitude that is
greater than one. For frequencies above the bandwidth of the coupling signal, Jr
penalizes if the amplification due to the coupling algorithm is not compensated for by
the natural damping of the RVP. In order to estimate the natural damping, no transfer
function of the coupled system is required; instead, the relative degree, r, which can
be estimated (see Section 3.2), is the only system information necessary.
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The weighting parameters are chosen as α = 1, β = 0.01, and γ = 1000. The large
value of γ ensures that the third summand is prioritized and, thus, an amplification outside
of the bandwidth of the coupling signal is prevented. Following the argumentation for the
heuristic limits by [37], the ratio of α = 100β is set within the bandwidth of the signal such
that a phase difference of 1◦ generates the same cost as a magnitude error of 1%.

2.5. Enhancing Linear Coupling Algorithms with Preceding Discontinuity Detection

In this section, we propose a novel method of utilizing preceding discontinuity detec-
tion before applying linear coupling algorithms. This approach aims to expand the range
of applicability of such algorithms.

As analyzed in Section 2.4, linear coupling algorithms that can compensate for phase
errors in the low-frequency range of the coupling signal, such as FOH and EROS, tend
to amplify high frequencies. Therefore, these algorithms are not usable in RVPs when
the coupling signal contains high frequencies. This limitation also applies when high
frequencies occur only sporadically, for example, due to discontinuities in the signal,
although the chosen coupling algorithm would be suitable for the major parts of the
signal. In order to be able to use a coupling algorithm other than ZOH, despite occasional
discontinuities or short sections where high frequencies may occur within the coupling
signal, we propose the following to detect and respond to high frequencies in a signal
online before coupling errors arise from a coupling algorithm such as FOH or EROS. In
order to achieve this, the first step is to detect whether a sudden frequency change occurs
between the last and current signal values at the edge of the time series. Subsequently, the
coupling algorithm is temporarily switched to avoid significant coupling errors.

2.5.1. Online Frequency Spectrum Estimation

In order to detect a sudden frequency change in the newest signal value of a coupling
signal, the frequency spectrum at the edge of the time series is estimated online during
the run time of an RVP in each macro time step. For this, the discrete Fourier transform
(DFT) [50] is applied to the last N values of a coupling signal, y, transforming it into its q
frequency components:

Yq = DFT(y) =
N

∑
n=1

yn · e−
j2π
N qn. (38)

Since the coupling signals in RVPs are real values in the time domain, they exhibit Hermitian
symmetry in the frequency domain. This means that the result of the DFT of a real-valued
signal, denoted as rDFT(·), only contains frequencies with positive frequency components.
As a result, the number of frequency components, Yq, is reduced to the first ⌊N/2⌋+ 1
entries of the DFT, requiring the appropriate scaling of their magnitudes. It results in

Y =
2
N
|rDFT(y)|. (39)

The length of the considered signal segment, N, influences the resolution of the frequency
components in the DFT through the relationship ωres = 2π/N. A larger N increases the
resolution but also increases the computation time of the DFT. Additionally, a larger N
reduces the influence of the last signal value, which is being tested for a discontinuity
regarding the individual frequency components. Therefore, we chose the relatively small
value N = 8 for the discontinuity detection method presented here, which results in a DFT
resolution of ωres = π/4, corresponding to 25% of the Nyquist frequency of the signal.

An important assumption made when applying the DFT to a signal segment is the
periodic continuation of the segment. If this is not the case, high-frequency components
are mistakenly added to the frequency spectrum due to the leakage effect [51]. In order
to reduce this effect, the signal segment is multiplied by a window function before the
transformation. Typically, window functions that make the respective edges of the signal
segment approach zero are used, aiming to achieve the periodicity of the segment. However,
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for the developed method of detecting discontinuities in the coupling signals of RVPs,
using such a window function is not beneficial, as it would heavily attenuate a detectable
discontinuity at the end of a signal segment, making detection impossible. In order to
counteract this effect, the considered signal segment is first shifted in the y-direction such
that the last value of the segment is yn = 0, and it is then multiplied by a half Hann window
of the form

h(n) = 0.5
(

1 − cos
(πn

N

))
, 1 ≤ n ≤ N. (40)

The half Hann window consists of the left half of the Hann window [52]. The parameter n
represents the index of the signal segment, where a larger n corresponds to a more recent
signal value.

The application of the half Hann window on a shifted signal segment containing
a discontinuity at the current macro time point tn is shown in Figure 4. The resulting
signal segment (yellow) is periodically continuable without introducing an additional
discontinuity between the periods, while the discontinuity in the last signal value that shall
be detected is kept, as in the original signal segment (blue). For comparison, Figure 4 also
shows the application of the regular Hann window on the nonshifted signal segment. The
Hann window smooths out the discontinuity at the edge of the signal segment, which
makes it no longer detectable in the frequency spectrum.
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Applying a window function to a signal alters its magnitude and, consequently, affects
its frequency spectrum. As proven by the authors of [51], this effect is compensated for by
multiplying the frequency spectrum resulting from the DFT with the correction factor

Aw =
N

∑N
n=1 h(n)

. (41)

For the half Hann window from Equation (40), the correction factor results in Aw = 1.7778.

2.5.2. Criterion for Discontinuity

The method developed in this contribution detects a discontinuity in the current signal
value of a coupling signal, yn, if the condition

5

∑
k=2

Yq,n > ξ
5

∑
k=2

Yq,n−1 (42)
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is satisfied. The frequency spectrum, Yq,n, of the signal at the current macro time step, tn, is
calculated using the real-valued DFT from Equation (39) on the shifted signal segment that
was modified with the half Hann window (Equation (40)) and scaled with the correction
factor (Equation (41)).

The frequency spectrum Yq,n−1 refers to the corresponding spectrum calculated in the
previous macro step tn−1. The indices of the sum are chosen such that an increase in the
magnitude of frequencies above 25% of the Nyquist frequency is considered within the
criterion. The parameter ξ defines the sensitivity of the method and is set to ξ = 5 based on
experimental analysis.

As an example, Figure 5 shows the frequency spectrum, Yq,n, of the yellow signal
segment from Figure 4 at the current macro time step, which contains a discontinuity, and
the frequency spectrum, Yq,n−1, of the same signal one macro time step earlier, which does
not yet contain a discontinuity. As expected, the discontinuity increases the magnitude of all
frequency components in the spectrum. In this case, the summed components above 25% of
the Nyquist frequency are 9.3 times larger in the spectrum with the discontinuity, satisfying
the criterion from Equation (42) and allowing for correctly detecting the discontinuity.
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Figure 5. Resulting frequency spectrum for the yellow signal segment from Figure 4. Yq,n represents
the frequency spectrum of the current macro step, where a discontinuity occurs, while Yq,n represents
the spectrum from the previous macro step, where no discontinuity has occurred.

Once a discontinuity is detected, it needs to be addressed. In this contribution, we
propose to switch the active coupling algorithm in the case of a discontinuity such that
the signal values before and after the discontinuity are never simultaneously used for the
prediction of any linear coupling algorithm. One way to achieve this is to switch to the
naïve ZOH algorithm whenever a discontinuity has occurred within the last m − 1 time
step, while m is the number of past signal values the current coupling algorithm uses. The
idea of switching the coupling algorithm based on specific signal properties is also pursued
in offline co-simulations to reduce reconstruction errors [53].

Figure 6 shows an example of how discontinuity detection with coupling algorithm
switching works. The reference signal represents a sampled output of a real or virtual
prototype of an RVP, with an exemplary latency of k = 3 macro time steps during the
data transmission to another prototype. In order to compensate for the latency, coupling
algorithms (FOH or EROS) are used at the input of the receiving prototype. At t = 1 s,
a discontinuity occurs in the signal. During the following k = 3 macro time steps, the
coupling algorithms extrapolate the signal based on its dynamics before the discontinuity
until the first signal value after the discontinuity arrives at the input of the coupling
algorithms. In the left part of Figure 6, where discontinuity detection is not enabled, the
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usage of FOH and EROS leads to significant errors, as the signal contains high-frequency
components at that point. FOH amplifies the discontinuity by a factor of four for one time
step, according to Equation (8). The usage of EROS results in a large extrapolation error for
five consecutive time steps, as this is the duration it uses signal values for before and after
the discontinuity for extrapolation, according to Equation (19).
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Figure 6. Behavior of coupling algorithms FOH and EROS in the case where a discontinuity occurs in
the coupling signal for a latency of k = 3 macro steps: (a) without discontinuity detection; (b) with
discontinuity detection and algorithm switching.

With enabled discontinuity detection, the extrapolation error is significantly reduced.
As seen in the right part of Figure 6, the discontinuity is correctly detected, and in the sub-
sequent time step, ZOH is used instead of the selected coupling algorithm for extrapolation.
If the FOH is selected as the coupling algorithm, it switches back to FOH from the second
time step after the discontinuity. In the case where EROS is used as the coupling algorithm,
it uses FOH for four time steps starting from the second time step before switching back to
EROS. This is an alternative to using ZOH for the entire five time steps, in which EROS is
not appliable due to the detected discontinuity. The transition from FOH to EROS is not
noticeable in the right part of Figure 6 because FOH and EROS yield similar results for
the displayed signal. Note that the extrapolation error during the k time steps of latency
(due to data transmission between the coupled prototypes) still exists when using the
presented discontinuity detection. This is because the information about the occurrence of
the discontinuity is only available at the input of the coupling algorithm after k time steps.

2.6. Architecture of the Overall Coupling Method

In Figure 7, the architecture of the overall coupling method for RVPs, presented in the
previous sections, is depicted. It shows how the individual parts of the coupling method
interact when applied to compensate for the latency of a coupling signal, y, at time tn. The
software modules are implemented using the FMI standard, as introduced in Section 1,
enabling its applicability in common simulation tools where virtual prototypes are executed,
as well as in test bench software that orchestrates the data exchange of real prototypes. Within
the FMU, the coupling algorithm module serves as the core component. It implements the
generic coupling algorithms ZOH and FOH and the novel EROS algorithm introduced in
Section 2.2. Additionally, the FFNN from Section 2.3 and coupling algorithms with parameters
obtained from the optimization presented in Section 2.4.2 can be selected. At any given time,
one of these algorithms is active and compensates for the current latency of k, estimating
the signal value ŷn. The necessary past signal values are provided by the signal history
module. Furthermore, the FMU includes the method for detecting discontinuities in the
coupling signal from Section 2.5, implemented in the corresponding module. As suggested
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there, it is connected to a module to temporarily switch the coupling algorithm after detecting
a discontinuity to prevent large coupling errors in the signal during the macro steps that
follow the discontinuity. Additionally, the latency calculator is located within the FMU, which
determines the current number of macro time steps delay, k, at run time based on timing
information contained within the signal messages, enabling precise latency compensation and
adaptation to variable latency times.
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parts of the presented coupling method and their interconnections.

In each time step, the FMU executes a do-step method, sequentially calling the methods
of the individual modules. If the current time step is a macro time step, the determination
of the current latency time occurs first. Subsequently, the current signal value is examined
for discontinuity, and the coupling algorithm is chosen accordingly. At the end of the
do-step method, the actual latency compensation in the signal takes place by calculating
the signal value ŷn using the selected coupling algorithm. If the current time step is a micro
time step, only the coupling algorithm is executed to determine the signal value for that
micro time step by reconstructing the continuous signal. The online learning for adapting
the FFNN coupling algorithm at run time is too computationally intensive to repeat in
every time step, which is why it takes place outside the FMU. Thereby, the online learning
client provides a past section of the coupling signal as training data to the online learning
server and receives the new parameters of the FFNN after the training is completed, which
are then used to update the coupling algorithm.

3. Results
3.1. Productively Used Real-Virtual Prototype of a Hybrid Vehicle

In this chapter, we demonstrate the benefits of the coupling method for latency com-
pensation developed in Section 2 and show its practical application by using it for an
RVP that is productively used at Robert Bosch GmbH for deriving operation strategies
of hybrid electric vehicles. The RVP (the architecture and purpose of which are detailed
by the authors of [54]) represents a passenger vehicle with a P2.5 mild hybrid topology
as the propulsion system concept. In this topology, in addition to an internal combustion
engine, an electric motor generator is installed on the side of the dual-clutch transmission
in the vehicle, enabling both regenerative braking and periods of pure electric driving. The
main advantage of mild hybrid systems is their potential to save fuel compared to purely
conventional systems. For the investigated P2.5 architecture, the average potential fuel
savings amount to approximately 19% [55]. Furthermore, the optimization possibilities
of the hybrid operation strategy regarding the fuel consumption and propulsion energy
generation of the combustion engine are within the single-digit percentage range [56]. Thus,
to define optimal operating strategies based on the investigated RVPs, it is crucial that
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the transferred propulsion energy between the coupled prototypes is not distorted due to
the network effects. Therefore, the goal of applying the developed coupling method on
this RVP is to compensate for latency times and thereby minimize energy conservation
violations in the coupling between coupled prototypes.

Figure 8 schematically illustrates the structure of the RVP under investigation, includ-
ing the significant coupling signals between the two interconnected real prototypes and the
one virtual prototype. The first real prototype is an internal combustion engine, located on
an engine test bench and physically connected to a dynamometer acting as a counter load.
The second is a real engine control unit (ECU) connected to the engine via a controller area
network (CAN) bus. The virtual prototype comprises a simulation model that includes
the vehicle dynamics, the electric motor generator, the battery, the drivetrain, including
a dual-clutch transmission, and other vehicle components, such as electrical consumers.
Additionally, the simulation model includes a virtual driver who controls the real-virtual
vehicle according to a given speed profile. The simulation model is executed under soft
real-time conditions on a simulation PC with a Windows operating system. The simulation
PC is physically separated from the engine test bench and located in a different room. Via a
network, it is connected to the control system of the engine test bench, which orchestrates
the data exchange with the engine.
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3.2. Analysis of the RVP

Prior to the application of the developed coupling method, an analysis of the RVP
is carried out. Firstly, the technical constraints and the resulting coupling faults of the
data exchange between the coupled prototypes are identified to determine which coupling
signals require latency compensation. Secondly, the parameters necessary for designing an
optimal coupling algorithm are identified, as outlined in Section 2.4.2.

The coupling between the engine test bench and the simulation model is identified as
the most critical, as it is a power bond interface [57] through which the entire propulsion
energy from the combustion engine is transmitted. Even small coupling errors due to sam-
pling or latency violate the energy conservation within such a power bind coupling, causing
a distortion of the system’s behavior. A key focus in the development of hybrid strategies,
for which the investigated RVP is used, is the reduction in fuel consumption [54], which is
closely related to the amount of energy transmitted through this interface. Therefore, the
reduction in coupling errors at this interface is of great interest to increase the credibility
of the results obtained regarding an optimal hybrid strategy (see Section 3.1). A latency
compensation in the other coupling interfaces of the RVP is not necessary. Latencies in the
CAN bus between the test bench and the ECU correspond to those that occur in the CAN
bus during the operation of a real vehicle, which is why no compensation is required here.
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The signals transmitted between the ECU and the simulation model have lower dynamics
compared to those in the power bond, which means that latency times at this interface have
a relatively small impact on the system behavior.

The round-trip time between the simulation and the test bench, which includes a phase
delay of a low pass filter due to noise in the measurement of the output signals of the test
bench, has been measured as τ(t) = 0.0575 s± 0.0005 s. Therefore, by utilizing Equation (4),
the macro step size is chosen to be ∆T = 0.01 s, resulting in a latency of k∆T = 0.06 s with
k = 6 macro steps delay. This configuration ensures that the latency remains nearly constant,
enabling analysis in the frequency domain, as demonstrated in Section 2.4. Moreover, due to
the filter, the majority of the round-trip time is spent in the direction from the test bench to the
simulation, and a small shift of the time base of those two prototypes is tolerable; the entire
latency is compensated for by the shaft torque signal at the input of the simulation model
(refer to Figure 8), requiring only a single instance of the coupling algorithm.

3.2.1. Frequency Domain Analysis of the Coupling Process of the Torque Signal

In order to analyze which coupling algorithms are suitable for compensating the
latency in the considered shaft torque signal and to optimize a coupling algorithm based
on the method from Section 2.4.2, the left part of Figure 9 presents the frequency spectrum
of the signal obtained through the Fourier analysis of the signal measurements. The
signal exhibits its highest magnitudes within the frequency range up to 10 rad/s, which
corresponds to 3.2% of the Nyquist frequency for the given sampling with ∆T = 0.01 s.
Additionally, the signal is superimposed with an oscillation in the range between 30 rad/s
and 55 rad/s, which is up to 17.5% of the Nyquist frequency. According to Table 1, the
frequency range of the superimposed oscillation is very much above the upper limit of
the frequency range in which the coupling algorithms under consideration are to be used
for the given k = 6. The bode plot of FOH and EROS, depicted alongside others in the
right part of Figure 9, confirms this, as both algorithms amplify the magnitude within the
frequency range of the oscillations significantly.
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Figure 9. Analysis of RVP in the frequency domain: (a) Spectrum of the torque signal with ∆T = 0.01,
focusing on small magnitudes; (b) Bode plot of the optimized and learned feedforward neural
network (FFNN) coupling algorithm compared to the algorithms ZOH, FOH, and EROS for the
given latency of the investigated RVP defined by k = 6 and ∆T = 0.01 s. Nyquist frequency is at
314.16 rad/s. FOH reaches its maximal magnitude amplification of 10.2 at 232.3 rad/s, EROS an
amplification of 17.0 at 139.2 rad/s, FFN optimized an amplification of 11.6 at 128.6 rad/s, and FFN
optimized and trained an amplification of 10.0 at 127.9 rad/s.
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The effects in coupling signals, such as these superimposed high-frequency oscillations,
are the reason why the naïve ZOH algorithm is commonly used as the coupling algorithm
in most RVPs in the industry. By not amplifying the magnitude of the coupling signals,
ZOH reduces the risk of significant coupling errors and prevents the sudden distortion
of results due to unwanted amplified high frequencies in the signal. Two approaches are
presented to address this issue. The first approach, as demonstrated in Section 3.3, utilizes
preceding discontinuity detection, allowing for coupling algorithms, such as FOH and
EROS, which may amplify certain frequencies, to be applied without the need for detailed
frequency analysis of the signals. The second approach is the optimization and online
adaptation of an FFNN algorithm, as illustrated in the following section.

3.2.2. Optimal and Trained FFNN Coupling Algorithms

For the optimal design of a coupling algorithm (according to Section 2.4.2), the only
required system parameters are the bandwidth of the signal on which the coupling algo-
rithm is applied and the relative degree of the coupled system. Due to the presence of
the above-mentioned superimposed oscillations, different frequency ranges in terms of
the magnitude and phase costs are defined within the cost function of the optimization
problem. For latency compensation, a neutral phase shift is only important within the
bandwidth of the signal itself, while a neutral magnitude gain must also apply to the
superimposed oscillations to avoid amplifying them. Based on the spectrum of the torque
signal shown in the left part of Figure 9, the frequency ranges are defined as

ωb,p ∈
[
ωl,p, ωu,p

]
=

[
0.1

rad
s

, 10
rad

s

]
(43)

for the phase term and

ωb,m ∈ [ωl,m, ωu,m] =

[
0.1

rad
s

, 55
rad

s

]
(44)

for the magnitude term. The second needed parameter—the relative degree of the transfer
behavior of the open loop consisting of the engine test bench and the vehicle simulation
model—is conservatively estimated to be r = 2, as neither of the two systems exhibits
a direct feedthrough between the input and output signals of shaft torque and engine
speed. By using the weighting parameters calculated through the solution of the optimiza-
tion problem, an FFNN coupling algorithm is generated using the “Network Morphism”
methods introduced in Section 2.3. This algorithm has the optimized behavior and can be
adapted through online learning during the execution of the RVP. The algorithm utilizes
m = 9 past signal value as input, as this is the smallest value at which the result of the
optimization problem no longer significantly improves.

The transfer behavior of the optimized FFNN coupling algorithm is also shown in
the right part of Figure 9 above. As specified in the cost function, the magnitude gain of
the optimized FFNN algorithm is significantly lower in the range of the superimposed
oscillations compared to EROS and FOH. However, for low frequencies, the phase error
and, thus, its ability to compensate for latency, is worse compared to EROS.

The other transfer function shown in Figure 9 represents the same FFNN coupling
algorithm after its adaptation through online learning during the execution of the RVP. For
this purpose, two learning cycles with 100 epochs each were performed during the execu-
tion of the RVP. Compared to the optimized FFNN coupling algorithm, the additionally
trained FFNN algorithm has a lower magnitude throughout the entire frequency range,
including superimposed oscillations. However, this leads to a slightly higher phase error
for low frequencies compared to the other non-naïve algorithms. Nonetheless, this increase
is still significantly lower than for the naïve ZOH algorithm.



Electronics 2024, 13, 1077 22 of 29

3.3. Results of the Coupling Method

The comparison of different configurations of the developed coupling method was
performed using an acceleration maneuver that lasted 12 s for the hybrid vehicle. During
the acceleration, which is briefly interrupted by a gear shift at t = 3.2 s, the combustion
engine provides the main driving energy.

3.3.1. Preceding Investigation Using MIL Simulation

Before applying the coupling method to the RVP, an investigation is conducted to
examine how a latency of k∆T = 0.06 s in the torque signal can affect the overall system
behavior of the RVP, particularly the energy consumption of the combustion engine, which
is a critical factor for optimizing hybrid strategies using the RVP. In order to examine
this, a purely virtualized version of the RVP is utilized, where all real prototypes are
available as simulation models. The impact of latency on the system behavior of the RVP is
quantified by comparing simulations with an idealized coupling without latency between
the prototypes and simulations, where the latency is accurately modeled according to the
real latency in the RVP. It is calculated from the shaft torque and engine speed signals
(see Figure 8) in that, in the absence of latency and during the considered acceleration
maneuver, there is 2.5% less energy transferred from the combustion engine compared to the
simulation with latencies, while the distance traveled remains the same. This difference in
transmitted energy due to violations of the energy conservation at the coupling interface [57]
is significant when considering that the overall optimization possibility regarding energy
consumption in the mild hybrid system is within the single-digit percentage range (see
Section 3.1). Additionally, the simulation results show that the first peak in the torque
signal occurs 0.3 s earlier, when no latency is present.

3.3.2. Results for the RVP

In order to evaluate the effectiveness of the different configurations of the coupling
method, the acceleration maneuver was run multiple times with the RVP of the hybrid vehi-
cle. Figure 10 shows the torque signal for various configurations at the output of the FMU,
which implements the entire coupling method, as shown in Section 2.6. Each configuration
was compared to the naïve ZOH algorithm, where the coupling signal remains unchanged,
and no latency compensation takes place. Based on the preceding analysis using simulation
(see Section 3.3.1), it can be inferred that a good latency compensation requires an earlier
occurrence of the first-moment peak compared to ZOH. In addition, with good latency
compensation, deviations in the signal course are to be expected compared to the signal
course when using ZOH, as the amount of energy transferred from the combustion engine
to the test bench must change.

In Figure 10, an amplification of high frequencies for FOH and EROS is observed
when no preceding discontinuity detection and algorithm switching is used. This occurs
specifically when the frequencies in the signal are high.

For instance, it is observed at the beginning of the acceleration, during the gear shift at
t = 3.2 s, and in the presence of the superimposed oscillations at around t = 6 s, as identified
in the frequency spectrum in Figure 9. By using the discontinuity detection mechanism
and switching the algorithm after a positive detection, as proposed in Section 2.5, the
amplification of high frequencies is significantly reduced. Additionally, it is observed that,
in this case, the output of the coupling algorithm is very similar when selecting FOH or
EROS as the primary algorithm. The most significant qualitative differences in the behavior,
compared to ZOH, were observed when using the FFNNs. Particularly, during the first
acceleration phase, at around t = 2 s, the peak of the torque signal is reached earlier and
is lower compared to when using the ZOH algorithm. The superimposed oscillations are
slightly amplified when using the FFNN that has only been optimized, but less amplified
when the additionally trained FFNN is chosen as the coupling algorithm.
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Figure 10. Latency-compensated shaft torque signal of the RVP when using different coupling
algorithms, as compared to the naïve ZOH method: (a,b) FOH and EROS, without switching the
algorithm; (c,d) FOH and EROS with switching the algorithm after a detected discontinuity; (e) FFNN
optimized using the method from Section 2.4.2; (f) FFNN initialized, like the FFNN in (e) that was
trained online during a previous run of the RVP.
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No discontinuity detection is used together with the FFNNs here, as the frequency
range of the superimposed oscillations is considered in the optimization and in the training
data of the FFNN algorithm. Thus, the algorithms are optimized for this frequency range,
and switching the algorithm is not necessary.

For an additional quantitative evaluation of the results obtained using the investigated
configurations of the coupling method, the coupling error defined in Equation (5) is calcu-
lated using the metric proposed by Sprague and Geers [58] as the distance function. The
metric consists of three values and distinguishes between magnitude error MS&G, phase
error PS&G, and the combination CS&G of both, allowing the user to draw a conclusion on
the cause of the coupling error in addition to its quantification. According to Sprague and
Geers, it holds that

MS&G =

√√√√∑N
i=1 yi

2

∑N
i=1 ŷ2

i
− 1, PS&G =

1
π

cos−1

 ∑N
i=1 yi ŷi√

∑N
i=1 y2

i ∑N
i=1 ŷ2

i

 and CS&G =
√

M2
S&G + P2

S&G, (45)

where Y is the vector of N signal values, yi, at macro time points of a coupling signal at
the output of a prototype, and Ŷ is the corresponding vector at the output of the coupling
algorithm at the input of another prototype.

The three parts of the coupling error for the different configurations shown in Figure 10
above are listed in Table 2. Compared to the naïve ZOH algorithm, the combined coupling
error is reduced by 35% and 40% when using the optimized and additionally trained FFNNs,
respectively. Notably, the phase error, which is the cause of almost all the coupling errors
when using ZOH, is significantly reduced when using the FFNNs and experiences only a
slight increase in the magnitude error. Without the use of discontinuity detection and algo-
rithm switching, both FOH and particularly the EROS algorithm result in an increased error
compared to ZOH. However, with preceding discontinuity detection algorithm switching, an
improvement of 7% in the combined coupling error is observed for both algorithms.

Table 2. Summarized coupling error using the metric by Sprague and Geers as a distance measure
for the investigated coupling algorithms.

CS&G·100 MS&G·100 PS&G·100

ZOH 4.53 0.01 4.53
FOH without switching 4.43 0.86 4.35
EROS without switching 6.54 2.12 6.18

FOH with switching 4.24 0.79 4.17
EROS with switching 4.21 0.88 4.11

FFNN, optimized 2.94 0.65 2.87
FFNN, trained 2.71 0.67 2.62

Furthermore, Table 3 presents the two values identified in the simulation in Section 3.3.1,
which quantify the impact of latency on the behavior of the system for the different coupling
method configurations analyzed. While the values for FOH, EROS with and without disconti-
nuity detection, and algorithm switching show only minor changes compared to ZOH, the
changes for the FFNNs are larger and are close to the values determined for ideal latency
compensation using simulation. The energy conservation violations due to the coupling faults
are compensated for nearly entirely when using the trained FFNN coupling algorithm.
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Table 3. Values representing the system behavior of the RVP for the investigated coupling algorithms
compared to ZOH. For comparison, the values obtained from the simulation of the MIL simulation of
the RVP are listed at the bottom. There, the difference between a simulation with ideal coupling and
a simulation with simulated coupling faults compensated with the naïve ZOH method is shown.

Time of First Torque Peak
with Respect to ZOH in s

Energy Transferred with
Respect to ZOH in %

FOH without switching −0.07 −0.62
EROS without switching 0.10 −0.22

FOH with switching 0.12 −0.09
EROS with switching 0.12 −1.07

FFNN, optimized −0.42 −4.39
FFNN, trained −0.38 −2.92

Ideal coupling from MIL
simulation of RVP −0.30 −2.50

3.4. Discussion of the Experimental Results

The technical constraints on the investigated RVP of a hybrid vehicle are challenging
for latency compensation. Firstly, the round-trip time of 0.06 s is quite high for a physical
power bond interface in a highly dynamic system. Secondly, the useful signal is super-
imposed with oscillations in the double-digit percentage range of the Nyquist frequency.
However, the results from the previous section demonstrate that the coupling method
presented in this contribution is applicable to RVPs and improves their system behavior.

The optimized coupling algorithm, along with the additionally trained FFNN algo-
rithm, finds a balance between compensating for latency in the useful signal and minimizing
the amplification of the superimposed frequencies. As a result, they have been proven
to effectively reduce the coupling error by up to 40%, as well as the energy conservation
violations in the critical coupling interface between a combustion engine and the vehicle
simulation of the RVP of a hybrid electric vehicle. This improves the credibility of the
hybrid operating strategies that are derived using this RVP, as optimization possibilities of
the hybrid operation strategy are within the single-digit percentage range (see Section 3.1).

Therefore, the applicability of the method for the optimal design of a coupling algo-
rithm based on the frequency domain analysis of the coupling process from Section 2.4.2
on an RVP is confirmed. The limited system knowledge required for the design can be
derived with minimal effort from measurements of the coupling signals. The resulting
coupling algorithm significantly reduces coupling errors under challenging technical condi-
tions, outperforming all investigated generic algorithms. The design of an FFNN coupling
algorithm based on the optimization results and its online learning is also successfully
applicable to the RVP. Since the trained FFNN has a higher number of neurons and, thus,
more parameters available than those used for optimal design, it adapts even better to
the coupling signal. As a result, compared to the purely optimized algorithm, both the
coupling error and the overall system behavior of the RVP are further improved.

The discontinuity detection, including the switching of coupling algorithms, proves to
be useful as well, although the resulting reductions in coupling error are lower compared to
when using FFNNs. It allows for the use of generic coupling algorithms for coupling signals,
the frequencies of which are not always within the frequency range that the algorithms
are to be used within, e.g., due to discontinuities or occasional high frequencies caused
by superimposed oscillations, as in the investigated RVP. Consequently, the application
range of generic algorithms expands, allowing for their use even in scenarios where prior
knowledge of the frequencies present in the coupling signal is unavailable.

The advantage of the proposed generic EROS coupling algorithm over FOH is not as
clear as the analysis in the frequency domain suggests by the good balance between the
magnitude and phase errors of EROS (refer to Figure 3). This can be explained by the fact
that even when EROS is selected as a coupling algorithm, it is not actually always utilized
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because the discontinuity detection switches to ZOH or FOH due to the presence of high
frequencies in major parts of the coupling signal.

4. Conclusions and Future Work

We presented a coupling method for real-time co-simulation, which contributes to
the utilization of detailed virtual prototypes in the later stages of the development process
for cross-domain mechatronic systems. The method improves the coupling of virtual
prototypes with real hardware components, so-called RVPs, by compensating for latencies
that are identified as the major reason for coupling faults due to network communication.
The core of the method, developed with a focus on simplicity of application, is the coupling
algorithm for which we presented two alternatives. The first is a novel generic algorithm
called EROS that is derived from a developed procedure of extrapolation in the error space.
Additionally, we demonstrated the design of an optimal coupling algorithm based on an
analysis of the coupling process of RVPs in the frequency domain, requiring minimal system
knowledge of the RVP under investigation. Furthermore, we showed that the optimized
algorithm, as well as EROS and other known generic algorithms, can be transformed into
an FFNN coupling algorithm. Starting from a good initial parametrization, the FFNN
algorithm allows for adaption to a coupling signal through online training with limited
computation effort.

By introducing preceding discontinuity detection with coupling algorithm switching,
we contributed to expanding the application range of generic coupling algorithms, as
the usage of the discontinuity detection reduces the risk of amplifying occasional high
frequencies in the coupling signal. In our opinion, the risk of amplifying high frequencies,
which may significantly increase the coupling error of RVPs, is the main reason why latency
compensation is often omitted in industrial RVPs, and the naïve ZOH coupling algorithm
is used instead.

We confirmed the effectiveness of the method by applying all parts of the method
to an RVP of a hybrid vehicle, which is actively used in industrial development projects
for determining hybrid operating strategies. Particularly, the FFNN coupling algorithm
resulting from a combination of optimization based on existing system knowledge and
subsequent training showed a 40% reduction in coupling error, positively influencing the
system behavior of the RVPs. The entire coupling method is implemented using the FMU
standard, making it easily applicable in most simulation and test automation software
tools. The developed method is not limited or specialized to application in the automotive
industry but can be applied to RVPs in any industry.

Future work can expand upon this research by further investigating the presented
error space extrapolation method and utilizing it to derive potentially improved generic
coupling algorithms. Additionally, the analysis method of the coupling process in the
frequency domain should be expanded to enable the analysis of larger prototype networks
with a greater number of coupling signals, making it applicable to a wider range of RVPs.
Furthermore, some of the methods presented here, such as the EROS coupling algorithm
or discontinuity detection with algorithm switching, may also be useful for non-iterative
offline co-simulation, which should be further explored.

5. Patents

A patent and a patent application have resulted from the presented work. The patent
titled “Method and device for synchronizing a simulation with a real-time system” [49]
protects the method mentioned in Section 2.4.1 for aligning sampling sequences of virtual
and real prototypes to reduce or harmonize the latency of data transmission between them.
Additionally, a patent application was filed on 09 October 2023 for the method presented in
Section 2.2, which involves constructing coupling algorithms in an error space.
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Symbols

t Time in s α Factor of LRELU
activation function

∆T Macro time step in s x Vector between FFNN layers
k Number of macro steps latency G(·) Transfer function
τ Latency in s δ(·) Dirac function
u Input signal in time domain U Input signal in

frequency domain
y, ŷ Output signal in time domain Y, Ŷ Output signal in

frequency domain
a, A Weighting parameters of a s Complex frequency

coupling algorithm domain parameter
m Number of signal values used by ω Angular frequency in rad/s

coupling algorithm
e Coupling error J Cost function
d(·) Distance function r Relative degree
fp(·) Set of curves j Imaginary unit
W Weight matrix of neuron h(·) Window function
Θ Offset vector of neuron ξ Parameter of

discontinuity detection
σ(·) Activation function of neuron CS&G, MS&G, PS&G Coupling error as defined by

Sprague and Geers
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