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Abstract
This thesis presents novel deep neural network architectures and training techniques to
enhance their prediction capabilities in Prognostics and Health Management. These ar-
chitectural and algorithmic changes are necessary to the standard deep neural network
architectures since they were conceptualized to solve problems in different application
fields, such as computer vision and natural language processing. Therefore, this thesis
presents techniques to effectively model long-term time dependencies, efficient use of a
large number of trainable parameters and productive use of unlabelled training data. Each
publication proposes a solution to at least one of the above-stated drawbacks of standard
deep neural networks.

First, the proposed bidirectional LSTM architecture offers a new perspective for time-
series analysis, which enhances prediction performance for incipient fault categorization.
It is easier to retain long-term data in LSTM cells thanks to the sliding window data func-
tion, allowing for considering even longer time series patterns. Second, a novel anomaly
detection framework using an auxiliary loss function is proposed to learn a hidden rep-
resentation which is amenable to the task. Based on the K-means clustering loss, the
auxiliary loss function is only computed for a subset of the hidden variables. Third, a gen-
eralized dilation layer is proposed for adaptive sampling across the temporal and feature
variables for multivariate time-series data analysis. Two novel training approaches are pre-
sented to make the generalized dilation training process compatible with gradient-based
learning. Moreover, finally, two novel transformer neural network architectures are pro-
posed with a focus on the parameter-sharing phenomena for modelling inter-dependency in
the temporal and feature domains. The developed training strategies and algorithms have
been tested on benchmark datasets available in the Prognostics and Health Management
literature. The benchmark datasets’ overall results underline the proposed approaches’
superior performance. Lastly, because every strategy suggested in this thesis is very mod-
ular, it is possible to combine them in different ways to build dependable and robust
architectures for system health monitoring.

Keywords
Deep Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks,
Transformers



Zusammenfassung
Diese kumulative Dissertation stellt neuartige tiefe neuronale Netzwerkarchitekturen und
Trainingstechniken vor, um ihre Vorhersagefähigkeiten im Bereich der Prognose und des
Gesundheitsmanagements zu verbessern. Diese architektonischen und algorithmischen
Änderungen sind für die Standardarchitekturen tiefer neuronaler Netze notwendig, da
sie konzipiert wurden, um Probleme in verschiedenen Anwendungsbereichen wie Com-
puter Vision und Verarbeitung natürlicher Sprache zu lösen. Daher werden in dieser
Dissertation Techniken zur effektiven Modellierung langfristiger Zeitabhängigkeiten, zur
effizienten Nutzung einer großen Anzahl von trainierbaren Parametern und zur produk-
tiven Nutzung unbeschrifteter Trainingsdaten vorgestellt. In jeder der vier Publikationen
wird eine Lösung für mindestens einen der oben genannten Nachteile von standardmäßigen
tiefen neuronalen Netzen vorgeschlagen.

Erstens bietet die vorgeschlagene bidirektionale LSTM-Architektur eine neue Per-
spektive für die Zeitreihenanalyse, die die Vorhersageleistung für die Kategorisierung
von beginnenden Fehlern verbessert. Dank der Sliding-Window-Datenfunktion ist es
einfacher, Langzeitdaten in LSTM-Zellen zu speichern, wodurch selbst längere Zeitrei-
henmuster berücksichtigt werden können. Zweitens wird ein neuartiger Anomalieerken-
nungsrahmen vorgestellt, der eine Hilfsverlustfunktion verwendet, um eine verborgene
Darstellung zu lernen, die für die Aufgabe geeignet ist. Basierend auf dem K-Means
Clustering Verlust wird die Hilfsverlustfunktion nur für eine Teilmenge der verborgenen
Variablen berechnet. Drittens wird eine verallgemeinerte Dilatationsschicht für adaptives
Sampling über die Zeit- und Merkmalsvariablen für die multivariate Zeitreihendaten-
analyse vorgestellt. Um den generalisierten Dilatationstrainingsprozess mit dem gradi-
entenbasierten Lernen kompatibel zu machen, werden zwei neuartige Trainingsansätze
beschrieben. Abschließend werden zwei neuartige neuronale Transformer Netzwerkar-
chitekturen vorgeschlagen, wobei der Schwerpunkt auf Phänomenen der gemeinsamen
Nutzung von Parametern zur Modellierung der gegenseitigen Abhängigkeit in den Zeit-
und Merkmalsdomänen liegt. Alle entwickelten Trainingsstrategien und Algorithmen wur-
den an Benchmark-Datensätzen getestet, die in der Literatur zu Prognose und Gesund-
heitsmanagement verfügbar sind. Die Gesamtergebnisse der Benchmark-Datensätze un-
terstreichen die überlegene Leistung der vorgeschlagenen Ansätze. Da jede in dieser Ar-
beit vorgeschlagene Strategie sehr modular ist, ist es möglich, sie auf unterschiedliche
Weise zu kombinieren, um zuverlässige und robuste Architekturen für die Überwachung
des Systemzustands aufzubauen.
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1. Introduction
The conventional approach to solving a problem using computer programming is to man-
ually formulate a precise program, which a computer can execute step-by-step. This
conventional approach requires a domain expert to explicitly write rules and methods
for getting the desired result on a particular problem. However, machine learning (ML)
algorithms have enabled computers to provide an unconventional way to solve complex
problems. These ML algorithms’ mathematical models can automatically learn the under-
lying rules and methods for solving a particular problem by observing the relevant input
and the desired target data. This capability results in a highly flexible and ubiquitous
application of ML algorithms.

Deep Learning is a subset of ML which uses Deep Neural Networks (DNN) as function
approximators to map inputs to corresponding outputs without the need for explicit
programming [1]. Therefore, the term DNN is used interchangeably with Deep Learning.
DNNs have become a leading tool in various application fields which can be broadly
categorised into computer vision, natural language processing and speech recognition [2].
Within these broad application fields, there are multiple specific tasks in which DNN have
become the standard ML method. Some prominent examples of these specific tasks where
Deep Learning has excelled in recent years are

• Computer Vision - image classification [3], object detection [4], semantic segmen-
tation [5], autonomous driving [6].

• Natural Language Processing - sentiment analysis [7], machine translation [8],
question answering [9], text summarisation [10].

• Speech Recognition - automatic speech recognition [11], speech enhancement [12],
speech emotion recognition [13].

In addition to the above application areas, DNNs have also been extensively used
recently for the health management of industrial and technical systems [14]. Standard
DNN architectures like Multilayer Perceptrons (MLP), Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN) are applied for a multitude of tasks in
the field of Prognostics and Health Management (PHM). The reason for this widespread
adoption is the ability of DNNs to extract high-level features from raw data by a hierarchy
of simple nonlinear modules which successively transform the data into a more abstract
space. Neural networks have also been proven to be universal function approximators [15],
which means that given enough capacity, a single hidden layer neural network can arbi-
trarily well approximate any arbitrary continuous functions. It must be, however, noted
that access to process data is essential for any PHM task for an industrial system. The
recording and access to data are made possible with the advancements in the field of In-
dustrial Internet of Things [16], smart manufacturing and the recent research agendas of
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“Industry 4.0”. Modern industrial systems are usually equipped with a network of sensors
constantly monitoring the system state and helping supervise and regulate the respective
actuators for safe and sustainable operation. This availability of sensor data makes using
data-intensive DNN PHM methods more lucrative than ever before.

Standard DNN architectures in the literature include MLP, CNN, RNN and Trans-
formers [17]. These architectures were originally proposed as structures for specific appli-
cation domains. However, certain structural and learning style modifications can enhance
their capabilities and prove their usefulness in other application domains. Therefore, in
this thesis, the author will focus on architectural and algorithmic modifications to the
RNN, CNN and Transformer architectures which have been proven to perform well in
various ML application fields. All of the modifications, as mentioned earlier, are focused
on solving the challenging PHM problems for industrial systems.

1.1 State of the Art - Deep Learning for Prognostics
and Health Management of Industrial Systems

This section reviews the different Deep Learning architectures and algorithms presented
for the PHM of industrial systems. Note that shallow neural networks have been used
for fault detection and diagnosis in industrial processes in previous works such as in
[18, 19, 20]. Furthermore, a variety of literature is available on model-based and other
data-driven methods for PHM. A model of real-world industrial processes and systems
describing their qualitative and quantitative behaviour must be available to use model-
based methodologies. This model is used to generate estimates for the outputs of a
system and subsequently constructing the disparity between the actual process outputs
and their corresponding estimates is referred to as residual generation. The fundamental
concept for observer model-based methods for PHM encompasses two key aspects: (i)
replacing the process model with an observer or a model capable of furnishing depend-
able estimates of the process outputs, and (ii) allowing the designer the requisite design
flexibility to attain desired decoupling, leveraging well-established observer theory princi-
ples [21]. An overview of model-based approaches for the following four categories: fault
diagnosis for deterministic faults, fault diagnosis for stochastic faults, and fault diagno-
sis for discrete-events and hybrid systems, as well as fault detection for networked and
distributed systems, is provided in [22].

The data-driven PHM methods depend on the measured process variables. A survey of
the data-driven methods, including statistical, non-statistical and joint data-driven analy-
sis tools, is provided in [23]. Among the various data-driven approaches, the multivariate
analysis (MVA) technique, exemplified by Principal Component Analysis, Partial Least
Squares, Independent Component Analysis, Fisher Discriminant Analysis, and Subspace
Aided approaches have been recognized as powerful tools for tackling challenges related
to statistical process monitoring and diagnosis [24]. A study comparing the above data-
driven PHM approaches on fault diagnosis of the TE process has been provided in [25].

Still, this literature review focuses exclusively on Deep learning approaches. The lit-
erature review has been categorised based on the different Deep Learning architectures
presented, i.e. Deep Feedforward Neural Networks (FFNN), CNN, RNN and Transform-
ers.
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Deep FFNN for Prognostics and Health Management of Industrial Systems:
A stacked Autoencoder (AE) approach for automatic feature extraction and intelligent
fault classification methodology has been proposed in [26] wherein a layer-wise unsu-
pervised pre-training of AE is performed before a supervised fine-tuning for the overall
architecture is done. A similar stacked denoising AE approach with active learning has
been proposed in [27]. A fault classification technique in induction motors based on sparse
AE has also been presented in [28]. A two-stage DNN methodology with a stacked de-
noising AE and softmax regression for Remaining Useful Lifetime (RUL) estimation has
been presented in [29]. In contrast to the previous unsupervised pre-training approaches,
a stacked supervised AE approach is presented in [30] where the fault-relevant features
are extracted by training deep AE in a supervised learning manner.

In addition to AE, Restricted Boltzmann Machines (RBM) have also been extensively
used as a building block for developing Deep Learning architectures. A Deep Belief Net-
work (DBN), which comprises multiple layers of RBM, for identifying faults in a rolling
bearing by fusing multi-sensor data has been presented in [31]. A similar DBN-based
fault diagnosis methodology for chemical processes has been presented in [32]. Addition-
ally, DBN has been tested and validated to predict the RUL of gears and bearings in
[33], utilising the network’s self-taught learning characteristics. A multi-objective DBN
ensemble methodology has been proposed in [34] and its prognostic performance evalu-
ated on a turbofan engine RUL estimation dataset, demonstrating outstanding prognostic
performance.

RNN for Prognostics and Health Management of Industrial Systems: Usu-
ally, the variants of RNN architectures like the Long Short Term Memory (LSTM) net-
works and Gated Recurrent Units (GRU) have been proposed in the literature for the
PHM of Industrial Systems. A fault diagnosis methodology using GRU-based denoising
AE of rotating machinery has been presented in [35]. The multivariate time-series vibra-
tion data from bearings are modelled to identify the multiple fault cases possible in the
machine. An LSTM network-based fault detection and identification methodology using
data from track-side monitoring devices has been proposed in [36]. The temporal data
comprises the time taken for a train to pass over a section of the track circuit which is
taken as the sequence length of an event. A fault diagnosis framework for wind turbines
with LSTM networks using multivariate time-series data is presented in [37], where the
data includes displacement and acceleration sensor variables.

On the RUL estimation front, a health indicator-based LSTM network for predicting
the degradation of an industrial ball bearing system by combining time domain and fre-
quency domain features has been proposed in [38]. In [39], an adaptive kernel spectral
clustering methodology is integrated with LSTM networks to predict the health status of
ball bearings. The study [40] presents a tendency feature extraction methodology before
feeding them to a stacked LSTM network for predicting the RUL of an aero-propulsion
system simulation.

CNN for Prognostics and Health Management of Industrial Systems: CNNs
have been extensively used in multiple application fields of PHM of industrial processes.
Detection and identification of bearing faults using vibration data set have been proposed
in [41, 42, 43, 44]. Usually, a slight modification in the data processing or the CNN
architecture is present in these studies. Dislocated time-series convolutions are presented
in [45] to model the periodic fault information between nonadjacent signals in electric
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motors. A multi-scale CNN approach for fault diagnosis of Wind turbine gearbox under
different operational conditions is presented in [46]. Fault diagnosis approaches with CNN
of a semiconductor manufacturing process and a chemical process has been proposed
in [47] and in [48] respectively.

CNNs have also been successfully applied to RUL prediction in various settings. CNNs
were first used for RUL prediction in PHM in [49] wherein the convolution operation is
applied along the temporal dimension of the multi-channel sensor data. A unit width
convolution kernel for sharing kernel weights across raw sensors has been proposed in [50]
enhance the network’s ability to learn abstract features. A CNN model enhanced with a
short-time Fourier transform methodology is presented in [51] to obtain the time-frequency
domain information for a ball-bearing data set. Furthermore, the study [52] proposes a
multitask learning approach with CNN by simultaneously learning two tasks, i.e. RUL
estimation and health condition prediction.

Transformers for Prognostics and Health Management of Industrial Sys-
tems: The transformer model has been recently applied for PHM tasks in industrial
systems. Transformers were applied for predicting the tool wear from CNC milling ma-
chines in [53]. A gated convolutional unit together with a Transformer encoder has been
presented in [54] for RUL estimation of the turbofan engine dataset. And finally, a trans-
former model is applied in [55] for predictive maintenance of rotating machinery and
automatic washing equipment.

1.2 Preliminaries
This section details the multivariate time-series problem that is considered in this the-
sis. The preliminaries are broadly divided into fault detection and identification and
Remaining Useful lifetime estimation.

1.2.1 Preliminaries Fault Detection and Identification

In the context of fault detection and fault identification, a nonlinear system with n
states, m inputs, p outputs, and k faults is considered. The state vector is denoted
as s(t) = [s1(t), s2(t), . . . , sn(t)]

T , the input vector as u(t) = [u1(t), u2(t), . . . , um(t)]
T ,

the output vector as y(t) = [y1(t), y2(t), . . . , yp(t)]
T , and the fault vector as f(t) =

[f1(t), f2(t), . . . , fk(t)]
T .

The state equation can be formulated as follows:

s(t+ 1) = Θ
(
s(t),u(t),q(t), f(t)

)
, (1.1)

where Θ(s(t),u(t), f(t)) represents the dynamics of the system. q(t) denotes the process
noise vector. The output equation can be formulated as follows:

y(t) = Ω
(
s(t),u(t),v(t), f(t)

)
, (1.2)

where Ω(s(t),u(t),v(t), f(t)) represents the system outputs related to the internal states,
inputs, measurement noise and faults. v(t) denotes the measurement noise vector. It is
assumed in this thesis that the dynamics of the system are not known. Specifically, the
non-linear function Θ and Ω are unknown complex system dynamics. Therefore, only
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the measured data over time from the process, including system inputs, outputs, sensor,
actuator and fault data, is considered for time-series analysis. This pure data-driven
approach provides the adaptability of the fault detection and diagnosis system that can
continuously learn and update itself from new system configurations and improve itself
as more data becomes available. Features used as input for ANN are a subset of states,
inputs, outputs or a function from each. In anomaly detection, the focus is on identifying
any abnormal or faulty behaviour within a system without specifying the nature of the
fault in advance. Therefore, anomaly detection does not require prior knowledge of the
different fault cases.

Model-Based Residual Generation for Fault Detection and Identification

The objective of the Model-Based Residual Generation fault detection and classification
scheme is to detect and isolate faults or abnormalities in the system’s behaviour based on
the residual vector by comparing the process measurement variables and their estimated
state. A full-state observer for a non-linear dynamical system is designed to estimate the
system states based on the available measurements. The observer is given by the following
equation,

̂s(t+ 1) = Θ
(
ŝ(t),u(t),q(t)

)
+ L

(
y(t)− Ω(ŝ(t),u(t), 0, 0)

)
(1.3)

where ŝ ∈ Rn is the estimated state vector, L ∈ Rn×p is the observer gain matrix. The
residual vector r ∈ Rp is defined as the difference between the measured outputs and the
estimated outputs obtained from the observer:

r(t) = y(t)− Ω
(
ŝ(t),u(t), 0, 0

)
. (1.4)

Fault detection and classification involves analyzing the residuals to determine the pres-
ence of faults. In the above case, to perform fault detection and identification, the non-
linear system dynamics represented by the functions Θ and Ω are known and the system
inputs and output vectors are also known. The system states vectors are estimated via the
observer as calculated from Eq. (1.3). The generated residuals are compared to predefined
thresholds to identify abnormal conditions or faults in the system.

Data-driven Non-linear System Identification for Fault Detection and Identi-
fication

In the approach for data-driven system identification, the idea is to create a model of the
system’s normal behaviour using system identification techniques and then use deviations
between the model predictions and actual measurements to detect faults. Specifically,
various system identification techniques can be employed to estimate the non-linear system
dynamics represented by the functions Θ and Ω. Usually in literature [56], the state
function Θ is estimated by the system identification methodologies like first order and
second order optimizers such gradient descent and Newtons Algorithm [57], but it is also
possible to estimate the output function Ω. The above-mentioned iterative approach
involves determining a nonlinear function Θ̂ that describes the system dynamics utilizing
the input-output data pairs (s(t),u(t), s(t+1)) under normal operating conditions. Once
the model Θ̂ for the non-linear system is obtained, it’s essential to validate its residual
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generation for identifying faults. This can be done by comparing the predicted states
Θ̂
(
s(t),u(t),q(t) by the identified model with the actual observed state derivatives (s(t))

for the collected data points. The difference between the predicted and observed values
is used as the residual calculation:

r(t) = s(t+ 1)− Θ̂
(
s(t),u(t), 0, 0

)
. (1.5)

To detect faults, the residuals r(t) are analyzed. Since the model Θ̂
(
s(t),u(t), 0, 0

)
is

designed to capture the system’s normal behaviour, significant deviations between the
residuals and zero could indicate the presence of a fault. Faults often result in changes
to the system’s dynamics, causing the model predictions to deviate from actual measure-
ments. To determine whether a fault is present or not, a thresholding scheme is typically
applied to the residuals as mentioned in [58].

Statistical and Multivariate Analysis for Fault Detection

The conventional statistical and multivariate analysis approaches for fault detection in-
volve projecting or transforming process data from the measurement subspace to another
subspace. Principal component analysis (PCA), dynamic principal component analysis
and canonical variate analysis are the most common techniques for transforming process
data. PCA is the most widely used example of one of these techniques and is widely
accepted as a typical statistical fault detection technique.

In PCA, the idea is to transform the original variables into a new set of uncorrelated
variables called principal components. These components capture the maximum variance
in the data. The first few principal components usually represent most of the variability
in the dataset [24]. Consider a dataset matrix X ∈ Rn×p consisting of n samples and p
variables is normalized by reducing it to zero mean and unit standard deviation. This
dataset matrix is a subset of states, inputs, outputs or a function from each. For numerical
stability, especially when dealing with large datasets, the Singular Value Decomposition
(SVD) approach is used for performing PCA. The SVD on the process data X is executed
as

1√
n− 1

X = USVT , (1.6)

where U ∈ Rn×n represents the orthonormal basis in the sample space, V ∈ Rp×p repre-
sents the orthonormal basis in the variable space and S ∈ Rn×p contains the non-negative
real singular values. The loading vectors P are the column vectors in the matrix V which
are subsequently used for calculating the Hotelling’s T 2 statistic defined as

T 2 = xTPS−2
a PTx, (1.7)

where x ∈ Rm is an observation vector, P contains the loading vectors corresponding to
the a largest singular values in the S matrix, Sa contains the first a rows and columns
of the S matrix, i.e. Sa and P represent the truncated matrices from S and matrix V
respectively. Depending on the number of loading vectors a (the principal components),
the threshold for normal operating condition can be calculated for a significant level α as

T 2
α =

(n2 − 1)a

n(n− 1)
Fα(a, n− a), (1.8)
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where Fα(a, n − a) denotes the upper 100α% critical point of the F-distribution with a
and n-a degrees of freedom. An observation vector with a Hotelling’s T 2 statistic outside
the defined threshold indicates that a fault has taken place.

Deep Neural Networks for Fault Detection

DNN architectures such as CNN, RNN and Transformers are responsible for the feature
extraction from raw input data and therein indirectly modelling the non-linear system
dynamics for fault detection and identification. In comparison to the statistical and mul-
tivariate methods described in the previous section, DNN excels at capturing long-term
temporal dependencies and complex degradation patterns from condition monitoring in-
put data. More specifically, fault detection and identification using deep neural networks
can be mathematically formulated as a supervised learning problem. For simplicity, con-
sider a solitary time-series sequence input data as a matrix X ∈ Rt×p where t is the number
of time steps, and p is the number of condition monitoring features. This sequential input
dataset is mainly used from feedforward dynamic systems and not from dynamic systems
in a closed feedback setting.

Consider n as the total time-series samples available for the training dataset. In the
supervised learning case, each time series sample has a corresponding fault label associated
with it. Specifically, the corresponding fault labels is a vector y ∈ Rn where each element
yi represents the fault class of the i-th time-series sample. Consider that the DNN is
represented by the function λw parameterized by w, which takes the input data X and
predicts the fault labels y. This can be represented mathematically as

y′ = λw(X), (1.9)

where y′ is the predicted fault labels. The main goal of fault detection and identification
using DNN is to determine the function λw using condition monitoring data and labels.
In contrast to the model-based and the data-driven methods mentioned above, the DNN
learns to transform input data into meaningful representations that enable it to accu-
rately classify or predict the fault labels directly. The hidden layers of the DNN learn
to approximate non-linear functions which are necessary to distinguish between different
classes which are characterized by features in the input data. These non-linear function
approximations take into consideration the system dynamics during the training process
by adjusting the parameters w of the DNN via gradient descent.

DNNs like CNNs and RNNs, can approximate the highly nonlinear functions and
dynamical systems directly because of the following properties.

• DNN use nonlinear activation functions, such as Rectified Linear Unit (ReLU) [59],
sigmoid, or tanh within each computation unit allowing the architecture to model
complex relationships between inputs, states and output data.

• Composition of multiple computational layers in a hierarchical manner in a DNN
creates a hierarchy of features and non-linear transformations. These temporal
feature identification plays an important part in the subsequent fault identification
and classification task.

24



• The convolution operation in CNN performs local operations on the input data,
allowing the network to identify temporal patterns. Stacking these temporal convo-
lutional layers allows the CNN architecture to capture long temporal dependencies
in a dynamical system.

• The recurrent connections in RNN allow them to maintain an internal hidden state,
which captures information from previous time steps. This hidden state is updated
at each time step using nonlinear transformations. In this way, RNNs excel at cap-
turing non-linear temporal dependencies, such as those found in dynamical systems.

Due to the above properties, DNNs like CNN and RNN can do a direct function ap-
proximation without the need for residual generation as explained in section 1.2.1 and
1.2.1. Therefore, in this thesis, various DNN architectures are identified for fault detection
which can approximate the dynamical and non-linear nature of systems using condition
monitoring data and labels. The process of this function determination is usually referred
to as training. The DNN is usually trained to minimize a loss function that quantifies
the error between the predicted labels y′ and the true labels y. For fault detection and
identification, A common choice is the categorical cross-entropy loss such as

L(w) = −
n∑
i=1

c∑
j=1

yij log(y
′
ij) (1.10)

where c is the number of fault classes, yij is a binary indicator (0 or 1) of whether the
i-th data sample belongs to the j-th class, and y′

ij is the predicted probability that the
i-th data sample belongs to the j-th class. The training goal is to find the optimal set of
parameters w that minimizes the loss function L(w) such as

wt+1 = argmin
wt

L(wt) (1.11)

where wt+1 are the updated parameters at iteration t + 1 and L(wt) denote the loss
at iteration t. Usually, a gradient-based optimization algorithm like stochastic gradient
descent updates the parameters w iteratively by computing gradients of the loss with
respect to the parameters and adjusting the parameters in the direction that minimizes
the loss. Specifically, the DNN parameters w are usually updated with gradient descent
as

wt+1 = wt − η∇L(wt) (1.12)

where η is the learning rate and ∇L(wt) denotes the gradient of the loss function L with
respect to the parameters wt for a specific training example. Once the DNN is trained
until a predetermined number of iteration steps or a minimum loss value is achieved, it
can be used for fault detection and classification by feeding new data samples through the
trained model. The output of the model y′ can be interpreted as probabilities belonging to
each fault class, and the class with the highest probability can be selected as the predicted
fault class.

Since the trained DNN model performs a classification task, the selection of the right
evaluation metric is crucial when evaluating the fault detection performance. The perfor-
mance metric should provide an unbiased and neutral evaluation of the model’s predictions
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to avoid favouring the dominant class. This is especially relevant for fault detection and
diagnosis tasks where usually the normal operating condition is the dominant class as
compared to the faulty condition. Therefore, the F1 score is an appropriate measure since
it ensures an even balance between false positives and false negatives in the classified sam-
ples. Moreover, it serves as a versatile metric for general multi-class classification. The
F1 score for the binary classification problem of fault detection utilizes the True Positives
ρ, the False Positives σ and the False Negatives τ . These are calculated by comparing the
predictions made by the classifier with the ground truth labels y. The elements within the
prediction vector y′ from the DNN represent the likelihood of the corresponding instance
belonging to the positive or specifically the faulty class. These likelihood values are trans-
formed to obtain the evaluation vector z′ ∈ {0, 1}n from the prediction vector of a neural
network and a threshold value θ. For a binary classification case, the threshold value is
typically taken as 0.5. Instances with a likelihood greater than or equal to this threshold
are calculated as 1, representing the faulty class, while instances with a probability less
than the threshold are calculated as 0 representing the non-faulty class. Specifically,

z′i =

{
1, if y′

i ≥ θ
0, otherwise (1.13)

where z′i is the class assignment to either the faulty case or the non-faulty case for the
ith time-series instance. The Eq. (1.13) essentially applies a binary threshold to convert
the probabilities outputted by the neural network into binary predictions. The evaluation
vector and ground vector are used for calculating the ρ, σ and τ as,

ρ =
n∑
i=1

(z′i · yi), (1.14)

σ =
n∑
i=1

(z′i · (1− yi)), (1.15)

τ =
n∑
i=1

((1− z′i) · yi). (1.16)

Subsequently, the F1 score is defined as

F1 =
2ρ

2ρ+ σ + τ
, (1.17)

where in binary classification case, the true positive counts ρ are the correctly identified
faulty samples, false positive counts σ are non-faulty samples that were misclassified as
faulty samples and false negative counts τ are the fault examples that were misclassified
as normal operating condition samples.

1.2.2 Preliminaries Remaining Useful Lifetime Estimation

RUL aims to estimate the remaining time until a system or component will no longer per-
form its intended function adequately. A non-linear state-space model for RUL estimation
can be derived to model the complex relationships and dynamics within the system. In the
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case of regression-based RUL estimation, a set of state vectors that capture relevant infor-
mation about the system’s degradation are considered. A nonlinear system with n states,
m inputs is considered. The state vector is denoted as s(t) = [s1(t), s2(t), . . . , sn(t)]

T ,
the input vector as u(t) = [u1(t), u2(t), . . . , um(t)]

T and the output as y(t). The state
equation can be formulated as follows:

s(t+ 1) = Γ
(
s(t),u(t), δ(t),q(t)

)
, (1.18)

δ(t+ 1) = Π
(
s(t), δ(t)

)
, (1.19)

where s(t) is a vector of state variables at time t, u(t) represents any inputs vector, δ(t)
represent the system degradation variable that affects the degradation process, q(t) is the
process noise that captures uncertainties, Π is the non-linear degradation function and Γ
is a non-linear function that describes the non-linear dynamic nature of the system and
its evolution over time. The features modelled above are inputs to a regression model
that predicts the RUL. The observation equations can be written as:

y(t) = Ξ
(
s(t),u(t),v(t)

)
, (1.20)

where y(t) is the output vector at time t, v(t) represents the measurement noise that
accounts for uncertainties in the RUL estimation and Ξ is a non-linear function that
maps the state variables, inputs and the system outputs. Assuming thatXt be the random
variable representing the lifetime of an asset, then the probability density function of the
random variable representing RUL at time t is F (Xt) | Yt) where Yt is the history of the
operational environment and the health of the system up to time t [60]. The estimation of
the probability density function F is performed by the below methods of model-based and
statistical prognostic methods. The regression-based machine learning methods do not
estimate a probability density function of the RUL. The core idea is that the condition of
systems can be represented using essential condition monitoring variables. By tracking,
analyzing, and forecasting these variables, it becomes possible to estimate the RUL of the
systems.

Model-Based prognostics for Remaining Useful Lifetime estimation

The approaches based on model-based prognostics presume the existence of a precise
mathematical representation of the system under consideration. As observed from Eq. (1.18)
and Eq. (1.19) the mathematical model of a system includes the Degradation Variable
which needs to be estimated. In literature, the estimation of the system degradation
variable δ(t) is performed depending on the use case since it requires specific mechanistic
knowledge relevant to the system. Some examples of degradation estimation and the con-
nection of the state variables that describe the condition of a system and its RUL probabil-
ity density function through mechanistic modelling are [61, 62]. In [61] a stiffness-centered
degradation model for bearing systems using vibration analysis and damage mechanics
is presented. Similarly, other use cases such as for fatigue crack dynamics derive other
non-linear models for RUL estimation.
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Stochastical Prognostics Methods for Remaining Useful Lifetime estimation

Since modelling from first principles is not always possible, data-driven statistical methods
use their ability to transform high-dimensional noisy data into lower-dimensional infor-
mation for RUL estimation. These statistical models are developed by aligning them with
existing data using a probabilistic framework, all without dependence on any underlying
physics or engineering principles. The basic idea is that random fluctuations influence
the degradation process, and the RUL can be estimated based on how degraded the com-
ponent is at a given time. In literature, these random fluctuations or degradation are
modelled via stochastic processes such as Wiener [63] and Gamma processes [64] which
are used for estimating the RUL probability density function. Specifically, the degrada-
tion process via a Wiener process can be represented as Y (t) = λt+ σB(t) where λ is the
drift (mean rate of degradation) and σ is the diffusion coefficient (volatility of degrada-
tion) and W (t) be a Wiener process (standard Brownian motion). The Xt, is when the
degradation level reaches a certain failure threshold. Specifically, X(t) can be defined as
X(t) = inf{t > 0 : Y (t+RUL(t)) ≥ w | Yt ≤ w where w is the failure threshold [60]. The
probability distribution function of the X(t) is given by the inverse Gaussian distribution
as

F (X(t)) =
w − Y (t)√
2πσ2t3

exp

(
w − Y (t)− λt2

2σ2Xt

)
. (1.21)

Regression Methods for Remaining Useful Lifetime estimation

In regression-based approaches, the aim is to create mathematical models directly from
collected condition monitoring data, rather than relying on intricate system physics and
degradation models. These approaches utilize historical records to generate predictions
solely in terms of condition monitoring data. The data can be calorimetric, power, vibra-
tion and acoustic signal, temperature, pressure, oil debris, currents, voltages and spec-
trometric data [65]. Let C(t) denote the condition monitoring features of the system
at time t, r(t) denote the actual remaining useful life of the system at time t, which is
the time left until the system fails, and r̂(t) denote the predicted remaining useful life at
time t obtained from the regression model. These condition monitoring features can be a
combination of state variables st, system input variables ut, system output variables yt.

The goal of regression-based RUL estimation is to find a mapping function Hw pa-
rameterized by w, that relates the condition monitoring features C(t) to the remaining
useful life r(t). To do this, the RUL is predicted as

r̂(t) = Hw(C(t)). (1.22)

The common techniques for identifying regression functions for RUL estimation include
support vector regression, DNN and evolutionary computation techniques [66]. In contrast
to the model-based and the stochastical methods mentioned above for RUL estimation,
the DNN learns to transform input data into meaningful representations that enable it to
accurately predict the RUL directly. The hidden layers of the DNN learn to approximate
non-linear functions which are necessary to map the condition monitoring input data to a
continuous output. These non-linear function approximations take into consideration the
system dynamics during the training process by adjusting the parameters w of the DNN
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via gradient descent. The approximation of these functions is performed via the stochastic
gradient descent as explained in Eq. (1.12). As mentioned in section 1.2.1, DNN have the
following properties which make them suitable for identifying the regression function H:

• Usage of nonlinear activation functions ReLU, sigmoid, or tanh for each hidden
unit allows the architecture to model complex relationships between inputs, states,
degradation variables and output data.

• Composition of multiple computational layers in a hierarchical manner in a DNN
creating a hierarchy of time-series features. These temporal features form the basis
for modelling the degradation, state evolution and output function from the system.

• The convolution operation in CNN performs local operations on the input data,
allowing the network to identify temporal patterns. Stacking these temporal convo-
lutional layers allows the CNN architecture to capture long temporal dependencies
in a dynamical system.

• The self-attention mechanism enables Transformers to capture long-range non-linear
dependencies from the system condition monitoring data. Furthermore, the multi-
head mechanism allows the model to attend to various temporal features and pat-
terns in the condition monitoring data simultaneously.

The regression model is trained to minimize the loss functions such as Mean Squared Error
(MSE), Root Mean Squared Error (RMSE) and Root Mean Squared Log Error (RMSLE).
This regression function H is learned from historical data, where the n observed pairs
(Ct, rt) are used to minimize the RMSE loss function as

min
w
Lw(Ct, rt) =

√√√√ 1

n

n∑
i=1

(
r(t)− r̂(t)

)2 (1.23)

where w are the parameters of the regression function H. The loss function defined in
the Eq. (1.23) is the evaluation metric for RUL estimation performance. A qualitative
performance evaluation is also sometimes conducted as depicted in Eq. (2.54). Once the
DNN is trained until a predetermined number of iteration steps or loss value is achieved, it
can be used for RUL estimation by feeding new data samples through the trained model.
The output of the model r̂(t) can be interpreted as the RUL at time t.

1.3 Objectives of the Thesis

The main objective of this thesis is to identify the weaknesses of standard DNN archi-
tectures and develop new DNN architectures for better prediction capabilities. DNN
architectures are a good fit for data-based condition monitoring because they have been
proven to identify underlying data distributions directly from raw data rather than the
hand-engineered features. However, most of these standard architectures that consider the
multivariate time-series problem cannot effectively model long-term time dependencies,
do not efficiently use many trainable parameters, are not interpretable for individual input
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features and do not effectively use unlabelled training data. Therefore, to our best knowl-
edge, although standard DNN architectures can be helpful for the multivariate time-series
problem, certain modifications are necessary to capture the long temporal dependencies
in high dimensional real-world non-linear processes. A summary of the objectives and
goals of this thesis can be stated as follows:

• Identify the limitations of standard deep neural network architectures for multi-
variate time-series analysis, especially for prognostics and health management of
industrial systems, specifically feedforward dynamic systems and not from dynamic
systems in a closed feedback setting.

• Identify and develop DNN architectures such as CNN, RNN and Transformers that
overcome the limitations of the standard DNN architectures.

• Development and evaluation of suitable learning and data preparation methodolo-
gies to model the long-term time dependencies of fault development in industrial
systems, specifically feedforward dynamic systems and not from dynamic systems
in a closed feedback setting.

• Development and evaluation of training algorithms to efficiently use the trainable
parameters by selecting the time samples and the sensor channels most relevant for
the prediction task.

• Incorporate unlabelled data for training DNN for efficient anomaly detection in
industrial systems.

• Development and evaluation of parameter-efficient Transformer architectures which
can better correlate the degradation patterns of the machine in multiple instances.

1.4 Structure of the Thesis

The thesis consists of two parts, the Preamble and Publications. Each chapter of the
Preamble is briefly described in the following.

Chapter 1: Introduction: This chapter introduces and describes the motivation
for this work. Furthermore, this work’s main objectives, desired contributions and orga-
nization are defined.

Chapter 2: Summary of the Publications: In this chapter, a summary is pro-
vided of all the publications which are included in this thesis. The developed novel
methodologies and algorithms are fundamentally explained along with the outcomes.

Chapter 3: Conclusions and Future Work: This chapter includes the overall
conclusion and findings from the entire work. It also comprises avenues where future
work could be done.

Section: Publications: This section includes all the publications which are part of
this thesis.

Chapter I: Bidirectional Deep Recurrent Neural Networks for Process Fault
Classification: This chapter includes the first publication, which tackles the challenge
of fault detection and classification over long time horizons. The proposed methodology
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is based on a Bidirectional Long Short Term Memory Network and is evaluated on the
TE process.

Chapter II: Deep Convolutional Clustering-Based Time Series Anomaly
Detection: In this chapter, a novel anomaly detection approach using convolutional AE
and K-means clustering is presented. The developed approach is evaluated and compared
with other state-of-the-art methodologies on the TE benchmark dataset.

Chapter III: Generalized dilation convolutional neural networks for remain-
ing useful lifetime estimation: This chapter is dedicated to the novel Generalized
Dilation approach for CNN. The proposed approach can model time-series data over a
long time horizon with the ability to select the relevant features for the RUL prediction
task.

Chapter IV: Shared Temporal Attention Transformer for Remaining Useful
Lifetime Estimation: This chapter comprises the publication of a novel transformer-
based RUL estimation framework. Two Transformer architectures are presented, which
can model the degradation patterns across the input features in a parameter-efficient
manner.

31



2. Summary of Publications
This chapter provides a summary of the contributions entailed in this thesis. Section 2.1
summarises the contribution of fault classification in industrial processes over long time
horizons. Furthermore, the section details the methodology for unsupervised and semi-
supervised learning-based anomaly detection. Finally, the proposed methodologies of
Generalized Dilation and Shared Temporal Attention for RUL estimation are explained
in Section 2.2.

2.1 Fault classification with Deep Recurrent Neural Net-
works and Anomaly Detection with Clustering aug-
mented Deep Convolutional Neural Networks

This section details the time series-based and fault classification and unsupervised learning-
based anomaly detection based on bidirectional recurrent neural networks and
1D-convolutional neural network-based deep AE, respectively. The proposed approaches
are applied to the Tennessee Eastman (TE) benchmark process to test the effectiveness
of the mentioned deep architectures and provide a detailed comparative analysis of the
different architectural settings and fault situations. The content of this section is based
on the publications described in Chapter I and Chapter II

2.1.1 Introduction

Several methods are presented in the literature for fault detection and classification of
dynamical systems. The typical Deep Learning models like Deep AE and DBN do not
capture this dynamic nature of industrial processes where incipient faults can occur grad-
ually over a more extended period. Therefore the fault detection and classification model
should be able to model this dynamic nature of modern industrial processes to compen-
sate for their behaviour. Therefore, the approach presented in this section provides a
novel system architecture using Bidirectional-LSTM (B-LSTM), which operates directly
on the raw sensor data and models information over a longer time horizon. I also compare
the prediction capabilities of other recurrent architectures and report their strengths and
weaknesses in detail.

The second approach proposed in this chapter is the k-means clustering augmented 1D-
convolutional neural network-based deep AE architecture for anomaly detection. Since
a labelled dataset with all the possible operating conditions of a system is not always
possible, unsupervised or semi-supervised learning-based data-driven machine learning
methods are the only alternative for anomaly detection. The standard unsupervised
learning-based Deep Learning methods are usually encompassed under the AE framework,
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namely Denoising AE [67], Variational AE (VAE) [68] and Adversarial AE [69]. In contrast
to the existing approaches, the proposed clustering augmented AE framework presented
in this thesis splits the latent representation into two sets. This split of the latent space in
discriminative and reconstructive latent variables allows for superior anomaly detection
capabilities for multivariate time-series datasets.

2.1.2 Recurrent Neural Networks Architectures for Fault Classi-
fication

In contrast to the standard feedforward neural networks, RNN architectures have been
proposed in this work because these can efficiently model the temporal dependencies in
a dynamic process. RNNs possess the ability to model sequential information over time,
which their feedforward counterparts are not able to do. The different RNN architectures
tested in this work are briefly explained in this section.

Vanilla Recurrent Neural Networks Vanilla RNN includes a chain of neurons
which receive input over a time window. Each neuron receives input from the current
time step and the hidden representation from the previous time step. Formally, the
hidden representation of an RNN cell at time step t yields

ht = ψ(at) = ψ(Wxxt +Whht−1 + b), (2.1)

where Wx ∈ Rdh×dx denotes the weight matrix from the input to hidden states, Wh ∈
Rdh×dh denotes the hidden state to hidden state weight matrix, b ∈ Rdx denote the input
biases, xt ∈ Rdx denote the input vector at time-step t and ht−1 ∈ Rdh denote the hidden
state at time step t− 1 or previous time step. The activation function is denoted as ψ(·)
and is usually a sigmoid activation function described as:

ψ(at) =
1

1 + e−at
. (2.2)

Long-Short Term Memories The LSTM network [70] consists of LSTM cells as the
building block for sequential modelling. The information at each time step t in an LSTM
cell flows through a gated architecture, namely, the forget ft, the input it and output
gate ot. Each of these gates performs an independent function, as their name suggests, to
determine how much information the cell should carry forward to the next time step and
how much information should be forgotten. The information flow is controlled through
the sigmoid activation function as explained in Eq. (2.2). In addition to the hidden state
ht, an LSTM cell also has a cell state ct, which is passed onto the next time step. The
function of the cell state is to act as an information highway, as no activation functions
are used for it. Formally, the vector equations for an LSTM cell at time step t yields

c̃t = γ(Wzxt +Rzht−1 + bz), (2.3)
it = σ(Wixt +Riht−1 + bi), (2.4)
ft = σ(Wfxt +Rfht−1 + bf ), (2.5)
ct = c̃t ⊙ it + ct−1 ⊙ ft, (2.6)
ot = σ(Woxt +Roht−1 + bo), (2.7)
ht = ψ(ct)⊙ ot, (2.8)
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where Wz,Wi,Wf ,Wo ∈ Rdh×dx denote the weight matrices for the input,
Rz,Ri,Rf ,Ro ∈ Rdh×dh denote the weight matrices for the hidden state, bz,bi,bf ,bo ∈
Rdx denote the bias vectors, ⊙ refers to pointwise multiplication, c̃t is the candidate cell
state, σ, γ and ψ are point-wise activation functions. In the standard setting, the sigmoid
function is used for σ, and the hyperbolic tangent function is used for γ and ψ. Since the
hidden state of the LSTM cell is calculated using the cell state and the cell state is a linear
combination of the input and forget gate, the vanishing gradient problem is mitigated to
a certain degree.

Gated Recurrent Units A GRU unit is the basic building block of the Gated Recur-
rent Network [71] and is a simplified version of the LSTM network. A GRU cell consists
of a reset gate rt and an update gate zt. The output of these two gates is eventually
used to calculate the hidden state ht of the cell at time step t. After that, this hidden
state is passed onto the next cell at time step t+1 for further modelling. Since the GRU
cell combines the forget and input gates of the LSTM cell into a solitary update gate,
the network has fewer training parameters than an LSTM network. This decrease in the
number of trainable parameters helps in faster training. Formally, the vector equations
for a GRU cell at time step t yields

rt = σ(Wrxt +Rrht−1 + br), (2.9)
zt = σ(Wzxt +Rzht−1 + bz), (2.10)
ht = (1− zt)⊙ ht−1 + zt ⊙ ψ(Whxt +Rh(rt ⊙ ht−1) + bh), (2.11)

where Wz,Wr,Wh ∈ Rdh×dx are the input weight matrices, Rz,Rr,Rh ∈ Rdh×dh are the
hidden weight matrices, bz,br,bh ∈ Rdx are the bias vectors and ⊙ refers to pointwise
product.

Bidirectional RNN Standard RNN architectures read a sequence of input by pro-
cessing first the past and then the future. Specifically, the input is an ordered set of
vectors represented as {x1,x2, . . . ,xt} where t the length of the input signal. The idea
of Bidirectional RNN [72] is to train two separate networks that read the input signal in
opposite directions and eventually combine their hidden representation, feeding into the
deeper layers for processing. Particularly, the input of the first RNN is {x1,x2, . . . ,xt}
and the second RNN is {xt,xt−1, . . . ,x1}. Specifically, as is illustrated in Fig. 2.1, each
node At and A′

t represents one cell of the bidirectional RNN layer and the sequence of
hidden states ht and h′

t for both the RNN in matrix form yields

ht = ψ(At) = ψ(Wxxt +Whht−1 + b) (2.12)
h′
t = ψ(A′

t) = ψ(W′
xxt +W′

hh
′
t−1 + b′), (2.13)

where h0=h′
t and ht=h′

0. In this thesis, the bidirectional RNN idea is used in the context
of LSTM (B-LSTM) and GRU (B-GRU) networks, where the hidden state and cell states
of the networks are concatenated. Consequently, the size of the hidden and cell states
in the LSTM and GRU networks doubles. The advantage of using B-LSTM and B-GRU
networks is that the fault detection and classification system can simultaneously process
information in both temporal directions. Essentially, the main difference between an
LSTM and a B-LSTM is the viewpoint of the network on the input data signal, based
on which the prediction is made. In a vanilla LSTM model, the viewpoint is at the end
of the considered sequence, i.e. the model has to refer to the past. On the contrary, as
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Figure 2.1: Structure and Viewpoint of Bidirectional RNN network.

illustrated in Fig. 2.1, a B-LSTM model has the viewpoint at the middle of the sequence
from where the complete sequence can be considered.

Problem Statement Fault Classification

The problem for fault detection and classification can be summarized as a supervised
learning problem where given labelled data samples (xt, f

i
t) from a time series data set

of a process denoting the faulty and normal operating conditions. In the above notation,
t = 0, . . . T denotes the sequence number, i is the type of fault, and f 0 indicates normal
operation. A B-LSTM model, g(·) is trained to minimize the negative log-likelihood loss
function L as

min
θ
Lθ(x, f) = −

T∑
t=0

ftlog(gθ(xt)), (2.14)

where θ are the trainable parameters of the model.

Data Preprocessing for Deep Recurrent Architectures and Efficient Training

This thesis proposes a novel data preprocessing technique for efficiently training the Deep
RNN models. The overall methodology helps keep the model complexity under check and
create a better discriminative representation of the training dataset. The methodology
can be explained in a two-step procedure as follows:

1. Sequence Generation: Fig. 2.2 illustrates an example of time-series signals from
two independent classes, i.e. No fault and Faulty. This approach can be, however,
extended to any number of classes. From the raw input signal, sequences of length
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Figure 2.2: Sliding Window Approach for Data Representation
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Figure 2.3: Comparison of all RNN architectures for Faults 8, 10, 11, 13, 16, 17, 19 and
20

T (a hyperparameter) from both the multivariate raw signals are extracted. In the
Fig. 2.2, two sample sequences for each class dataset are denoted by sequence s
and sequence s + 1 in the No fault case and the sequence s′ and sequence s′ + 1
in the Fault 1 case. This process of dividing the raw input signals into sequences
is performed iteratively over the complete training samples. This step leads to the
maximum use of information in the training since each time step is used multiple
times to approximate the trend in the input space.

2. Dataset Restructuring: The extracted sequences in the previous step are ag-
gregated alternatively from the different classes available in the dataset for dataset
restructuring. This alternative stacking is represented by the black, red and blue
square boxes in Fig. 2.2. This step helps the model learn a discriminative represen-
tation between the different classes due to the sequential information flow about the
difference in each class. Additionally, for longer sequence lengths, the model can see
both the class information in one sequence.

Experimental Results and Comparison Study on the Tennessee Eastman Pro-
cess with Deep Recurrent Neural Network

The TE [73] process is a benchmark dataset for evaluating fault detection and classifi-
cation systems. The process consists of 21 pre-programmed process faults as proposed
in [74]. The goal of the experiments is to analyse the fault detection and classification
capabilities of the proposed Deep RNN architectures using the F1 score as an appropriate
evaluation metric. The F1 score [75] is chosen in this thesis since it considers an even
balance for the false positive and false negative classified samples. Fig. 2.3 illustrates
the better generalization capabilities of the B-LSTM models compared to the other archi-
tectures. It must be noted here that both the bidirectional architectures perform better
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Figure 2.4: B-LSTM Comparison before and after data partitioning for Medium Faults

Figure 2.5: Effect of Sequence length on the Model’s performance
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Figure 2.6: Proposed architecture of the clustering augmented deep autoencoder for
anomaly detection.

than their unidirectional counterparts, strongly supporting the proposed hypothesis. The
architecture of all the models is the same, with an input sequence length T = 200 and a
hidden size of 64 neurons. To illustrate the improvement in the performance of the pro-
posed methodology, Fig. 2.4 shows the drastic improvement in some of the fault cases of
the TE process. Similar behaviour was also observed in the other fault cases. A detailed
comparison can be found in the publication I.

In addition to the data restructuring, a larger sequence length yielded far better results
than the models with a shorter sequence length. This was especially the case in incipient
fault cases as shown in Fig. 2.5, where models with input time-step 200 performed superior
as compared to the models with input time-steps of 100 and 50.

2.1.3 Anomaly Detection with Clustering augmented Deep Con-
volutional Neural Networks

The proposed architecture for Deep Convolutional Clustering Algorithm (DCCA) is shown
in Fig. 2.6. The architecture consists of 3 convolution layers at the encoder and 3 de-
convolution layers at the decoder with their respective activation functions. Since the
bottleneck representation is what the decoder uses for reconstructing the input, it is
imperative to force this representation to be as discriminative as possible for the anoma-
lous and non-anomalous data samples. The clustering module is integrated at the bot-
tleneck representation of the encoder to allow for additional discriminative representa-
tion. The size of the tensors shown in the image follows the naming convention as
(Batch − Size × Number − of − Input − Channels × Sequence − Length). The con-
volution layers incorporate the 1D convolution operation as the input to the system is a
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multivariate time-series signal. The multivariate time series signal {x1,x2, . . . ,xT} where
xi ∈ Rm is the input for the anomaly detection task, with m denoting the number of
variables and T the length of the signal. The convolution operation is performed on the
part of the input, also commonly known as the receptive field. The size of the receptive
field is denoted as nr ×m, which strides over the input T ×m sequences, accounting for
each of the variables. The pth convolution 1D kernel in the first layer can be denoted with
a 2-dimensional tensor as K(p) = [k

(p)
i,j ] ∈ Rnr×m. The weights in these convolution 1D

kernels are adjusted during the training process with the backpropagation algorithm. The
indices i, j denote the dimension along the time and variable axis, respectively. Formally,
the convolution 1D operation can be summarized as follows:

hi,p = (x ∗ k)i =
nr∑
g=1

m∑
f=1

xi+g−1,f · kp
g,f

∀i ∈ {1, . . . , T − nr + 1}
∀p ∈ {1, . . . , dq+1}, (2.15)

where hi,p denotes the output of the (i)th receptive field and the pth convolution kernel,
xi+g−1,f are the elements in the receptive field of the input variable, kg,f is the convolution
kernel and dq+1 denotes the number of convolution kernels in the given layer.

Problem Statement Anomaly Detection

The problem can be stated as follows: The goal is to train a Convolutional AE structure
fθ(x) so that the learned latent representation z can best distinguish between normal zno
and anomalous behaviour zano. The aim is to find an optimal separation between normal
and anomalous data using only unlabelled data.

Top-K Deep Convolutional Clustering Algorithm

The idea behind the Top-K DCCA algorithm is to force the latent representation of the
input data to be according to the anomaly detection downstream task that needs to be
performed. Therefore, the overall latent space Z, is split into two subsets, i.e. Zc ⊆ Rnc

and Zr ∈ Rnrec which are termed as clustering and reconstruction friendly latent variables
respectively. The optimization of the following cost function calculates the cluster centres:

min
Mj∈Rnc×k,si∈{0,1}K

N∑
i=1

||zij −Mjsi|| (2.16)

s.t. 1T si = 1 ∀i,
∀zj ∈ Z,

where the columns mk,j in the matrix M denotes the kth cluster center in the nc-
dimensional space and si is the cluster assignment of the ith data points latent representa-
tion. The splitting criterion is the K-means algorithm wherein the cluster centres with the
maximum Euclidean distance are chosen to identify the Top-nc latent variables forming
the set Zc. Specifically, for an anomaly detection task two clusters are assumed with cen-
tres defined as mno,j and mano,j indicating normal and anomalous operation, respectively.
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Subsequently, the Euclidean distance between the cluster centers are is calculated as

max
j∈Zc

d(mno,j,mano,j) = max
j∈Zc

||mno,j −mano,j||2, (2.17)

to identify the Top-nc latent variables which have the maximum distance between them,
forming the set Zc.

End-to-end training of the clustering augmented AE

As illustrated in Fig. 2.6, the encoder fθ and the decoder gψ are trained in an end-
to-end based manner via the gradient descent algorithm using the reconstruction loss.
Specifically, the reconstruction can be formally stated as

LAE(θ, ψ) =

NB∑
i=1

||xi − gψ(fθ(xi))||22, (2.18)

where NB is the minibatch size. In addition to the reconstruction loss, to determine the
split between the clustering and the reconstruction-friendly latent variables, the clustering
loss defined as

Lj,CL(θ) =

NB∑
i=1

||zij −Mjs
i||22 =

NB∑
i=1

||fj,θ(xi)−Mjs
i||22, (2.19)

zj ∈ Zc,

is also fed back, which subsequently affects the trainable parameters of the encoder too.
Therefore, the total loss to training the Convolutional AE is

L = α

zj∑
j=1

Lj,CL(θ) + (1 − α)LAE(θ, ψ) (2.20)

where the value of α ranges between 0.6 to 1 which was found empirically. The encoder
and decoder parameters are denoted as χ = (θ, ψ). The whole training process is divided
into two steps. The first step, termed pre-training, comprises training with only the
reconstruction loss, i.e. with the value of α set to 0. For the second step, a fixed value
of α is set, and the Convolutional AE is trained with the total loss as in Eq. (2.20).
Furthermore, the clusters are updated only in a certain interval of update steps. This
Cluster Update Interval C is a hyperparameter which is set before the training. The
complete algorithm for the training is defined in Algorithm 1, where a model is trained
for N epochs.
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Algorithm 1 Top-K Deep Convolutional Clustering Algorithm
1: procedure Initialization(Perform N epochs over the data)
2: P = Number of pre-training epochs
3: C = Cluster update interval
4: for epoch = 1 to P + 1 do
5: Reconstruct the data, extract latent representation fθ(xi)
6: Compute gradients ∇χLi with α = 0
7: Update network parameters χ
8: if epoch = P + 1 then
9: Perform K-Means by optimising the Eq.(2.16)

10: Return centers mno,j and mano,j and center assignments Mjsi
11: Rank latent representation layer channels by Eq. (2.17)
12: Return Top K ranked channels
13: for epoch = P + 1 to N do
14: Reconstruct the data, extract latent representation fθ(xi)
15: Compute gradients ∇χLi with α = 0
16: Update top K ranked channel parameters
17: Zero the gradients
18: Compute gradients ∇χLi with α
19: Update rest of the channel parameters
20: if epochmodC = 0 then
21: Perform K-Means by optimising the Eq.(2.16)
22: Return centers mno,j and mano,j and center assignments Mjsi
23: Rank latent representation layer channels by Eq. (2.17)
24: Return Top K ranked channels

Experimental Results on the Tennessee Eastman Process with Clustering aug-
mented Deep Convolutional Neural Networks

The proposed DCCA and Top-K DCCA algorithm is tested on the benchmark TE process
for evaluating their applicability to the anomaly detection task. The F1 score is chosen as
the evaluation metric to balance the predicted false positive and false negative samples.
The proposed methodology showed superior fault detection performance compared to pure
unsupervised learning-based k-means augmented CNN methodology. Previous works [76]
are followed in dividing fault classes into subgroups based on how challenging the faults
are to detect. The 21 faults are divided into easy, medium, and hard-to-detect faults.

The proposed architecture is compared to the Vanilla model in terms of the F1 score,
with the results shown in Fig. 2.7. The proposed architecture performs much better than
the baseline model for all fault categories in both the 2-layer and 3-layer configurations.
The 3-layer configuration performs slightly better than the 2-layer one in all cases, so it
is used for the rest of the analysis. The t-SNE [77] plots in Fig. 2.8 show some of the
activation maps to better visualize the discriminative capability in the latent representa-
tion. The model has learned that there are two distinct regions, normal and anomalous,
and the boundaries of the two regions can be seen clearly. After that, the results of the
semi-supervised training setup are presented, where the encoder of the Top-K DCCA ar-
chitecture is pre-trained with unlabelled data, as per Algorithm 3. Two fully connected
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Figure 2.7: F1 score obtained by the Vanilla and the Top-K DCCA approach with different
layers for anomaly detection task in an unsupervised learning setup

(a) Activation Map 7 (b) Activation Map 17

(c) Activation Map 32 (d) Activation Map 167

Figure 2.8: t-SNE Visualization of a sample of the activation maps with Top-K DCCA
Approach on Tennessee Eastman Data

43



Figure 2.9: F1 score obtained by the Vanilla, DCCA and the Top-K DCCA approach for
the anomaly detection task in a semi-supervised learning setup

layers with 300 and 2 hidden units, respectively, are trained in a supervised manner us-
ing labelled data. The convolutional encoder’s weights and biases are frozen during the
fine-tuning stage.

The average F1 score for the Vanilla, DCCA, and Top-K DCCA approaches on different
fault categories in a semi-supervised learning setup is shown in Fig. 2.9. The proposed
Top-K DCCA approach outperforms the other two models in the Easy and Hard fault
categories. The standard DCCA only marginally performs better in the medium category;
however, the proposed methodology works better than the Vanilla model in all three fault
categories.

2.1.4 Contribution

This section’s contribution, based on the publications I and II, are first, a novel system
architecture with bidirectional LSTM networks for fault detection and classification based
on raw sensor data. Secondly, a novel approach is presented for unsupervised training-
based anomaly detection focusing on time series data sets. The fault classification system
proposes novel sequence generation and data restructuring procedures, enabling Deep
RNN models to learn discriminative features for fault classification tasks efficiently. The
proposed methodology outperforms unidirectional and other standard architectures re-
ported in the literature.

The anomaly detection approach combines a deep 1D-CNN-based AE with a clustering
loss on a subset of the latent variable space, which increases the discriminative power
within the latent variable space without sacrificing too much reconstruction performance
on the data set. The approach is end-to-end trainable by backpropagating the clustering
and the reconstruction objective through the network. The approach is tested on the TE
benchmark data set with satisfactory results.
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2.2 Remaining useful estimation with Generalized Di-
lation and Temporal Attention Neural Networks

This section presents two novel algorithms for remaining useful estimation of industrial
components by analysing multivariate time series datasets. The two approaches are Gen-
eralized Dilation CNN and Shared Temporal Attention Transformers. The proposed ap-
proaches are tested on two benchmark datasets, the PRONOSTIA Bearing Dataset and
the C-MAPSS Aircraft Engine Dataset, both challenging for RUL prediction. The content
of this section is based on publications in Chapter III and Chapter IV.

2.2.1 Introduction

Combining condition monitoring and predictive maintenance with data-driven tools and
techniques can significantly optimise production processes. Consequently, data-based
maintenance can be used to predict the availability or degradation of an asset based
on multivariate time series analysis approaches. Neural networks, specifically CNN [78],
and Transformer Networks [79] are particularly effective for this purpose. This chapter
proposes two novel Deep Learning architectures for multivariate time series analysis. The
first architecture is based on the concept of dilation in CNN. It can learn to extract
features over a prolonged time horizon and ignore certain input features. Consequently,
the proposed Generalized Dilation (GD) layer allows for arbitrary dilation structures and
can learn which part of the input is relevant for the prediction task and which is not.

The second architecture proposed in this chapter is the Shared Temporal Attention
Transformer (STAT) and the Feature-Represented Shared Temporal Attention Trans-
former (FeaR-STAT) for predicting sequence RUL values instead of a single RUL for a
specific cycle. The proposed transformer architectures consist of a Shared Temporal At-
tention methodology along with Split-Temporal Multi-Head attention and Split-Feature
Multi-Head attention blocks to enforce a higher emphasis on the sequence of the encoder
input signal. Both of these architectures, the Generalized Dilation Convolutional Neu-
ral Network (GDCNN) and the Transformer architecture, are applied to the C-MAPSS
aircraft engine data set [80] to underline their prediction performance.

2.2.2 Generalized Dilation Neural Networks

Convolutional layers are similar to standard filter algorithms in signal processing, where
the filters are trainable. 2D convolutions are appropriate when there is a spatial relation-
ship between the input channels, for example, in images. 1D convolutions are appropriate
when there is no such relationship, for example, in time-series data. Therefore, in 1D con-
volution, the kernel ranges over the entire sensor channel size. Considering a multivariate
time series signal for RUL estimation, {xt}Tt=1 with xt ∈ Rm where m is the number of
sensors measuring the state of an asset and T the length of the time series. The standard
convolution kernel yields

hi = (X ∗K)i =
nr−1∑
f=0

xi+f · ki+f + b, (2.21)
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where hi denotes the output of the (i)th receptive field in the input, xi+f are the ele-
ments in the receptive field of the sequence, ki+f are the elements in the convolution
kernel, b denotes the bias for the convolution kernel. The size of each convolution yields
K ∈ Rnr×m. The weight-sharing capabilities of the convolution kernel are severely weak-
ened when the number of sensors measuring the state of an asset is high. Furthermore,
modelling information over a long time horizon requires a deep network increasing parame-
ters. Consequently, dilated convolution [81] mitigates the above drawbacks by expanding
the receptive field size of a convolution kernel. The 1D dilated convolution operation
yields

hi = (X ∗l K)i =
nr−1∑
f=0

xi+l∗f · xi+f + b (2.22)

where l is the dilation factor. The dilation factor and its structure are kept constant
during training in the original study. Furthermore, standard dilations cannot express
several dilation structures within a single receptive field. It would be advantageous to
eliminate these restrictions, especially for time series data analysis. Because of this,
this thesis proposes additional flexibility by making the dilation structure trainable and
flexible throughout the receptive field. This concept may be even more comprehensive to
accommodate broader patterns in the receptive field.

It is conceivable to think of the dilation process as a standard convolution operation
with a receptive field size nd × nd with nr ≤ nd. This results in a convolution weight
matrix W ∈ Rnd×nd , where the elements of (nd× nd)− (nr × nr) are fixed to zero so that
the active weights (weights unequal zero) add to nr×nr. To do this, vectors ψl ∈ {0, 1}nd

and ψr ∈ {0, 1}nd together with matrices Ψl and Ψr, are defined in such a way that

diag(Ψl) = ψl, diag(Ψr) = ψr. (2.23)

The new convolution weight matrix is then defined as

W̃ = Ψl ·W ·Ψr, (2.24)

which offers a generalization to the dilation layer that was briefly discussed in part before.
It should be noted that arbitrary dilation-like patterns in the weight matrix W̃ may be
produced by pushing the total number of ones per ψl and ψr to nr while also arbitrarily
setting the components of ψl and ψr to zero and one, respectively. Formally, this results
in imposing constraints

ψT
l · 1 ≤ nr, ψT

r · 1 ≤ nr, (2.25)

where 1 denotes the all-one vector.
The dilation procedure can be further enhanced by creating a new masking matrix

Ψ ∈ {0, 1}nd×nd and define a new convolution weight matrix as

W̃ = W ⊙Ψ (2.26)

where the ⊙ symbol stands for element-wise multiplication. The constraint on the new
masking matrix has to be modified as

1T ·Ψ · 1 ≤ n2
r. (2.27)

46



Figure 2.10: Different configurations of the parameters: (a) Original convolution, (b)
Dilation with varying dilation rates; (c) Dilation in horizontal dimension only; (c) Dilation
in vertical dimension only; (e) Arbitrary dilation kernel.

There are generalized dilation-like patterns possible with the above reparameterization
of the convolution weight matrix W̃ . Fig. 2.10 provides samples of a few of the various
potential patterns. By setting the parameters of Ψ as

Ψ =


1 0 0 1 1
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
1 0 0 1 1

 , (2.28)

it is possible to produce arbitrary dilation patterns, as depicted in Fig. 2.10 (e)

End-to-end Training of Dilated Neural Networks

Since binary variables have to be optimized for finding an optimal masking weight matrix
and vector described in the previous section, the learning issue becomes combinatorial.
This combinatorial learning problem does not directly permit end-to-end gradient-based
training. To overcome this issue, a soft binary variable is generated by applying a sig-
moidal activation function resulting in continuous vectors ψ̃l, ψ̃r ∈ Rnd and matrices
Ψ̃ ∈ Rnd×nd . Formally, the softening of binary parameters is done such that

ψ̃l = σ(ψl), ψ̃r = σ(ψr), Ψ̃ = σ(Ψ). (2.29)

As training progresses, the sigmoid function trends toward its boundaries of (0, 1). The
masking weights are bound to the interval (0, 1) using the sigmoidal function because it
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is necessary for choosing input samples from the multivariate time-series sensor inputs.
Next, the additional constraints on the masking parameter Ψ̃ provided in Eq. (2.25) and
Eq. (2.27) must be taken into consideration. This work proposes two approaches for
implementing these constraints: a.) a differentiable barrier functions approach, which
contributes to the loss function only if the constraints are not satisfied, and b.) Top−K
sampling approach uses integer values to assign integer values to the binary masking
parameters.

Barrier Function: The overall loss of the model is defined as Ls(ω, Ψ̃)+Lb(Ψ̃) where
Lb is the barrier function loss and Ls(ω, Ψ̃) is a standard loss like cross-entropy loss for
classification or root mean squared error for regression tasks. One may approximate the
barrier loss directly as the gradient of the barrier loss ∇ΨLb since the barrier loss only
applies to the masking vectors and parameters, Ψ̃ and ψ̃l, ψ̃r respectively. Formally, the
gradient of the barrier loss can be defined as

∇Ψ̃Lb = bc(Ψ̃) + br(Ψ̃) + ba(Ψ̃), (2.30)

where bc, br and ba stand for various barrier functions that were derived using varying
degrees of penalties for satisfying the constraint. The barrier functions used in this work
are

bc(x) =
(
eα1·(x−nr) − α2 · (x− nr)

)
− α3, (2.31)

br(x) = max(eα1·(x−nr) · α2 · (x− nr) , α3), (2.32)

ba(x) = max(eα1·(x2−nr
2) · α2 ·

(
x2 − nr2

)
, α3), (2.33)

where we test several values for α1, α2 and α3 the barrier function as shown in Fig. 2.11
for the barrier function bc(x). According to Fig. 2.11, the barrier function has a built-
in propensity to yield greater penalties if the boundary condition (x − nr) is exceeded,
independent of the parameters (α1, α2 and α3). Therefore, if Ψ̃ij has a big sum of its
components at the start of training, there will be greater penalties and consequently larger
gradients. The gradient for end-to-end training of the masking parameter Ψ̃ij results in

∇Ψ̃ij
=
∂Ls(ω, Ψ̃)

∂Ψ̃ij

+∇Ψ̃ij
Lb. (2.34)

The amount by which the masking parameters deviate from the constraint and their
contribution to the classification or regression loss Ls(ω, Ψ̃) are added together to form
the gradient of the masking parameters.

Top-K Sampling: In this method, the top-K values or the maximum K values from
the matrix Ψ̃ are set to 1 and the remainder to 0. Specifically, the masking matrix’s
components are updated as follows:

Ψ̂ij =

{
1, if Ψ̃ij ∈ Ymax−K
0, else .

(2.35)

where Ymax−K denoted theK max elements in the masking matrix Ψ̃. The masking matrix
Ψ̂ is given integer binary values in the forward pass by doing the above operation. When
updating the binary parameters or performing a backward pass, the gradient estimates
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Figure 2.11: Barrier functions bc with different parameters α1, α2 and α3.

are used as if the forward pass had been performed using the masking forward pass
Eq. (2.29), and we update the parameters using the gradient masking Eq. (2.34). In the
forward pass, this results in integer binary values; however, the backward pass uses their
sigmoidal values. The top-K operation has the benefit of requiring the network to choose
the exact weights for the prediction job and loss computation. In contrast, the barrier
function strategy would have chosen a scaled version of the weights because of the sigmoid
function.

Experimental Results with Generalized Dilation Neural Networks

This section presents the experimental results achieved from the GDCNN architecture.
The proposed model is tested on two datasets, namely the PRONOSTIA [82] dataset and
the Commercial Modular Aero-Propulsion System Simulation (C-MAPPS) [80] dataset.
PRONOSTIA is an experimental platform designed to produce accelerated degradation
in ball bearings for testing and validating bearing diagnostics, prognostics and fault de-
tection. The challenge is to take data from three different operating conditions and use
it to predict the RUL of 11 bearings under the same conditions. There are six training
cases, two for each operating condition. The Root Mean Square Log Error (RMSLE) is
proposed in this thesis for RUL training since the large loss values cause the weights to be
updated too much, which makes the training process unstable. The RMSLE loss yields

RMSLE =

√√√√ 1

n

n∑
i=1

(
log(ri + 1)− log(r̂i + 1)

)2
. (2.36)
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Table 2.1: Performance of proposed architecture on Bearing data set

Bearing
Name

Actual
RUL (s)

Predicted
RUL (s) %Er Score

Bearing 1-3 5730 4086.31 28.68

0.38

Bearing 1-4 339 174 48.67
Bearing 1-5 1610 3004.42 -86.61
Bearing 1-6 1460 1458.76 0.084
Bearing 1-7 7570 2159.85 71.46
Bearing 2-3 7530 6737.35 10.53
Bearing 2-4 1390 4245.71 -205.4
Bearing 2-5 3090 3084.25 0.18
Bearing 2-6 1290 2478.83 -92.16
Bearing 2-7 580 4411.95 -660.68
Bearing 3-3 820 783 4.51

where ri is the actual RUL and r̂i is the predicted RUL for the ith data instance.
The Fig. 2.12 shows how well the GDCNN model predicts the RUL of a bearing. The

model does an excellent job of predicting the RUL near the end of the bearing’s life span
when the bearing is about to fail. Fig. 2.13 shows the impact of sequence length on the
loss for the test dataset and the training time required. It can be observed that if the
sequence length is too small, then the model will not be able to capture all the valuable
information as the historical data is too less. If the sequence is too long, it will take a
long time to train the model. Therefore, a sequence length of 2560 samples provides an
optimum result, with a further increase in sequence length resulting in over-fitting. The
prediction performance of the proposed model on all the test bearings and the overall
score per the standard scoring defined in the literature is summarized in Table 2.1.

The C-MAPSS dataset is a set of data from 21 sensors on three different types of
engines in different stages of degradation. The dataset is split into four sub-datasets,
FD001-FD004, each split into training and testing data. Each of the sub-datasets repre-
sents a different operating condition. Two different types of convolutional architectures
for the C-MAPPS data to try to improve our predictions are presented in this thesis. The
first convolutional architecture is the standard one-dimensional CNN architecture. The
second architecture is called the shared kernel CNN-1D architecture. The motivation for
the shared kernel approach is that the feature space for the C-MAPPS dataset is much
larger than the bearing dataset, so the standard CNN-1D architecture would need to be
more efficient. Two distinct training methods given in Sec. 2.2.2 to incorporate the re-
strictions in the GD training, in addition to the two different architectures, are presented
below.

When the Top-100 elements from the receptive field are sampled as 1, and the remain-
der are sampled as 0, Top-K Sampling significantly improves prognostic performance.
The integer binary values of the masking parameters benefit from this rigorous sampling.
Fig. 2.14a and Fig. 2.14b show the distribution of initial and learnt masking parameters
within the range of (0, 1) for the barrier function and Top-K sampling approaches, respec-
tively. The figures show how the Top-K sampling strategy achieves hard limits instead
of the Barrier function’s soft constraints. The author believes that the Top-K approach’s
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Figure 2.12: Qualitative Generalization Performance on the Bearing data set
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Figure 2.13: Effect of sequence length on prognostics performance and training time of
operating condition-1 test dataset

Table 2.2: Performance comparison of the proposed architectures on C-MAPSS Dataset

Method FD001 FD002 FD003 FD004

Shared Kernel CNN-1D 317.7 11053 336.7 8122
Shared Kernel

GDCNN-1D with Barrier 316.8 10273 304.4 7250

Shared Kernel
GDCNN-1D with Top-K 274.6 10256.6 285.1 7213.8

GDCNN-1D with Top-K 267.8 10868.9 307.8 7111.1

more extraordinary performance is due to the strict constraint it imposes. As a result,
only the Top-K sampling strategy was used in the GDCNN-1D tests. Fig. 2.15, Fig. 2.16,
Fig. 2.17 and Fig. 2.18 show the prognostic performance of the proposed GDCNN-1D.

The prognostic performance of the proposed architectures for each sub-dataset using
all the proposed techniques is presented in Table 2.2. It is worth noting that the com-
bined score of all proposed architectures beats several previously published papers. It is
clear that GDCNN techniques outperform ordinary CNN approaches and that the Top-K
sampling approach for GDCNN performs better than its barrier function counterpart.

2.2.3 Temporal Attention-based Transformer Networks

The self-attention mechanism used by the transformer architecture suggested in [79] com-
putes the significance of each input with the other inputs. To accomplish the intra-
attention action, the architecture leverages parallel inputs rather than the sequential
input approach used by RNN/LSTM structures. Self-attention necessitates transforming
the raw input signal X into query, key and value (Q,K,V) matrices through three dif-
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(a) Distribution of initial and learned masking parameters (σ(Ψ)) in the case of Barrier
Function

(b) Distribution of initial and learned masking parameters ((Ψ)) in the case of Top-K
Sampling

Figure 2.15: Prognostic performance from the GDCNN-1D architecture with Top-K sam-
pling on a test engine from FD001
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Figure 2.16: Prognostic performance from the GDCNN-1D architecture with Top-K sam-
pling on a test engine from FD002

Figure 2.17: Prognostic performance from the GDCNN-1D architecture with Top-K sam-
pling on a test engine from FD003
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Figure 2.18: Prognostic performance from the GDCNN-1D architecture with Top-K sam-
pling on a test engine from FD004

ferent weight matrices. In the original transformers proposed in [79], the multi-headed
self-attention is achieved by transforming the multivariate input signals into as many
(Q,K,V) matrices as set by the amount heads as shown in Fig. 2.19. The steps for
calculating the attention are briefly explained as follows.

Q = Wq ·X (2.37)

K = Wk ·X (2.38)

V = Wv ·X (2.39)

where Wq,Wk,Wv ∈ Rdi×d, di is the no. of input features and d is the corresponding
latent dimension in the layer. Self-attention matrix output is then computed with the
help of these three matrices as follows

Zattn = softmax
(
Q ·KT

√
dk

)
·V (2.40)

where dk is the key dimension in a specific layer. The softmax function t takes a vector
of arbitrary real-valued scores and transforms them into a probability distribution over
multiple classes. When dealing with matrices, the softmax function is applied row-wise
to normalize the scores across each row. Precisely

softmax(Zij) =
eZij∑n
k=1 e

Zik
(2.41)

where Zij is the ith row and jth column element of the input matrix Z. In the classical
transformer architecture, the attention from all h self-attention blocks are concatenated
and passed through a weight matrix Wa ∈ Rdk×d to produce the final attention. As
shown in fig. 2.19, the individual self-attention heads collaborate to attend to information
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Figure 2.20: Split-Temporal Multi-Head Attention for Input with no. of timesteps, T=
4, no. of features, i= 3 and no. of temporal heads, headst= 2.

from multiple representation subspaces, form a context, and map it to a combined rep-
resentation subspace. However, the author proposes in this thesis a Multi-head attention
mechanism which is used on both the feature and temporal dimensions independently.
Specifically, for feature attention, instead of passing the Query, Key and Value matrices
through multiple linear layers, the dimensions are reduced by splitting them into multi-
ple feature heads and then calculating the attention. In the case of temporal attention,
the Query, Key and Value matrices are split along the temporal dimension to produce
matrices with a shorter time length but with full feature size.

Split-Temporal Multi-Head Attention

Temporal heads are formed by dividing an input signal into a divisible number of shorter
signals. The full process of Split-Temporal Multi-Head Attention (STMHA) is depicted in
Fig. 2.20. A sample multivariate time-series signal X ∈ RT×i, where T is the length of the
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time-series signal, and i is the size of input feature dimension. The query, key and value
(Q,K,V) matrices are calculated by using the weight matrices Wq,Wk,Wv ∈ Ri×de

where de is the encoder hidden dimension size as described in Equations (2.37) (2.38)
(2.39). The query, key and value matrices are then separated along the time dimension
to generate temporal heads. In Fig. 2.20 T = 4, i = 3, de= 3 and headst = 2 have been
assumed for simplicity. Self-attention is then performed on each of the temporal heads
to produce individual attended matrices as described in Eq. (2.40) resulting in attention
matrices as {Zattn

1 ,Zattn
2 , ...,Zattn

headst
} ∈ Rheadst×de . Subsequently, the concatenated split

temporal multi-headed attention output is Zattn
stmha ∈ RT×de .

Shared Temporal Attention Block for Transformer Encoder

This section introduces a novel concept of raw feature segmentation and univariate
STMHA, intending to decrease noise or interference from nearby sensor data while at-
tending to timesteps in a single input feature. A multivariate input signal is divided into
univariate signals, and each of those signals passes through a Shared Temporal Attention
(STA) block, as illustrated in Figure 2.21. The STMHA mechanism functions as explained
in the previous section, with the input feature dimension in the STA block set to i = 1
for segmented univariate signals. A position-wise Feed-Forward Network (FFN) layer,
a residual addition, and a layer normalization are applied after the univariate temporal
attended output has been processed. Specifically, the FFN operation for a univariate
temporal attended matrix Zattn

i can be defined as

FFN(Zattn
i ) = max(0, (Zattn

i ·W1 + b1)) ·W2 + b2 (2.42)

where W1 ∈ Rde×(m.de), W2 ∈ R(m.de)×de , b1 ∈ R(m.de) and b2 ∈ Rde are the weights
and biases of the two feed-forward layers. m ∈ Z+ is a multiplier that increases the inner
dimensionality of the FFN layer. The corresponding equations for layer normalization [83]
are

µl =
1

de

de∑
i=1

Zattn
i (2.43)

σl =

√√√√ 1

de

de∑
i=1

(Zattn
i − µl)2 (2.44)

where µl and standard deviation σl are calculated across all the hidden nodes in the lth
layer.

Ẑattn
i = γ

(
Zattn

i − µl
σl + ϵ

)
+ β ≡ LayerNormγ,β(Z

attn
i ) (2.45)

where γ and β are learnable parameters. ϵ is for numerical stability in case the denomina-
tor becomes zero by chance. The FFN output and the original layer output are residually
added and normalized as

Znorm
i = LayerNormγ,β(Z

attn
i + FFN(Zattn

i )). (2.46)

Finally, the shared temporal-attended univariate signal is calculated as

Zi = Wflat · Znorm
i + bflat (2.47)
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where Wflat ∈ R(T.de)×T , bflat ∈ RT are the weight and biases in the flattening layer
to produce Zi ∈ RT . The STMHA block runs for a i number of segmented sensor sig-
nals for a multivariate raw input signal to create shared univariate attended signals as
{Z1,Z2, ...,Zi} ∈ RT . A multivariate shared-temporal attended output is created by
concatenating these signals along the feature dimension as

Z = (Z1,Z2,Z3, ...,Zi) ≡ concat(Zi). (2.48)

The word "shared" denotes that the weights of each layer in the STA block are distributed
evenly across the segmented raw signals. As a result, the model learns the links between
each sensor while also paying attention to the pattern of sensor deterioration over time.
The encoder of both the suggested transformer architectures has this STA block.

Split-Feature Multi-Head Attention

Similar to Split Temporal Multi-Head Attention, a novel idea of separating input features
to create feature heads is presented and shown in Fig. 2.22, namely the Split-Feature
Multi-Head Attention (SFMHA). The SFMHA substitutes the traditional multi-head at-
tention technique in the decoder part of the proposed transformer architectures. Addi-
tionally, SFMHA is included in the encoder part of one of the proposed models. The
process of splitting the features, as shown in Fig. 2.22, is as follows. The Q,K,V matri-
ces are formed by passing the raw input X ∈ RT×i through weight matrices Wq,Wk,Wv

∈ Ri×dd where dd is the decoder hidden dimension size. The Q,K,V matrices are then
separated into headsf number of feature heads along the feature dimension, with the
newly split vectors having a dimension of iheads = dd

headsf
. For ease of display, the values

in Fig. 2.22 have been set to T = 3, i = 3, dd = 6, and headsf = 2. In order to create the
associated attended matrices {Zattn

1 ,Zattn
2 , ..,Zattn

headsf
} ∈ RT×i, self-attention is applied to

the split feature heads. Concatenating the distinct feature head attention outputs along
the feature dimension results in the creation of a feature-attended output vector Zattn

sfmha

∈ RT×dd .

Shared Temporal Attention Transformer (STAT)

This thesis introduces the Shared Temporal Attention Transformer (STAT), a new trans-
former design. The encoder and decoder components of the architecture are built of a
stack (represented as N× ) of encoder and decoder layers as illustrated in Fig. 2.23. There
is no weight sharing across the various encoder and decoder layers. Before the first encoder
and first decoder layers, positional encoding (PE) [79] is connected to provide information
about the relative or absolute position of each input data point.

Encoder: A multivariate input signal’s features are first divided up into separate
univariate signals at the encoder layer such that the input matrix X ∈ RT×i is converted
into individual vectors as {i1, i2, .., ii} ∈ RT×1. To create a multivariate attended signal
Znorm

stmha ∈ RT×i, these segmented univariate signals are transmitted through the Shared
Temporal Attention (STA) block. By sharing weights across all the segmented features in
the initial attention phase, the encoder can learn high-level feature representations across
the sensors in the input data while at the same time learning the intrinsic deterioration
pattern within each sensor, independent of other sensors. The shared attention method
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Figure 2.22: Split-Feature Multi-Head Attention for Input with no. of timesteps, T = 3,
no. of features, i = 6 and no. of features heads, headsf = 2.
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improves the coherence of the multivariate attended signal over the complete feature set.
The multivariate attended signal after that provided the second phase of attention via
STMHA. The primary distinction between the first and second attention phases is that
the first attention phase performs STMHA on each of the i segmented feature sensors
in a shared recurrent way. In contrast, the second attention phase does STMHA on
the multivariate signal as a whole. The STMHA enables coherent feature interaction
while executing self-attention along the temporal axis. Following this layer are a residual
connection, an FFN layer, and a layer normalization. The equations involved in these
layers for any multivariate STMHA output are as follows:

FFN(Zattn
stmha) = max(0, (Zattn

stmha ·W3 + b3)) ·W4 + b4 (2.49)

Znorm
stmha = LayerNormγ,β(Z

attn
stmha + FFN(Zattn

stmha)) (4.6)

where W3 ∈ Ri×(m·i), W4 ∈ R(m·i)×i, b3 ∈ Rm·i and b4 ∈ Ri are the weights and biases
of the feedforward layers. m ∈ Z+ is the dimensionality multiplier of the FFN layer. The
subsequent encoder layer performs the attention mentioned earlier while receiving the
normalized output from its previous encoder layer. The N th encoder layer is reached after
N iterations of this operation. The key and value, which are the inputs for the decoder
layers, are created by multiplying the output of the N th encoder layer by weight matrices
Wk

ED, Wv
ED ∈ Ri×dd .

Decoder: A tensor of zeros acts as the start-of-sequence to start the first decoder
layer in the stack of decoders. The SFMHA is the initial stage inside a decoder layer.
The feature-attended output from this layer proceeds through layer normalization after
passing via a residual connection. The query matrix, Q, for the second attention stage
of the decoder layer, is the normalized output of the first attention stage. The output of
the Nth encoder layer is the source of the key and value matrices. These three matrices
initiate the second attention phase, which is an SFMHA form of attention. A residual
connection, layer normalization, and an FFN layer are then applied. Two Fully Connected
(FC) layers make up the FFN layer in the decoder, and the first FC layer is followed by
non-linear Leaky ReLU activation [59]. For any normalized input Ynorm1

D ∈ RTo×de to
the FFN layer, followed by another add and normalization layer the equations can be
summarised as

FFN(Ynorm1
D ) = max(0, (Ynorm1

D ·W5 + b5)) ·W6 + b6 (2.50)

Ynorm2
D = LayerNormγ,β(Y

norm1
D + FFN(Ynorm1

D )) (2.51)

where W5 ∈ Rdd×(m·dd), W6 ∈ R(m·dd)×dd are the weights and biases of the two linear
layers in the decoder FFN. m ∈ Z+ is the dimensionality multiplier of the FFN layer and
dd is the decoder hidden dimension. A linear layer with weight matrix WRUL ∈ Rde×dRUL

that predicts a sequence output with a dimension of dRUL = 1 is the last step in a decoder
layer. This predicted output is sent on to the following decoder layer, and the cycle is
repeated until the N th decoder layer generates the sequence RUL labels. Like the encoder
layers, the N decoder layers do not share weights. To execute the second attention phase
with the query matrix vector produced from the masked SFMHA attention phase, each
decoder layer gets the identical key and value matrices from the N th encoder layer.
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Figure 2.23: Shared Temporal Attention Transformer (STAT).
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Figure 2.24: Feature-Represented Shared Temporal Attention Transformer (FeaR-STAT).

Feature-Represented Shared Temporal Attention Transformer (FeaR-STAT)

This section presents a novel Feature-Represented Shared Temporal Attention Trans-
former (FeaR-STAT). Except for the encoder layer, the design is similar to the proposed
STAT architecture as shown in Fig. 2.24. In contrast to the STAT architecture, an SFMHA
form of attention is used for the second attention phase in the encoder, which eliminates
the encoder’s absolute dependence on temporal attention. The individually attended fea-
tures can execute self-attention throughout the feature dimension for the whole length of
the input signal by applying SFMHA to the STA multivariate output. This improves the
encoder’s capacity to pay attention to the intricate deterioration pattern affecting all the
features across the whole input signal time period.

Encoder: Since the working principle of the FeaR-STAT decoder is similar to that of
the STAT decoder, only the encoder part is explained in detail here. The segmentation
of sensor features from a multivariate input signal is the first step in the FeaR-STAT
encoder X ∈ RT×i. The segmented univariate input signals {x1,x2, ..,xi} ∈ RT are passed
through the STA layer to create a multivariate attended signal Z ∈ RT×i. Subsequently,
the multivariate attended signal is passed through a linear layer with a weight matrix,
Wexpand ∈ RT×dd to create a new attended output Z ∈ RT×dd . The expansion in feature
size is required since in SFMHA, the input signal Z is split across the feature domain
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to create headsf feature heads, each of length T and number of features, iheads = dd
headsf

where iheads, dd and headsf ∈ Z+. The feature-attended output passes to a linear layer,
a residual connection and layer normalization. The equations to these operations can be
summarised as

FFN(Zattn
sfmha) = max(0, (Zattn

sfmha ·W7 + b7)) ·W8 + b8 (2.52)

Znorm
sfmha = LayerNormγ,β(Z

attn
sfmha + FFN(Zattn

sfmha)) (2.53)

where W7 ∈ Rdd×(m·dd), W8 ∈ R(m·dd)×dd , b7 ∈ Rm·dd and b8 ∈ Rdd are the weights
and biases of the feedforward layers. m ∈ Z+ is the dimensionality multiplier of the
encoder FFN layer. The final step in a FeaR-STAT encoder layer is passing the Znorm

sfmha

output through a linear layer having weights Wreduce ∈ Rdd×i to create an encoder output
Znorm

sfmha ∈ RT×i. The FeaR-STAT encoder operation is recurrent, i.e., the output from one
layer is passed on to the next for N times until the N th encoder layer generates a latent
representation for the decoder layers.

Experimental Results with Temporal Attention Transformer Networks

The experimental findings of the presented transformer architectures are presented in
this section. The Turbofan Engine Degradation Dataset, also known as the C-MAPSS
dataset presented in 2.2.2, is utilized in this study to assess the model performances. The
performance evaluation metric as defined in [80]

si =

e
di
a1 − 1, di < 0

e
di
a2 − 1, di ≥ 0

(2.54)

S =
N∑
i=1

si (2.55)

where, a1 = 13, a2 = 10, di = Predicted RUL− Target RUL for the ith engine, si =
score for the ith engine, N are the total engines in a test sub-dataset and S is the final
performance score for that sub-dataset.

Fig. 2.25 and Fig. 2.26 represent sample RUL estimation plots by the proposed STAT
and FeaR-STAT models, respectively. An analysis of STAT and FeaR-STAT performance
on the C-MAPSS dataset using various hyperparameter settings, including the number of
temporal and feature heads, encoder and decoder hidden sizes, and the number of encoder
and decoder layers, is presented here.

Fig. 2.27 and Fig. 2.28 illustrate the effects of varying the number of Temporal Heads,
headst, in the STAT and FeaR-STAT models, respectively. A headst count of 4 results
in the overall best performance across all the sub-datasets in both scenarios, holding
all other hyperparameters constant. Further increasing the temporal headcount reduces
performance across the board for the STAT and FeaR-STAT designs.

However, it is evident by analysing the impact of the number of Feature Heads,headsf
in the STAT model from Fig. 2.29 that the overall prediction performance improves when
headsf is increased up to 16. The overall results are adversely affected by a rise in headsf ,
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Figure 2.25: Remaining Useful Lifetime (RUL) estimation Plots of FD001 Engine ID 100
by proposed STAT architecture.

Figure 2.26: Remaining Useful Lifetime (RUL) estimation plots of FD001 Engine ID 100
by proposed FeaR-STAT architecture.
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Figure 2.27: Effect of Temporal Heads (headst) in proposed STAT Architecture.
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Figure 2.28: Effect of Temporal Heads (headst) in proposed FeaR-STAT Architecture.
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Table 2.3: Evaluated Model Performance on (RMSE)

Model Description RMSE
FD001 FD002 FD003 FD004

STAT 12.1 15.2 10.6 15.54
FeaR-STAT 12.01 15.5 10.9 15.03

notably in the FD001 and FD003 sub-datasets. The influence of the number of Feature
Heads, headsf parameter in the FeaR-STAT model is demonstrated in Fig. 2.30. The
model’s performance does not improve with an increase in the number of Feature Heads.
Instead, maintaining them at 8 yields the best overall performance across all sub-datasets.

As per Fig. 2.31 and Fig. 2.33, increasing the encoder and decoder hidden sizes (de, dd)
decreases the STAT model’s performance in all four sub-datasets. With the help of STAT’s
deep architecture, complex patterns may be learned from input data, and matching RULs
are produced. Therefore, it’s possible that greater hidden sizes won’t be essential to
enhance model performance. Similar behaviour can be seen in the Fear-STAT model
from Fig. 2.32 and Fig. 2.34 where performance degrades as the encoder and decoder
hidden size increases.

As illustrated in Fig. 2.35, the STAT model delivers the highest average performance
by stacking the fewest encoder and decoder layers. Due to the stacked layers’ lack of
weight sharing, increasing the number of layers proportionately increases the number
of trainable parameters and eventually causes the model performance to decline. One
of the essential characteristics of the STAT design is the use of relatively less trainable
parameters. In the case of the FeaR-STAT model, as shown in Fig. 2.36, the performance
decline is much more pronounced due to adding additional stacked encoder and decoder
layers.

The comparison of the proposed models based on their Root Mean Square Error
(RMSE) losses during the testing phase is shown in Table 2.3. The RMSE loss shows the
model’s ability to provide precise RUL forecasts throughout an engine’s life. This illus-
trates how accurately a model can depict the pattern of degradation from the beginning
to the conclusion of the life of any equipment. The proposed transformer RMSEs surpass
current literature in all operating circumstances, demonstrating the effectiveness of the
techniques.

2.2.4 Contribution

The contribution of this section which is based on papers III and IV, are novel learnable
dilated CNN and transformer neural networks. Both of these approaches are specifically
designed for multivariate time series data analysis. The standard dilated CNNs are gen-
eralized in the section 2.2.2, which enables the universal representation of any dilation
patterns. Two end-to-end training strategies for the Generalized dilated CNNs architec-
ture leveraging the barrier function and Top-K sampling techniques are presented. The
shared temporal and split-feature attention blocks presented in section 2.2.3 help dis-
cover deterioration patterns for RUL estimation. The proposed architectures and their
respective variants are tested on the C-MAPSS benchmark dataset outperforming current
state-of-the-art methods.
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Figure 2.29: Effect of Feature Heads (headsf) in proposed STAT Architecture.
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Figure 2.30: Effect of Feature Heads (headsf) in proposed FeaR-STAT Architecture.
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Figure 2.31: Effect of Encoder Hidden Size (de) in proposed STAT Architecture.

Figure 2.32: Effect of Encoder Hidden Size (de) in proposed FeaR-STAT Architecture.
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Figure 2.33: Effect of Decoder Hidden Size (dd) in proposed STAT Architecture.

Figure 2.34: Effect of Decoder Hidden Size (dd) in proposed FeaR-STAT Architecture.
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Figure 2.35: Effect of no. of Layers (LED) in proposed STAT Architecture.

Figure 2.36: Effect of no. of Layers (LED) in proposed FeaR-STAT Architecture.
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3. Conclusion and Future Work
The work in this dissertation is focused on the development and assessment of suitable
DNN architectures and learning algorithms for prognostics and health management of in-
dustrial systems. In particular, several enhancements to the existing DNN architectures
for multivariate time-series analysis have been proposed to improve prediction perfor-
mance on multiple complex industrial benchmark settings. This chapter provides an
outline of potential future efforts in addition to summarizing the entire research project,
techniques, and conclusions.

3.1 Conclusion

Prognostics and health management of industrial systems is an essential part of product
life-cycle management, and DNN architectures have emerged to play a critical role in this
field. Standard DNN architectures such as Convolutional Neural Networks, Recurrent
Neural Networks and Transformers have been used for multivariate time-series analysis
for industrial systems. I investigated three significant directions for Prognostics and health
management of industrial systems with DNN architectures: fault classification, anomaly
detection and remaining useful lifetime estimation. The novel DNN architectures and
learning algorithms are presented and evaluated for all three directions. The findings are
as follows.

First, it is shown that using a bidirectional LSTM architecture implicitly improves
the prediction performance for incipient fault classification, as the proposed architecture
provides a viewpoint change for time-series analysis. The proposed sliding window data
operation makes storing long-term data in LSTM cells easier, making it possible to take
into account even longer time series patterns. Consequently, increasing the sequence
length increased the generalisation capability in the incipient fault case detection. The
proposed data preprocessing and efficient training techniques allow all the proposed RNN
models to handle raw multivariate time-series signals. It is illustrated that the proposed
techniques yield better results than previous findings on the benchmark TE fault detection
dataset. The initial multi-class classification approach also provides promising results with
the bidirectional LSTM architecture.

Second, a new framework for anomaly detection with unsupervised and semi-
supervised training based on CNN auto-encoders is proposed, which utilises an auxiliary
loss function to enhance the hidden representation of the CNN models. The auxiliary loss
function is calculated only for a subset of the hidden variables and is based on the K-means
clustering loss. This extra constraint on the subsection of the CNN auto-encoders latent
variables forces the model to learn a representation which is amenable for the anomaly
detection task. The proposed training algorithm includes the splitting of the latent vari-
ables based on a Top-k approach wherein the latent variables with the maximum euclidean
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distance between the cluster centres are identified as the highest contributing variables
for anomaly detection. Furthermore, the suggested approach may be used in any neural
network model due to its modular design. The proposed approach also addresses the lack
of labelled data for anomaly detection in a real-world setting. The experimental results on
the benchmark TE dataset show that the CNN models with the auxiliary loss outperform
the vanilla CNN models on all the anomaly categories. Furthermore, analysing the type
of input fed to the semi-supervised classifier also underlines that the clustering loss is
helpful in the overall prediction performance of the CNN model.

Third, a new approach for CNN is presented wherein a generalized dilation layer is
designed for adaptive sampling in case of multivariate time series data analysis. The
generalized dilation extends the rigid standard dilation approach to be flexible across
the input receptive field resulting in the selection of the most relevant time-steps and
feature variables for the RUL prediction task. Unlike standard dilation in CNN, the
generalized dilation layer is trainable for each convolution kernel. Since training the
generalized dilation is a discrete optimisation problem, two new training methodologies
were developed to make it compatible with the gradient-based learning of CNN. The
first approach uses the barrier function, which calculates varying penalties for failing to
comply with the constraints of discrete optimisation. The second solution applies the
hard constraints using a "Top-K" sampling strategy wherein the constraints are fulfilled
by utilising the maximum K values in the convolution weight matrix. Both of these
training approaches were tested on benchmark RUL data sets to understand the impact
of each of the components individually. Both the training procedures lead to outstanding
performance on RUL prediction tasks, with the Top-K training approach performing
slightly better. Overall, both the proposed methodologies perform better than the other
Deep Learning RUL estimation approaches, underlining the universal applicability of the
methods.

Fourth, two new architectures, the STAT and FeaR-STAT models, are proposed based
on the transformer neural network architecture. The architectures are designed to better
focus on the parameter-sharing phenomena to model the inter-dependency in the tem-
poral and feature domains. Specifically, the Shared Temporal Attention block and the
Split-Temporal Multi-Head Attention focus on modelling the raw input signal such that
the information at any given time can attend to its past and future information as well.
Furthermore, the encoder’s suggested shared temporal attention layer achieves the ob-
jective of focusing on the temporal patterns of signal degradation in each unique sensor
signal before establishing a shared correlation across the feature range. The STAT and
FeaR-STAT architectures employ the proposed shared temporal attention mechanism in
the encoder and the Split-Feature Multi-Head Attention in the decoder. The architectural
modifications result in two high-performance models with fewer trainable parameters than
standard transformer models to avoid scalability issues in practical applications. The C-
MAPSS Turbofan Engine dataset is used to evaluate the proposed architectures. Both
the transformer architectures proposed in this thesis reach state-of-the-art performance
in predicting highly accurate RUL estimation from raw input sequences.
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3.2 Future Work
This section provides suggestions for future work and enhancements to the proposed
models and training procedures. The future research work can be summarised as follows.
First, the explainability and interpretability of deep neural network models is a promising
area for understanding their predictions. This is becoming more important in recent
times since deep neural network models are being used more often in real production
environments. Additionally, since health management models usually work in tandem
with human supervisors on the shop floor, it is necessary that humans also understand
the learned representations of these models. Some initial research works proposing such
methods in the visual modelling tasks are [84, 85].

Second, pre-training deep neural network models with unlabelled data and then adapt-
ing the model to a specific task with labelled data has revolutionised their generalisation
capabilities. These pre-training approaches have been used to learn high-level represen-
tations effectively in different application domains like fault detection [86]. These exist-
ing approaches can be extended to RUL estimation using multivariate time-series data.
Furthermore, generative or energy-based pre-training approaches can be investigated for
system health management.

Third, the generalized dilation technique proposed in this thesis can be extended to
the entire input space and not just to the receptive field. In this new architecture, we
first apply a dilated operation on the input image and a standard convolution operation
to the dilated input. The resulting architecture essentially separates its operation into a
pattern extraction step followed by a standard convolution operation on a reduced input
data set.

Finally, since all the approaches proposed in this thesis are highly modular, they
can be individually combined to create robust and reliable architectures for system health
management. In conjunction with the Top-K clustering algorithm, the generalized dilation
models can create a stable anomaly detection system. Similarly, the STAT and FeaR-
STAT can also be used as feature extractors for the Top-K clustering algorithm. The
concept of dilation can also be extended to the STAT and FeaR-STAT architectures,
where only certain parts of the input are used for representing the interdependency in the
input dataset.
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I.1 Abstract

In this study, a new approach for time series based condition monitoring and fault diag-
nosis based on bidirectional recurrent neural networks is presented. The application of
bidirectional recurrent neural networks essentially provide a viewpoint change on the fault
diagnosis task, which allows to handle fault relations over longer time horizons helping in
avoiding critical process breakdowns and increasing the overall productivity of the system.
To further enhance the capability, we propose a novel procedure of data preprocessing and
restructuring which enforces the generalization and a more efficient data utilisation and
consequently yields more efficient network training, especially for sequential fault classifi-
cation task. The proposed Bidirectional Long Short Term Memory network outperforms
standard recurrent architectures including vanilla recurrent neural networks, Long Short
Term Memories and Gated Recurrent Units. We apply the proposed approach to the
Tennessee Eastman benchmark process to test the effectiveness of the mentioned deep
architectures and provide a detailed comparative analysis. The experimental results for
binary as well as multi-class classification show the superior average fault detection ca-
pability of the bidirectional Long Short Term Memory Networks compared to the other
architectures and to results from other state-of-the-art architectures found in the litera-
ture.

I.2 Introduction

Smart and interconnected manufacturing processes are the backbone of an economy, which
increases the demand for insightful anayltics into these complex systems. The requirement
for manufacturing environments and machines to run in a 24/7 setting poses high chal-
lenges to the production management. Due to the required high workload, unintentional
standstill of machines has to be avoided reliably while intentional standstill times shall
be reduced as much as possible. Therefore, industries now require a system that does not
only prevent the faults, but can also predict them. This real time system monitoring can
be achieved by utilizing the large amount of data provided by sources such as sensors,
actuators, manufacturing executing systems and enterprise resource planning systems.
This easy availability of huge amount of data, along with the recent research agendas of
"Industry 4.0" have caused new techniques to arise ranging from self optimization and
self learning manufacturing systems to highly modular and flexible production systems.

Condition monitoring and fault detection systems play a crucially important role in
reliable and efficient manufacturing plants operation. Fundamentally, condition moni-
toring and fault detection approaches can be distinguished into data- and model-based
methods [1] where the latter can be derived either from physical principles [2] or human
expert knowledge. However, deriving suitable models of the system or collecting process
knowledge from operators, e.g. in form of rules [3], can be tedious if not infeasible, owing
to the inherent complexity and interconnected nature of modern production systems. As
modern manufacturing systems provide huge amount of process data, data-based methods
become more and more applicable and competitive to extract meaningful patterns and
perform detection or classification for different fault cases.

Consequently, data based methods using machine learning techniques have been fre-
quently developed, see [4, 5] for recent overviews. Particularly, deep learning [6] has
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been shown to provide superior performance compared to conventional machine learn-
ing methods. Typical deep network architectures and learning paradigms include deep
sparse filtering [7], deep belief networks [8] and deep autoencoder [9] where the latter
are mainly used in unsupervised or semisupervised monitoring tasks. However, all of
these deep learning approaches are not specifically designed for time series data as re-
quired by condition monitoring and hence, do not scale well for mining patterns in longer
time sequences. Recurrent Neural Networks (RNN) [10] like Long Short Term Memory
(LSTM) [11] or Gated Recurrent Units (GRU) [12] are thus better suited for sequential
data analytics, which feed in the data sequentially and in theory, can handle sequences of
arbitrary length. However, in practice, the sequence length is shown to be limited mainly
due to training issues. This poses challenges for condition monitoring tasks as relations
within multidimensional data sequences indicating failures can range over long time hori-
zons. Furthermore, fault detection data sets are normally sparse and unbalanced, i.e.
faulty data is rare compared to normal operation data which renders direct application
of standard machine learning algorithms difficult.

In this paper we tackle the above problem by introducing a novel system architecture
for condition monitoring and fault diagnosis using Bidirectional Long Short Term Mem-
ory (B-LSTM) [13]. B-LSTM operate directly on the raw sensor data and can model
the temporal dependencies based on forward and backward data representation to two
separate LSTM networks allowing to cover longer time horizons. The advantage of the
proposed method is fault detection capabilities for incipient faults, which require a mod-
elling information over a longer time horizon. Moreover, in contrast to existing B-LSTM
training, where the input is fed in sequentially, we apply a many-to-one processing which
inputs the whole sequence at once. Together with a sliding window approach and suitable
restructuring of the data sets this allows for higher efficient data usage then previous
approaches. Moreover, we present a novel data-preprocessing technique, which avoids the
dependence on a specific sequence length or period of a time series signal.

The approach is applied to the well known Tennessee Eastman (TE) Process previously
used as a benchmark for various data based fault diagnosis algorithms. We provide
a thorough comparison study of B-LSTM, vanilla LSTM, GRU and vanilla RNN. The
results clearly show the improved performance of the approach and particularly show
that B-LSTM obtained increased performance compared with the literature, especially
with regard to faults which are hard to classify with other approaches.

The contributions of the paper can be summarized as follows:

• We present a new approach for data based condition monitoring and fault diagnosis
based on the recently developed B-LSTM. Specifically, B-LSTM provide a view point
change which allows for fault classification on longer data sequences. The system is
based on raw data and uses the output of the network directly as the classification
results without the need for any subsequent statistical test as otherwise suggested
in the literature.

• We present a novel methodology of data preprocessing for training of recurrent neu-
ral networks for condition monitoring and fault diagnosis. Particularly, we propose
a restructuring of the training data set which enables the recurrent networks to
better generalize to the fault conditions.
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• We provide a thorough comparison between different recurrent neural network ar-
chitecture including vanilla-LSTM, vanilla GRU and vanilla RNN underlining the
superior performance of B-LSTMs.

The paper is organized as follows. Sec. I.3 introduces related work. In Section I.4
we state the considered problem, followed by the considered neural network structures
in Sec. I.5. Sec. I.6 entails the newly developed data presentation technique for training
the RNN. In Sec. I.7 we provide a thorough comparison of the recurrent networks and
compare the performance with existing methods from the literature. Section I.8 concludes
the paper.

I.3 Related Work

We focus our literature review on data-based methods and refer to [2] for model based
approaches. In the field of data based condition monitoring, various approaches exist as
has been surveyed in [14, 15, 16]. Fundamentally, previous works can be categorized in
statistical, shallow learning and deep learning methods.

Statistical methods include partial least squares, principle component analysis and
independent component analysis. These methods have been widely used [17, 18] to find
trends and change in the individual process variables for distinguishing faulty and non-
faulty case. However, as these methods are defined for linear systems, sophisticated
preprocessing and feature generation methods have to be defined, e.g. in form of kernel
functions, to operate with nonlinear relations in the data set as is usually the case in
condition monitoring. Particularly for time series data this requires detailed knowledge
from an expert to successfully design such systems. Other data-driven learning methods
include K-Nearest Neighbour [19], Support Vector Machines [20], and single hidden layer
Feed Forward Neural Network (FFNN) [21] that model fault detection as a supervised
or a unsupervised learning problem wherein a trained classifier or multiple classifiers try
to classify normal operation from faulty operations. However, as these methods are in-
herently static, time series condition monitoring can only be applied by incorporating
additional time series feature generation methods which again require for detailed process
knowledge. In contrast, deep learning methods like Deep Stacking Networks [1], Stacked
Sparse Deep Autoencoders [22] and Deep Belief Networks [8] inherently allow for the gen-
eration of relevant features by using multiple layers of non-linear transformations to break
the complex pattern recognition problem into a series of simpler mathematical patterns
that are incorporated for the final classification task. However, extraction of relevant
information from raw production data sets with these architectures remains a challenge.
Particularly the inherent time dependency of fault development and its propagation de-
mands for architectures and training schemes accounting for this time dependency.

Recently, architectures from the deep learning field particularly accounting for the time
series character of condition monitoring, namely Convolutional Neural Network (CNN)
and RNN have been developed. In [23] a CNN is used to detect bearing faults using a
low dimensional vibration data set. Dislocated convolutions are presented in [24] where
windows of different strides are processed via a CNN architecture on a (one dimensional)
data set to infer electric motor faults. CNN based transfer learning approaches have been
proposed in [25] where task independent features are transferred to CNN for different
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fault cases and verified on six transfer fault diagnosis experiments. However, as CNN are
basically designed for image data, a straightforward transfer to the time series domain is
not possible. As standard 2D-filters cannot favorably be used due to the missing spatial
relations, 1D filters ranging over the complete input dimension have to be used. This
results in big filter sizes for multidimensional input sizes which reduces the effectiveness
of CNN. Hence, the proposed CNN are applied to one or low dimensional time series data
sets only. Furthermore, the fixed and predefined time window size restricts the sequence
length considerably and avoids mining patterns over longer time horizons. In addition, the
local nature of convolutions requires for depth to also cover broader relations, resulting
in overly complex networks.

Alternatively, some approaches for time series based data-driven condition monitoring
using RNN and its variants have been developed which allow for modeling longer time de-
pendencies. Stacked LSTM autoencoders for process planning have been presented in [26].
LSTM together with correlation analysis were proposed for a time-series forecasting prob-
lem for Industrial Internet of Things equipment in [27]. The results showed an improved
performance in comparison to standard autoregressive methods such as auto-regressive
integrated moving average models. LSTM have also been proposed for identifying faults
in railway track circuits in [28] wherein the time taken for a train to pass over a section
of track circuit is taken as the sequence length of the event. The time series signals from
a wind turbine have also been used for fault diagnosis with LSTM in [29]. In [30], LSTM
have been applied to fault diagnosis in the TE process. However, results have only been
presented for the training data set which render the results doubtful, especially as LSTM
tend to strongly overfit. The above approaches rely on vanilla LSTM while we employ
B-LSTMs which changes the viewpoint of fault detection, allows for detecting longer time
series relations and is shown to result in improved performance. Furthermore, in contrast
to the previous approaches with sequential data operation, we employ a many-to-one
training scheme which fed in the time series data sequence at once. Together with a slid-
ing window operation, this allows for highly efficient data usage. Moreover, we present
a novel data pre-processing procedure particularly suitable for fault detection purposes
which combines faulty with non-faulty data sequences during training allowing to detect
more subtle differences.

I.4 Problem Statement

In this section we state the considered problem of data-driven fault identification based
on dynamic time series signals. Since there exist many different approaches for data based
process monitoring, some clarifications as well as the considered assumptions have to be
stated.

1. It is assumed that we have a data set of signals that are recorded over time from
various sources such as sensors and actuators. These sources can generate either
discrete or continuous values.

2. It is assumed that the data set is labelled with the corresponding fault type as well
as the no fault.
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3. Except for data normalization, which is standard in machine learning, no feature
extraction techniques have been used. The raw data from the sensors is used and
is presented in a novel way to the learning algorithm which shows considerable
improvements in the generalization capabilities of the networks and hence improving
the test performance.

4. No additional statistical test have been undertaken for evaluating the model per-
formance, rather the neural network output directly indicates if and which type of
fault has occurred

Considered in this regard, the problem can be stated as follows: Given labeled data
samples (xt, f

i
t ) from a time series data set of a process denoting the faulty and normal

operation conditions, where t = 0, . . . T denotes the sequence number and i is the type
of fault, f 0 indicating normal operation, a recurrent neural network g(·) is trained to
minimize the negative log likelihood loss function

min
θ
Lθ(x, f) = −

T∑
t=0

f(t)log(gθ(x(t)), (I.1)

where θ are the trainable parameters of the neural network. The learning process to
solve the above stated problem by means of various RNN structures and suitable learning
algorithms is presented in the next section.

I.5 Recurrent Neural Networks Architectures

We consider different neural network architectures for the application to condition mon-
itoring and fault diagnosis. Standard FFNN consider each data point or observation
independently and therefore cannot model temporal dependencies. FFNN would require
an exponentially higher number of parameters to model temporal dependencies if the
sequence length is taken as an additional input dimension. Such a high number of pa-
rameters would be almost impossible to train if the sequence length increases. Therefore,
we postulate that a) an incipient fault cannot be detected by one instance of the data
set, rather a certain time window of the input data set is required and b) FFNN are not
suitable to learn the temporal dependency in a data set efficiently.

RNN on the other hand with their inherent structure to retain the state of a process
over a longer time period, can solve these types of problems. This is precisely the reason
why RNN and its variants have found massive success in the various fields of Natural
Language Processing and Natural Language Understanding [31] since they are able to
model the sequential information which is in the form of word embedding. Consequently,
we model the problem of fault detection and identification from the data set consisting
of raw sensor data instead of word embedding. As stated above, especially to detect
difficult fault classes, we postulate that network architectures which are able to store
the sequential information of the process over a certain window are needed. With these
objectives of modelling sequential information in the backdrop, we introduce the various
recurrent neural network architectures, namely vanilla RNN, vanilla LSTM, vanilla GRU
and B-LSTM.
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Figure I.1: Structure of a LSTM Cell.

I.5.1 Vanilla Recurrent Neural Networks

Each node of the RNN layer represents one time-step, receiving the input from the current
time step xt as well as the hidden state value of the hidden layer in the previous time
step ht−1. Consequently, given the input sequence X = [x1, x2, . . . , xT ], the sequence of
hidden states ht in matrix form yields

ht = ψ(At) = ψ(Wxxt +Whht−1 + b), (I.2)

where Wx ∈ Rdh×dx denotes the weight matrix from the input to hidden states, Wh ∈
Rdh×dh denotes the hidden state to hidden state weight matrix, b ∈ Rdx denote the input
biases and ht−1 ∈ Rdh denote the hidden state at time step t − 1 or previous time step.
It is to be noted here that unlike the FFNN, all the weight and biases are shared across
the time steps which not only allows for keeping the amount of parameters under control
but also for sharing knowledge across the time steps. Usually sigmoidal functions like the
hyberbolic tangent are used as the activation function ψ(·).

A multi-layer RNN network is obtained by stacking a certain number of layers repre-
sented by Eq. (I.2) where the input data is subsequently passed through the layers. Due
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to the loops implemented by the hidden state recurrence, the architectures theoretically
allows information to adaptively persist for longer periods of time. However, the training
of RNN using backpropagation through time is notoriously difficult due to the problem
of vanishing or exploding gradients [32]. While exploding gradients can be avoided by
applying hard constraint to the norm of the gradients, vanishing gradients remain a se-
rious problem. This effect can only be solved by changes in the architecture as provided
by LSTM or GRU.

I.5.2 Long-Short Term Memories

Originally, LSTM are proposed in [11] and are a special variant of RNN. LSTM have
had great success recently in various domains of sequential modelling including but not
limited to speech recognition and machine translation. The overall network is obtained
similarly to the vanilla RNN by stacking multiple LSTM layers. However, the structure of
the neural units varies considerably as is illustrated in Fig. I.1 showing just one unrolled
LSTM cell, representing one time-step. The LSTM cell includes the block input xt, three
gates, namely the forget ft, the input it and output gate ot, a cell state ct, a hidden
state ht and the output activation function ψ. The function of these sigmoidal gates is
to determine how much information should the cell carry forward to the next time step.
Specifically, the gates output a number between 0 and 1 which determines the amount of
information to be retained and modified. For e.g., the forget gate determines the amount
of incoming information should the cell keep and how much it should forget. The input
gate determines how much new information is to be accumulated in the cell state. The
output gate decides the output cell state ct and the hidden state ht of the LSTM cell.
These outputs are fed to the next cell.

The vector equations for a vanilla LSTM layer in the forward pass can be written as
summarized from the original work [11]

c̃t = γ(Wzxt +Rzht−1 + bz), (I.3)
it = σ(Wixt +Riht−1 + bi), (I.4)
ft = σ(Wfxt +Rfht−1 + bf ), (I.5)
ct = c̃t ⊙ it + ct−1 ⊙ ft, (I.6)
ot = σ(Woxt +Roht−1 + bo), (I.7)
ht = ψ(ct)⊙ ot, (I.8)

where σ, γ and ψ are point-wise activation functions. In the vanilla LSTM, logistic
sigmoid functions σ(x) = 1/(1+e−x) are used for the gate activations while the hyperbolic
tangent γ(x) = ψ(x) = tanh(x) is used as input and output activations. The matrices
Wz,Wi,Wf ,Wo ∈ RN×M , Rz, Ri, Rf , Ro ∈ RN×N and vectors bz, bi, bf , bo ∈ RN are the
input, recurrent and bias weights, respectively where N denotes the size of the hidden
layer per LSTM cell and M is the number of inputs or feature size. The initial states are
given by h0 ∈ RN and c0 ∈ RN .

In contrast to the vanilla RNN, an additional memory variable known as cell state ct is
introduced that can be considered as an information superhighway where the information
flows through continuously in an uninterrupted fashion across many time steps due to only
linear interactions with the other LSTM activations. Additionally, the sigmoid gates are
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incorporated which control the information flow i.e. determine the amount of information
to be retained from the previous time step or modified from input at the current time step.
The output hidden cell state ht, which is passed onto the next cell in the time-step and
maybe a deeper LSTM cell, is a filtered version of the calculated cell state ct. Since the
LSTM cell has two distinct states as output and allowing the uninterrupted information
flow, it mitigates to a certain extent the vanishing gradient problem. Therefore, the LSTM
neural networks can learn long-term dependencies by modelling information over a long
sequences.

I.5.3 Gated Recurrent Units

The GRU are introduced in [12] and provide a more simplified unit compared to the
LSTM. A schematic is shown in Fig. I.2 pointing to the reset and update control gates
instead of three gates in the LSTM cell and the absence of the cell state. The reset and
update gate have a similar function to the forget gate an input gate in the LSTM cell but
the difference is in how the output of these gates are used inside the GRU cell. Specifically,
the reset and upgate gate are simultaneously used for the hidden output from the GRU
cell. As a result, a GRU cell has less training parameters than an LSTM which makes
the training faster. GRU were especially developed to capture dependencies of different
time scales in machine translation tasks. The vector equations for a vanilla GRU layer in
the forward pass can be written as summarized from the original work [12]

zt = σ(Wzxt +Rzht−1 + bz),

rt = σ(Wrxt +Rrht−1 + br),

ht = (1− zt)⊙ ht−1 + zt ⊙ ψ(Whxt +Rh(rt ⊙ ht−1) + bh),

where xt, zt, rt, ht ∈ RN are input, update gate, reset gate and output vector, respectively
and Wz,Wr,Wh ∈ RN×M , Rz, Rr, Rh ∈ RN×N and bz, br, bh ∈ RN are weight matrices and
bias vectors.

Essentially, a GRU cell incorporates the two gates i.e. the forget and input gates
of the LSTM cell into a solitary update gate. This gate then independently decide the
amount of information to be passed from a preceding hidden states to the next hidden
state. The reset gate rt allows to drop information irrelevant for the future. The output
hidden state ht is calculated by the value from the reset gate is element-wise multiplied
with the previous hidden state and added with a scaled current input. Consequently,
GRU simplifies LSTM by eliminating certain parameters but still retains most of its
fundamental properties.

I.5.4 Bidirectional RNN and LSTM

The first introduction of bidirectional RNN dates back to 1997 [33] wherein the idea is to
connect two recurrent networks trained in opposite directions i.e. they are trained with
the input sequence read once from the left and once from the right, eventually feeding
into the same output layer. With this architecture, the network has for each data point
full knowledge about the neighbouring points before and after it and hence, obtains more
information in contrast to unidirectional RNN. Particularly, future input information
can be accessed for the actual data sample which is beneficial if the actual classification
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Figure I.2: Structure of a GRU cell
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Figure I.3: Structure and Viewpoint of Bidirectional RNN network.

decision depends on the context, i.e. on both previous and future inputs. Consequently,
as is illustrated in Fig. I.3, each node At and A′

t represents one cell of the bidirectional
RNN layer and the sequence of hidden states ht and h′t for both the RNN in matrix form
yields

ht = ψ(At) = ψ(Wxxt +Whht−1 + b) (I.9)
h′t = ψ(At) = ψ(W ′

xxt +W ′
hh

′
t−1 + b′), (I.10)

where h0= h′t and ht= h′0. The concept of bidirectionality was extended to LSTM units in
[13] with the supplement of the two cell states along with the two hidden states. In prac-
tice, one may decide to combine the two hidden states and cell states from the two RNN
or LSTM layers for eg. sum, average, merge or concatenate. Here we concatenate the two
hidden and cell states, i.e. double the size of the hidden state and cell state. In the case of
fault classification, a unidirectional model can only observe information about the system
from one side of the sequence and try to predict fault case. A bidirectional model has
the advantage of processing information from both sides of the sequence simultaneously
which is shown in Eqn. (I.10).

Consequently, the main difference between LSTM and B-LSTM lies in the viewpoint
of the network on the data sequence, on which it has to make a decision as illustrated
in Fig. I.3. In vanilla LSTM the viewpoint for analysis of the multivariate time series
lies at the end of the considered sequence, i.e. looking back on the past values. On the
contrary, the viewpoint for B-LSTM is set in the middle of the considered sequence from
where the complete sequence can be considered. This potentially allows for "overviewing"
longer sequences and hence, more information can be stored by the memory element and
subsequently taken into account for the analysis. We will show later on, that the sequence
length indeed has an impact on the performance such that B-LSTM indeed provides some
advantages in terms of performance compared to unidirectional RNN architectures.
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I.6 Data Preprocessing for Deep Recurrent Architec-
tures and Efficient Training

In this section, we propose a novel data preprocessing and restructuring process as well as a
many-to-one training architecture for B-LSTM which considerably improves the efficiency
of training.

I.6.1 Data Preprocessing and Restructuring

One of the challenges for training RNN and specifically LSTM is to handle the length
of the raw time series signal (also referred to as sequence length) which is fed into the
network. Theoretically, one could feed an entire dataset as a sequence length, however
that would increase the model complexity exponentially and could also lead to over-
fitting as the model has to remember over the complete length of the dataset. As a
solution, we propose a variable sequence length strategy which helps in creation of a
better discriminative representation of the training data. The variable sequence length
strategy is illustrated in Fig. I.4 where dataset from two classes i.e. No Fault (top) and
Fault 1 (bottom) is shown. The complete feature space is denoted by variables 1 to 52
and the values of the variables are scaled between 0 and 1 for brevity. The proposed
sliding window approach samples sequences from the two datasets and arranges them
consecutively. This two step procedure is explained in detail below:

1. Sequence Generation: Sequences of length T (a hyperparameter) from both the
class datasets (No fault and Faulty) are extracted. In the Fig. I.4, two sample
sequences for each class dataset are denoted by sequence s and sequence s + 1 in
the No fault case and the sequence s′ and sequence s′ + 1 in the Fault 1 case. For
simplicity, the stride parameter is kept constant at 1 i.e. two consecutive sequences
in a class dataset differ by 1 time-step. This step is performed iteratively over
the complete sample space such that each class dataset is divided into multiple
sequences. This step can be seen as a form of maximum information usage for the
appropriate trend analysis, as there are samples from the training set that are used
multiple times.

2. Dataset Restructuring: The sequences generated from each class is subsequently
alternatively stacked as shown by the black, red and blue square boxes in Fig. I.4.
Each of these square boxes denote a separate sequence which is generated and
concatenated together. This step is performed to enforce the sequential information
flow, which is extremely important to any type of RNN model. Since the goal
is to predict a discrete class at the end of each sequence, the training dataset is
restructured in such a way that the model is able to attain as much information
about the difference in each of these classes. Specifically, the model should be able
to differentiate among the different classes more often during the sequential fed in
of the training data. Another advantage of this procedure is that when the input
sequence length to the RNN model is longer than the individual sequences generated
from each class dataset, then the model will be able to see both the class information
in one sequence. Therefore, we introduce a new data-partitioning hyperparameter,
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Figure I.4: Sliding Window Approach for Data Representation
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Figure I.5: A many to one representation of a LSTM layer.

β which signifies the minimum number of sequences of each individual class dataset
in the input sequence length to the RNN model.

The benefit of these approaches is twofold: First, feeding the data in parallel and with
a longer sequence length T facilitates the information storage by the LSTM cells over long
time horizons. Second, due to the sliding window operation, each data point is shown
numerous times to the network which effectively implements a form of data augmentation.

I.6.2 Training of a Many to One Recurrent Architecture

Since the objective is to have a sequence classifier, we propose a many-to-one recurrent
architecture as illustrated in Fig. I.5, with the raw sensor data as input sequence and the
output from the layer being just the hidden state of the last cell. This hidden state of the
last cell contains the information over the complete sequence because all of the previous
hidden states are used to calculate and update it. Since in this study, we consider a single
LSTM layer, the hidden state of the last LSTM cell is fed as input to the Softmax activa-
tion function [34], creating a probability distribution over the labelled classes. Formally,
the softmax function is given by

softmax(zi) =
exp(zi)∑
k exp(zk)

, (I.11)

such that it exponentiates and normalizes zi such that the probability prediction from the
neural network is as close as possible to the target label yi. This softmax output and the
target label are fed in Eq. (I.1) for the loss and the subsequent loss gradient calculation
with respect to every weight parameter from the back-propagation [10] algorithm. After
the gradients are calculated, we use the Adam [35] optimizer for updating the weight
parameters. We remark that from a fault detection viewpoint, a sequence prediction as
proposed by the many-to-one architecture is naturally representing trends in the data set
which are often important patterns and hence, increases detection performance.

The overall training procedure is described in Algorithm 1 wherein a bank of recurrent
architectures are trained for fault classification. All the networks are trained individually
with specific training dataset corresponding to the respective fault cases. The train val-
idation split was set at 20% for hyperparameter selection based on the performance on
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the validation set. Thereafter, all the trained networks are tested on their respective test
dataset for evaluating their generalization performance.

Algorithm 2 Training Procedure of a Recurrent Architecture for Fault Classification
1: Normalize the complete training and testing data with zero mean and unit standard

deviation.
2: Randomly divide 20 % of the training set into validation set for hyperparameter

tuning.
3: Preprocess and partition the training data as described in Sec. I.6.1.
4: Train a bank of RNN classifiers with the backpropagation algorithm for each of the

fault cases with a set of hyper-parameters tuned based on the performance on the
validation set.

5: Evaluate the generalization ability of the classifiers on the test set with the F1 score.

I.6.3 Evaluation Metric

An appropriate choice of an evaluation metric is essential for determining the performance
of a predictive model on a given classification task, especially when the given test set is
imbalanced. The right evaluation metric should be chosen for an unbiased and neutral
estimate of the model’s predictions. Otherwise the model will always favour the dominant
class. Therefore, the F1 measure [36] was chosen in this study, since it considers an even
balance for the false positive and false negative classified samples. In this way, we combine
the Fault Detection Rate (FDR) and False Alarm Rate (FAR) evaluation metrics, which
have been widely used in previous studies [17], into a single evaluation metric for binary
fault classification case. An additional advantage of the F1 measure is that in contrast to
theFDR and FAR measures used in [37, 38]. Formally, Precision and Recall are defined
as

IPrecision =
TP

TP + FP
, (I.12)

IRecall =
TP

TP + FN
. (I.13)

such that True Positives (TP) denotes the accurately classified faulty samples, False
Positives (FP) denotes the missclassified faulty samples and False Negatives (FN) denotes
the missclassified non-faulty operating condition samples. F1 score is then derived as the
harmonic mean of Precision and Recall to give a much more balanced measure in case of
class imbalance.

F1 =
2IPrecisionIRecall
IPrecision + IRecall

=
2TP

2TP + FP + FN
. (I.14)

Evidently, if either of Precision or Recall is extremely small, the F1 Score will remain closer
to the smaller value giving a much better overall estimate of the model’s performance.
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Figure I.6: Piping and instrumentation diagrams of the considered Tennessee Eastman
Process [43]

I.7 Experimental Results and Comparison Study

We provide a thorough comparison of the proposed recurrent network structures on con-
dition monitoring and fault diagnosis tasks. To this end, we employ the well known
benchmark TE process to evaluate their performance. All the experiments were carried
out in a Python 3.6 environment in that the NumPy [39] and Pandas [40] packages were
used for data-preprocessing, Keras [41] were used for model building and Scikit-learn [42]
was used for evaluation scores.

I.7.1 Tennessee Eastman Process

The TE process has initially been proposed in [43]. According to the process schematic
illustrated in Fig.I.6 [43] the TE process includes a reactor unit, condenser, compressor,
separator, and stripper. More specifically, four reactants (A, C, D, E), a byproduct (F)
and an inert element (B) are transformed into two chemicals (G, H). The product in
the form of steam from the reactor is cooled down by the condenser, subsequently fed
to the vapour-liquid separator and recycled to the reactor feed using a compressor. The
remaining condensed Steam 10 is pumped to a stripper where the remaining reactants
from stream 10 are stripped by Stream 4. The products G and H exit from the bottom of
the stripper and are used for a downstream process. The physical dynamics of the process
owing to the irreversible and exothermic chemical reactions are difficult to derive, hence
providing a typical example for applying and evaluating data-driven techniques for fault
detection as e.g. shown in [20, 44, 18].

The TE process outputs 41 measured and 12 manipulated variables under closed loop
condition. To evaluate classification models, 22 training and 22 testing data sets corre-
sponding to the normal operation as well as 21 pre-programmed process faults proposed
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Table I.1: Description of Process Faults in TE

Faults Description Type
1 A / C feed ratio (B composition constant) Step Change
2 B composition (A / C feed ratio constant) Step Change
3 D Feed temperature Step Change
4 Reactor cooling water inlet temperature Step Change
5 Condenser cooling water inlet temperature Step Change
6 A Feed loss Step Change
7 C header pressure loss Step Change
8 A, B, C feed composition Random Variation
9 D feed temperature Random Variation
10 C feed temperature Random Variation
11 Reactor cooling water inlet temperature Random Variation
12 Condenser cooling water inlet temperature Random Variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 - 20 Unknown Unknown
21 The valve fixed at steady state position Constant position

in [45] and shown in Table I.1. The faulty training sets consist of 480 samples. The
training and testing data is collected with a sampling interval of 3 minutes. The test set
includes 960 samples representing 48 hours of plant operation, where the fault is injected
after 8 hours corresponding to 160 samples. Therefore, we evaluate the last 800 samples
for the testing of each fault cases.

I.7.2 Fault Classification Analysis

We start with a performance comparison of the different architectures on the binary fault
classification case on TE process. To this end, we first categorize the 21 fault cases based
on the order of difficulty to detect. In fact, some faults are considerably more difficult to
detect than others due to the varying effects of the faults on the process variables which
deviate substantially or trivially from normal operation. This phenomenon has also been
observed in previous studies as e.g. in [17]. Since in the binary classification case with
a nearly balanced test set, we set the baseline of the F1 score to be 0.6. The faults are
categorized based on this baseline. The fault cases are categorized as follows:

• Easy – Average F1 Score > 0.9

• Medium – Average F1 Score > 0.6 but <0.9

• Hard – Average F1 Score < 0.6

The architecture of the RNN were chosen to have similar properties and have been
described in Table I.2. The number of layers and the hidden layer size were chosen
after extensive tuning of the hyperparameters and the respective performance on the
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Table I.2: Architectural Detail of the Baseline Recurrent Neural Networks used for Fault
Categorization

Type Hidden Size Window Size
FFNN 64 -
Simple RNN 64 10
LSTM 64 10
GRU 64 10
B-LSTM 64 10
Bi-GRU 64 10

Figure I.7: Comparison of a Feedforward Network with different RNN architectures

validation sets. Through the fault categorization results over all the baseline models
and no data restructuring the fault cases {1, 2, 4− 7, 12, 14, 18} were categorized as easy
detectable fault cases, the fault cases {8, 10, 11, 13, 16, 17, 19, 20} as medium and the fault
cases {3, 9, 15, 21} as hard detectable. An important thing to be noted here is that the
performance of a simple Feedforward Neural Network was comparable to the other RNN
architectures on most of the fault cases even though some of the RNN architectures are
more complex. An example is shown in Fig. I.7 where performance on fault cases 6 -
10 is being compared where a significant performance improvement is not observable in
all the fault cases with the maximum improvement being 0.01 in the F1 score. This can
be explained by the relatively smaller window size and no data restructuring during the
training of the RNN architectures. Furthermore, most of the easy categorized fault cases
had an average F1 score of 0.99 with the B-LSTM. Therefore, in the next subsection
we focus on improving the prediction capability of the model on the hard and medium
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Figure I.8: Comparison of all RNN architectures for Medium Categorized Faults

categorized faults only. These easy category faults have also been found in literature to
have very high FDR [17].

Results on hard and medium categorized faults

This section reports the comparison of the generalization capabilities of the RNN ar-
chitectures after data partitioning and a longer sequence length. In order to detect the
incipient fault cases, we formulate longer training sequences with data partitioning to
provide the model the opportunity to understand the difference between the examples
of the two classes. We report the improvement in model performance for incipient fault
cases on both these accounts with the RNN architectures. After the experimental results,
it was observed that the B-LSTM architecture has a consistently better generalization
capability than the other architectures as illustrated in Fig. I.8 and Fig. I.9. Additionally,
the other bidirectional architecture, Bidirection Gated Recurrent Unit (B-GRU) performs
better than the other architectures, emphasizing our hypothesis from section I.5.4 that
bidirectional architectures are better suited for longer sequences. The only change to the
baseline RNN architectures here is the bigger sequence length, T = 200 with the partition-
ing parameter β = 2. Just to put the scale of improvement into perspective, the significant
increase in the average F1 score before and after data restructuring (partitioning) for the
B-LSTM model was from 0.63 to 0.81 on the fault case 10. This performance improve-
ment was noticeable with all the other RNN architectures exemplifying the applicability
of the developed approach.

To further analyse the capability of the methods, Fig. I.10 and Fig. I.11 display side
by side the significant increase in the fault detection capability of the B-LSTM model
for incipient fault cases. Both the charts show the effectiveness of the proposed data-
restructuring strategy proposed in Section I.6.1. There has been a significant improvement
in the Average F1 score in all the fault cases tested on TE dataset. For the hard categorized

105



Figure I.9: Comparison between the RNN architectures for Hard Categorized Faults

fault cases, the average F1 score of the best performing model B-LSTM on fault case 3
improved from 0.59 to 0.73.

Another important phenomenon is the effect of sequence length on the model’s per-
formance. By having a larger amount of data in the time dimension and the partition
parameter β ≥ 2, the model is able to discriminate among the different classes in the
input sequence, yielding far better results than the models with shorter sequence length.
This is illustrated in Fig. I.12 where the B-LSTM models with time-step 200, 100 and
50 with β = 2 on hard fault cases where the bigger sequence length yield a better per-
formance in all the hard fault cases tested. A larger sequence length also means a more
complex model. Therefore, it is important to note that this behaviour of the increase in
performance with increase in sequence length is only relevant for the hard and medium
categorized fault cases. On the easy category fault cases this leads to over-fitting at the
start of the training process and thereby under-par performance. Therefore, determining
an optimal sequence length is an iterative task for deciding the complexity of the model
for the specific fault case.

I.7.3 Comparison with literature

In this section, we provide a comparison with the existing literature on the benchmark TE
process namely [17, 46, 47, 48]. Unfortunately, the other related literature in [44, 20] does
not report results on the incipient fault cases specifically fault cases 3,9,15 and 21. As
mentioned above in subsection I.6.3, there are different evaluation metrics used in these
previous studies except in [48]. For brevity, we chose the FDR% which ranges from [0, 100]
from the previous studies as the comparison statistic. To keep the comparison among the
different evaluation metrics uniform, the F1 score which actually ranges from [0, 1] is
multiplied by 100 to have the same order with FDR%. We also chose the best performing
model from the respective studies which are Independent Component Analysis, Dynamic
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Figure I.10: B-LSTM Comparison before and after data partitioning for Medium Faults

Figure I.11: B-LSTM Comparison before and after data partitioning for Hard Faults
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Figure I.12: Effect of Sequence length on the Model’s performance

Table I.3: Performance Comparison with Existing Literature

Fault Case B-LSTM [17] [46] [47] [48]
1 100 100 99.6 100 91.39
2 100 98.25 98.5 99 87.96
3 73 4.5 2.1 1.4 50.59
4 100 100 99.8 100 99.73
5 100 100 99.9 100 90.35
6 100 100 99.9 100 91.5
7 100 100 99.9 100 91.55
8 95 98.25 98.5 98.4 82.95
9 67 4.75 2 0.7 49.53
10 83 89.25 95.6 90.1 70.05
11 84 78.88 96.5 80.5 60.16
12 98 99.88 99.8 100 86.66
13 88 95.25 95.8 96 46.92
14 99 100 99.8 100 88.68
15 64 7.75 38.5 9.7 43.54
16 81 92.38 97.6 91.6 66.84
17 93 96.88 97.6 97.6 77.11
18 98 90.5 90.5 90.8 82.74
19 80 92.88 97.1 98.1 70.87
20 89 91.38 90.8 91.3 72.88
21 59 56.38 53.9 65.8 31.26

Overall 88.14 80.82 83.51 81.48 73.01
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Figure I.13: Multi Class Fault Classification Confusion Matrix

Principal Component Analysis with decorrelated residuals and canonical variate analysis
and CNN from [17, 46, 47, 48] respectively. The result comparison is given in Table I.3
in which we highlight the best performing algorithm in blue. The comparison shows a
considerable increase in the performance on five different fault cases compared to existing
approaches. The performance improvement is particularly noticeable on the hard faults
3,9 and 15 which are unpredictable before. This strong performance gain of the proposed
B-LSTM model emphasizes its applicability to industrial processes. Furthermore, the
overall performance of the B-LSTM shows an increase of around 4.6% compared to the
second best performing approach which underlines the general applicability of the B-
LSTM.

I.7.4 Results for Multi-class Fault Identification

The results of the best performing B-LSTM model on multi class fault classification is
described here wherein 6 easy categorized fault cases and the normal operating condition
is chosen. Multi-class classification on the hard categorized faults is part of the future
research works. The architecture of the model is same as the binary classification, with the
only difference being the number of neurons in the final fully connected layer chosen to be
7. A sequence length of T = 175 and the data restructuring parameter β = 1 is set after
hyperparameter tuning. Observing the results from the confusion matrix in Fig. I.13, it is
clear that the model is not able to completely differentiate among the fault case 4 and 5
with the normal operating condition although in the binary case the B-LSTM model had
an F1 score of 1. It can be concluded that for the multi-class case more hyper-parameter
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tuning, testing deeper models and efficient training procedures need to be defined.

I.8 Conclusions
In this paper we propose a novel recurrent neural network architecture for time-series
based condition monitoring and fault detection on the industrial benchmark TE process.
The framework is based on the recently introduced B-LSTM which allow for incorporat-
ing more knowledge in a training sequence about the neighbouring points compared to
its unidirectional counterparts where this feature is missing. In contrast to existing ap-
proaches using sequential data processing, we use a many to one prediction architecture
which allows to process an input sequence at once. Using the many to one architecture
with a sliding window data operation eases the long term data storage in the LSTM cells
and hence allows for considering even longer time series patterns. Furthermore, a new
data restructuring technique is presented to attenuate the sequence dependency among
classes. The novel approach provides superior results compared to the existing results on
the TE fault detection benchmark. We conduct various experiments including compar-
isons to vanilla LSTM and vanilla GRU and the impact of the sequence length on the
fault detection capabilities with an emphasis on hard to detect faults.

Future work will additionally consider multi-class fault classification for all the fault
cases. For the architecture development, we will further experiment with attention mecha-
nism and how to effectively apply them in condition monitoring. Furthermore, alternative
architectures like convolutional neural networks will be checked with respect to their per-
formance and compared to the proposed B-LSTM.
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II.1 Abstract

This paper presents a novel approach for anomaly detection in industrial processes. The
system solely relies on unlabeled data and employs a 1D-convolutional neural network-
based deep autoencoder architecture. As a core novelty, we split the autoencoder latent
space in discriminative and reconstructive latent features and introduce an auxiliary loss
based on k-means clustering for the discriminatory latent variables. We employ a Top-
K clustering objective for separating the latent space, selecting the most discriminative
features from the latent space. We use the approach to the benchmark Tennessee Eastman
data set to prove its applicability. We provide different ablation studies and analyze the
method concerning various downstream tasks, including anomaly detection, binary and
multi-class classification. The obtained results show the potential of the approach to
improve downstream tasks compared to standard autoencoder architectures.

II.2 Introduction

Sophisticated and interconnected modern manufacturing systems require transparent and
insightful analytics. Consequently, intelligent condition monitoring of such processes is
necessary to analyze changes in the process parameters and determine anomalies that
hurt the reliability of the overall system. This unreliability can also lead to substantial
financial consequences. However, modern production systems constitute complex inter-
connected behaviour, which renders the derivation of models through the first principle
very difficult [1]. Hence, data-driven methods are an appealing alternative, particularly
as a huge amount of data ranging from field level devices like sensors and actuators to
manufacturing execution systems and enterprise resource planning systems are available
through the Industrial Internet of Things [2].

However, a significant part of data-driven methods, namely supervised machine learn-
ing relies on the availability of labelled data from all of the possible operating conditions
of the system. This availability of labelled data for industrial processes is infeasible due
to various reasons. First, the faulty or abnormal operation often results in shutdowns or
instantaneous repair actions, such that sufficient data instances are lacking. Second, data
set labelling has to be done manually, which is usually not accomplished in industrial
practice. Third, data sets for inconceivable fault cases are impossible to gather. In such
cases, unsupervised or semi-supervised learning based data-driven techniques is the only
alternative as they can suitably characterize the fault-free state of the system, which can
subsequently be used to assess abnormal or faulty conditions.

Unsupervised or semi-supervised methods have been aggressively used in the area of
novelty or anomaly detection. As surveyed in [3], the methods for anomaly detection can
be categorized into Probabilistic Models, Distance-based Models, Reconstruction Mod-
els, One-Class Classification Models and Information-theoretic Models. The methods for
anomaly detection can be further categorized into shallow and deep learning methods as
surveyed in [4]. Recently, deep neural networks (DNNs) have shown a great capability to
extract meaningful patterns from raw data with multiple levels of abstraction, providing
state of the art results in various application fields like image recognition, object detec-
tion, speech recognition and natural language processing [5]. For unsupervised learning,
approaches based on the Autoencoder (AE) framework [6] and Generative Adversarial
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Networks (GANs) [7] have proven helpful for anomaly detection. GANs are trained by
employing a minimax game where a discriminator is trained to distinguish between real
and fake data generated by a generator network. However, the training objective resulting
in a saddle point convergence renders GANs notoriously hard to train. The AE framework
encodes the multivariate sensor signal into a latent variable space by means of a DNN
from which a decoder network reconstructs the input. AE architectures can be distin-
guished based on the form of input data corruption, and latent variable sampling they
possess, namely Denoising AE [8], Variational AE (VAE) [9] and Adversarial AE [10].
In all approaches, the latent variable space constitutes an abstract representation of the
input signals, which can infer between normal and abnormal conditions. However, as the
training objective of the AE is the reconstruction loss between input and output, the
discriminative power of latent variables to distinguish between operation modes is not
enforced, which can result in poor performance in anomaly detection.

This paper tackles this problem and proposes a novel approach for anomaly detection
in industrial processes based on a clustering-loss augmented convolutional autoencoder
(CAE). We use a 1-dimensional CAE as the backbone architecture for the multivariate
time-series task. In contrast to existing approaches, we split the latent space of the
CAE into two sets, namely discriminative and reconstructive latent variables, and add
an auxiliary loss for the discriminative latent variables. The loss is defined in terms of
the well known K-means [11, 12] clustering loss, where the auxiliary loss from the K-
means algorithm during training is sampled only for the Top-K latent variables based on
the greatest cluster centre distance achieved in clustering space. The reconstruction and
the auxiliary loss are propagated through the discriminative latent variables, allowing
for more discriminative hidden representation. We provide thorough experiments with
unsupervised and semi-supervised approaches on the Tennessee Eastman [13] benchmark
data set for anomaly detection. The results underline the applicability of the approach
resulting in state-of-the-art performance.

The contributions of the paper can be summarized as follows:
• We present a novel unsupervised learning approach based on 1-dimensional convolu-

tional neural networks and deep autoencoder structure where we define an auxiliary
loss to increase the expressiveness of the latent representation.

• The proposed Top-K Deep Convolutional Clustering algorithm (Top-K DCCA) is
novel in that the encoder parameters are divided into clustering and reconstruc-
tion subsets with the help of the Top-K operator. After this division, the encoder
parameters from the clustering part are updated with an auxiliary clustering loss.

• We experiment with pure unsupervised and semi-supervised learning evaluation of
the proposed method and report remarkable improvement on the Tennessee East-
man benchmark data set for anomaly detection. The results show the superior
performance of the approach compared to the state-of-the-art.

The paper is organized as follows. In Sec. II.3 the related work is presented. In Sec. II.4
we state the considered problem, followed by the theoretical background on Clustering
and Convolutional AE in Sec. II.5. Sec. II.6 presents the proposed approach for Convolu-
tional Clustering-based unsupervised anomaly detection. In Sec. II.7 we provide results
and comparisons on the well-known Tennessee Eastman benchmark dataset. Sec. II.8
concludes the paper.
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II.3 Related Work

We discuss related work on data-based condition monitoring and anomaly detection in
multivariate time series data and unsupervised and self-supervised learning approaches.
Anomaly detection has been researched in various application fields and datasets. Some
examples of datasets include the ISCX dataset [14] dataset for network intrusion detection,
credit card fraud detection from the Mellon Bank Fraud Detection Feasibility Study [15]
and health deterioration detection from the Oxford Cancer Hospital dataset [16]. The
Tennessee Eastman dataset is chosen because the focus of this study is data-based condi-
tion monitoring for industrial processes.

Data Based Condition Monitoring and Anomaly Detection: Condition moni-
toring and anomaly detection have a long history in various application domains. Anomaly
detection for a production process can be seen as a sub-category in the condition moni-
toring field. In general, we can distinguish the existing works for condition monitoring in
shallow learning and deep learning approaches. The various shallow learning approaches
have been surveyed in [17, 18, 19]. Some examples of shallow methods for anomaly
detection with unsupervised learning include Kernel Density Estimation [20], Principal
Component Analysis [21], k nearest neighbours [22] and One-Class Support Vector Ma-
chines [23]. However, most of the mentioned shallow approaches are static, such that they
cannot be efficiently used for time-series anomaly detection tasks. Additionally, extraction
of relevant features from multivariate raw data is still a challenge with shallow methods.
Deep domain knowledge of the process is required for choosing suitable techniques for
feature extraction in the shallow approaches.

Different approaches from the deep learning field appear as high performing and effi-
cient algorithms for condition monitoring and time series analysis. The deep learning ar-
chitectures use multiple layers of non-linear transformations to extract high-level features
from raw data, which provide relevant information for the respective task. The various
deep learning approaches for condition monitoring have been surveyed in [24, 25, 26, 27].
Most deep learning approaches consider supervised learning problems where faulty oper-
ation modes or process anomalies are labelled. However, the assumption of labelled data
sets in industrial applications is too restrictive in various applications, including condi-
tion monitoring, remaining useful lifetime estimation and tool wear detection, to name a
few. Hence, recent approaches also consider unsupervised deep learning approaches for
anomaly detection and condition monitoring. Notably, deep AE and GANs have shown
to be of particular use for such applications.

Deep Semi-supervised and Unsupervised learning: Deep learning models for
anomaly detection have been used in various domains such as Intrusion Detection, Fraud
detection, Malware detection, Medical detection [28]. We will highlight some specific
examples from GANs and AE here. Anomaly detection for imaging markers relevant for
disease progression with unsupervised learning based GANs has been reported in [29]. A
semi-supervised learning based GAN has been presented for anomaly detection in multiple
image datasets in [30]. Recently, there have been studies that use GAN for unsupervised
fault diagnosis in rolling bearing [31] and semi-supervised fault diagnosis in planetary
gearbox in [32]. Although recent improvements have been made in the GAN architecture,
GANs are still known to have unstable training progress [33].

Deep AE, on the other hand, started the deep learning era in [34] and have been widely
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tested in various domains of anomaly detection such as brain scans [35], outlier detection
in videos [36] and multiple public datasets from the UCI machine learning repository [37].
Recently, an automatic thermography defects detection using a spatial and temporal seg-
mentation model has been proposed in [38]. A sparse mixture of Gaussian decomposition
algorithm for inductive thermography has been proposed in [39]. Although deep AE for
anomaly detection can be used in a supervised setting [40], we will focus on the methods
for unsupervised and semi-supervised settings in production processes. An unsupervised
learning based, memory augmented AE architecture has been proposed in [41] to better
identify anomalies from normal data. A deep support vector data description method
inspired by kernel-based one-class classification method for anomaly detection has been
proposed in [42]. Stacked Sparse AE in a semi-supervised setting has been proposed in [43]
for fault diagnosis in rotating machinery such as gearboxes. A similar semi-supervised
learning approach for induction motor fault detection has been proposed in [44]. Unsuper-
vised learning-based wind turbine monitoring with deep AE has been proposed in [45, 46].
Unsupervised learning based spatiotemporal feature extraction methodology using Re-
stricted Boltzmann Machines for fault detection has been proposed in [47]. Unsupervised
Process monitoring with the variant AE has been presented in [48]. A comparison of deep
AE, deep Denoising AE and VAE for semi-supervised anomaly detection approach in the
TE process has been proposed in [49]. However, all of the previous methods are static
approaches, which do not consider the dynamic nature of time-series data.

For time-series based anomaly detection, a Long Short Term Memory (LSTM) based
encoder-decoder architecture has been proposed in [50]. Convolutional AE (CAE) was
first presented in [51] for a higher level of feature extraction in images. CAE has, after
that, been used for anomaly detection in images [52] and videos [53]. The Attention
augmented Convolutional LSTM model has been proposed in [54] for anomaly detec-
tion in multivariate time series data. However, none of these approaches enhances the
discriminative ability of the latent representation of the CAE model.

Deep Clustering: Some approaches in the literature join the use of feature extrac-
tion and clustering together to have better discriminative features. [55] proposed a joint
clustering and reconstruction approach for image and text data. The main idea is to con-
nect a clustering module at the bottleneck layer of an AE and optimize the parameters of
the AE and the cluster centres jointly. A similar approach with CAE and clustering has
been proposed in [56] for image data. Deep clustering has been also used for learning the
weights of a convolutional network by using the cluster assignments as supervision [57].
Apart from K-means, an approach with KL-divergence minimization has been proposed
in [58].

Our approach differentiates from the previous methods in two ways. First, we propose
a Top-Kclustering approach where the latent space is divided into clustering friendly and
reconstruction friendly spaces. Therefore, the latent features for reconstruction only get
a gradient from the reconstruction error. However, the clustering features receive the
update gradient from reconstruction and the clustering errors. Secondly, we apply the
proposed approach on a multivariate time-series dataset from an industrial benchmark for
anomaly detection. Therefore, the application field is very different from the usual image
datasets.
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II.4 Problem Statement

The main challenge for anomaly detection is to distinguish anomalous behaviour from
data set noise. We conjecture that an incipient anomaly cannot be detected by one
instance of the data set; instead, a specific time window of the input data set is required.
Therefore, we concentrate on the analysis of multivariate time series data, i.e., we consider
a sequence {x1, x2, . . . , xT} where xi ∈ Rm as input for the anomaly detection task, with
m denoting the number of variables and T the length of the time-series signal. Further, we
consider a hybrid, reconstruction-clustering based unsupervised learning methodology for
anomaly detection, i.e., we assume that the evaluated data set is unlabeled. No indication
is available whether the sequence exhibits normal or abnormal behaviour. Note, however,
that for semi-supervised evaluation of the proposed approach, we use the learned AE for
anomaly detection; labelled data is partly required and assumed to be known.

Then we can state the considered problem as follows: The purpose of the approach
is to train the CAE structure fθ(x), in such a way that the learned latent representation
z, is able to best discriminate between normal zno and anomalous behavior zano, i.e.,
|zno − zano| → max. Particularly, we aim to find an optimal separation between normal
and anomalous data using unlabelled data only.

We present the solution that combines a deep CAE architecture with a latent repre-
sentation clustering algorithm to find better discriminative latent representations.

II.5 Theoretical Background

II.5.1 K-Means Clustering

Clustering is one of the most profound and fundamental tasks in the field of unsupervised
learning. However, various sets of factors make clustering notoriously complex. Some of
these factors include [59]

• amount of noise in the data which can occur during data acquisition,

• use of data pre-processing techniques such as any form of dimensionality reduction

• the clustering criterion and optimization algorithm is chosen

• the initialization of the cluster centres

These factors can affect the outcome of the clustering algorithm and can produce trivial
solutions.

We keep the focus of our study to the K-means [11] algorithm. K-means, like most
other data clustering algorithms, partitions the data into a pre-specified number of clus-
ters. Clustering algorithms achieve this by minimizing a well-defined cost function involv-
ing the data and the assignment of the centres for each data instance. K-means belongs
to the hard type, where each data point belongs to only one partition.

Formally, the task of clustering is to group N data samples into K clusters given a set
of data samples {xi}i=1,....,N where xi ∈ RM. The K-Means clustering algorithm achieves
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this goal by the optimization of the following cost function:

minimize
M ∈RM×K, {si}∈RK

N∑
i=1

||xi −Msi||22 (II.1)

s.t. sj,i ∈ {0, 1}, 1T si = 1∀i, j

where si is the assignment vector of the ith data instance which consists of only one
non-zero element, sj,i stands for the jth element of si, and the kth column of M stands
for the centroid of the kth cluster.

The efficiency of the K-Means algorithm is the most when the data samples are evenly
scattered around their centroids in their feature space. The data sets which possess this
characteristic are called K-Means friendly data sets. However, this phenomenon rarely
holds up in real-world data sets, because most of the real-world data sets are very high
dimensional. Adding to that, most of the real-world data sets contain unwanted noise in
the data. All these factors hinder the possibility of a data set being K-Means friendly [55].

To avoid these issues, usually, some form of dimensionality reduction or non-linear
representation technique is used on the data set before applying K-Means. The K-Means
algorithm applied to this non-linear representation usually yields better results [60]. The
several available dimensionality reductions or non-linear representation techniques use
Deep Neural Networks to learn better features from the data set. These methods are
widely used for data pre-processing before applying K-Means, or other clustering algo-
rithms [61].

II.5.2 1-D CNN Autoencoder

The proposed encoder-decoder network architecture for the Top-K DCCA is shown in
Fig. II.1, in which the encoder consists of 3 convolution layers, and the decoder com-
prises 3 deconvolution layers. Addtionally, there is a clustering module on the bottleneck
representation of the encoder. The autoencoder applies a stack of 1-dimensional convo-
lutional layers at both encoder and deconvolution layers at the decoder. The encoder
transforms the multivariate time series data set to a latent representation thereby ex-
tracting relevant features of the data set. The decoder subsequently reconstructs the
original data set from the general low dimensional latent representation. Since the
decoder reconstructs the input based on the encoded representation of the bottleneck
layer, i.e. Conv 3 layer, the activation maps from the Conv 3 layer can be consid-
ered as an encoded representation for a batch of the input dataset. Therefore, it is
clear that the encoded representation has a verifiable relationship to the input features
since the decoder recreates the input features from the activation maps in the encoded
representation. The input size of each of the layers follows the naming convention as
(Batch− Size×Number − of − Input− Channels× Sequence− Length).

On top of the latent representation, we employ a clustering module to make the latent
representation more discriminative, allowing us better to capture the differences between
normal and anomalous behaviour. As shown, we only employ the clustering on a subset
of latent representations chosen based on different criteria to be discussed below. The
rationale behind that architectural choice is to find a trade-off between consistent latent
representations resulting in good reconstruction accuracy while making a subset of latent
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Deconv. 1, 20 x 64 x 14

Figure II.1: Proposed architecture of the clustering augmented deep autoencoder for
anomaly detection.

representation more discriminative, which suits downstream processing. In the following,
we discuss the architectural modules in detail.

The combination of autoencoder structures with CNNs is a standard approach for
deep unsupervised learning in various image and video processing tasks [53]. Here, at the
encoder and decoder, convolutional and deconvolutional layers are employed to extract
essential information within the latent representation. We use a similar approach to the
time series analysis as proposed in [62], where the sensor channel and time dimensions
make up the input to the network. As mentioned in the study, applying the standard
2-dimensional kernel is not appropriate as a meaningful relation between sensor channels
is missing, resulting in poor performance. The 1D convolution operation is performed
over a part of the complete input space, which is referred to as the receptive field. We
denote the receptive field of size nr ×m, which strides over the input T ×m sequences,
accounting for each of the variables. The pth convolution 1D kernel in the first layer can
be denoted with a 2-dimensional tensor K(p) = [k

(p)
i,j ] ∈ Rnr×m. The indices i, j denote the

dimension along the time and variable axis, respectively. The outputs or feature maps
extracted from the convolution operation with 1 convolution kernel is a 1-dimensional
tensor H = [hi]. Usually, multiple convolution kernels are used in each convolution
layer leading to multiple feature maps, which subsequently make the feature maps a
2-dimensional tensor H = [hi,p]. Each convolution kernel is responsible for extracting
different features from the input data. Formally, the convolution 1D operation can be
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summarized as follows:

hi,p = (x ∗ k)i =
nr∑
g=1

m∑
f=1

xi+g−1,f · kpg,f

∀i ∈ {1, . . . , T − nr + 1}
∀p ∈ {1, . . . , dq+1}, (II.2)

where hi,p denotes the output of the (i)th receptive field and the pth convolution kernel,
xi+g−1,f are the elements in the receptive field of the input variable, kg,f is the convolution
kernel and dq+1 denotes the number of convolution kernels in the given layer.

The deconvolution, sometimes called the transposed convolution operation, performs
the inverse operation as the convolution operation, such that it up-samples the individual
feature maps into the original input. The weights of the convolution and deconvolution
filters can be tied, but we keep them untied in this study.

As we cope with time series of variable length where the time dimension is significant,
we employ a sliding window approach for the time dimension. As such, we define a window
of size of mw × n with T >> mw > m, which is analyzed within one processing step of
the deep autoencoder. Then the time series is strided in the time dimension by a stride
of sw to define a new window to be processed in the next step. This approach has some
advantages compared to processing directly on the complete input sequence. Notably, an
individual data point {xi} is processed more than once in different settings, increasing
the robustness of the resulting convolution kernels.

II.6 Convolution Clustering Based Unsupervised
Learning for Anomaly Detection

In this section, we propose the training strategy for the unsupervised learning approach
for the Top-K DCCA approach.

II.6.1 Top-K DCCA

We augment the previously defined CAE architecture by a novel Top-Kclustering objective
defined on a subset of the latent space as illustrated in Fig. II.1. Particularly, we split
the latent space into two subsets of latent variables Zc ⊆ Rnc and Zr ∈ Rnrec which we
term clustering and reconstruction friendly latent variables in the following. The rationale
behind the split of the latent space is to better weigh-off between reconstruction accuracy
and discriminative clustering accuracy. Hence, we force consistent representation of the
input data by the reconstruction space and the discriminative power of the clustering
features to improve performance on downstream tasks.

As such, the clustering related latent variables are passed through an arbitrary cluster-
ing algorithm. We employ the well-known K-means algorithm for clustering in this work
due to its simplicity. However, we emphasize that various other clustering approaches can
be combined with our framework. The k-means algorithm is subsequently used on the
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latent representation Z, leading to the optimization of the following cost function:

min
Mj∈Rnc×k,si∈{0,1}K

N∑
i=1

||zij −Mjsi|| (II.3)

s.t. 1T si = 1 ∀i, (II.4)
∀zj ∈ Z, (II.5)

where the column vector mk,j of M denotes the kth cluster center in the nc-dimensional
space and si is the cluster assignment of the ith data points latent representation.

A crucial part of the system setup is the split of the latent space. A straightforward
approach would be to separate cluster and reconstruction friendly latent variables before
training. However, this appears to be restrictive when used together with the CAE,
particularly during training. Hence, instead of defining the split at the start of training,
we augment the K-means clustering by a Top-K sampling method that uses the top-nc
latent variables in terms of their discriminative performance. The splitting criterion is the
euclidean distance between the 2 cluster centers present in each of the latent variables. The
Top-K operation of latent variables ranking returns indices of the K latent variables where
the distance between the cluster centers is maximum. The discriminative performance is
measured based on the euclidean distance between the cluster centres in the latent space.
According to the authors, the maximum distance between the cluster signifies that the
latent variable has more discriminative performance since it can efficiently identify the 2
different operating conditions. Specifically, if we assume an anomaly detection task with
two clusters with centres mno,j and mano,j indicating normal and anomalous operation,
respectively, we employ the following euclidean distance measure

max
j∈Zc

d(mno,j,mano,j) = max
j∈Zc

||mno,j −mano,j||2, (II.6)

to identify the Top-nc latent variables forming the set Zc.
It is important to note that the clustering loss is employed independently on the

latent variables in the set Zc. However, during training, we fed back the loss of the top-
nc latent variables only. Therefore, during training, the latent variables switch among
the clustering subset and reconstruction subset, based on the euclidean distance of their
respective cluster centers. This ensures that a subset of latent space is discriminative by
forcing the model to learn a hidden representation in which certain cluster centers are as
far away as possible based on the criterion from Eq. (II.6). During the testing phase, the
trained division latent space into the 2 subsets is kept constant.

The split percentage of the latent variables defined by nc, nr is a hyperparameter that
has to be determined a priori. It has to trade-off between reconstruction and discrimina-
tion capability of the latent variable space. In practice, we found a 50/50 split between
working well in all the experiments.

II.6.2 End-to-end training of the clustering augmented AE

This section introduces the end-to-end training for the clustering augmented deep au-
toencoder. Particularly, we discuss the interaction between the loss propagation of the
clustering and the reconstruction module of the autoencoder. The parameters of the CNN
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Figure II.2: Average F1 score of the model on all the fault cases based on different values
of α.

of both encoder fθ and decoder gψ are trained by the reconstruction loss between input
and reconstructed output, i.e.,

LAE(θ, ψ) =

NB∑
i=1

||xi − gψ(fθ(xi))||22, (II.7)

where NB is the minibatch size. Additionally, we feed back the clustering loss through
the clustering friendly latent variables

Lj,CL(θ) =

NB∑
i=1

||zij −Mjs
i||22 =

NB∑
i=1

||fj,θ(xi)−Mjs
i||22, (II.8)

zj ∈ Zc, (II.9)

which subsequently affect the encoder parameters only.
The total loss for training the CAE is

L = α

zj∑
j=1

Lj,CL(θ) + (1 − α)LAE(θ, ψ) (II.10)

where the value of α ranges between 0.6 to 1, and it acts as a weighing factor between
the two loss functions. This range of optimal value of α was empirically found based on
the average F1 score that was achieved on all the fault cases.

It is considered an additional hyperparameter of the network and has to be tuned while
training it. Since α ≤ 1 keeps the overall loss distribution towards the reconstruction and
clustering losses balanced.
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It is theoretically possible to chose a a different independent parameter β, with the
condition that α + β = 1. But to keep the number of hyperparameters in check, this
setting of just one hyperparameter α has been chosen.

The gradient of the above equation with respect to the network parameters can be
computed from the equation below:

∇χL = (1 − α)
∂LAE

∂χ
+ α

zj∑
j=1

∂Lj,CL

∂θ
(II.11)

∇χL = (1 − α)

NB∑
i=1

2(xi − gψ(fθ(xi))[gψ(fθ(xi))]′ + α

NB∑
i=1

zj∑
j=1

2(fj,θ(x
i)−Mjs

i)fj,θ(x
i)′

(II.12)

where χ = (θ, ψ) is the collection of encoder and decoder parameters and the partial
gradients are calculated by back-propagation [63]. Subsequently, the network parameters
are updated with gradient descent as

χ ← χ − β∇χL (II.13)

where β is the learning rate.

During the initial stages of training, termed as pre-training, the value of α is set to 0.
This ensures that the network learns from only the reconstruction loss. Since no clustering
loss is imposed on the network, the network tries to reconstruct the input solely based
on the non-clustering loss. For the clustering augmented training stage, a fixed value
of α is set. The network is trained on both loss functions. This method ensures that
the reconstruction of the input is taken into account and helps to avoid trivial solutions.
Also, we define a Cluster Update Interval C, which denotes the interval in which the
cluster centres of the latent feature representation are updated to have robust hidden
representation.

The algorithm of the Top-K DCCA is represented in Algorithm 3, where a model is
trained for N epochs.
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Algorithm 3 Top-K Deep Convolutional Clustering Algorithm
1: procedure Initialization(Perform N epochs over the data)
2: P = Number of pre-training epochs
3: C = Cluster update interval
4: for epoch = 1 to P + 1 do
5: Reconstruct the data, extract latent representation fθ(xi)
6: Compute gradients ∇χLi with α = 0 by Eq. (II.11)
7: Update network parameters χ by Eq. (II.13)
8: if epoch = P + 1 then
9: Perform K-Means optimising the Eq.(II.3)

10: Return centers mno,j and mano,j and center assignments Mjsi
11: Rank latent representation layer channels by Eq. (II.6)
12: Return Top K ranked channels
13: for epoch = P + 1 to N do
14: Reconstruct the data, extract latent representation fθ(xi)
15: Compute gradients ∇χLi with α = 0 by Eq. (II.11)
16: Update top K ranked channel parameters by Eq. (II.13)
17: Zero the gradients
18: Compute gradients ∇χLi with α = 0 by Eq. (II.11)
19: Update rest of the channel parameters by Eq. (II.13)
20: if epoch % C = 0 then
21: Perform K-Means by optimising the Eq.(II.3)
22: Return centers mno,j and mano,j and center assignments Mjsi
23: Rank latent representation layer channels by Eq. (II.6)
24: Return Top K ranked channels

II.7 Experimental Results

II.7.1 Tennesse Eastman Benchmark

The TE process was originally created by Downs and Vogel as a process control challenge
problem in [13]. The generated dataset from the TE Process consists of 22 continuous pro-
cess measurements, 19 component analysis measurements, and 12 manipulated variables.
The dataset consists of 21 pre-programmed faults, among which 16 are known fault cases,
and 5 fault cases are unknown. Both the training and testing datasets include a total of
52 observed variables. The training dataset consists of 22 different simulation runs, and
simulation 0 is fault-free. In our case, this simulation is considered as our normal data
sample. Simulations 1 to 21 were generated for 21 fault cases, and in our case, all of
these 21 simulations are considered anomalous data samples. Similarly, the testing data
set contains 22 different simulations, the first one being the normal case, and the rest are
simulations for different fault cases. Table II.1 represents the Tennessee Eastman Process
fault cases. Since the TE process dataset contains collected time-series sensor data, the
data is prepared as time series sequences as discussed in [1] before the training.
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Fault Cases Description Type

1 A/C ratio, B composition constant (Stream 4) Step
2 B composition, A/C ratio constant (Stream 4) Step
3 D feed temperature (Stream 2) Step
4 Reactor cooling water supply temperature Step
5 Condenser cooling water supply temperature Step
6 A feed loss (Stream 1) Step
7 C header pressure loss (Stream 4) Step
8 A, B, C feed composition (Stream 4) Random
9 D feed temperature (Stream 2) Random
10 C feed temperature (Stream 4) Random
11 Reactor cooling water supply temperature Random
12 Condenser cooling water supply temperature Random
13 Reaction Kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown -
17 Unknown -
18 Unknown -
19 Unknown -
20 Unknown -
21 A, B, C feed valve (Stream 4) Constant position

Table II.1: Tennessee Eastman Process Fault Cases
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Subgroup Normal Case Fault Cases
Easy 0 1,2,4,5,6,7,12,14,18
Medium 0 8,10,11,13,16,17,19,20
Hard 0 3,9,15,21

Table II.2: Fault Groups in TE Process [1].

II.7.2 Training Setup

The length of each sequence is decided prior to the training, and both the data with
and without faults are arranged into time-series sequences. This kind of arrangement has
proved to help the model in increasing the performance since a time-series gives more
context about the situation than a single measurement. We select a sequence length of
30 for our experiments as this length gives a good overall performance.

To define the anomaly detection setting, we follow previous works [1] by dividing the
fault classes into subgroups based on how challenging the faults are to detect. Accordingly,
we divide the 21 faults into three subgroups: easy, medium, and hard-to-detect faults.
The three fault subgroups considered are as shown in Table II.2. The data from the
literature have been adapted accordingly for comparison.

For evaluation of the anomaly detection task, we concentrate on measures related to
the numbers of correctly and incorrectly classified data points. Specifically, we use the
standard notions of true positives (TP) and true negatives (TN) to denote the number
of examples predicted correctly as a positive and negative class, respectively and false
positives (FP) and false negatives (FN) as the number of examples predicted incorrectly
as a positive and negative class, respectively. Based on the values, we use the F1 score
as the performance measure. The F1 score is chosen as the evaluation metric because if
the number of examples in one of the classes is higher than the other, then even random
guessing can result in high prediction accuracy. Therefore, we use the F1 score, which is
a geometric mean of precision P and recall R, is considered in the case of the TE process
given as

F1 = 2
P ·R
P +R

, (II.14)

where

P =
TP

TP + FP
, (II.15)

R =
TP

TP + FN
. (II.16)

We apply the proposed learning methodology to the TE benchmark data set and
provide a thorough ablation study. The comparison study is enlisted as follows.

• We start by comparing the fault detection capabilities for completely unsupervised
learning techniques in which the proposed methodology is compared to the standard
k-means augmented CNN approach.
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• We then evaluate the fault detection capabilities with semi-supervised learning tech-
niques, in which the proposed methodology is pre-trained with unlabelled data and
finally, a fully connected layer is fine-tuned with labelled data. This technique is
compared with and without K-means clustering, with and without Top-K K-means
clustering.

In this section, we defined the training setup for the anomaly detection task on the TE
process. Based on this setup, experimental results and ablation studies were performed
to evaluate the prediction performance of the proposed methodology.

II.7.3 Unsupervised Learning Results

This section presents the results obtained by applying the proposed approach Top-K
DCCA in a purely unsupervised learning setting. This means that no labels from the
fault information have been used for training the models. The results obtained from the
proposed approach are compared with the baseline architecture, hereafter referred to as
the Vanilla architecture, and a standard DCCA approach. The Vanilla architecture is a 3
convolution layer architecture, whereas the Top-K DCCA model is tested with a 2 and 3
layer convolution layer architecture. The architecture description for the Vanilla, DCCA
and the Top-K DCCA architecture is as follows:

• Three convolution layers with the LeakyReLU [64] activation function

• A kernel size of 3 in all convolution layers

• The number of convolution channels doubling with each layer, starting with 64
channels.

• The number of clustering channels is set to 128 in the bottleneck layer.

• A batch-size of 20 with α = 0.6 and β = 0.001 is used.

• All the models are trained for 100 epochs with the stochastic gradient descent (SGD)
optimizer with an L2 penalty of 0.02.

Anomaly detection in the Vanilla architecture is obtained by performing K-means clus-
tering once after the training process, whereas in the other two architectures, K-means
clustering is part of the training process.

To evaluate the prediction performance of the proposed architecture, a 2 and 3 layer
Top-K DCCA architecture is compared to the Vanilla model for the anomaly detection
task in the TE process. The prediction performance in terms of F1 score for the best
performing architectures is shown in Fig. II.3. It is clear from Fig. II.3 that the proposed
architecture performs drastically better than the baseline model on all the fault categories
in the 2 layer and the 3 layer configuration. The 3 layer configuration performs slightly
better than the 2 layer one in all the cases. Therefore, for the subsequent analysis, we
keep the 3 layer configuration.

To better visualize the discriminative capability in the latent representation, the t-
SNE [65] plots of some of the clustering friendly activation maps are shown in Fig. II.4.
In all of these t-SNE visualizations of the activation maps, the model has learned through
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Figure II.3: F1 score obtained by the Vanilla and the Top-K DCCA approach with different
layers for anomaly detection task in an unsupervised learning setup

the training process that there are two distinct regions, i.e., normal and anomalous regions.
The Fig. II.4 show two clusters because the Tennessee Eastman process dataset consists
of either normal operation or faulty operation. That is why we limit the number of
clusters to just two. The boundaries of the two distinct regions can be clearly seen, which
demonstrates that the clustering operation has helped create these decision boundaries.
The t-SNE visualizations show the distinct separation for most of the test samples. Some
of the data samples from the two operating conditions are close to each other, signifying
the hard to detect anomaly samples.

The unsupervised training results and the corresponding t-SNE plots prove the ap-
plicability of the proposed methodology to effectively identify anomalies in a dynamic
and high-dimensional time-series process. A 3 layer unsupervised learning based Top-K
DCCA approach performs the best under the considered experimental settings.

II.7.4 Semi-supervised Learning Results

In this section, we present the results from the semi-supervised training setup where
the encoder of the Top-K DCCA architecture is pre-trained with unlabelled data as per
Algorithm 3, with two fully connected layers with 300 and 2 hidden units being trained
in a supervised manner with labelled data. The overall proposed architecture for semi-
supervised learning is shown in Fig. II.5. The convolutional encoder is pre-trained using
unlabelled data and the fully connected layers are fine-tuned using labelled data. During
the fine-tuning stage, the weights and biases of the convolutional encoder are frozen.

The average F1 score obtained by the Vanilla, DCCA and Top-K DCCA approach
on the different fault categories is shown in Fig. II.6. It is clear from Fig. II.6 that
the proposed Top-K DCCA approach outperforms the other two models in the Easy and
Hard fault categories drastically. The standard DCCA only marginally performs better in
the medium category; however, the proposed methodology works better than the Vanilla
model in all three fault categories. To better estimate the anomaly detection performance
of the model, confusion matrices for a sample of fault cases from the Easy, Medium and
Hard fault groups have been illustrated in Fig. II.7. The confusion matrix from all the
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(a) Activation Map 7 (b) Activation Map 17

(c) Activation Map 32 (d) Activation Map 167

Figure II.4: t-SNE Visualization of a sample of the activation maps with Top-K DCCA
Approach on Tennessee Eastman Data

Input, X
20 x 52 x 30

Conv. 1
20 x 64 x 14

Conv. 2
20 x 128 x 6,

Conv. 3, 20 x 256 x 4

Flattened Dimension 
20 x 1024

20 x 300

20 x 2

Trained Encoder

Classification Layer

Figure II.5: Proposed architecture for semi-supervised deep autoencoder for anomaly
detection.
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Figure II.6: F1 score obtained by the Vanilla, DCCA and the Top-K DCCA approach for
the anomaly detection task in a semi-supervised learning setup

fault cases has not been added for the brevity of results. The confusion matrix for fault
1 and fault 2 shows that the model can distinguish the normal and faulty cases in most
cases. However, the model has difficulty distinguishing some medium and hard fault cases
from the normal case. This can be observed from the low performance on fault cases 3,9,
and 10. It must be noted here that semi-supervised learning results are comparatively
better than the unsupervised learning results since labelled data is used to train the final
hidden layers.

II.7.5 Classification variants Results

In this section, we present the results for the different classification variants that are
possible with the proposed Top-K DCCA approach based on the semi-supervised learning
approach. The classification variants include feeding only the clustering channels Zc as
input, reconstruction channels Zr as input or both the sets together to the two fully
connected layers. The architecture for the classification remains the same as in Fig. II.5.
These different classification variants are done to observe how much each of the latent
variables sets help in the final anomaly detection task. The average F1 scores obtained
by the three classification variants on the different fault categories is shown in Fig. II.8.
It is clear from Fig. II.8 that the clustering set of latent variables Zc as input performs
consistently better than the reconstruction set Zr as an input across all the different fault
categories. This result emphasizes the importance of the Top-K clustering channels in the
anomaly detection task. It must be noted, however, that using both the sets as input to
the fully connected layers also drastically helps in improving the performance in the case
of Medium and Hard fault cases.

II.7.6 Comparison with Literature

In this section, we provide a comparison of the anomaly detection performance of the
proposed Top-K DCCA model with other existing approaches. We emphasize the perfor-
mance of the hard to detect fault cases since having a good performing model on these
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(a) Confusion Matrix for Fault
1

(b) Confusion Matrix for Fault
2

(c) Confusion Matrix for Fault
8

(d) Confusion Matrix for Fault
10

(e) Confusion Matrix for Fault
3 (f) Confusion Matrix for Fault 9

Figure II.7: Confusion matrix for a sample of fault cases from the Easy, Medium and Hard
fault groups. The positive class represents normal case and the negative class represents
the respective fault case.
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Figure II.8: F1 score obtained by the different classification variants for the anomaly
detection task in a semi-supervised learning setup

Table II.3: Comparison of the achieved F1 scores for the hard to detect fault cases with
existing approaches

Fault Case Top-K DCCA [21] [66] [67] DAE [49] Denoising DAE [49]
(3) 53.82 4.5 2.1 1.4 16.66 16.67
(9) 52.31 4.75 2 0.7 16.87 16.97
(15) 43.98 7.75 38.5 9.7 17.08 17.08
(21) 50.05 56.38 53.9 65.8 44.37 45

Overall 50.04 18.34 24.12 19.4 23.74 23.93

cases is a challenging task. Since most of the previous works use a percentage based
evaluation metric, the F1 score is multiplied by 100 to keep the comparison uniform. For
the comparison, we selected the previous studies [21, 66, 67] and chose the best perform-
ing models Independent Component Analysis, Dynamic Principal Component Analysis
with decorrelated residuals and canonical variate analysis, respectively. Furthermore, to
compare the model’s with other deep learning models, the Deep Autoencoder (DAE) and
Denoising DAE have been selected from the previous work in [49]. The Table II.3 gives
the comparison between the best performing unsupervised learning-based anomaly detec-
tion approaches with their achieved F1 scores or fault detection rates as used in literature.
The data from the literature have been adapted accordingly for comparison. The pro-
posed Top-K DCCA model outperforms the existing literature methods in three out of
the four fault cases and has a drastically better overall performance. In comparison to
the other neural network approaches using fully connected layers, the proposed Top-K
DCCA approach outperforms these methods on all hard to detect fault cases. The ex-
ceptional performance gain underlines the anomaly detection capability of the proposed
model, especially in the case of incipient anomaly cases.
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II.8 Conclusions
We presented a novel approach for unsupervised training of time series data sets with a
particular focus on anomaly detection. The approach combines a deep 1D-CNN-based
autoencoder with a clustering loss on a subset of the latent variable space, which increases
the discriminative power within the latent variable space without sacrificing too much re-
construction performance on the data set. We make the approach end-to-end trainable
by backpropagating both the clustering and the reconstruction objective through the net-
work. We test the approach on the Tennessee Eastman benchmark data set with very
encouraging results. In the unsupervised learning setting, a 3 layer proposed model drasti-
cally outperforms other deep Autoencoder networks and also shallow learning techniques
proposed in the literature. The ablation studies in the semi-supervised learning setting
show the superior performance of the model using the input from the clustering feature
subset as compared to the reconstruction feature subset. This shows the discriminative
power of the learnt features in the latent space.

In the future, authors would apply the proposed approach to other time-series datasets
like Electric devices, Ford A and Ford B [68] to corroborate and confirm our findings.
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III.1 Abstract

In this paper, we present a novel approach for multivariate time series data analysis
with special emphasis on industrial sensor data sets. The approach applies deep con-
volutional neural networks as a base architecture, incorporating a generalization of the
dilated convolution operation on the receptive fields. The dilation operation allows for
the aggregation of distributed information in the input space compared to standard con-
volution operation. The proposed dilation methodology allows for a trainable selection
and ignorance of individual sensor features, based on their relevance to the prediction
task. Furthermore, arbitrary patterns in the input feature space, including in the tem-
poral dimension of the multivariate time series data can be extracted. In contrast to the
standard dilation methodology, the proposed generalized dilation technique is end-to-end
differentiable and hence can be trained with off the shelf gradient descent optimizers.
Two methodologies have been proposed for the resulting constrained optimization prob-
lem namely, the Barrier Function and Top-K sampling approach. We apply the dilated
convolutional neural networks to remaining useful lifetime (RUL) estimation problems
where degradation recognition over a longer time horizon is crucial for precise estimation.
We test the approach on two challenging benchmark datasets, namely the PRONOSTIA
Bearing Dataset and the C-MAPSS Aircraft Engine Dataset for RUL prediction. The
experimental results obtained for RUL estimation show the superior prediction capability
of the proposed generalized dilation methodologies and constitute a new state of the art
compared to previous results in literature.

III.2 Introduction

The requirement for current manufacturing environments and machinery to have high
availability, poses a great challenge to the production management. Due to the required
high workload, unintentional standstill of machines has to be avoided reliably, while the
frequency and duration of intentional standstill times should be reduced as much as pos-
sible. A common approach to avoid unintentional standstill is the incorporation of recur-
ring maintenance actions in the production schedule. This prevents machines from severe
breakdowns, however resulting in potential downtime of the machine due to unnecessary
maintenance actions. A plant-wide fault diagnosis and prognosis has therefore been em-
phasized as crucial in industrial cyber-physical systems [1]. A solution is provided by
using condition monitoring and predictive maintenance approaches [2, 3] which normally
use a model of the degradation process in the component allowing for a more a detailed
prediction of future downtime [4]. However, deriving models for condition monitoring and
predictive maintenance can be a challenging and time-consuming task.

In parallel, the upcoming digitization augments modern production environment with
considerably more and real-time information about the status of the machines. Using
various sensor measurements over the complete process allows us to gain a detailed view
on the condition of the overall plant, allowing for continuous monitoring of the production
process and assists in analyzing potential weaknesses. Consequently, data-based main-
tenance with the framework of Prognostics and Health Management (PHM) [5] provides
the necessary tools and methodologies to reliably predict the availability or degradation
of an asset, based on multivariate time series analysis approaches. Various approaches
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Figure III.1: Dilation kernels with different dilation rates (where rate=1 is the original
convolution operation)

have been proposed for data based maintenance, see [6, 5] for overviews. Data-based soft
sensor approaches have also been investigated for monitoring of industrial processes in [7].
Among the various approaches, neural networks appeared to be of particular use due to
recent advances in the field of deep learning [8]. Particularly, convolutional neural net-
works (CNN) [9] and recurrent neural networks (RNN) such as long short term memories
(LSTM) [10] and gated recurrent units (GRU) [11] have been successfully applied.

In this paper, we present a novel deep learning architecture for multivariate time series
data analysis using the concept of dilation in CNNs. Dilated convolution was originally
presented for image recognition and image segmentation tasks [12] and is illustrated in the
case for a univariate time series in Fig. III.1. Compared to the standard receptive field in
CNNs (left), the dilation (middle and right) operation increases the size of the receptive
field, while the number of trainable parameters, illustrated as orange squares, are kept the
same. The prior fixed dilation rate denotes the relative expansion in the time dimension
of the receptive field. The rationale behind dilation for multivariate time series analysis
is to provide CNNs with more globally acting receptive fields such that the network can
learn and aggregate more distributed features over a prolonged time horizon as compared
to the standard convolution operation. However, the dilation rate still is fixed for all the
kernels in a convolution layer and an equidistant operation. Furthermore, standard 1-D
convolution can only dilate in the temporal dimension, and not in the feature dimension.
In this work, we propose a methodology where the dilation is not fixed for each kernel
and it can possess a general structure in the temporal as well as in the feature dimension.
In this way, Generalized Dilation CNNs (GDCNN) can learn to extract features over a
prolonged time horizon as well ignore certain input features, providing a more sparse
representation.
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Normally, the dilation structure in CNNs is kept fixed during the training. The pro-
posed Generalized Dilation (GD) layer allows training of the dilation structure in an
end-to-end manner. The GD layer is defined by masking vectors or matrices for each
convolution kernel in the layer, wherein the maskings consist of trainable parameters in
the range [0, 1], which mask irrelevant samples from the layer input. Furthermore, these
parameters are either constrained with an auxiliary loss function which assures that only
a certain amount of parameters are active or they are constrained with a Top-K sampling
approach. The proposed methodologies allows for arbitrary dilation structures. Particu-
larly, each convolution filter can learn which part of the input, in the temporal dimension
as well as in the feature dimension, is relevant for the prediction task and which is not.
The approach is applied to two benchmark data sets in the field of RUL where prediction
over a long time horizon and detailed feature selection is crucial. The PRONOSTIA ball
bearing data set provided as the data challenge of the 15th PHM conference [13] and the
C-MAPSS aircraft engine data set [14] are used as an application example. The results
obtained with the proposed GDCNN are compared to standard dilation CNN with fixed
dilation and other methods from literature. The results clearly show the superior perfor-
mance of the approach constituting a new state of the art for the considered data sets
compared to existing approaches from the literature.

The contributions of the paper can be summarized as follows:

• We propose GD layers for CNNs designed for multivariate time series data analysis.
Particularly, the layer provides adaptive sampling which constitutes a novel way to
adjust the structure of the dilated convolution kernels such that the convolution
parameters can select the time samples and the sensor channels most relevant for
the prediction task. This ability helps in modelling longer input time sequences.
The adaptive sampling can vary for each of the convolution kernels in the proposed
layer.

• We propose two novel training algorithms for GDCNN which allows for an end-to-
end training of the dilation masking parameters in the network. The first algorithm
incorporates the use of the barrier function within the standard gradient-based learn-
ing process, to learn arbitrary dilation patterns on the time-series data. The second
algorithm uses a Top−K sampling approach to impose the hard constraints for the
binary optimization problem.

• We apply the proposed approach to two challenging RUL benchmark datasets. We
thoroughly analyse the proposed approach on the datasets and compare the results
to different baselines as well as to results from the literature where we achieve new
state-of-the-art results on these data sets.

The paper is organized as follows. Sec. III.3 discusses the work related to our paper.
CNNs and dilated CNNs are described in Sec. III.4 with a special emphasis on time series
analysis. In Sec. III.5 we present the newly developed end-to-end training approach for
dilated CNNs. In Sec. III.6 and Sec. III.7 we provide results and comparisons on two
benchmark data sets. Sec. III.8 concludes the paper.
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III.3 Related Work

In this section, we discuss the work related to our paper. We discuss existing approaches
for data-based RUL estimation first and then turn to work on dilated CNN.

Data-Based RUL estimation: Data-based RUL estimation is a prominent research
topic where various approaches ranging from the application of support vector regres-
sion [15], hidden markov models [16], neuro-fuzzy systems [17] to exponential regres-
sion [18] have been reported. Refer to [19, 6, 5] for extensive overviews. The work [20]
illustrates three RUL estimation methodologies for the ball bearing dataset where the
authors employ several feature engineering strategies with time domain and frequency
domain features. In [21], a time-frequency based feature extraction method from vibra-
tion signals for estimating RUL of bearings is proposed. These extracted features are then
used along with curve fitting and extended Kalman filtering algorithms.

In recent years, a lot of work is devoted to the application of deep neural networks
like deep belief networks [22], Recurrent Neural Network (RNN) like Long Short Term
Memory (LSTM) [23], CNNs [24] and Deep Autoencoder [25] for RUL estimation. This is
mainly due to their inherent capacity to train representative features directly from data
without the costly tuning of predefined features, thereby reaching new state-of-the-art
results. As such, an ensemble method based on multiobjective deep belief networks for
RUL estimation has been introduced in [26]. LSTM neural network-based RUL estima-
tion and fault diagnosis techniques for aircraft engines are proposed in [27] where the
results reveal that standard LSTMs work better than other models. In [28], LSTM neural
networks are used for RUL estimation of aircraft engines and the results are compared
with various machine learning models based on RMSE scores. In [29], adaptive kernel
spectral clustering is combined with LSTMs to determine the health status of bearings.
In [30], RUL prediction is considered as an interval classification problem and ordinal
regression based on RNNs is performed. In [23], a novel method which involves the use of
recurrent neural networks for establishing a health indicator for bearing RUL estimation
problems is proposed. The study [31] uses an Hybrid LSTM-CNN approach where the
input is fed parallel to an LSTM model and a CNN model, followed by the fusion in fully
connected layers. This is in stark contrast to our approach which contains only CNN
layers and fully connected layers. Also, our model contains ≈ 20 times less parameters
than the model in [31]. The study [32] proposes a two step approach wherein first a
Restricted Boltzmann Machine (RBM) is trained in an unsupervised manner and later an
LSTM model is trained in a supervised manner. This is very dissimilar to our proposed
model, where we have only one step of supervised training. Also, our model contains ≈
100 times less parameters than the model in [32]. The study [33] also proposes a two step
training approach. The first step includes training a RNN autoencoder for feature extrac-
tion. These extracted features are employed to map the original training instances into
one-dimensional health index (HI) curves which have to be saved in a database. Finally, a
similarity-based curve matching approach is adopted for predicting the degradation trend
of a test instance via template matching. The approach is strongly orthogonal to our
proposed model.

Moreover, RNNs are in general difficult to train due to their sequential processing of
data and more prone to overfitting due to their high number of parameters. Particularly,
a large amount of labelled data is required to sufficiently train RNNs, which is in general
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not the case in industrial time-series data. Furthermore, RNNs computes the hidden
representation from the first time-step till the last time-step in a sequential manner.
CNNs however, do not require this sequential calculation of hidden representations and
can calculate multiple hidden representations in parallel taking advantage of the massive
parallel processing available in modern GPU. This leads to faster training times in CNNS.

In contrast to CNNs, RNNs can take as input a different time window. However,
RNN models also require to have the same time windows as input for each mini-batch.
Therefore, the RNN models can increase or decrease their time range only under the
assumption that batch-size is 1, which provides a highly noisy estimate of the gradients
during training. Furthermore, in a real industrial environment, the RNN model can take
input only with a specific time window which is relatively small because of the vanishing
and exploding gradient problem [34]. Methods like Truncated Backpropagation Through
Time [35] have to be then employed for bypassing such problems. Moreover, it is rather
unlikely that in a real industrial environment, the time-window that the model take as
input changes over its lifetime. For e.g. the data received from an industrial PC (IPC) has
a fixed length, which is the same as the cycle time of the IPC. At test time, our proposed
model and RNNs function very similarly. Therefore, the model behaves identically to
RNNs when the model is in production. However, due to the dilation masks (particularly
with the better performing hard maskings covered in Sec.III.5.2), it is possible to reduce
the number of parameters in deployment, as masked out parameters need not be included
in the model during production.

CNNs have been applied to RUL prediction and condition monitoring in various set-
tings. In [24], RUL prediction using a double-CNN architecture has been proposed. A
CNN architecture combining RUL prediction and fault recognition using a joint loss func-
tion has been presented in [36]. A transfer learning approach for fault diagnosis for rotary
machines based on CNNs is given in [37]. The work [38] proposes a novel deep learn-
ing architecture using a multi-scale feature extraction scheme using convolutional neural
networks along with time-frequency domain information for prognostics and feature ex-
traction and apply this to a ball bearing data set. The study [39] uses a two step approach
where a Deep Convolutional Generative Adversarial Network (DCGAN) is trained at the
pretraining stage to generate synthetic data in an unsupervised manner. This synthetic
data is then used with an LSTM and fully connected model for fine-tuning purpose in a
supervised manner. The study [40] proposes a multitask learning approach with CNN by
simultaneously learning two tasks i.e. RUL estimation and health condition prediction.
Therefore, the study uses an extra set of target labels for estimating the health condition
of the engines. These extra target labels have to be generated synthetically as they are
not part of the original dataset. Recently, [41] propose an approach combining CNN with
LSTM for RUL estimation, where the CNN serves as a feature extractor. In [42], a similar
approach is presented. An encoder-decoder structure with LSTM memory is presented
in [43].

Common to the mentioned approaches is that they translate well known architectures
from other domains like image recognition or speech recognition to RUL estimation with-
out architectural changes which limit their suitability for RUL estimation. Furthermore,
it can be observed that most works employ CNNs to data sets with a low number of
sensor channels which can be attributed to the strong increase of filter parameters when
the widely used 1D kernels are applied. Such architectures are inherently hard to train
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due to over-fitting issues. In contrast to the previously mentioned approaches, we develop
a novel architecture which uses CNNs as a baseline but is specifically designed for the ap-
plication in time series data sets. The approach allows to reduce and control the number
of active convolution parameters both by adaptively scaling down the input dimensions
per convolution channel and by learning to select relevant sensor channels or temporal
information. As this requires for novel training algorithms, we develop a barrier function
approach which can be extended to other domains like e.g. permutation-based neural
networks [44]. The log-barrier method has been used in [45]for a budget aware pruning
methodology. On the contrary, we propose the selection of relevant structure in a recep-
tive field for efficient feature extraction. Top-K sampling approach has been presented
in [46] in the context of Gumbel-Max trick for sampling from a categorical distribution.
On the contrary, we sample the Top-K elements from the masking parameters in the
dilation convolution layer.

Dilated CNN: Convolution with dilated filters were first introduced in [47] and [48] in
the context of wavelet decomposition. Dilated convolutions have been initially presented
in [12] to allow for multi-scale context aggregation without downsampling of the resolution.
Since then, dilation networks have been used in semantic segmentation methods due to
their ability to capture large context while preserving fine details [49, 50]. Applications
of dilated CNNs include time dilated convolutions [51], modelling long-distance genomic
dependencies [52], entity recognition and text modeling [53]. Dilated residual networks are
introduced in [54]. Application of dilation to time series analysis is provided in WaveNets
[55]. However, in all of these works the dilation structure is fixed. In contrast, we keep
the dilation structure end-to-end trainable for each convolution channel.

Training of dilation factors has been presented in [56] where a dilation factor is trained
for each channel of the convolution layer. However, the dilation factor is defined in R in-
stead of Z+ as in the original derivation. This comes at the cost of calculating the output
map by utilizing a bi-linear transformation in the regular case of fractional dilation factors.
Furthermore, the structure of the dilation is fixed. More general structures are allowed
by active convolutions [57], however with low deviations from the original convolution
kernel. Deformable convolutional networks as introduced in [58] and further improved in
[59] allowing for similar convolution structures as proposed by our approach. There, each
point in the convolution grid is augmented with a learnable real-valued offset. As in [56],
a bilinear transformation is needed before applying the convolution. This transformation
however, renders these approaches unsuitable for multivariate time series analysis for two
reasons. First, the interpolation between time samples destroys the equidistant sampling
of the time series data. Second and more critical, the bilinear transformation would in-
terpolate between different sensor channel data points which result in meaningless values.
Contrary, we hold on to integer-valued dilation factors making learnable dilations appli-
cable to multivariate time series data. Furthermore, we allow for arbitrary structures of
the kernels using end-to-end trainable binary masking matrices.

III.4 Convolutional and Dilated Neural Networks
In this section, we first discuss the CNNs from the viewpoint of multivariate time series
analysis. We then introduce dilation operations into CNNs and discuss their properties
for time series analysis.
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III.4.1 Convolutional Neural Networks

The idea of CNN has been introduced in the early nineties in [9], specifically for image
recognition. However, its popularity increased only after a deep CNN model had beaten
the state-of-the-art model in the ImageNet image classification challenge in [60]. A
typical CNNs consists of a sequence of convolution layers with nonlinear activation and
subsequent pooling layers. The convolution layer normally consists of several parallel
channels which apply the convolution operation similar to standard filter algorithms in
signal processing where the filters are trainable. Furthermore, in contrast to standard fully
connected networks, CNNs employ weight sharing with tied weights to handle the high
dimensional input space provided by images or multivariate time series. Hence, CNNs are
proven to be the state-of-the-art architecture for various machine learning tasks ranging
from image processing, natural language processing to time series analysis [61]. The input
space for multivariate time series analysis consists of individual sensor signals and hence,
does not appear in the form of an image.

We consider multivariate a time series signal {xt}Tt=1 with x ∈ Rm, m the number of
sensor channels and T the length of the time series. The complete dataset consists of N
such time-series signals. In supervised learning setting, each of these N time series signals,
have the corresponding labels as {yb}Nb=1 which can be either class labels, i.e. y ∈ Zm or
continuous variables, i.e. y ∈ Rd with d the output dimension.

In vanilla CNNs for image recognition, the convolution operation is performed by 2D
convolutions. Usually a square receptive field or kernel of size nr × nr strides over the
n× n dimensional image where nr << n. Formally, this yields

hij = (X ∗K)ij =
nr−1∑
f=0

nr−1∑
h=0

Xi+f,j+h ·Ki+f,j+h + b, (III.1)

where hij denotes the output of the (i, j)th receptive field in the input, Xi+f,j+h are the
elements in the receptive field of the input image or sequence, Ki+f,j+h is the convolution
kernel, b denotes the bias for the convolution kernel and nk the weight kernel size or the
receptive field size. Therefore, the size of each convolution kernel is, K ∈ Rnr×nr .

The 2D convolution holds under the assumption that spatial relationships are available
in the input domain like in the case of images. However, this is not the case in time-series
data where the sensor channels do not have any spatial relationship. Consequently, 2D
convolutions are inappropriate for time-series data as a spatial relation between arbitrary
stacked sensor channels is not ensured. Hence, 1D convolutions are predominantly applied
to multivariate time series analysis. In 1D-convolution, the convolution kernel ranges over
the entire sensor channel size, i.e. the size of each convolution yields nr ×m. Formally,
the 1D operation is defined as

hi = (X ∗K)i =
nr−1∑
f=0

Xi+f ·Ki+f + b, (III.2)

where hi denotes the output of the (i)th receptive field in the input. In essence, the
convolution kernels span over the whole column-space with a receptive field and kernel
of size K ∈ Rnr×m. Evidently, if the number of sensor channels is high, the size of
the convolution kernels drastically increases which severely weakens the weight sharing
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capabilities of the CNN. Furthermore, as nr is normally chosen to be small, kernels can
extract local information only, i.e. features over short time horizons. Longer horizons can
only be tackled by increasing the depth of the CNN resulting in even more parameters
or by increasing the fixed dilation rate. In the following section, we propose dilated
convolutions mitigating the above drawbacks of 1D convolutions.

III.4.2 Dilated Neural Networks

The 2D dilated convolution [12] can be described by

hij = (X ∗l K)ij =

nk−1∑
f=0

nk−1∑
h=0

Xi+l∗f,j+l∗h ·Ki+f,j+h + b (III.3)

where the term ∗l denotes the dilated convolution and l is the dilation factor. Note
that the standard convolution operation is obtained for l = 1. By changing the dilation
factors, the dilated convolution operator applies the same filter (with the same number of
parameters) at different ranges and hence, allows for better multiscale context aggregation
[12]. The 1D dilated convolution operation can be formally defined as

hi = (X ∗l K)i =

nk−1∑
f=0

Xi+l∗f ·Ki+f + b (III.4)

where the term ∗l denotes the dilated convolution and l is the dilation factor. The effect
of the 1D dilation operation for a uni-variate case is illustrated in Fig. III.1, which shows
the increasing size of the filter with increasing dilation factor.

In the original work, the dilation factor and its structure is kept fixed during training.
Furthermore, different dilation structures within one receptive field cannot be represented
by ordinary dilations. To remove these inflexibilities would be beneficial particularly for
time series data analysis. Hence, we aim to provide more versatility in that we intend
to make the dilation structure variable over the receptive field and make this variability
trainable. By generalizing this idea we can allow for even more general patterns in the
receptive field.

To this end, we will first derive an alternative representation of the 2D dilation op-
eration as follows. This can be generalized to 1D dilation from Eq. (III.4). The dilation
operation can be interpreted as a conventional convolution operation with receptive field
size nd × nd with nr ≤ nd. This yields to a convolution weight matrix W ∈ Rnd×nd in
which (nd×nd)−(nr×nr) elements are fixed to zero such that the active weights (weights
unequal zero) sum to nr × nr. To accomplish this, we define vectors ψl ∈ {0, 1}nd and
ψr ∈ {0, 1}nd and matrices Ψl and Ψr such that

diag(Ψl) = ψl, diag(Ψr) = ψr. (III.5)

Then, we define the new weight matrix to be

W̃ = Ψl ·W ·Ψr, (III.6)
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Figure III.2: Different configurations of the parameters: (a) Original convolution, (b)
Dilation with varying dilation rates; (c) Dilation in horizontal dimension only; (c) Dilation
in vertical dimension only; (e) Arbitrary dilation kernel.

which provides a generalization to the dilation layer recapitulated in the previous section.
In fact, the dilation with active weights of size 3 × 3 and dilation factor of l = 2 can
be obtained by defining ψl = ψr = [1 0 1 0 1]T . Note that by arbitrarily setting the
components of ψl and ψr to zero and one while at the same time forcing the total number
of ones per ψl and ψr to nr, arbitrary dilation-like patterns in the weight matrix W̃ can
be generated. Formally, this results in imposing constraints

ψTl · 1 ≤ nr, ψTr · 1 ≤ nr, (III.7)

where 1 denotes the all-one vector.

III.4.3 Generalized Dilated Neural Networks

We can further generalize the dilation operation by defining a matrix Ψ ∈ {0, 1}nd×nd and
define a new weight matrix

W̃ = W ⊙Ψ (III.8)

where ⊙ denotes element-wise multiplication and impose constraints

1TΨ · 1 ≤ n2
r. (III.9)

The constraint assures that the number of weights unequal to zero is less than or equal
to the kernel size. This reparameterization of the weight matrix W̃ allows for generalized
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Figure III.3: Comparison between standard dilation structure (left) and generalized dila-
tion structure (right) for uni-variate features and same kernel size

dilation-like patterns. An illustration of some examples for the different possible patterns
is given in Figure III.2. Particularly, some choices of the parameters are especially useful
in practice. The original convolution operation (Fig. III.2 (a)) is obtained by setting
ψl = ψr = [0 1 1 1 0], a dilation with rate 2 yields ψl = ψr = [1 0 1 0 1] and non-
equidistant patterns as in Fig. III.2 (b) yields to ψl = [0 1 1 0 1] and ψr = [0 1 1 1 0].

However, this equidistant choice of the dilation might not be best to obtain repre-
sentative features in some cases. Specifically, typical features in time series data might
only depend on a subset of sensor channels. For such cases dilation patterns as shown in
Fig. III.2 (c) using setting ψl = [0 1 1 1 0] and ψr = [1 0 1 0 1] can be beneficial. Similarly,
a vertical dilation can be trained (Fig. III.2 (d)), eventually leading to subsampling of the
time dimension. Ultimately, arbitrary dilation patterns as illustrated in Fig. III.2 (e) can
be obtained by setting

Ψ =


1 0 0 1 1
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
1 0 0 1 1

 . (III.10)

Note that even higher dilation rates and broader patterns can be obtained by applying
larger receptive fields with nr << nd. A comparison between standard dilation structures
and generalized dilation structures for univariate input features is illustrated in Fig. III.3,
where a receptive field size of 5 and kernel size of 3 is chosen. All the kernels in the
standard dilation structure are equidistant, in contrast to the the generalized dilation
structure in which each kernel can take arbitrary patterns.
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III.5 End-to-end Training of Dilated Neural Networks

The training procedure for the binary masking matrices is detailed in this section. Making
the matrices trainable, allows for an adjustment of the matrices during training and
could potentially reduce the number of active convolution parameters required for the
given problem. Hence, in this section, we derive an end-to-end training scheme for the
proposed networks. However, optimizing the masking weight matrices and vectors results
in optimizing binary variables which makes the learning problem combinatorical and does
not directly allow for end-to-end training. To circumvent this, we follow the standard
softening of binary parameters approach as e.g. in [62] and apply a soft binary variable
by running continuous vectors ψ̃l, ψ̃r ∈ Rnd and matrices Ψ̃ ∈ Rnd×nd through a sigmoidal
activation function, such that

ψ̃l = σ(ψl), ψ̃r = σ(ψr), Ψ̃ = σ(Ψ). (III.11)

This reparameterization bounds the weights to the interval (0, 1), while the sigmoid
functions tends towards its boundaries as training proceeds. The sigmoidal function is
used to bound the masking weights to the interval (0, 1) which is required for selecting
input samples from the multivariate sensor inputs. Other functions can also be applied
for such a reparameterization. However, these functions should have the range (0, 1) and
have a real gradient over its domain. Consequently, we end up with a trainable structure
consisting of network parameters ω, i.e. kernel weights of the convolution/dilation kernels
and weights of the fully connected layers, and the weight vectors or matrices Ψ̃. This
can be trained by backpropagation using stochastic gradient descent on the standard
loss functions Ls(ω, Ψ̃) like cross entropy loss for classification or mean squared error for
regression tasks.

However, we have to consider the additional constraints on the parameters Ψ̃ as given
in Eq. (III.7) and Eq. (III.9). These constraints have to be fulfilled during training and
hence, should be imposed as hard or soft constraints. In general, various approaches exist
to incorporate hard constraints in stochastic gradient descent algorithms, namely barrier
functions, projection methods and active set methods [63]. In this work we propose two
methods to apply these constraints namely a.) differentiable barrier functions approach
which contribute to the loss function only if the constraints are not satisfied and b.)
Top − K sampling approach to assign integer values to the binary masking parameters
similar to the approach as in [46]

III.5.1 Barrier Function

We define the total loss of the model Ls(ω, Ψ̃) + Lb(Ψ̃) where Lb is the barrier function
loss. As the barrier loss only applies to the masking vectors and parameters, Ψ̃ and ψ̃l, ψ̃r
respectively, we can parameterize the barrier loss directly as the gradient of the barrier
loss ∇ΨLb dependent on the layer-inherent masking matrix Ψ in the form

∇Ψ̃Lb = bc(Ψ̃) + br(Ψ̃) + ba(Ψ̃), (III.12)
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where bc, br and ba represent the different barrier functions calculated with different
amount of penalties on the constraint to be fulfilled. In this work, we define

bc(x) =
(
eα1·(x−nr) − α2 · (x− nr)

)
− α3, (III.13)

br(x) = max(eα1·(x−nr) · α2 · (x− nr) , α3), (III.14)

ba(x) = max(eα1·(x2−nr
2) · α2 ·

(
x2 − nr2

)
, α3), (III.15)

where we experiment with different parameters α1, α2 and α3 as illustrated in Fig. III.4
for the barrier function bc(x). Finally, the gradient for end-to-end training of the masking
parameter Ψ̃ij yields

∇Ψ̃ij
=
∂Ls(ω, Ψ̃)

∂Ψ̃ij

+∇Ψ̃ij
Lb. (III.16)

In this way, the gradient of the masking parameters is the sum of how much it deviates
from the constraint and their contribution to the classification or regression loss Ls(ω, Ψ̃).

It can be inferred from Fig. III.4 that regardless of parameters (α1, α2 and α3), the
barrier function has an inherent tendency to return higher penalties if the boundary condi-
tion (x−nr) is violated. So, if the sum of the elements of Ψ̃ij at the beginning of training is
large, it will result in higher penalties and thereby larger gradients. This further steers the
masking parameters very early in the training process into saturation regions. Therefore,
along with the initialization of neural network parameters, the initialization of masking
parameters becomes important. The authors in [46] suggests initializing the masking
parameters in a basin where the gradients are not huge. Therefore, the parameters can

III.5.2 Top-K Sampling

In this approach, we consider the top-K values or the maximum K values from the ψ̃l, ψ̃r
and matrices Ψ̃, and set them to 1 and the rest to 0. More formally, we modify the
elements in the masking matrix as

Ψ̂ij =

{
1, if Ψ̃ij ∈ Ymax−K
0, else .

(III.17)

where Ymax−K denoted the K max elements in the masking matrix Ψ̃. In this way,
we achieve integer binary values for the masking matrix Ψ̂ in the forward pass. For the
backward pass or updating the binary parameters, we take the gradient estimates as if the
forward pass was according to Eq. (III.11), and update the parameters using Eq. (III.16).
This leads to integer binary values in the forward pass but their sigmoidal values are used
for the backward pass. An advantage of the top-k operation is that we force the network
to select the exact weights for the prediction task and loss calculation. This is in contrast
to the barrier function approach where due to the sigmoid function, a scaled version of
the weights would have been selected.

III.5.3 Implementation and Applicability of GDCNN

The training time for the proposed generalized dilation layer over the standard dilation
layer was ≈ 2 seconds more for a complete epoch on an Intel Xeon Silver 4112 processor
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Figure III.4: Barrier functions bc with different parameters α1, α2 and α3.

on both the tested datasets. The proposed method has been developed and implemented
in the PyTorch [64] deep learning framework.

There are extra parameters in the case of the barrier function training approach de-
scribed in Section III.5.1. The number of extra parameters depends on the kernel size nr,
size of the receptive field nd, and the number of channels in a layer. Therefore, for the
proposed architecture where, there would be (nd−nr)× (number− of − channels) more
parameters in the model.

However, in the case of Top-K sampling training approach III.5.2, there is no increase
in the number of parameters as compared to the original dilation model because all the
extra learnable parameters are zero. Therefore, it should be noted that the size of the
receptive field is increased compared to the standard CNN while keeping the number of
parameters constant.

The proposed generalized dilation methodology is applicable to every CNN architec-
ture, including yolo [65] and inception [66]. This is because the methodology works in
parallel with the convolution operation which is common to every CNN architecture.

III.6 Experimental Results on Bearing Dataset

In this section, we report experimental results on the PRONOSTIA ball-bearing data
set and thoroughly discuss the different architectural effects with the proposed dilation
networks. Furthermore, we compare the proposed approaches with baseline vanilla convo-
lution neural networks and compare to results of existing approaches from the literature.
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III.6.1 Data Sets Description

The dataset was provided by FEMTO-ST Institute, France as part of a series of exper-
iments conducted in their PRONOSTIA laboratory platform [13]. PRONOSTIA is an
experimental platform was designed for producing accelerated degradation in ball bear-
ings for testing and validating bearing diagnostics, prognostics and fault detection. The
three main parts of the PRONOSTIA experimental rig consists of a rotating part with an
asynchronous motor and gearbox, a degradation generation part with a pneumatic jack
and a clamping ring and finally a radial force measurement part. The experimental data
contain run-to-failure degradation of ball bearings and contains information about the
rotating speed, load force, temperature and vibration of the bearings. For the challenge,
data representing three different operating conditions was collected. The dataset consists
of in total 6 run-to-failure bearing cases i.e 2 for each operating condition, that are used
as the training data. The RUL of 11 bearings under the same 3 operating conditions must
be estimated using the proposed models. There were no assumptions made regarding the
type of bearing failure occurring. The fact that the challenge has noisy training data
and high variability in experiment duration (1 to 7 hours), makes accurate predictions
extremely challenging. The three different operating conditions for the experiments are
1800 rpm and 4000 N radial load (Cond. 1), 1650 rpm and 4200 N radial load (Cond.
2) and 1500 rpm and 5000 N radial load (Cond. 3) and includes horizontal and vertical
vibration signals measured by accelerometers at a sampling frequency of 25.6 kHz. In
addition to the vibration information, temperature information was also collected during
the experiments. However, as the temperature data is not available for all training and
testing bearings, only horizontal and vertical acceleration data is considered.

III.6.2 RUL evaluation metrics

The evaluation metric for RUL estimation of both data sets have already been defined
in the corresponding PHM challenge [13, 14] and are used for comparison purposes. The
RUL evaluation metric for the PRONOSTIA dataset is given by the error percentage:

Ei = 100 · RULi − R̂ULi
RULi

, (III.18)

where i = 1, 2, . . . , 11 denotes the number of the test bearing, RULi is the actual RUL
and R̂ULi is the predicted RUL. Positive Ei are considered as early prediction, negative
Ei are considered as late prediction. The accuracy score of RUL estimate for bearing i is
defined as follows:

Ai =

{
e−ln(0.5)·Ei/5, if Ei ≤ 0
eln(0.5)·Ei/20, if Ei > 0.

(III.19)

The final score of all RUL estimates is defined as mean of all bearing RUL estimate scores,
i.e.

Si =
1

11

11∑
i=1

Ai. (III.20)
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III.6.3 Training Settings

Data Preprocessing and Sequence Generation

Since the vibration signals from the bearing dataset consists of a high variability and
noise, the sensor data is normalized to be within the range of [−1, 1] using Min-Max
normalization method as

X i,j
norm = (Max−Min)×

{
xi,j − x̂j

x̃j − x̂j

}
+Min, ∀i, j (III.21)

where xi,j denotes the original i-th data point of the j-th sensor, and X i,j
norm is the nor-

malized value of xi,j. x̃j and x̂j denote the maximum and minimum values of the original
measurement data from the j-th sensor respectively. Min and Max are the normalization
range required, in this case −1 and 1 respectively. The train data set has been normalized
using Eq. (III.21) and the same scaling parameters are used for the test data set.

The sequence generation step can be interpreted as generating of smaller overlapping
local subsections from the original time series for maximum data utilization. Theoretically,
a complete single bearing dataset could be used as a single time series. However, that
would make the the model extremely complex and could also lead to over-fitting as the
model has to remember over the complete length of the dataset. Therefore, we follow
a similar approach as in [67], where we divide the original time series into a number of
small sequences and thus feeding more historical data to CNN to train on. The length of
a sequence is a hyperparameter that needs to be tuned.

Loss and Architecture Definition

The loss measure usually used for training CNN for regression problems in literature is
Mean Absolute Error (MAE) [38], Mean Square Error (MSE) [36], and Root Mean Square
Error (RMSE). However, due to a large RUL prediction horizon of the RUL i.e. [0, 28030]
seconds for bearing 1_1, the loss values obtained from the above mentioned functions
are drastically large. This causes too large updates of weights during back-propagation
even after adjusting the learning rate, forcing the gradients rapidly into saturated regions
and unstable convergence. In order to cater to this special requirement we propose a loss
function which is not affected by the large prediction horizon. The Root Mean Square
Log Error (RMSLE) is utilized as

RMSLE =

√√√√ 1

n

n∑
i=1

(log(RULi + 1))− log(R̂ULi + 1)2. (III.22)

Here the log of the estimated RUL and actual RUL which makes it immune to the ex-
ploding losses for large RUL prediction horizon. As per the authors knowledge, this is
the first use of RMSLE loss function for RUL prediction.

To derive an optimum CNN architecture, we decided to adopt a random search
methodology [68] rather than a grid search and choose the best architecture based on
the performance on a held out validation set. The hyper-parameter search space that
was experimented with includes but not limited to Number of CNN layers={3, 4, 5, 6},
Number of Convolution Channels per layer = {8, 16, 32, 64, 128, 256}, Kernel size
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Figure III.5: Proposed Vanilla CNN-1D Architecture for Operating Condition 1&2

={1, 3, 5, 7, 11, 15, 17}. The best performing RUL estimation architecture in illustrated in
Fig. III.5 for Bearing data set for operating condition 1 & 2, which includes multiple CNN-
1D layers and fully connected layer at the end. The notation Conv (15 × 8) in Fig. III.5
should be inferred as the (Kernel−size×Number−of−Channels). The input features
represent the sequences created as explained in the Sec. III.6.3. Each convolution oper-
ation is followed by Batch Normalization [69], the Leaky ReLU [70] activation function
and the max-pooling operation. The architecture has a slight modification for operating
condition-3, where the ReLU [71] activation function is used in place of the Leaky ReLU
function because of overall better generalization performance. An initial learning rate of
0.001 was chosen with an exponential decay factor of 0.99 for every training epoch. The
sequence length was chosen as 2560, batch size of 32, and Adam [72] optimizer was chosen
for updating the parameters of the model.

III.6.4 Result Comparison with Generalized Dilation

To check the effectiveness of generalized dilation, we replaced the first layer of the architec-
ture shown in Fig. III.5 with generalized dilation layer. All the other network parameters
were kept the same as the vanilla CNN architecture. Only the receptive field is set to 29,
whereas the kernel size of generalized dilation layer is set to 15. The resulting architec-
ture is illustrated in Fig. III.6. The barrier function as shown in Eq. (III.13) and related
parameters for each operating condition have been summarized in the Table III.1.

For qualitative analysis, the prognostic performance of proposed GDCNN architecture
on 3 samples of the test bearing data set is presented in Fig. III.7. It can be seen that
the model is able to capture the degradation trend by predicting the RUL close to the
actual RUL. The prediction performance is especially high on the latter part of bearing
life-span compared to the earlier part, which is when bearing is about to fail. The accurate
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Figure III.6: Proposed GDCNN-1D Architecture for Operating Condition 1&2

Table III.1: Bearing data set : Barrier function parameters

Operating Condition Barrier Function α1 α2 α3

1 br 0.5 0.1 -1
2 br 0.5 1 -1
3 br 1 0.1 -1
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Table III.2: Performance of proposed architecture on Bearing data set

Bearing
Name

Actual
RUL (s)

Predicted
RUL (s) %Er Score

Bearing 1-3 5730 4086.31 28.68

0.38

Bearing 1-4 339 174 48.67
Bearing 1-5 1610 3004.42 -86.61
Bearing 1-6 1460 1458.76 0.084
Bearing 1-7 7570 2159.85 71.46
Bearing 2-3 7530 6737.35 10.53
Bearing 2-4 1390 4245.71 -205.4
Bearing 2-5 3090 3084.25 0.18
Bearing 2-6 1290 2478.83 -92.16
Bearing 2-7 580 4411.95 -660.68
Bearing 3-3 820 783 4.51

estimation of RUL here is more valued compared to an initial healthy state. It can be
also observed that for bearing 1_4, the estimated RUL has a sudden drop after a point
of time. This phenomenon can be explained by the occurrence of an abrupt fault at that
point of time in the system which affected the life of bearing.

The length of the sequence and step-size used to create the sequence is an important
hyper-parameter for the proposed model’s prognostic performance. If the sequence length
is too small, then the model will not be able to capture all the useful information as the
historical data is too less. On the other hand, large sequence length helps to capture
degradation trends over a long time period. However, too large sequence length will
increase the network complexity and the training time. It may also lead to over-fitting
since the number of parameters in the hidden layers increases as the the sequence length
increases. Therefore, to better analyse this effect, the impact of sequence length on the
loss for the test dataset and the training time for operating condition-1 is presented in
Fig. III.8. The RMSLE value is the sum of the final loss values of all the test bearings in
operating condition-1. A similar trend in results was also observed for the other operating
conditions. With the increase in sequence length from 512 to 3072, the training times
first increase slowly, but a stark increase is observable for sequence length of 3072. As for
the losses, the minimum loss occurs for sequence length of 2560 which is proposed for all
CNN-1D architectures for this dataset. It is also evident that increasing sequence length
beyond 2560 results in over-fitting where the test loss increases.

To visualize the training of the proposed masking matrices in a clear way, probability
density plots of the initial and learned masking parameters for operating condition 1
with the barrier function methodology is presented in the Fig. III.9. The final learned
distributions can be attributed to the specific configuration of barrier functions. It can
be inferred as the optimum solution for a chosen set of hyper-parameters α. Similar
behaviour was observed also for the other operating conditions. It can also be observed
from Fig. III.9 that with barrier function training methodology, the masking parameters
are not entirely binary. To achieve the goal of binary parameters, the top-K sampling
approach has to be used which will be covered in the next section.

The predicted RUL and corresponding score for all the 11 bearings of test data set in
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Figure III.7: Qualitative Generalization Performance on the Bearing data set
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Figure III.8: Effect of sequence length on prognostics performance and training time of
operating condition-1 test dataset

Figure III.9: GDCNN-1D - Distribution of initial and learned masking parameters (σ(Ψ))
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Table III.3: Performance comparison of the proposed architectures and related papers on
Bearing data set

Method Score

RNN based health indicator [23] 0.25
Approach based on non-trendability behavior [73] 0.28
Vibration frequency signature anomaly detection
and survival time ratio [20] 0.30

Combinatorial feature extraction method [74] 0.35
Porposed Vanilla CNN 0.35
CNN + LSTM [42] 038
Proposed GDCNN 0.38

summarized in the Table III.2. To present a robust set of results, we ran the same con-
figuration 6 times and presented the average predictions from these configurations. The
comprehensive results of the prognostic performance of proposed architecture for Bearing
data set in comparison with the state of the art results obtained by other published works
are presented in the Table III.3. It should be noted that the score of both the proposed
CNN-1D architectures outperforms several already published works. Moreover, GD-CNN
outperforms Vanilla CNN-1D, which establishes the superiority of the proposed method-
ology. To the author’s knowledge, there is no published architecture for the Bearing
Dataset which uses only CNN for such performance, where only it demonstrated results
of the same level with LSTM and CNN architecture together.

III.7 Experimental Results on Aircraft Engine Dataset
In this section, we report experimental results on the aircraft engine data set, and thor-
oughly discuss the different architectural effects with the proposed dilation networks.

III.7.1 Dataset Description

As a second benchmark, we use the Commercial Modular Aero-Propulsion System Simu-
lation (C-MAPSS) dataset [14]. It contains information from 21 sensors in 3 operational
settings which include different types of engine degradation processes. The C-MAPSS
data set includes 4 sub-datasets namely FD001, FD002, FD003, FD004. Each sub data
set is further divided into train and test data set. The four datasets each include sev-
eral degradation engines split into training and testing data. Table III.4 summarizes the
structure of the complete data set.

Moreover, run-to-failure information from multiple engines collected under various
operating conditions and fault modes are included. The engines are assumed to start
with various degrees of initial wear but are considered healthy at the start of each record.
The engines then begin to deteriorate until they cannot perform their function such that
they are considered unhealthy. Note that unlike the training datasets, the testing datasets
contain temporal data that terminates before a system failure occurs. FD001 and FD003
contain one operating condition while FD002 and FD004 contain up to six operating
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Table III.4: C-MAPSS Dataset Information [75]

Dataset Description C-MAPSS
FD001 FD002 FD003 FD004

Engine Trajectories for Training 100 260 100 249
Engine Trajectories for Testing 100 259 100 248

Operating Conditions 1 6 1 6
Fault Modes 1 1 2 2

conditions or regimes which depend on different combinations of altitude (0− 42000 ft),
throttle resolver angle (20◦ − 100◦) and Mach (0 − 0.84). Similarly, FD001 and FD002
contain one fault mode (HPC degradation) and FD001 and FD002 contain two fault
modes (HPC degradation and Fan degradation).

III.7.2 RUL Evaluation Metric

The RMSE loss function for training the proposed architecture on the CMAPSS dataset

RMSE =

√√√√ 1

n

n∑
i=1

(RULi)− (R̂ULi)2. (III.23)

The CMAPSS dataset is evaluated according to the scoring function

S =

{ ∑N
n=1 e

− ci
a1 − 1, if ci < 0∑N

n=1 e
ci
a2 − 1, if ci ≥ 0.

(III.24)

where a1 = 13, a2 = 10 and ci = R̂ULi − RULi, i.e. the difference between predicted and
observed RUL values. Note that both metrics penalize late predictions stronger as early
predictions are preferable so that the component can be removed or replaced without
causing severe damage to the rest of the process.

III.7.3 Training Settings

For the C-MAPSS dataset, we present results with two convolutional architectures namely,
the standard 1-D CNN architecture and a shared kernel CNN-1D architecture. In the
shared kernel approach, each convolution kernel is shared for all the input sensor channels.
This helps in reducing the convolution parameters when the number of input sensor
channels is high, which is the case in the C-MAPSS dataset. The architectural details for
the proposed model are given in section III.7.3.

Data-preprocessing

In order to attain the shared kernel CNN 1-D approach, the inputs are prepared in the
shape of 2D feature map, T ×m where T is the temporal dimension and m is the feature
dimension. The sequences from sensor signals are generated based on the same apporach
as in Sec. III.6.3. A single sequence length can only contain data of a single-engine.
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Table III.5: Selected features for C-MPASS data set

Sub-data set Selected Features

FD001
FD004
FD003

S2, S3, S4, S7, S8, S9, S11, S12, S13,
S14, S15, S17, S20, S21

FD002
S2, S3, S4, S7, S8, S9, S11, S12, S13,

S14, S15, S17, S20, S21,
History of Operating Regimes

We use the same piece-wise linear degradation as target for the C-MAPSS data set as
proposed in [76], with the knee point Rearly = 125. Since the sub-dataset FD002 and
FD004 have 6 different operating regimes, consecutive data points in these datasets can
belong to different operating regimes. Therefore, to extract more meaningful information,
the sensor signals are normalized per operating regime similar to the approach in [77].
Using K-means clustering we identified the 6 operating regimes and normalized them
individually per the operating regime as defined in Eq. (III.21). The scaled operating
regime clusters are concatenated to form the final time-series.

In addition to the dataset scaling, the different operating regimes have a significant
impact on the degradation of the engine. Thus, it is useful to give information about
operating mode history to the model. This can be achieved by adding operational mode
history as a feature to the model as proposed in [78]. So the data sets which have
multiple operating modes, an additional 6 columns as features were added where each
feature represents the number of cycles spent in the respective operating regime since the
start of the time-series. Moreover, out of the 21 sensors, not all of them provide useful
information about system degradation pattern. Hence, relevant features were selected for
the sub-datasets based on previous works [76, 77, 78]. The selected features are listed in
the Table III.5.

Architecture Definition

We propose three different network architectures in this section, namely

• Shared Kernel CNN-1D

• Shared Kernel GDCNN-1D

• GDCNN-1D

The motivation for proposing a shared filter architecture for the C-MAPSS dataset
is that the feature space is considerably larger than the bearing dataset. The dataset
consists of 21 features ranging over 6 separate operating regimes, and for sub-datasets
FD002 the history of the operating regimes was added to the feature space. The standard
CNN-1D architecture was not efficient while working with such large feature spaces and
the prediction results were not satisfactory. Therefore, we compare the results from the
shared kernel approach with only the GDCNN-1D architecture. The proposed shared
filter CNN-1D network architecture for the C-MAPSS dataset is shown in Fig. III.10
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Figure III.10: Proposed Shared kernel CNN-1D Architecture

consisting of 5 convolution layers and 1 fully connected layer. It should be noted that
the convolution operation is executed only in the temporal dimension of each feature
individually.

The notation Conv(10 × 10) should be inferred as Conv(Kernel Size ×
Number of Kernels). The sequence length of the T for the sub-datasets FD001 to
FD004 was chosen as 30, 20, 30, 15 respectively. A batch size of 512 and 250 training
epochs were chosen with the Adam optimizer. The learning rate is set at 0.001 initially up
to 200 epochs and then reduced to 0.0001 for the last 50 epochs to get stable convergence.
The loss function is the standard root mean square error (RMSE).

Taking the architecture as shown in Fig. III.10 as the baseline, we propose the shared
kernel GDCNN-1D architecture, shown in Fig. III.11, where the first layer convolution
layer was replaced with the GD layer. In order to be consistent with the previous ar-
chitecture, we set the kernel size for a GD layer nr = 10 and set the receptive field size
nd = 19.

Lastly, the GDCNN-1D architecture is proposed without the shared kernel approach,
resulting in a bigger kernel size in the first layer. However, in this approach, the generalized
dilation approach has the possibility to select the relevant features for the RUL estimation
task. Since there are many more features in the C-MAPSS dataset in comparison to the
bearing dataset, this approach allows for not only dilation in the temporal dimension,
but also in the feature dimension. This is especially important in the multivariate setting
that deep neural network excel in.

Training with Barrier Function and Top-K Sampling

Along with the three different architectures proposed, we implement the two different
training methods as presented in Sec. III.5.1 and Sec. III.5.2 , for incorporating the con-
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Figure III.11: Proposed Shared kernel GDCNN-1D Architecture

Table III.6: Barrier Function Parameters for C-MAPSS

Sub-data set Barrier Function α1 α2 α3

FD001 br 0.5 1.5 -1
FD002 br 0.5 1.5 -1
FD003 bc 1 0.1 -1
FD004 br 0.5 1.5 -1

straints in the GD training. The barrier function and related parameters for each sub-data
set have been summarized in the Table III.6. It must be noted that the Top-K Sampling
approach enables integer binary values in the masking matrices Ψ, in contrast to the
barrier function approach.

III.7.4 Results and Comparison Study

For qualitative analysis of the shared kernel architectures, the prognostic performance
for the three architectures on the test engine unit 24 from the sub-data FD001 has been
shown in Fig. III.12a, Fig. III.12b and Fig. III.12c respectively. The actual RUL and the
predicted RUL of one engine trajectory from the test engine has been presented. Notice
that the RUL estimations of the last parts of the engine unit life-time are not shown. This
is because, in order to validate the prognostic performance on the testing dataset, the last
parts of the sensor measurements are not provided. The actual RUL values for the last
recorded cycles are given in the dataset, and the corresponding RUL labels can be obtained
accordingly. It can be observed that in the early periods in all the cases, the proposed
model manages to estimate the RUL values as close to the constant Rearly. Subsequently,

170



Table III.7: Performance comparison of the proposed shared kernel architectures on C-
MAPSS dataset

Method FD001 FD002 FD003 FD004
CNN-1D 317.7 11053 336.7 8122

GDCNN-1D with Barrier 316.8 10273 304.4 7250
GDCNN-1D with Top-K 274.6 10256.6 285.1 7213.8

the estimations are decreasing linearly with time until the end of the available testing
samples. Though some noticeable error exists between the predictions and the actual
RUL values, in general, the prognostic accuracy is high especially when the engine units
are close to failure for the proposed GDCNN-1d architectures. Especially for the case with
the Top-K sampling, the estimation of the RUL at the end of the engine life is very close
to the actual RUL. This can also be seen from the scores on each of the sub-dataset using
the shared kernel approach in Table III.7. It is clear from the analysis that the GDCNN-
1D approach performs better than the standard CNN-1D approach since the lower the
score, the better it is. Furthermore, the Top-K Sampling results in a drastic improvement
in prognostic performance where the Top-100 elements from the receptive field have been
sampled as 1 and the rest are sampled as 0. This hard sampling helps with the integer
binary values of the masking parameters. The distribution of initial and learned masking
parameters within the range of (0, 1) is presented in Fig. III.13a and Fig. III.13b for the
barrier function approach and Top-K sampling approach respectively. The motivation for
showing this plot is to compare the two training methodologies’ of soft and hard masking
capabilities,i.e. Training with Barrier Function and Training with Top-K Sampling. The
figures illustrate the hard constraints being achieved by the Top-K sampling approach,
in contrast to the soft constraints of the Barrier function. The authors presume that this
hard constraint from the Top-K approach is the reason behind its superior performance.

Therefore, the GDCNN-1D experiments were performed only with the Top-K sampling
approach only. The prognostic performance from the proposed GDCNN-1D is illustrated
in Fig. III.14, Fig. III.15, Fig. III.16 and Fig. III.17. Evidently the deviation between
the predicted and actual RUL has reduced more notably. This is also evident from the
final scores achieved by the proposed architectures for all the sub-datasets in Table III.8.
It should be noted that the score of all proposed architectures outperforms several pub-
lished works. It is evident that the GDCNN approaches outperform the standard CNN
approaches and furthermore, Top-K sampling approach for GDCNN returns better per-
formance than its barrier function counterpart.

III.8 Conclusions

In this paper we propose a novel approach for multivariate time series data analysis based
on a novel end-to-end learnable dilated convolutional neural networks. We generalize the
vanilla dilated CNNs with particular emphasis on the requirements of time series analysis
which allows for the representation of arbitrary dilation patterns in a unified way. We
propose two end-to-end training approaches for the proposed architecture utilizing the
barrier function and Top-K sampling methodologies. The developed architectures are used

171



(a) Prognostic Performance from the Shared Kernel CNN-1D architecture on a test engine

(b) Prognostic Performance from the Shared Kernel GDCNN-1D architecture with Barrier Func-
tion on a test engine

(c) Prognostic Performance from the Shared Kernel GDCNN-1D architecture with Top-K Sam-
pling on a test engine
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(a) Distribution of initial and learned masking parameters (σ(Ψ)) in the case of Barrier Function

(b) Distribution of initial and learned masking parameters ((Ψ)) in the case of Top-K Sampling

Figure III.14: Prognostic performance from the GDCNN-1D architecture with Top-K
sampling on a test engine from FD001
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Figure III.15: Prognostic performance from the GDCNN-1D architecture with Top-K
sampling on a test engine from FD002

Figure III.16: Prognostic performance from the GDCNN-1D architecture with Top-K
sampling on a test engine from FD003
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Figure III.17: Prognostic performance from the GDCNN-1D architecture with Top-K
sampling on a test engine from FD004

for the remaining useful life estimation problem where the generalized dilation enhances
the ability of convolutional neural networks to capture long term dependencies. The
proposed methodology can learn the degradation trends over time which can be mapped
to the current RUL of the equipment from the Bearing Dataset and the C-MAPSS Dataset.
A comparison of the obtained results with the results from the literature shows the superior
performance of the proposed approach.

In future work, we intend to explore alternative ways to tackle the binary parameter
optimization problem. Particularly, probabilistic approaches like Gumbel-softmax. Fur-
thermore, efforts to develop an attention-like dilation network, where receptive field size
is equal to the size of the input sequence, will be made. This will allow the network to
attend to the most relevant samples from the complete multivariate time series and not
just in the receptive field. The proposed methodology will also be investigated on images
in the future studies.
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Table III.8: Performance comparison of the proposed architectures and related papers on
C-MAPSS Dataset

Method FD001 FD002 FD003 FD004

CNN [75] 1280 13500 1590 7880
CNN [79] 661 12643 1412 7482
LSTM [28] 388.68 10654 822.19 6370.6
LSTM [80] 338 4450 852 5550
CNN [81] 273.7 10412 284.1 12466

Shared Kernel CNN-1D 317.7 11053 336.7 8122
Shared Kernel

GDCNN-1D with Barrier 316.8 10273 304.4 7250

Shared Kernel
GDCNN-1D with Top-K 274.6 10256.6 285.1 7213.8

GDCNN-1D with Top-K 267.8 10868.9 307.8 7111.1
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IV.1 Abstract

This paper proposes a novel deep learning architecture for estimating the remaining use-
ful lifetime (RUL) of industrial components, which solely relies on the recently developed
transformer architectures. The RUL estimation resorts to analysing degradation patterns
within multivariate time series signals. Hence, we propose a novel shared temporal atten-
tion block that allows detecting RUL patterns with the progress of time. Furthermore, we
develop a split-feature attention block that enables attending to features from different
sensor channels. The proposed shared temporal attention layer in the encoder fulfils the
goal of attending to temporal degradation patterns in the individual sensor signals before
creating a shared correlation across the feature range. We develop two transformer archi-
tectures that are specifically designed to operate with multivariate time series data based
on these novel attention blocks. We apply the architectures to the well known C-MAPSS
benchmark dataset and provide various hyperparameter studies to analyse their impact
on the performance. In addition, we provide a thorough comparison with recently pre-
sented state-of-the-art approaches and show that the proposed transformer architectures
outperform the existing methods by a considerable margin.

IV.2 Introduction

With recent advancements in industrial systems, the need for predictive maintenance so-
lutions has increased proportionally. In the era of "Industry 4.0", equipment reliability
is of paramount importance to keep up with the world’s continuous demands and chal-
lenges. Maintenance of equipment after failure occurrence is gradually becoming outdated
by Prognostics and Health Management (PHM) solutions [1, 2]. PHM involves using ma-
chine data to generate the health status of the machine, allowing the user to schedule
maintenance or prepare in any way for a possible halt in operation. The PHM solutions
result in various advantages such as inventory management, prediction-based planned
maintenance, and a system’s life cycle optimisation.

One of PHM’s key methodologies is the estimation of the remaining useful lifetime
(RUL) [3] of a machine using historical data. By predicting a machine’s RUL, it is easy
to determine its remaining cycles before the occurrence of failure. Recent development in
deep learning methodologies [4] has provided more dynamic and efficient ways of perform-
ing RUL estimations. Contrary to model-based approaches, where domain knowledge of
the inherent system is necessary, deep neural networks (DNN) analyse historical sensor
data to learn abstract information for predicting RULs. Moreover, the non-linearity of
deep neural networks enhances their ability to extract the complex degradation pattern
from a machine’s sensor readings. In previous works, different deep learning approaches
have been presented, ranging from convolutional neural networks (CNN) [5] to recurrent
neural networks (RNN) [6, 7], see [3, 1] for overviews. However, the increase of perfor-
mance results in overly complex architectures with a high number of parameters. This
increased complexity, however, requires enormous labelled datasets which are hard to
obtain in practice.

This paper introduces the novel concept of predicting sequence RUL values instead of a
single RUL for a specific cycle using transformer architectures [8]. We hypothesise that se-
quence RUL points can better map sudden degradation or anomaly from raw sensor data,
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thus providing a better representation of a degradation pattern. On the contrary, aver-
aging the time-series input into a single RUL data point over-generalises the degradation
features. To allow for sequence RUL prediction, we develop two novel transformer archi-
tectures. A Shared Temporal Attention Transformer (STAT) and Feature-Represented
Shared Temporal Attention Transformer (FeaR-STAT) are proposed to estimate accu-
rate RULs by combining solely fully connected (FC) and self-attention layers without any
additional convolutional or recurrent layer. The proposed models use a novel shared tem-
poral self-attention technique to extract individual sensor degradation patterns over time
for better abstraction. Additionally, the lack of recurrent and convolutional layers makes
the models more robust, with fewer trainable parameters in each of them. We apply
the approach to the remaining useful life prediction of C-MAPSS turbofan engines. We
provide various hyperparameter studies and compare them with existing literature results
where both architectures outperform all other approaches with a substantial margin. The
contributions of the paper can be summarised as follows:

• We present a novel sequence-to-sequence neural network approach for RUL esti-
mation based on transformer architectures that provide a better representation of
degradation patterns than a point RUL estimator.

• We present two transformer architectures specifically designed for analysing a gen-
eral multivariate time series dataset. The proposed transformer architectures consist
of a Shared Temporal Attention methodology along with Split-Temporal Multi-Head
attention and Split-Feature Multi-Head attention blocks to enforce a higher empha-
sis on the sequence of the encoder input signal, thus enabling the encoder to correlate
the degradation patterns of the machine in multiple instances.

• We apply the approach to the well known C-MAPSS dataset and report a new
state-of-the-art result with much simpler and lightweight architectures.

The paper is organized as follows. Sec.IV.3 discusses the previous works related to our
approach. Sec.IV.4 presents the basics of transformer architecture. Sec.IV.5 present the
novel transformer architectures for the sequence-to-sequence RUL estimation. In Sec.IV.6,
we provide results on the C-MAPSS data set. Sec.IV.7 concludes the paper.

IV.3 Related Work

We discuss the related literature for RUL estimation as well as transformer architecture
in the sequel.

Deep Learning based RUL estimation: We concentrate on the recently prevalent
deep learning approaches for RUL estimation and refer to [2, 1] for overviews on classical
methods. Notably, two types of DNN have been used in RUL, namely RNNs and CNNs.

A deep-stacked LSTM network followed by multiple FC layers is proposed in [9] while a
stacked bidirectional LSTM network with additional FC layers is proposed in [10] for RUL
prediction of C-MAPSS dataset. Zhao et al. [11] constructed trend features before feeding
them to a stacked LSTM network for predicting RULs. The architecture proposed in
[12] introduces an unsupervised pre-training stage using a Restricted Boltzmann machine
(RBM) to extract complex raw input features combined with Genetic Algorithm approach

187



for hyperparameter tuning. After pre-training, supervised training is performed of the
RBM-LSTM architecture for RUL prediction. To enhance the learning ability of recurrent
encoder-decoder layers, Bahdanau et al. [13] and Luong et al. in [14] proposed attention
mechanisms that allow each decoder state to attend to all the encoder hidden states before
generating the next output. Such an attention-based LSTM network is proposed in [15],
where handcrafted features are extracted, concatenated with the LSTM output and fed
to a regression layer to predict RULs.

CNNs were first used for PHM and RUL prediction tasks in [16] which serves as the
base for future implementations of CNN-based models. The deep CNN network proposed
in [17] performs convolution operation with kernels of unit width. This unit width kernel
allows for sharing kernel weights across raw sensors and enhancing the network’s ability to
learn abstract feature information. An attention-based CNN approach is proposed in [18]
where the CNN filters extract features across multiple temporal axes, which are further
analyzed by the attention layer before generating the RUL. The attention mechanism in
[18] replaces the Softmax activation with a Sigmoid activation, intending to use additional
multivariate features for estimating RUL. The attention-based stacked LSTM RUL pre-
dictor proposed in [19] implements the global Luong concatenation method to calculate
attention alignment scores to predict RULs for the C-MAPSS dataset. An attention-
based deep CNN-LSTM architecture is proposed in [20], where a CNN is used for raw
input feature extraction for the following stacked LSTM network. The LSTM output from
all timesteps is attended with respect to the last hidden state via an attention layer to
generate RUL of a rotatory machine finally. Raw sensor data is pre-processed to generate
a 1D-health indicator matrix passed to a hybrid CNN-LSTM-NN RUL predictor in [21].
The extracted spatial and temporal features from CNN and LSTM networks respectively
are fused and passed to another CNN layer in [22] for predicting RULs of C-MAPSS sub-
datasets FD001 and FD003. Liu et al. [23] proposed an encoder-decoder model for RUL
prediction, where the encoder is made up of stacked BiLSTM layers, followed by multi-
ple CNNs with intermediate pooling layers and the decoder is a network of three fully
connected layers. Another hybrid network of parallel CNN and LSTM paths is proposed
in [24], to reduce the influence of CNN extracted features on series-connected LSTMs.
However, the model includes an additional LSTM network that processes the previous
CNN and LSTM paths’ fused outputs and predicts RUL values. In a later work in [25],
Liu et al. utilises a self-attention mechanism for feature extraction. The feature-attended
output is fed to a Bidirectional Gated Recurrent Unit (BiGRU)-CNN encoder, followed
by a decoder with flattening and fully connected layers. Notably, the most successful
architectures require many learnable parameters, making their application difficult for
small RUL datasets.

Transformer Architectures: The transformer architectures date back to Vaswani
et al. [8], which proposed the transformer as a combination of fully connected layers with
a new multi-head self-attention mechanism in both the encoder-decoder layers. Since
then, several extensions have been developed [26, 27, 28] with primary applications in
NLP and image recognition. The transformer model has not yet been widely tested for
PHM and RUL prediction. Very recently, a gated CNN layer for feature extraction on top
of the transformer encoder layer has been proposed [29]. The model architecture replaces
the decoder with a fully connected regression layer with Sigmoid activation.

To summarize, the proposed transformer architectures distinguish themselves from
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existing work in the following aspects:

• The existing multi-head self-attention methodologies do not split the multivariate
time-series signal when performing the multi-head self-attention. In this study, the
multivariate time-series signal is segmented into univariate signals in the Shared
Temporal Attention Block wherein the weights for each input feature are shared.
Additionally, the Split-Temporal Multi-Head Attention splits the multivariate time-
series along the time dimension to form a number of temporal heads.

• Similarly, the Split-Feature Multi-Head Attention creates feature heads by splitting
the input features into multiple smaller heads.

• The proposed architectures have significantly fewer amount of parameters because
of the shared weights in the temporal attention block for all the input features.

• This reduction in parameters consequently resulted in a drastic improvement in the
performance of the models on a benchmark RUL estimation dataset.

IV.4 Basics of Transformer Architecture
The transformer architecture proposed in [8] deploys a self-attention mechanism where it
computes the relevance between each input with respect to the other inputs. The architec-
ture uses parallel inputs instead of the sequential input method employed in RNN/LSTM
structures to perform the intra-attention operation. Additionally, by adopting the parallel
input technique, the transformer successfully avoids the vanishing and exploding gradient
problems.

The transformer architecture proposed in [8] is illustrated in Fig. IV.1. The input
data in the encoder goes through a self-attention layer involving multiple heads, where all
the other input data points are taken into context while encoding a certain data point. A
residual connection and normalization block follow this, then an independent feed-forward
layer, followed by another residual connection and normalization block. Normalization
is applied to avoid the internal covariate shift [30, 31] through layer normalization. Self-
attention is performed not only on the current encoder inputs but also on the shifted
decoder outputs. The decoder structure performs almost the same operations as the
encoder, including a second attention layer. All decoder units receive the key-value output
pair from the final encoder unit while maintaining the query from its first attention layer
to the second. The entire encoder structure in a transformer consists of a stack of N
identical encoder units, where the units do not share weights. The same approach applies
to the decoder structure [8]. The components involved in a transformer model are briefly
discussed in the next subsection.

IV.4.1 Embedding Layer

The trainable embedding layers used in the transformer model in [8] serve to map sen-
tences or words to numerical vectors in a natural language processing (NLP) task. The
input/output embedding layers are removed in this work since the input is numeric time-
series data and not text/speech. Instead, the input data is either directly fed to the
positional encoding layer or passed on to create query, key and value matrices.
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IV.4.2 Positional Encoding

Positional encoding introduces information about the relative/ absolute position of the
input data. Positional encoding is a valuable tool for realizing the order of information in
time-series data since transformer models receive inputs in parallel and not in sequences.
Similar to the equations proposed in [8], the transformer models presented in this work
also applies a sinusoidal representation along the feature dimension of the input data as
shown in Eqn.IV.1 and IV.2.

PE(pos,2i) = sin(pos/10000(2i/dmodel )) (IV.1)

PE(pos,2i+1) = cos(pos/10000(2i/dmodel )) (IV.2)
where, pos is the temporal position and i is the current feature dimension of the input
data. dmodel refers to the total no. of dimensions in the feature space and it varies for
the encoder and decoder layers. The aforementioned equations create a fixed geometric
progression from 2π to 10000 · 2π [8], with dmodel equalling to the number of features of
the input of the layer it is being applied to (i.e. encoder or decoder). This matrix is then
added to the input, thus creating positional encoded input data.

A drawback of the positional encoding above is that for increasing number of features
in the positional matrix, the sinusoidal angles in Eq. IV.1 and IV.2 tend to be 0 due to
the presence of a large denominator. Thus, a sine or cosine operation on such an angle
produces either 0 or 1, resulting in a non-uniform positional encoding. This raises the
need for a non-uniform positional encoding on input data with small feature size. The
transformer models proposed in this work are implemented with and without positional
encoding to test the need for it in the C-MAPSS dataset.

IV.4.3 Self-Attention

Self-attention requires query (Q), key (K) and value (V) vectors, created by passing
the incoming input, I through three separate weight matrices Wq, Wk, Wv ∈ Rdi×d, i.e.
Q = W q · I, K = W k · I and V = W v · I. Here di is the no. of input features and d is the
corresponding layer hidden dimension with,

d =

{
de, Encoder
dd, Decoder

(IV.3)

Self-attention is then computed as a dot-product between Q and K vectors to generate
the alignment score which is scaled by a scaling factor of 1√

dk
and passed to a softmax

layer [8] yielding,

W = Softmax(
Q ·KT

√
dk

) (IV.4)

where, dk = key (K) dimensions in a specific layer. The generated attention weights are
then multiplied to the value (V) vector, thus creating a context between a certain query
and all the other values in that sequence. Therefore, the scaled dot-product attention
(SDA) is finally given by,

SDA(Q,K, V ) = Softmax(
Q ·KT

√
dk

) · V (IV.5)
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IV.4.4 Multi-Head Attention

Multi-head attention (MHA) denotes the parallel computation of SDA for a specified
number of heads, h. The query, key and value vectors, each with feature size of d, are
multiplied with individual weight matrices, WQ

i ∈ Rd×dq , WK
i ∈ Rd×dk and W V

i ∈ Rd×dv ,
where, i denotes each head ranging from 1,2,...h. The weight matrices do not share
weights across the heads. Q, K and V are thus sub-divided into h sets i.e. (Q,K,V)1,
(Q,K,V)2,...,(Q,K,V)h. The resulting dimensions are equal in shape and, dq=dk=dv=d/h.
Each of these sets are mapped into self-attention outputs for h separate times. The
attention from all h self-attention blocks are concatenated and passed through a weight
matrix, Wa ∈ Rdk×d to produce the final attention. This operation is represented as,

MHA(Q,K, V ) = Concat(head1, head2, ..., headh) ·W a (IV.6)

where,
headi = SDA(QWQ

i , KW
K
i , V W

V
i ). (IV.7)

MHA requires the same computation cost as a single head SDA, due to fewer dimensions
in each head than higher dimensions in the latter. Moreover, the individual self-attention
heads jointly attend to information originating from multiple representation subspaces,
form a context and map them to a combined representation subspace [8]. We subse-
quently perform MHA on both the feature dimension and temporal dimension. In feature
attention, instead of passing the Q, K, V vectors through individual linear layers, the
dimensions are reduced by splitting them physically into h different matrices along the
features space. In temporal attention, the Q, K, V vectors are divided along the timestep
dimension to create matrices of shorter time-length but with full dimensionality. Due to
this split nature, the attention procedures are termed as Split-Feature MHA (Sec.IV.5.3)
and Split-Temporal MHA (Sec.IV.5.1).

IV.4.5 Masking

In the transformer model, look-ahead masks are applied in the first multi-head attention
block of the decoder. As the decoder performs self-attention on its previously generated
target sequence, the future tokens must be concealed from this operation. The attention
must only tend to the present and past tokens. Therefore, a look ahead mask that matches
the shape of the QKT dot product is created. The mask contains ’0’ in positions that
must be revealed and −∞ in the positions to be concealed. This mask is then added to
the QKT vector before passing it to the softmax layer. This restricts the attention from
"looking ahead" in the future and uses only the past and present information to predict
the subsequent output.

IV.4.6 Layer Normalization

The problem of Internal Covariate Shift (ICS) [30, 31] can be solved by normalizing
the outputs from the previous layer before entering the current hidden layer. Layer
Normalization normalizes the input across the feature dimension i.e. normalizes each
features to zero mean and unit variance. In this method, the mean µl and standard
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deviation σl are calculated across all the hidden nodes in a specific lth layer [30]. The
equations for layer normalization are given as,

LayerNormi = γâi + β (IV.8)

where

âi =
ai − µli√
σ2
i + ϵ

(IV.9)

and

µli =
1

H

H∑
i=1

ali (IV.10)

σli =

√√√√ 1

H

H∑
i=1

(ali − µl)2. (IV.11)

Here ali is the vector of inputs of all H nodes in the lth hidden layer. Layer normalization
eliminates a major drawback of batch normalization [31], which is the constraint of not
being able to train a model with input data of batch/mini-batch size of 1. The transformer
architectures proposed in this work also deploy layer normalization in a similar manner.

IV.4.7 Position-wise Feed-Forward Networks

The feed-forward networks (FFN), as shown in Fig. IV.1 consists of two fully connected
(FC) linear layers with a ReLU activation after the first FC layer. The FFNs are inde-
pendent and do not share weights [8]. The FFNs deployed in our proposed architectures
replace the ReLU activation with a Leaky ReLU activation. We deploy FFNs in our
architecture as- one in the Shared Temporal Attention (STA) block (Sec.IV.5.2), and one
each in the central encoder and decoder layers.

FFN(x) = (max(0, x ·W 1 + b1)

+ 0.1 ·min(0, x ·W 1 + b1)).W 2 + b2
(IV.12)

Where, x is the input to the FFN and x ∈ Rd. W1, b1 and W2, b2 are the first and
second linear layer weights and biases. W1 ∈ Rd×d·m, b1 ∈ Rd·m, W2 ∈ Rd·m×d, b2 ∈ Rd.
d = no. of features of x and m ∈ Z+ (a positive integer) is a multiplier to increase the
inner dimensionality of the FFN layer.

IV.5 Temporal Attention-based Transformer for Se-
quence RUL Prediction

The original transformer architecture has been developed for natural language processing
problems and has later been extended to image processing. However, the sequence RUL
prediction is differing to the aforementioned domains as its input is typically represented
by multivariate time-series, i.e. sensor data. Hence, we require for novel methodologies
to perform self-attention suitable for multivariate time series data. We tackle this by two
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types of self-attention, namely temporal attention on the univariate sensor signal and split-
feature attention for attending on information from different channels. Furthermore, we
present a robust and computation-efficient approach for creating feature heads. Finally,
we propose two novel transformer architectures for sequence RUL prediction using the
above attention blocks.

IV.5.1 Split-Temporal Multi-Head Attention (STMHA)

Temporal heads are created from an input signal by splitting it into a divisible number of
shorter signals. The original input sequence is divided into headst no. of mini-sequences
while maintaining the actual order of the time series data. The mini-sequences are fed to
the STMHA layer according to the original order. The hidden representations for these
mini-sequences are calculated consecutively in the temporal heads where the weights are
shared. Therefore, there is no information loss since all the mini-sequences are mapped
to their respective hidden representations and subsequently concatenated to produce the
final attended output. A signal of length, t = t1,t2,...,tT and features, f = f1,f2,...,fi is
passed through weight matrices, WQ∈Ri×de , WK∈Ri×de and W V∈Ri×de , to form query,
key and value (Q, K, V) vectors. Here, i = size of input feature dimension and de = size of
encoder hidden dimension. Each of the Q, K and V vectors are then split along the time
dimension to form headst number of temporal heads. Self-attention is then performed
on each of the temporal heads to produce attended vectors {Zattn

1 , Zattn
2 , .., Zattn

headst
} ∈

Rtheads×de . A temporal-attended output, Zattn ∈ RT×de is finally formed by concatenating
the attended vectors along the time-dimension. STMHA is used along with additional
components on the encoder of the proposed transformer models presented below.

IV.5.2 Shared Temporal Attention Block for Transformer En-
coder

A novel concept of raw feature segmentation and univariate STMHA is presented in this
section, with the aim to reducing noise or interference from adjacent sensor signals while
attending the timesteps in a specific feature. As shown in Fig. IV.2, a multivariate input
signal is segmented into univariate signals, and each of those signals flows through a
Shared Temporal Attention (STA) block. Note, that for segmented univariate signals, the
input feature dimension in the STMHA block now becomes i=1. The univariate temporal
attended output passes through a FFN layer, followed by a residual addition and layer
normalization, yielding to the following equations for any univariate temporal attended
vector Zattn

i :

FFN(Zattn
i ) = (max(0, (Zattn

i ·W 1 + b1))

+ 0.1 ·min(0, (Zattn
i ·W 1 + b1))).W 2

+ b2

(IV.13)

Znorm
i = LayerNorm(Zattn

i + FFN(Zattn
i )) (IV.14)

Zi = W flat · Znorm
i + bflat (IV.15)
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Where, W1, W2 and b1, b2 are the weights and biases of the two feed-forward layers
and W1∈Rde×(m·de), W2∈R(m·de)×de . m ∈ Z+ is a multiplier that increases the inner
dimensionality of the FFN layer. The normalized vector, Znorm

i is flattened and multiplied
by a weight matrix, Wflat ∈ R(T ·de)×T to produce a shared temporal-attended univariate
signal Zi ∈ RT×1. For a multivariate raw input signal S ∈ RT×i, the STMHA block
operates for i no. of segmented sensor signals to produce shared univariate attended
signals, {Z1,Z2,...,Zi} ∈ RT×1. These signals are concatenated along the feature dimension
to form a multivariate shared-temporal attended output, Z ∈ RT×i.

Z = concat(Z1, Z2, Z3, ..., Zi) (IV.16)

The term ’shared’ signifies that all the layers involved in the STA block share their weights
across the segmented raw univariate signals. The STA layer splits each univariate signal
into multiple segments of shorter length while maintaining the original sequence, and
then performs self-attention on these segments. For each sensor, this layer attends to the
life-cycle information from all the split segments of the time-series signal and extracts the
degradation pattern to an attended univariate output. The learned weights from each
sensor during this process is shared across the other sensors. This shared architecture is
particularly suitable for a diverse set of raw sensor parameters that provide non-uniform
patterns of decay throughout an engine’s life cycle. The shared weights allow the model
to comprehend the individual sensor relationships more effectively without the cost of an
increased number of parameters.

IV.5.3 Split-Feature Multi-Head Attention

To further reduce computation cost and training time, we propose a new concept of
creating feature heads by splitting the input features, named as Split-Feature Multi-Head
Attention (SFMHA). Q, K and V vectors are formed by passing the input vector of
length, t = t1,t2,...,tT and features, f = f1,f2,...,fi through weight matrices, WQ∈Ri×dd ,
WK∈Ri×dd and W V∈Ri×dd , where dd is the decoder hidden size. The Q, K and V vectors
are then split along the feature dimension into (headsf) feature heads, with the new split
vectors containing a dimension size, iheads. Self-attention is performed on the split feature
heads to produce corresponding attended vectors {Zattn

1 , Zattn
2 , .., Zattn

headsf
} ∈ RT×iheads . The

shared technique allows the network to find a correlation along the feature space without
the need for increasing the number of trainable parameters and computation time. This
is widely useful in prediction tasks of multivariate datasets with a wide array of input
features, such as the C-MAPSS dataset. A feature-attended output vector, Zattn ∈ RT×dd

is finally created by concatenating the individual feature head attention outputs along the
feature dimension. SFMHA replaces the conventional multi-head attention mechanism in
the decoder section of the proposed transformer architectures. Additionally, in one of the
proposed models shown in Sec.IV.5.5, SFMHA is also incorporated in the encoder section.

IV.5.4 Shared Temporal Attention Transformer (STAT)

Having presented the novel attention blocks, we now propose our novel transformer ar-
chitecture called Shared Temporal Attention Transformer (STAT) shown in Fig. IV.3.
The architecture resembles the encoder-decoder format of the transformer architecture
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proposed in [8], where the encoder and decoder sections are formed off of N× stacked
encoder and N× stacked decoder layers respectively. Weights are not shared across the
individual encoder layers and, the same applies for the decoder layers as well. Positional
encoding (PE) is optionally included before the first encoder and decoder layer to intro-
duce information about the relative or absolute position of each input data point.

Encoder

In the encoder layer, the features in a multivariate input signal, S ∈ RT×i are first seg-
mented to form individual univariate signals, {S1, S2, .., Si} ∈ RT×i. These segmented
univariate signals are passed through the Shared Temporal Attention (STA) layer to form
a multivariate attended signal Z ∈ RT×i. A second phase of attention in the form of
STMHA is performed on the multivariate attended signal Z. The key difference between
the first and second attention block is that, in the first attention phase, STMHA is per-
formed in a shared recurrent manner on each of the i segmented feature sensors whereas,
in the second attention phase, STMHA is performed on a multivariate signal as a whole.
Sharing weights across all the segmented features in the first attention phase allows the
encoder to learn high-level feature representations across the sensors in the input data,
while at the same time learn the inherent degradation pattern within each sensor, without
the interference from another. The multivariate attended signal, Z now possesses more
coherence across the feature domain due to the shared attention mechanism. STMHA
is then performed on the multivariate signal, Z, which allows interaction between the
coherent features while performing self-attention along the temporal dimension. This
layer is followed by a FFN layer, a residual connection and layer normalization. For any
multivariate STMHA output, Zstmha, we have

FFN(Zstmha) = (max(0, (Zstmha ·W 1 + b1))

+ 0.1 ·min(0, (Zstmha ·W 1 + b1))).W 2

+ b2

(IV.17)

Znorm
stmha = LayerNorm(Zstmha + FFN(Zstmha)) (IV.18)

where, W1, W2 and b1, b2 are the weights and biases of the two linear layers in the FFN.
W1 ∈ Ri×(m·i), W2 ∈ R(m·i)×i and m ∈ Z+ is the dimensionality multiplier of the FFN
layer. This normalized output from each encoder layer is passed on to the next encoder
layer where the aforementioned attention steps are repeated. This process repeats itself
for N times until the N -th encoder layer is reached. The output of the N -th encoder layer
is multiplied by weight matrices W k

ED, W v
ED ∈ Ri×(dd), to form key and value inputs for

the decoder layers.

Decoder

The first decoder layer in the stack is initiated with a tensor of zeros, that serves as the
start-of-sequence, < SOS > token. The first block in the decoder layer is a split-feature
masked multi-head attention operation with look-ahead masking to prevent the decoder
from using future information and process only the information obtained from the current
and previous timesteps. The feature attended output from this layer passes through a
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residual connection and then a layer normalization. The normalized output is the query
vector Q for the second SFMHA type attention block where key K and value V vectors
are obtained from the output of the N -th encoder layer. This is followed by a residual
connection, layer normalization and an FFN layer composed of two FC layers with non-
linear Leaky ReLU activation after the first FC layer. For any normalized input Y norm1

D

∈ RTo×de to the FFN layer, we have,

FFN(Y norm1
D ) = (max(0, (Y norm1

D ·W 1 + b1))

+ 0.1 ·min(0, (Y norm1
D ·W 1 + b1))).W 2

+ b2

(IV.19)

Y norm2
D = LayerNorm(Y norm1

D + FFN(Y norm1
D )) (IV.20)

where, W1, W2 and b1, b2 are the weights and biases of the two linear layers in the decoder
FFN and, W1 ∈ Rdd×(m·dd), W2 ∈ R(m·dd)×dd . m ∈ Z+ is the dimensionality multiplier of
the decoder FFN layer and dd is the decoder hidden dimension. The final step in a decoder
layer is a linear layer of weight, WRUL ∈ Rde×dRUL , that predicts a sequence output with
dimension, dRUL= 1. This predicted output is sent to the next decoder layer and the
process repeats until the N -th decoder layer finally produces the sequence RUL labels.
The N decoder layers do not share weights just like the encoder layers. Every decoder
layer receives the same K and V vectors from the N -th encoder layer to perform the
second attention phase with the Q vector generated from the masked SFMHA attention
phase.

IV.5.5 Feature-Represented Shared Temporal Attention Trans-
former (FeaR-STAT)

We alternatively propose Feature-Represented Shared Temporal Attention Transformer
(FeaR-STAT) as shown in Fig. IV.4. This architecture resembles the proposed STAT
architecture (Sec.IV.5.4) except for the encoder layer. As seen in the STAT architecture,
the encoder layer fully relies on STMHA type attention while, the decoder on SFMHA
type attention. FeaR-STAT removes the absolute dependency of the encoder on temporal
attention by replacing the second attention phase in the encoder with an SFMHA type
attention. By performing SFMHA on the STA multivariate output, the individually
attended features are allowed to perform self-attention across the feature dimension for
the entire length of the input signal. This enhances the encoder’s ability to attend to
the complex degradation pattern throughout all the features across the full input signal
length and consequently allows the encoder to provide K and V vectors to the decoder
layers with effectively learned feature and temporal representations for predicting the
RUL sequence.

The STAT and FeaR-STAT encoders resemble one another until after the STA layer.
Next, the multivariate attended signal, Z is passed through a FC linear layer with a
weight matrix, Wexpand ∈ Ri×dd , to create Z ∈ RT×dd . The expansion in feature size is
necessary since, in SFMHA, the input signal Z is split across the feature domain to create
headsf signals, each of length T and iheads= dd/headsf features, where, iheads, dd, headsf ∈
Z+. SFMHA is performed on the feature expanded signal Z to produce Zsfmha ∈ RT×dd .
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This feature attended output passes through a FFN layer, residual connection and layer
normalization yielding,

FFN(Zsfmha) = (max(0, (Zsfmha ·W 1 + b1))

+ 0.1 ·min(0, (Zsfmha ·W 1 + b1))).W 2

+ b2

(IV.21)

Znorm
sfmha = LayerNorm(Zsfmha + FFN(Zsfmha)) (IV.22)

where, W1, W2 and b1, b2 are the weights and biases of the two linear layers in the encoder
FFN and, W1 ∈ Rdd×(m·dd), W2 ∈ R(m·dd)×dd , and m ∈ Z+ is the dimensionality multiplier
of the encoder FFN. The final step in a FeaR-STAT encoder layer is passing the Znorm

sfmha

output through a linear layer with weights, Wreduce ∈ Rdd×i, to create the encoder output
Znorm
sfmha ∈ RT×i. The FeaR-STAR encoder operation is recurrent i.e., the output from one

layer is passed on to the next for N times until the N -th encoder layer generates a latent
representation for the decoder layers.

The decoder receives this encoder latent representation in the form of K and V vectors
for the second SFMHA attention phase. Similar to STAT architecture, the N encoder
layers do not share weights and neither do the N decoder layers.

IV.6 Experimental Results and Comparison

In this section we present the experimental results of our novel transformer architecture.
In this work, the Turbofan Engine Degradation Dataset (referred to as C-MAPSS dataset
henceforth) is used to evaluate the model performances.

IV.6.1 Dataset Description

C-MAPSS is a model-based simulation program prepared by NASA and provides the
simulation of a large commercial turbofan engine, used in aircraft propulsion [32]. It was
used to generate the Turbofan Engine Degradation Simulation Dataset and the PHM 2008
Challenge Dataset [33].

The C-MAPSS dataset consists of four different working environments FD001, FD002,
FD003 and FD004. Each sub-dataset consists of a train and a test dataset, with a
corresponding RUL data containing the last run-time for each test engine. In each of
the four sub-datasets, the engines start operating in a healthy state and run until the
system fails due to gradual degradation. In the test samples, the sensor measurements
are trimmed from a certain period (as provided in the RUL database) before system
failure and that corresponding period is taken for evaluation and scoring. Initial wear are
considered in all the train and test engines [33, 34]. Each of the train and test C-MAPSS
sub-datasets contain outputs from 21 sensors. These measurements are sensor responses
to 14 different health parameter inputs that simulate degradation scenarios in any of
the engine’s rotating components [33]. Sub-datasets FD001 and FD003 operate with one
operational setting, thus resulting in one unique operating condition whereas, FD002 and
FD004 operate with three different operational settings. The three operational settings
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result in six unique operating conditions. This variation in operating conditions creates
fluctuations in sensor readings, since data points in consecutive cycles may not belong to
the same operating condition.

Following previous work [16], we exclude Sensors S1, S5, S6, S10, S16, S18, S19 as
they show monotonous pattern in their readings. Additionally, the inclusion of the his-
tory of operating regimes as features along with the selected sensor readings to optimize
model performance is suggested in [16]. The approach is implemented for the sub-dataset
FD002. However, in order to demonstrate the effectiveness of the proposed STA layer in
understanding individual sensor relationships and overall degradation pattern, we sepa-
rately provide performance scores by the STAT and FeaR-STAT architectures using the
complete set of sensor readings as input from the C-MAPSS dataset.

Further, we use Min-Max Scaling to the range [-1, 1]. Due to the six different operating
conditions in FD002 and FD004, the magnitude and distribution of the data points within
each condition vary and hence, they require to be scaled separately [35]. The individual
sensor data from each of the six conditions are segregated, scaled and then combined
according to their original pre-scaling positions.

Performance Evaluation Metric

The scoring functions [33] for the C-MAPSS dataset is given by

si =

e
di
a1 − 1, di < 0

e
di
a2 − 1, di ≥ 0

(IV.23)

S =
N∑
i=1

si (IV.24)

where, a1 = 13, a2 = 10, di = Predicted RUL - Target RUL for the i-th engine, si = score
for the i-th engine, N = total engines in a test sub-dataset and S is the final performance
score for that sub-dataset [17]. This is an inverse scoring function i.e. a lower total score
represents better performance by the model and a higher score denotes the opposite.
Additionally, the scoring function exclusively depends on the generated RUL for the final
input sequence, and not on the RUL obtained throughout the prediction spectrum.

IV.6.2 Optimizer Warmup and Learning Rate

We utilize the Adam optimizer [36] with parameters (β1, β2) = (0.9, 0.98) and ϵ = 10-08.
Instead of using a fixed learning rate LR, we use a warm-up scheduler where it is in-
creased linearly for the first warmupsteps training steps and, decreased proportionally to
the inverse square root to the warmupsteps [8]. Thus, LR is governed by

LR = d−0.5
d ·min(step−0.5

num, stepnum · warmup−1.5
steps) (IV.25)

where, dd is the decoder hidden size, stepnum is the instantaneous training iteration and
warmupsteps is the total number of training iterations for the architecture. Contrary to
[8], the warmupsteps is not kept constant in this work and it is dependent upon a certain
hyperparameter called Optimizer Warmup percentage, Wopt%. Depending on a certain
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Wopt%, Eq. IV.26 calculates the warmupsteps iterations as an approximate no. of epochs,
e and schedules the learning rate accordingly.

warmupsteps ≈ e · N
BS
·W opt% (IV.26)

where, N= total no. of training samples in mini-batches, BS= mini-batch size.

IV.6.3 Hyperparameters

The hyperparameters range for optimally training the STAT model are presented in Table
IV.1 where Grid Search algorithm is used to find the set of hyperparameters for best pos-
sible performance. The model performance is evaluated with multiple possible temporal
and feature heads (headst and headsf), with multiple stacked encoder and decoder layers,
LED. A fixed mini-batch size, BS of 512 is selected. Teacher forcing, TF is constantly set
to 0% to test the model’s ability of predicting RULs without being dependent on actual
RUL labels. Multiple optimizer warmup percentages, Wopt% are assessed to understand
the role of a non-uniform learning rate in the performance of the STAT and FeaR-STAT
architectures. All weights are initialized using Xavier Uniform method [37] and biases are
initialized with zeros.

Table IV.1: List of Hyperparameters for Proposed STAT and FeaR STAT Architectures

Hyperparameters Symbol Range

Temporal Heads headst {2, 4, 6, 8}

Feature Heads headsf {4, 8, 16, 32}

Encoder Hidden Size de {4, 8, 16}

Decoder Hidden Size dd {32, 64, 128}

Number of Layers LED {2, 3, 4}

Optimizer Warmup Wopt % {30, 50, 70}

IV.6.4 Temporal Heads & Sequence Lengths

The proposed temporal attention technique in the STAT architecture requires splitting the
raw input sequence of length Ti into multiple temporal heads, headst such that (Ti/headst)
∈ Z+. For all possible headst = {2, 4, 6, 8} that are used to tune the STAT model in this
work, the set of input sequence lengths, Ti for the four C-MAPSS sub-datasets are selected
correspondingly in a way that they fulfill the aforementioned condition. This is shown
in Table IV.2. Additionally, the RUL sequence length, TRUL is kept constant at 10 for
all sub-datasets and for all temporal heads. After a grid search on these hyperparameter
ranges, the best performing hyperparameter setting for STAT and FeaR-STAT models
are shown in Table IV.3.
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Table IV.2: Selection of Input Sequence length (Ti) depending on headst for Proposed
STAT and FeaR-STAT Architectures

headst Ti

2 (30, 20, 36, 18)
4 (28, 20, 36, 16)
6 (30, 18, 36, 18)
8 (24, 16, 32, 16)

(a) FD001 Engine ID 100.

(b) FD003 Engine ID 3.

Figure IV.5: Remaining Useful Lifetime (RUL) estimation Plots by proposed STAT ar-
chitecture.
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(a) FD001 Engine ID 100.

(b) FD004 Engine ID 32.

Figure IV.6: Remaining Useful Lifetime (RUL) estimation Plots by proposed FeaR-STAT
architecture.
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Table IV.3: Hyperparameter sets for best scores in C-MAPSS Dataset by Proposed
STAT & FeaR-STAT Model Architectures

Sym-
bol Hyperparameter Values

Pre-Selected Sensors Complete Sensors

STAT FeaR-
STAT

STAT FeaR-
STAT

headst 4 4 4 4

headsf 16 8 8 8

de 4 4 8 4

dd 32 32 32 32

LED 2 2 2 2

Wopt%
50 30 30 30

IV.6.5 Performance Analysis by Proposed STAT and FeaR-STAT
Architectures using C-MAPSS Dataset

The results of the proposed STAT and FeaR-STAT architectures on the C-MAPSS dataset
are presented in this section. The performance scores by the models are presented in
Table IV.4 for input data with pre-selected sensors, and in Table IV.5 for input with the
complete set of sensors. The corresponding set of hyperparameters for these scores are
provided in Table IV.3. It is evident from the results that the proposed STA layer in both
the models is capable of deducing the individual sensor relationships and the non-uniform
degradation pattern from the diverse set of sensors. In both cases, the models can generate
a balanced set of scores across all four sub-datasets. However, as the results provided in
the literature are generated using pre-selected sensors, we opt for the results with a similar
approach for further hyperparameter sensitivity analysis and literature comparison in the
following sections.

Fig. IV.5 and Fig. IV.6 represent the RUL estimation plots by the proposed STAT and
FeaR-STAT models respectively. It is evident from the plots that both models effectively
capture the global degradation pattern in the sub-dataset engines. Early prediction can
be observed in both the plots, denoting the ability of the models to detect faults in good
time from the run-time data of the engines. However, the proposed STAT model provides
more uniform predictions than the FeaR-STAT model, creating slight fluctuations in the
degrading phase.

For the four sub-datasets FD001, FD002, FD003 and FD004 with pre-selected sensors,
the approximate training duration required by the STAT and FeaR-STAT architectures
for 120 epochs are presented in Table IV.6. Correspondingly, the inference time for one
forward pass in the testing loop for both architectures are given in Table IV.7. The
proposed models are trained on a system equipped with NVIDIA Quadro RTX 5000
GPU, Intel Core-i7 CPU with 2.5GHz clock speed and 32 GB RAM.
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Table IV.4: Proposed STAT & FeaR-STAT Architectures Performance Scores using C-
MAPSS Dataset with pre-selected sensors

Model Scores

FD001 FD002 FD003 FD004

STAT 184 1098 189 1824

FeaR-
STAT 200 1023 199 1587

Table IV.5: Proposed STAT & FeaR-STAT Architectures Performance Scores using
C-MAPSS Dataset with complete set of sensors

Model Scores

FD001 FD002 FD003 FD004

STAT 196 968 185 1919

FeaR-
STAT 206 1115 182 1639

Table IV.6: Training time for 120 Epochs with STAT and FeaR-STAT architectures using
C-MAPSS Dataset.

Model Training time (mins)

FD001 FD002 FD003 FD004

STAT 7.5 24.2 9.24 22.1

FeaR-
STAT 6.6 22.8 8.4 20.4

Table IV.7: Inference time for one forward pass with STAT and FeaR-STAT architectures
using C-MAPSS Dataset.

Model Inference time (sec)

FD001 FD002 FD003 FD004

STAT 0.03 0.036 0.035 0.024

FeaR-
STAT 0.023 0.035 0.03 0.025
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Figure IV.7: Effect of Temporal Heads (headst) in proposed STAT Architecture.

IV.6.6 Results on Hyperparameter Sensitivity

We start the experimental results by analysing the performance of STAT and FeaR-
STAT with different hyperparameter settings on the C-MAPSS dataset with pre-selected
sensors. The hyperparameters include the number of temporal and feature heads, encoder
and decoder hidden sizes, number of encoder and decoder layers and optimizer warmup
rate. Finally, we compare the results with existing approaches in the literature.

Effect of Temporal Heads and Feature Heads

The impact of changing the number of Temporal Heads, headst in the STAT and the
FeaR-STAT models is shown in Fig. IV.7 and in Fig. IV.8 respectively. In both the
cases, keeping all other hyperparameters constant, a headst of 4 results in the overall
best performance across all the sub-datasets in both models. Further increasing headst
degrades overall performance for both the STAT and FeaR-STAT architectures.

However, by analysing the effect of the number of Feature Heads, headsf in the STAT
model, it can be observed from Fig. IV.9 that increasing the number of headsf up to
16 leads to an improvement in the overall prediction performance. A further increase in
headsf highly deteriorates overall results especially in FD001 and FD003 sub-datasets. It
is to be noted here that Feature Heads is required only in the decoder part of the STAT
model. Fig. IV.10 shows the effect of the headsf in the FeaR-STAT model. It is evident
from Fig. IV.10 that increasing headsf does not assist in the model performance, rather
keeping them at 8 results in the best overall performance across all the sub-datasets.
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Figure IV.8: Effect of Temporal Heads (headst) in proposed FeaR-STAT Architecture.

Figure IV.9: Effect of Feature Heads (headsf) in proposed STAT Architecture.
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Figure IV.10: Effect of Feature Heads (headsf) in proposed FeaR-STAT Architecture.

Effect of Encoder and Decoder Hidden Size

Increasing the encoder-decoder hidden sizes (de, dd) declines the performance of the STAT
model in all four sub-datasets as shown in Fig. IV.11 and Fig. IV.13. The deep architecture
of STAT provides enough model complexity to learn complex features from the input data
and generate corresponding RULs. Hence, larger hidden sizes may not be necessary for
improving the model performance. A similar behaviour can be observed in the Fear-STAT
model from Fig. IV.12 and Fig. IV.14 where increasing the encoder-decoder hidden size
results in a deterioration in the performance.

Effect of No. of Encoder & Decoder Layers

The STAT model achieves on average the best performance by using the least number of
stacked encoder and decoder layers, LED as shown in Fig. IV.15. Since the stacked layers do
not share weights, hence increasing LED proportionally increases the number of trainable
parameters and eventually plummets the model performance. The use of least number
of trainable parameters is one of the biggest attributes of the STAT architecture. The
performance drop is even more drastic in the case of the FeaR-STAT model as illustrated
in Fig. IV.16, where the performance sharply plummet due to increasing the number of
stacked encoder and decoder layers.

Effect of Optimizer Warmup Rate

The Wopt%, plays quite a significant role in the performance of the STAT architecture.
As shown in Table IV.8, a Wopt% of 50% for LR scheduling, results in the overall best
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Figure IV.11: Effect of Encoder Hidden Size (de) in proposed STAT Architecture.

Figure IV.12: Effect of Encoder Hidden Size (de) in proposed FeaR-STAT Architecture.

Figure IV.13: Effect of Decoder Hidden Size (dd) in proposed STAT Architecture.
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Figure IV.14: Effect of Decoder Hidden Size (dd) in proposed FeaR-STAT Architecture.

Figure IV.15: Effect of no. of Layers (LED) in proposed STAT Architecture.
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Figure IV.16: Effect of no. of Layers (LED) in proposed FeaR-STAT Architecture.

performance across all the other sub-dataset. However, a Wopt% of 30% for LR scheduling
works best in the case the of the FeaR-STAT model as shown in Table IV.9.

Table IV.8: Comparison of STAT Performance (Scores) based on Optimizer Warmup rate

Optimizer
Warmup Score

(Wopt%) FD001 FD002 FD003 FD004

30 229 1033 215 1916

50 184 1098 189 1824

70 255 1047 261 2490

IV.6.7 Comparison with Related Literature

In this section, we evaluate the sequence RUL predictor models presented in this paper
against the literature model performances based on their generated scores (Table IV.10)
and RMSE losses (Table IV.11) for the C-MAPSS Turbofan Engine Dataset. In both
tables for each sub-dataset, the best values are formatted in bold and the second-best
ones are underlined.

As evident in Table IV.10, the proposed STAT and FeaR-STAT models outperform
the best literature score [18] for all the sub-datasets, with the exception of FD001 for the
FeaR-STAT model. The STAT model strikes a fine balance throughout the sub-datasets.
A further improvement from the STAT performance can be observed in the proposed
FeaR-STAT, which significantly improves the FD004 score. A thorough observation of
Table IV.10 confirms that the proposed STAT and FeaR-STAT outmatches every litera-
ture model when providing a highly balanced performance throughout all the C-MAPSS
sub-datasets. The Transformer encoder model with Gated CNN [29] does not deploy the
scoring function as a performance metric and hence, scores from this literature are not
available for comparison.
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Table IV.9: Comparison of FeaR-STAT Performance (Scores) based on Optimizer
Warmup rate

Optimizer
Warmup Score

(Wopt%) FD001 FD002 FD003 FD004

30 200 1023 200 1587

50 285 1407 283 2353

70 256 1838 267 2196

A distinctive analysis can be made in Table IV.11 by comparing the models based
on their RMSE losses during the testing phase. The RMSE loss is an indication of the
model’s capability of providing accurate RUL predictions throughout the life cycle of an
engine. This reflects how well a model can capture the degradation pattern from the start
till the end of life of any machine. However, the RMSE loss is different from the C-MAPSS
performance score since, the scoring function depends exclusively on the final RUL cycle
of the engine whereas, the RMSE loss function depends on all RUL predictions throughout
the life-cycle of the engines. The RMSE for all methods with attention mechanism, which
perform similarly to the STAT and FeaR-STAT w.r.t scores are shown in Table IV.11.
The STAT and FeaR-STAT transformers fall slightly behind the Transformer-encoder
with Gated CNN model [29], DAG [24] and the CNN + Attention [18] for the FD001
RMSE. However, proposed transformer RMSEs outperform in all other operating condi-
tions compared to existing literature underlining the capability of the approaches.

We provide a comparison of the trainable parameters of the architectures. The average
score on all the operating conditions in the C-MAPSS dataset in relation to the total
number of trainable parameters in the best performing models from literature and our
best performing model is shown in Fig. IV.17. The best performing STAT and FeaR-
STAT models require similar number of trainable parameters as the ones in literature,
but performs remarkably better with an average score of 823.75 and 752.25 respectively.
The obtained results are superior to the current state of the art.

Finally, the training duration required by the proposed models and the literature are
compared with their corresponding performance scores for the C-MAPSS sub-dataset
FD001 in Fig. IV.18. On evaluating this with Fig. IV.17, it is to observe that the com-
putation time of DAG [24] is the least since it consists of fewer trainable parameters.
However, the performance score from the proposed models is sufficiently higher than all
the models presented in the literature. Furthermore, although the STAT model contains
almost the same number of parameters as in AGCNN [25], and FeaR-STAT consists of
virtually the same as in DCNN [17], both the proposed models complete training faster
and performs better than the compared literature.

IV.7 Conclusion

In this paper we proposed a novel approach for remaining useful lifetime estimation us-
ing transformer neural networks. Particularly, we propose two novel transformer blocks,
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Figure IV.17: Average score of the proposed architectures on the C-MAPSS dataset com-
pared to existing work in literature with respect to the number of trainable parameters.
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Figure IV.18: Performance Score vs Training Time comparison between proposed STAT
and FeaR-STAT architectures and current literature for C-MAPSS sub-dataset FD001.
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Table IV.10: Comparison of Model Performance (Scores) with Related Literature

Model Description Score

FD001 FD002 FD003 FD004

Deep LSTM [9] 338 4450 852 5550

Stacked BiLSTM [10] 295 4130 317 5430

Handcrafted Features +
LSTM [15]

322 − − 5649

CEEMD+DLSTM [11] 262 6953 452 15069

RBM+LSTM [12] 231 3366 251 2840

CNN [16] 1287 13570 1596 7886

CNN+Attention [18] 198 1144 251 2072

HI CNN-LSTM-NN [21] 303 3440 1420 4630

FCLCNN [22] 204 − 234 −
BLCNN [23] 302 1558 381 3859

DAG [24] 229 2730 535 3370

DCNN [17] 274 10412 284 12466

AGCNN (Self-Att.) [25] 225 1492 227 3392

LSTM + Luong Att.
[19]

320 2102 223 3100

Transformer Encoder +
Gated CNN[29]

− − − −

Proposed STAT 184 1098 189 1824

Proposed FeaR-STAT 200 1023 199 1587

namely shared temporal and split-feature attention blocks, which are specifically designed
for the analysis of multivariate time series data. We leverage these blocks by propos-
ing shared temporal and feature-represented shared temporal attention transformer used
to detect degradation patterns for RUL estimation. We apply both transformer archi-
tectures to the C-MAPSS benchmark dataset where both architectures exhibit superior
performance compared to the existing state-of-the-art approaches.

In future work, we will further elaborate on the positional encoding technique for
the proposed transformer types to mitigate the actual drawbacks for time series analysis.
Furthermore, we will test both architectures in other application domains involving mul-
tivariate time series analysis including condition monitoring and forecasting and apply
them to other dataset as well.
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Table IV.11: Comparison of Model Performance (RMSE) with related attention literature

Model Description RMSE

FD001 FD002 FD003 FD004

DAG [24] 11.96 20.34 12.46 22.43

CNN+Attention [18] 11.48 17.25 12.31 20.58

AGCNN (Self-
Attention) [25]

12.42 19.43 13.39 21.50

LSTM+Luong Atten-
tion [19]

13.95 17.65 12.72 20.21

Transformer Encoder
+ Gated CNN[29]

11.27 22.81 11.42 24.86

Proposed STAT 12.1 15.2 10.6 15.54

Proposed FeaR-
STAT

12.01 15.5 10.9 15.03
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