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A B S T R A C T   

The urban acoustic environment (AE) provides comprehensive acoustic information related to the diverse sys
tems of urban areas, such as traffic, the built environment, or biodiversity. The decreasing cost of acoustic sensors 
and rapid growth of storage space and computational power have fostered the collection of large amounts of 
acoustical data to be processed. However, despite the extensive information that is recorded by modern acoustic 
sensors, few approaches are established to capture the rich complex dynamics embedded in the time-frequency 
domain of the urban AE. Quantitative methods need to account for this complexity, while effectively reducing 
the high dimensionality of acoustic features within the data. Therefore, we introduce complex networks as a tool 
for analyzing the complex structure of large-scale urban AE data. We present a framework to construct networks 
based on frequency correlation matrices (FCMs). FCMs have shown to be a promising tool to depict environment 
specific interrelationships between consecutive power spectra. Accordingly, we show the capabilities of complex 
networks for the quantification of these interrelationships and thus, to characterize different urban AEs. 

We demonstrate the scope of the proposed method, using one of the world’s most extensive longitudinal audio 
datasets, considering 3-min audio recordings (n = 319,385 ≙ 665 days) from 23 sites. We construct networks 
from hour-of-day specific audio recordings for each site. We show that the average shortest path length (ASPL) as 
an indicator for dominance of sound sources in the urban AE exhibits spatial- and temporal-specific patterns 
between the sites, which allows us to identify four to seven clusters of distinct urban AEs. To validate our 
findings, we use the land use mix around each site as a proxy for the AE and compare those between and within 
the clusters. The identified clusters show high intra- and low inter-cluster correlations of ASPL diel cycles as well 
as strong intra-similarities in land use mix. Our results indicate that complex networks are a promising approach 
to analyze large-scale audio data, expanding our understanding of the time-frequency domain of the urban AE.   

1. Introduction 

The urban acoustic environment (AE) is a rich source of information. 
In soundscape ecology, the AE is monitored to access information about 
biodiversity, species abundance or to study the impacts of climate 
change (Farina, 2013; Kasten et al., 2012; Krause and Farina, 2016; 
Pijanowski et al., 2011; Sueur, 2018; Sueur and Farina, 2015). In urban 
planning, the AE is analyzed to, e.g. characterize and design public or 
private spaces (Botteldooren et al., 2013; De Coensel et al., 2010; Kang 
and Schulte-Fortkamp, 2016; Rehan, 2016). Common methods to 
analyze the urban AE include, e.g. the perceptual soundscape approach 

(DIN ISO 12913-1:2018-02, 2023). Here, individual ratings about the AE 
are used to evaluate the quality of urban settings and to improve their 
soundscape design (Aletta and Kang, 2015; Alves et al., 2015; Lionello 
et al., 2020; van Kempen et al., 2014; Yang and Kang, 2005). But due to 
its labor intensity, this approach is only feasible for a limited amount of 
urban settings. In the field of public health, soundscapes are also used to 
study associations between the AE, human health and well-being (Aletta 
et al., 2018) adding to the very well developed field of noise pollution 
(Babisch et al., 2005; Orban et al., 2016; Peris et al., 2019; WHO, 2018). 
However, while the impact of noise in urban regions has been studied for 
a long time, less is known about the (urban) AE as a composite of several 
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sources separate from noise (Kang et al., 2016). Therefore, measure
ments of the AE beyond noise are of high importance, considering how 
many research areas rely on the urban AE. Beyond noise, such mea
surements of the AE could be used to indicate biodiversity, the ratio of 
antropophonic to biophonic sounds, quality of stay or health promoting 
qualities and resources of the urban environment. 

However, although research on the urban AE gained traction in 
recent years, sophisticated methods to quantify its complex properties 
on a larger scale are still scarce. This is especially true for big audio 
datasets, which are so extensive that listening to the files becomes no 
longer feasible. To date, few approaches have been used to quantify 
large datasets of the urban AE. Classical approaches reach their limits 
when it comes to analyzing longer recording periods (e.g. several 
months) (Gage et al., 2017). In recent years, sound event classification 
using machine learning approaches became more popular (Phillips 
et al., 2018; Sethi et al., 2022; Stowell et al., 2019; Ulloa et al., 2018), 
but is still not ready to be deployed unconfined (Alcocer et al., 2022). In 
psychoacoustics, mostly smaller field studies have been conducted (Hall 
et al., 2013; Ma et al., 2021; Montoya-Belmonte and Navarro, 2020; 
Raimbault et al., 2003), and the research focus is on the relationship 
between acute human perception and psychoacoustic indices in the 
urban environment. Therefore, psychoacoustic indices of the AE have 
not yet been extensively studied in high temporal or spatial resolution 
over longer periods. In contrast, audio recordings in ecoacoustics are 
often carried out at different sites over a longer period (Farina, 2013; 
Pijanowski et al., 2011). However, as ecoacoustics aims to investigate 
environmental sound to derive, e.g. biodiversity, its methods were 
developed for the implementation in natural areas. Thus, the application 
in urban areas is difficult, as characteristic frequency patterns of bio
phonic sound sources (e.g. birds) often overlap with patterns from 
antropophonic sound sources (e.g. cars) (Bradfer-Lawrence et al., 2019; 
Fairbrass et al., 2017; Haselhoff et al., 2022b). In addition, just recently 
Alcocer et al. (2022) showed in a meta-analysis of research from the last 
decade that the most commonly used ecoacoustic indices were only 
moderately related to biodiversity – while being applied in natural 
areas. They conclude that further research on ecoacoustic indices as well 
as the development and application of more effective methods is needed. 
This call aligns with a general call for more sophisticated methods to 
analyze extensive (urban) audio data (Fairbrass et al., 2017; Gage et al., 
2017; Jiang et al., 2022; Towsey et al., 2014). 

We take this as an opportunity to elaborate complex networks (CNs) 
for the field of urban AE analyses. Over the last decades, CNs became a 
powerful tool in the characterization of complex real-world systems as 
they inherently account for the high dimensionality and complex to
pology of the observed interactions. For instance, they were successfully 
applied to model social networks, the World Wide Web, climate dy
namics and brain activities (Achard et al., 2006; Albert et al., 1999; 
Barabási, 2013; Bullmore and Sporns, 2009; Donges et al., 2009; New
man, 2018; Stam and Reijneveld, 2007). Especially the latter is similar to 
the way we approach CNs for the urban AE. Here – in contrast to 
structural networks, which are based on physical connections – func
tional networks are constructed from statistical dependencies, “regard
less of whether the nodes are physically connected” (Boashash et al., 
2016). It is shown that complex networks represent an effective 
framework to characterize scale-specific correlations, which is of high 
relevance for a broad range of nonlinear real-world systems (Agarwal 
et al., 2019; De Domenico, 2017). Overall, complex networks have only 
rarely been used to analyze audio recordings, e.g. for clustering music 
based on melodic lines (Ferretti, 2017; Gomez et al., 2014). To the best 
of the knowledge of the authors, no applications based on the time- 
frequency domain are yet available – especially in regards to the 
urban environment. 

In this work, we (i) describe all necessary steps of how CNs can be 
constructed from large-scale acoustic data and (ii) evaluate this process 
on approx. one million minutes of audio recordings from 23 different 
sites in Bochum, Germany. Here, the foundation for constructing 

complex networks for the urban AE build upon the concept that high 
correlations between frequency bins indicate the presence of particular 
sound sources (Nichols and Bradley, 2019). Therefore, statistical in
terrelationships resemble the overall composition of the AE and can be 
used to distinguish between different urban settings (Haselhoff et al., 
2022a). As a network measure, the average shortest path length (ASPL) 
is used, which measures the number of connections and the topology of 
these connections in a network. We will focus on the ASPL diel cycle of 
each site, as previous research showed good results to characterize AEs 
through their hourly variations (Bradfer-Lawrence et al., 2019; Fuller 
et al., 2015; Lawrence et al., 2022; Pieretti et al., 2015). To identify 
groups of similar diel cycles, hierarchical cluster analysis is used. The 
clusters are then evaluated by using the land use mix (LUM) around each 
site as reasonable proxy for the AE, as the urban environment has a huge 
impact on the AE (Kang and Schulte-Fortkamp, 2016). Our goal is to 
introduce CNs as a tool for analyzing the complex structure of the urban 
AE and, thus, to enable the application of the vast variety of methods 
already developed in the research field of complex networks. 

2. Data 

2.1. Audio data 

For our work, we use data from the SALVE study. Briefly, 50 3-min 
audio files have been recorded daily at 84 locations in Bochum since 
2019. Meanwhile, data is available over a period of more than three 
years. Here, we use a subset from 23 different locations from May 2019 
to the end of February 2020 (defined in Haselhoff et al. (2022c) as 
AAP24). The choice of the endpoint is motivated by excluding the 
changes to the AE caused by the corona pandemic (Hornberg et al., 
2021). Recordings were made using Wildlife Acoustics SM4 recorders with 
a SMMA2 microphone (Wildlife Acoustics, 2020). The devices were 
mounted at a height of approx. 1.65 m (DIN ISO 12913-1:2018-02, 
2023) and programmed to record 3-min recordings every 26 min at a 
sampling frequency of 44.1 kHz and 16 bit depth. 

To retrieve information about the frequency spectrum, we calculate a 
Fast Fourier Transform (FFT) for all recordings of our dataset, sort the 
values into 1024 equally sized bins (from 0 to 22,050 Hz; bin width =
21.5 Hz; no spectral weighting) and average the values energetically 
inside each bin (Haselhoff et al., 2022a). As the magnitude of variability 
broadly differs between low and high frequencies, we align them by a 
log-transformation. Following previous research, we focus on the fre
quency range from 0 to 13 kHz, as frequencies above 13 kHz are only 
rarely occupied in the urban AE (Bradfer-Lawrence et al., 2019; 
Haselhoff et al., 2022a). 

2.2. Land use types 

For the initial definition of the land use type (LUT) for all 23 sites, the 
original LUT (defined by the Regional Association for the Ruhr (2020)), 
photographs and assessments of the respective recording sites were 
considered and later discussed between all team members. For a more 
comprehensive overview of the built environment around the devices, 
we calculated the land use mix (LUM) for all devices in a radius of 50 m 
around all recording locations, using the land use definition of the 
Regional Association. To describe the LUM, we selected the ten largest 
LUTs (which in total occupy >94% of the buffer area) to prevent the 
inclusion of very small and uncommon LUTs (Fig. A1). 

In summary, we analyzed a dataset that consists of 319,385 3-min 
recordings made at 23 different locations, from 7th May 2019 to 25th 
of February 2020. In total, this equals 958,155 min or 665 days of 
consecutive audio recordings. 
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3. Methods 

3.1. Pre-processing 

Pre-Processing consisted of two steps: (i) the plausibility check of the 
data and (ii) De-noising. 

3.1.1. Plausibility check 
A detailed description of the plausibility check for SALVE can be 

found in Haselhoff et al. (2022c). In summary, faulty recordings or re
cordings with device induced sounds (e.g. rattling) were removed. 
Additionally, a number of ecoacoustic indices (NDSI, BIO, ADI, AEI, ACI, 
Hf, Ht, H, M, NP) (Sueur, 2018) as well as sound pressure indices 
(LAmin, LAmax, LAeq) were calculated for all recordings. Following, all 
indices were examined for anomalies by means of descriptive statistics 
to exclude erroneous recordings. 

3.1.2. De-noising 
To improve the robustness of our analyses, we use Principal 

Component Analysis (PCA) to remove uncorrelated noise for each fre
quency bin (Abdi and Williams, 2010; Shannon, 1948). Here, we sepa
rate the temporal variability of each frequency bin into components, 
representing linear combinations of the original data. Ordered by their 

eigenvalues, we extract the leading components for each frequency bin 
per location, which describe ≥95% of the variance. We obtain the de- 
noised frequency bin time series by reconstructing each signal only 
from these leading components (i.e. we perform the inverse 
transformation). 

3.2. Complex networks 

Complex networks – in their simplest form – can be described as a 
collection of joined nodes (Newman, 2018). They can be represented by 
a binary adjacency matrix (for unweighted networks and networks 
without multi- and self-edges) that defines which nodes are connected in 
the network. Following this concept, we construct the adjacency 
matrices by defining the frequency bins as the nodes and the presence of 
a connection between two nodes dependent on the strength of the cor
relation between two frequency bins. 

3.2.1. Constructing acoustic environment networks 
We use complex networks and selected network quantifiers to 

investigate the spatial coherence of different AEs. Frequency correlation 
matrices (FCMs) are used as the basis for the adjacency matrix, as we 
want to capture the strongest correlations between frequency bins. As 
the dimension of FCMs is only dependent on the number of frequency 

Fig. 1. Illustration of the procedure to build a simple graph from frequency correlation matrices (FCMs) for two examples (“Main Street” and “Urban Forest”). The 
colors of the FCM represent the R2 value from 0 (dark) to 1 (bright). The inset in the adjacency matrix depicts the distribution of R2 values of the FCM and shows an 
arbitrarily chosen threshold (0.8) to create the binary adjacency matrix. The node colors for the networks were chosen accordingly to the definition of antropophonic 
(<2 kHz) and biophonic (2–8 kHz) sounds. From this example, it can already be seen that frequency bins in natural areas tend to build more differentiated clusters 
and that they are closer to the initial definition of antropophonic and biophonic frequency ranges than the frequency bins in heavily trafficked areas. 
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bins chosen and FCMs are always symmetrical, the construction of CNs is 
straightforward. The first step to create a complex network from 
acoustics data is to calculate the FCM. Considering the diel cycle, we 
calculate correlations between all frequency bins for each device, 
grouped by daytime (i.e. 24 h), resulting in 24 FCMs per device. The 
coefficient of determination (R2) is used to measure the proportion of 
explained variance between two frequency bins. R2 quantifies the 
strength of the relationship between frequency bins and ranges from 0 to 
1. However, as we are only interested in the strongest similarities (be
tween frequency bins), we apply a threshold to derive the adjacency 
matrix from the FCM (i.e. setting all R2 values above the threshold to 
one, i.e. frequency bins are connected; and all values below to zero, i.e. 
frequency bins are not connected). To illustrate the process, Fig. 2 shows 
two examples for the LUTs “Main Street” and “Urban Forest”, depicting 
every step from the FCM, to thresholding, to the adjacency matrix and its 
respective network representation. 

3.2.2. Defining the threshold 
A threshold can either be set by constraining correlations by an 

arbitrary lower threshold value – e.g. by saying that we are only inter
ested in frequency bins that correlate with R2 > 0.8 or higher (Fig. 1) – or 
by a more informed data-adaptive choice. In our work, we use the latter 
approach by deriving the threshold from the individual data of each site. 
For this, we consider the probability distribution of R2 values, which 
allows the identification of multimodality (Toubiana and Maruenda, 
2021). Multimodal distributions indicate a mixture of multiple under
lying distributions from different groups. We use Kernel Density Esti
mation (Scott and Sheather, 1985) to sample from the R2 distribution 
(k
(
R2)) and use peak-, low-point detection to identify the group with the 

highest R2 values. This group represents the frequencies with the 
strongest connections, indicating groups of sound sources that co-evolve 
similarly on a daily-time scale. If no multimodal distribution can be 

identified, we define the threshold by dividing the peak value of k
(
R2)

by Euler’s number: peak
(
k
(
R2) )/e, as all R2 distributions we analyzed 

exhibit an exponential increase close to R2 = 1. Then, we choose the 
highest x-axis intercept where the kernel density distribution crosses 
peak

(
R2)/e on the y-axis to define the threshold for this distribution. 

This way, we still identify the group with the strongest connections. 
Pseudo-Code for threshold identification as well as two examples can be 
found in Fig. 2. In this work, we calculate the threshold for all 24 FCMs 
of one site and take the median of all 24 values as the threshold for the 
specific location. This ensures comparability between daytimes and 
improves the robustness against rare outliers. 

3.2.3. Complex network measures 
After the network is constructed, a plethora of quantitative network 

measures become available (Newman, 2018). We investigate the utility 
of the network’s Average Shortest Path length (ASPL) for the studied 
networks. ASPL can be defined as (Barabási, 2013): 

ASPL =
∑

s, t ∈ V
s ∕= t

d(s, t)
n(n − 1)

where V is the set of nodes in the network, d is the shortest path between 
respective nodes s and t, and n is the number of nodes in the network. 
Thus, ASPL can be described as the minimum number of “steps” it takes 
to “go” from each node to all other nodes, normalized by the total 
number of nodes in the network. Therefore, its value is dependent on the 
number of connections and the topology of these connections. For 
example, we can see that the nodes for “Main Street” in Fig. 1 are (i) 
more frequently connected and that (ii) their connections are more 
homogeneously distributed than in “Urban Forest”. In the latter, we can 
see clear rectangular structures, which makes it more “complicated” to 

Fig. 2. Pseudo-Code for choosing the threshold of a frequency correlation matrix. Below, two examples are depicted: (a) for a multimodal distribution and (b) for a 
unimodal distribution of R2 values. 
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get from one node of one rectangle to nodes of another rectangle. 
Accordingly, the ASPL for “Main Street” is lower (1.12) than for “Urban 
Forest” (1.66). In our case, low ASPL suggests that frequency bins are 
highly correlated with each other and fewer bins build distinct com
munities. Thus, ASPL for the urban AE can be interpreted as an “acoustic 
dominance” index for the time-frequency spectrum. If single sound 
sources (like traffic) are the reason for many high frequency correlations 
throughout the whole spectrum (‘high dominance’), then ASPL will be 
lower. If multiple sound sources form distinct correlation communities 
(‘low dominance’), ASPL will be higher. In our work, we calculate ASPL 
for all networks of the diel cycle for each recording site, resulting in 23 
time series over 24 h (Fig. 3). 

3.3. Clustering 

To determine which of the site-specific AEs exhibit similar diel cycles 
of “acoustic dominance”, we cluster the devices based on their ASPL 
variations over the day. For this, we smooth the diel cycle by calculating 
the ASPL for each hour as the average between its value and the values of 
the hour before and after. This way, we try to mitigate transition effects, 
as recordings earlier/later in an hour will be more similar to recordings 
before/after that hour. Subsequently, we calculate the Pearson corre
lation between the ASPL variations for all recording sites. Next, we use 
hierarchical clustering, using complete-linkage (Brian S. Everitt et al., 
2011) to group devices with similar diel cycles. 

3.4. Sensitivity analysis 

To assess the robustness and evaluate on the uncertainty of our 
method, we used two approaches: (i) We used the bootstrap method 

(Wilcox and Keselman, 2003), building 100 bootstrap samples from all 
recordings by hour of day per device and build 95% intervals using the 
2.5% and the 97.5% quantiles of all ASPL values per hour of day; (ii) We 
apply the whole procedure form pre-processing to ASPL calculation on a 
dataset whose power spectra were calculated using Welch’s Method 
(with Hamming window function and window length of 2048) (Welch, 
1967) in contrast to our approach to use simple FFT on the whole signal 
and sorting the values into 1024 equally sized bins. Thereupon, we 
compare the resulting ASPL diel cycles. 

All analyses were performed using Python 3.8.5 and corresponding 
packages. A list of packages and their versions, python code for our 
analyses as well as a demo dataset with functions and documentation to 
apply FCM-based complex networks for any kind of power spectra from 
the urban AE is provided on GitHub (https://github.com/THaselhoff/Co 
mplex-networks-for-analyzing-the-urban-acoustic-environment). 

4. Results 

4.1. Diel cycle of average shortest path length 

The overall mean ASPL for each site/automatic aural device (AAD) 
ranges from 1.59 (AAD6; Residential Street) to 3.85 (AAD2; Small 
Garden near House) (Fig. 3). It can be observed that more built-up areas 
tend to have a lower mean ASPL than more natural areas (Fig. A1). 
However, this pattern does not hold true for all locations. For example, 
AAD23 (Commercial Area) shows one of the highest ASPL values (2.76) 
though the LUM is predominantly defined by commercial area. Addi
tionally, AAD17 (Urban Agricultural Land) and AAD14 (Main Street) 
have similar mean ASPL values (~2.1) even though AAD17 is sur
rounded by mainly forest area and AAD14 by road area (Fig. A1). As our 

Fig. 3. Average Shortest path length (ASPL) by daytime, grouped by land use type. Depicted are all 23 recording sites (Automatic Aural Devices (AAD)) and their 
respective ASPL diel cycle. ASPL values are centered on the mean to put emphasis on the individual course of ASPL. Blue color means that the value for the respective 
hour is above and red color that the value is below the mean. The mean of all ASPL values per site is given by a. 
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research approach is tailored towards the analysis of diel cycles, it was to 
be expected that the absolute values of the data may not provide a clear 
distinction between the LUMs of all locations being studied. 

In contrast, the examination of the diel cycles from the 23 sites re
veals numerous comprehensible patterns that validate the utility of the 
proposed method (Fig. 3). ASPL values above average in the beginning 
of the day are almost exclusively found in more built-up areas (referring 
here to commercial area, main street and residential street). In addition, 
these are the only LUTs where multiple AADs have below average ASPL 
values between 7 h and 20 h (AAD6, 7, 10, 13 and 23). Furthermore, 
AAD11, 14 and 15 exhibit a unique pattern, with below average ASPL 
values between 0 h and 8 h, followed by a constant above average value 
for the rest of the day. However, all LUTs except commercial areas, main 
streets, and residential streets follow a similar course: At 0 h, ASPL starts 
below average, with the lowest values at around 2 h to 3 h. Following, 
ASPL increases and reaches above mean values at around 5 h to 6 h with 
peaks at around 8 h, after which the ASPL decreases and the sites behave 
more heterogeneously but in three characteristic patterns. There is 
either (i) a decrease of ASPL for the rest of the day (AAD4, 8 and 16), (ii) 
an increase until around 16 h to 17 h (AAD3, 5, 12 and 21) or (iii) a 
decrease, followed by an increase with a peak at around 20 h (AAD17, 
18, 19, 20 and 24). The only exception to this pattern is AAD1 where we 
find a diel cycle more similar to that of AAD7 (“Main Street”) and AAD10 
(“Residential Street”). The reason for this is most certainly the closeness 
to the highway (Fig. A1), which is located directly behind the garden. 
Another distinctive feature is that areas in proximity to streets show 
lower ASPL variance between daytimes (Table B1). While those areas 
rarely deviate by >0.1, all other LUTs often deviate by an ASPL value of 
up to 0.5 (AAD21) from the mean. This suggests a more monotonous 
urban AE throughout the day for roadside areas in contrast to all other 
LUTs. 

4.2. Cluster analysis of ASPL diel cycles 

We carry out a cluster analysis to reveal groups of LUTs that exhibit 
similar diel variations of ASPL (see 3.3). Hierarchical clustering of site- 
specific ASPL diel cycles gives rise to four to seven distinct clusters 
(Fig. 4). While there are several techniques to determine the exact 
number of clusters in hierarchical clustering (e.g. dynamic tree cutting 
(Langfelder et al., 2008) or elbow method) the most adequate technique 
depends on the studied data and research question (Everitt et al., 2011). 
Based on the well-organized group structures in Fig. 4, we heuristically 
define six clusters (color-coded from light yellow to black in Fig. 4). 
However, it should be noted that the exact number of clusters does not 
change their interpretation. In the following, the reason for this as well 
as the commonalities and differences in LUMs for all sites are presented. 

Cluster I (AAD6, 7 and 10) can be labelled as “roadway dominant 
land cover”. The LUM of all three locations are >20% road areas and 
located in the proximity of residential areas (Fig. A1). These are the 
devices whose ASPL value starts above and declines below its average 
value throughout the diel cycle. Looking at photographs of the sites 
(Fig. 5) and considering on-site visits, this pattern most likely reflects the 
traffic volume, whose course over the day is inversely related to the 
ASPL value (Straßenwesen, 2022). Cluster II behaves relatively similar 
to the first one as these are the three additional devices where the ASPL 
cycle starts below average (AAD1, 13 and 23). This is reflected in Fig. 4, 
with most of them correlating moderately with the AADs from Cluster I 
and forming the first distinct square. It stands out that AAD1 is located in 
a garden, but its similarities to the other AADs of the cluster is explained 
by its adjacency to a highway. In the photo (Fig. 5) the soundproof wall 
can be seen. The same applies to AAD23, where the highway is just 

located at the end of the street on the photograph. Considering this, 
Cluster II can be described as highly influenced by highway traffic and 
commercial transport. 

In contrast, clusters III and IV are represented by sites whose diel 
cycles are much more divergent than those of clusters I and II. Accord
ingly, the LUM around those recording stations is composed quite 
differently. Cluster III includes AAD2, 21, 24, 11 and 20. Their LUMs are 
dominated by gardens (ø =17%) and forest area (ø =25%) and very little 
road area (ø = 7%) (Fig. A2). Thus, cluster III could be described as 
forests or gardens distant from road noise. The only exception to this 
LUT description in cluster III is AAD11 (residential street). However, 
upon further inspection we find it is located on a traffic-calmed tree- 
lined street adjacent to an urban forest patch, thereby fitting in well with 
the description of forest or garden even though it sits within a residential 
matrix. Overall, the cluster’s ASPL variation is defined by the highest 
values at around 8 h, followed by a decrease and then a second smaller 
peak at around 20 h, probably reflecting bird chorus. The exception is 
AAD21, which exhibits the second peak around 16 h and is also very 
similar to the sites included in Cluster IV. Comparing the cycles between 
the AADs from Cluster III and IV, it becomes obvious that most of them 
correlate moderately to highly. This can also be seen from the clearly 
recognizable quadrilateral structure these devices build, forming the 
most prominent distinct structure in Fig. 4. Accordingly, Cluster IV 
represents the biggest cluster, including seven sites (AAD16, 4, 3, 5, 8, 
12 and 22). Considering the photographs as well as the LUMs, we see 
that these sites are predominantly defined by public and private green 
space within a residential matrix in proximity to tree-lined traffic- 
calmed streets. The diel cycles resemble those from Cluster III, but in 
most cases, Cluster IV is missing the second peak in the afternoon hours 
and the ASPL value falls below average after approx. 16 h. 

Cluster V includes AAD14 and 15. This cluster exhibits distinct diel 
cycles and does not resemble other AADs. This is underscored by the 
LUMs of the included sites (Fig. A2). Both recording devices are located 
next to a highly trafficked main street with streetcar transport. The ASPL 
cycle starts around the same value below average, until around 8 h, 
when it increases slightly above average, while remaining relatively 
constant, indicating little variation of the AE after 8 h. Cluster VI in
cludes sites AAD18, 17 and 19 with a LUM dominated by large agri
cultural areas within the overall urban matrix but generally far from 
roads. Although AAD18 is located in a garden, an agricultural field is 
located right behind the gate depicted on the photograph. Accordingly, 
their diel cycles are distinct, with night and morning phases from 0 h to 
12 h similar to the forested Cluster III, followed by an afternoon phase 
similar to Cluster I until about 20 h, after which the pattern returns to 
match cluster III. 

Summarizing, distinct clusters are identified, exhibiting high intra- 
and low inter-correlations between diel ASPL profiles. The few excep
tions are AAD17 and 19 from urban agricultural land, which also 
correlate highly with sites from Cluster III, namely AAD20 and 24 from 
Urban Forests and AAD11 from a residential street. 

4.3. Sensitivity analysis of ASPL diel cycles 

By examining the 95% Bootstrap confidence intervals, we find that 
all ASPL values lie in-between the interval boundaries and that these 
follow the same trajectory as the original ASPL diel cycle (Fig. C1). The 
widest intervals are found for AAD2 and AAD5, which are also the de
vices with the highest and second highest average ASPL. This may 
indicate that non-dominant sound sources are more variable throughout 
the year and underlines that the urban AE is not always a constant 
construct over a long period (i.e. ten months). Further longitudinal 
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Fig. 4. Hierarchical clustering of correlations between the ASPL diel cycles of all recording sites. The values inside the squares show the Pearson correlation co
efficients between the respective sites. The color of the squares corresponds to the strength of the correlation (− 1 to 1). The red line in the dendrogram represents the 
cut-off value to determine the clusters. 
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analyses should consider this. 
For the second sensitivity analysis, we compare ASPL diel cycles 

calculated on the original power spectra and the ones derived from 
Welch’s Method. We find that ASPL values deviate only slightly from the 
original diel cycle (Fig. C2) with a minimum correlation of 0.875 be
tween ASPL diel cycles derived from Welch’s Method and our calcula
tion of power spectra. Altogether, sensitivity analyses underline the 
robustness of the presented method for differing samples and input pa
rameters from the urban AE. 

5. Discussion 

The goal of this work was to introduce complex networks as a tool to 
analyze the urban AE and to demonstrate its application with one of 
most comprehensive datasets of the urban AE, comprising roughly one 
million minutes of audio recordings. Our results show that mean ASPL 
values over the day tend to be higher in forested green spaces and res
idential areas, gardens, and agricultural areas than in commercial areas, 
main streets, and residential streets. This is a promising indication that 
the mean ASPL value can differentiate between different urban AEs. 
However, this does not always hold true, as one of the highest ASPL 
values occurs in a commercial area (AAD23) surrounded only by roads 
and residential areas. On the other hand, AAD23 has large street trees 
and the highway at the edge of the LUM buffer includes a low noise wall 
and noise reducing pavement (Fig. 5). This could be the reason that the 

ASPL is more in line with AADs in clusters III and IV, but this conclusion 
needs further investigation. At this point, the high ASPL value at AAD23 
simply means that the “acoustic dominance” is similar to those in 
Clusters III and IV. Therefore, we find that the AE cannot be derived 
directly from the mean ASPL values. 

However, analyzing the ASPL diel cycle produced consistent results. 
We observed a similar ASPL course over the day for sites with similar 
LUMs. We found six clusters exhibiting distinct ASPL trends over 24 h. 
Most of them form clusters for which it is reasonable, based on their 
LUMs, to have a similar AEs. Cluster I and II are more similar to each 
other than to any other cluster and both can be assumed to be highly 
influenced by traffic. While cluster I comprises readily frequented roads 
in proximity to residential areas, sites from cluster II are additionally in 
proximity to commercial areas and highways. 

Two clusters form the largest distinct rectangular structure identi
fied. One cluster encompasses areas with forested or heavily vegetated 
land cover (Cluster III), while the other consists of traffic-calmed areas 
with mature street trees (Cluster IV). Both clusters are similar, as re
flected by similar diel cycles of ASPL, although Cluster III has above 
average values after around 16 h and Cluster IV tends to become below 
average at that time. These findings suggest that Cluster III and IV share 
certain characteristics of the AE. One less intuitive assignment is that of 
AAD11 to Cluster III, which appears to fit better with Cluster IV in terms 
of its LUM characteristics (i.e. it is located close to a road and has much 
less vegetated cover than other sites in Cluster III). One possible 

Fig. 5. Photographs of all sites, ordered into their respective cluster. The color-coding as well as the order of the AADs corresponds to those depicted in Fig. 4. More 
details regarding the LUM for each cluster can be found in Fig. A2. 
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explanation for this is that the surrounding areas designated as “com
munity demand areas” and “public and private green areas” have dense 
tree cover, which could significantly influence the AE through biophonic 
sounds. A sample examination of AAD11 did indeed reveal that promi
nent bird sounds regularly occur in this area, but the exact reason re
mains subject to further research. In contrast, Cluster V is again formed 
by very similar sites (AAD14 and 15), both located in close proximity to 
main roads with streetcars. This shows that CNs of the urban AE, 
measured with ASPL, are able to identify sites with LUMs dominated by 
a specific land use. The same applies to Cluster VI, which is character
ized by its agricultural and forested areas as well the absence of built-up 
areas. Furthermore, unlike most clusters, sites in Cluster VI also corre
late moderately to highly with sites in Cluster III, especially those 
located in urban forests (AAD20 and 24). It can be assumed that these 
matches are also due to the high percentage of forest vegetation and the 
low percentage of built-up area around those sites. 

In summary, complex networks based upon FCMs generate prom
ising results in distinguishing urban sites with similar LUMs. The clusters 
are characterized by high intra- as well as low inter-correlations of the 
ASPL diel cycle. In particular, strongly distinct sites with very high 
traffic impact (Cluster I and V) as well as forested areas, gardens, and 
residential areas with traffic calming and street trees (Clusters III and IV) 
are consistently recognized. Additionally, sites that would be mis
matched based on their initial land use type (AAD1 and 18) show strong 
resemblance to the other sites inside their clusters, e.g. being located 
directly to the edge of a highway or agricultural land respectively. These 
results highlight the capabilities of functional complex networks to 
represent the statistical interrelationships between frequency bins over 
time. Correlations between frequency bins provide valuable information 
about related sound sources, and thus, they reflect distinct behavior of 
the AEs present. However, as these correlations do not always occur 
between the same frequency bins or the same number of frequency bins, 
a multitude of community structures arise. With our application of 
complex networks, the topology of the formed frequency communities is 
captured. This underlines the potential of using complex networks and 
its corresponding metrics to gain insights into the complex in
terdependencies and patterns that emerge in AEs. Considering that we 
only used one index (ASPL) to measure the CNs created in this work, it 
shows that complex networks hold a lot of potential to contribute to 
future analyses of the urban AE. It would be conceivable, that further 
indices are used (e.g. Modularity, Network Diameter or Degree Cen
trality (Barabási, 2013; Newman, 2018)). Furthermore, findings from 
the analysis of observational complex networks can inform novel ap
proaches for model representations (e.g. stochastic block models (Fas
kowitz et al., 2018)). A special feature of this work is that we have 
concentrated on diel cycles, but concerning the possibility that FCMs can 
be formed for any recording groups, other time scales also become 
feasible. For instance, networks for days, weeks or months can be build 
or we could even analyze networks within single recordings. Finally, 
evolving networks could reveal transitions in the dynamics of the urban 
AE (Belykh et al., 2014). 

Nevertheless, several limitations of this study need to be stressed. 
Regarding the definition of the correlation value threshold, we pre
sented a method to determine the group with the highest R2 for each 
individual urban site. The feasibility of defining constant thresholds for 
all sites, especially when it comes to analyzing a higher number of FCM 
(e.g. numerous days individually), needs to be evaluated in future 
research. In addition, it might be of interest to look at groups with 
moderate or lower R2 values, which we found to be especially prevalent 

in sites with forested land cover. Another limitation of our work is that 
we only used ASPL as a measure for the CNs of the urban AE, but this 
measure requires fully connected networks (i.e. each node can be 
reached from all other nodes). In preliminary analyses for smaller time 
scales, this was found to not always be the case and thus, alternative 
measures (e.g. link density) might be more appropriate. Another limi
tation is that our analysis is only based on 23 urban sites in Bochum. The 
number of clusters based upon ASPL diel cycles might differ for other 
locations around the world and its performance needs to be evaluated 
for differing environments. Although the environment has a substantial 
influence on the AE, it can only be used as a proxy for the actual sound 
sources that are present at each site. Further research is needed to un
derstand the precise role that biophonic and anthrophonic sounds play 
in shaping the ASPL diel cycles of these areas. As it is not feasible to 
listen to the recordings to identify specific sound sources, we cannot 
currently determine their direct associations to specific ASPL values. To 
accomplish this, more sophisticated and robust methods need to be 
established, identifying the exact sound source composition of the urban 
AE. In addition, as the number of our recording devices is limited, future 
applications should address spatial interdependencies using a higher 
number of recording devices to improve our understanding of the dy
namics of the urban AE. Furthermore, additional analyses have to be 
carried out for different time scales and locations, with a special focus on 
indicator values and distributions. This is necessary to expand our 
knowledge of the relationship between measurements of FCM-based 
complex networks and the urban AE. 

6. Conclusion 

In this work, we showed how to construct complex networks based 
on FCMs and emphasized the importance of defining the correlation 
threshold. We used ASPL as quantification of the networks properties, 
measuring the number of connections (i.e. number of highly correlated 
frequency bands) and the topology of those connections (i.e. if highly 
correlated frequency bins form distinct communities), creating a metric 
of so-called “acoustic dominance”. Although the exact mechanisms of 
how specific sound sources shape the urban AE remain unsolved, we 
found substantial similarities in the diel cycle as well as LUMs between 
sites of similar LUM. Since this study is the first of its kind and sub
stantial contributions to the description of the acoustic environment are 
already evident here, future analyses using complex networks should 
open up an interesting new branch of research. Thus, the application of a 
whole methodology based on CNs, which has already led to exceptional 
findings in many other fields, is enabled. The possibility to analyze data 
comprising hundreds of hours of acoustic recordings could make this a 
feasible tool to consider for research on the (urban) AE, complementing 
existing methods such as those of eco- and psychoacoustics. 
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Appendix A

Fig. A1. Land use mix for all AADs. Depicted is the percentage of land use type area in a 50 m radius buffer around each recording station. Depicted are the ten 
largest land use types, which in total occupy >94% of the 50 m buffer area.  

T. Haselhoff et al.                                                                                                                                                                                                                               



Ecological Informatics 78 (2023) 102326

11

Fig. A2. Average land use mix for all clusters. Depicted is the percentage of land use type area in a 50 m radius buffer around each recording station, averaged by 
cluster. Depicted are the ten largest land use types, which in total occupy >94% of the 50 m buffer area. 

Appendix B  

Table B1 
Depicted are AAD_ID, the land use type of all sites, R2-Thresholds (calculated as median from thresholds for all 24 h of day), 
average shortest path length (ASPL; averaged over all ASPL values for 24 h of day by device) and standard deviation (STD; 
calculated between all ASPL values for 24 h of day).  

AAD_ID Land use type R2-Threshold ASPL STD 

1 Small Garden Near House 0.69 1.95 0.12 
2 Small Garden Near House 0.76 3.85 0.72 
3 Residential Area 0.75 2.51 0.46 
4 Green Space 0.74 2.60 0.35 
5 Small Garden Near House 0.75 3.07 0.46 
6 Residential Street 0.72 1.59 0.06 
7 Main Street 0.78 1.88 0.12 
8 Residential Area 0.76 2.49 0.27 
10 Residential Street 0.90 1.74 0.15 
11 Residential Street 0.72 2.30 0.23 
12 Green Space 0.67 2.37 0.40 
13 Commercial Area 0.75 1.98 0.27 
14 Main Street 0.91 2.09 0.13 
15 Main Street 0.75 2.18 0.19 
16 Play Or Sports Ground 0.74 2.55 0.30 
17 Urban Agricultural Land 0.76 2.10 0.17 
18 Small Garden Near House 0.72 2.29 0.34 
19 Urban Agricultural Land 0.72 2.60 0.21 
20 Urban Forest 0.77 2.06 0.31 
21 Small Garden Near House 0.61 2.40 0.48 
22 Residential Street 0.79 2.74 0.23 

(continued on next page) 
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Table B1 (continued ) 

AAD_ID Land use type R2-Threshold ASPL STD 

23 Commercial Area 0.75 2.76 0.18 
24 Urban Forest 0.71 2.21 0.34  

Appendix C

Fig. C1. 95% Bootstrap intervals of the average shortest path length (ASPL) for each hour by device. For each hour per device, 100 Bootstrap samples were build and 
the 97.5 and 2.5 quantiles of the ASPL values were calculated.  
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Fig. C2. Comparison of average shortest path length (ASPL) diel cycles originating from calculation of original power spectra (FFT) of this work and the alternative 
calculation using Welch’s Method (with Hamming window function and window length of 2048) for all recording devices. Pearson correlation (r) between both diel 
cycles is provided per device. 
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