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Massive Open Online Courses (MOOCs) have gained popularity in the technology-enhanced learning (TEL) 
domain. To enhance the learning experience in MOOCs, educational recommender systems (ERSs) can play 
a crucial role by suggesting courses or learning materials that align with students’ knowledge states. Thereby, 
understanding a student’s learning needs and predicting knowledge concepts that the student might be interested 
in are important to provide effective recommendations. Inspired by the superior ability of knowledge graphs 
(KGs) in modeling the heterogeneous data in MOOCs and Graph Neural Networks (GNNs) in learning on graph-

structured data, few works focusing on GNN-based recommendation of knowledge concepts in MOOCs have 
emerged recently. However, existing approaches in this domain have limitations mainly related to complexity, 
semantics, and transparency. To address these limitations, in this paper we propose ConceptGCN, an end-to-end 
framework that combines KGs, Graph Convolutional Networks (GCNs), and pre-trained transformer language 
model encoders (SBERT) to provide personalized and transparent recommendations of knowledge concepts in 
the MOOC platform CourseMapper. We conducted extensive offline experiments and an online user study (N=31), 
demonstrating the benefits of the ConceptGCN-based recommendation approach, in terms of several important 
user-centric aspects including accuracy, novelty, diversity, usefulness, overall satisfaction, use intentions, and 
reading intention. In particular, our results indicate that, if SBERT is used for the initial embeddings of items in 
the KG, a self-connection operation and a semantic similarity-based score function in the aggregation operation 
of GCN are not necessarily needed.
1. Introduction

Massive Open Online Courses (MOOCs) have gained popularity in 
the technology-enhanced learning (TEL) domain as a flexible educa-

tional platform that provides more educational opportunities to a global 
audience (Yousef et al., 2014). However, MOOCs present a new chal-

lenge related to the need to guide learners through the growing educa-

tional content on MOOC platforms, which often does not meet students’ 
learning needs or knowledge level (Zhao et al., 2021). Therefore, under-

standing a student’s learning needs and predicting knowledge concepts 
that the student might be interested in are important (Piao, 2021). 
To address these challenges, educational recommender systems (ERSs) 
have been studied and developed to filter and personalize the edu-
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cational content delivered to learners. In particular, there has been 
growing interest in ERSs on MOOC platforms with respect to differ-

ent aspects such as course, video, and learning paths (Khalid et al., 
2020). More recently, researchers argued that it is beneficial to focus on 
learner interests regarding specific knowledge concepts, which can cap-

ture user interests better and provide the flexibility of choosing learning 
resources of their interest (Gong et al., 2020, Piao, 2021, Gong et al., 
2021). This line of research studied ERSs from a micro perspective and 
focused on recommending knowledge concepts. In this work, we also fo-

cus on the micro perspective for knowledge concept recommendations 
in MOOC platforms.

In general, the main objective of recommender systems (RS) is to 
anticipate whether a user will engage with an item from various user-
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item interaction possibilities. Thereby, the main challenge is to learn 
effective user and item representations from their interactions and side 
information (if available) (Wu et al., 2022). Considering that users, 
items, and preferences can be easily modeled as a graph, Graph Neural 
Networks (GNNs) have emerged as an effective way to encode collab-

orative information for recommendation tasks (He et al., 2020, Wang, 
He, Wang, et al., 2019, Berg et al., 2017, Ying et al., 2018). Owing 
to their interpretability and efficiency, Graph Convolutional Networks 
(GCNs) quickly become a prevalent formulation of GNNs and are being 
widely used for recommendation (He et al., 2020). The intuition be-

hind GCN is to refine the user and item representations by aggregating 
embeddings of multi-hop neighbors in the graph. Modeling multi-hop 
connectivity from user-item interactions, and the captured signals from 
high-hop neighbors have been proven to be effective for recommen-

dation (Wang et al., 2021, Wu et al., 2022, Gao et al., 2023). The 
graph structure and the design of the GNN architecture (e.g., aggrega-

tion and update operations, network depth) depends to a large extent on 
the type of information available in the graph. For example, user-item 
interactions can be considered either a bipartite graph or two homoge-

neous graphs (i.e., user-user and item-item graphs). And, a knowledge 
graph (KG) is inherently a heterogeneous graph with multi-type enti-

ties and relations, which requires considering such heterogeneity during 
propagation (Wu et al., 2022). Recognizing their superiority in graph 
representation learning, GNNs have been widely utilized in KG-based 
recommendation to model users and items. Given the user-item inter-

action information as well as the KG, KG-based recommendation seeks 
to take full advantage of the rich relational and semantic information 
in the KG to enhance the user and item representations. This method is 
based on the idea of embedding propagation, where the entity represen-

tation is refined by aggregating embeddings of multi-hop neighbors in 
the KG. Then, the user’s preference can be predicted with the enriched 
representations of the user and the potential item (Guo et al., 2020). 
Recent efforts focused on KG-based recommendation of knowledge con-

cepts in MOOCs. (Gong et al., 2020, Piao, 2021, Gong et al., 2021). 
While these approaches benefit from the advantages of GNNs in captur-

ing high-order structure and semantic information in the KG, they suffer 
from several limitations. Firstly, existing approaches are complex. They 
rely heavily on manually designed meta-paths that carry the high-order 
information and feeding them into a predictive model, and thus they 
require domain knowledge and are rather labor-intensive. These issues 
can prohibit the performance and effectiveness of the recommendation 
model (Wang, Zhao, et al., 2019, Wang, He, Cao, et al., 2019). Addition-

ally, they do not fully capture the semantic information in the KG. In 
particular, they do not consider the context of the knowledge concepts 
or the semantic similarity between them during the GNN aggregation 
and update operations. Further, existing approaches lack transparency 
in their recommendation process as they do not provide explanation of 
the generated recommendations, which is beneficial to enhance users’ 
trust and improve the overall acceptance of an RS (Chatti et al., 2023, 
2022, Guesmi et al., 2023).

To address these limitations, in this work we present ConceptGCN, a 
comprehensive end-to-end framework designed to recommend knowl-

edge concepts to learners based on their interests and knowledge state. 
We combine KGs, GCNs, and pre-trained transformer sentence encoders 
(SBERT) to incorporate both structural and semantic information and 
enhance the representations of knowledge concepts. Specifically, we 
construct a KG for each learning material to capture structured infor-

mation and relations between a set of entities in this material. Then, 
we employ propagation-based GCN to represent items by considering 
multiple hops of neighboring connections in the KG. Inspired by Light-

GCN (He et al., 2020), we simplify the GCN aggregation and update 
operations by removing feature transformation and nonlinear activa-

tion. Recently, sentence embedding techniques have gained more and 
more attention due to the good performance they have shown in a broad 
range of NLP-related scenarios. Sentence embeddings serve to capture 
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relationships between them, which can be effectively used to extract 
meaningful data representations, obtain a semantic and relational un-

derstanding of the data, and measure semantic similarities between 
sentences or documents (Hassan et al., 2019). To better capture the 
semantics of the entities and relations in the KG, we leverage SBERT 
(Reimers & Gurevych, 2019) as a valuable source of supplementary in-

formation to enhance the representations of concepts and distinguish 
the importance of relations between different concepts. Next, we uti-

lize these enriched representations to build representations of learner 
models based on the concepts that the learner did not understand (re-

ferred to as DNU concepts) for a more personalized recommendation 
of related concepts to be mastered. Further, to increase transparency, 
we provide explanations of the recommended concepts using structural 
and semantic information in the KG. To this end, we introduce a novel 
weighting method based on different paths connecting learners and rec-

ommended concepts. This approach ensures that the recommendations 
are transparent, allowing learners to understand why specific concepts 
were suggested to them.

The paper aims to investigate the impact of a knowledge concept 
recommendation approach that combines KG, GCN, and SBERT on ac-

curacy and students’ perceptions of the benefits of this approach. The 
following research questions guide our investigation:

• RQ1: How to effectively construct a KG that can be used in a MOOC 
platform to provide personalized and explainable recommendation 
of knowledge concepts?

• RQ2: What is the potential impact of the proposed ConceptGCN-

based recommendation approach on learners’ perceptions of the 
ERS in terms of accuracy, novelty, diversity, usefulness, overall sat-

isfaction, use intentions, and reading intention?

To answer these research questions, we conducted extensive offline 
experiments as well as an online user study (N=31). Our results suggest 
that (1) integrating both structural and semantic information from the 
KG, harnessing SBERT as a valuable source of additional semantic infor-

mation, and incorporating high-order connectivity through GCN proved 
to be beneficial in enhancing the representations of knowledge concepts 
and learner models that ultimately resulted in accurate recommenda-

tions, (2) in general, the students had a positive attitude towards the 
ConceptGCN-based approach with regards to several important user-

centric aspects including perceived accuracy, novelty, diversity, useful-

ness, overall satisfaction, use intentions, and reading intention, and (3) 
if SBERT is used for the initial embeddings of items in the KG, a self-

connection operation and a semantic similarity-based score function in 
the aggregation operation of GCN are not necessarily required.

To summarize, this work makes the following five main contribu-

tions: (1) We propose ConceptGCN, an intuitive end-to-end framework 
to recommend knowledge concepts to students, based on the concepts 
that they did not understand (i.e., DNU concepts); (2) We construct a 
KG to model the various relationships among different types of entities 
(i.e., learner, learning material, slide, main concept, related concept, 
category) in the MOOC platform; (3) We combine KG, GCN, and SBERT 
to derive enriched representations of KG items (i.e., slide, main con-

cept, related concept, category) and learner models; (4) We harness the 
structural and semantic information in the KG to explain the provided 
recommendations; (5) We evaluate ConceptGCN in terms of several im-

portant user-centric evaluation metrics, and show the effectiveness of 
our proposed approach.

2. Background and related work

2.1. Graph neural networks for recommendation

Recommender systems (RS) are extensively used to tackle infor-
mation overload on the web by providing personalized information 
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filtering. The primary objective of an RS is to predict user interac-

tions with items. Collaborative filtering (CF), model-based CF methods 
(e.g., matrix factorization (Koren et al., 2009)), and neural network-

based models (e.g., neural collaborative filtering (He et al., 2017) are 
key RS approaches that utilize past user-item interactions to make pre-

dictions and provide recommendations. However, these methods are 
limited, as their paradigms of prediction and training ignore the high-

order structural information in observed data (Gao et al., 2023). With 
their advantages in handling the structural data and exploring struc-

tural information, Graph Neural Networks (GNNs) have provided an 
opportunity to address the above issues and have become the new 
state-of-the-art approaches in RS (Wang et al., 2021, Wu et al., 2022, 
Gao et al., 2023). GNNs shed light on modeling graph structure, espe-

cially high-hop neighbors, to guide the embedding learning (Hamilton 
et al., 2017, Kipf & Welling, 2016, Veličković et al., 2017). Generally 
speaking, GNNs are based on the idea of embedding propagation to re-

fine the entity representation by aggregating embeddings of multi-hop 
neighbors in the graph. By stacking the propagation layers, each node 
can access high-order neighbors’ information, rather than only the first-

order neighbors’ information as the traditional methods do (Gao et al., 
2023).

Different GNN-based approaches have been proposed for CF-based 
recommendation. In addition to GAT (Veličković et al., 2017) and 
GraphSAGE (Hamilton et al., 2017), Graph Convolutional Networks 
(GCNs) represent a popular GNN technique that is increasingly used 
in the literature on recommender systems. GCNs are a type of Convolu-

tional Neural Networks (CNNs) designed specifically for graphs (Kipf 
& Welling, 2016). GCNs utilize a sequence of layers that consist of 
learned filters, similar to CNNs, but adapted for graph structures. These 
filters are followed by a non-linear activation function, allowing the 
GCN to effectively learn and represent the graph’s features (Wu et al., 
2019). Motivated by the strength of GCN, recent efforts adapted GCN 
to the user-item interaction graph, capturing CF signals in high-hop 
neighbors for recommendation (He et al., 2020). For example, Wang, 
He, Wang, et al. (2019) proposed the recommendation framework Neu-

ral Graph Collaborative Filtering (NGCF), which exploits the user-item 
graph structure by propagating embeddings to learn the representa-

tion of users and items. NGCF combines the entity embeddings of both 
the neighbors and the entity itself in each layer to obtain the final en-

tity representation. It incorporates feature transformation and nonlinear 
activation extensively. NGCF has shown to outperform several meth-

ods including the other GCN-based models GC-MC (Berg et al., 2017) 
and PinSage (Ying et al., 2018). More recently, He et al. (2020) intro-

duced a simplified GCN-based recommender model named LightGCN, 
including only the most essential component in GCN for collaborative 
filtering, namely neighborhood aggregation. LightGCN learns user and 
item embeddings by linearly propagating them on the user-item inter-

action graph, and uses the weighted sum of the embeddings learned 
at all layers as the final embedding. The model prediction is defined 
as the inner product of user and item final embeddings, which is used 
as the ranking score for recommendation generation. The authors of 
LightGCN demonstrated that ignoring feature transformation and non-

linear activation does not negatively impact the system’s performance. 
Instead, it reduces the complexity of model training while still provid-

ing significant improvements (He et al., 2020). However, the limitation 
of LightGCN is that it typically focuses on user-item interactions and 
does not extract or utilize side features (side information) associated 
with users and items. Side features are additional attributes or charac-

teristics associated with users and items in an RS. For example, side 
features for learning materials might include knowledge concept in-

formation. Neglecting side features can lead to less accurate user/item 
embeddings because it overlooks valuable information that can signifi-

cantly enhance recommendation quality. In our work, we address these 
limitations by following a knowledge graph-based recommendation ap-

proach that aims at enhancing the entity representation by leveraging 
3

semantic relations among entities in the knowledge graph.
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2.2. Knowledge graph-based recommendation

Heterogeneous Information Networks (HINs) are directed graphs 
that are able to capture and depict a wide range of entities and rela-

tionships found in the data (Yu et al., 2014). Knowledge graphs (KGs) 
represent a popular instance of HINs. A KG can contain multiple types 
of entities and relations in the graph. KGs are widely employed to rep-

resent large-scale information from multiple domains using the ability 
of KGs to capture structured information and relations between a set 
of entities as well as to enhance the user and item representation. As 
such KGs represent an attractive source of information that could help 
improve recommendation. KGs are thus increasingly being incorporated 
into RSs (Chicaiza & Valdiviezo-Diaz, 2021, Guo et al., 2020). KG-based 
recommendation can bring several benefits. First, the rich semantic re-

lations between items through attributes can help explore high-level 
relations of entities (Wang et al., 2018). Second, expressing relation-

ships between items through attributes can be leveraged to enhance the 
item representation (Wu et al., 2022). Third, the connections between 
a user’s historically interacted items and recommended items can sup-

port the interpretability of the recommendation results (Yang & Dong, 
2020). Despite the above benefits, utilizing KGs in recommendation is 
rather challenging due to its complex graph structure, i.e., multi-type 
entities and multi-type relations (Wu et al., 2022).

Mainly three different methods are popular in KG-based recom-

mendation: Embedding-based methods, connection-based methods, and 
propagation-based methods (Guo et al., 2020). Embedding-based meth-

ods rely on KG embedding (KGE) methods to represent entities and 
their relationships (e.g., (Wang, Zhang, Zhao, et al., 2019, Zhang et al., 
2016)). However, the limitation of KGE methods is that they are more 
suitable for the tasks related to graph, such as graph completion and 
link prediction rather than recommendation (Wang, Zhao, et al., 2019, 
Wang, Zhang, Zhang, et al., 2019). Connection-based methods leverage 
the available connection patterns by mining the relationships between 
the entities within a graph to drive the recommendation process. These 
methods mainly utilize the meta-structure (meta-path or meta-graph) of 
the graph to compute similarities between user and item embeddings. 
However, these methods face the challenge of designing appropriate 
meta-paths, which require domain knowledge and are rather labor-

intensive for complicated KGs (Wang, Zhao, et al., 2019, Wang, He, Cao, 
et al., 2019). Propagation-based methods employ GNN architectures to 
incorporate both the user-item connection patterns and the relation-

ships between them. This approach represents entities by considering 
their embeddings in relation to the multi-hop neighbors within the 
structure of the KG. By leveraging the GNN framework, propagation-

based methods capture the structural information present in the KG to 
enhance the recommendation process. This enables a more comprehen-

sive understanding of user-item interactions and can lead to improved 
recommendations (Guo et al., 2020). Wang, Zhao, et al. (2019) intro-

duced a framework called Knowledge GCN (KGCN) for RSs. KGCN aims 
to capture both high-order structure and semantic information in a KG 
along with the user’s interests. It utilizes neighborhood aggregation and 
bias to calculate the representation of entities of multiple hops in the 
KG. This approach allows KGCN to capture local proximity structure 
and personalized interests of users in relations. Furthermore, represent-

ing the neighborhood of each entity can be extended hierarchically to 
model high-order dependencies and long-distance interests. Wang et 
al. (2018) proposed an end-to-end framework named RippleNet that 
addresses the limitations of existing embedding-based and path-based 
methods by employing preference propagation, which extends a user’s 
interests iteratively along KG links. By combining multiple “ripples” 
created by a user’s historical interactions, RippleNet predicts the user’s 
preference distribution for candidate items. Experiments demonstrate 
that RippleNet achieves substantial improvements in movie, book, and 
news recommendations compared to state-of-the-art methods. How-

ever, the size of the ripple set may go unpredictably with the increase 

of the size of KG, which would lead to heavy computation and storage 
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overhead (Wang, Zhao, et al., 2019). In addition, RippleNet does not 
take into consideration the importance of relationships between dif-

ferent items in the interaction history. This could limit the ability of 
RippleNet to effectively capture the user’s evolving preferences when 
encountering various candidate items. This issue has been addressed by 
Li et al. (2023), who introduced RKGCN, an end-to-end deep learning 
model that utilizes KGs to enhance user-item representations and make 
personalized recommendations. However, challenges remain in han-

dling large datasets and mitigating noise interference in KGs, suggesting 
the need for scalable GNNs and improved sampling methods. Wang, He, 
Cao, et al. (2019) emphasized the importance of high-order relations 
in achieving successful recommendations. To address this, the authors 
proposed Knowledge Graph Attention Network (KGAT) that explicitly 
models high-order connectivities within KGs. KGAT recursively propa-

gates embeddings from neighboring nodes (users, items, or attributes) 
to refine node representations and employs an attention mechanism 
to determine the importance of each neighbor. This approach over-

comes the limitations of existing KG-based recommendation methods 
that either rely on path extraction or implicit regularization for high-

order relation modeling. The authors also highlighted the advantages 
of KGAT compared to path-based and regularization-based methods. 
The KGAT model consists of an embedding layer, attentive embedding 
propagation layers, and a prediction layer, which collectively capture 
and utilize high-order relations for improved recommendations. De-

spite the mention of linear time complexity in the paper, dealing with 
massive graphs can still present challenges. The additional complex-

ity hinders the model’s ability to achieve improved performance. Wang 
et al. (2022) proposed a method based on GCN and multi-task called 
Light Knowledge GCN (LKGCN) that explicitly models the high-order 
connections between users, items, and entities in a recommendation 
system. The LKGCN model extends the existing LightGCN model by 
applying GCN to the tripartite graph consisting of user, item, and en-

tity relations. This allows the model to incorporate information from 
the k-hop neighborhood of users, items, and entities into their embed-

dings. The inclusion of entity relations enables connections between 
users and items that would not be present otherwise. Additionally, an 
attention mechanism is utilized to strengthen the relationship between 
users, items, and entities and generate attention scores that can aid in 
explanation generation.

In summary, propagation-based methods provide a powerful mech-

anism for KG-based recommendation that effectively combines GNN 
techniques and KG relations to aggregate embeddings of multi-hop 
neighbors in the KG. Most of the existing works apply the variants of 
the traditional GAT (Veličković et al., 2017) over the KG, i.e., the cen-

tral node is updated by the weighted average of the linked entities, and 
the weights are assigned according to a score function. For example, 
KGAT assigns the weight according to the distance between the linked 
entities in the relation space, such that the closer entities would pass 
more information to the central node (Wang, He, Cao, et al., 2019). 
KGCN adopts as a score function the dot product of the user embedding 
and the relation embedding, such that the entities whose relations are 
more consistent with users’ interests will spread more information to 
the central node (Wang, Zhao, et al., 2019). Designing a reasonable and 
effective score function is, however, a complex and challenging task. In 
particular, the score functions proposed in the literature on KG-bases 
RS require more computation time and their performance depends on 
the construction of the KG (Wu et al., 2022, Guo et al., 2020). Our work 
distinguishes itself from the above propagation-based methods in sev-

eral key ways. In addition to leveraging both high-order structure and 
semantic information in the KG, we also harness the semantic infor-

mation captured by pre-trained transformer language model encoders 
(SBERT) to enhance the user and item representations. Moreover, to 
determine the importance of each neighbor, we use SBERT as the basis 
for a simple score function that assigns weights between linked enti-

ties in the KG during the propagation process. Furthermore, we utilize 
4

the structural and semantic information in the KG to explain the rec-
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ommendations to help learners understand why specific concepts were 
suggested to them.

2.3. Concept recommendation in MOOCs

One challenge in MOOCs is to tailor the recommendations of courses 
and learning materials to the learner’s knowledge state and specific in-

terests. To address this challenge, researchers have shown interest in 
recommending knowledge concepts. This approach considers learners’ 
individual learning needs at a micro level and emphasizes the sig-

nificance of understanding their learning requirements and accurately 
predicting knowledge concepts that align with their interests. Only few 
approaches have been proposed for recommending knowledge concepts 
based on KG and GCN. Gong et al. (2020) presented one of the first 
works for recommending knowledge concepts in MOOCs in a hetero-

geneous view. The authors treated the number of clicks as ratings and 
formulated the problem as rating prediction for recommending top-k 
unknown concepts with higher ratings. They proposed ACKRec, an end-

to-end GNN-based approach that leverages both content and context 
information to learn the representation of entities using GCN. ACKRec 
constructs a HIN that captures the semantic relationships among differ-

ent types of entities (e.g., students, knowledge concepts, courses, videos, 
teachers). Meta-paths on the HIN are employed to guide the propaga-

tion of learners’ preferences and capture their preference distribution 
for candidate knowledge concepts. GCNs are used to aggregate nodes 
on meta-paths to obtain representations of users and concepts. Addi-

tionally, an attention mechanism is introduced to adaptively combine 
context information from different meta-paths, catering to the diverse 
interests of students. Parameters of the model are learned through ex-

tended matrix factorization to predict potential user preferences for 
concepts in the course. Piao (2021) also addressed the challenge of 
recommending knowledge concepts to learners in MOOCs, consider-

ing the sparsity of learner-concept interactions given a large number 
of concepts. The authors considered the task of predicting and recom-

mending concepts that a user might be interested in based on their 
learning history, which includes a set of learned concepts and their con-

textual information such as courses, videos, etc. Similar to the work in 
(Gong et al., 2020), Piao (2021) proposed MOOCIR that utilizes a HIN 
to model information on MOOCs and learn user and concept representa-

tions using GCNs based on user-user and concept-concept relationships 
via meta-paths in the HIN. These representations are then integrated 
into an extended matrix factorization framework to predict and recom-

mend concept preferences for each user. The study explores different 
attention mechanisms to derive aggregated user and concept represen-

tations, highlighting their importance in achieving better performance. 
Building upon the work in (Gong et al., 2020), Gong et al. (2021) pre-

sented AGMKRec, a reinforced concept recommendation model that 
addresses the limitations of existing models by leveraging HINs and 
reinforcement learning. The model effectively incorporates auxiliary 
information and considers long-term learner interests in concept rec-

ommendation tasks within MOOCs. To construct the HIN, the authors 
utilize a meta-path-based method that automatically identifies relevant 
meta-paths and multi-hop connections among learners, courses, and 
concepts. Additionally, the reinforcement learning framework is em-

ployed to tackle challenges such as the sparsity of concept clicking rates 
in MOOCs and the sequential nature of interactions between learners 
and the recommender agent.

In summary, to obtain embeddings of users and concepts, the ex-

isting approaches leverage HINs to model information in MOOCs, con-

struct different meta-paths for users and concepts, and use GCN to ag-

gregate nodes on meta-paths and attention techniques as path weights. 
Finally, the learned user and concept embeddings are used for predict-

ing the preference scores of concepts for recommendations. The main 
problem with these approaches is that they rely heavily on meta-path-

based representations of users and concepts. Identifying useful meta-
paths is a challenging task and has many shortcomings. First, it is hard 
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Fig. 1. The conceptual architecture of our proposed ConceptGCN-based knowledge concept recommender system.
to define optimal meta-paths in reality (Wang, Zhao, et al., 2019). Meta-

paths are usually diverse for different application scenarios and cannot 
generalize to new datasets (Guo et al., 2020). Also, it is unavoidable to 
lose information by decomposing the sophisticated user-item connec-

tion pattern into separate linear paths (Guo et al., 2020). Moreover, the 
potential meta-paths induced from the HIN can be infinite and not all of 
them are relevant for the recommendation task (Gong et al., 2020). Fur-

thermore, building effective meta-paths manually needs to have specific 
domain knowledge or experience, and the automatic selection of valid 
meta-paths in a HIN is relatively complex and more computations are 
required in enumerating and selecting paths (Guo et al., 2020, Gong 
et al., 2021, Wang, Zhao, et al., 2019). Finally, the recommended re-

sults will be significantly different for different meta-path combinations 
(Gong et al., 2020). Our work differs from the existing approaches in 
several aspects. First, we do not consider user-user and concept-concept 
relationships via different meta-paths. Second, we combine KG, GCN, 
and SBERT to incorporate both structural and semantic information 
to enrich the representations of knowledge concepts and specify the 
edge weights between concepts in the KG. Third, we build represen-

tations of learner models based on the concepts that the learner did 
not understand (referred to as DNU concepts) for a more personalized 
recommendation. Forth, we introduce a weighting method based on dif-

ferent paths linking learners and recommended concepts to explain the 
generated recommendations.

3. Proposed approach

In this section, we introduce the details of our proposed ConceptGCN 
approach that integrates KG, GCN, and SBERT to enhance the represen-

tations of knowledge concepts and learner models, performs knowledge 
concept recommendation based on the learned representations, and ex-

plains the provided recommendations. The conceptual architecture of 
our ConceptGCN-based knowledge concept RS is shown in Fig. 1. It 
consists of an offline and an online phase. The aim of the offline phase 
5

is to construct the KG and enhance the representation of KG items (i.e., 
slide, main concept, related concept, category) using GCN. The aim of 
the online phase is to represent a learner model based on the enhanced 
representations of a learner’s DNU concepts and use the learner model 
representation to recommend knowledge concepts and explain the pro-

vided recommendations. In the following, we describe each phase along 
with its components in detail.

3.1. Offline phase

The offline phase consists of two main components: (1) Knowledge 
Graph Construction and (2) Representation Learning of KG Items using 
GCN, as shown in Fig. 1.

3.1.1. Knowledge graph construction

After a learning material is uploaded to CourseMapper (Ain et al., 
2022), the process of generating the KG for this learning material be-

gins. Initially, the KG is built for each slide (referred to as Slide-KG), 
gradually forming a KG for the learning material (referred to as LM-KG). 
Subsequently, concept expansion takes place, where additional concepts 
and categories related to the main concepts are added to enhance the 
KG. Next, KG completion is performed to establish connections between 
the different entities in the KG.

3.1.1.1. KG entities and relationships The constructed LM-KG consists 
of different nodes representing the following entities: Learning Material 
(LM), Slide (S), Main Concept (MC), Related Concept (RC), Category 
(Cat) and edges representing the following relationships: (LM, CON-

SISTS_OF, Slide), (Slide, CONTAINS, MC), (MC, RELATED_TO, RC), (MC, 
HAS_CATEGORY, Cat), (Learner, HAS_READ, Slide), (Learner, DNU, 
MC), (Learner, U, MC), as depicted in Fig. 2. Each main concept (MC) 
node has three states relative to the learner: “Did not understand”, “Un-

derstood”, and “New”, where “New” represents the initial state of the 
MC, i.e., the learner has not interacted with the main concept. When 

interacting with the slides of a learning material in CourseMapper, the 
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Fig. 2. Knowledge graph construction.

Fig. 3. Knowledge graph illustration in the graph database.
learner can mark the main concepts extracted from each slide as “Un-

derstood”, “Did not understand”, or “New”. In this way, the learner 
model is constructed using the concepts marked as “Did not understand” 
(i.e., DNU concepts). To store the KG, we use a graph database (Neo4j) 
which is highly suitable for this purpose as it uses graph structures with 
nodes and edges to represent and store data. Fig. 3 illustrates the KG 
entities, relationships, and attributes stored for each KG in the graph 
database. The process of constructing an LM-KG undergoes three main 
steps: (1) Slide-KG Construction, (2) Concept Expansion, and (3) Knowl-

edge Graph Completion.

3.1.1.2. Slide-KG construction Each learning material uploaded to 
CourseMapper consists of several slides. Firstly, we create a KG for each 
slide (Slide-KG). The Slide-KG construction process encompasses four 
6

main steps: (1) Text Extraction, (2) Keyphrase Extraction, (3) Concept 
Identification, and (4) Concept Filtering, as shown in Fig. 2. The first step 
involves extracting the text from the slide using PDFMiner (Shinyama, 
2013). Once the text is extracted, the next step is to apply the SingleR-

ank algorithm (Wan & Xiao, 2008) to extract the top-15 keyphrases 
from the text. These keyphrases serve as candidates for the identi-

fication of the main concepts discussed in the slide. To identify the 
main concepts from these keyphrases, DBpedia Spotlight (Mendes et 
al., 2011) is utilized as an entity linking service to link the keyphrases 
to specific entities in the DBpedia knowledge base. This process re-

sults in the identification of the main concepts of each slide. Next, the 
main concepts extracted from the slide are filtered and sorted based on 
their importance to both the slide and the learning material. This filter-

ing process takes into account the significance of each main concept to 
the slide’s content as well as its relevance to the learning material. To 

this end, we employ SBERT (Reimers & Gurevych, 2019) to generate 
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representations of each entity in the KG. SBERT produces embeddings 
for the learning material (based on its text content), the slide (based 
on its text content), and the main concepts (based on the abstract of 
their Wikipedia article). These embeddings capture the semantic mean-

ing and relationships between entities. Using these embeddings, cosine 
similarity scores are calculated between the main concepts and the 
slide, as well as between the main concepts and the learning material. 
These similarity scores quantify the relatedness of the main concepts 
with the slide and with the learning material. The two similarity scores 
are then combined by applying summation to derive an overall score 
for each main concept representing its relatedness with the slide and 
the learning material. Based on this combined score, the main concepts 
of the slide are sorted to reflect their relative importance. In this way, 
top 5 main concepts for each slide are obtained. This process ensures 
that the most important main concepts (top-5), both in terms of their 
relevance to the slide and the learning material, are given priority and 
emphasized. This step is repeated to build the Slide-KG for each slide 
included in the learning material. Finally, the Slide-KGs for all slides in 
the learning material are combined to form the LM-KG. At this stage, 
the KG consists of the following node types: Learning Material (LM), 
Slide (S), and Main Concept (MC).

3.1.1.3. Concept expansion To enrich the LM-KG, the main concepts 
are expanded by getting their related concepts and categories using DB-

pedia Spotlight. These expanded concepts would enhance the structure 
of the KG and facilitate the learner’s concept discovery to help learners 
further master their knowledge. Expanding the main concepts would 
also improve the effectiveness of the recommendation process by rec-

ommending relevant, novel, and diverse related knowledge concepts 
to the learner. Concept expansion is performed by querying DBpedia 
using SPARQL. This query retrieves all the related concepts and cate-

gories associated with each main concept. However, within the DBpedia 
knowledge base, every concept is associated with a large number of re-

lated concepts and categories, and as we delve further, these associated 
concepts tend to become more abstract. Additionally, if all these asso-

ciated concepts and categories are incorporated into the KG without 
undergoing a filtering procedure, the KG would extend to an unman-

ageable size. Once the related concepts and categories are obtained, 
their embeddings are generated using SBERT. The related concepts are 
embedded based on the abstract of their associated Wikipedia articles, 
while the categories are embedded using their names. These embed-

dings are used to compute the cosine similarities between each main 
concept and its related concept/category to quantify the relatedness 
between them. Furthermore, we compute the cosine similarities be-

tween each related concept/category and the learning material. These 
two similarity scores are combined by applying summation to obtain an 
overall score for each related concept/category. To decide which related 
concepts and categories should be kept in KG, this overall similarity 
score is used to sort the most relevant related concepts/categories. In 
this way, the top-20 related concepts and the top-3 categories for each 
main concept, are added to the KG. By following this approach, a richer 
structure of KG is achieved through the expansion and exploration of 
related concepts and categories.

3.1.1.4. Knowledge graph completion This step completes the missing 
relations between entities (main concepts, related concepts, and cate-

gories) in the KG, which results of a refinement of the KG by taking 
into consideration bidirectional and transitive relationships in the KG. 
Expanding main concepts with related concepts and categories might 
result in missing some relationships between existing entities in the KG, 
for example, as shown in Fig. 4 where dashed lines indicate missing re-

lationships after the concept expansion step. When conducting concept 
expansion on 𝑀𝐶1, a “RELATED_TO” relationship to 𝑅𝐶1 is added to 
the KG because 𝑅𝐶1 is among the top-20 most closely related concepts 
to 𝑀𝐶1. Since 𝑀𝐶3 is not among the most related concepts to 𝑀𝐶1, 
7

there is no connection from 𝑀𝐶1 to 𝑀𝐶3. However, in the other direc-
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Fig. 4. Example of KG completion.

tion, there is a connection established from 𝑀𝐶3 to 𝑀𝐶1 after concept 
expansion on MC3, as 𝑀𝐶1 is among the top-20 most related concepts 
to 𝑀𝐶3. During the concept expansion on 𝑀𝐶3, 𝑅𝐶1 is not included 
in the KG as it is not among the most closely related concepts to 𝑀𝐶3 . 
In order to ensure that the “RELATED_TO” relationship is bidirectional, 
it is necessary to establish a connection from 𝑀𝐶1 to 𝑀𝐶3 and from 
𝑅𝐶1 to 𝑀𝐶1. Moreover, in order to ensure that the “RELATED_TO” re-

lationship is transitive, it is essential to incorporate the bidirectional 
relationship between 𝑀𝐶3 and 𝑅𝐶1, as 𝑀𝐶3 is connected to 𝑀𝐶1 and 
𝑀𝐶1 is connected to 𝑅𝐶1.

3.1.2. Representation learning of KG items using GCN

After constructing the LM-KG, the next step is to harness the struc-

tural and semantic information in the KG to enhance the representation 
of KG items (i.e., slide, main concept, related concept, category) us-

ing GCN. This is achieved by following three core steps: (1) Construct 
initial embedding matrix, (2) Construct the adjacency matrix, and (3) 
Construct final embedding matrix, as depicted in Fig. 5.

3.1.2.1. Construct initial embedding matrix The initial embedding ma-

trix is composed of the initial embeddings of the KG items (i.e., slide, 
main concept, related concept, category), which is derived from the 
embedding of the item’s textual content using SBERT. Specifically, for 
nodes categorized as slide (𝑠), the content of the slide serves as the 
representation of the slide node. Whereas, for nodes classified as main 
concept (𝑚𝑐) or related concept (𝑟𝑐), the abstract provided in their 
linked Wikipedia articles is employed to represent them. Furthermore, 
for nodes of type category (𝑐𝑎𝑡), the category name itself is utilized to 
represent the category node, as expressed in the following equations 
where 𝑠 is the set of slide nodes in the KG and 𝑛 is the number of slides 
belonging to the learning material.

𝑠 =
{
𝑠1, 𝑠2, 𝑠3, ..., 𝑠𝑛

}
(1)

The embedding 𝑒𝑠𝑛 of the slide node 𝑠𝑛 is generated by applying SBERT 
on the slide content:

𝑒𝑠𝑛
= 𝑆𝐵𝐸𝑅𝑇

{
𝑠𝑙𝑖𝑑𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑛

}
(2)

Then the set of main concepts 𝑚𝑐 identified from 𝑠𝑛 is presented as 
follows, where 𝑖 is the 𝑖𝑡ℎ main concept in 𝑚𝑐:

𝑚𝑐 =
{
𝑚𝑐1,𝑚𝑐2,𝑚𝑐3, ...,𝑚𝑐𝑖

}
(3)

The embedding of the main concept 𝑚𝑐𝑖 based on the abstract available 
in its Wikipedia article is generated using SBERT:{ }

𝑒𝑚𝑐𝑖

= 𝑆𝐵𝐸𝑅𝑇 𝑊 𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖 (4)
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Fig. 5. Enhanced representation of KG items using GCN.
After that, each 𝑚𝑐𝑖 is expanded to get the list of its related concepts 
(𝑟𝑐𝑗 ) and categories (𝑐𝑎𝑡𝑘) as follows:

𝑟𝑐 =
{
𝑟𝑐1, 𝑟𝑐2, 𝑟𝑐3, ..., 𝑟𝑐𝑗

}
(5)

𝑐𝑎𝑡 =
{
𝑐𝑎𝑡1, 𝑐𝑎𝑡2, ..., 𝑐𝑎𝑡𝑘

}
(6)

where 𝑗 is the number of related concepts in the expanded list of 𝑚𝑐𝑖, 
and 𝑘 is the number of categories that the 𝑚𝑐𝑖 has. The embedding of 
the related concept 𝑟𝑐𝑗 is generated in the same manner:

𝑒𝑟𝑐𝑗
= 𝑆𝐵𝐸𝑅𝑇

{
𝑊 𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑗

}
(7)

lastly, the embedding of the category 𝑐𝑎𝑡𝑘 is generated using its name:

𝑒𝑐𝑎𝑡𝑘
= 𝑆𝐵𝐸𝑅𝑇

{
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑛𝑎𝑚𝑒𝑘

}
(8)

3.1.2.2. Construct the adjacency matrix In general, the construction of 
an adjacency matrix is based on the binary polarity relationship be-

tween nodes. A relationship value of 1 signifies a direct connection, 
indicating adjacency between the nodes. Conversely, a relationship 
value of 0 indicates the absence of a direct connection, implying non-

adjacency. This approach solely considers the presence or absence of 
a direct relationship between nodes, disregarding the degree of influ-

ence of neighboring nodes. However, it is essential to account for the 
varying degrees of influence that different neighbors exert on a node. 
In our work, we incorporate the degree of influence between KG items 
through relationship weights that we compute based on the cosine sim-

ilarity between the item embeddings, where higher similarity indicates 
stronger influence from the neighbor. Conversely, lower similarity indi-

cates weaker neighbor influence.

To assign weights between directly connected items in the KG, we 
propose a new simple score function (“attention mechanism”) that com-

bines the symmetric sqrt normalization used in LightGCN (He et al., 
2020) (see Section 3.3 for details regarding this normalization term) 
and an SBERT-based semantic similarity function. The score function 
that characterizes the importance of the relationship between two di-

rectly connected items 𝑢 and 𝑣 in the KG is computed as follows:

𝜔𝑢,𝑣 =
𝑐𝑜𝑠(𝑒𝑢, 𝑒𝑣)√|𝑢||𝑣| (9)

where 𝑒 represents the item embedding, 𝑢 and 𝑣 denote the set of 
items directly connected to 𝑢 and 𝑣, respectively, and 𝑐𝑜𝑠 is the co-

sine similarity between two embedding vectors. The adjacency matrix 
8

is computed as follows:
𝐴𝐷𝐽𝑚 =

{
𝜔𝑢,𝑣, if 𝑣 ∈ 𝑢

0, otherwise
(10)

3.1.2.3. Construct the final embedding matrix We apply GCN to enhance 
the representations of items in the KG. We use the embeddings obtained 
at the last layer (i.e., layer 2 in our case) as the final embeddings.

Fig. 6 gives an illustrative example of a two-layer receptive field 
for a given item 𝑀𝐶1, where 𝑙 is set as 2. The left subgraph shows an 
example of KG structure where Slide 1 (𝑆1) contains five main con-

cepts (𝑀𝐶) that are related to four related concepts (𝑅𝐶) and one 
category (𝐶𝑎𝑡). A learner did not understand (𝐷𝑁𝑈 ) 𝑀𝐶1 and 𝑀𝐶3
and understood (𝑈 ) 𝑀𝐶2. The right subgraph presents the high-order 
connectivity where the target node is 𝑀𝐶1. The high-order connectiv-

ity (i.e., two-layer receptive field in our example) denotes the path that 
connects 𝑀𝐶1 with its 2-hop neighbors in the KG. Such high-order con-

nectivity contains rich semantics that carry information between items 
to get an enhanced representation of 𝑀𝐶1. Specifically, at layer 𝑙+1 an 
aggregation function is used to obtain the updated item representation 
by aggregating weighted embeddings of the direct neighboring items as 
well as the item itself (i.e., self-connection) from layer 𝑙 as follows:

𝑒(𝑙+1)
𝑢

= 𝑒(𝑙)
𝑢

+
∑
𝑣∈𝑢

𝜔𝑢,𝑣 𝑒
(𝑙)
𝑣

(11)

The enhanced representations of the items in the KG are achieved 
by multiplying the adjacency matrix 𝐴𝐷𝐽𝑚 with the initial embedding 
matrix to get the new embedding matrix at layer 1. At layer 2, the 
adjacency matrix is multiplied with the new embedding matrix to get 
the final embedding matrix containing the enriched item embeddings 
which will be used for recommendation in the online phase (Fig. 5).

3.2. Online phase

The online phase consists of three main components: (1) Represen-

tation of Learner Model and (2) Knowledge Concept Recommendation, and 
(3) Recommendation Explanation, as shown in Fig. 1. The technical ar-

chitecture related to the user interaction with the ConceptGCN-based 
knowledge concept recommender system is depicted in Fig. 7.

3.2.1. Representation of learner model

The learner model 𝐿 is based on the concepts that the learner un-

derstood (𝑈 ) and did not understand (𝐷𝑁𝑈 ) when interacting with the 
slides of a learning material in CourseMapper. In this way, 𝐿 is a vector 
where a concept marked as 𝐷𝑁𝑈 (𝑈 ) is represented as 1 (0). In our 

example from Fig. 6,
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Fig. 6. Illustration of a knowledge graph and high-order connectivity to enhance the embedding of the target node 𝑀𝐶1.

Fig. 7. Technical architecture of our proposed ConceptGCN-based recommender system.
𝐿 = [1,0,1] (12)

where the learner did not understand (𝐷𝑁𝑈 ) 𝑀𝐶1 and 𝑀𝐶3 and un-

derstood (𝑈 ) 𝑀𝐶2. Given that the value of a concept understood by the 
learner is 0, the learner model can be represented only by the concepts 
that the learner did not understand. Therefore, we represent the learner 
model as a weighted average of the learner’s 𝐷𝑁𝑈 concepts, where 
the weight of a concept is computed as the cosine similarity score be-

tween its embedding and the learning material embedding (based on 
the content of the learning material). This way, concepts that are more 
relevant to the learning material are assigned higher weights than less 
relevant ones. These concepts indicate that the learner needs to mas-

ter those concepts first, consequently making them more important for 
the learner. Utilizing the enriched embeddings of the learner’s DNUs, 
along with their respective weights, the learner model’s embedding is 
obtained as follows:

𝑒 =

[
1 ∑

𝜔 𝑒

]
; 𝜔 = 𝑐𝑜𝑠(𝑒 , 𝑒 ); 𝜔 =

∑
𝜔 (13)
9

𝐿
𝜔𝑠𝑢𝑚 𝑐∈𝐷𝑁𝑈

𝑐 𝑐 𝑐 𝑐 𝑙𝑚 𝑠𝑢𝑚

𝑐∈𝐷𝑁𝑈
𝑐

where 𝑒𝑐 is the embedding of concept 𝑐 and 𝜔𝑐 is its weight in the 
learning material 𝑙𝑚.

3.2.2. Knowledge concept recommendation

We recommend relevant knowledge concepts to the learners based 
on their learner model 𝐿. A candidate knowledge concept (𝑐𝑐𝑎𝑛𝑑 ) 
for recommendation is a main concept or a related concept that the 
learner did not mark as 𝑈 or 𝐷𝑁𝑈 . We compute the cosine similarity 
𝑐𝑜𝑠(𝑒𝐿, 𝑒𝑐𝑐𝑎𝑛𝑑 ) between the embedding of the learner model (𝑒𝐿) and 
the embedding of each candidate knowledge concept (𝑒𝑐𝑐𝑎𝑛𝑑 ). The top-5 
ranked candidate knowledge concepts with the highest similarity score 
will then be recommended to the learner.

3.2.3. Recommendation explanation

We harness the structural and semantic information in the KG to 
explain the recommendations to help learners understand why specific 
knowledge concepts were suggested to them. To this end, we propose 
a weighting method to weigh the paths between the learner and the 

recommended concepts in the KG, wherein the path with the high-
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Fig. 8. Example for recommendation explanation.

est weight is utilized as the explanation for the recommendation. For 
example, if the learner did not understand 𝑀𝐶1 and 𝑀𝐶3 and the rec-

ommended concept is 𝑅𝐶1, as shown in Fig. 8, then a possible reason 
for recommending 𝑅𝐶1 could be that it is the related concept of both 
𝑀𝐶1 and 𝑀𝐶3, or that it has the same related concept 𝑅𝐶2 as 𝑀𝐶1. In 
this work, we adopt various paths in the KG for recommendation expla-

nation. Particularly, four types of paths between the learner and the 
recommended concept are applied for recommendation explanation. 
These paths are differentiated based on the type of the recommended 
concept (i.e., 𝑀𝐶 or 𝑅𝐶). Fig. 9 presents the four possible paths for 
recommendation explanation.

The paths of type 𝑃𝑎𝑡ℎ1 are constructed by establishing connec-

tions between the learner 𝐿 and the recommended concept of type 𝑀𝐶 , 
where both 𝑀𝐶 and the recommended concept 𝑅𝐸𝐶𝑚𝑐 are connected 
with the same slide node 𝑆 as follows:

𝑃𝑎𝑡ℎ1 ∶𝐿
𝐷𝑁𝑈
⟶ 𝑀𝐶

𝜔𝑚𝑐,𝑠
⟶ 𝑆

𝜔𝑠,𝑟𝑒𝑐𝑚𝑐⟶ 𝑅𝐸𝐶𝑚𝑐 (14)

The paths of type 𝑃𝑎𝑡ℎ2 are formulated based on the connections be-

tween the learner 𝐿 and the recommended concept of type 𝑀𝐶/𝑅𝐶

(i.e., 𝑀𝐶 or 𝑅𝐶), where both 𝑀𝐶 and the recommended concept 
𝑅𝐸𝐶𝑚𝑐∕𝑟𝑐 have the same related concept 𝑅𝐶 as follows:

𝑃𝑎𝑡ℎ2 ∶𝐿
𝐷𝑁𝑈
⟶ 𝑀𝐶

𝜔𝑚𝑐,𝑟𝑐
⟶ 𝑅𝐶

𝜔𝑟𝑐,𝑟𝑒𝑐𝑚𝑐∕𝑟𝑐
⟶ 𝑅𝐸𝐶𝑚𝑐∕𝑟𝑐 (15)

The formation of paths of type 𝑃𝑎𝑡ℎ3 relies on the connections between 
the learner 𝐿 and the recommended concepts of type 𝑀𝐶∕𝑅𝐶 , where 
both 𝑀𝐶 and the recommended concept 𝑅𝐸𝐶𝑚𝑐∕𝑟𝑐 have the same cat-

egory 𝐶𝑎𝑡 as follows:

𝑃𝑎𝑡ℎ3 ∶𝐿
𝐷𝑁𝑈
⟶ 𝑀𝐶

𝜔𝑚𝑐,𝑐𝑎𝑡
⟶ 𝐶𝑎𝑡

𝜔𝑐𝑎𝑡,𝑟𝑒𝑐𝑚𝑐∕𝑟𝑐
⟶ 𝑅𝐸𝐶𝑚𝑐∕𝑟𝑐 (16)

The construction of paths of type 𝑃𝑎𝑡ℎ4 involves establishing connec-

tions between the learner 𝐿 and the recommended concept of type 
𝑀𝐶∕𝑅𝐶 , where the recommended concept 𝑅𝐸𝐶𝑚𝑐∕𝑟𝑐 represents the 
related concept of 𝑀𝐶 as follows:

𝑃𝑎𝑡ℎ4 ∶𝐿
𝐷𝑁𝑈
⟶ 𝑀𝐶

𝜔𝑚𝑐,𝑟𝑒𝑐𝑚𝑐∕𝑟𝑐
⟶ 𝑅𝐸𝐶𝑚𝑐∕𝑟𝑐 (17)

In all paths above, 𝜔𝑢,𝑣 (𝑢 and 𝑣 can be a slide 𝑠, main concept 𝑚𝑐, re-

lated concept 𝑟𝑐, or category 𝑐𝑎𝑡) represents the cosine similarity score 
𝑐𝑜𝑠(𝑒𝑢, 𝑒𝑣) between the final embeddings of 𝑢 and 𝑣. If the recommended 
concept type is main concept, then there are four types of paths: 𝑃𝑎𝑡ℎ1, 
𝑃𝑎𝑡ℎ2, 𝑃𝑎𝑡ℎ3, and 𝑃𝑎𝑡ℎ4. If the recommended concept type is related 
concept, there are only three types of paths: 𝑃𝑎𝑡ℎ2, 𝑃𝑎𝑡ℎ3, 𝑃𝑎𝑡ℎ4. The 
reason that there is no path of type 𝑃𝑎𝑡ℎ1 is that there is no direct con-

nection between a slide and a related concept in the KG. We find the 
different paths between the learner and the recommended concept in 
the KG for explanation. In case that there are more than one path of the 
same type, we select the one with the highest weight score. The weights 
for the different path types are calculated as follows:
10

𝜔𝑝𝑎𝑡ℎ1 = 𝜔𝑚𝑐,𝑠 +𝜔𝑠,𝑟𝑒𝑐𝑚𝑐 (18)
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𝜔𝑝𝑎𝑡ℎ2 = 𝜔𝑚𝑐,𝑟𝑐 +𝜔𝑟𝑐,𝑟𝑒𝑐𝑚𝑐∕𝑟𝑐 (19)

𝜔𝑝𝑎𝑡ℎ3 = 𝜔𝑚𝑐,𝑐𝑎𝑡 +𝜔𝑐𝑎𝑡,𝑟𝑒𝑐𝑚𝑐∕𝑟𝑐 (20)

𝜔𝑝𝑎𝑡ℎ4 = 𝜔𝑚𝑐,𝑟𝑒𝑐𝑚𝑐∕𝑟𝑐 (21)

In the example in Fig. 10, 𝑅𝐶1 is recommended to the learner 𝐿. Be-

tween 𝐿 and 𝑅𝐶1, there is one path of type 𝑃𝑎𝑡ℎ2 and two paths 
of type 𝑃𝑎𝑡ℎ4. Since there is only one path of type 𝑃𝑎𝑡ℎ2 (i.e., 
𝐿⟶𝑀𝐶1⟶𝑅𝐶2⟶𝑅𝐶1), it is selected for explanation. Since there 
are two paths of type 𝑃𝑎𝑡ℎ4, only the path 𝐿⟶𝑀𝐶1⟶𝑅𝐶1 is se-

lected for explanation, because it has a higher weight than the path 
𝐿⟶𝑀𝐶3⟶𝑅𝐶1. Finally, we provide visual and textual explanations 
of the recommendations. While the visual explanation shows a KG 
subgraph containing the paths used for explanation (Fig. 11), textual 
explanation describes these paths in textual format (Fig. 12).

3.3. Relation with LightGCN

It is worth mentioning that LightGCN (He et al., 2020) inspired us 
developing ConceptGCN. Similar to LightGCN, ConceptGCN simplifies 
the GCN update process by removing feature transformation and non-

linear activation. However, ConceptGCN differs from LightGCN in many 
aspects. First, LightGCN is more appropriate for collaborative filtering 
(CF) recommendation. Specifically, it learns both user and item embed-

dings by linearly propagating them on the user-item interaction graph. 
ConceptGCN, by contrast, uses GCN to refine only item (i.e., main con-

cept, related concept, category, slide) embeddings. User (i.e., learner 
model) embeddings are built online during the learner’s interaction 
with the MOOC platform based on the generated embeddings of DNU 
concepts.

Second, while LightGCN uses the weighted sum of the embeddings 
learned at all layers as the final embedding, ConceptGCN uses the em-

beddings obtained at the last layer (i.e., layer 2) as the final embedding. 
We made this choice for two reasons: (1) The evaluation of LightGCN 
showed that the best performance was achieved on layer 2, while af-

ter that it drops quickly to worst point of layer 4. This indicates that 
smoothing a node’s embedding with only its first-order and second 
order neighbors is very useful (He et al., 2020). (2) Finding the appro-

priate weight which can be used to combine the embeddings learned 
at different propagation layers to form the final embedding is not a 
straightforward task. This weight denoting the importance of the k-th 
layer embedding in constituting the final embedding should be treated 
as a hyperparameter to be tuned manually, or as a model parameter to 
be optimized automatically (He et al., 2020). The authors of LightGCN 
did not design special component to optimize this weight. They noted 
that setting this weight uniformly as 1/(K+1) leads to good performance 
in general. Its optimal setting, however, needs further investigation.

Third, LightGCN removes the self-connection operation from GCN. 
That is, it aggregates the connected neighbors without integrating the 
target node itself. The authors of LightGCN pointed out that the layer 
combination operation (i.e., weighted sum of the embeddings at each 
layer to obtain the final embedding) essentially captures the same ef-

fect as self-connection. Since in ConceptGCN we are not doing layer 
combination, we add self-connection into the adjacency matrix.

Fourth, LightGCN uses an user-item interaction graph for CF, where 
each node (user or item) is only described by an ID feature, which has 
no concrete semantics besides being an identifier. In contrast, Concept-

GCN uses as input a KG, where each node has rich attributes as input 
features. To capture the semantics of the different items in the KG (i.e., 
main concept, related concept, category, slide), we leverage SBERT for 
the starting features (i.e., the 0-th layer embeddings).

Fifth, LightGCN requires model training to provide recommenda-

tions, which can be computationally expensive. The trainable model 
parameters are the embeddings at the 0-th layer. In contrast, Concept-

GCN utilizes pre-trained SBERT-based semantic input features and thus 
does not require training data and optimization mechanisms, making 

ConceptGCN simpler than LightGCN.



Computers and Education: Artificial Intelligence 6 (2024) 100193R. Alatrash, M.A. Chatti, Q.U. Ain et al.
Fig. 9. The four types of paths used for recommendation explanation.

Finally, LightGCN primarily leverage the graph structure informa-

tion to obtain entity representations, neglecting the significance of se-

mantic information. ConceptGCN, by contrast, takes full advantage of 
the rich structural and semantic information in the KG to enhance the 
entity representations. Unlike LightGCN which during the propagation 
process employs symmetric sqrt normalization as a score function to as-

sign weights between linked entities in the graph based on their degree 
information (Equation (22)), ConceptGCN combines the symmetric sqrt 
normalization with an SBERT-based semantics-aware aggregation func-

tion (Equation (9)) to aggregate information from linked entities based 
on both degree information and semantic similarities to determine the 
importance of each neighbor.

𝑒(𝑙+1) =
∑ 1√ √ 𝑒(𝑙) (22)
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Fig. 10. Selection of the paths used for recommendation explanation.

𝑢

𝑣∈𝑢
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Fig. 11. Visual explanation.

Fig. 12. Textual explanation.
where 𝐞(𝑙+1)𝑢 represents the item representation at the (𝑙+1)𝑡ℎ layer, 𝑢

denotes the neighbors of item 𝑢, and 𝐞(𝑙)𝑣 represents the item represen-

tation of neighbor 𝑣 at the 𝑙𝑡ℎ layer. The symmetric sqrt normalization 
factor 1√| (𝑢)|| (𝑣)| accounts for the influence of the degree of nodes 
𝑢 and 𝑣. It follows the design of standard GCN (Kipf & Welling, 2016) 
and aims at avoiding the scale of embeddings increasing with graph 
convolution operations (He et al., 2020).

4. Experiments and results

We conducted offline experiments focused on investigating the ef-
12

fectiveness of our proposed KG construction process. Moreover, we 
conducted an online user study to evaluate the accuracy and learners’ 
perceptions of the benefits of our proposed ConceptGCN-based recom-

mendation approach.

4.1. Evaluation of knowledge graph construction

To answer our first research question (“How to effectively construct 
a KG that can be used in a MOOC platform to provide personalized 
and explainable recommendation of knowledge concepts?”), we con-

ducted extensive offline experiments to evaluate the effectiveness of our 
proposed KG construction process. Specifically, this evaluation aims to 
ascertain the optimal combination of methods to optimize the construc-
tion of the KG.
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Table 1

Evaluation results on Inspec & SemEval2017 datasets.

K Method
Inspec SemEval2017

P R F1 P R F1

5 𝑆𝑖𝑛𝑔𝑙𝑒𝑅𝑎𝑛𝑘 36.76 18.71 24.80 41.26 11.92 18.50

𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 44.16 22.48 29.79 47.79 13.81 21.43

10 𝑆𝑖𝑛𝑔𝑙𝑒𝑅𝑎𝑛𝑘 33.22 33.53 33.37 38.11 22.03 27.92

𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 39.46 39.68 39.57 43.83 25.34 32.11

15 𝑆𝑖𝑛𝑔𝑙𝑒𝑅𝑎𝑛𝑘 30.05 44.24 35.80 34.90 30.23 32.40

𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 34.19 49.78 40.54 39.65 34.32 36.79
4.1.1. Evaluation of keyphrase extraction

To evaluate the keyphrase extraction step in the Slide-KG con-

struction process, offline experiments are conducted on two keyphrase 
extraction techniques, namely SingleRank (Wan & Xiao, 2008) and 
𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 (Ain et al., 2023), with a focus on precision and 
performance speed. 𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 is an enhanced version of the 
SIFRank keyphrase extraction method proposed in (Sun et al., 2020) by 
adopting SqueezeBERT (Iandola et al., 2020), a transformer model for 
word embedding. To conduct the experiments, two well-known bench-

mark datasets are used:

• Inspec dataset (Hulth, 2003) contains a total of 2000 publication 
abstract of journal papers from Inspec database of computer sci-

ence and information technology. Each abstract has two kinds of 
keyphrases: controlled keyphrases restricted by a dictionary and 
uncontrolled keyphrases annotated by experts. The document set is 
composed of three sets: a training set of 1,000 summaries, a valida-

tion set of 500 summaries, and a test set of 500 summaries. Follow-

ing the evaluation method in (Sun et al., 2020, Hulth, 2003, Mihal-

cea & Tarau, 2004), both controlled and uncontrolled keyphrases 
were used as ground truth for the evaluation. 76.2% of the uncon-

trolled keyphrases were present in the abstracts, while only 18% 
of the controlled keyphrases were present in the abstracts. The av-

erage length of the abstracts was 134.4 tokens and the average 
number of keywords per abstract was 9.8.

• SemEval2017 dataset (Augenstein et al., 2017) is a double-

annotated document set of 493 passages extracted from 500 Sci-

enceDirect journal articles. These articles cover the fields of com-

puter science, materials science, and physics. Each article has a 
number of keyphrases assigned by an undergraduate student and 
an expert annotator. In case of disagreement between the two an-

notators, the expert annotator’s annotation is given priority. The 
average length of paragraphs was 194.7 tokens and the average 
number of keywords per paragraph was 17.3.

The evaluation is conducted according to the approximate matching 
strategy (Zesch & Gurevych, 2009). This strategy considers relevant 
keyphrases to be subsets or substrings of the annotated keyphrases. To 
accomplish this, the precision (P), recall (R), and F1 score measures are 
calculated utilizing the stemmed keyphrases, which include both the 
extracted keyphrases and the annotated keyphrases. Table 1 shows the 
results of precision, recall, and F1 score for top 5, 10 and 15 keyphrases 
extracted using SingleRank and 𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 on Inspec and 
SemEval2017 datasets.

The results show that 𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 performed slightly 
better than SingleRank in extracting the top-5, top-10 and top-15 
keyphrases for both datasets. To measure the time performance of both 
methods on constructing the KG, a learning material consisting of 126 
slides was chosen. This learning material contained a combination of 
text, images, mathematical formulas, and code snippets. The time mea-

sured for both approaches consists of the time needed for the keyphrase 
extraction from a slide, Slide-KG construction, and LM-KG construction. 
The results can be found in Table 2. In extracting keyphrases from a 
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slide, SingleRank takes only 0.1~0.3 s. Whereas, 𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇
takes 8~9 s, which makes it ten times slower than SingleRank. More-

over, using SingleRank to build the LM-KG takes nearly twenty min-

utes less than 𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 , thus making SingleRank a better 
choice for the keyphrase extraction task.

4.1.2. Evaluation of main concept filtering

During the Slide-KG construction process, the main concepts un-

dergo a filtering procedure to ensure the retention of the most relevant 
ones, i.e., those closely related to the slide they are identified from and 
the learning material in general. Considering that computing similari-

ties of main concepts with both slide and learning material might have 
a negative impact on the time required to construct the LM-KG, we ex-

perimented with three different options to filter the main concepts: (1) 
based on the similarity between the main concept and the slide, (2) 
based on the similarity between the main concept and the learning ma-

terial, or (3) based on a combination of both similarities. To compare 
these three options, the same learning material consisting of 126 slides 
was chosen and the LM-KG was constructed for it. We assessed each 
option based on its impact on the time required for LM-KG construc-

tion. The result can be found in Table 3. The observed time difference 
between all three options is minimal. Therefore, we selected the combi-

nation of both slide similarity and learning material similarity because 
it considers both types of similarities, thus leading to the retention of 
more relevant main concepts.

4.1.3. Evaluation of concept expansion

The result of the concept expansion step of the KG construction pro-

cess are related concepts and categories which will build the base for 
recommendation in the online phase. Considering that the time per-

formance of the recommender system is impacted by how the main 
concepts are expanded, we experimented with two options for the con-

cept expansion step. The first option entails expanding all the main 
concepts, prioritizing a more complete enrichment of the LM-KG. This 
option, however, would require more time in the offline phase. The sec-

ond option involves expanding solely the top-15 main concepts from the 
learning material, prioritizing time efficiency in the offline phase. How-

ever, this option requires to perform further concept expansion and KG 
completion in the online phase. Specifically, if a learner did not under-

stand a main concept from a slide and this concept is not contained in 
the expanded top-15 main concepts, the related concepts and categories 
associated with that particular main concept would be absent from the 
LM-KG and would need to be expanded during the interaction with 
the learning material. This would lead to significant waiting time for 
the learner, thus negatively impacting the user experience. To compare 
the impact of both options on the time needed for concept expansion 
(offline) and recommendation generation (online), the same learning 
material with 126 slides was chosen. The time performance results are 
shown in Table 4. Expanding all main concepts (first option) requires 8x 
more time than only expanding the top-15 main concepts. On the other 
hand, the second option demands 40x more time for recommendation 
generation than if all concepts have been expanded before the recom-

mendation takes place. To ensure faster recommendation and better 
user experience, we selected the option of expanding all main concepts 

in the offline phase.
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Table 2

Time performance using 𝑆𝑖𝑛𝑔𝑙𝑒𝑅𝑎𝑛𝑘 and 𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 .

Keyphrase extraction Slide-KG construction LM-KG construction

𝑆𝑖𝑛𝑔𝑙𝑒𝑅𝑎𝑛𝑘 0.1∼0.3 s 11.5 s 1445.62 s

𝑆𝐼𝐹𝑅𝑎𝑛𝑘𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝐵𝐸𝑅𝑇 8~9 s 20.4 s 2573.27 s
Table 3

Time spent for LM-KG construction based on three options of main 
concept filtering.

Similarity(MC,Slide) Similarity(MC,LM) LM-KG construction time

✓ x 1445.62 s

x ✓ 1471.51 s

✓ ✓ 1333.12 s

Table 4

Time spent based on two options of concept expansion.

Expanded main concepts
Concept expansion

time (offline)

Recommendation generation

time (online)

All 16086.51 s 2.70 s

Top-15 1999.151 s 106.21 s

Table 5

Time spent for three options of related concepts/categories filtering.

Similarity(RC/Cat,MC) Similarity(RC/Cat,LM) LM-KG construction time

✓ x 2028.65 s

x ✓ 1829.45 s

✓ ✓ 1999.151 s

4.1.4. Evaluation of related concept and category filtering

Within the concept expansion process, a critical aspect involves 
filtering the related concepts and categories to preserve the most sig-

nificant ones associated with the main concept. We considered three 
different options to filter related concepts and categories: (1) based on 
the similarity between the related concepts/categories and the main 
concept, (2) based on the similarity between the related concepts/cate-

gories and the learning material, or (3) based on a combination of both 
the similarities. These three filtering options are experimentally eval-

uated based on the time taken to construct the LM-KG. The results in 
Table 5 show that the difference in time needed to filter the related 
concepts/categories is minimal. However, we opted for combining both 
similarities, as considering both similarities is expected to lead to the 
retention of more relevant related concepts and categories.

4.1.5. Final KG construction

The final LM-KG is constructed by choosing the most suitable op-

tion from each step evaluated in the previous sections. Concretely, for 
keyphrase extraction, SingleRank was chosen based on its time effi-

ciency. For filtering the main concepts, the combination of both the 
similarity between the main concepts and the slide and the similarity 
between the main concepts and the learning material were considered 
as only minimal time difference could be observed. In the concept ex-

pansion step, we opted to expand all the main concepts because this 
reduces the waiting time required to get the recommendations com-

pared to only expanding the top-15 main concepts. Lastly, for filtering 
the related concepts and categories, a combination of both the similarity 
between the slide and the related concepts/categories and the similar-

ity between the learning material and the related concepts/categories 
was selected. An overview of all the chosen options for each step can 
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be found in Table 6.
Table 6

The selected options for final KG construction.

KG construction step Selected option

Keyphrase extraction SingleRank

Main concept filtering Similarity(MC,Slide)+Similarity(MC,LM)

Concept expansion All main concepts

Related concept/category filtering Similarity(RC/Cat,MC)+Similarity(RC/Cat,LM)

4.2. Evaluation of the recommendation benefits

To answer our second research question (“What is the potential im-

pact of the proposed ConceptGCN-based recommendation approach on 
learners’ perceptions of the ERS in terms of accuracy, novelty, diversity, 
usefulness, overall satisfaction, use intentions, and reading intention?”), 
we conducted an online user study (N=31) to gauge the accuracy and 
perceived benefits of ConceptGCN. We evaluated ConceptGCN against 
a baseline variant of LightGCN that we adapted to the context of our 
MOOC platform. We chose LightGCN as a baseline because it is the 
method that is most relevant with ConceptGCN and it has shown to 
outperform several GCN-based recommendation methods (He et al., 
2020). Similar to LightGCN, the implemented variant also removes the 
self-connection, feature transformation, and nonlinear activation oper-

ations. Moreover, it uses the symmetric sqrt normalization as a score 
function in the aggregation operation. However, the implemented vari-

ant adapts LightGCN in three ways: (1) It generates only item (i.e., main 
concept, related concept, category, slide) embeddings, (2) it employs 
SBERT for the initial item embeddings, and (3) it uses the embeddings 
obtained at layer 2 as the final item embeddings. For the sake of brevity, 
we will refer to this implemented variant as LightGCN in the following.

4.2.1. User study

We conducted an online user study to assess the accuracy and per-

ceived benefits of ConceptGCN. We chose not to rely on offline eval-

uation for two main reasons. Firstly, our dataset did not possess a 
sufficiently large scale, making it challenging to obtain reliable and 
statistically significant results through offline evaluation methods. Sec-

ondly, offline evaluations have known limitations. Previous studies in-

cluding those by Beel et al. (2013), Chatti et al. (2013), and McNee 
et al. (2006) have revealed conflicting findings when comparing user 
studies to offline evaluations, leading to doubts regarding the validity 
of offline evaluation in capturing real user preferences. Furthermore, 
offline evaluations lack direct user feedback, which limits their ability 
to capture the dynamic and subjective aspects of user satisfaction and 
preferences. Thus, we opted for an online user study to obtain more ac-

curate and insightful evaluations of the recommendations generated by 
our ConceptGCN-based ERS.

4.2.1.1. Participants A total of 31 participants took part in the evalua-

tion, comprising 16 males, 14 females, and one participant who opted 
not to disclose their gender. Among the participants, only one indi-

vidual was over 35 years of age, while the remaining participants fell 
within the 20-35 age range. Regarding educational background, par-

ticipants exhibited diverse levels of attainment, including Bachelor’s 
degrees, Master’s degrees, and Ph.D. degrees. The majority of partici-

pants had pursued studies in the field of computer engineering, while 
some had backgrounds in computer science, applied computing sci-

ence, or other related disciplines. It is worth noting that the participants 
demonstrated a strong familiarity with recommender systems, as their 

prior academic studies had extensively covered this subject.
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4.2.1.2. Measurement To evaluate the participants’ perceptions of the 
recommendations, the ResQue framework (Pu et al., 2011) is utilized. 
ResQue is a user-centric evaluation framework specifically designed to 
evaluate the experience of users during their interaction with RSs. It 
encompasses four main categories: perceived system qualities, beliefs, at-

titudes, and behavioral intentions. Each category is further dived into 
subcategories. In this study, to evaluate the perceived system quality 
the subcategories perceived accuracy, novelty, and diversity were chosen. 
To evaluate the beliefs about the system the subcategory perceived use-

fulness was chosen, for the attitudes toward the system it was decided 
to choose the subcategory overall satisfaction, and finally, for behav-

ioral intentions, the subcategories use intentions and reading intention

were chosen. By incorporating these constructs, we aimed to evalu-

ate the recommendation model from a holistic perspective, considering 
the learners’ perceptions of recommendation qualities, beliefs, attitudes, 
and intentions to use the system.

4.2.1.3. Procedure The study was conducted remotely via Microsoft 
Teams. In the initial phase, participants were provided with a compre-

hensive explanation of the evaluation’s purpose and content. An assur-

ance of response anonymity and non-disclosure of data to third parties 
was given to participants. Consent was obtained before commencing 
the session and recording the videos. Subsequently, participants were 
introduced to the system through an interactive video. After confirming 
their understanding of the system, participants were requested to com-

plete their demographic profiles. Following this, participants engaged 
in a task on our platform via remote screen control. The task involved 
reading a learning material focused on “Recommender Systems” which 
was sourced from a course offered by our department. The learning 
material comprises a combination of text, images, and mathematical 
formulas/code snippets. As the participants had previously taken part 
in that course, they were familiar with its content. During the task, 
participants were requested to identify concepts within the learning 
material that they did not understand (i.e., DNU concepts). The iden-

tified concepts were collected, and the system presented participants 
with recommended concepts that should help them understand the pre-

viously not understood concepts. Participants were then instructed to 
see the recommended concepts, read their corresponding Wikipedia de-

scriptions, and complete a questionnaire related to the recommended 
concepts. This is repeated for both models meaning that all participants 
see recommendations generated from both models. The questionnaires 
were administered using Google Forms and were designed based on 
the ResQue framework, focusing on different criteria, namely accuracy, 
novelty, diversity, perceived usefulness, overall satisfaction, use inten-

tions, and reading intention. A single question was designed for each 
criterion, utilizing statements from the ResQue framework.

• Recommendation Accuracy: The items recommended to me 
matched my interests.

• Recommendation Novelty: The recommender system helped me 
discover new concepts.

• Recommendation Diversity: The items recommended to me are 
diverse.

• Perceived Usefulness: The recommender gave me good sugges-

tions.

• Overall Satisfaction: Overall, I am satisfied with the recom-

mender.

• Use Intentions: I will use this recommender frequently.

• Reading Intention: I would read about the recommended con-

cepts, given the opportunity.

The responses were collected using a 5-point Likert scale ranging from 
“strongly disagree” to “strongly agree”. Additionally to the items taken 
from the ResQue framework, we asked participants for each model how 
many of the recommended items they found relevant using the question 
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“How many of the recommended concepts do you feel are relevant?”. 
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The responses to this question were used to calculate the precision 
(Precision@5) for each model. We use the paired t-test for testing the 
significance where the significance level of 𝛼 is set to 0.05. The study 
took approximately one hour per participant.

4.2.2. Results and analysis

We evaluated the recommendation models based on the seven crite-

ria perceived accuracy, novelty, diversity, perceived usefulness, overall 
satisfaction, use intentions, and reading intentions. Fig. 13 shows the 
results and the comparison between the two models. The mean and 
standard deviation for each criterion are shown in Fig. 14. No statis-

tically significant differences between the two models across all seven 
criteria can be observed. Concretely, the results indicate that both mod-

els deliver similar good results regarding perceived accuracy: Concept-

GCN (agreement 55% vs. disagreement 16%), LightGCN (agreement 
65% vs. disagreement 6%); novelty: ConceptGCN (agreement 80% vs. 
disagreement 6%), (agreement 88% vs. disagreement 0%); diversity: 
ConceptGCN (agreement 71% vs. disagreement 6%), LightGCN (agree-

ment 62% vs. disagreement 6%); perceived usefulness: ConceptGCN 
(agreement 61% vs. disagreement 13%), LightGCN (agreement 61% vs. 
disagreement 13%); overall satisfaction: ConceptGCN (agreement 55% 
vs. disagreement 19%), LightGCN (agreement 61% vs. disagreement 
16%); use intentions: ConceptGCN (agreement 39% vs. disagreement 
19%), LightGCN (agreement 39% vs. disagreement 19%); and reading 
intention: ConceptGCN (agreement 77% vs. disagreement 10%), Light-

GCN (agreement 81% vs. disagreement 0%). Overall, the LightGCN 
model exhibited slightly better results compared to ConceptGCN. Only 
with regards to diversity, ConceptGCN was perceived more effective in 
providing recommendations that encompassed more diverse concepts. 
One reason we deem responsible for this result is that, in addition to 
structural information in the KG, ConceptGCN employs semantic simi-

larities between entities when performing neighborhood aggregation.

For further investigation, we calculated the precision (Precision@5) 
of the two models using the response to the question “How many of the 
recommended concepts do you feel are relevant?”. Both ConceptGCN 
and LightGCN models achieved relatively high precision scores. The re-

sults further indicate that the LightGCN model provides slightly more 
accurate recommendations compared to ConceptGCN (69% vs. 63%), 
as illustrated in Fig. 15. However, the results were not statistically sig-

nificant.

In summary, the results of our user study demonstrate the benefits of 
the ConceptGCN-based recommendation approach, in terms of several 
important user-centric aspects including accuracy, novelty, diversity, 
usefulness, overall satisfaction, use intentions, and reading intention. 
Overall, except for diversity, the LightGCN model performed slightly 
better than ConceptGCN. The main difference between the two models 
was that ConceptGCN uses a self-connection operation and an SBERT-

based score function in the aggregation operation. The results suggest 
that, if SBERT is used for the initial embeddings of items (i.e., main 
concept, related concept, category, slide), the self-connection and the 
semantic similarity-based score function are not necessarily needed. We 
speculate that self-connection is not needed because connected neigh-

bors of an item in the KG are semantically similar and consequently 
have already SBERT representations similar to the target item. Thus, ag-

gregating SBERT-based embeddings of connected neighbors subsumes 
the effect of self-connection. Further, the SBERT-based score function 
is not required because connected items in the KG have already high 
semantic similarities.

5. Conclusion and future work

Owing to the superiority of knowledge graphs (KGs) in modeling 
the heterogeneous data in technology-enhanced learning (TEL) envi-

ronments and Graph Neural Networks (GNNs) in learning on graph 
data, utilizing KG and GNN techniques in educational recommender 

systems (ERS) has gained increasing interest. In particular, few works 
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Fig. 13. Results from the ResQue questionnaire.
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Fig. 14. Mean and standard deviation for each criterion from the ResQue questionnaire.
Fig. 15. Accuracy (Precision@5) of LightGCN and ConceptGCN.

have applied these techniques to recommend knowledge concepts in 
MOOCs. These approaches, however, have limitations mainly related 
to complexity, semantics, and transparency. To address these issues, 
in this work we presented ConceptGCN, a comprehensive framework 
for recommending knowledge concepts to learners. Conceptually, our 
approach combines KGs, Graph Convolutional Networks (GCNs), and 
transformer sentence encoders (SBERT) to enhance the representations 
of knowledge concepts and learner models and provide personalized 
and explainable recommendation of concepts. To evaluate our ap-

proach, we conducted extensive offline experiments to investigate the 
most performing methods to construct a KG in the MOOC platform 
CourseMapper. Moreover, we conducted an online user study (N=31) 
to gauge the accuracy and investigate the impact of a ConceptGCN-

based recommendation approach on learners’ perceptions of the ERS 
in terms of several important user-centric aspects including accuracy, 
novelty, diversity, usefulness, overall satisfaction, use intentions, and 
read intention. Our results indicate that, in general, combining KG, 
GCN, and SBERT provides a simple, yet effective method to provide 
accurate and explainable recommendation of knowledge concepts in 
MOOCs. In future work, we are planning to optimize the KG construc-

tion pipeline to identify more accurate knowledge concepts which is 
essential for improved learner modeling and recommendation. More-

over, we will investigate alternative GNN-based recommendation ap-

proaches and weighting techniques to improve the overall effectiveness 
of the ERS. Another interesting direction in future work would be to de-

velop different GNN-based explanation types and explore their effects 
on the learners’ perceptions of the explainable ERS, in terms of differ-

ent explanation aims including efficiency, effectiveness, persuasiveness, 
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transparency, satisfaction, scrutability, and trust.
Acronyms

Massive Open Online Courses (MOOCs)

Technology-Enhanced Learning (TEL)

Educational Recommender Systems (ERSs)

Knowledge Graphs (KGs)

Graph Neural Networks (GNNs)

Graph Convolutional Networks (GCNs)

Sentence Bidirectional Encoder Representations from Transformers 
(SBERT)

Graph Convolutional Networks (GCNs)

Recommender Systems (RS)

Natural Language Processing (NLP)

Did Not Understand (DNU)

Collaborative Filtering (CF)

Graph Attention Networks (GAT)

Neural Graph Collaborative Filtering (NGCF)

Graph Convolutional Matrix Completion (GC-MC)

Heterogeneous Information Networks (HINs)

Knowledge Graph Embedding (KGE)

Knowledge Graph Convolutional Network (KGCN)

Ripple Knowledge Graph Convolutional Networks (RKGCN)

Knowledge Graph Attention Network (KGAT)

Light Knowledge Graph Convolutional Network (LKGCN)

MOOC Interest Recommender (MOOCIR)

Learning Material Knowledge Graph (LM-KG)

Slide Knowledge Graph (Slide-KG)

Learning Material (LM)

Slide (S)

Main Concept (MC)

Related Concept (RC)

Category (Cat)

Learner (L)

Understood (U)

Adjacency Matrix (ADJm)
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