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Glossary

(General notations

N natural numbers, 0 ¢ N
R real numbers

Vu the gradient of u

diva  divergence of u

o the time-derivative of a function

sign sign function, sign(r) := 1 if r > 0 and sign(r) := —1 for r < 0

sign,  sign function extended by sign,(0) = 0

Ty truncation function, for K > 0 defined by T (r) :=r if |r| < K
and Tg(r) := sign(r)K for |r| > K

— weak convergence

— continuous embedding

suppu support of a function u
Au Laplace operator, Au := div(Vu)
1 characteristic function

For a set D in R? with d € N and a separable Banach space X

oD boundary of D

C(D; X) space of continuous functions ¢ : D — X

C (D) C(D;R)

Cl(D) space of continuously differentiable functions ¢ : D — R
C>(D)  space of infinite times continuously differentiable functions

¢ : D — R with compact support
D) (D)

For a bounded domain D C R? with d € N, a time interval (0,7") with T" > 0,
a separable Banach space X, 1 <p <oo,m €N, m > 2, and 5 € (0,1)
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/

P p’:ﬁf0r1<p<ooandp’:ooforp:1

L*(D) {¢: D — R: ¢ is measurable and [, ¢’ < oo}

LP(0,T; X) {¢:(0,T) — X : ¢ is measurable and fOT loll% < oo}

L>(D) {¢ : D — R : ¢ is measurable and there is a constant C,
such that |¢(z)] < C a.e. in D}

L>0,T;X)  {¢:(0,T) — X : ¢ is measurable and there is a constant
C, such that ||¢(t)||x < C ae. in (0,7)}

WhP(D) {p € LP(D) : Iy, ..., 104 € LP(D) s.t
Ipae = — [ Ve € C2(D) Vi=1,...,d}

Wy*(D) closure of C}(D) in W'?(D)

W=7 (D) dual space of W, ”(D)

H'(D) W2(D)

HY(D) Wi2(D)

W™P(D) {o e Wm=tr(D): f2 e Wm#(D) Vi=1,...,d}

W(;”p( ) closure of C°(D) in W™P(D)

mp' (D) dual space of W""(D)
H™(D) wm2(D)
Hp(D) WD)

H (D) dual space of H"(D)

Whr(0,T;X) {p e LP(0,T;X): 0yp € LP(0,T; X)}, where 0y
denotes the weak derivative of ¢

W?2(D) {peLl*(D): [, fD T y‘fﬁ(ﬂ dx dy < oo}

WA2(0,T; X) {p € L2(0,T;X) : [ T%dsdmoo}

Chapt

er [2

space dimension, d € N

bounded domain in R?

time interval for T > 0

QT = (0, T) x )

Yor = (O,T) x 0f)

convolution, (g1 * go)( fo g1(t — s)ga(s)ds for t > 0
scalar product of x and y in RY

the space of all ¢ € V' that vanish at t = 0; for

V C WHH0,T; X), X Banach space

' = max{x,0}

y~ = —min{z, 0}



Chapter

d space dimension, d € N

D bounded domain in R?

0,7) time interval for 77> 0

JALP) probability space

A, P')  probability space

Fi)teppr)  right-continuous, complete filtration on (€2, .4, P)
U separable Hilbert space such that U 2 L?(D)

Q symmetric, non-negative trace class operator on U
(Weiepr1  (Ft)eep,r-adapted Q-Wiener process

q q :=max{2,p,2p(p — 1),p'}

HS(L?(D)) space of Hilbert-Schmidt operators from L?(D) to L?(D)
I

|las Hilbert-Schmidt norm on HS(L?(D))
|-l norm in L"(D) for 1 <r < oo
|- e norm in HJ*(D)
|+ [y norm in W;"4(D)
(-, )2 dual pairing in L?(D)
(-, )¢ duality bracket (-, )y —m.o(p)wrma(p)
x-y scalar product of z and y in R?
E expectation with respect to €2
E expectation with respect to
Cg constants arriving from continuous embeddings
L(Y) the law of a stochastic process (Y3);
Tr trace operator

Chapter

A bounded, open, connected, and polygonal set in R?
0,7) time interval for T > 0

QA P) probability space

Q .A’ P")  probability space

ft)te[o 7] right-continuous, complete filtration on (Q, A, P)
W(t))icjp,r; one-dimensional Brownian motion on (€2, A, IP)

(
(
(
(
(
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outer unit normal vector on 0A

admissible finite-volume mesh of A

mesh size

number of control volumes of the mesh

set of edges of the mesh

set of interior edges of the mesh

set of exterior edges of the mesh

edge between two neighbouring control volumes K and L
two-dimensional Lebesgue measure of a control volume K
length of an edge o

center point of a control volume K

|xx — 2], for neighbouring control volumes K and L
orthonormal vector on K |L pointing from K to L
integer for time discretization

At = %

tn :=nAt for n € {0,...,N}

Ay Wi=W(th41) — W(t,) forne{0,...,N — 1}
dual space of H'(A)

discrete gradient

discrete H'-seminorm

inner product in L?(A)

HY(A)-H'(A)* duality bracket

scalar product of z and y in R?

Gagliardo seminorm in W*2(A), for a € (0,1)
expectation with respect to 2

expectation with respect to €

the law of a random variable Y



Chapter 1

Introduction

1.1 General Introduction

This thesis is devoted to nonlinear diffusion equations, that are used to model
physical phenomena in many fields like filtration, phase transition, heat prop-
agation, or the dynamics of biological groups.

We will study the existence of entropy solutions for a nonlinear deterministic
diffusion equation with memory as well as the existence and pathwise unique-
ness of probabilistically strong solutions for a nonlinear stochastic diffusion
equation with Holder continuous noise. In addition to the theory of (stochas-
tic) diffusion equations, we will have a look at the numerical analysis of a
stochastic diffusion equation. To be precise, we will show the convergence
of a finite-volume scheme for a heat equation with a nonlinear multiplicative
noise.

We start by studying time-fractional porous medium type equations that are
used to model dynamic processes with memory like heat conduction with
memory (see [94,/103|) and diffusion of fluids in porous media with memory
(see [36168]).

The classical porous medium equation is motivated by combining the mass
conservation equation and the classical empirical Darcy law, which states
that the fluid mass flow rate in a porous medium is proportional to the
pore pressure gradient in the same direction. However, this classical porous
medium equation arising from the empirical Darcy law does not take into
account variations of the permeability of the porous medium. These can
occur, for example, when the fluid reacts chemically with the medium or
contains particles that obstruct some of the pores. Temperature variations
can also influence the permeability. To represent decreasing permeability,



Caputo introduced a Darcy law with memory in [36,37]. The arising porous
medium equation is

0fu — div(AVu) = 0,

where 0} represents the fractional time-derivative in the sense of Caputo for
0 < a <1 and A depends on the permeability of the medium, that may vary
in time.

Instead of the fractional time-derivative in the sense of Caputo, we choose
the Riemann-Liouville fractional time-derivative, that can be represented by
09w = Oy(k * u), where k is the Riemann-Liouville kernel (see [86]). We can
consider more general 0;(k * u) for PC-kernels k, that include the Riemann-
Liouville kernel. These kernels are used in applications to model subdiffusion
processes (see [88.,[89]). For an introduction to PC-kernels, we refer to [127|
and the references therein.

Let © C R? be a bounded domain, d € N, T > 0, and k € L*(0,7) a kernel
of type PC. We consider the time-fractional porous medium type equation

Ok * (u—up)] — div(A(t,x)Ve(u)) = f in Qr = (0,T) x 2 (1.1)

with homogeneous Dirichlet boundary conditions, where ¢ € C'(R) is a
strictly increasing function and A € L*°((0,7) x €0) satisfies a coercivity
property. In case of bounded data uy € L>*(Q2) and f € L>(Qr), the exis-
tence of weak solutions has been shown in [126].

In Chapter [2| we consider data uy € L'(Q) and f € L'(Qr). In this case, we
cannot expect weak solutions. Even in the case of elliptic and parabolic equa-
tions, existence and uniqueness of weak solutions is not necessarily given in
case of L'-data (see [23/[101,[102]). These problems carry over to the history-
dependent problem (see [68,69]). To overcome the difficulties of non-existence
and non-uniqueness of weak solutions, two new solution concepts have been
introduced: renormalized solutions (see, e.g., [27-30,138,/47]) and entropy so-
lutions.

The idea of an entropy condition was firstly formulated by Kruzkov in [73|
to guarantee uniqueness of solutions in the theory of conservation laws and
then, Bénilan et al. introduced the notion of entropy solutions for ellip-
tic equations in [23|. The notion has been extended to parabolic equations
in |7]. In case of elliptic and parabolic equations, entropy and renormalized
solutions are equivalent.

For history-dependent problems, to the best of our knowledge, only the no-
tion of entropy solutions was extended (see [40,|69]). The reason lies in
the fact that, for renormalized solutions, the integration by parts formula
plays an important role. Considering the time-fractional derivation oper-
ator Lv := 0y(k % v) for PC-kernels k, we have a fundamental identity if
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k € WH(0,T) (see |128]), but only an inequality for kernels k& € L(0,T)
(see [68,69]). In [69,/114], the authors prove existence and uniqueness of
entropy solutions to doubly nonlinear elliptic parabolic integro-differential
equations driven by a time-independent Leray-Lions operator for L!-data by
using Kruzkov’s method of doubling variables (see |73]) and the approach
of generalized solutions introduced by Gripenberg in [65]. Since the porous
medium operator in depends on the time ¢, the approach of generalized
solutions in the sense of Gripenberg is not applicable. Instead, we approxi-
mate the given L'-data by L*-data and use the known existence result for
bounded data in [126].

For information on the state of the art, we refer to Section [2.1]

In Chapter [3] and Chapter [ we study stochastic diffusion equations, that
have become of great interest in many applications in physics, biology, and
climatology (see [22,/41,|98] and the references therein).

One way to take random influences into account is to add a stochastic forcing
to the driving diffusion equation. We want to do this in form of a stochas-
tic integral on the right-hand side of the equation. For an introduction to
stochastic integrals, we refer to [10}41},84].

Let T > 0, D C R? be a bounded domain, d € N, (Q, A, P) be a prob-
ability space endowed with a right-continuous filtration, and (W (t)):cp1)
an adapted ()-Wiener process. Typically, stochastic evolution equations are
written in an integral form. A classical example of a diffusion equation with
stochastic perturbation and random initial data wug is, a.s. in €2,

t ¢
u(t) — ug — / diva(z,u, Vu)ds = / ®dW(s) in L*(D), Vt € [0,T),
0 0
(1.2)
with Dirichlet boundary condition u = 0 on 2 x (0,7") x 9D, or, equivalently,

du — diva(z,u, Vu)dt = ¢dW(t) in Q x (0,7) x D
u(0) = g in Q2xD
u=0 on 2 x (0,7) x 0D

for a possibly nonlinear Carathéodory function a : D x R x R? — R satisfy-
ing the classical Leray-Lions conditions, i.e., a satisfies certain monotonicity,
coercivity, and growth conditions. The stochastic integral fg O dW (s) is un-
derstood in the sense of It6. If ® is independent of u or any derivative of u,
the noise term is called additive, otherwise, it is called multiplicative.

To show well-posedness of nonlinear stochastic partial differential equations
(SPDEs), in particular of the form ([1.2)), the variational monotonicity method,
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that was initially introduced for deterministic evolution equations by Lions
in [77], has been extended to SPDEs in [24},|74,[84,/97]. Key properties to
apply this method are (local) monotonicity, coercivity, and growth assump-
tions of the driving operator in combination with the noise term. In case
of square-integrable initial data uy € L?(2; L?>(D)) and Lipschitz continuous
multiplicative noise, existence and uniqueness of variational solutions have
been shown in [84]. Variational solutions, that are also called probabilistically
strong or pathwise solutions, are adapted stochastic processes with respect
to the initial stochastic basis and satisfy the integral equation for all
t € [0,T], in L*(D), and P-a.s. in Q. In contrast, for martingale solutions,
the stochastic basis is not fixed in advance and becomes part of the solution.
For more information and a formal definition of variational and martingale
solutions to SPDEs, we refer to [31].

In Chapter [3, we study the well-posedness of the following evolution problem
with a Holder continuous multiplicative noise

du — div a(z,u, Vu) dt + f(u)dt = B(t,u) dW(t) in Q x (0,7) x D
u(0,-) = ug in Qx D
u=>0 on Q x (0,7) x 9D,
(1.3)

where a : D x R x R? — R is a Carathéodory function satisfying the usual
Leray-Lions conditions, and f : R — R is Lipschitz continuous. The operator
B : (0,T) x L*(D) — HS(L*(D)) is assumed to be Holder continuous but
not necessarily Lipschitz continuous, where HS(L?(D)) denotes the space of
Hilbert-Schmidt operators from L?(D) to L?*(D). In this setting of a Holder
continuous noise term and a pseudomonotone operator, the well-posedness
result in [84] is not applicable. For further information on the state of the
art, please refer to Section [3.1.1]

To show the existence of probabilistically strong solutions to , we ap-
proximate the noise term by a Lipschitz continuous noise and add a higher
order perturbation on the left-hand side to the equation. Then, the result
in [84] provides the existence of a unique probabilistically strong solution
to the approximated equation. To pass to the limit, we use a stochastic
compactness argument based on the theorems of Prokhorov and Skorokhod
(see [26,131]). With this approach, we show the existence of a martingale
solution to . Since we are able to show pathwise uniqueness of solutions
to , we finally get the existence of a probabilistically strong solution by
an argument of Gyongy and Krylov (see [66]).

In the last decades, the study of numerical schemes for SPDEs has also at-
tracted a lot of attention. An overview and a list of references are given
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in [8,/44,/95]. In Chapter [4 we consider a parabolic SPDE and use a finite-
volume method for the spatial discretization combined with a semi-implicit
discretization in time. The finite-volume method relies on the conservation
form of the partial differential equation. Integrating the balance equation on
a discretization cell, called control volume, and applying Stokes formula, we
obtain an integral equation for the fluxes over the boundary of the control
volume. Then, the idea is to approximate the flux on the boundary of the
control volumes instead of the operator itself. An important feature of the
finite-volume method is the local conservativity of the fluxes, i.e., the flux is
conserved from one control volume to its neighbour. This feature makes the
finite-volume method quite attractive for applications in which the fluxes play
an important role like in fluid mechanics, semi-conductor device simulation,
and mass and heat transfer. For further information on the finite-volume
method, we refer to [54,58|.

In Chapter 4] we consider a stochastic heat equation which is a special case
of the stochastic diffusion equation (1.2)). Let 7' > 0, A C R? be a bounded,
open, connected, and polygonal set and (2,.4,P) a probability space en-
dowed with a right-continuous, complete filtration, and let (W (t));c,m be a
standard, one-dimensional Brownian motion with respect to (F;)¢cpo,r). We
consider the stochastic heat equation

du — Audt = g(u) dW(t), inQx(0,T)x A
u(0, ) = up, in O xA (1.4)
Vu-n=0, on Q x (0,7) x 0A,

where g : R — R is a Lipschitz continuous function and uy € L*(0,T; H'(Q)).
The finite-element method has often been used as spatial discretization for
the numerical analysis of parabolic SPDEs (see, e.g, [22,:32,/64,67] and the
references therein). Instead, for the finite-volume method, there are many
results known for stochastic conservation laws but only a few for parabolic
SPDEs, see, e.g., [4,[13H17,50,51}55.60%87].

Even though the stochastic heat equation is driven by a linear operator,
we do not use the semigroup approach, because we would like to consider
more complicated (nonlinear) operators in the future such as the p-Laplace
operator or the porous medium operator. For information on the semigroup
approach for linear stochastic equations, we refer to [41]. Instead, we use the
variational approach for SPDEs that has been developed in |74},84,97].

As already mentioned, in the framework of a finite-volume discretization, we
approximate the flux instead of the operator itself. In case of the Laplace
operator in (1.4), we use the two-point flux approximation (TPFA) that is
derived from the Taylor expansion and an orthogonality condition that is
assumed for the finite-volume mesh (see [54.58]).

13



In case of a linear multiplicative noise term, i.e., g(u) = Au for A € R,
convergence of a finite-volume scheme with a TPFA for the Laplace operator
has been shown in [17]. In case of a nonlinear multiplicative noise term, the
weak convergences, that we obtain by a priori estimates on the approximated
solutions, are not sufficient to pass to the limit in the nonlinear noise term
and to identify the limit. Therefore, we apply a stochastic compactness
argument based on the theorems of Prokhorov and Skorokhod (see [26,31])
to show convergence of the scheme to a martingale solution. As in Chapter 3]
we use a pathwise uniqueness argument of Gyongy and Krylov (see [66]) to
show convergence of the scheme to the unique variational solution of
with respect to the initial stochastic basis.

1.2 Outline

In Chapter we prove the existence of entropy solutions to the time-
fractional porous medium type equation for data ug € LY(Q), f €
L'(Qr), and homogeneous Dirichlet boundary conditions.

Since the driving porous medium operator depends on the time ¢, the ap-
proach of generalized solutions in the sense of Gripenberg (see [65]) is not
applicable. Instead, we use the existence result of weak solutions to for
bounded data ug € L>®(Q2), f € L*(Qr) in [126].

First, we show that if u is a weak solution to , then v = (u) is an
entropy solution to by using the fundamental identity (see |70, Lemma
6.1, Corollary 6.1]). Additionally, we extend the contraction principle formu-
lated in [126] for the weak solutions.

Then, we approximate the L'-data uy, and f by monotone converging se-
quences of functions ug™ € L*®(Q) and f™" € L*(Qr). We already
know that the approximated equation admits a weak solution u,,, and that
Umn = @(Unmn) is an entropy solution to the approximated equation. By
using the extended contraction principle, we obtain convergence of u,,, in
L' (Q7) to an element v € L' (Q7).

To pass to the limit in the approximated equation, we apply the fundamental
identity, make use of the coercivity property of A, and use the fact that ¢ is
increasing to take advantage of the monotone convergences of the approxi-
mations.

In Chapter [3] we prove the existence and pathwise uniqueness of probabilis-
tically strong solutions to (1.3). Therefore, we use an integral representation

14



of the Hilbert-Schmidt operator B (see [85|124]) in form of

B(t, v)p(z) = o(t, v(z)) / ke, )oly) dy

D

for (t,v) € (0,T)x L*(D), v € L*(D), and a.e. x € D, where o : (0, T)xR —
R is a Carathéodory function which is Hélder continuous with respect to the
second variable, and k € L?(D x D) is a symmetric kernel. We approximate
o by a Lipschitz continuous function o, using inf-convolution and define B,
by using the integral form of Hilbert-Schmidt operators with o, instead of
0. Doing so, we receive a Lipschitz continuous multiplicative noise.
Additionally, we add a higher-order operator to the equation in order to ap-
ply the existence and uniqueness result on probabilistically strong solutions
in [84] to the approximated equation.

To pass to the limit, we use the stochastic compactness argument based on
Prokhorov’s and Skorokhod’s theorems. Thereby, we get a martingale solu-
tion to . Since we can show pathwise uniqueness, we obtain the existence
of a probabilistically strong solution to ([L.3).

In Chapter , we propose a discretization scheme for that is semi-
implicit in time and uses a finite-volume scheme in space, or, to be more
precise, we use the two-point flux approximation for the Laplace operator.
We start by deriving some stability estimates that provide weak convergence
of the finite-volume approximations. However, the weak convergence is not
sufficient to pass to the limit and, in particular, to identify the limit in the
nonlinear noise term. Therefore, we apply a stochastic compactness argu-
ment.

By the theorem of Prokhorov, we get convergence in law (up to subsequences)
of our finite-volume approximations. At the cost of changing the probability
space, Skorokhod’s representation theorem provides almost sure convergence
of the proposed finite-volume scheme.

We are then able to pass to the limit in the stochastic integral and to iden-
tify the limit by using a martingale identification argument. This allows us,
to show convergence of our finite-volume scheme to a martingale solution
of , i.e., the stochastic basis is not fixed but enters an unknown in the
equation.

However, as in Chapter [3| we are able to show pathwise uniqueness of solu-
tions to ([1.4). This, together with a classical argument of Gyongy and Krylov
(see |66]), allows us to deduce convergence in probability of the scheme with
respect to the initial stochastic basis.
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In Chapter [5] we present briefly three ideas for future works in the field of
nonlinear (stochastic) diffusion equations.

Firstly, we present an idea for a time-fractional obstacle problem. The ex-
istence and uniqueness of solutions have been studied in the elliptic and
parabolic case (see [6}(125]) but, to the best of our knowledge, not in the
history-dependent case. One may combine techniques used for time-fractional
problems and for obstacle problems to show existence of entropy solutions.
Secondly, we have a look on a stochastic Allen-Cahn equation. In case of a
driving linear Laplace operator, well-posedness has been shown in [12]. Com-
bining the used monotonicity arguments and the techniques used in [112], we
propose to choose a more general p-Laplace operator.

Thirdly, we propose to study a finite-volume scheme for a parabolic p-Laplace
or porous medium type equation with stochastic perturbation. This idea
arises from the fact that we do not use the semigroup approach in Chapter [4]

Some of the results presented in this thesis have already led to publications
in scientific journals and to a preprint, see [18,111,/113].
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Chapter 2

Entropy Solutions for
Time-Fractional Porous Medium
Type Equations

2.1 Introduction, State of the Art, and Outline

We consider for T > 0 and a bounded domain Q C R? with d € N the
problem

Ok * (u — up)] — div(A(t,x)Ve(u)) = f  in Qr
vu=0 in Xy (P(ug, f))
u(0,:) = ug in €,

where Qr := (0,T) x Q, Xr:=(0,T) x 09, and, for t € [0,T], we define

(5 0)(t) = /0 k(t — 7)o(r) dr.

We make the following assumptions:

(Hk) k € LY0,T) is non-negative, non-increasing, and there exists | €
LP(0,T) with p > 1 such that kx{ =11in (0,7).

(HA) A€ L>=((0,T) x 2;R¥?) and there exists v > 0 such that
(A(t,2)€,6) > v|¢]* V€ € RY and ace. (t,7) € Qr.

(Hp) ¢ € CYHR), ¢'(r) > 0 for all r € R, ¢(0) = 0, ¢ is strictly increasing
in R, and there exist u, R > 0 such that

0<p<¢(r) VreR with|r| > R.
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(Hd) uo € LY(Q), f € LY(Qr).

Note that kernels k satisfying (Hk) are in particular kernels of type PC, which
have been studied by many authors, see, e.g., [70,72121/122]. Kernels of type
PC are used in applications to model subdiffusion processes. Subdiffusion is
a special case of anomalous diffusive behaviour which is in the force free-
limit slower than Brownian motion. For more information, see [88,[89]. An
important example is given by (k,1) := (g1_a, ga) for a € (0,1), where

i1

fort >0, 8> 0.

In this case 0;(k*v) represents the Riemann-Liouville fractional derivative of
order v and k x 0;v the Caputo derivative if v is sufficient smooth. Note, that
in this case the condition | € LP(0,T) is satisfied. Some further examples of
kernels satisfying (Hk) are the time-fractional case with exponential weight

k() :=e"g_o(t), U(t):=e"ga(t) +7[1* (gae”")](1)

for a € (0,1) and v > 0, and the ultra-slow diffusion case

w0 = [ oas 0= [ as

1+s
which is considered in [70-72,76].

By assuming (Hg), we cover degenerated time-fractional equations. For ex-

ample, we can choose (r) := |r|™ !r for m > 1, so that becomes a
porous medium equation, which has been studied in, e.g., |1,2,48./49,/100,121].

In applications, appears in the modelling of dynamic processes with

memory, for example, to model heat conduction with memory (see [94,(103])
and diffusion of fluids in porous media with memory [36,68|.

Existence of weak solutions to|P(uy, f)|and, additionally, a contraction prin-
ciple for weak solutions were shown for more regular data wg, f in [126].
In the linear case, existence and uniqueness of weak solutions were shown
in [83,122,129]. For the porous medium operator, L' is a natural space guar-
anteeing the monotonicity property and, furthermore, from the physical point
of view, L' is a useful space for several evolution problems, e.g., the transport
of fluids in porous media, and heat conduction. In the setting of L!-data,
we cannot expect weak solutions. Therefore, we work with entropy solutions.
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For the doubly-nonlinear history-dependent (degenerated) problem with a
time-independent operator, existence and uniqueness of entropy solutions
(also in the case of L'-data) were shown in [69,107,[114]. Here, the theory
about generalized solutions for integro-differential equations (see [65]), using
the m-accretivity of the time-independent operator, is applied. In the case
of a time-dependent operator, we cannot apply this approach. Note that,
even in the linear case, i.e., ¢ = id, to the best of our knowledge no existence
results for L!-data are known.

Note that there are several articles dealing with decay estimates for time-
fractional (porous medium type) equations, see, e.g., [48,/70,{121]. Further-
more, we remark that in [82(83|, the authors study time-fractional stochastic
partial differential equations with additive noise, including time-fractional
stochastic porous medium type equations.

This chapter is structured as follows: In Section [2.2] we consider bounded
data ug € L*(Q), f € L*(Qr). In this case, existence of weak solutions was
shown in [126]. We prove that a weak solution to [P(ug, f)|is also an entropy
solution to |P(uyg, f)| by using the fundamental identity (see |70, Lemma 6.1,
Corollary 6.1]).

Afterwards, in Section we formulate a contraction principle for weak so-
lutions, which is a technical extension of the contraction principle formulated
in [126].

In Section 2.4] we consider general data uy € L'(Q2), f € L'(Qr) and ap-
proximate them by functions ug"™ € L>(Q), f™" € L>®(Qr). We know, that
there exists an entropy solution to the approximated equation P(ug™, fm.n),
and we can show by the contraction principle that u,,, converges to a func-
tion u € LY(Q7).

In Section [2.5] we then pass to the limit in the equation. Here, we use
the coercivity condition (HA) of the operator A and, furthermore, the fact
that ¢ is increasing to take advantage of the monotone convergences of the
approximations.

2.2 Entropy Solutions in the Case of L°°-Data

The idea is to approximate the data ug and f by bounded data in L*(£2) and

L>(Qr), respectively. By [126] Theorem 6.1], we know that then
admits a weak solution. We will show that any weak solution to |P(uy, f)|is

an entropy solution.
For a space V. C WH(0,T; X), where X is a Banach space, we denote by oV
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the space of all ¥» € V' that vanish at t = 0. We set
W (T, ug) := {w € L*(0,T; L*(Q)) : k * (w — ug) € W (0,T; H1(Q))
and p(w) € L*(0,T; Hy()) }.

Definition 2.2.1. Let (Hk), (HA), (Hy), and (Hd) be satisfied. A function

u € Wy(T,ug) is a weak solution to if for any test function n €
W0, T; L*(Q2)) N L2(0, T; HY(Q)) with n(T,-) =0

// —ulk % (u — o) //Aw V) = //fn

Under the regularity condition
k (u — Uo) S ()Wl’l(O, T L1<Q)), (21)

one can show by an approximation argument that, for a weak solution wu,

/ /n&tk* u — )] / /AV(p ,Vn) = / /fn (2.2)

is satisfied for all n € L*(0,T; H3(2)) N L>=(Qr), and, by a cut-off function
argument, this is equivalent to

//n@tk*u—u(] //Aw V) = //fn (2.3)

for all t; € (0,T] and all n € L*(0,T; Hj(2)) N L*>(Qr).
Since p € C'(R) is strictly increasing and »(0) = 0, we can define the
function b := !, which is continuous, strictly increasing, and satisfies b(0) =

0. If we define v := p(u) and vy := p(ug), then |[P(ug, ) is equivalent to
Ok * (b(v) — b(vg))] — div(A(t,x)Vv) = f  in Qr
v=0 inYy (2.4)
v(0,-) = v in Q.

We define an entropy solution to [P(uy, f)|based on the definition of entropy
solutions for history-dependent elliptic-parabolic equations in [69]. There-
fore, we set

P:={SeC'(R):0< 5 <1, supp S’ compact, S(0) =0}

and denote for K > 0 by Tk the cut-off function defined on R by Tk (r) :=1r
if |r| < K and Tk (r) := sign(r)K for |r| > K.
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Definition 2.2.2. Let (Hk), (HA), (Hyp) and (Hd) be satisfied. A measurable
function v : Qr — R is called an entropy solution to [P(ug, f) if b(v) €
LYQr), Tx(v) € L*(0,T; Hy(Q)) for all K > 0, and

) /Q K [k . / S(o — ¢) db(a)] # [ e 00) = ban))So -0

+ [ AV, VS(v—¢)) < [ (fS(v—9)
Qr Qr

forall¢ € HY(Q)NL>(Q), ¢ € D([0,T)),( >0,S € P, and ky, ky € L'(0,T)

non-increasing and non-negative with k = ky + ky and kz(0%) < oc.

In order to show that a weak solution u to|P(uy, f)|is also an entropy solution

to [P (ug, f)} we will use S(v—¢)C as a test function with S € P, ¢ € HE ()N
L>(Q), and ¢ € D([0,T)) with ¢ > 0. Since S(v — ¢)( is an element of

L*(0,T; HY(Q)) N L>®(Qr), but not in W0, T; L2(Q2)) N L0, T; HL(Q)),
we have to assume ([2.1)).
Lemma 2.2.3. Let (Hk), (HA), (Hp), and (Hd) be satisfied. If u is a weak

solution to which satisfies (2.1)), then v = @(u) is an entropy solution
to|P(uo, f)}

Proof. Let u be a weak solution to and S € P, ¢ € H}(Q) N
L>(), ¢ € D([0,T)), and v := ¢(u), v := @(up). Since we assume that u
satisfies ([2.1]), we can use S(v — ¢)( as a test function in ([2.2)) and obtain

(S(v = @)0,[k * (b(v) — b(vo))] + |  C(AVv,VS(v —9))
Qr Qr (25)

= [ fS(w—9)
Qr

Now we choose arbitrary ki, ky € L'(0,7T) non-increasing and non-negative
with ko(0") < 0o, such that k = ky + ko. To apply the fundamental identity
(see |70, Lemma 6.1, Corollary 6.1]), we have to approximate the kernel k;
by a more regular kernel k; , € WH(0,T) for A > 0. Therefore, we define
the operator L, : D(L;) C L*(0,T; L*(Q2)) — L*(0,T; L*(2)) by
D(Ly) = {w € L'(0,T; L' (Q)) : ky xw € W0, T; L'(Q))}
Liw := 0y(ky * w).

The operator L is m-accretive (see [39,65]). For A > 0, let L;, be the
Yosida approximation of L, then we know for each w € D(L;)

Liyw — Lyw in LY0,T; L' (Q)) for A — 0.
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Furthermore, we know that
Liyw = 0y(kyy xw), w € LY0,T; L)), A >0

for a non-negative and non-increasing kernel k;, € WH(0,7T), see [120].
Note that we have ky y — ky in L'(0,T) for A — 0, see [120},/127]. Using the
approximation kernel £; 5, we get from (2.5))

g ¢S(v = @)aifk1x + (b(v) — bwo))] + g COhlkz * (b(v) = b(v0))]S (v = ¢)

+ . C(AVv,VS(v — ¢))

=/ fS(—)C+ g (S0 = @)Oh[(krx — k) * (b(v) = b(vo))]-

Applying the fundamental identity (see |70, Corollary 6.1]) to the first term
in the above equation, we get

— /QT G (kly,\ * /UO S(o — ¢) db(a)) + o COylka * (b(v) — b(vg))]S(v — @)
+ o C(AVv,VS(v —¢))

< g CfS(v—9¢)+ . (S0 = @)h[(krxn = k) * (b(v) = b(vo))]-

Since ki y — ky in L*(0,T) and we have b(v) — b(vy) € D(Ly) by ([2.1), we
obtain

O,k * (b(v) — b(ve))] = Aylkr * (b(v) — b(ve))] in LY (Qr) for A — 0.

Therefore, by passing to the limit in the above equation, v is an entropy

solution to [P (ug, f)l O

2.3 Contraction Principle

In this section, we want to extend the contraction principle shown in [126]. It
will be useful to obtain convergence of the weak solution to the approximated
equation in the next section.

Lemma 2.3.1. Let (k,l) € PC, (HA) be satisfied and ¢ € C*(R) be a
strictly increasing function in R. For i = 1,2, let u; € Wy(uos, fi) be a
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weak solution to P(ug, f;) in the sense of Definition with ug; € L' (Q)
and f = f; € LYQr), and let (2.1) be satisfied for u = u;, i = 1,2, such
that in particular (2.3)) holds true for allm € L*(0,T; Hy(2)) N L>®(Qr) and

u=u;, t =1,2. Then, we have

|ur — sl L1 (@) < Tlluoy — ozl + o)l fi = folliigr  (2.6)

/T(u1 — u2)+ S T/S;(Uo’l — UQ72)+ + HZHLl(O,T) /QT(fl - f2>+ (27)
/T(Ul —ug)” < T/Q(Uo,l —uo2)” + [l /QT(fl —f2)7. (238)

Proof. Inequality (2.6) was shown in [126, Theorem 7.1]. The proofs of
(2.7) and (2.8) are analogous to that of Theorem 7.1 in [126] with the
only difference that, in case of (2.7) we approximate R > y — y* by

H.(y) == \/(yT)?+ €2 — e for € > 0 and, in case of (2.8)), we approximate
R>y+—y by Ho(y) :=+/(y)2+e%2—¢fore>0. ]
2.4 Approximation

Let (Hk), (HA), (Hp), and (Hd) be satisfied. For m,n € N, we define

m, ifug>m m, if f>m
uy" =K ug, if —n<wuy<m and f™" =< f, if —n<f<m
—n, ifuy < -—n —n, if f < —n.

By [126, Theorem 6.1], P(uy"", f™") admits a weak solution u,,, €
W, (T, ug™) N L>®°(Qr) for any m,n € N.

Lemma 2.4.1. Let uy,,, € Wo(T,uy™) N L>®(Qr) be a weak solution to
P(ug"™, f™™) for any m,n € N. For firzed n € N, there exists an element
Uson € LY(Qr) such that

Upm, = Uoom G-€. 10 Qp for m — oo.
Moreover, there exists a function u € L'(Qr) such that
Uson — U a.e. in L'(Qr) for n — oo.
Proof. Using and , we know that for all m,n € N, a.e. in Qr

Um,n S Um+1,n and Um,n > Um,n41- (29)
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From inequality (2.6)), we further obtain

SUP |[Umnllzr @) < sup (Tllug " lzr@) + o)l f™" | 21 @r))

m,neN m,neN
< Tluollrr ) + N2 o I f 121 @) -

As a consequence, we know that the increasing sequence (wy, n)men, for fixed
n € N, converges a.e. in QQr towards an element .., for m — oo. From
it followS Usgy > Usony1 for all n € N and, therefore, we obtain, by the
same argumentation, that Uoo,, CONVErges a.e. in Q7 for n — oo towards an
element u. Using and Fatou’s Lemma, we get for any n € N

/ [Uoon| < liminf/ U
m—00
T Qr

< 1infgi£f (Tllug™" Iy + I e | F ™" | Lr@r))
< Tluollzr ) + Nz o) 1 f Izt @r)-
Consequently, we know

lullprgp) < 1i7llgi£f/ [Uoo,n| < Tlluollzr) + U oo | fll2r ey,  (2-10)

Qr
which implies uo,,, € LY(Q7) and u € LY(Q7). O

Lemma 2.4.2. There exists, for any n € N, a function g" € L*(Qr) and,
moreover, there exists a function g € LY(Qr) which is independent of n, such
that a.e. in Qr

[ Umn] < g" YmneN and |uwn| <g VneN.

Proof. First let n € N be fixed. Since (Umn)men 1S an increasing function
which converges to us , a.e. in Qr, we know that 1, , < ts, for allm € N
and a.e. in Qr. In particular, we know ()" < (U )t for all m € N and
a.e. in Q7. Additionally, we have for all m € N, a.e. in Qr,

(Umn)” = max{0, =t} < max{0, —up1} = (un1)".

Consequently, we know for all m € N, a.e. in Qr,

= (Umn) "+ (Umn)” < |toon| + |u1n

|um,n

Analogously, we obtain for arbitrary n € N, a.e. in Qr,

’uoo,n| = (uoo,n)+ + (uoo,n)7 < u| + |uoo,1‘-
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Lemma 2.4.3. For fired n € N, we have
U — Uoop N LY Q) for m — .
Furthermore,
Uson — w in L' (Qp) for n — oo.

Proof. The convergences in L'(Qr) follow by Lebesgue’s dominated conver-
gence theorem from the almost sure convergences stated in Lemma and
the bounds in Lemma [2.4.2] ]

2.5 Passage to the Limit

Let (Hk), (HA), (Hy), and (Hd) be satisfied and u,, , for m,n € N the weak
solution to P(ug"™", f™") as defined in Section [2.4] such that

k* (U —ug™) € gWHH0,T; LN () (2.11)

is satisfied. By Lemma [2.2.3] we know that v,,, = @(um,,) is an entropy
solution to P(uy"", f™™). Since ¢ is continuous, we know by Lemma
that

n—oo

Umon = P(Umn) iy O(Uson) =t Voon — @(u) =1v a.e. in Qr.
Analogously, we get the convergences
Tx (Vmn) =3 Ti (Voom) =3 T (v) ae. in Qp, VK > 0. (2.12)
Lemma 2.5.1. For all K > 0 and n € N, we have
Ti (Vmn) = Ti(Voom) in L*(0, T Hy(Q)) for m — oo
and, for all K > 0, we have
Tr(Voom) = Ti (v) in L*(0,T; Hy(Q)) for n — oo.
Proof. We fix K > 0. Obviously, we have
HTK(vm,n)H%Q(QT) <T|QK* ¥Ym,n¢€N.

Hence, we know by (2.12) that there exist (not relabelled) subsequences of
(Trk (Vi) )men and (Tk (Voo n))nen such that
Ti(Vmn) = Ti(Voorn) in L*(0,T; L*()) for m — oo.

2.13
and T (Voon) — Tk (v) in L?(0,T; L*(Q)) for n — oo. (2.13)
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Now, we fix m,n € N. Since U, , = b(vy.») is a weak solution to P(uy"", f™")
and (2.11)) is satisfied, we can use Tk (v,,,) as a test function to get

/ Toe (Omn) Ok # (Bt — BI™)] + / (AV 0y, VT (000)

For A > 0, let k) be the kernel associated to the Yosida approximation of the
operator

D(L) := {w e L'(0,T; L*(Q)) : kxw € JW"(0,T; L'(2)) },
Lw = 0y(k x w).

By using (HA), we obtain

/ T (Wmin)Oelks % (D) — ™)) + v / VT ()

T T

< """ Tk (Vi) +/ T (Vi) Oc[(kx — k) * (b(vm,n) — b(vg™™))].
Qr T
(2.14)

Due to (2.11), we have b(v,,) — b(vy"") € D(L) and, therefore, we know
that

/ o (Um )Wl — k) # (b(0mn) — BRI = 0 for A — 0.

T

The fundamental identity provides

m,n
T

_ /Q [/ﬁ* / mm Ty (o) db(or)

0

/ Tk (Vi) Oikx * (D(Vmn) — b(vg""))] > /T O [/ﬁ « /vvm’" T (o) db(o)

(T).

Letting A — 0 in (2.14)), we obtain, since ky — k in L'(0,7),

/Q [k i / mm Ty (o) db(o)

0

@)+ [ VTl < | ion).

T

Since k is non-negative and b non-decreasing, we know that

/Q [k; i / m Ti (o) db(o)
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Using the fact that |f™"] < |f| a.e. in Q7 and v > 0, we get

K
< =

IVT k(W) 22000y < — IF 1 @)-

Together with (2.12) and (2.13) we conclude that Tk (vmn) = Tk (Voon) in
L*(0,T; H}(Q2)) for m — oo and Tk (veon) — Tx(v) in L*(0,T; H3(Q)) for
n — 00. O

Theorem 2.5.2. Let (Hk), (HA), (Hp), and (Hd) be satisfied. For any
m,n € N, let u,,,, be a weak solution to P(Up,n, f™") such that (2.11)) holds.

Then v :=limy, oo @(Umn) is an entropy solution to .

Proof. Let m,n € N. Since u, ,, is a weak solution to P(uj"", f™"), we know
by Lemma that vp,n = @(Um,n) is an entropy solution to P(ug™", f™™).
Therefore, for any S € P, ¢ € H}(Q2) N L>(Q), and ¢ € D([0,T)),¢ > 0, we

have
- / ) @ [k1 * / mm S(o — ¢) db(a)]
“/, COulk2 * (b(vm.n) = b(vg™"))]S (Umn — ) (2.15)
"o, C(AV U, VS (U — @) < o, G S (Vmn — ),

where ki, ko € L'(0,T) are non-increasing and non-negative with k = k; + ks
and ko(07) < oc.

Since supp S’ is compact, there exists a constant L > 0 such that supp S’ C
[—L, L] and, therefore, for M := L + ||¢|| () we obtain

C(AV U, VS (Vi — @)
Qr

= 0 CS,(TM(Um,n) - Qb) (AVTM(Um,n)a V(TM(Um,n) - 925))

Indeed, if |v, | > M, we have

[Vmn = Ol 2 |vmn| = 0] = L+ 9]l L=(@) — 6] > L

and, therefore, S’ (v, — ¢) = 0 for |v,,,| > M. To pass to the limit, we
write

/ (S (Tar(tman) — B) AV T st (V) V (Tt (v) — 6)) = / L4+
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where
Iy = ¢S (Tus(vnn) = 6) (AV(Tht (0m) = Ta1(0)), V(Tas (0n) = Tar(0)) )
Iy = ¢(AVTu1(0), S' (T (V) = 6V (Tas (Vi) = Tha (v))
I = C(AVTM@W), S (Tt (V) — qS)VTM(v)).
Since S’ is continuous, by (2.12)), we get
S(Ta(Vmn) — @) =3 8" (Tas (Voom) — ¢) = S'(Tas(v) — @) a.e. in Qp.

Additionally, S’ has compact support and, therefore, by using Lebesgue’s
dominated convergence theorem, we obtain

S"(Tar(vmn) — @) = S (T (Voo ) — @) In LY(Qr) for m — oo
and  S"(Thy(Veon) — @) = S (Ta(v) — @) in L'(Qr) for n — oo.
(2.16)

Having in mind that ¢ > 0 and S" > 0, the coercivity condition (HA) implies
/ Lev | S (Tu(vmn) — &) V(Tat (o) — T @) >0 Vim,n € N.
Qr Qr

Using Lemma and the convergence (2.16)), we know

lim lim ILb=0
n—oo MmMm—0oo
Qr

and

n—0o0 Mm—00

lim lim/ I3 = g C(AV Ty (v), S (T (v) — )V Ta(v))

= C(AVv, S (v — ¢)Vv)
Qr

by the definition of M. It follows that

n—oo m— 00

lim inf lim inf /Q C(AVTy (Vmpn), S (Tt (V) — @)V (Tas (Vmn) — ¢))

> ; C(AVv, VS (v — ¢)).
' (2.17)
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According to the first term in (2.15)), we know that a.e. in Qp

/U " S(0 — ) db(o) ™25 /

m,n

Voo,n

S(o =) dblo) =5 [ " S(0 - ¢) db(o),

co,n
vo

Yo

where v, ,, == @(ud, ) and ud,,, = lim,, . uy"". Since S is bounded, there

exists a constant C' > 0 (independent of m and n) such that a.e. in Qr

< C([b(vmn)] + [b(vg"™")])

/v " S0 — 6) db(o)

m,n

0

< C(g" + |b(vg)]) Vm,neN

by Lemma [2.4.2] Analogously, we obtain by Lemma 2.4.2]a.e. in Qr

< Cg+ b(w)]) W eN.

/U : S(o — &) db(o)

0

Hence, Lebesgue’s dominated convergence theorem implies the convergence
in L'(Qr) and, therefore,

Jim lim. (— / G [k /Z"sw—as) db<o>]>

0

:_/Tgt {kl*/v:sw—qﬁ)db(o)]-

It remains to show the convergence for

(2.18)

0 COy[ka * (b(Vmm) — b("}(?)?%n))]s(vm,n — ).

Using Lemma [2.4.3] we have for a.e. t € (0,7)

ik * (b(vmn) — b(vg™))](2)

"2 1o (07) (bt () — B0 ) + / D0t — 5)) = b, ) das)

"% ky(0F)(b(o(t)) — bluo)) + / b(u(t — 5)) — bluo) dha(s),
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where the convergences hold in L'(Qr). Consequently,

lim lim (Ol * (b(vymn) — b(vg"™)))S (Vi — @)

Qr

-, COlka * (b(v) — b(v9))]S(v — ).

Using (2.17), (2.18), and (2.19), we get from (2.15)
[ gl [ s o] + [ ot 00) - sls - o)

vo

(2.19)

+ ; C(AVv,VS(v —¢))

< lim lim ™S (mm — @) = | CfS(v— o)
Qr

Qr

and, hence, v is an entropy solution to [P(uqg, f) O

Remark 2.5.3. For i = 1,2, let ug; € L'(Q), fi € LY(Qr), and v; be an
entropy solution to P(uq, fi), such that v; = lim,,_, . lim,, o gp(uim), where
u, , is a weak solution to P(ug;”, fi™") for any m,n € N. Here, ug;" and
fi" are the bounded approzimations of ug; and f; defined analogously to

their definition in Section|2.4. Then, the contraction principle

[6(v1) = b(v2) |l 1 (@r) < Tlluor — woz2ll L) + N zrom | fr = fallron

holds. The proof is a consequence of the contraction principle (2.6)) for weak
solutions and the convergences of the approximated solutions that can be ob-

tained analogously as in Lemma[2.4.1] and Lemma[2.4.5,
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Chapter 3

Well-Posedness of Stochastic
Evolution Equations with Holder
Continuous Noise

3.1 Introduction

3.1.1 Statement of the Problem, Motivation, and For-
mer Results

Let T > 0, D C R? be a bounded domain, d € N, and (2, A, P) a probability
space endowed with a right-continuous, complete filtration (F;)icpo,r. We
want to show existence and pathwise uniqueness of probabilistically strong
solutions to stochastic evolution equations of the form

du — div a(z,u, Vu) dt + f(u)dt = B(t,u) dW; in Q x (0,7) x D
u=0 on 2 x (0,7) x 0D
u(0, ) = ug in Qx D,
(3.1)

where ug is assumed to be in L*(Q; L?(D)) and JFy-measurable. We fix a
separable Hilbert space U such that U 2 L?(D) and a symmetric, non-
negative trace class operator Q : U — U with Qz(U) = L%(D). We endow U
with an orthonormal basis of eigenvectors of Q. In the following let (W).c(o.11
be a (Fi)icp,m-adapted Q-Wiener process with values in U. The integral on
the right-hand side of is understood in the sense of It6. The function
f € L*>*(R) is assumed to be Lipschitz continuous with Lipschitz constant
Ly > 0 and satisfies f(0) = 0.

For a: D xR x R — R?, we assume, that it is a Carathéodory function and
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satisfies for max{1, %} < p < oo the usual Leray-Lions conditions which

will be specified in Section [3.1.2]

Our aim is to show existence and pathwise uniqueness of probabilistically
strong solutions to . The classical monotonicity method to show well-
posedness is originated in |77 for deterministic equations. This method was
extended to stochastic partial differential equations by Pardoux (see [96])
and was generalized by Krylov and Rozovskii (see [75]) and Liu and Rockner
in [84]. Key properties for these well-posedness results are certain monotonic-
ity, coercivity, and growth conditions of the (locally) monotone operator in
combination with the noise term. These assumptions have been applied and
extended by many authors (see, e.g., [11,62,/63,|78-81] ).

The main problem we want to tackle in this study is the presence of a
pseudomonotone operator and a merely Holder continuous multiplicative
noise term. Precisely, we assume that the operator B : (0,T) x L*(D) —
HS(L?(D)) is Holder continuous but not necessarily Lipschitz continuous in
its second variable, where HS(L?(D)) denotes the space of Hilbert-Schmidt
operators from L?(D) to L?(D).

There are many results that address linear SPDEs with Hélder continuous
noise or, more generally, nonlinear SPDEs with Lipschitz noise and Holder
continuous coefficients in the literature. Let us mention the results on ex-
istence and uniqueness of solutions to stochastic Volterra equations with
non-Lipschitz coefficients and on stochastic evolution equations with non-
Lipschitz coefficients in [123| and [130]. The existence of mild solutions to
the stochastic heat equation with Holder diffusion coefficients is well-known
and has been studied in [90},92,93.|115]. The question of uniqueness of solu-
tions to the stochastic heat equation with non-Lipschitz diffusion coefficient
and space-time white noise, as well as colored noise, was studied in [90-92].
In these contributions, a semigroup approach is available and allows to use
the framework of mild solutions. Motivated by these results, our aim is to
study the existence and uniqueness for evolution equations driven by nonlin-
ear pseudomonotone operators and non-Lipschitz multiplicative noise in the
variational framework.

In the recent contribution [106]|, well-posedness of SPDEs driven by multi-
plicative noise with fully local monotone coefficients has been considered.
The authors use Galerkin approximations for the proof of existence of proba-
bilistically weak solutions and a refined L?-technique for the proof of pathwise
uniqueness. The results in our contribution differ from the results in [106] in
two ways. Firstly, we use different techniques, namely the simultaneous per-
turbation with a higher-order operator and regularization by inf-convolution
in the noise. Secondly, our operator is rather pseudomonotone than locally
monotone and may therefore not satisfy the local monotonicity conditions
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from [106], see Remark for more details.

To show existence of strong solutions to , we approximate the non-
Lipschitz operator B by a Lipschitz continuous operator. In addition, we
adapt the ideas proposed in [108] and add a singular perturbation in form
of a higher order operator to the equation. This enables us to apply the
well-posedness result stated in [84] to get a variational solution to the ap-
proximated equation. To obtain then a martingale solution to (3.1]), we use
a stochastic compactness argument of Prokhorov and Skorokhod which is
classical in the framework of SPDEs and has been used in, e.g., [21,22} 25,
42,43} 55,56,(59} 106,109} 118,/119], see also [31] for a more extensive list of
references. Existence of a probabilistically strong solution to follows
from a pathwise uniqueness argument of Gyongy and Krylov (see [66]).

3.1.2 Hypotheses

For a : D x R x R* — R¢, we assume that it is a Carathéodory function,
ie., D> x> a(z, ) €) is measurable for all (A, €) € R x RY and R x R¢ >
(N, &) — alx, A\ &) is continuous for a.e. € D. Moreover, a satisfies, for
max{1, d2—f2} < p < oo, the following properties:
(A1) For all £,n € R4 N € R, and a.e. z € D,

(CL(ZL‘, Aaf) - CL({L‘, Aﬂ?)) ’ (5 - 77) > 0.

(A2) There exist k € L'(D), constants C; > 0, Cy,C5,Cy >0, 1 < v < p,
and a non-negative function g € L? (D) such that for all (), &) € RxR?
and a.e. x € D,

a(z, A, €) - & = k() + Crlg]P — Co| AP
and
la(@, A, )] < Csl¢P~ + Cu AP~ + g(2).
(A3) There exist a constant Cs > 0 and a non-negative function » € L¥ (D),

such that, for all A\, \s € R, € € R% and a.e. x € D,
la(z, A1, €) = alw, Ao, €)] < (C5E[P™" + h(@))| A = Aol.

Remark 3.1.1. For p > 2, an operator induced by a Carathéodory function
satisfying (A1)-(A3) is a slight generalization of the operator

A WyP(D) = W(D), urs Au) = Ay(u) + div F(u),
where Ap(u) = —div(|Vul[P~2Vu) and F : R — R? is Lipschitz continuous
with F(0) = 0.

33



For o : (0,7) x R — R, we assume that

(S1) For a.e. t € (0,7,
R 3\ ot \)

is continuous and
(0, 7) >t o(t,\)

is measurable for every A € R.

(S2a) o is a-Hélder continuous, i.e., there exists an « € (0, 1] and a constant
L, > 0, such that, for all \, p € R, and a.e. t € (0,7),

|U(ta )‘) - o-(t7#’)| < LO¢|>\ - lu|a'

(S2b) We assume o(t,0) = 0 for almost all t € (0,7).
(S3) o has a sublinear growth, i.e., there exists C, > 0, such that
ot N> < Co(1+ [AP)
for all A € R, and a.e. t € (0,7).

In the following, we introduce the notion of infinite dimensional Hélder noise.
Let HS(L?(D)) denote the space of Hilbert-Schmidt operators from L?(D)
to L?(D). We consider an operator B : (0,7) x L*(D) — HS(L*(D)) that
is, for (t,v) € (0,T) x L*(D), ¢ € L*(D), of the form

Bt v)p(x) = o(t, v(z) /D ke, y)o(y) dy (3.2)

for a.e. x € D, with a symmetric kernel k € L?(D x D) which satisfies

esssup ||k (-, y)[|72(py = esssup [|k(z, ) [|72p) < Ci
yeD zeD

for a constant C}, > 0.

Remark 3.1.2. Let X,Y be two Hilbert spaces. A bounded operator K :
X — Y is a Hilbert-Schmidt operator iff it is a Hilbert-Schmidt integral
operator, i.e., there exists a kernell € L*(X xY') such that for all p € L*(D)
and a.e. v € D

Ke(r) = / Iz, y)e(y) dy.
D
Moreover, there holds ||K||gs = ||l[|12(p), see [124, Satz 8.19] and [85, p.93].
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Notation. In the following, we will denote by || - || the norm in L"(D) for
1 <r <oo, by (-,")12 the dual pairing in L*(D), and by || - ||us the Hilbert-
Schmidt norm on HS(L?(D)).

The operator B is well defined on L?*(D). Indeed, for v, € L?(D) and a.e.
€ (0,T), we have, by using Cauchy-Schwarz inequality, (S3), and Fubini’s
theorem,

IIB(t,v)(SO)H%:/ o (t, v(@))[* ff(ﬂf,y)w(y)dy

« ot () ([ oa)

Pk /D (14 (@) Pk, )2 de

2

dx

< 16l (Callt i + Coesssup e 113

< 913Cs (k2 pp) + Cllvll3)

Let (€n)nen be an orthonormal basis of L?(D). Using Parseval’s identity
and (S3), we obtain for v € L*(D) and a.e. t € (0,7), by an analogous
argumentation as above,

I1B(t,0)llfs = D IB(t,v)(en)ll3

- /|atv VP (k (2, ), en(N)pel? da
/\am S Ik Wl e

neN
- /D o (¢, o)) Pk, ) |2 da
< /D Co(1 + [o() P) Kz, |2 d

< Collkl L2y + Cllvll3)-

Using (S2) instead of (S3) in the same manner, we get for v, w € L*(D) and
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a.e. t € (0,7),
1B(t,v) — Bt w)|% < / o(t, 0(x)) — o(t,w(z))? /D Ik, )2 dy de
<12 / fo(z) — w(z) P2k, ) |2 dz

< CLLZ|lv — w3
< CrLaC(a)lv — w3
(3.4)

where C'(a) > 0 is a constant arising from the continuous embedding
L*(D) — L**(D) for a € (0,1).

3.1.3 Main Results and Outline
Let the assumptions of Section and Section hold.

Definition 3.1.3. Let f : R — R be a given Lipschitz continuous function,
and let o : (0,T) x R — R fulfill (S1)-(S3) for a € (0,1].

i) A stochastic process u is called a probabilistically strong solution, if

1. w is an (Fy)ejo,r)-adapted stochastic process and

u € L*(Q; C([0, T]; LA(D))) N LP(Q; LP(0,T; Wy (D))
2. u(0) = ug, P-a.s. in )
3. for allt € [0,T), in L*(D), P-a.s. in Q,

u(t) — ug — /Ot diva(x,u(s), Vu(s)) ds + /Otf(u(s)) ds
= /OtB(s,u(s))dWS.

it) A triple <(Q’ A, (ft)te o1, ), u (Wt)t€[0T> is called a martingale so-
lution to with nitial value vy, if

1. (A, (ﬁt)te[O,T}a]P,) is a stochastic basis with a complete, right-
continuous filtration

2. Wi)epo,m is an (ﬁ)te[o,T]-adapted Q- Wiener process on (', A', P")
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3. w is an (]’-:t)te[o,ﬂ-adapted stochastic process and
ue LXQ;0([0,T); LX(D))) N LM (5 LP(0,T; Wy P (D))

4. vo € L*(Y; L*(D)) has the same law as ug
5. for allt € [0,T), in L*(D), P'-a.s. in &,

() — vo — /0 ' div ae. 3(s), Vi(s)) ds + /O ' Has)) ds
:/OtB(s,ﬁ(s))dWS.

Theorem 3.1.4. Assume that f € L*(R) is a given Lipschitz continuous
function with f(0) = 0, and o : (0,7) x R — R fulfills (S1)-(53) for an
arbitrary o € (0,1). Then, admits a martingale solution in the sense
of Definition i1).

Theorem 3.1.5. Assume that (Wy)icjor @5 a (Fi)ico,r-adapted Q-Wiener
process with values in U with respect to the stochastic basis (2, A, (Fi)icp1, P),
f R = R is a given Lipschitz continuous function with Lipschitz constant
Ly, and o : (0,T) xR — R fulfills (S1)-(53) for a € [$,1). Ifuy,us are both

probabilistically strong solutions to (3.1)) in the sense of Definition i)
with initial values ul, u2 in L?(D), respectively, then, for any t € [0,T],

E [[|ur () — ua(t)|l] < €7 E [Jlug — ug|l] -

Theorem 3.1.6. Assume that f € L*(R) is a given Lipschitz continuous
function with f(0) =0 and o : (0,T)xR — R fulfills (S1)-(53) for a € [3,1).
Then, admits a unique probabilistically strong solution u in the sense
of Definition Q).

Remark 3.1.7. 1. Theorem[3.1.6is a direct consequence of Theorem[3.1.]]
and Theorem by an argument of Gyongy and Krylov, see [66,
Lemma 1.1].

2. We only need the assumption f € L>(R) for the identification argument
in Lemma[3.3.21 If f : R — R is a linear function such that f(X\) = cA
forc € R, we can avoid the boundedness assumption f € L>®(R) in The-
orem[3.1.4) and Theorem[3.1.6 by using an Ito formula with exponential
weight in the proof of Lemma[3.3.21]
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To prove this result we proceed in the following way: At first, in Section [3.2.1]
we approximate the Holder continuous operator B by a Lipschitz continu-
ous operator B,, by using the representation and an inf-convolution for
o. Then, in Section we add a higher order operator to the equation
which will disappear in the limit afterwards and that allows us to apply the
existence and uniqueness result on variational solutions in [84] to the approx-
imated equation. We will first show some a priori estimates in Section [3.3.1]
that allow us then to show tightness of the approximations in Section [3.3.2]
By using these tightness results, we will pass to the limit in the approxi-
mated equation in Section by applying a stochastic compactness argu-
ment based on Prokhorov’s and Skorokhod’s theorems. Thereby, we obtain
a martingale solution to (3.1]). In Section 3.4 we show pathwise uniqueness
of solutions to and, therefore, obtain a probabilistically strong solution

to (B-1) by [66).

3.2 Existence of Approximate Solutions

3.2.1 Lipschitz Continuous Approximation of the Noise

We start by approximating the function o to get a Lipschitz continuous
approximation of the operator B.

Definition 3.2.1. i) Let o : (0,7) x R — R satisfy (S1)-(S3). For any
n €N, A e€R, and a.e. t € (0,T), we introduce the Lipschitz reqular-
wzation of o via inf-convolution:

on(t, A) == nf (o (t, p) +nl[A — pl), (3.5)
peER
see, e.g., 9, Theorem 9.2.1].

it) Let B be defined by (3.2). Then, we define, for any n € N, v,p €
L*(D), and a.e. (t,z) € (0,T) x D,

ﬂﬁﬁ#@%Z@ﬁﬁ@ﬁLﬁ@ﬂM@Mu

Proposition 3.2.2. Let 0 : (0,T7) x R — R satisfy (S1)-(53), C, be the
constant given by (S3), and

ng = {\/a-‘:min{nEN:nZ\/C_g}.

Then, there exists a full-measure set U C (0,T) such that, for any t €
U, the Lipschitz regularization via inf-convolution o, of o has the following
properties:

38



i) on(t,\) > —o0 for all A € R.
i1) For all A € R and all n € N such that n > ng

on(t,\) < o(t,\).

i1i) o, is Lipschitz continuous: there holds
ot A1) — on(t, A2)] < nfA1L — Aaf,
for all n € N such that n > ng, and all A\;, Ao € R.

iv) o, is uniformly bounded with respect ton € N and A\ € R: There exists
a constant C,, > 0, only depending on the Holder exponent o € (0,1)
and the Holder constant L, > 0 of o, such that

lon(t,A) —o(t,\)| < Cy (3.6)
for all n € N such that n > ng and all A € R. Moreover,
loa(t, NP < 2(Cq + Co(1+ [A]F)) (3.7)
for all X € R.
v) o, converges uniformly to o, i.e.,

lim supsup |o,(t,A) —o(t,A)| = 0.
n—=0 teU XeR

Proof. We choose the full-measure set U C (0,7") such that (S1)-(S3) hold
true for all t € U.
i) From (S1)-(S3), it follows that A\ — o (¢, \) is continuous for all ¢ € U and

a(t,\) > —/C, (1 +|A[2) > —/Co(1 4+ |\])

for all t € U and A € R. Now, the result follows from [9, Theorem 9.2.1].
i1) follows immediately by discarding the infimum and plugging 4 = A in

B-9).

i1i) For any t € U, any n € N such that n > ng, and any A;, Ay € R, we have
O'n(t, )\1) - O'n(t, )\2)

< inf (o(f, 1) + n|Ay = Ao| + n|Ae — p|) — inf (o(¢, 1) + n|A2 — )
pER JUSN

=nlh = Aol + inf{o(t, u) +n|ho — pl} — inf(a(t, 1) +1|As — )
HER HER

::nikl—-AQL
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With the same argument, we obtain
0'n<t, )\2) — Un(t, )\1) S TL|)\1 — )\2‘

iv) For any t € U, any n € N such that n > ng, and any A\ € R, using 1)
and (S2), we get

|0(t,A) = an(t, A)| = o(t, A) — inf (o (t, 1) +n[A = p)

=o(t,A) + iﬁﬁ(_a(t’ ) = n|A = pl)
=sup(a(t, A) — o(t, ) — n[A — pl)

net (3.8)
< ilelg(la(t, A) = o(t, p)| —n|A = pl)

< sup(La|A — p™ = n[A — pl)
neER

< h,
< max hn(r),

where h,, : [0,00) — R is defined by h,(r) := Lor® — nr. For any n € N, we
have h,(0) =0 and A/ (r) = 0 iff r = r, where

1

Sinceh’()>0f0ra110<r<r0,h’()<Oforallr>r0,and

hy (1) = — >0
Laa Qo1
for o € (0,1), it follows that
a1(1 —
max h,(r) = hy(ry) = u. (3.9)
r€[0,00) LFC‘C%

Since %5 < 0, we have

a1 (] — 1—
neillza) o lza o (3.10)
LS Taa T Ly TaaT
for all n € N, and ({3.6)) holds true. Now, using (3.6) and (S3), we know
|Un<t7 )\MQ < 2<|0n<t7 )‘) - 0<t7 )\)‘2 + |U(t7 /\)|2)
< 2(Ca + Co(1 4 A7),
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and obtain (3.7)).
v) We recall that, for all t € U, all n > ng, and all A € R, (3.9) holds true,
where - < 0 for a € (0,1). Therefore, we get

: . nai(l—
lim supsup |o,(t,\) —o(t,A)] < lim ————= = 0.

n—00 +c7 AeR n—o0 Lg_l&ﬁ

From Proposition [3.2.2] we get the following consequences:

Corollary 3.2.3. Leto : (0,T)xR — R satisfy (S1)-(53), C, be the constant
given by (S3), and ng := [/C,].
i) For a.e. t € (0,T), the mapping L*(D) > v ~ B,(t,v) is Lipschitz
continuous from L*(D) to HS(L*(D)) with Lipschitz constant Lp, =
VCin for all n > ng.

it) For any u € L*(Q, L*(0,T; L*(D)))

T
lim E [/ | Bn(t,u) — B(t,u)||;s dt} = 0.
0

n— oo
ii1) For allm > ng, allv € L*(D), and a.e. t € (0,T), we have

|Ba(t 0)liEs < 2 [(C2 + Co)llklZa(ox) + CoCillvlE]

Proof. i) Recalling (3.4) and using Proposition i11), for any v,w €
L*(D) and a.e. t € (0,T), we get

| B, (t,v) — By(t,w ||HS / lon(t,v(x)) — on(t, w(z / |k(z,y) |2dydx
< Cpn? lv — wH2.

i1) With similar arguments as in (3.3)), (3.4)) and Proposition v), we get,
for all n > ny,

B[ [ 1t~ Bl o

SEUT/ |an(t,u(w,t,x))—a(t,u(w,t,x))|2/D|k:(x,y)|2dydxdt}

< CLE [/ / lon(t,u(w, t, ) — o(t,u(w, t,z))|* de dt}
< CkT|D|h2 ’I“O

and the last term on the right-hand side converges to 0 for n — oo.

i1i) is a direct consequence of (3.3 and of Proposition iv). O
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3.2.2 A Higher Order Perturbation

Let m € N be chosen such that
H(D) — Wy*(D) N L>®(D). (3.11)
For ¢ := max{2,p, 2p(p — 1), p'}, we consider the Gelfand triple
W (D) < L*(D) — W™ (D)

and define, for n € N, the operator A, : W;"(D) — W~ (D) by

1
(An(u),v)q 4 ::/ a(x,u,Vu)~Vvdx+ﬁj(u,v)+/ f(u)vdz
D D
for w,o € WD), where (,-)y, denotes the duality bracket

(, '>W*myq'(D),Wg"'q(D) and

j(u,v) == (u, ) gy (D) +/ Z IV7u|T 2V - Vivde, u,ve Wy(D)
D hjem
denotes the variational formulation of the maximal monotone operator asso-
ciated to the Gateaux derivative of
1 1

B P . q 2
T W™ (D) = R, J(v) = vl + 5ol

For n € N, n > ng := [\/C,], we consider the approximated equation

dup, + Ay (uy) dt = By (t,u,) dWy in Q x (0,T) x D
u, =0 on Q2 x (0,7) x 0D (3.12)
un (0, +) = ug in Qx D,

3.2.3 Well-Posedness of the Approximated Equation

In the following, we denote by C constants arising from embeddings, and

let ng := [/C,].

Lemma 3.2.4. For fixed n € N, n > ng, there exists a constant Cgogg € R
and a function p : Wy(D) — [0, 00) which is measurable, hemi-continuous,
and locally bounded in W3"*(D), such that, for all u,v € Wy (D) and a.e.
te(0,7),

— 2(An(u) — Au(v),u = V)g g + 1 Balt, u) — Ba(t, v)lls

< (G + p(0) 1w — vl
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Proof. Let u,v € Wy (D) be arbitrary and n € N, n > ng, be fixed. We
know for a.e. t € (0,7T),

= 2 An(w) = Au(w), 1w — V) + | Balty ) — Balt,0)llis
2
= —2/ (a(z,u, Vu) — a(z,v,Vv)) - V(u —v) dx — EHU - v||§{6n
D

_ 2/ Z (|V’Yu|qf2vvu — |V70\q*2v7v) -V (u— ) da (3.13)
n.Jp

[y|<m
-2 /D(f(U) — f)(u—v)dx + || Bu(t,u) — Bu(t, v)]liis-
By using (A1), (A3), and Holder’s inequality, we obtain

— 2/D(a(x, u, Vu) — a(z,v,Vv)) - V(u —v)dx
= —Q/I)(a(x,u,Vu) —a(z,u,Vv)) - V(u—v)dz
- Q/D(a(m, u, Vv) — a(z,v,Vv)) - V(u —v) dz

gQ/D(C’g,\VU\p_l—i—h(x))]u—vHV(u—v)]d:v

< 2G|Vl + Rl llw = vl V (= )2,
Note that |ju — v||§£ < |l — v[|227%||u — v||3. Thanks to the continuous
embedding (3.11)) and Young’s inequality, we have for n > 0
- 2/ (a(x,u, Vu) — a(z,v,Vv)) - V(u —v)dz
D

2p—2

1
< 2G5Vl + lhlly) u = vllod” [fu = vl Cipllu = vl

1 1 1
< UG IVl + 1l )CE = vl el = 015 Crllu = vl o
B 1 1+
= K1 (IVollp ™ + Dl = vll3 lu — vl gy
1 _ U
< Sm (Kol + D7 u = vl3) + o 5 llu = vllZ

(2p)’

for a constant K7 > 0 not depending on n. This estimate implies

2
- 2/ (a(x,u, Vu) — a(z,v,Vv)) - V(u—v)dr — =||u — v %fé”
D n
92p-1 ) p—1 2
< " K12P (1 + HVU”Zp(p 1)) lw—vl|3 + ( o n— ﬁ) |lu — szgn.
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2p—1

In the following, we choose n > 0 small enough such that 55— % < 0.

Note that

/ Z (V7" 2V u — | V70|72V ") - VY (u — v) dz > 0.
D

lv|<m

Therefore, we obtain, for a.e. ¢t € (0,7), from (3.13)), by using (3.14)), Corol-
lary i11), and the Lipschitz continuity of f,

- 2<An(u) — Ap(v),u — U)q’vq + ||Bn(t7 u) — Bn(ta U)H%IS
< (Caza+ K| Voll2272) lu — vlf3

for constants Cgzg € R, Ky > 0 both depending on n. Hence, for
p(v) == K| Vo7,

the assertion is satisfied. Note that, by using ¢ > 2p(p—1) and the embedding
WD) < Wy*(D), we have for any v € W™(D)

p(v) = K| Vo[ < Ko2?(1+ [|[Vol]) < K527(1 + CRllollfyma).  (3.15)
O

Lemma 3.2.5. For n € N large enough, there exist constants Ciozg, Cig €
R and 6 € (0,00), such that for all u € Wy (D) and a.e. t € (0,T)

—2(An(w), u)g g + | Bu(t, w)ls < Cazllulls = Ollullfyma + Cizm:

Proof. Let n € N with n > ng be arbitrary but fixed. By (A2), the Lipschitz
continuity of f, and Corollary i11), we obtain for all u € W;"?(D) and
a.e. t€(0,7)

202 21
— Q/Da(:v,u, Vu) - Vudr — EHUHH(’)“ - EH“HWO"W

_Q/Df(u)udx-i-HBn(t;u)H%IS

y 2
< =2 [ (s(a) + G Val? = Calul’) dz = =l + 21510l (316
+2(C2 + Co)[Eaprcpy + 2ChCollull
2
< 2l -+ Ca [l do = ulliygs +2(Ls + CoCilul

+2(C3 + Ccr)“k“%?(DxD)-
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By using the continuous embeddings L?*’(D) < L¥(D) and Wy"%(D) <
VVO1 2P (D), Poincaré’s inequality (with constant Cpeiy ), and the fact that ¢ >
p > v, we obtain

/; |u(m)\”d1: < CEHU’ng < Cgcgomnvuugp < CE'CEC;Oin”uHIi;Vg"‘q
< CYOYCOy., 29 (1 + Huu‘;vgn,q) :

Consequently, we get from (3.16)), for all u € Wy™(D), a.e. t € (0,7), and
for n € N large enough such that 0 := 21C,C}LCLCp > 0,

Poin —

—2(An(u), u)g q + | Ba(t, w)llis < Cagllulls — Ollullfyma + Gz

for constants Gz, Gog > 0. O

Lemma 3.2.6. For fired n € N;n > ng, there exist C%:m,qg:m € R, such
that for all w € Wi™(D)

||An(u)||([]/{/fm,q/(l)) < C&m+ CI??Z?EIHUH;]/VSW

Proof. Let n € N,n > ng, be fixed. For u,v € W;"(D), we obtain by using
Holder’s inequality, (A2), and the Lipschitz continuity of f,

(An(w), byt < ol w, )y [0 + ol ol
+ 2l + Lellullaloll
2(ColIVulls™ + Callully™ + Nl IVl + el ol
+fulltba ol + Lellullalloll

Note that W{™%(D) is continuously embedded into Wy (D) N Hj*(D), which
implies with Poincaré’s inequality, for any u,v € Wy"?(D),

(An(1),0)qq < 2|Cp(Cs + ChnC)l[ulliyma + llglly | Crllvllwgme

Poin
2 1
+ —HUIlwquvamq + —HUH" yomal [0l wgra

+LfCJZ~JH“HW5"’qHUHW5W-

Consequently, there exist constants K3, K4 > 0 depending on n, such that

! 1
1An ()5 < 55 (Il + e + 1l ) + K
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By definition of ¢, we know that ¢’ < g and ¢’(p — 1) < ¢ and, hence,

| A1y < Cizm+ Cimllullfyna Vu € W5™(D)
for constants C&m, CBQ:m € R depending on n. 0

In the following, let

Ny := max { [VCs], (2q_1026%,050m)—1} , (3.17)

i.e., if we choose n > Ny, then n is large enough such that Lemma [3.2.5
holds.

Proposition 3.2.7. For any n € N, n > Ny, there exists a unique proba-
bilistically strong solution wu,, to the approximated equation (3.12)), i.e., u, €
L*(Q; C([0,T7; L*(D))) N LUQ; LU0, T; Wi Y(D))) is a (Fi)iepr-adapted
stochastic process which satisfies u,(0,-) = ug in L*(2; L*(D)) and, for all
t €[0,T], in L*(D), P-a.s. in <,

Un (1) :u0+/0 A, (un(s)) ds+/0 By (s,un(s)) dWs.

Proof. Using Lemma [3.2.4] Lemma [3.2.5, and Lemma [3.2.6] in connection
with (3.15)), the result follows from [84, Theorem 5.1.3]. O

Since the case o = 1 is already known (see, e.g., [85], [99]), we only consider
a € (0,1) in the following.

3.3 Existence of a Martingale Solution

3.3.1 A priori Estimates

In the following, for n € N with n > N, let u,, be the solution function to
(3.12) found in Proposition m where Ny is defined in (3.17]).

Lemma 3.3.1. There exists a constant Cgzg > 0 not depending on n € N,
such that for alln € N, n > Ny, and t € [0, T

E (1) +E [ [ 19| + T2 [ [ ua(o)l a5
#28 [ [l 5] < e
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Proof. Let n € N, n > Ny, and ¢ € [0,T] be arbitrary. We get from Itd’s
formula, P-a.s. in ),

t
03 = Fuol + [ 2(civat v, V) s = [l ds

__// > IVuy, |quds—2/ /fun Yun, da ds

[v|<m

/ IBu(s un)||HSds+2/0 (Bo (5, 1) (-), 1) g2 IV

Taking the expectation provides, by using the Lipschitz continuity of f and
Corollary i),

t
E [|Jun(t)]3] + 2E {/ / a(z, up, Vuy,) - Vu, dx ds]
0 D
2 ! ) 2 !
+ 28| [ ol ds| + 28| [l ]
t
B [ull] + 2248 [ [tz s
t
vE| [ 2((C2 4 CMB oy + CoCullwnl) ds]

t
— E [Juol2] +2(C2 + Co)|klamy + 2(CoCh + Ly)E { / ||un||%ds} .
(3.18)

By using (A2), we obtain

E [Jun (4)I12] +2EV/ )+ Co V| — C’Q\un\”d:cds]

t
< E [[luoll3] +2(C2 + Co)tllkll72(px py + 2(CoCr + Ly)E UO |, |3 ds] .

Let n > 0. Since v < p, we can use Young’s inequality in the following way:

t y v [ 1 p
E |up|” deds| < n—E |un|P dx ds| + ———t|D|.
0 JD p 0o JD np—v
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Applying Poincaré’s inequality, we obtain by ({3.18)

E [l +2 (61 - il 2 ) E [ [ 19algas]

p
< [Jualf] + (2(C3+ Colsconn + 21wl + 26— LIDI) 7

t
4+ 2CeCy + Ly)E U Hun||§ds] ,
0

where we can choose n > 0 small enough, such that C; — 2C,Cp . %
Using Gronwall’s lemma, we get for all ¢t € [0, 7] and n > N,

o> 0.
E [[Jun(®)3] < K5 (14 KeTe™T),

for constants K5, Kg > 0 independent of n and t. Consequently, we get from

B-18) by using (A2)

I/
E[||un<t)|!§]+2< e, ) {/ Hwnnpds}
2 t t
2
+ 28| [l as] + 2 [ Nl

< E [[luoll3] + 2[5l + 2(C2 + Co)t||kll L2(px )
+2(C,Cr + Ly)TKs (1 4 KeTe™")

for all ¢ € [0, 7] and n > Ny. O

Lemma 3.3.2. There exists a constant gz > 0 not depending on n € N,
such that

E

sup Hun(t)l\gl < Cgzz Vn > No.

te[0,7

Proof. Let n € N, n > Ny, be arbitrary. Using [td’s formula, (A2), and
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Corollary iii), we get for all t € [0, 7], P-a.s. in €,

t
lun(®)]12 < Iluo]3 - 2 / / a2, n, V) - Vi da ds
t 0 P t
—2/ /f(un)undxds+/ ||Bn(s,un)||12{5ds
0 D 0
t
+2/ (Bo(5, 1) (-), tn) 12 AW,
0
t
< uoll? + 2l ]l + Cs / / | d ds
0 D
t
ALy + CoCh) / a2 ds + 2(C2 + Co) || ot

+ 2/0 (B8, un)(+), up) 2 dWs.

Since v < p and, therefore, LP(D) — L"(D), we obtain, by applying Poincaré’s
inequality (with constant Cpey, ), for all ¢ € [0, 7], P-a.s. in €,

t t t
/ lunllZ ds < C% / a2 ds < CHCEo / Va2 ds
0 0 0

t
< cyey 2p/ (1+ [|Vu|2) ds.
0

Poin

Taking first the supremum over all ¢ € [0,7] and then the expectation pro-
vides

E

T
sup Jun(®I2] < E [luol2] + 21xliT + CaCCt B [ / Hwnugds]

t€[0,T]

T
4+ 2Ly + C,CL)E U a2 ds}
0

+ (2CE+ Clk ) + C2C5Chn) T

Using the Burkholder-Davis-Gundy inequality (see |85, Theorem 1.1.7]) and

+ 2E | sup

te[0,7)

/0 (B (s, un)(+), upn) 2 dWs

(3.19)
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Young’s inequality with § > 0 such that 1 — 2Cgpgf > 0, we get

|

< CppcE </OT |<Bn(57un(5)>(')>un(5)>L2|2d5> ;]

E

sup
te[0,7

/0 (B, tn(5)) (), ()} 2 AW

T
< CpepE <sup ||un(t)||3/ ||Bn(s,un(8))||12{sd8>
0

1
2

te[0,T

< CppcE |8 sup |lu,(t)|l3
i te[0,T

T
T ConoE [5-1 R CXCREITS ds} |

Using this inequality in (3.19) implies

(1-2Cppeh)E

sup Hun(t)H%]
te[0,7)

T T
< CyCUCE R [/ HVuands} 4+ 2(L; + CyCL)E [/ Hun||§d51
0 0
T
+2Cppef'E [/ 1B (s, un)lfis ds] + K7
0

for a constant K7 > 0 not depending on n and ¢. The assertion follows from

Lemma and Corollary iii). O

Lemma 3.3.3. The sequence
(a(-, Un, Vi) )nsn, is bounded in LP (Q; LP (0, T; LP (D)%)).

Proof. The boundedness follows from (A2), Poincaré’s inequality, and

Lemma [3.3.11 O

Lemma 3.3.4. The sequence

(st [ mrm))_

is bounded in LY (Q; L (0, T; W~ (D))).

Proof. Let n € N, n > Ny, be arbitrary. Since u,, € L*(Q; C([0,T]; L*(D)))N
L9(Q; L9(0, T; Wy™(D))) is a solution to (3.12)) by Proposition [3.2.7, we get
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for t € [0, 7], € Wi"*(D), P-a.s. in €,

0 (1t~ [ Bulsua(o) ) ol
_ —/Da(x,un(t), Vun(t)) - Voo da — %(un(t), o)

_%/D > |vmn(t)|q—2v7un(t)-v%oda:—/Df(un(t))wdw

[y]<m

< lla-, un(t), Vun ()]l [Veollp + %Hun(t)HHg"HSOHHgn
+ %||Un(t)|l‘é;oiq|lsollwgn*q + Lylun @) [l2[l2l]2-
Since we have the continuous embedding

Wg(D) <= Wy(D) N Hg*(D) N L*(D),
we know, that there exists a constant Cr > 0, such that

Uellg + Vel + llell2) < Cellellwe.

Hence, we obtain, by taking the supremum over all ¢ € Wy"%(D) with
[ollwma =1,

0 (1alt)~ [ Balssumopam,)

C
< Cplla(z, un(t), Vun (1))l + WEHun(t)Hng

HW-TM’

1 -
 ~llun (Ol + CLyllun(t)]l2
Ck
< Cpllalz, un(t), Vau (0))lly + == un(®)llwges
1 _
 ~llun Ol + CLyllun(t)l2
2

C
= OEHCL(ZL’,Un(t)’ Vun(t))Hp, + 2q—17E

1 _
+ (270 + Dl (@) fyma + CoLllua(t)]l2,
for all t € [0,T], P-a.s. in Q, where we used the fact that ¢ > 2. Because
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¢ < min{p, 2}, there holds, for all ¢t € [0, T], P-a.s. in 2,

q/

0 (wnl0)~ [ Butssumoam.)

wW—m.d

!

, , , 02 q
<8 [Cf a0, V) + 27 (2

1 B ' ’ ’ /
LI 1 Ol + CELS )]

nd
<87 (270 (1+ latw, un (), Vun ()]} ) + 2103
1 _ ’ / ’

+ (27O + 1) [lun() [y + 205 LT (14 ||Un(t)||§)]-
Integrating on [0, 7] and taking the expectation provide the boundedness by
Lemma 3.3.9] and Lemma B.3.3 O
Lemma 3.3.5. The sequence (By(-,uy))nsn, 5 bounded in L*($; L*(0,T;
HS(L*(D)))) and

</0 By (s, un(s)) dWs> - is bounded in L*(Q: C([0,T); L*(D))),

both for a constant Cgzz > 0 not depending on n.

Proof. By Burkholder-Davis-Gundy inequality and Corollary iii), we
obtain for any n € N, n > N,

2

2]

< Covce | [ 1B, (s. )]

E | sup

t€[0,T]

/0 "By (5.0, (5)) IV,

T
< Cupa? ((Ci ey T + CoCLE { / ltn(s) 2 d])

and, by Lemma [3.3.T], this expression is bounded. O

3.3.2 Tightness Results

Lemma 3.3.6. The sequence
(un —/ B(s,u,(s)) dWS)
0 n>Nog
is bounded in LY (Q; W52(0,T; W=™4(D))) for all 8 € (0, 3).
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Proof. We know that
Y= {U € L2(0,T; L*(D)) : v € LY (0, T; W—qu’(D))} (3.20)

is compactly embedded into W7 (0,T; W~™4 (D)) and, by 117, Corol-
lary 19], also in W52(0,T; W=7 (D)) for any 3 € (0,3). It follows from
Lemma [3.3.2, Lemma (3.3.4, and Lemma [3.3.5] that

(un — / By (s,un(s)) dWs) is bounded in L7 (Q; ) (3.21)
0 n>Ng

and, therefore, also in L7 (Q; W52(0,T; W~"-¢(D))). The assertion follows
from a standard Markov inequality. ]

Lemma 3.3.7. The sequence
(/ By (s,un(s)) dWS) is bounded in L*(Q; W52(0,T; L*(D))).
0 'IZ>N0

Proof. From Lemma we know that (B, (-, u,))nsn, is bounded in
L*(Q; L?(0,T; HS(L*(D)))). Using [59, Lemma 2.1, p.369], we get for any
RS (0,%) and n € N,n > Ny,

2

. T
2
E / Bl <o [ / 1B, tn(5)) s dt
< C(8)Czzm
(3.22)
]

Lemma 3.3.8. For all R >0 and 1 < s < o0,
Kp = {v e LP(0,T; WP (D)) n WA2(0,T; W= (D)) n C([0, T]; L*(D)) :
ol < R}
is relatively compact in L*(0,T; L*(D)), where
o] == HUHLP(O,T;WOI’I’(D)) + HUHWﬁaQ(D,T;W—qu'(D)) + [[vlleqoryzaoy)-
Proof. Using the compact embeddings W, (D) < L?(D) < W~ (D), we

obtain from [116, Corollary 7|, that Ky is relatively compact in L*(0, T’; L*(D))
forall 1 <s < 0. [l
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Lemma 3.3.9. The sequence of laws of (un)nsn, 18 tight on L*(0,T; L*(D))
for any 1 < s < o0.

Proof. Using Lemma and Lemma with the knowledge that ¢’ < 2,
we know, that the sequence

<un = [ Buls.un(s) Wt [ Bofsiua(o) dWS)M

0
is bounded in L7 (Q; W#2(0,T; W= (D))) for any B8 € (0,%). Further-
more, we obtain by Lemma [3.18] that (u,)n>n, is bounded in LP(€Q; LP(0, T';
WP (D))) N L*(; L*(0,T; L2(D))). By Lemmal[3.3.8) Ky is relatively com-
pact in L*(0,T; L*(D)) for all R>0and 1 < s < co. For alln € N,n > Ny,
and an appropriate R > 0,

ta (L°(0,T; L(D)) \ K) = / Ldp,
{veLs(0,T;L2(D)):|||v|||>R}

-/ 1dP
{we|[un(@)ll|I=R}

1 ,
BT J e |jun(w)l|> R}

1 !
q
= RY / ([ [unl[|* dP.

3.3.3 Passage to the Limit

For n € N with n > N, we consider the vector
Y, = (up, W,up) in X = L*(0,T; L*(D)) x C([0,T);U) x L*(D).

By Lemma [3.3.9 and Prokhorov’s theorem, a not relabeled subsequence of
(Un)n>n, converges in law for n — oo to a probability measure p., with
respect to L*(0,T; L?(D)) for all 1 < s < oco. Skorokhod’s theorem implies
the existence of

e a probability space (', A,P’) (which always can be chosen as
([0,1], B([0,1]), A) with B([0,1]) the set of all Borel measures on [0, 1]
and A the one-dimensional Lebesgue-measure, see |31, Theorem 2.6.3])

e a family of random variables YV, = (v,, W, vg) on (@', A", P’) with values
in X having the same law as Y,
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e a random variable us, with values in L?(0,T; L*(D)) such that the law
of us is equal to the law of u,, and for n — oo

Vp — Use in L*(0,T; L*(D)), P-as. in . (3.23)

Remark 3.3.10. By |35, Theorem C.1], the random variables W and vy are
independent of n.

Lemma 3.3.11. We have v, € L*(;C([0,T]; L*(D))), v,(0) = vy a.e. in
' x D, W) =0, P-a.s. in ', and the following convergences hold true
for n — oo after passing to a not relabeled subsequence if necessary:

i) U = Uso in LO(SY, L5(0,T; L*(D))) for all 9 <2 and all 1 < s < 00
ii) Vv, — Ve in LP(Q; LP(0,T; LP(D)?))

i) a(-, v, Vu,) — G in L (V; L' (0,T; LY (D)%) for an element G €
LY (Y LY (0,T; L7 (D)?))

) flun) — flus) in LAY L*(0,T; L*(D))) and f(v.) — f(us) in
Le(QY; L5(0,T; L*(D))) for all o <2 and 1 < s < 00.

Proof. By equality in law, we know v, € L*(Q; C([0,T]; L*(D))), v,(0) = 0,
and W(0) = 0, P-a.s. in Q' (see |119, Lemma A.3]).
i) Since (uy)n>n, is bounded in L*(2; L?(0,T; L*(D))) by Lemma [3.3.2]

(Vn)n>n, is bounded in L*(€Y; L*(0, T; L*(D))) (3.24)

by equality in law. Using (3.23)), we obtain by Vitali’s theorem (see [52,
Corollaire 1.3.3]) the claimed convergence.

i1) By Lemma and equality in law,
(VUn)nsn, is bounded in LP(QY; LP(0, T; L (D)%)). (3.25)

Hence, there exists a not relabeled subsequence, such that Vv, — ¢ in
LP(QY; LP(0,T; LP(D)4)) for n — oo and an element ¢ which can be verified
as V.

iii) Using (3.24) and (3.25)), we can show, by an analogous argumentation
as in Lemma [3.3.3 that (a(-, vy, Vv,))nsn, is bounded in L¥ (€'; LP (0, T;
L” (D)%) and is hence weak convergent.

iv) The convergences are a consequence of the Lipschitz continuity of f. [
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Definition 3.3.12. Fort € [0,T] and n € N, n > Ny, we define (F{")icjo1)
to be the smallest sub-o-field of A" generated by vy, vn(s), and W(s) for 0<

s < t. The right-continuous, P'-augmented filtration of (F{")ico,r] denoted by
(Fi e, s, for any t € [0,T], defined by

— olFr N € A P(N) = 0}

s>t

Remark 3.3.13. From the previous definition, it immediately follows that
vy 1s Fi-measurable for all n > Ny.

Lemma 3.3.14. For each n € N with n > Ny, v, is adapted to (F}")icpom

and W = (W())icpo,r 35 a (F} )ico,r)-adapted Q- Wiener process with values
i U.

Proof. Obviously, v,, and W are (F}")¢cjo,r-adapted for any n > Ny by con-
struction of the filtration. By equality in law, we know W(0) = 0, P’-a.s. in
2, and, using Burkholder-Davis-Gundy inequality, we have

E | sup W] =E

te[0,T

sup [W(t)[

te(0,7)

< CBDG TI"(Q)T < Q0.

Let n € N,n > Ny, be arbitrary. For all k € N, 0 < s <t < T, and all
bounded and continuous functions ¢ : X — R, we obtain, by equality in law,

E' [(W(t) = W(s), ex)utd (Vo)) =E [(W(t) = W(s), en)ut (Ya) o))
=0,
(3.26)

where (e )ren is an orthonormal basis of U. The real-valued random variable
w' > Q= ((Vn)os(w)) is (F/)iep,r-measurable by definition. Using
(3.26), we obtain for all K € N, 0 < s < t < T, and all bounded and
continuous functions ¢ : X - R

0=E [(W(t) = W(s), ex)utd (Vn)io.s)]
=E [E' [(W(t) = W(s), ex)ut (Vo) o,s))] |1 F7]
=K' [¢ (Vn)0,9) B [(W(t) = W(s), ex)u| FP] .

The Doob-Dynkin lemma (see, e.g., [104, Proposition 3]|) implies

E' [L4E [(W(t) - W(s), ex)o | F2]] = 0
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forall ke N, 0 < s <t < T, and all F'-measurable sets A € A’. Conse-
quently, there holds

E' [(W(t) = W(s),ex)u|FT] =0, P-as. in

forall 0 < s <t < T, and k € N. Hence, W is a (F}")cjo,rj-martingale,
and, by [45, p.75] W is a martingale with respect to the augmented filtration
(Fi")tepp,r)- Using equality in law of YW and W, we obtain for all0 < s <t <T
and k,j € N
0=E[((W(t) - ( ) ex)u(W(t) — W(s), ej)u
<(t_3 76]>U>77Z) ((Yn 08])}
=E[((W(t) - ( ) >U<W(t) W(s), ej)u
= ((t = 5)Q(ex), €5)v) ¥ (Vn)ioa)

With similar arguments as before, we get ((W)), = tQ for all t € [0,T],
see |41, p.75], where ((W)) denotes the quadratic variation process of W.
By a generalized Levy’s theorem (see |41, Theorem 4.6]) W is a Q-Wiener
process with values in U. O]

Lemma 3.3.15. For anyn € N, n > Ny, and t € [0, T], we define

M, (t) == v,(t) — v + /Ot Ej(vn, ) —diva(, v,, Vu,) + f(vn)} ds

The stochastic process (My(t))ico 5 @ square-integrable, continuous
(F)eepo,r)-martingale with values in L*(D), such that, for each t € [0,T7,

((Mn)>t:/0t (Bn(s,vn<s))Q%) o (Bn(s,vn<s))Q%>* ds  (3.27)
((W,Mn>>t:/OthBn(s,vn(s))ds. (3.28)

Proof. By Proposition [3.2.7]and equality in law, we know, that the stochastic
process (M, (t))ieo,r) has values in L*(D). Moreover, we get by definition of
M,, and equality in law, for all n > Ny,

L(M,) =L (vn - /0 Ej(vn, ) — diva(-, vn, Vou) + f(vn)} ds)
iy (u - /0 [%j(un, 3 = div (e, wy, Vi) + f(un)} ds)

c (/0 Bu(s, w) dWS> |
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where L£(-) denotes the law. Therefore, (M, (t))icp,m is a martingale with
respect to (F}")secpo,r) for all n > Ny, that can be shown with similar arguments
as in the proof of Lemma

Let n € N,n > Ny, be arbitrary. Because the mapping (¢,v) — B,(t,v) is
measurable on (0,7) x L*(D) by Corollary i) and L(u,) = L(v,), we
know L(B,(-,u,)) = L(Bn(-,v,)). Let (ex)ren be an orthonormal basis of
L*(D). For all k,5 € N, 0 < s <t < T, and all bounded and continuous
functions ¥ : X — R, we get

E {((Mn(t) — M, (), ex)r2 (M, (t) — M, (s),e;) 12

([ (B0t (Bl
_ E[((/: Ba(r,u) dwr,ekm(/: Bu(run) Wy, ;) 12

— </St (Bn(r, Un)Q%> <Bn(r7 un)Q%)* (ex) dr, €j>L2>w ((Y")HO’S])}
= 0.

(er) dr, q)p)w (V)io.s) }

Consequently, we know, for any ¢ € [0, 7],
t 1 1\ *
()= [ (Balsra(6)QF) o (Buls (5@ ) as.
0
Using (3.29) and £(W) = L(W), we obtain, for ¢ € [0, 7],

(W, M), = /0 Q0 Bu(s, vn(s)) ds.

Lemma 3.3.16. For alln € N, n > Ny, and all t € [0,T],
t
M, (t) :/ Bo(s,v,(8)) AW in L*(; L*(D)).
0

In particular, we have for all t € [0,T), in L*(D), P'-a.s. in



Proof. Let n € N,n > Ny, be arbitrary. Then, for all ¢ € [0, T], we have
2
\ ]
t
Y E [(Mn(t) _ / By (s, va(s)) WL, ek>%2} ,
keN 0

where, for any k € N,

B [00,0)— [ Bulos o)) W)
— B [0 ene] — 28 [0 el [ Bt o) W)
[ Butos o) W)t

E/

Mn(t)—/o By, (s,v,(8)) dWs

(3.30)

By and (3:20), we know for all € [0,7] (3.31)
> = [ Bulss ) a2,
= ZE (M, (1), er)7]
—E [/Ot Tr [(Bn(s,vn(s))gé) o (Bn(s,vn(s))gé)*] ds] .
Using (3:28), we further obtain for ¢ € [0, 7]
S 000, e | Bulsva(s) e
— B |1 (0. [ Bts. (o) awy |
—F Uot T [(Ba(s, 0a(5))Q*) o (Bn(s,vn(s))cg%)*] ds} .
Therefore, we get from (3.30) and (3.31), for all ¢ € [0,7],
E HMn(t) _ /Ot B (s, vn(s)) DV, ] 0.
]
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Lemma 3.3.17. The filtration (F")icpo,r) can be chosen independently of n.

Proof. Let (-Ft)te[O,T| be the smallest filtration in A’ generated by vy and W(s)
for 0 < s <t < T and augmented in order to satisfy the usual assumptions.
One may show as before, that W is a (Q-Wiener process with respect to
(Ft)tepo,r- Applying the arguments of Section to the stochastic basis

(&Y, A", P, (Fi)iepo,r)) associated with W, there exists, for any n € N, a unique

solution w, to the approximated equation with the ~7‘?0-measurable initial
datum vy. By uniqueness u, = v,. O

Lemma 3.3.18. For allt € [0,T], we have, for n — oo, the convergence

/OBn(s,vn(s))dWS%/o B(s,us(5))dW, in L*(Y; L*(D)).

Proof. For all n € N, n > Ny, a.e. t € (0,T), P-a.s. in @, we know by
applying the Parseval identity

1B (t, vn(t)) — B(t, va(t))lliis

=3 [ lonttonttoa)) = ot vnft))

keN

:/ o (t, vn(t, ) — o (t, v (t, ) Z| ), ex) 2| dx
D

keN

2
dx

/D ke, y)en(y) dy

Z/D|0n(7f7vn(tal“)) — o(t,vn(t, 2)) [k (z, ) |I5 da
< Ok”o-n(tvvn(t)) - O-(tvvn@))Hg'

Note that, for all n € N,n > Ny, and a.e. (t,z) € (0,7) x D, P-a.s. in 7,
by using (S2a) and Proposition i1),

0(t ) = 00,1 2) = 51 (0 (4 (1) = 0 t,0) = o ) = )

< sup (La|vn(t, 2) = p|* = njoa(t, x) — pl)
neER

< sup (Lar® —nr),

N réef0,00)
where this last term converges to zero as shown in the proof of Proposi-
tion iv). Moreover, we know, for all n > Ny, a.e. (t,z) € (0,7) x D,
P'-a.s. in €,

L (=0

a )

|0 (t, v (t,2)) — o (t, v, (t, )P < max (Lyr® —nr)? <
ref0,00) Laa
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see proof of Proposition iv). From Lebesgue’s dominated convergence
theorem, we obtain for n — oo

E/ UOT/D|an(t,vn(t,x))—a(t,vn(t,x))|2da:dt — 0. (3.32)

Since, for any a € (0,1), there exist p < 2 and 1 < s < oo such that
Le(SY; L5(0,T; L*(D))) — L**(Y; L**(0,T; L**(D))), we have

E [ [ 1B 0n(t) = Bt un () [ dt
[/0 S } (3.33)

T
<G| [ o) - el 0
0

for n — oo by Lemma |3.3.11| 7). Therefore, we obtain by (3.32)) and (3.33))

Bn(-,v,) = B(-,us) in L*(QY; L*(0, T; HS(L?*(D))). (3.34)
Using Burkholder-Davis-Gundy inequality, we get for n — oo
/ Ba(s, v (s)) AW, — / Bls, uw(s))dW, in L2(Q: C([0,T): I2(D)))
0 0

and, for all ¢ € [0, 7],

/O Bu(s,va(s)) W, — /O Bls,uw(s))dW, in L2 L3(D)).

]

Proposition 3.3.19. The function uy, is a (ft)te[oj]—adapted, square-integrable
stochastic process with continuous paths in L*(D), such that us(0) = vp.
Moreover, u. € LP(Q; LP(0,T; Wy P(D))) and

5 (uoo _ / B(s, 1(s)) dWs> CdivG 4 flus) =0

0
in LY (Q; LY (0, T; W= (D))).

Remark 3.3.20. If uy s given as in Proposition n particular, we
have for all t € [0,T], in L*(D), P'-a.s. in &,

uoo(t)—vo—/OtdivG(s)ds—l—/Otf(uoo(s))ds:/OtB(s,uoo(s))dWS.
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Proof. By (3.21)) and equality in law, we know, that there exists a not rela-
beled subsequence, such that for n — oo

Uy — /0' B(s,0,(8)) dWs — oo — /o' B(s,us(s)) dW, in LY (Q; ),
(3.35)

where U is defined in (3.20]). Since U is continuously and densely embedded
into C([0, T]; W™ (D)), the weak convergence holds true in LZ (Q'; C([0, T7;

W=m4(D))). In particular, by Lemma[3.3.18
Up — U in LY (Y C([0,T); W™

!

™7(D)))-

Because (vy,),n, is bounded in L(€'; C([0,T]; L*(D))) by Lemma [3.3.2]and
equality in law, and since L2(QY'; C([0, T]; L*(D))) — C([0, T); L*(%Y; L*(D))),

V() = uso(t) in L*(Q; L*(D)) for all t € [0, T).

Therefore, we have uq(0) = vy.
Let A e A'¢ € CX((0,7)), and ¢ € CX(D), then for all n € N;n > Nj,
there holds by Lemma [3.3.10]

0_// £(t) ( () — /tB (s, vn)dW) P dt dP
//g (o, ) dt dP' + // /g Fon)p dt P
4 /A /0 /D E(t)alz, v, Vo) - Vo da dt AP’

::[1+IQ+[3—|—[4.

Using partial integration (see |52, Proposition 2.5.2]), Lemma [3.3.11|4), and
(3.35) we get for n — oo

= ([ €00 (w0~ [ Bats.on . dt e
-] “e) (vn(w— / Bu(s.0) dW5>wdtdrﬂdP’

%—/A/D/OTW) (uoo(t)—/OtB(s,uoo)dWs>g0dtda:dP’

= [ [ 0 (nttr- [ Bl a.) o)t e
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Moreover, for all n > N,

o
[2:// )= | (v, @) /Z V0, |72V 0, - Vo da | dt dP’
AJo n

[v]<m

<t [ 1] ot e+ >rz;oi,qr|so||wgw} t aP
11 " ,
< Helhelihuge [ [ Co s Lol + 25l Ol e

ninz nan

nlé (&[] 2oy dt])é
+n—1;(E'[/OT%||vn<>||WM D]

By Lemma [3.3.1 and equality in law, F [fOT%an(t)H%{gn dt| and

< [I€llso lllwgma | €

E [ foT Li|y,,( Ol . dt] are bounded by a constant independent of n. Hence,

we obtain

lim T, = 0. (3.37)

n—oo

Lemma/3.3.11{i77), iv), (3.36)), and (3.37]) provide forall A € A", & € C((0,T)),
and ¢ € CX(D)

//5 ( )—/tB(Suoo)dW) ) dt AP’
// /5 t)G - Vo dz dtdP' + // /5 (o) dt P

We already know, that Vv, — Vus, in LP(Q; LP(0,T; LP(D)4 )) and in par-
ticular, u., € LP(Q; LP(0,T; Wy *(D))). Now, from equation (3.38]) it follows
that us, € L™ 2HQ; C([0,T]; W1 (D))) and, that

(3.38)

Uso () — ug — /Ot divGds + /Otf(uoo) ds = /OtB(s,uoo) aw, (3.39)

in W= (D), P-a.s. in ¥, for all t € [0,T]. From (3.39)), we obtain by [84,
Theorem 4.2.5], that uy, is a (F#)tejo,r-adapted, square-integrable stochastic
process with continuous paths in L?*(D) and It6’s formula holds. O
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Lemma 3.3.21. There holds
G = a(-, Uos, Vo) in LF (U LP (0, T; LP (D)%)).

Proof. Let t € [0,T] be arbitrary. Applying 1t6’s formula and taking the
expectation, we obtain from Lemma |3.3.16

1 1 t
QE’UWHQME]—-—E’wvd@}4—E’L/ /pa@zvmihm)-vvndxd%

+%E/ Ut (Umvn)ds] 4E [/ /fvn vndxds] (3.40)
=5 [ [ 1Bt ol 5]

On the other hand, we obtain from Proposition [3.3.19| by applying It6’s
formula and taking the expectation

1_, 1 , t
8 O] - 52 [lll) + & | [ [ 6+ Vusdras
0 JD

E l/ot/ljf(uoo)uood:cds} _ %E’ Vot ||B(s,uoo)||§lsds] |

Taking the difference (3.40)-(3.41)), we get

(3.41)

S [len(®I] - 5B [luse )]

E' [/ / a(z, vn, Von) - Vo, — G - Ve da ds]
[//fvn Un uoo)uoodxds}

| [ 1Bl = 1B s
0
Using Lemma [3.3.11] 7), the fact that f € L>(R), and (3.34), we obtain

hmam(%E“WA)”]——E“Wm(wa

t
E [/ / a(x, v, Vu,) - Vu, — G - Ve dmds} )
0o JD
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Therefore, using the lower semi-continuity of the norm, there holds

t t
lim sup E/ [/ / a(x, vy, Vo) - Vo, dx ds} <F [/ / G - Ve dx ds} )
n—00 o Jbp o Jp

Applying a stochastic version of Minty’s trick (see [105, Lemma 8.8|) provides
G = a(-, Uso, Vleo). O

3.4 Pathwise Uniqueness of Solutions

In this section, we prove Theorem [3.1.5]

Proof. Let € > 0 and 7. be a non-decreasing, Lipschitz continuous approxi-
mation of the sign-function defined by

"1 /s
(1) .:2/0 gp<g> ds forr eR,

where p(s) = cexp () Iyjs<1y such that [; p(s)ds = 1 is a classical
mollifier approximation of the Dirac measure Wlth support on [—¢,¢] (see
[118, p.195]). We define for € R and u € L?*(D)

N.(r) = /Orng(s)ds and  F.(u /N

Note that one can show by easy calculation

2c
INZ(r)] < e (NESE

Because u; and uy are both solutions to (3.1]), we have for any ¢ € [0, T
t
ur(t) — us(t) — (uy — ug) — / div(a(-, u1, Vuy) — a(-, ug, Vug)) ds
0
t
/ flur) — f(usg ds-/ B(s,u1) — B(s,ug) dWs.
0

Applying It6’s formula to this stochastic process by using F. (see |99} p.78])
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provides, for any ¢ € [0, 7T, after taking the expectation,
[Fx(ur(t) — ua(t))] — E [Fe(ug — ug)]

—E {/0 (div (a(-,u1, Vuy) — a(-, ug, Vug)) , NJ(uy — uz))p p ds}
v ] [ [ () = ) o) ] o
= g2 [ 1 B = ) (B 1(5) - Bls. )@

(B(s,u1(s)) — B(s, u2(5>))*] ds}

sh+L+I3+1,=1s.

By using (A1), we know that, for any ¢ € [0, T],
_E Uot /D(a(x,ul, Vi) — alx, us, Vus)) - V(g — ug) N (w1 — us) de ds]
>E Uot /D(a(a:,ub V) — a(x, us, Vug)) - V(i — ug) N (w1 — us) d ds] .

By using (A3) and Hoélder inequality, there holds for any ¢ € [0, T]

’IE Uot /D(a(w,ul,VuQ) ~ a(z, up, Via)) - V(1 — us) N (ur — up) dz ds]

t
S E |:/ / (C5|VU2|p_1 + h(x))|u1 — U2||V(u1 _ u2)|Nél(U1 _ ’UQ) de ds:|
0 JD

t
< 2cE {/ / (C5|Vua P~ + h(z))|V(uy — U2) [y —us|<e} dT ds}
o Jp

t p—1 t 1
<20y (2| [1vwlpes] ) (B[ [ 1l -l i) )
0 0 JD
1
¢ P
+ 2¢||h ||y (E [/ /D]I{u1_u2|§€}|V(u1—u2)|pdxds}>
0

—0 forelO0.

Therefore, we have

limui)nf I, > 0. (3.43)

Since 7. is an approximation of the sign function, we obtain by the Lipschitz
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continuity of f, for all ¢ € [0, T,

1561]3 = lnglE [/ / (ur) — fu2))ne(ug — uz) dxds}
=E [/ / (uy) )) sign(uy — ug) dz ds} (3.44)
<E [/ / L|uy —uﬂdxds} .
o Jp

Let (ex)ren be an orthonormal basis of U consisting of eigenvectors of (). By
using |84, Proposition B.0.10], there holds, for all ¢ € [0, 7],

*

I = %E[/ﬂt 02 [ ((Bls.m) — Bls.u))Q?) Fwr — uo)
(B(s,u1) — B(s, U2))Q2] }
_ —E[/O (5,u1) B(s,u2))Q%>* F (w1 — us)

k:eN

(B(s,u1) — B(s,u2))Q2 (ep), ek>Ud5]

[NIES

- 38| / SR (= wa)(Bls, ) — B(s, 12))Q3 (ex),

keN

(B(s,u1) — B(s,u2))Q% (&) 12 ds}

//N Uy — Uy Z) (s,u1) — B(s,u2))Q

keN

(en)|

NI

dz ds] .

67



Consequently, for all ¢ € [0, T,

1 t
< 58| [ [ Nt - w)
0 D

Z /( (5, ur(2)) — 0 (5, ua(2))k (2, )Q? (ex) (y) dy

keN

= _EU / N (uy — uz) Lgur — us|*
= </ [, )] Q% (ex) (v )Idy) dwds}

S l/ /N” Uy — ug)|ug — ug|*

W:H%Zmemgmﬂ

keN

2

dz ds]

Since (ex)ren are eigenvectors of @), there exist (Ag)ken, such that

ST E3 =D Iel3 =D Inl <€

keN keN keN

for a constant C' > 0. Therefore, we obtain for any ¢ € [0, 7]

CL2
|I5] < {/ /N Uy — Usg) |u1—u2|2°‘||k:( )||2dmds]
CL2
< S [ [ [ durmscais — e, ) 3 s
€ 0o JD

If a € (%, 1), we can estimate, by (3.45)),

(3.45)

15| < CLgCT||k||L2(D><D)52a_1 —0 fore 0.

For oo = %, we find by (3.45))

CLic

15| <

t
E {/ / s —ual<ey L w1t — o [[(2, ) |3 do dS}
0 D

t

< CLycE [/ /1{|u1u2|<s}1{u1¢u2}l|k(w,-)I|§d$d8}
0 D

— 0 for e | 0.
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Since

lim (E[F (12(1) — ua(t))] — B [F(uh — )])

e R e T

we obtain from (3:42), by using (3-33), (3:4), and (343),

EVDWI@)—W@)M;C} gE{/Dmé—ugldx]
+LE Vot/Dml(s) —ug(s)\d:cds}

for all £ € [0, 7). Using Gronwalls lemma, we get

EUDml(t)—uz(t)mx} < LR [/D|u(1)—u(2)|dx}.
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Chapter 4

Convergence of a Finite-Volume
Scheme for a Heat Equation with
a Multiplicative Lipschitz Noise

4.1 Introduction

Let A C R? be a bounded, open, connected, and polygonal set. Moreover, let
(Q, A, IP) be a probability space endowed with a right-continuous, complete
filtration (F;)co,r and let (W(t)):>0 be a standard one-dimensional Brown-
ian motion with respect to (F)icpo,m on (€2, 4, P).

For T' > 0, we consider a nonlinear stochastic heat equation under Neumann
boundary conditions:

du — Audt = g(u)dW(t), in Qx (0,7) x A;
u(0, ) = up, in Q x A; (4.1)
Vu-n=0, on Q x (0,7) x 0A;

where n denotes the unit normal vector to A outward to A. We assume the
following hypotheses on the data:

Hy: ug € L*(Q; H'(A)) is Fo-measurable.

Hs: g : R — R is a Lipschitz continuous function with Lipschitz constant
L>0.

Remark 4.1.1. 1. Assumption Hy is used to obtain a bound on the finite-
volume approximations in a discrete H'-seminorm. This estimate is
necessary to obtain a tightness result on the finite-volume approrima-
tions that is essential to apply the stochastic compactness argument.
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2. In this work, we restrict ourselves to dimension two. For the definition
of a finite-volume mesh in dimension d € {1,2,3}, we refer to [58]. For
applications, dimensions two and three are the most interesting ones.
Later, we need the definition of a discrete gradient which requires a dual
mesh that is hard to imagine for dimensions higher than three, thus,
for simplicity, we consider dimension two. We remark that in (19, 20/
we study finite-volume schemes for both dimensions two and three.

3. Hy implies
lg(r)[* < CL(L+|r[*) (4.2)

for all r € R and a constant C'p, > 0 only depending on the Lipschitz
constant L > 0 of g and on ¢(0).

4.1.1 Concept of Solution and Main Result

The theoretical framework associated with Problem is well established
in the literature. Indeed, we can find many existence and uniqueness results
for various concepts of solutions associated with this problem such as mild
solutions, variational solutions, pathwise solutions, and weak solutions, see,
e.g., [41,84]. We are interested in the concept of solution as defined below,
which we will call a variational solution:

Definition 4.1.2. A wariational solution to Problem (4.1)) is an (Fy)iepo,n)-
adapted stochastic process

we LA C([0,T); L*(A) N L(Q: L2(0,T; H'(A)),

such that, for all t € [0,T],

) = w0~ [ Suts)ds = [ gtu(s) aiw(s)

in L*(A), and a.s. in .

Existence, uniqueness, and regularity of this variational solution is well-
known in the literature, see, e.g., [74,84,97|. The main result of this chapter
is to propose a finite-volume scheme for the approximation of such a varia-
tional solution and to show its stochastically strong convergence by passing
to the limit with respect to the time and space discretization parameters.
This is stated in the following convergence result:
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Theorem 4.1.3. Assume that hypotheses Hy and Hy hold. Let (Ty)men be
a sequence of admissible finite-volume meshes of A in the sense of Defini-
tion such that the mesh size hy, tends to 0 and (Np)men € N is a
sequence of positive numbers which tends to infinity. For a fixred m € N,
let up,  ~—and uh Nn be the rzght and left in time finite-volume approrima-
tions deﬁned by (4.4 , . with T = Ty, and N = N,,, respectively.
Then, (uhm,Nm)mEN and (uthm)meN converge in LP(; L*(0,T; L*(A))) for
any p € [1,2) to the variational solution of Problem in the sense of
Definition [{.1.3

4.1.2 State of the Art

The study of numerical schemes for stochastic partial differential equations
(SPDEs) has attracted a lot of attention in the last decades and there exists
extensive literature on this topic. A list of references for the numerical anal-
ysis of SPDEs and an overview of the state of the art is given in [8}44}95|.
Regarding the theoretical and numerical study of stochastic heat equations,
semigroup techniques may be used to construct mild solutions (see, e.g., [41]).
However, from the point of view of applications and mathematical modeling,
it is often interesting to consider first-order perturbations of the stochas-
tic heat equation and more complicated, nonlinear second order operators,
such as the p-Laplacian or the porous medium operator. For these nonlinear
SPDEs the semigroup approach is not available and variational techniques
have been developed in [74]84,97].
In the numerical analysis of variational solutions to parabolic SPDEs, spa-
tial discretizations of finite-element type have been frequently used (see,
g., [22,132] and the references therein). On the other hand, for stochas-
tic scalar conservation laws, finite-volume schemes have been studied in
[13-16,50,51,60,87]. To the best of our knowledge, there are only a few
results on finite-volume schemes for parabolic SPDEs. Let us mention the
work of [17] where the authors proposed a convergence result of a finite-
volume scheme for the approximation of a stochastic heat equation with
linear multiplicative noise.

4.1.3 Aim of the Study

In this chapter, we want to extend the finite-volume approximation results in
the hyperbolic case to the stochastic heat equation with Lipschitz continuous
multiplicative noise. Having applications to nonlinear operators and also to
degenerate parabolic-hyperbolic problems with stochastic force in mind for
the future, we propose a method for the convergence of the scheme that does
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not rely on mild solutions or on results from semigroup theory. Additionally,
we may include a discrete gradient in the right-hand side of our scheme
in the future. Hence, further studies may be devoted to the convergence
analysis of finite-volume schemes for equations with multiplicative noise in-
volving first order spatial derivatives of the solution.

The main technical challenge is the nonlinear multiplicative noise. Indeed,
from the a priori estimates, we get up to subsequences weak convergence
results in several functional spaces for our finite-volume approximations and
this mode of convergence is not enough to identify the weak limit of the non-
linear term in the stochastic integral. Therefore, we first show the conver-
gence towards a martingale solution by adapting the stochastic compactness
method based on Skorokhod’s representation theorem. Then, using a famous
argument of pathwise uniqueness (see, e.g., [66]), we obtain the stochastically
strong convergence result stated in Theorem

4.1.4 Outline

This chapter is organized as follows. The next section contains the introduc-
tion of the finite-volume framework: the definition of an admissible finite-
volume mesh on A and the associated notations of discrete unknowns. Then,
the notions of the discrete gradient and the discrete H'-seminorm will be in-
troduced. In the last subsection, we will introduce our finite-volume scheme
together with the associated finite-volume approximations.

The remainder of this chapter is then devoted to the proof of the convergence
of these approximations towards the variational solution of . To do so,
in Section 4.3, we will prove several stability estimates satisfied by these
approximations, but also a boundedness result on the approximation of the
stochastic integral. These estimates will allow us to pass the limit in the nu-
merical scheme in Section [£.4] More precisely, we apply the classical stochas-
tic compactness argument (see, e.g., [31]). By the theorem of Prokhorov,
we will get convergence in law (up to subsequences) of our finite-volume
approximations. At the cost of a change of probability space, Skorokhod’s
representation theorem will allow us to obtain almost sure convergence of the
proposed finite-volume scheme. Then, a martingale identification argument
will help us in order to recover at the limit the desired stochastic integral.
In this way, we show that our finite-volume scheme converges to a martingale
solution of , i.e., the stochastic basis is not fixed but enters an unknown
in the equation. Next, we show pathwise uniqueness of solutions to (4.1)).
This, together with a classical argument of Gyongy and Krylov (see [66])
allows us to deduce convergence in probability of the scheme with respect to
the initial stochastic basis.

74



4.2 The Finite-Volume Framework

4.2.1 Admissible Finite-Volume Meshes and Notations

In order to perform a finite-volume approximation of the variational solution
of Problem on [0,7] x A, we need to set a choice for the temporal and
spatial discretization. For the time discretization, let N € N be given. We
define the fixed time step At = L and divide the interval [0,7] in 0 = t5 <
t; < .... <ty =T equidistantly with ¢, = nAt for all n € {0,..., N — 1}. For
the space discretization, we refer to [58] and consider finite-volume admissible
meshes in the sense of

Definition 4.2.1 (Admissible finite-volume mesh). An admissible finite-
volume mesh T of A (see Fig. s given by a family of open, polygonal,
and convex subsets K, called control volumes of T, satisfying the following
properties:

o A=y K.
o IfK,L €T with K# L then int K Nint L = (.

o If K.L € 7’_witﬁK #* L, then either the one-dimensional Lebesgue
measure of KN L is 0 or K N L s the edge of the mesh, denoted by
o = K|L, separating the control volumes K and L.

e To each control volume K € T, we associate a point xx € K (called
the center of K ) such that: If K, L € T are two neighbouring control
volumes the straight line between the centers i and xp is orthogonal
to the edge 0 = K|L.

¢ dK|L u |
Figure 4.1: Notations of the mesh 7 associated with A

Once an admissible finite-volume mesh 7 of A is fixed, we will use the fol-
lowing notations.
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Notation. e h =size(T) = sup{diam(K) : K € T} the mesh size.
e d;, € N the number of control volumes K € T with h = size(T).

o & is the set of the edges of the mesh T and we define Eyy == {0 € & :
0 L ONY}, Exi i ={0 €E:0 COA}.

o For K € T, Ek is the set of edges of K and my is the two-dimensional
Lebesgue measure of K.

o Let K, L €T be two neighbouring control volumes. For o = K|L € &y,
let mg be the length of o and di | the distance between xk and xi,.

e For neighbouring control volumes K, L € T, we denote by nk, the unit
vector on the edge o = K|L pointing from K to L.

o foro = K|L € &y, the diamond D, (see Fig. is the open quad-
rangle whose diagonals are the edge o and the segment [tk,xp]. For
0 € Ext NEK, we define Dy := K. Then, A = J,cc Do-

e mp, is the two-dimensional Lebesque measure of the diamond D,.. Note
madK|L

that for o € &y, we have mp, = 5

Figure 4.2: Notations on a diamond cell D, for o € &y

Using these notations, we introduce a positive number

diam(K
reg(7) = max | NV, max diam(K) (4.3)
KeT d(;p K,U)
oefy
(where NV is the maximum of edges incident to any vertex) that measures the
regularity of a given mesh and is useful to perform the convergence analysis
of finite-volume schemes. This number should be uniformly bounded when

the mesh size tends to 0 for the convergence results to hold.
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4.2.2 Discrete Unknowns and Piecewise Constant Func-
tions

From now on and unless otherwise specified we consider N € N, At = %,

and 7 an admissible finite-volume mesh of A in the sense of Definition £.2.1]
with a mesh size h.

For n € {0,...,N — 1} given, the idea of a finite-volume scheme for the
approximation of Problem is the following one: We associate to each
control volume K € T and time ¢, a discrete unknown value denoted by
ul € R that is expected to be an approximation of u(t,, x ), where u is the
variational solution of .

Before presenting the numerical scheme satisfied by the discrete unknowns
{u} : K € T,ne{0,...,N —1}}, let us introduce some general notations.

For any arbitrary vector (w)ger € R, we define the piecewise constant
function wy : A — R by

x) = Z wilg(z) VreA.

Note that, since the mesh 7T is fixed, the space R% can be considered as

a finite-dimensional subspace of L?(A) by the continuous mapping defined
from R% to L?*(A) by

(W) ke = Z 1 gwi,
KeT

and, therefore, we may naturally identify the function and the vector
wp = (W) er € R

Knowing for all n € {0, ..., N} the function wh, we can define the piecewise
constant functions in tlme and space w, v, w), v = [0,T] x A = R by

wy, n(t, ) = Zw"“ L, 400 () if t € [0,T) and wy, (T, ) = wy (z),

x) = Z wy ()1, 4, (t) if t € (0,7] and w27N(O, r) = wh(z).
n=0
(4.4)

Remark 4.2.2. The superscripts r and | in do not refer to the con-
tinuity properties of the associated functions (which may be chosen either
cadlag or caglad). The difference is that wj,  is adapted whereas wj,  is not
adapted.
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As for the piecewise constant function in space, since 7 and N are fixed, the
space R%*N can be considered as a finite-dimensional subspace of L2(0, T}
L*(A)) by the continuous mapping defined from R%**¥ to L2(0,T; L*(A)) by

(Wi)  wer = > Al gk,
ne{0,...,N—1}
and we may naturally identify
|- dp x N
wy, N = (Wg)  wer € R™WXY
ne{0,...,N—1}
_ 1 N
why = (Wit)  ger € RWN
ne{0,...,N—1}
We can also define the piecewise affine, continuous in time and piecewise
constant in space reconstruction Wy, y : [0,7] x A — R by

wp () — wi(x)

Wy (T, x) = i Lyt (1) ( A7 (t—t,) + w}}(x)) . (4.5)

Remark 4.2.3. Note that, in the following, when we will consider a time
and space function « : [0,T] x A — R on all the space A (respectively the
time interval [0,T]) at a fized time t € [0,T] (respectively at a fized v € A)
we will omit the space (respectively time) variable in the notations and write
a(t) (respectively a(x)) instead of aft,-) (respectively a(-,x)).

4.2.3 Discrete Norms and Discrete Gradient

We fix n € {0,..., N — 1} and consider for the remainder of this subsection
an arbitrary vector (w})ger € R% and use its natural identification with
the piecewise constant function in space wj = (w})ke7. In the following, we
introduce the notions of a discrete gradient and of discrete norms for such a
function wy.

Definition 4.2.4 (Discrete L>norm). We define the L*-norm of w}! € R
by

1
2
lwp L2y = (Z mK|w?<|2) :

KeT

Definition 4.2.5 (Discrete gradient). We define the gradient operator V"
that maps scalar fields w € R% into vector fields of (R*)°" (where ey, is the
number of edges in the mesh T ) by Vhw} := (Viwp),ce with

wh — wh _
hon QMHKL, ZfU = K|L € Ent
ngh = dK|L

0, ZfO' € Eoxt-
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We remark that V! is considered as a piecewise constant function, which
is constant on the diamonds D,, o € &£.

Definition 4.2.6 (Discrete H'-seminorm). We define the H'-seminorm of
wl € R by

1
2
m
AN ( > g - wz|2> .

Uegint ‘

Notation. If not marked otherwise, for an edge o € &y, we denote by K
and L the neighbouring control volumes, i.e., 0 = K|L. In particular, we use
this notation in sums.

Remark 4.2.7. Note that, in particular,

m
IV R B = D o, IVEwi =2 > = fue — wi* = 2uyf3,
o€Ent 0€Eint KIL

where the constant 2 corresponds to the space dimension d = 2.

Remark 4.2.8. If we consider another arbitrary vector wy = (Wk)xer €
R by summing over the edges we may rearrange the sum on the left-hand
side and get the following rule of "discrete partial integration”

S P - )@= Y T (il — wp) (@ — @) (46)

d d
KeT cc€xNEint K‘L o€&€int K|L

4.2.4 The Finite-Volume Scheme

Firstly, we define the vector u9 = (u%)xe7 € R% by the discretization of the
initial condition ug of Problem (4.1)) over each control volume:
1
ule = —/ uo(z)dx, VK €T. (4.7)
MK Jk
The finite-volume scheme we propose reads for this given initial Fy-measurable
random vector uf) € R

For any n € {0,...,N — 1}, knowing u} = (u)ger € R, we search for
UZ—H = (u) ger € R, such that, for almost every w € Q, the vector UZH

is a solution to the following random equations

m m m

MO ) ) = i) AW, VK e T,
cE€EWNEK

(4.8)
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where A,,.1W denotes the increments of the Brownian motion between ¢,
and t,,:

ANy W= W(tyyr) — W(t,) forne{0,...,N—1}.

Remark 4.2.9. 1. The second term on the left-hand side of (4.8)) is the
classical two-point flux approzimation of the Laplace operator, see (58,
Section 10].

2. The time-implicit discretization of the Laplace operator has several an-
alytic advantages: First of all, calculations in the a priori estimates are
simplified. Secondly, we omit the use of a CFL-condition. Last but not
least, for more general nonlinear operators such as the p-Laplace oper-
ator, an implicit time discretization s more appropriate. However, an
explicit time discretization of the noise is crucial and can not be omitted
due to the non-anticipative character of the Ito stochastic integral.

We note that by multiplying equation (4.8) by wg, summing over K € T,
and using equality (4.6]), the numerical scheme can be rewritten as: For any
n€{0,...,N —1} find u}*t" € R%, such that for any w;, € R,

D i (i — i) wic+ A 3D — ) (wne - wn)
KeT €& KIL

= Z ng(uTIL()wKAn+1W
KeT

(4.9)

The two formulations are equivalent but this "variational" formulation will
be more useful for the analysis to follow.

Proposition 4.2.10 (Existence of a discrete solution). Assume that hypothe-
ses Hy and Hy hold. Let T be an admissible finite-volume mesh of A in the
sense of Definition [{.2.1) with a mesh size h and N € N. Then, there exists
a unique solution (up)i<p<y € (R™)N to Problem (4.8)) associated with the
initial vector u) defined by (4.7). Additionally, for any n € {0,..., N}, u}
s a Fy, -measurable random vector.

The solution (u})j<p<ny € (R%™)N of the scheme (4.7)-(4.8) is then used to
build the right and left finite-volume approximations uj, y and uj, 5 defined
by (4.4]) for the variational solution u of Problem ({4.1).

Proof of Proposition[{.2.10. Set n € {0,...,N —1}. For K € T and a.s. in
2, note that (4.9) can be rewritten in the following way:

Mg n n
Z my (Wi — fR) wr + At Z — T (it —u Y (wg —wy) = 0, (4.10)

KeT O'Egint KlL
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where fr = g(u%)A, W +ul. For f' = (f¥)ker € R% and ae. w € Q,
we define the functional J : R% — R by

1
Ji(wy,) = Ea(wh,wh) — / wyp i dx
A
where the bilinear form a : R* x R% — R is given by

Mo

(UK — uL)(wK — U)L).

a(vp, wy,) ::/vhwh dr + At Z
A

Uegint KlL

From a straightforward calculation, it is easy to see that the bilinear form a
is symmetric, continuous, and coercive.

Thus, from the theorem of Stampacchia (see e.g. [34, Theorem 5.6]), J;* ad-
mits a unique minimizer u}™' € R% and the associated sequence (u}})1<,<n €
(RN is the unique solution of a.s. in . If we assume that u} is
Fi.-measurable, then f;* is F; , -measurable and, consequently, the random
variable w — Ji'(wy)(w) is Fy,,,-measurable for any wj, € R%. Hence,

w = uf T (w) = min JP(wp,)(w)
whERdh

is F;,,,-measurable. By iteration, it follows that, for a given Fy-measurable

random variable uf € R%  there exists for any n € {0,...,N — 1} a Froir-
measurable function u}*! € R% such that (u}');<,<y € (R%)Y is a solution
to Problem ([4.8) associated with the initial vector u). O

4.3 Stability Estimates

We will derive in this section several stability estimates satisfied by the dis-
crete solution (u})i<p<n € (R%)N of the scheme (4.7)-(4.8)) given by Propo-

sition [4.2.10 and also by the associated right and left finite-volume approx-
imations uj, y and uj, 5 defined by ([4.4).
4.3.1 Bounds on the Finite-Volume Approximations

We start by giving a bound on the discrete initial data.

Lemma 4.3.1. Let uy be a given function satisfying the assumption Hj.
Then, the associated discrete initial data u) € R% defined by (4.7) satisfies,
P-a.s. in €,

upllrzay < ol rzeay-
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The proof is a direct consequence of the definition of uf and the Cauchy-
Schwarz inequality.

Now, we can give the bounds on the discrete solutions which is one of the
key points of the proof of the convergence theorem.

Proposition 4.3.2 (Bounds on the discrete solutions). There exists a con-
stant C1 > 0 depending only on ug, Cp, |A|, and T, such that for alln € N
+2At Y E [Juftf;,] < 1

Z ||UkJrl - UZH%Z(A)
k=0

Proof. Wefixn € {1,...,N}. Forany k € {0,...,n—1}, choosing w;, = u} ™
as test function in (4.9)), we obtain

n—1

E [ll6 2] +E

mg g k o k
Z E(UKH _ UK UK+1 + Z +1 L+1|2
KeT Ueé'mt (4 11)
= Z (Ui )i Ap W + Z (o) (uid™ — ufe) A W.
KeT KeT

We consider the terms separately: For the first term on the left-hand side we
find

my 1 Mg
Z E(Ul}}ﬂ —u)ut = < Z Tt( ult P = e + g — e [?).
2 et

KeT

Taking expectation in (4.11]), the first expression on the right-hand side of
(4.11)) vanishes, since u¥- and Ay, ;W are independent and, therefore,

E [g(uf)ufc A W] = 0.

In the second term we apply Young’s inequality in order to keep all necessary
terms. Then, taking expectation and using It6 isometry we obtain

E [g(uk) (¢ — k) s W] < E [tk Aca W] 4 1 [Ju™ — uf?]
SNEWWUH+1EW“1uMﬂ

for any K € T. Altogether we find

1
2At

sAEwwmﬂw-

[|uk+1|2 |ul;:L| }dl"f—ﬁ [|uk+1 }dl’—i-]E [|uk+1 2 }
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Summing over k € {0,...,n — 1} and multiplying with 2A¢, we obtain

n—1
" 1
B (1 gy — I e + 5 S0 B [ = bl
k=0

. - (4.12)
£ 200 S E [luf ) < 280 ST [llgu) e
k=0 k=0

Since the second and third term in (4.12)) are non-negative, from Hs and
([4.2), it follows that

n—1

E s 22| < E [IlaflEqn)] +2C288 > E [lubli3an)] + 2CLIAIT,
k=0

Applying the discrete Gronwall lemma provides
E g 22| < ((1+ 2C0T)E |3 +2CLIAIT) 27,

From (4.13) and Lemma 4.3.1) we may conclude that there exists a constant
T > 0, such that

sup B |[[uplfagy | < T (4.13)
Applying (4.13) and (4.2)), it follows that

S [l 3] < €2 ('A'” D [”“ﬁ”im}) (4149

k=0 k=0
< CLN(JA|+7T)

for alln € {1,... N}. From (4.12), Lemma{4.3.1 and (4.14)), we obtain

n—1 n—1
n 1
E [”“h”im} +5) E [HUZ“ - uiHiz(A)} +2A¢ S E [Juf 2]
k=0 k=0
<E [||u0||iQ(A)] 20, T(A + ) = C)
forallme {1,... N} 0

We are now interested in the bounds on the right and left finite-volume
approximations defined by (4.4)). As a direct consequence of Proposition m
we get a L*(Q; L*(0,T; L*(A)))-bound on these approximations.
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Lemma 4.3.3. The sequences (uj, x)nn and (uj, x)pn are bounded indepen-
dently of the discretization parameters N € N and h in L*(Q; L*(0,T; L*(A))).

Thanks to Proposition [4.3.2) we can also obtain a L?(Q; L*(0,T; L?*(A)))-
bound on the discrete gradients of the finite-volume approximations.

Lemma 4.3.4. There ezist a constant K1 > 0 depending only on ug, Cp, |A|,
and T, and a constant Ky > 0 additionally depending on the mesh reqularity

reg(T) (defined by (4.3))), such that

T
/ E [|UZN(t)|%h] dt < K, (4.15)
0
and
T
/0 E [|U2N(t)|%h] dt < K. (4.16)
Proof. Since
T N-1
| Bl ) @t = A8 kR,
k=0

estimate (4.15|) follows directly from Proposition 4.3.2] Using the definition
of uj, y and (4.15), we get

N-1

T
/O E [Jud, y (52 ] dt < AT [[ud[2,] + At S E [,

k=0
< ALE [Jupl? ] + K.

Since ug is assumed to be in L?(Q2; H'(A)), by |58, Lemma 9.4, there exists
Ch > 0 depending on the mesh regularity reg(7), such that

E [l ] < CAE ||| Vuoll32qa)]

and, therefore, (4.16)) follows. O

We end this section with a bound for the discrete solution, which will be
useful for obtaining the time translate estimate and bounds for the Gagliardo
seminorm. Note that the difficulty here is to have the maximum inside the
expectation.
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Lemma 4.3.5. There exists a constant K3 > 0, which is independent of the
discretization parameters N € N and h, such that

E |12 < Ks.
Le%?i{m Hu”HLQ(A)} =00

Proof. For N € N, we choose an arbitrary k£ € {0,..., N—1} and an arbitrary
K € T. Testing the implicit scheme ([£.9)) with u%" provides

Z N (uk—H _ul[c() Rl Z Mg ul?l _ulz+1|2

driL
KET Uegmt KlL
_ k+1
E A W.
KeT

This implies, with the use of the Cauchy-Schwarz and Young inequalities,

1
= (¥ By — 3y + ™ = )

- </ kt1 (uh)dW( ), u k+1 —UZ>L2(A) + </ o (Uh)dW( ) uh>L2( A)

Ly Ly

A " guyaw(s)

s gtubaws) uhmw

tg

2
- H k+1

1
< B) uhHL2(A)

L2

We obtain

2

[ stpyawes

tg

I oy — [l ey < \
L2(A)

+2</ - g(ug)dW (s), up) £2(n).-

123

Forn € {1,..., N} fixed, we sum over k = {0,...,n — 1} to obtain

[ stprawes

2

n—1

lup |2y <llupllZa) + D
k=0

tk L2(A)
n—l lt1
w23 ([ gy aw (o) ) e
k=0 'tk
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Taking firstly the maximum over n € {1,..., N} and, secondly, the expecta-
tion, It6 isometry implies

N—

lkt1 2
E| max |[uZ] < E [I62s] +E g(ul)dW (s) :
""" k= L2(A)
n—1 tot1
+2E max </ g(up)dW (s), uf) 2(a)
e k=0 “tk
N-1 thi1
k
B[] + X [ B [lo(wh) ] ds
k=0 *tk
n—1 tri1 i i
#28 | o 3 / (), o) oWV (s) |

(4.17)

We can estimate the second term by the Burkholder-Davis-Gundy inequality:

(/OT ol le)) uz’N(S))LQ(A)PdS) é] .

Now, we apply Cauchy-Schwarz and Young inequalities (with a > 0), and
H, with (4.2)) to estimate

(/OT |<g(uz’N(S))’UZ’N(S)>L2(A)|2d5) ;]

2E

max, S [ ) i) @V s >]

k=0 "tk

/0 (g(udy 3 (5)), () 20y ATV (5)

sup
t€[0,7]

< 2CBE

20BE

N

T
< 2CRE (ts[lép]HuhN()H%Q(A)/O Hg<ulh,N(S))||%2(A)dS>
€

—a I
<2CBE |+ sup HuhN( )H%%A)"‘%/O ||9(U2,N(5))H%2(A)d5]

2 t€[0,T)

CBOL ’ l 2
< CpgaE _max_ ||uh||L2 + 5 TIA|+E ; [wh N ()28 ] | -

.....
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Plugging the above estimate in (4.17) and again using H, with (4.2), we
arrive at

..........

C sy TIE l 2 d
+0L + [[wh v (8) 7200y | ds
a 0
C
+ CL|A|T (FB + 1) .

Choosing o > 0, such that 1 — Cga > 0, we find a constant C(«, L) > 0,
such that

.....

T
< C(a, ) ( B[] s+ [l ] + 1) -

Now, the assertion follows by Lemma and Lemma |4.3.3| O

4.3.2 Time and Space Translate Estimates

For the stochastic compactness argument in Subsection [4.4.2] we need a uni-
form bound on (uj, y)sn in the spaces L*(Q; L*(0, T; W**(A))) and L*(Q;
We2(0,T; L*(A))) for o € (0,1).

In order to prove the bound in L?(Q; L*(0,T; W*2(A))), we establish a uni-
form estimate on the space translates of (uj, y)s.n in Lemma .

The proof of the bound in L?(2; W*2(0,T; L?(A))) is more complicated. To
do this, we introduce the following intermediate quantity: For any (¢,z) €

[0,7] x A, we define

My n(t,x) ::/0 g(uLN(S,x))dW(s). (4.18)

Then, Lemma is a technical result for the proof of Lemma [4.3.8 where
we show a uniform estimate on time translates of (uﬁZ N — My N)p y. Thanks
to Lemma [4.3.8, we may conclude a uniform bound on (u}, y — My n)nn
in L*(Q; W**(0,T; L*(A))) in Lemma [4.3.10, Then, the desired bound on
(u, x)n.n is obtained in Lemma (4.3.11 by using the additional information
that (Mj, n)n.n is bounded in L?(Q; W*2(0,T; L*(A))).

We start with an estimate of the space translate. The proof is similar to the
one given in [58, Theorem 10.3] and is done in Appendix [A]
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Lemma 4.3.6. Let uhN be dP ® dt ® dx-a.s. defined by

1 ub v, on Qx (0,T) x A
Uy, N = ’
N 0, onQ x (R*\ ((0,T) x A)).

Then, there exists a constant C' > 0 only depending on A, such that for all
n € R?* with |n| < R, R >0, and almost every t € [0,T], P-a.s in Q,

[ (e 1) = 0) P < Clal (O s+ ) )

Lemma 4.3.7. There exists a constant K, > 0, which is independent of the
discretization parameters N € N and h, such that for all 7 € (0,T) there
holds

T—1
2
B[ bt 1) = Mhale+7) = (0 0) = Mg (O gy ] < i
(4.19)

where M},  is defined for any (t,x) € [0,T] x A by

tn
MhN t ZL' Z ]l[tn tn+1 / g(uéz,N(va))dW(s)a

T
M N (T,) = / ot (5.2) IV (5),
0
Proof. Let 7 € (0,T) be fixed. In the following, we set
on (t,x) = uj y(t,x) — My y(t,z) forte[0,T], z €A.
Furthermore, for n € {0,...,N} and K € T, we set M} = M}L,N(tn,xK)
and @7 == u — M}k, For t € (0,7 — 1), let no(t),n1(t) € {0,...,N — 1} be
the unique non-negative integers satisfying
no(t)At <t < (ng(t) + 1At and ny(t)At <t+7 < (ny(t) + 1)At.

There holds, P-a.s in €2,
T—1
l l l l
/ ity 7) = MYyt 7) — (b (£) — My ()|t
0

T—1 T—1
- [T e —gpra= [ awa
0 0

KeT
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Since 7 > 0, we necessarily have ny(t) < ny(t). If no(t) = nyi(t), then, we
know A(t) = 0. Thus, we only consider ¢ € (0,7 — 7) with ny(t) > no(t).
Using the notation

1, if (n+ DAt € [t,t+7)

0, otherwise,

Xns1(t, t+7) = {

forn=0,...,N — 1, we get

Z mi n1(t) 90?(0(”)(‘;0”1@) SDK (t))

KeT
nl(t)fl
= mr(ep? — o) DT (ot — o)
KeT n=ng(t)
N—-1
= mr(R” =N vt t+ )0 — o)
KeT n=0
=) Xt +7) (@R — R Ny (i = o).

KeT

Using (4.8)), we know for any n € {0,...,N —1} and K € T

tnt1
ot = =~ = [ gl (s ) W (o)
tn

At Mo |, n
= Z — T (it — .

MK c€ENNEK dK|L
Therefore, we obtain
N-1
A(t) = =AY Xt t+7) Y (0 = o)
n=0 KeT
> dmo (it —up™).
o€EnNEK K‘L

N,l 1

Rearranging the sum in the same way as for discrete partial integration (see
Remark 4. 2 8), using the definition of ¢}’ and the notation " := uj, y(x)
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for K € T, we get

N—-1
A(t) — At Z X (t, t 4+ 7—) Z _‘T(unKJrl uerl).
n=0 et dK|L
int
. <¢71?(t) _ g07Ln(t) . (QOTIL(O(t) _ S020(?‘)))
N—-1 m
= ALY Xl t+T) > e (Wi — )
n=0 0€Ent KL
, (ur;(l(t) M yme® uzo(ﬂ)
N—-1 m
ALY et t+7) Y (=gt
n=0 Uegint dK‘L

= Al(t) + AQ(t),
By Cauchy-Schwarz and Young inequalities we get

Ay N
Ai(t) < anﬂ (t t+7')\u"+1|1h
n=0

At " n
Z N (t, 4+ 1) ® — o2,
n=0

At
<_
-2

MZ

Xn+1(t t+7)|up h

[e=]

n=
-1

+ A (bt + 1) (g O+ i@,
n=0

Consequently, we know

T—1
E{/ Al(t)dt:| < I+ 1,
0

where

T—7 N-1

1
I = 5/0 ZXH+1(tat+T) [Atlup ™7 ,] dt

n=0
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and

T—7 N—1

b= [ Y et + )AE [ OR 4 i OR ] dr
0 n=0

Since

Xnt1(t,t+7)=1 < (n+ 1At € [t,t+7)
& t—7<(n+)At—7 <t < (n+1)At,

we have

T—1 (n+1)At
/ Xnt1(t,t +7)dt = / ldt =r. (4.20)
0 (n+1)At—7

Using this and (4.15]), we have

T

T K7

n= 28| [ i) < 5
0

To estimate Iy, we write Iy = Iy + I, where

T—7 N—-1

by = / > wn(tt+7)AE [, | b
0

n=0
T—7 N—-1

Iy = / > xnea(tt+ TALE w2, ] d.
0

n=0

We note that, for any m € {0,..., N—1},if t € [t,,, t;n11) then the definition
of ng implies ng(t) = m and, therefore,

N=1 [/ g N-1
s ( [T wtten dt> AE [l ]
m=0 tm n=0

Now, we proceed as in |61, Lemma 6.2]. For all m € {0,..., N — 1}, we have

tmi1 N-1 N-1 tm1—tni1
/ Z Xn41(t,t +7)dt = Z / Xnt1(L+ L1, t+ pgr +7) dL
tm n=0 n=0 Y tm—lnt1

Note that, for any n € {0,..., N — 1},

Xn+1(t + tn+17t+ tn—‘rl + T) =1
S (n+ DAt =t € [t +turr,t +tui +7)
& te (—1,0].
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Hence, we have for any m € {0,..., N — 1}

tm1 N—-1
/ > Xnsi(tt+7)dt < / T rqt)dt =7

Therefore, thanks to Lemma [£.3.4] we arrive at

N-1

T
By < 7AtY B [ ffy] =7 [ B [y ()] de < Kor
m=0 0

Analogously, for any m € {0,...,N — 1}, if t € [t,, — T, t;us1 — 7), then the
definition of ny implies n;(t) = m and, therefore,

P _rN-1

[22<ZAﬂE lup'l3 4] / an+1tt+7)dt<Kﬂ

tim—T

by [61, Lemma 6.2] and Lemma [4.3.4] where x,41(¢,¢ + 7) = 0 for ¢ < 0.
Combining the previous estimates we arrive at

E [ /0 A dt} < (% + 2K2) - (4.21)

Now, we consider As. Applying Young’s inequality, we find

N-1

At Me , n
Ay(t) < > Z Xnt1(t,t+7) Z y (uhtt —upthy?
n=0 0€Ent KL
At v My
+ =) Xon(t,t+7)
2 nzzo 0.; dklL
1 (6) At 2

=: Ay 1 (t) + Aga(t).

There holds
N— T—1
Z nﬂylh/ osa (£.1 4+ )t | |

[ ] - 322

By (4.20) and (4.15]), we may conclude
T—1 T K
E [ / Agvl(t)dt] - Tx l / ) ()2 ds} <1 (4.22)
0 0
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For the study of the term A,,, we recall the notation up" := uj, n () for

K € T. From Ito isometry it follows that, for any ¢ € (0,7 — 7) with
no(t) <n (t),

m{f)At Nl N i
Bl [ (gl - o)) awes)
no(t)At

T
<k | [ 1ot - st as]
0

Therefore, we have by using H,

E [ /0 o A2,2(t)dt}

At [T Me
= ZXn+l(tat+T) Z
2 0 n=0 o€&int dK|L

2

(B N, N,
[ (ot =gt awes)| | a
no(t)At

<2 OTTNzlantHT )y [/ ") ~ o) ds]

d
o€&int KIL

LA [T (R Ny
§L7 i an+1tt+7' Z lup’ —u) '?ds| d

d
€&t KIL

A T—r N—-1

¢ T
:L27/0 ZOXnH(t,t—l—T) dt/o E [Juhn(s)[3n] ds.

Because of (4.20]), there holds

T—r N—1 N-1
/ ZXn+1(t7t+T)dt:ZT:NT,
0 n=0 n=0
Therefore, (4.16]) implies

T—1
1
E { / AQ,Q(t)dtl < 5LQTTKQ. (4.23)
0
Finally, (4.19) follows from (4.21]), (4.22)), and (4.23)). O

Lemma 4.3.8. There exists a constant K5 > 0, which is independent of the
discretization parameters N € N and h, such that for all T € (0,7

T—7
E [/ [t (t+7) = My (t+7) = (g5 (8) = Man (1)) [0yt | < Ks7.
0
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Proof. Let 0 < 7 < T. Using the fact that, for any a,b,c € R, we have
la+ b+ c|* < 3(la]® + |b]? + |¢|?), we know

T—1
E [ / oty (£ 4+ 7) = M (t 4+ 7) — (ud (£) — Mh,N<t>>|r%2<A)dt]
T—71
< 3E { | Mot )= 2y ) = (ahn ) - Mé,w))u%z(mdt]
T—7
+ 3E {/ | Mp,n(t+T) —M}LN(t)H%z(A)dt}
0

T—1
L 3E [ [ 1+ - MAN(t)H%Q(A)dt}
0

= 3([1 + [2 + 13)

From Lemma we know that [; < Ky7. By using [t6 isometry, Hy with

(4.2), and Lemma we get

b= /T T/ ”g ( ))H%%A)] dsdt
i [T (MR [l )] ) dsa

T—7
< CL|A|TT + CL/ / { Eg}lz}?(N} ||uZ||%2(A)} ds dt
< CLT(|A| + K3)T

For ¢t € [0,T], let ng(t),n1(t) € {0,..., N — 1} be defined as in the proof of
Lemma [£.3.7] From It6 isometry, H, with (4.2), and Lemma[d.3.5], we obtain

T—7
T = / / ”g uh N( ))H%Q(A)} ds dt
T-7 1(t)At
< CL(|A]+K3)/ / s dt
0 no(t)At

As in the proof of Lemma[4.3.7} let x,, for n € N and t € [0,7 — 7] be defined
by xn(t,t +7) := 1 if nAt € (¢t,t + 7] and 0 otherwise. Taking (4.20) into
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account, we can continue the above estimate by
T—7 N—-1

[3 S CL(’A‘ + Kg)/ an+1(t,t+T)Atdt

n=0

= CL(|A] + K3) AtZ/ Xng1(t,t +7)dt

= CLT(|A] + K3)T,

and the assertion follows. O]

4.3.3 Bound on the Gagliardo Seminorm

In this subsection we give bounds on the approximate solutions which will be
used in the stochastic compactness argument in Subsection [£.4.2] We denote
by [ - Jwez2(a) the Gagliardo seminorm, i.e., for any function w : A — R one

has,
() — w(y)P? :
[w ]Wa,z(A) = (/A e — g dedy | .

Note that W*?(A) = {w € L*(A) : [w |waz(n) < 00}

Lemma 4.3.9. For any fized o € (0, 3), the sequences (u}, y)n.n and (uf, x)n.n
are bounded in L*(Q; L2(0,T; W*2(A))) independently of the discretization
parameters N € N and h.

Proof. We fix 0 < a < 1, R > 0, and define iy, v as in Lemma m For

2 )
almost every ¢t € (0,7'), we can write

|uhN (t, ) ﬂth(t,y)|2
dx dy
R? JR2 |z — y[2t2e

|uhNt'T Uh,N(t93+77)|
2(14+a) dx dT/
In|>R JR2 7]

+/ / Iuh,N t,:L’ —Uh,N(t>$+77)|2 dr d
Inl<R JR2 |n|21+e) "
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Obviously, we can estimate for almost every ¢t € (0,7")

|“hNta7 uhN(t$+n)l2
Il 2 |n|20-+e) e
n|>R JR

ey L
[n|>R

2
= 4Ol | / A dr dig
and, by Lemma [4.3.6]

Wﬁ,N(ta T) — ﬂ%,N(@ z +1)|?
i<k Jr2 || 2(1+) dz

< C (| OB 4 + Ty OlF) [l 2004dy

Inl<R

27 R
= (O + b ) [ [ 7t drde,
0 0

Hence, there exist constants Cy,Cy > 0 only depending on A and R > 0,

such that
s, v (t, ) —at o (t,y)?
// |hN hN( y)| dz dy
r? JR2 |z — y|>2e

< Cl”“h,N( >||L2(A) + C2’“h,N<t)’ih'

Consequently, we have

(, at o (t,y)|?
/[ MO dt</// ’“’”V ?) ’ijﬁ( I oy e
0 R2 JR2

< [ (Culudnt >||L2<A) + Gl y () it
Therefore, thanks to Lemma [£.3.4] and [£.3.5] we get

[l nll 220,752 ()]

= [ [ (@l + e ]

T T
2(1+60) [ B[l (O] de+2Ca [ B[l vl @
< 2TK3(1 + Cy) + 20, K.

Using similar arguments, we obtain the boundedness of (uj y )y in L*(€;

L2(0, T; Wo2(A))). O
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In order to establish the L?(£2; W*2(0,T; L?(A)))-bound on the discrete so-
lutions, we give the following auxiliary result:

Lemma 4.3.10. For any fived o € (0,3), the sequence (u}, y — My n)nn
defined by (4.18)) is bounded in L*(Q; W*2(0,T; L*(A))) independently of the
discretization parameters N € N and h.

Proof. For any = € A, let @y n(t, ) := uj, y(t,2) — My n(t,x) for t € [0,T]
and @p, n(t,x) =0 for t € R\ [0,7]. We have

/ /T 10,5 (5) = @nn (E) 172 ds di
’t_$|1+2a
||90hN — @nn(t )H%Q(A)
/ / i ds dt
/ /T ||S0hN — @nN ()72 s dt
t— S’1+20‘ (424)

16,5t —7) = Gnn (1724
/ / 7] drdt

//TtllwhN t+7)— ‘Phﬂ(t)”%“’(“drdt]

’T‘1+2a

+E

+E

= Il + [2.

Using Funbini’s theorem, we know

T t—1)—@nn()]3
I —E // [ SOhN(>||L2(A)dth]

|7—‘ 14+2a

T—7 — S+ T 2
_E / / 18,5 (5) — @ MIZ2 ) dsdT] (4.25)
0o Jo

’7—‘1+2a

7: T—1
- / |7—‘—1—204/ E |:H@h,N(3 + 7—) - @h,N(S)H%2(A):| ds dr.
0 0

Applying Fubinis theorem to I, we also obtain

/ /T 1@ (E +7) = Grn ()72 dth]

|7-|1+2a

(4.26)
= / [ / E [l (t +7) = Gnn (O3 | dtdr.
0 0
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By Lemma [4.3.8 we get

T

]1+IQ §2K5/ |T|_2ad7'

0
and the integral is finite for o € (0, %) m
Lemma 4.3.11. For any fized o € (0, %), the sequence (UZ,N)h,N is bounded
in L2(Q; W*2(0,T; L*(AN))) independently of the discretization parameters
N € N and h.
Proof. From Lemma |4.3.10| we know that (uﬁLN — M, N)nn is bounded in
L2(; W*2(0,T; L*(A))). By Lemma [4.3.5, we know

T
/ E [Huﬁl,N(t)Hiz(A)} dt <TE < TKs.
0

sup Huth(t) H%Q(A)
t€[0,T)

Thus, by applying [59, Lemma 2.1], we obtain that (M x)s n is bounded in
L2(;W*2(0,T; L*(A))). Now, since UZ,N = (uﬁlN — M,ZZN) + MAN, the

assertion follows. O

4.4 Convergence of the Finite-Volume Scheme

We now have all the necessary material to pass to the limit in the numerical
scheme.

In the sequel, for m € N, let (7,,)., be a sequence of admissible meshes of A
in the sense of Definition 4.2.1| such that the mesh size h,, tends to 0 when

m tends to oo and let (V) C N be a sequence with lim,,, . V,, = co and

At,, == Nl

For the sake of simplicity, we shall use the notations T = T,,, h = size(Ty),
At = At,,, and N = N,,, when the m-dependency is not useful for the
understanding of the reader.

4.4.1 Weak Convergence of Finite-Volume Approxima-
tions

First, thanks to the bounds on the discrete solutions, we obtain the following
weak convergences.

Lemma 4.4.1. There exist not relabeled subsequences of (uj n)m and of
(uh N )m and a function w € L*(; L*(0,T; H'(A))), such that

l r
Uy —u o and  u, Ny —u

for m — oo in L*(Q; L*(0,T; L*(A))).
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Proof. From Lemma it follows that the sequences (uj, y)m and (uj, x)m
are bounded in L?(€2; L%(0,T; L?(A\))), thus, up to a not relabeled subse-
quence, they are weak convergent in L?(Q; L?(0,T; L?*(A))) towards possibly
distinct elements w, u, respectively. Moreover, by Lemma and Re-
mark [£.2.7] we know that

IV uj, w720 0.0y ) < 2K7-

Consequently, there exists x € L?(Q; L*(0,T; L?(A))) such that, passing to a
not relabeled subsequence if necessary,

Viuh v = X in L*(Q; L*(0,T; L*(A))) for m — oo.

With similar arguments as in [57, Lemma 2| and [58, Theorem 14.3|, we get
the additional regularity v € L?(Q; L?(0,T; H'(A))) and x = Vu. Since, by
Proposition we have

E [HUZ,N - uéz,N”%Q(O,T;L?(A))] = AtE < C1At

N-1
Z ||UZJrl - UZH%Q(A)
n=0

(4.27)

we know that (uj, y —uj, 5)m converges strongly to 0 in L*(Q; L*(0,T; L*(A)))
for m — oo, and, hence, also weakly. Therefore, we obtain u = . O

Our aim is to show that u is the unique solution to (4.1)). But weak con-
vergence is not enough to pass to the limit in the nonlinear noise term of
our finite-volume scheme. Therefore, we will apply the method of stochastic
compactness.

4.4.2 The Stochastic Compactness Argument
For better readability, we define V := L?*(0,T; L*(A)) and

W = W20, T; L*(A)) N L*(0, T; W*?(A)).

From Lemmas [4.3.9] and 4.3.11] we get immediately the following bound.

Lemma 4.4.2. For any fived o € (O,%), there exists a constant Kg > 0
depending on ug and the mesh reqularity reg(T) but not depending on the
discretization parameter m € N, such that

E [|lup vlFy] < K.
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In the following, for a random variable X defined on a probability space
(92, A, P) the law of X will be denoted by P o X 1.

Lemma 4.4.3. The sequence of laws (P o (uj, )" )m on L*(0,T; L*(A)) is
tight.

Proof. By |59, Theorem 2.1|, we know that W is compactly embedded in V.
Let ¢ > 0 be arbitrary. For any R > 0, the ball Byy(0,R) := {v € W :
llv|lw < R} is compact in V. There holds

[P o ()~ 1(Bw(0, R)) = 1 = [P o (uj, )~ '|(Bw(0, R))

=1 / 1dP.
(I, lw>R}

Then, by using Markov inequality
1 1
/ 1P < I vl P < o [l 1]
{llwf, wllw>R} {lluj, nllw>R}

Since (uj, 5 )nn is bounded in L*(Q; W), thanks to Lemma {4.4.2, we get
_ K
[P0 (up, ) ) (Bw(0, R) 21— —5.
If we choose an appropriate R, the assertion follows. O

For the next lemmas, we recall that the initial value u of Problem (4.1) is Fo-
measurable and belongs to L?(Q2; H*(A)). Moreover, its spatial discretization,
denoted by uj, is defined by (4.7)).

In the following, we will write (W (t));>0 =: W whenever the t-dependence is
not relevant for the argumentation.

In order to apply Skorokhod’s theorem and to obtain almost sure conver-
gence, we begin by proving convergence in law.

Lemma 4.4.4. For m € N, we consider the sequence of random vectors

Yo = ((Uém,NWu?/;m,Nm - Uém,NW w, U2m>
with values in
X = L*(0,T; L*(A)) x L*(0,T; L*(A)) x C([0,T]) x L*(A).

There exists a not relabeled subsequence of (Yi,)m converging in law, i.e.,
there exists a probability measure [, on X with marginal laws pl_, o, P o

WL P o (ug)™?, such that
B () "5 [ i
x

for all bounded, continuous functions f : X — R.
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Proof. We recall that a subsequence of (Y},),, is tight if and only if all its
components are tight. The tightness of laws of (u}, y )n was shown in
Lemma.4.3, Then, from Prokhorov’s theorem (see |26, Theorem 5.1]) it fol-
lows that, passing to a not relabeled subsequence if necessary, (ulhm N, )m COD-
verges in law towards a probability measure p! defined on L?(0,T; L*(A)).
Clearly, as a constant sequence, the Brownian motion W converges in law
towards P o W™=, Since (uj) ) converges to ug in L*(A) for m — oo, a.s. in
Q, (see [0, Proposition 3.5]), we know that (uj ), converges in law towards
P o (ug)~'. From ({.27) we obtain that (uj n —uj y )m converges to
0 for m — oo in L*(2; L*(0,T; L*(A))) and this convergence implies for all
bounded, continuous functions f : L?(0,T; L*(A)) — R

/ fd(Po (U;;m,Nm - ulhm,Nm)_1> =K [f(UZm,Nm - uiLm,Nm)}
L2(0,T;L2(A))

. . r l
Therefore, we obtain the convergence in law of (uj y —w, y )m towards
dp. O

Thanks to Lemma [.4.4], we can apply Skorokhod’s representation theorem
(see [26, Theorem 6.7]): There exist

e a probability space (£, A", P’)

e a family of random variables Y, = (v, 2m, Bm, v2,) on (', A", P') with

values in X having the same law as Y,, for all m € N

e random variables u,, with values in L?*(0,T; L*(A)) and P’ o (uy,) ™! =
pl., W, with values in C([0,7]) having the same law as W, and v,
with values in L?(A) having the same law as ug, such that for m — oo

Um — Use  in L2(0,T; L*(A)), P-a.s. in
Zm — 0 in L*(0,T; L*(A)), P-a.s. in
B,, = W, in C([0,T]), P-a.s. in

v — vy in L*(A), P-as. in .

(4.28)

In Lemmas and 4.4.6, we will show that, thanks to equality in law, v,,
and z,, are in fact finite-volume functions with the same piecewise constant
structure as uj,  and wy  —uj - respectively.

Lemma 4.4.5. For m € N fized, v,, is a step function with respect to time

and space in the sense that there exists Uém,Nm € R&m*Nm - sych that v, =

vﬁlmNm, P'-a.s. in Q. Moreover, vﬁlm,Nm(O,m) = v,gm(x) = 0 Y (x) for all

x € A and, in particular, v, = U?Lm s a spatial step function.
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Proof. By [119, Lemma A3| with E = L2(0,T; L?(A)) and F = R%m*Nm_
there exists (v%)  ker,  in R%m*Nm guch that
n€{0,...,N;m—1}
v = (V) ke, , P'—as. in .

In the same manner with £ = L?(A) and F = R it follows that there
exists (0% )ke7, in R%m  such that

0 = () ker,, P-as. in Q.
We recall the notation of Subsection and, in particular, that

l — (7 :
u, N, = (Ux) ker, , P-as. inQ.
n€{0,...,Np—1}

For any K € 7T,,, we consider the non-negative, Borel measurable mapping
£ : R%m x Rm N 5 R
((anr)nrs (Wi arn) = lar — bigl.

Since

P o ((uy)ars (uhy)are)) ™ =P o ((Oh)ar, (Vi) arw) ™

we have

0=E [Ex((uir)ar, (uhp)arn)] =B [Ex((03)ar, (Wi aw)] = B [|0% — v%l]
and, therefore, for all x € K and all K € 7T,,,

U (0, 7) = 03 = 0% =00 (x), P-as. in Q.

]

Lemma 4.4.6. For m € N fived, z,(t,x) = vii™ — v for all (t,x) €
(tn,tnt1) X K and P'-a.s. in ', for any K € Ty, and n € {0,..., N, — 1},

where (V%) keT, is defined as in the proof of Lemma|4.4.5.
ne{0,...,Nym—1}

Proof. Using similar arguments as in Lemma [1.4.5] we know that there exists

(2%)  KeTn € R%m*Nm guch that
ne{0,...,Nm—1}

/ : /
2m = (23)  ker, , P'—as. in Q.



For any fixed K € T,,, n € {0,..., N,, — 1}, the mapping
CI)?{ : RdthNm X RdthNm — R, ((alfw)]\/[k, (bM)Mk) — ’&n—H — &?{ — b?{‘
is non-negative and Borel measurable. Since

P o ((uy)ark, (Wi — uhy)arw) ™ =P o ((vhg)ark, (£h)ark) ™

we know that for any K € 7, and all n € {0,...,N,, — 1}

0 =K [®%((uhy)arm, (uhf " — i) arn)] = B [@% () ares (250)arn)]
=E [Jop™ — v — 2%]] .

Therefore, for all K € 7, and all n € {0,..., N, — 1}, there holds 2} =
n+1

v — v, P-as. in Q. O
Next, we prove that the finite-volume function (v}');<,<y we have just con-
structed verifies the following numerical scheme.

Lemma 4.4.7. Form € N fized, anyn € {0,...,N,,—1}, and any K € T,,,

n+1 . .. .. .
v satisfies the semi-implicit equation

mg , » n Mme , n n mg n
—— (v — ) + E (vt — o) — == g(vj) A1 B, = 0,
At oEEMNER dri At

(4.29)
P'-a.s. in ), where A1 By = By(the1) — Bim(tn).

Proof. By Lemma [4.4.6] 2% = vt — % P-a.s. in (, for all K € T,,, and
alln € {0,..., N, —1}. For arbitrary K € 7,,, and n € {0,..., N,, — 1}, the
mapping

P o R XNm o R N 5 0([0,T]) — R,

(@) Bhoases ) = | b+

c€EMNEK

Mgy n n n n
d (bg +afk) — (bf +af)
K|L

mg

— B (@) (tasr) = [ (0)
is non-negative and Borel measurable. Since we know
Po ((UM)M k> (U]fv;rl - Ulfv[)M,k, W)™ =Po ((UM)M k> (zﬂ)M ks Brn) 7
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we get from Proposition [£.2.10]

0 =E [Wh((uh)aen: (Wi = uir)ar, W)]
- [\If” ((UM)Mk, (Zﬂ)Mk,B )}
- E{ A KT )

+ Z v vZ*l)—Eg(v?()AnHBm

Uegmt OEK

|

Therefore, we obtain for all K € T,,, n € {0,...,N,,, — 1}, and P’-a.s. in 7/,

mg n My n n Mg n
0= At o (T =) + Z d (v = i) — EQ(UK>An+le'
UegirltmgK K‘L

4.4.3 Identification of the Stochastic Integral

In this subsection, we adapt ideas taken from [31,42,95] and adjust the ar-
guments to our specific situation. We show that, for each m € N, B,, is
a Brownian motion with respect to a filtration generated by v°, and B,,,
which we define in Definition [4.4.8] With this result at hand, we may show
that (W ())t>0 is a Brownian motion with respect to a filtration given in
Definition [4.4.11] In Lemma [£.4.13 we then prove that u,, has a dP’ ® dt-
representative that is predictable with respect to the filtration given in Defi-
nition and is, therefore, admissible for the stochastic It6 integral with
respect to (W (t))i>0. Finally, in Lemma we provide an approxima-
tion result for the stochastic It6 integrals.

Definition 4.4.8. Fort € [0,T], we define F" to be the smallest sub-o-field
of A generated by v°, and B,,(s) for 0 < s < t. The right-continuous, P’'-
augmented filtration of (F]")icpo,r denoted by (7" )icjo,r) 18, for anyt € [0,T],
defined by

Fr o= o[Fru{N € A P/(N) = 0}].

Remark 4.4.9. We recall that, for the augmented filtration and for given
processes (Xi)i>0, (Yi)is0, such that (Xi)i>o is adapted and Yy = Xy holds
a.s. for all t, it holds true that (Y;)i>o is also adapted (see, e.g., [10, p.35]).

Lemma 4.4.10. (vy,)m is adapted to (F7")icjo,r) and (Bm(t))ieo,r) is a Brow-
nian motion with respect to (§7")icio.1]-
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Proof. Since (F}")icio.) is a filtration induced by v, and B,,, in particular
v is §0-measurable. Thus, applying the same arguments as in the proof of

Proposition 4.2.10, from (4.29)) it follows that v,, is adapted to (F}")icjo,r]-
Since P’ o (B,,)™ = Po W™ we get the following results:

e E'[|B,,(0)|]] =E[|[W(0)]] =0, hence B,,(0) =0 P’-a.s. in (V.

e By Burkholder-Davis-Gundy inequality, there exists a constant Cz > 0,
such that

E' =E | sup [W(t)]*| <CpT? <oco.  (4.30)

te[0,7

sup | By (1)]”
te[0,7

e For all 0 < s < t < T and all bounded, continuous functions ¢ :
CU(LE(A) x C([0, 5]) — R,
0=E [(W(t) — W(s)¥(up,, Wlos)]

= E [(Bun(t) — B ()0 (0%, Bulios)] (4.31)

and
0 =E[(W2(t) = W3(s) = (t = )v(uf,., W)

=F [(Bfn(t) - Bfn(s) — (t— 3))1/)(1]2” Bm|[0,5})} ' (4.32)

Recalling Definition [£.4.8] F* = 04(v%,, B,,) for t € [0,T]. The real-valued
random variable
Y 3w = (v (@), Buliog (@)

is F"-measurable. Using the properties of conditional expectation from

, we get
0=E"[(Bn(t) — ( DY (Vs Brulio,s))]
B (Bul) — Bu()00h Bulo)l 7)) (433)
=E' [¢(ty,, Bulio,)E (Bin(t) — Bin(s)| )] -
Since (4.33)) applies to every bounded and continuous function 1 : Cy(L?*(A) X

C([0,s])) — R, we obtain from the Lemma of Doob-Dynkin (see, e.g., [104,
Proposition 3|)

(Y

0 =E'[14E" (B (t) — Bin(s)| FJ")]
for all F"-measurable subsets A € A" and for all 0 < s < ¢ < T. This

implies

E' (Bp(t) — Bp(s)| F') =0, Plas. in
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for all 0 < s <t < T and, therefore, (B, (t)):co,r is a martingale with re-
spect to (F{")iejo,r]- Using [45, p.75], we may conclude that (B, (t))ico,r) is
also a martingale with respect to the augmented filtration (§}"):co,r. With
similar arguments, we obtain from that ((Bn(t))? — t)ieo,r] is a mar-
tingale with respect to (§}"):co,r] and, consequently, the quadratic variation
process ((Bp)): of (Bm(t))icjo,r) is given by t for all ¢ € [0, 7] (for the Def-
inition of the quadratic variation of a stochastic process see [22, Definition
2.19]). Summarizing the above results, (By,(t))ico,r] is a square-integrable
martingale with respect to (§}")ic,r) starting in 0 with almost surely con-
tinuous paths and quadratic variation ((B,,)): = t. By |41, Theorem 3.11],
(Bim(t))icpo,r) is @ Brownian motion with respect to (§}")icpo,1)- O

In the following, we want to show firstly that the stochastic process W, =:
(Weo(t))teo,r) is @ Brownian motion and, secondly, that a filtration may be
chosen in order to have compatibility of u., with stochastic integration in
the sense of It6 with respect to W,. Since u., is a random variable taking
values in L*(0,T; L*(A)), us(t,-) is only defined for a.e. ¢ € [0,7] and the
construction of an appropriate filtration induced by u,, becomes delicate.

Definition 4.4.11. For t € [0,T], let F° be the smallest sub-o-field of
A" generated by vy, W(s), and fos Uso(r)dr for 0 < s < t. The right-
continuous, P’'-augmented filtration of (F7°)wcior) denoted by (F5°)iepo,r 15,
for any t € [0,T], defined by

o =)o[FU{N e A P'(WV) =0}].
s>t
In the following, we will show that W, is a Brownian motion with respect

to (§5°)tejo,r] and o admits a (F5°)sejo,r1-predictable representative.

Lemma 4.4.12. There holds B,, — W, in L*(V;C([0,T])) for m — o
and (We(t))ico,r) i a Brownian motion with respect to (F7°)ic(o11-

Proof. Combining (4.30)) with P’ o (W,)™! =P o W~ we have

E' | sup [Wo(t)*| =E

t€[0,T]

sup |W(t)|2] < 00

t€[0,T]

and, consequently, W,, € L*(€;C([0,7])). Moreover, since P’ o B! =
PoWwt

E' | sup |Bn(t)?| =F

te[0,7)

sup |Woo(t)|2] , VméeN.

te[0,7
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We already know, that, for m — oo, B,, converges to W, in C([0,7]) a.s. in
(Y. Therefore, a version of the Lemma of Brézis and Lieb (see [119, Lemma
A2]) provides the desired convergence result in L*(€'; C([0,T])). From

P'o (Ugw B, Um)_l =Po (u(i]zm7 W, uizm,Nm>_l>

it follows that, for any 0 < s < t < T and every bounded and continuous

function v : L*(A) x C([0, s]) x C([0, s]; L*(A)) — R, we have
B |(Blt) = B0 (e Bl [ om0}l )|

o (4.34)

— & |0 = W (1 Wl [ thy i, (VT ).

Now, using the fact that uf) is Fo-measurable, by construction [ up, () dr
is Fs-measurable for all m € N, and that (W (t));>0 is a martingale with re-
spect to (F;)i>0, one gets that

B {070~ W0 (1 Wl [ th ) bl0a) | 0. (135

We recall that, P-a.s. in @, v2 — vy in L?(A) and that B,, — W, in

m

C([0,T]) and, therefore, also in C([0, s]) for all 0 < s < ¢ <T. Moreover, by
the Cauchy-Schwarz inequality,

/0 ol d: - /o ) CloL2)
JCECETSERE B

< sup (/ |V (1) = Uoo (7)]| £2(A dr)
z€0,s]

< T/o Jom(r) = tioo (1) 2,

2

= sup
z€[0,s]

m—o0

Since v, — Uy in L?(0,T; L*(A)), P-a.s. in ', it follows that

/OAvm(T) dr =% /0. Uso (1) dr

in C([0, s]; L*(A)), P’-a.s. in €. Using the convergence of B,, towards W, in
L*(€Y;C(]0,TY])), the convergence results from above, and Lebesgue’s domi-
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nated convergence theorem, we get

lim E’ {(Bm(t) — Bn(s))Y (U%,Bmhqs],/o.vm(?“) dT|[0,s})]

m—o0

=& [Vt = W) (10, Wil [ w1l | "

Now, combining (4.34)), (4.35)), and (4.36]), we obtain
E’ {(Woo(t) — Weo(s))¥ (vo,Wooho,s},/ Uoo(T) dr![o,s]ﬂ =0. (437
0

From (4.37) it follows that
B (Woo(t) = Woo(s)| F®) =0,

P-a.s. in €, for all 0 < s <t < T. With similar arguments as used for

equation (4.37), we also get
]E/ (Wgo(t) — WOQO(S) — (t — S))lp (’Uo, Wool[(),s],/ UOO(T) d7’|[078}>:| =0.
0

Now, using a similar argumentation as in the end of the proof of Lemma|4.4.10},
we obtain that (W (t))scpo,7) is @ Brownian motion with respect to (F5°)ejo,r)-

[]

By [31, Theorem 2.6.3|, it is always possible to choose (£, A’ P") = ([0, 1],
B(]0,1]), A), where B([0,1]) denotes the Borel sets on [0, 1] and A denotes the
Lebesgue measure on [0, 1]. We will need this particular choice of the new
probability space in the proof of the following lemma.

We recall that, for a filtered probability space (2, A, P) with F = (Fi)i>0
and T > 0, the predictable o-field on © x [0, 7] is the o-field generated by
the sets

(s,t] x Fs, 0<s<t<T, F;e Fs and {0} x Fy, Fy € Fy.

For more details on stochastic integration in infinite dimension, we refer
to [41].

Lemma 4.4.13. There exists a (§5°)ejo,r)-predictable, dP’'@dt-representative
Of Un.
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Proof. For § > 0, we define u®_ : Q' x [0,T] — L*(A) by

1 [t 1 t (t—0)t
ul (1) = = Uso(S) ds = = / Uso(S) ds —/ Uso(s)ds |,
0 Jt—s)+ o\ Jo 0

where the integrals on the right-hand side are understood as Bochner inte-
grals with values in L*(A). Since ul_ is an (§°)ie(o,rj-adapted stochastic pro-

o

cess with a.s. continuous paths, it is predictable with respect to (F5°)ejo,r)-
For fixed k € N, the cut-off function T} : R — [k, k], defined by Ty (r) :=r
if |r| < k and Ty (r) := sign(r)k if |r| > k, induces a continuous operator
L*(A) 3 v — Ti(v) € L*(A). Hence, the stochastic process

Q' x[0,T] 2 (1) = Ti(ul (W, 1)) € L*(A)

is (§7°)iepo,r-predictable. Again, we recall that, P’-a.s. in ', v, — us for
m — oo in L*(0,T; L*(A)) and, thus, also in L'(0,T; L*(A)). Therefore, we
have

T T
lim [ [fom(®)] 2 dt = / oo ()| z2ny dt,  P-aus. in €.
0

m—o0 0

Using Fatou’s lemma, P o (v,,,) ™" = Po(uf, y )~', and the Cauchy-Schwarz
inequality, we obtain

T T
8| [ Ol at] < tmint 2| [ om0l

T
— liminfE { / llath, . ()] £2(a) dt}
0

m—r0o0

< ﬁhﬂgio%f Huézm,Nm H%Q(Q;LQ(O,T;LQ(A)))'

From Lemma it follows that the right-hand side of the equation is
uniformly bounded and, consequently, u., € L'(Q'; L*(0,T; L*(A))). In par-
ticular, u, € LY(SY; LY(0,T; L*(A))). Since (€, A, P") = ([0, 1], B([0,1]); \)
according to |52, Remark after Proposition 1.8.1] we have

LA LN0, T LNAY) = LN x (0.T); L(A)) = LM(0.T; L(Y: L*(A)).
For almost every ¢ € (0,7") and 0 < 0 < ¢, we know

e0) = 1Oy = | 5 t_w (to5) — (1)) ds

LY (LY (A))

1 t
<! / oo (5) — ttoe ()] 21 sz oy -
0 Jt—s)+
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By a generalisation of Lebesgue differentiation theorem for vector-valued
functions (see, e.g. [46, Theorem 9, Chapter II]), the right-hand side of the
above inequality goes to 0 for § | 0 for almost every ¢ € (0,7) and, therefore,
ul () — uso(t) a.e in LY(Y; LY(A)) for 6 | 0. Then, Lebesgue’s dominated
convergence theorem provides

. 5\
1551 Ti(ugy) = Th(uoo)

in L0, T; LY(Q; LY (A))), thus also in L€ x (0,7); L*(A)). Therefore,
passing to a not relabeled subsequence if necessary, we obtain for ¢ | 0

Tre(ul (W', 1)) = Ti(use(w', 1)) in LY(A) for a.e. (w',t) € & x (0,7).

Hence, Tj(us(w',t)) has a dP’ ® dt-representative which is (F7°)scpo,1)-
predictable for every k£ € N. Obviously, there holds

Uoo (W', 1) = sup T (oo (W', 1)) in L*(A) for a.e. (o', t) in Q' x (0,7,
keN
where the set of measure zero can be chosen independently of k£ € N. This

provides the existence of a dIP’ ® dt-representative of uo, that is (§7°)icpo,1)-
predictable. O

Lemma 4.4.14. Fort € [0,T], x € A, and P’'-a.s. in ', we define the
stochastic processes

My (1 7) = / gt} x.(5.2)) dBp(s)

t
Moo(t, x) ::/ 9(Uso (s, 7)) AW (5).
0
Then, passing to a not relabeled subsequence if necessary,
Mo N, =3 My in L2(0,T; L*(A)), P'-a.s. in €. (4.38)

Proof. From Lemma [£.4.12 we know that (B,,), converges in L?({;
C([0,T1)) towards W, which is a Brownian motion with respect to (§5°):cjo,17-
Particularly, this convergence result also holds in probability in C([0,T7).
Moreover, from the convergence (4.28) and Lemma , we know that
(U}, N, Jm converges towards u in L*(0,T; L*(A)), P’-a.s. in . Thus, up
to a subsequence denoted in the same way, using the Lipschitz property of
g, (9(v},, n,,))m converges to g(us) in probability in L*(0,T; L*(A)). Now,
we can apply Lemma 2.1 in [42] and conclude that the convergence in (4.38)
holds true in probability in L?(0,T; L*(A)) and, therefore, passing to a sub-
sequence if necessary, the assertion follows. O
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4.4.4 Convergence towards a Martingale Solution

For the sake of simplicity, we use the notations T = 7,,, h = h,,, At =
At,,, and N = N,,,. For any n € {0,...,N} and K € T, setting M} =
My n(tn, Tx), we define ./(/l\h,N using the definition in and we obtain
the following strong convergence result in LP(Q'; L?(0, T; L*(A))).

Lemma 4.4.15. Passing to a not relabeled subsequence if necessary, we have
the following convergence results for any p € [1,2):

UhN, vy and Up N T e in LP(SY; L*(0,T; L*(A))),
My and My y ™25 Mo in LP(QY; L2(0,T; L*(A)))

and
v) "0y in LP(Q; LA(A)).
Moreover, us, € L*(V; L*(0,T; H'(A))) and My, € L*(QY; C([0,T]; L*(A))).

Proof. We recall that, thanks to the convergence , (vfI N)m converges
to us for m — oo in L*(0,T; L*(A)), P'-a.s. in Q’ Smce P’ o (i)t =
Po (uf, )", from Lemma it follows that there exists a constant C' > 0,
such that

E'|[loh v 320irizan) < € (4.39)

for all m € N. From Fatou’s lemma we obtain u., € L*(Q; L*(0,T; L*(A))).
The convergence of (v}, y)m towards ue in LP(Q'; L*(0,T; L*(A))) is a conse-
quence of and of the theorem of Vitali (see, e.g., [52, Corollaire 1.3.3|).
Now, using , we get

_>
E’ [HUZ,N - UﬁL,NH%Q(O,T;L?(A))] =K [HUZN - uéL,NH%Q(O,T;LQ(A)) =0,

and, therefore, (vj y — v}, y) — 0 in L*(Q; L*(0,T; L*(A))) for m — oc.
Thanks to the continuous embedding L?*(€Y; L?(0,T;L*(A))) < LP(Y;
L*(0,T; L*(A))), the convergence holds also true in LP(Q'; L*(0,T; L*(A))

for all 1 < p < 2. Therefore, we have, for all 1 < p < 2,

Uh N = Uso in LP(Q; L*(0,T; L*(A))) for m — oo.
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Now, we apply a similar argumentation to (Up n)m. We have

E [Hva — B 3s0irscay |

. tnt1 2
=k / dt
L2(A)
e 31 \E ] (4.40)
=F | ot — |3 / ( n) dt

Ln=0
Z ||anrl - 1’2”%2(/\)] :

Repeating the arguments of Proposition on (4.29)), we know, that there
exists a constant C] > 0, such that
D vt = vkl e

[/ |UhN’1hdt:| +E
n=0

Combining (4.40) and (4.41)), it follows that
(Vhy — Dnnv) — 0 in L*(; L*(0, T; L*(A))) for m — oo

n+1 ,
[ A7 (t—t )+ up

= —E’

N—-1
<. (4.41)

and we may conclude that U, x — ue in LP(Q'; L*(0,T; L*(A))) for all 1 <
p < 2. Using and the same arguments as in the proof of Lemma m
on the discrete gradient th}; n of v}y, we obtain that, passing to a not
relabeled subsequence if necessary,

V' v = Vi in L*(V'; L*(0, T; L*(A)?)) for m — oo, .
Therefore, we know wu., € L*(S; L*(0,T; H'(A))).
We recall that, according to Lemma [4.4.14] M; v — M, for m — oo in
L2(0,T; L*(A)), P'-a.s. in . Using H,, (4.2)), the Burkholder-Davis-Gundy
inequality with constant Cp > 0, and Lemma [£.3.5 we get

E | sup [Man (022

te[0,T]

T
< OuE [ [ k)l dt}
T
< CsCs (\A|T+E’ [ JR G dtD
0

T

_ sy (wT {E [ | ol dtD
0

— CROLT(|A| + Ks).

(4.42)
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Now, the convergence of (M, x), towards M, in LP(Q; L*(0,T; L*(A)))
for all 1 < p < 2 follows from and the theorem of Vitali (see, e.g., [52,
Corollaire 1.3.3]). Using It6 isometry, H, with (4.2)), and Lemma [4.3.5] we
know that there exists a constant C's > 0, such that

T
E [ | M) = M0l dt]
0

N-1

/tn+1
tn

n=0

t—t, [+

x| 9Whn(9)dBuls)
tn

N-1

=E

/t 9t v (5)) dBon(s)

2

dt
12()
tni1 t .
2
/ ( [ Vo s
n=0 /tn tn

t—t,\? [t .
Y lg(Wh ()22 ds ) dt
tn

< 2|

N-—1 tni1
<2 Cr(t—t,) | Al +E | sup ||lvj, n(s)I72a)
n=0 “tn s€[0,7T
(t —tn)
1 dt
A
N-1 tni1 l
2
<2y / Cult =) [ IA1+E | sup [lub ()]
n=0 Y tn s€[0,T

(1 5

< gC’LT(|A| + K3)At — 0 for m — oo.

Since L*(QV; L?(0,T; L*(A))) < LP(QY; L*(0,T; L*(A))) for p € [1,2), we
obtain the convergence

./T/l\,LN — Mo in LP(QY; L*(0,T; L*(A))) for m — oo, p € [1,2).

Recalling that M, is a stochastic Ito integral with respect to the Brow-
nian motion (W (t))i>0, we may conclude that M, has P’-a.s. continu-
ous paths in L*(A). From and Fatou’s lemma, we know that M, €
LX(Q;C([0,T); L?(A))).  Since P’ o (v))™! = P o (u))~!, we obtain by
Lemma [£.3.1]

B [loflen)| = E [I6f 32| < B [luolZam]

113



Because we already know that (v)),, converges P’-a.s. in Q' to v, the last
assertion is a consequence of Vitali’s theorem (see, e.g., [52, Corollaire 1.3.3]).
O

Now, we have all the necessary tools to pass to the limit in the scheme.

Proposition 4.4.16. There exists a subsequence of (Un.n)m, still denoted by
(On.N)m, converging in LP(Q; L*(0,T; L*(A))) (for any p € [1,2)) for m —
00 to a (F7°)ep,r-adapted stochastic process u with values in L*(A) and
having P’-a.s. continuous paths. Moreover, us, € L*(QV; L*(0,T; H'(A)))
and satisfies, for allt € [0,T],

t t
Uso () — Vg — / Aty ds = / 9(Use) dWoo, in L*(A), P'-a.s. in €.
0 0

Proof. Let Ae A, £ € D(R) with £(T) = 0, and ¢ € D(R?) with Vyp-n = 0
on A, where we denote D(D) := C°(D) for any open subset D C R’ j € N.
Moreover, we define the piecewise constant function ¢,(x) = @(xk) for
reK, KeT.

For K € T, n € {0,...,N — 1}, and t € [t,,t,41), we multiply by
14£(t)p(zK) to obtain

m
LAE() o, 0 = v = 9(0i) Ana Brlp(xc)

FLEWD Y R = elex) = 0.

O'Egintﬂg}( K|L

(4.43)

First, we sum (4.43)) over each control volume K € T, then we integrate over
each time interval [t,,t,.1] for fixed n = 0,..., N — 1, then we sum over
n=20,...,N —1, and, finally, we take the expectation to obtain

N-1 tna1 1
0=E |30 [ 3 mica€l6) 3ok~ v = 9(0f) Dner Bl dt]
n=0 7in KeT
N-1 b1 m
B [T Y R - o e d
n=0 7 tn KeT oe&mnex Kl
= Tl,m + T2,m-

(4.44)
In the following, we will pass to the limit for m — co on the right-hand side
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of (4.44)). Using partial integration, we obtain

Ty = E [nA/ /at B — M) (£ 2)E () n (@ )da;dt]
--& [ / [ = Bl Ohon(o) do ]
- L [ @) dd].

Thanks to the convergence results of Lemmal4.4.15| passing to a not relabeled
subsequence if necessary, we can pass to the limit for m — oo and obtain

_w [nA /0 ' /A By — Mot )€ (Don () da dt]
- |1s [ b Ol ]

L E lnA /0 ! /A e — Mot 2)E (ep() da dt]

_E {]1,4 /A v0(2)€(0) () dx] .

Our aim is to show the following convergence result for m — oo:

Ty — —E/ [nA /0 ' /A () A2 (1 7) dxdt] |

First, we note that by rearranging the sum in (4.44)) the term 73 ,, can be

rewritten as
n+1 _
/ Le S ot Y mg(so(m so(am) dt]_
tn K

d
eT o€EnNEK K|L

Since Vo - n = 0 on JA, thanks to the Stokes formula, one has, for any
KeT,

/VSO ‘g, dy(z),

(4.45)

/K Apw)dr = [ Tpla) nidy(o) =

0€&nNEK
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where v denotes the one-dimensional Lebesgue measure. Note that, since

ng; = —Nnpg, we have by rearranging the sum
DS ACER I
KeT c€EnNEK <4 46)
— Z (vt — ot /Vgp -ngr dy(z).
Uegint
Therefore, we obtain by (4.45)), (4.46|), and (4.6)),
N—-1 tnt1
Ty = z/ L) Y [ Agte ]
tn KeT
tn+1
/ ]lAg n+1
tn KeT
rr) — o(x
> (M o) s o) ar) ]
TEEmNE K|L o
int K
T
=—F {/ TA&(t )/vhN(t z)Ap(x) dxdt}
75n+1
/ TA&(L) mo(v}?rl vt RE dt
tn Uegmt
= T21,m + T22,m7
where
dg|r

Using Lemma [4.4.15( and passing to a not relabeled subsequence if necessary,
we get for m — oo

T
T}, = —E [ /0 /A A (e (t, 2) Ap() dar dt |

Using the orthogonality condition of the mesh, i.e., z; — rx = dg|Lng, for
two neighbouring control volumes K, L € T, we know, thanks to the Taylor
formula,

for x € 0 = K|L € &yt
dr|rL

Vo(r) -ngp =
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Consequently, we obtain
R? < C,h  for any o € &,

and for a constant C,, > 0 only depending on ¢. Therefore, thanks to
Cauchy-Schwarz inequality and Inequality (4.41])

tn41
’T22m| < Cy hIE/ Z/ 141€(2) <Z madK|L>
o€&int
3
. <Z Mo o n+1’2> dt]
0E€Eint dKlL

<C h\/2|A IE' {/ 14]&( )HU,TL’N(t)\Lhdt}
T 3
< Cohy/ 2N Lall o) (E [ / of (O dtD

— 0 for m — 0.

Thus, we have shown that for all ¢ € D(R) with £(T') = 0 and all ¢ € D(R?)
such that Vo -n =0 on JA, there holds, P’-a.s. in {0/,

_/OT/A (uoo(t,x)—/Otg(uoo(s,m))dWoo(s)) () p(x) da dt

- / w(@)E(0) () da

T
_ / / oo, 2) Ap()E(1) dr
0 A
—/ /Vuoo(t,x)~Vg0(x)£(t) dx dt.
o Ja
By |53, Theorem 1.1], the set {¢ € D(R?) | Vo -n = 0 on A} is dense in

H'(A) and, therefore, (4.47)) applies to all ¢ € H*(A).
In the following, we denote the dual space of H'(A) by H'(A)*, recall that

(4.47)

HY(A) < L*(A) — H'(A)*

with continuous and dense embeddings and we will denote the H*(A)-H'(A)*
duality bracket by (-,)g1. The additional information

oo € L*(Q3 L*(0, T3 H' (M)
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in Lemma [1.4.T5 provides
Aug, € L2V L*(0,T; HY(A)*))

and
—/0 /AVuoo(t,x)-Vgp(m)f(t) dxdt:/o (Augo(t,+), p) g &(t) dt, (4.48)

P-a.s. in @, for all £ € D(R) such that £(T) = 0, and all ¢ € H'(A).
Combining (4.47) and (4.48)), and using the identity

—/Avo(x)go(x)f(O) dx:/o /Avo(:v)gp(x)ﬁ'(t) dx dt (4.49)

(see, |105, Lemma 7.3]), Fubini’s theorem provides for all £ € D(R) such that
§(T) =0, and all p € H'(A), P'-a.s. in &,

(= /OT (uoo(t) - /Otg(uoo) AW — UO) € (1) dt, o) m
= ;TAux(ﬂfﬁ)dt¢ﬁHL

By a separability argument, the exceptional set in ' may be chosen inde-
pendently of ¢, and, therefore, we have

[ (= [ st ) €= [ auivena

in HY(A)*, for all £ € D(R) such that £(T') = 0, P'-a.s. in . Consequently,
(see, e.g. [33, Proposition A6])

Uso — / 9(teo) dWoo —vg € WH2(0,T; H'(A)*)  Pl-a.s. in €
0

and

d

pr (uoo(t) - /Otg(uoo)alWoO — Uo) = Aus in LA L*(0,T; H'(A)).

(4.50)

Because g is Lipschitz continuous, the chain rule for Sobolev functions implies
g(uso) € L*(Q; L2(0,T; H*(A))) and

v </Otg(uoo)dWoo> - /Ot 0 (1o Voo AW,
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Hence, we have
" —/ gl AW € LAY L2(0, T H(A))).
0

From [105, Lemma 7.3], we obtain u,, € L?(¢;C([0,T]; L*(A)) and, by
(4.50)), the following rule of partial integration:

wawﬁém%mmg—m«mpw—wam—m«mmw
=Aumaw«wmw+4«@m%@—AEm@ma—WMMa

(4.51)

P-as. in Q) for all 0 < ¢ < T, and ¢ € L*(0,T; H'(A)) with ¢’ €

L*(0,T; HY(A)*)). Choosing ((t,x) = £(t)p(x) in (4.51), where ¢ € H'(A)
and £ € D(R) with £(T) = 0, we get, P’-a.s. in

(Uoo(t) — /0 9(too) AW — o, 90>L2(A)§(t) — (oo (0) — o, §0>L2(A)§(0)

= [ &(s)(Auce(s), ) ds (4.52)

t

+ 5,($)<uoo(8) - / g(uoo) dWoo — o, (p>L2(A) ds.
0 0

The particular choice of t =T and £ € D(R) with £(T) = 0 and £(0) =1 in
(4.52) combined with (4.47)), (4.48]), and (4.49) provides

(Uoo(0) — vo, @) r2a) = 0 for all ¢ € H'(A), P"-a.s. in &

and, therefore, 1y (0) = vg, P’-a.s. in .
Now, we fix t € [0,T") and choose £ € D(R) with £(7") = 0 and {(s) =1 for
all s € [0,t]. With this choice, from (4.52)) we obtain

(Uoo(t) _/0 9(Uso) AWoe — s (0), 90>L2(A) = /0 (Aug(s), 90>H1 ds, (4.53)

P-a.s. in (', for all ¢ € H*(A). Since, for fixed p € H'(A),
t
s Gult) = [ glus) dWoc = (0, 91200
0

t
and tH/(Aum(s),gp)Hl ds
0

119



are continuous in [0, 7], P’-a.s. in €, the exceptional set in Q" in (4.53) may
be chosen independently of ¢ € [0,7) and (4.53) holds also true for t = T.
This implies

t t
Uso(t) — Uoo(0) — / (Us) dWoo = / Auy(s)ds in H'(A)*, P'-a.s. in O
0 0

and, since the left-hand side of the above equation is in L?(A), the equation
holds also true in L*(A). O

Remark 4.4.17. Applying the chain rule in (4.51) fort =T and { =V €
D(R x R?) such that V(T,-) = 0, we immediately get that u. s a weak
solution to

oo — Ao dt = g(Uso) AW (t) in Q' x (0,T) x A
Uoo (0, +) = vg in Q x A
Uso =0 on ' x (0,T) x A,

i.e., Us € L2(QY;C([0,T]; LA(A))) N L3(QY; L2(0,T; H'(A))) and

//uootxat txd:vdt—/ /Vuootx VUt z) da dt
/ o(z) Oxdx—/ // (oo (5, 7)) AWoo ()0, U (8, ) da dit,

P’-a.s. in ', for all v € D(R x R?) with ¢(T,-) = 0. In particular, conver-
gence in distribution has been achieved.

4.4.5 Strong Convergence of Finite-Volume Approxima-
tions
In the previous subsections, we have shown that our finite-volume approxi-

mations converge towards a martingale solution of (4.1)), i.e., the stochastic
basis

(Qla Ala IP,) (3?0)156[0,T}a (Woo (t))tG[O,T])

is not a priori given but part of the solution. In this subsection, we want
to show convergence of our finite-volume approximations with respect to the
initially given stochastic basis

(Q7 "47 IP? (-Ft)t207 (W<t))t€[0,T})'

To do so, we will proceed in several steps. First, pathwise uniqueness of
the heat equation with multiplicative Lipschitz noise is a consequence of
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Proposition 4.4.18f Roughly speaking, martingale solutions of (4.1)) on a
joint stochastic basis and with respect to the same initial datum coincide. In

the proof of Proposition 4.4.20, we construct two convergent finite-volume
approximations with respect to a joint stochastic basis, namely (Ulyk) and
(vak), from the function (uﬁZ ) of our original finite-volume scheme using the
theorems of Prokhorov and Skorokhod. Then, as a consequence of pathwise
uniqueness, the limits coincide and we may apply |66, Lemma 1.1] in order to
obtain convergence in probability of (u% ~)- Thanks to our previous result,
we can improve the convergence and pass to the limit in the originally given

finite-volume scheme (see Lemma [4.4.21)).

Proposition 4.4.18. Let (2, A, P, (F)i=0, (W (t))teo,r1) be a stochastic basis
and uy, uy be solutions to (4.1f) with respect to the Fo-measurable initial values
ug and uf in L*(Q; L*(A)), respectively, on (Q, A, P, (Fp)iz0, (W (t))iepo17)-
Then, there exists a constant C > 0, such that

E llun(t) = 2@y | < CE |Jlug = wdliEa] v € [0,7].

Proof. We apply the Itd formula (see [84, Theorem 4.2.5]) to the process
up — ug, discard the non-negative term on the left-hand side of the resulting
equation, and take expectation. Then, the assertion is a straightforward
consequence of Gronwall’s inequality, see |84, Proposition 2.4.10]. ]

Remark 4.4.19. If uq, us are both solutions to on (Q, A, P, (Ft)icpo,11,
(W (t))tepo,m) with respect to the same initial value v, Proposition
provides u1(t) = ua(t) in L*(A), for allt € [0,T], P-a.s. in Q. Since u; and
uy have continuous paths in L*(A), the exceptional set in Q may be chosen
independently of t € [0,T] and it follows that uy = uy in L*(0,T; L*(A)),
P-a.s. in Q.

Proposition 4.4.20. Let (UZN)m be given by Proposition |/.2.10.  Then,
there exists a subsequence of (uj, x)m, still denoted by (uj, x)m, such that

U%,N — w in LP(Q; L*(0,T; L*(A))) for m — oo

for any p € [1,2), where u is the stochastic process with values in L*(A)
introduced in Lemma [{.4.1. Moreover, u has P-a.s. continuous paths and
belongs to L*(2; L2(0,T; H'(A))).

Proof. For the sake of simplicity, we will write u}, := uj  and uj, =
uj ., in the following. We consider an arbitrary pair of subsequences (ul),,

(ul), of (ul, ). Our aim is to apply |66, Lemma 1.1]. Therefore, we show that
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there exists a joint subsequence (ufjk, ufok) . converging in law to a probability

measure 1 on L?(0,T; L*(A))?, such that

n({(z,y) € L*(0,T: L*(A))* | 2 = y}) = 1.
We define the random vector-valued sequence (Y, ,),, by

Yy,p = (ulm ui)? (U; - uf/)a (U; - ulp)a VV) uga U/Ow (US o “2)) )

for any v, p € N and extract a joint subsequence

Yk = (uf/k’ u;k’ (ulr/k B uf/k)’ (u;k B ui’k)’ W’ uBk’ ugk’ (ugk B u2k>)
for any k& € N that converges in law towards a probability measure 7., with
marginals n’ ,n%, do, 0, Po W™ P o (ug)™, Po(up)™!, d. Note that we
include the difference of the random initial data v2 and ug into the vector
Y, , to ensure that ugk and ng converge for k — oo to the same limit. With
straightforward modifications of the arguments of Subsections [1.4.2H4.4.4] we
find

a probability space (©', A", P’)
e a random vector

ol 0 .0 .0 0
Y, = (vyk,vpk,zyk,zpk, Wi, vy, Vs ('U,,k - vpk))

having the same law as Y}, for all k € N

2 )71 =

e random elements ul_, uZ , and vy with P’ o (ul )™ = nl , P’ o (uZ

n?,and Po (vg) ' =P o (ug)!

e a filtration (§7°)icp,r) and a Brownian motion (W (t)):c(o,77), such that
ul_ and w2, are both solutions to (4.1]) with initial value vy on the joint
stochastic basis (€', A", P, (F7°)eeio,17, (Wee (t))eco7)-

Thus, by Proposition |4.4.18/ and Remark [4.4.19], we obtain for n = (nl , n2)

1 =P ({ul, = ul})
=P o (ul,ul,)  ({(z,y) € L*(0,T; L*(A))? | 2 = y})

o0

=n({(z.y) € L*(0,T; L*(A))* | = = y}).

Then, by [66, Lemma 1.1] we get convergence of (ul,),, in probability to a
random element @ in L?*(0,7, L*(A)). Obviously, by Lemma 4.1, we have
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u = @. The convergence in probability of (u!,),, allows us to extract a not
relabeled subsequence of (u!),,, such that

ul —u in L*(0,T; L*(A)), P-as. in Q, for m — oo.

Because (u!)),, is bounded in L*(Q; L*(0,T; L?(A))) by Lemma Vitali’s
theorem implies the strong convergence of (u' ), in LP(Q; L?(0, T; L*(A))) for
any 1 <p <2 [

Finally, to conclude the proof of Theorem [1.1.3] it remains to show, that the
obtained limit u is a solution of the Problem (4.1]) in the sense of Defini-
tion This is the aim of the following last lemma:

Lemma 4.4.21. The stochastic process u introduced in Lemma is the
unique solution of Problem (4.1)) in the sense of Definition .

Proof. Let p € [1,2). With similar arguments as in the proof of Proposi-
tion , one can show that (uj, x)m and (Up ), converge for m — oo
to u in LP(Q; L*(0,T; L*(A))). Moreover, there holds g(uj, x) — g(u) in
LP(Q; L2(0,T; L*(A))) for m — oo. Therefore, we know

My — / gl ) AW S / () AW in LP(; C(0, T); I2(A))).

As shown in Lemma we get
]/\Zh,N — / g(u)dW in LP(Q; L*(0,T; L*(A))) for m — oo.
0

Now, we consider the semi-implicit finite-volume scheme . Let A € A,
¢ € D(R) with £(T') = 0, and ¢ € D(R?) with V- n = 0 be arbitrary. Mul-
tiplying with 14£¢, summing over K € T, integrating over [t,, t,:1),
and summing over n =0,..., N — 1, we get

N—-1 tnt1 1 7]
0=E |3 [ S mackat) g k! i — k) A Wl
n=0 "  KeT _
N—-1 trt1 m 7]
1) S AND SEVEUD S Sl U e e e
n=0/tn  KeT KeT oeemnex KIE |

::Tl,m + TZ,m-
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If we define ¢, (z) := ¢(zk) for € K, K € T, there holds
T —
Tim = E [nA /O /A hliinn — Von] (b 2)E(E) () da dt}
T —
__E [nA /0 /A (finn — Vo) (£ 2)€ () on () dt]
- | [ 0o dr].
A

From |[5, Proposition 3.5] we know that uf) — ug in L*(A), P-a.s. in €, and,
thanks to Lemma we can apply Lebesgue’s dominated convergence
theorem. The passage to the limit is analogous to that on €)'. O]
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Chapter 5

Work in Progress and Outlooks

In this chapter, we present three research ideas for the future in the field of
nonlinear (stochastic) diffusion equations.

5.1 Existence of Entropy Solutions for Time-
Fractional Obstacle Problems

Let © be an open and bounded set in R withd € N, T' > 0, and for a.e. z € )
let 5(x,+) := Jj(x,-) be the subdifferential of a function j : Q@ x R — [0, o0]
which is measurable for a.e. x € €, convex, and lower semi-continuous in
r € R with j(-,0) = 0.

As in Chapter 2, we want to study a time-fractional nonlinear diffusion
problem. Here, we propose to consider the p-Laplace operator A,(u) :=
—div(|Vul|P=2Vu) for 1 < p < oo and add an obstacle term 3(x,u), to be
precise, we want to consider the time-fractional obstacle problem

{Gf(u —up) + Ap(u) + B(z,u) 3 f inQr=(0,T) xQ

u=0 on Xr=(0,7) x 052, (5-1)

where 0% denotes the time-fractional derivative of order « € (0, 1) in the sense
of Riemann-Liouville. We know, that for the elliptic diffusion-absorption
problem

u+ Ay(u)+ fz,u) > f inQ
u=0 on 02

with f € L'(Q), there exists a unique generalized solution, see [125]. More-
over, we know that the parabolic diffusion-absorption problem

{@(u — ug) + Ap(u) + Bz, u) 3 f in Qr

u=>0 inZT,
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for ug € L'(Q2) and f € LY(Qr), admits a unique entropy solution, see [6].
To study the existence of solutions to (5.1), we may start by assuming
up € L*(Q) and f € L>®(Qr). Adapting the ideas in 6], we can approximate
the obstacle 8 by its Yosida approximation ). The approximated equation
admits a unique strong solution u, by |65, Theorem 4].

To show boundedness of (5(+,uy))x>0, we may add a bi-monotone pertur-
bation ¥, ,(u) on the left-hand side of and adopt the arguments in [6]
combined with the use of a Kato inequality, see [69]. Then, we may pass to
the limit firstly for A | 0 and, secondly, for m,n — oo.

The main challenge will be to identify the weak limit of the nonlinear diffusion
term arising from the p-Laplace operator in the passage to the limit for A | 0.
To apply a pseudo-monotonicity argument, we have to combine arguments
used for obstacle problems like in [6] and arguments used for time-fractional
problems like in [69,/114].

5.2 Well-Posedness of a Stochastic Allen-Cahn
Equation with Constraint

Let D be a smooth and bounded domain in R¢ with d € N, T > 0, (2, A, P)
be a probability space and (W (t));cp0,7) an one-dimensional Brownian motion
on (92, A, P). We define I3 : R = RU {+00} by

0 ifze|0,1],
To () = {+oo else

and denote by 0l ) its subdifferential. In [12| the authors proved existence
and uniqueness of solutions to the stochastic problem

ws(u) + f — &, <u - /Ot h(u)dW) + Au € Ay (u) in 2 x (0,T) x D (5.2)

with homogeneous Neumann boundary conditions, initial condition uy €
HY(D) with 0 < ug < 1 a.e. in D, random data f € L*(Q x (0,T) x D),
and ws : R — [0,00) a Lipschitz continuous function with wy(0) = 0.
The stochastic integral fot h(u)dW is understood in the sense of Ito, where
h : R — R is a Lipschitz continuous function satisfying h(0) = h(1) = 0.

From the physical point of view, the equation is motivated by describing the
evolution of damage in a continuum medium. More precisely, our solution u
represents the local proportion of intact bonds within the considered mate-
rial. Thanks to the subdifferential 0l ), the solution u will be a quantity
between 0 and 1, where the case u = 0 corresponds to a totally damaged
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material and the case u = 1 to a material without damage. The function w;
is related to the internal cohesion of the material while the function f repre-
sents an external source of damage (mechanical or chemical). The stochastic
perturbation is motivated by the consideration of changes at the microscopic
scale of the material structure, such as the formation of cavities during dam-
age.

An idea for a future work is to replace the Laplace operator in the stochastic
Allen-Cahn equation by a p-Laplace operator for p > 2 and show simi-
lar existence and uniqueness results for solutions.

To show the existence of solutions, we may combine the techniques used
in [12] with the arguments that we have already used in [112] to show the
well-posedness of a stochastic p-Laplace equation on R%. More precisely,
we may approximate the maximal monotone operator 0l by its Yosida
approximation and do a time discretization which is implicit in the deter-
ministic part and explicit in the stochastic part.

The techniques used in [12] for the passage to the limit are based on the
monotonicity of the Laplace operator and should be therefore adaptable in
case of the p-Laplace operator.

Since the proof of the uniqueness of solutions to is also based on the
monotonicity of the Laplace operator, we may also obtain uniqueness in the
case of the p-Laplace operator.

5.3 Convergence of a Finite-Volume Scheme for
a p-Laplace Equation with Multiplicative
Noise

In Chapter [ we considered a finite-volume scheme for the following heat
equation with a nonlinear multiplicative noise:

du — Audt = g(u)dW(t) inQx(0,7)x A (5.3)

with homogeneous Neumann boundary conditions and an initial value ugy €
L*(Q; H'(A)), where (9, A, P) is a probability space, T > 0, and A a bounded,
connected, and polygonal domain in R%2. We assumed g : R — R to be a
Lipschitz continuous function, and (W (t)):cp,r] a standard one-dimensional
Brownian motion on (2, A, P).

In the study of the finite-volume scheme for (5.3) in Chapter , we did not
use the approach of semigroup theory to make it possible to consider more
general operators such as a porous medium operator, a p-Laplace operator
for 1 < p < 00, or even a general Leray-Lions operator. To do so, we have to
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approximate the gradient Vu itself instead of "just" Vu - n. This has been
done in [3| by using a discrete duality finite-volume method. We also refer
to [4] for a finite-volume scheme for a deterministic nonlinear degenerate dif-
fusion equation, and furthermore, we refer to [55] for gradient discretization
methods for nonlinear stochastic evolution equations.

We mention that we already proposed a finite-volume scheme for a diffusion-
convection equation with a nonlinear multiplicative noise in [19], precisely,
we considered

du — Audt + div(vf(u)) = g(u) dW(t) + S(u)dt in Qx (0,7) x A (5.4)

with homogeneous Neumann boundary conditions and an initial value ug €
L2(; L*(A)), where v € CY([0,T] x A;R?) is divergence free and satisfies
v -n = 0 on the boundary, f, 5 : R — R are Lipschitz continuous functions,
and f is non-decreasing.

For f = id, we proved in 20| strong convergence of the scheme to the unique
variational solution of by using well-known methods for the time dis-
cretization of stochastic PDEs instead of using the stochastic compactness
method. Note that the approach in [20] is not less complicated or technical.

We remark that, recently, convergence rates for the finite-volume scheme

for the stochastic heat equation with multiplicative Lipschitz noise, that we
presented in Chapter [4] have been studied in [110].
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Appendix A

An Estimate on Space
Translations of Finite-Volume
Approximations

We want to give a detailed proof of Lemma [4.3.6| and orientate ourselves on
the proof given for Theorem 10.3 in [58].

Let n € R?\ {0} with |n| < R be arbitrary. In the following, for x1, 2z, € R?,
we denote by [z1,xs] the completed line segment between x; and s, i.e.,
[T1, 23] = {Ax; + (1 — N)ag : A € [0,1]} and define, for any o € &, the
function x, : R? x R* — {0,1} by

1, if [.1'1,33'2]
O, lf [II,IQ]

No # ()
Xa(xlaxQ) ::{ No @

For a.e. t € (0,T) and a.e. x € R? we obtain, by applying the triangle
inequality,

[t (82 4 m) = Ty (G 2)| <Y Xl @+ n)|uf  ( 2x) = gy (t 20)]

Uegint

+ Z XU(x7x+7]>|ulh,N(taxK)|7

O'Ggext

where we recall that, if not marked otherwise, we denote for o € & the
neighbouring control volumes by K and L, i.e., 0 = K|L, and for 0 € E
we assume by default ¢ € £. Because A is a bounded, connected, and
polygonal set, A has a finite number of sides and there exists a finite number
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M € N of exterior edges 0 € .. Therefore, we obtain
|ﬂ€z,N(t7 T) — EZ,N(ta z+n)|?

< (M +1)? ( Z Xo (@, @ 4 )| v (t, 21) — ulh,N(t’xLM) (A1)

Uegint

(M1 )Xol z+m)luj (8 2x)|

oEEext

Using the Cauchy-Schwarz inequality, we know

( Z XU(J:?:E + 77)|U§Z,N(t,l’1() - ULN(t,ZL'LH)

Uegint
|“§z vt oK) — u% Nt zp)?
< [ 2 woln o+ ppltiabB0 =
o K|LCK|L
: ( Z Xo (T, @ + 77)dK|LCK|L) ;
Uegint
where cg |, 1= ‘nK|L%‘ for 0 = K|L € &y. Let us assume for the moment,

that there exists a constant C; > 0 only depending on A, such that

Z Xo (2,2 + n)drLexn < |n| + Cih. (A.2)
Uegint
Then, we get
2
/ ( Z Xa(xw'r + 77)|ulh,N(t7xK) - ulfL,N(t7xL>|> dx
R? 0€Eint
ub ot xg) —ub o (t zn)]?
S/ Z Xa(x,lb“—l-ﬁ)l h,N( K) h,N( L)’ (|?7]+Clh)dx
2 dKL
R O'egint |

= (Il +Cih) Y

( |u§1,N(t7 xK) - uéz,N(tv xL) |2
Uegint

Xo(z, 2z +n) dx) )
dk|rL R2

Note that

/ Xo (@7 + 1) dz < moln, (A3)
R2
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because Xy (z,z+n) #0iff xr €e {y —A\np: y € o, A €[0,1]} and [{y — M :
y € o, A € [0,1]}] = my|n|. Using this estimate, we arrive at

/R <Z Xo (@, @ 4 n)|uj, 5 (t, 7)) — uﬁl’N(t,xL)O de

Ueglllt
A4
< (ol + bl 32 2% ot ) — v ) (A4)

Uegmt

= (Inl + C1h) | |uj, (¢ )Il,h'

Considering the sum of exterior edges in (A.1l)), we obtain by using (A.3])
and |58, Lemma 10.5]

|3 velaa s mlid sl P < ol 3 molul ot

E€Eext 0E€Eext
< Il (g ()l Z20n)

< 0| Cofu, n ()17 5, + gy v (D720,
(A.5)

for a constant Cy > 0 only dependmg on A, where F(uj, 5(t)) = uj, 5(t, 2x)

for o € Ex N Eexe. From (AD), (A.4), and ( - we get

- |7~_Llh,N<t7 Tr) — aéz,N(tv xL)|2 dz

< [ 0+ 170l ((Ro+ Cut+ Callub (O + ol () g)-

We recall that h = sup{diam(K) : K € T} is bounded.

It remains to show (A.2). Let € R? be chosen such that [z,z + ] No
contains at most one point for all edges 0 € £€. Note that the two-dimensional
Lebesgue measure of

{x € R?: 3o € £ s.t. [x,7 + 7] N o contains more than one point}

is zero, because the number of edges is finite. Moreover, we assume that the
line segment [z, z 4 7] does not contain any vertex of 7. This assumption is
also satisfied for a.e. x € R?, because T has a finite number of vertexes.

If [z, 2 +n] € R*\ A, then, obviously, x,(z,z+n) =0 for all ¢ € ;. Thus,
let [z, 2+mn]NA # (). Because A is not assumed to be convex, it may happen,
that the line segment [z, z + 7] is not completely included in A. Therefore,
let y,z € [x,x + 7], y # z, be chosen such that [y,z] C A. Since y,z € A,
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there exist control volumes L,, L, € T, such that y € L_y and z € L,. Then,
there holds

Z Xo (Y, 2)dK|LCK|L = Z Xo(y, 2) 0|~ ok — wp|ngg - 0|

Uegint Uegint

=™ > Xoly, 2)|(zr — zx) - 1)

Uegint

(A.6)

Now, we rearrange the sum: We start by choosing Ly = L, and 0y = L;|Ly €
Eint, such that x,, (y,z) = 1. Fori € {2,...,j}, j € N, we define by iteration
0; = Li|Li11 € Ent, such that x,,(y,z) =1 and L;; # L;—;. This choice is
unique, because [y, z] does not intersect with any vertexes. We choose j € N,
such that L,y = L, and

{oi:1€{l,....5}} ={0 € & : Xo(y,2) =1}
Then, either
SignO(COS(nLiLi+1 477) =1 Vie {17 SR 7]}
or
signg(cos(ng,r,,,<n) € {—-1,0} Vie{l,...,j},

™ T

since either ny, 7, <n € (—5, 5) forallie {1,...,7} ormng,z,, <n € [g, 37”}
for all i € {1,..., 7} by the choice of (L;);cq1,..j+13- Since
(L —xK) -1 =lrg —zL]|n] cos((zr — zx)<n)

= |vg — wp||n| cos(ngr<tn)

for 0 = K|L € &y, we obtain

J
Z XtT(y?Z)‘(xL - J'K) ’ 77| = Z ‘(xLiJrl - xLi) : 77‘
aESim =1
J
Z(ILi+l - xLi) 'n
=1

= |77HxLy - 'CELzl'

Plugging this into (A.6)), we obtain

Z Xo (Y, 2)drLeri < |vp, — vr.|. (A.7)

0€Eint

Since y € L, and z € L,, we know

lvp, — x| <lvp, =yl +ly—2|+ |z =20 | < |y — 2| +2h
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and obtain, therefore, from (A.7))

Z Xo (Y, 2)dk ek < |y — 2| + 2h. (A.8)

Uegint

Since A is a polygon with a finite number M of sides, the line segment
[z, x + n] intersects the boundary JA of A at most M times. Hence, there
exist x1,...,o,m € (AN [z, x+1n]),m € Nym < M, such that [z;,z;1] C A
forallie {1,...,m — 1} and

m—1
Z Xo(2, T+ n)dgLex)r = Z Z Xo (Tis Tit1)dK|LCK|L-
0€Eint =1 o€&n

We obtain by ({A.8)

Z Xo (7,2 + n)dg|rck|L Z Z o(Ti, Tit1)dg|LCK|L

o€&int i=1 o0€&nt

,_\

m—

(lzi = iga| + 2h)
=1

=2(m —1h+|77|12| = Tiy1) - 1
< 2(M — 1)h+ In].

This concludes the proof of (A.2)), which was still to be shown.
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