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Abstract 
We present the results of the human genomic small variant calling 
benchmarking initiative of the German Research Foundation (DFG) 
funded Next Generation Sequencing Competence Network (NGS-CN) 
and the German Human Genome-Phenome Archive (GHGA). 
In this effort, we developed NCBench, a continuous benchmarking 
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platform for the evaluation of small genomic variant callsets in terms 
of recall, precision, and false positive/negative error patterns. 
NCBench is implemented as a continuously re-evaluated open-source 
repository. 
We show that it is possible to entirely rely on public free infrastructure 
(Github, Github Actions, Zenodo) in combination with established 
open-source tools. NCBench is agnostic of the used dataset and can 
evaluate an arbitrary number of given callsets, while reporting the 
results in a visual and interactive way. 
 
We used NCBench to evaluate over 40 callsets generated by various 
variant calling pipelines available in the participating groups that were 
run on three exome datasets from different enrichment kits and at 
different coverages. 
While all pipelines achieve high overall quality, subtle systematic 
differences between callers and datasets exist and are made apparent 
by NCBench.These insights are useful to improve existing pipelines 
and develop new workflows. 
 
NCBench is meant to be open for the contribution of any given callset. 
Most importantly, for authors, it will enable the omission of repeated 
re-implementation of paper-specific variant calling benchmarks for 
the publication of new tools or pipelines, while readers will benefit 
from being able to (continuously) observe the performance of tools 
and pipelines at the time of reading instead of at the time of writing.
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Introduction
Genome sequencing is integral to many research and diagnostic procedures. For both pipeline and tool development, it is
crucial to ensure that genomic variant calls are as accurate as possible. This can be achieved by testing tools and pipelines
on datasets with a known set of true variants and correspondingly known sites where the genome is the same as the
reference genome.

Several such benchmark datasets have been published. The Genome in a Bottle Consortium (GIAB) has released
truth variant sets based on common calls across three variant callers on 14 different sequencing technologies and
library preparation methods on a well-characterized genome (HG001 or NA12878), as well as an Ashkenazim trio
(HG002-4) and a Han Chinese trio (HG005-7).1,2 The Platinum variant catalog provides consensus calls of six variant
calling pipelines across two different sequencing platforms on a family of four grandparents, two parents and 11 children
including theNA12878 genome, allowing an extended inheritance-based validation.3 In an alternative approach, Li et al.4

generated a synthetic diploid from two complete hydatidiform mole (CHM) cell lines (CHM1 and CHM13), which are
almost completely homozygous across the whole genome, such that the known variants in this set are phased (their
haplotype of origin is known). The synthetic diploid benchmark dataset has the advantage of not relying on a consensus
callset across several variant callers, which limit the benchmark set to high-confidence regions and lead to an over-
estimation of the true variant calling performance. Finally, the SEQC2/MAQC-IV initiative provides another extensive
set of validated benchmarks, not only focussing on genomic DNA but also considering RNA-seq and single-cell
sequencing.5

Several publications have utilized the aforementioned gold-standard callsets to benchmark variant calling tools
and pipelines.6–9 However, the continuous development of variant calling tools and pipelines means that static, one-
time benchmarks based on a specific pipeline or tool version can quickly become outdated.

In contrast, benchmarking platforms aim at providing a way to facilitate continuous benchmarking by pipeline and tool
developers and users. Examples of such platforms are OpenEBench [1] and Omnibenchmark [2]. Both platforms run on
their own dedicated computing infrastructure and utilize specialized frameworks for results reporting and dataset
uploading.

In this work, we want to propose a different approach for hosting a continuous benchmark, which was developed by the
human genomic small variant calling benchmarking initiative of the NGS-CN [3] and GHGA [4]. We show that it is
possible to build a benchmarking platform by entirely relying on public free infrastructure, namely GitHub [5], GitHub
Actions [6], and Zenodo [7]. Using these technologies as a basis and extending upon best practices,10 we developed a
comprehensive and reproducible benchmarking workflow for small genomic variants that is agnostic of the used dataset
and can evaluate an arbitrary number of given callsets, while reporting the results in a visual and interactive way.

Methods
Datasets
Wehave sequenced theNA12878 sample from the genome in a bottle (GIAB) [8] project with two exome sequencing kits
at varying average coverages. The genomic DNA from NA12878 was obtained from the NIGMS Human Genetic Cell
Repository at the Coriell Institute for Medical Research. The Agilent Human All Exon V7 kit was used to yield a dataset
with 182million paired-end reads sequenced on an Illumina Nova Seq 6000 (211 bpmean insert size and 2� 101 bp read
length). We used random subsampling to derive two datasets from this that were used in the benchmarking, one with
37.5 million and one with 100 million paired-end reads. The Twist Human Comprehensive Exome (Twist Bioscience,
San Francisco, CA, USA) sequencing kit was used according to the manufacturer’s protocol to generate 200 million
paired-end reads on an Illumina NovaSeq 6000 (291 bpmean insert size and 2� 101 bp read length). The raw reads of the
two subsampled Agilent and Twist exome datasets are available via Zenodo.11,12

Evaluation pipeline
To analyze the quality of the callsets yielded by each pipeline on the given datasets, we have developed a generic,
reproducible Snakemake13 workflow, which conducts all steps from downloading benchmark data, preprocessing,

1https://openebench.bsc.es
2https://omnibenchmark.org
3https://ngs-kn.de/
4https://www.ghga.de
5https://github.com
6https://github.com/features/actions
7https://zenodo.org
8https://www.nist.gov/programs-projects/genome-bottle
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comparison with a known ground truth, plotting, and automatic deployment of the required software stacks via
Snakemake’s Conda/Mamba [9] integration: https://github.com/snakemake-workflows/dna-seq-benchmark. The work-
flow comes with predefined standard datasets like CHM-eval and GIAB, but can be additionally configured to use
any other DNA-seq-based benchmark dataset consisting of a known set of true variants, confident regions where the
reported true variants are considered to be complete (i.e. every non-variant position is assumed to homozygously have the
reference allele), raw read data (as FASTQ files), and (optionally) sequenced target regions (e.g. in case of exome
sequencing). Theworkflow uses BWA-mem,14 Picard tools [10] andMosdepth15 for calculating the read coverage across
the genome. We use Bedtools16 to limit the known true variants to the confident regions provided by the respective truth
publishers and to stratify variants by coverage (see below). For interactive exploration of the results, we useDatavzrd [11]
and Vega-Lite.17 The matching of calls and true variants in a haplotype-aware manner happens via RTG-tools vcfeval
[12]. To ensure a fair and correct comparison of the different evaluated callsets, several key points had to be considered,
which we outline below.

Read depth stratification and selection of regions of interest. The available read depth can naturally affect both the
precision and recall of a pipeline. Hence, the read depth characteristics of a benchmark dataset can have an impact on the
derived precision and recall, which can limit the generalizability of obtained results. In order to avoid this effect, we
decided to stratify recall and precision by read depth. For any benchmark dataset, this workflow generates a quantized set
of regions with low (0-9), medium (10-30), and high (> 30) read depth using Mosdepth, while considering only reads
with mapping quality (MAPQ) ≥60. Notably, this means that, for example, regions in the low read depth category have
either only few reads or a lot of reads with uncertain alignments (high mapping uncertainty). We intersect these regions
with the confidence regions of the benchmark sample (e.g. as provided by GIAB) using Bedtools. If the given dataset
was generated using a capturing approach (e.g. exome sequencing) we further restrict the regions to the captured loci
according to the manufacturer. Afterwards, any given callset is split into three subsets with low, medium, and high
coverage using Bedtools.

Separating genotyping from calling performanceAt decreasing read depth or increasingmapping uncertainty, one can
expect a callset to yield a decreasing recall: with less evidence, it will become harder to find variants. This is true for both
genotyping (i.e. requiring that the variant caller detects the correct genotype) as well as when just requiring the variant
allele to be correctly recognized without considering whether the variant is predicted to be homo- or heterozygous
(i.e. plain variant callingwithout genotyping). In contrast, a variant callset’s precision should ideally remain constant and
unaffected by a decrease in read depth or increase in mapping uncertainty, if the method manages to correctly report the
increasing uncertainty with decreasing depth or increasing mapping uncertainty. The latter behavior differs between
measuring a callset’s genotyping or calling precision. In order to make these differences visible, we therefore decided to
calculate precision and recall for both genotyping and calling separately.

Variant atomization Some variant callers report complex variants as replacements of longer alleles (i.e., both the
reported reference and the alternative allele are longer than one base, e.g.ACCGCGT>ACGCT).While this is in general a
good idea (e.g. in order to be able to properly assess the combined impact on proteins), we found this to introduce
problems with vcfeval’s internal comparison approach. This resulted in spurious false positives and false negatives in
callsets having such variants. Similar to the approach implemented in the hap.py pipeline [13], we solved this issue by
introducing a normalization step prior to vcfeval into our analysis workflow, which uses Bcftools18 to normalize variants,
in a way that indels are moved to their left-most possible location, and complex replacements are split into their atomic
components—i.e. single nucleotide variants (SNVs), insertions or deletions (indels)—while removing exact duplicates
resulting from the atomization.

Reporting For reporting results, we employ Datavzrd to create interactive tabular reports for recall and precision, as well
as individual false positive and false negative variants. Datavzrd enables us to just provide the required data as TSV or
CSV files combined with a configuration file that defines the rendering of each column. For the latter, one can choose
from automatic link-outs, heatmap plots, tick plots, bar plots, or custom complex Vega-Lite plots (which can also be used
to define alternative visualizations for an entire table view). For the former, we report a table containing for each callset
and each read depth category (low, medium, high) precision and recall (while ignoring whether the genotype was
predicted correctly), the underlying counts of true positives (TP), false positives (FP), and false negatives (FN), as well as

9https://github.com/mamba-org/mamba
10https://broadinstitute.github.io/picard
11https://github.com/datavzrd/datavzrd
12https://github.com/RealTimeGenomics/rtg-tools
13https://github.com/Illumina/hap.py
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the fraction of wrongly predicted genotypes. It is important to note that it cannot be excluded that the same variant in the
truthset is predicted multiple times by a callset, e.g. as part of several complex replacements (see “Variant atomization”
above). We therefore report two TP counts TPquery (number of TPs in the callset with the same matching variant from the
truth potentially counted multiple times) and TPtruth (number of variants in the truth set that occur in the callset, each
variant counted once, regardless how often it occurs in the callset), with TPquery≥TPtruth. Following the established
definitions, precision is then calculated as

TPquery
TPqueryþFP

while recall is calculated as

TPtruth
TPtruthþFN

:

An example can be seen in Figure 2. For reporting of individual FP and FN variants, we provide a Datavzrd table view for
each that has one row per variant and a column for each callset. In order to visualize systematic patterns arising from the
properties of callsets (e.g., using the same variant detection or mappingmethod), any kind of property can be annotated as
a so-called “label”when registering a callset for evaluation with the pipeline. The labels are displayed using a categorical
color coding in the header of the table views. Moreover, we perform a Chi2test for the association of the FP or FN
pattern of each variant against the different labels in order to detect systematic effects. The variant/label combinations
for which this test yields a significant result are then displayed in a separate table view for each type of label. These allow,
for example, to spot variants that only occur when callsets use a particular variant caller. Thereby, significance is
determined by controlling the false discovery rate over the p-values of the Chi2test using the Benjamini-Yekuteli
procedure, as the variants could be both positively (e.g., being on the same haplotype) or negatively (e.g., being on
different haplotypes) correlated. In order to combine the results with data provenance information we include the
Datavzrd views into a Snakemake report [14], which automatically provides a menu structure for navigation between
views, association with used parameters, code, and software versions as well as runtime statistics.

Continuous public evaluation
A central goal of the project was not to conduct a single benchmark and just publish the results, but rather provide a
resource for continuous repeated and always up-to-date benchmarking, that is moreover open to any kind of contribution
(callsets and code improvements, among others) from outside collaborators. In order to achieve this, we have developed
the following approach (see Figure 1 for an illustration). We deployed the benchmarking workflow [15] as a module [16]
into another Snakemake workflow that in addition has the ability to download callsets from Zenodo, using Snakemake’s
Zenodo integration [17]. Then, we deployed this workflow into the GitHub repository [18] and configured GitHub
Actions [19] to continuously rerun the workflow upon every commit on the main branch or any pull request [20]. In order
to ensure that the workflow runs sufficiently fast (GitHub Actions offers only limited runtime and resources per job), we
have precomputed benchmark dataset-specific central intermediate results (read depth and confidence derived stratifi-
cation regions) that are computationally intensive to obtain, and deployed them along with the workflow code into the
GitHub repository.

Upon each completion of the evaluation pipeline, a Snakemake report [21] is generated. In case of pull requests
(e.g., contributing a feature or a new callset), the report is uploaded as a GitHub artifact [22], for inspection by the pull
request author and the reviewer. In the case of the main branch, we utilize GitHub Actions to trigger the execution of a
secondary GitHub Action pipeline in a repository that hosts the NCBench homepage [23]. This pipeline fetches the latest
report artifact associated with the main branch and deploys it to the homepage. This way, the most recent results are
automatically accessible on the homepage.

14https://snakemake.readthedocs.io/en/stable/snakefiles/reporting.html
15https://github.com/snakemake-workflows/dna-seq-benchmark
16https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.html#snakefiles-modules
17https://snakemake.readthedocs.io/en/stable/snakefiles/remote_files.html#zenodo
18https://github.com/ncbench/ncbench-workflow
19https://github.com/features/actions
20https://docs.github.com/en/pull-requests/collaborating-with-pull-requests
21https://snakemake.readthedocs.io/en/stable/snakefiles/reporting.html
22https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
23https://ncbench.github.io
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Results
The always up-to-date results of the benchmark can be found and interactively explored under https://ncbench.github.io.
At the time of writing, the benchmark consists of more than 40 callsets on three different benchmark datasets, the two
NA12878 samples described in the Datasets section and CHM-eval.19 The callsets span various pipelines, read mapping,
variant detection, and genotyping approaches.

Figure 1. Continuous evaluation and reporting workflow. Upon pull requests or pushes, a GitHub Actions
workflow is triggered. This downloads data, runs the Snakemake-based evaluation pipeline, creates the Snakemake
report and uploads it as an artifact. If the workflow is triggered on themain branch, its finalization triggers a second
Github Actions workflow that builds and deploys the homepage at https://ncbench.github.io.

Figure 2. Exemplary screenshot of interactive tabular precision recall display. Each three rows display precision
and recall together with underlying numbers and wrongly predicted genotypes stratified by read depth/coverage
category. In the interactive report, callset/pipeline names would occur on the left. Here, they have been removed
since results can be expected to change over time. For actual results please see the always up-to-date interactive
report at https://ncbench.github.io.
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Since the central idea of this project is to provide a continuous, standardized and open benchmark platform for DNA-seq,
we strived to make the contribution of new callsets as straightforward as possible. The benchmark repository [24] shows
the steps needed to perform variant calling on the supported datasets and describes how to pre-check the resulting callset
locally. Once a contributor is convinced that the callset is ready for publication, we provide instructions for uploading the
result to Zenodo and providing it via a pull request for continuous evaluation in the future.

Figure 2 shows an exemplary screenshot of the interactive tabular precision/recall display (see Pipeline section).
This illustrates the importance of stratifying by read depth/coverage categories (see Pipeline). This is in contrast to the
commonly seen practice, where GIAB and other benchmark datasets are evaluated on the entire set of variants, without
stratification. While this generates realistic estimates for the prediction quality of a variant calling pipeline overall, the
provided information is less generalizable, since a new dataset might have different read depth characteristics. Further,
it tells little about the expected quality at an individual location, whichmight differ as well from the global characteristics.

Discussion and conclusions
So far, variant calling benchmark studies were often published once, in a single or multiple manuscripts that can only
represent a snapshot at the time of writing. This holds both for studies evaluating multiple tools or pipelines, as well as the
evaluations around newly published individual tools.

For continuous benchmarking, platforms like Omnibenchmark [25] or OpenEBench20 are available. Both platforms run
on their own dedicated computing infrastructure and utilize specialized frameworks for results reporting and dataset
uploading.

In this work, we demonstrate that a continuous benchmarking platform can be set up without the need for dedicated
computing infrastructure, and instead entirely relying on freely available and widely used resources.

• By basing the benchmark of DNA-seq variant calling pipelines on a public GitHub repository for code,
configuration and result storage, GitHub Actions for analysis execution, and callsets hosted by Zenodo,
we allow rapid and straightforward contributions by anybody used to these services.

• By implementing the analysis with Snakemake and Conda/Mamba, we decouple the analysis code and the
reporting of results from the hosting platform: instead of relying onGitHubActions, the benchmark analysis can
easily be conducted locally, or on a different platform without any modifications of the code.

• By generating interactive visual presentations of the results with Datavzrd, we (a) allow for a modern and
versatile exploration of results and comparisons between different methods and pipelines, and (b) to a large
degree enable contributions and modifications to the way the data is presented by simply editing YAML based
configuration files.

• By encapsulating all results in a Snakemake report that is portable and can be viewed and provided without any
web service, we enable people to freely choose between relying on the online version of the report and providing
snapshot-like versions of the report in their publications.

In the future, we will further extend upon this approach. For example, we will add a whole genome dataset of the
NA12878 sample sequenced on an Illumina NovaSeq 6000 of ca. 400million paired-end reads (mean insert size 473 and
2� 151 bp reads length). Further, we will extend the pipeline to include the evaluation of structural and somatic variants
and corresponding datasets. Finally, as the implemented comparison workflow is in principle agnostic to the considered
species, we will evaluate the inclusion of benchmark datasets from non-human organisms. Particularly for natural
microbial populations, whose species mostly exist as multiple genotypes in one ecosystem, variant calling can be a
complex process21 and often not completely resolved due to the lack of complete and closed reference genomes from
mono-cultures.

We hope that our approach will attract contributors beyond our initiative. Ideally, the combination of being continuous,
simple to use, reproducible, and easy to integrate outside of the primary web service will change the way DNA-seq
benchmarking is handled in the future. Instead of requiring every new tool and benchmark studymanuscript to conduct its

24https://github.com/ncbench/ncbench-workflow
25https://omnibenchmark.org
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own analysis for precision and recall on public resources like GIAB or CHM-eval as well as comparison with other tools
or pipelines, authors can rather include their callsets in our benchmark. In turn, readers will be able to always see the
performance of a tool in the context of the state of the art at the time of reading, instead of at the time of writing.
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Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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The article presents NCBench, a benchmarking platform for evaluating SNVs and indel variant calls 
from various gold-standard benchmark sets. NCBench makes use of public, free infrastructure like 
GitHub Actions and Zenodo to facilitate continuous, open-source benchmarking, which is a neat 
idea. NCBench supports evaluation across several datasets, emphasizing adaptability and 
reproducibility, and effectively addresses the need for ongoing evaluation in genomic research. 
However, the true utility of NCBench will depend on its adoption by the wider research community 
which itself could be enhanced by making the platform as easy to use as possible. On this front, I 
think NCBench could be improved by addressing the following: 
 

The documentation of how to implement/run NCBench and how to contribute a new callset 
was pretty limited. A more detailed guide aimed at newcomers, detailing the pipeline steps, 
inputs and outputs, and ways to configure NCBench for other datasets would help with 
adoption.

1. 

It is unclear how to run NCBench locally on a custom benchmark dataset. The pipeline 
supports uploading a vcf to zenodo and running via github actions. Ideally, NCBench should 
be possible to run locally to test different tool parameters, or for developers to experiment 
with new tool implementations. This pattern would make NCBench more useful for general 
bioinformatics workflows. If this pattern is supported, it should be documented more 
clearly.

2. 

The output tables on github.io are useful, but I think they could be improved. For example, 
it would be useful if rows could be sorted by a column, ability to hide certain columns.

3. 

There doesn’t appear to be a way to download the results of the benchmarking run, or if 
there is, I didn’t find it. It would be nice to be able to download results in a table, in order to 
make custom tables for publication, for example.

4. 

Stratifying benchmark results by coverage categories is a nice idea. However, I think it 
would still be useful to include an ‘any’ category (any mapq), to provide a dataset summary. 
Additionally, if there was a way to filter some of the rows, this would be very useful, for 
example selecting only mapq 1-10 category.

5. 

Tables should probably include an F1 score, this would be useful to rank callsets, although 6. 
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which metric used (tp_query or tp_truth) should be evident.
The dark-blue colour of some of the cells on the tables makes the text very hard to read (see 
‘Show as plot’ subpage).

7. 

Some of the table numbers needs to be rounded, for example clicking on ‘Show as plot’, the 
numbers are rounded to >12dp.

8. 

In some of the tables, the text doesn’t fit on the page (fn variant page, the top row of labels 
stretched off the page using Safari).

9. 
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The authors present an open benchmarking platform for variant calling, with exome and genome 
variant call sets for two different benchmarks as examples. As the authors note, the ability to 
continuously benchmark variant calls is currently lacking, as existing efforts like precisionFDA 
Truth Challenges only reflect a point in time. Ongoing benchmarking should be very useful as 
both variant calling methods and benchmark sets evolve. I only have a few suggestions for 
clarifying the data and methods used.

Are FNs and FPs counted to include genotype errors, as is the default in vcfeval and hap.py, 
or do both exclude genotype errors from their counts, which is implied but not explicit in 
the text 
 

1. 

I saw the bed file for Agilent but not for twist in zenodo 
 

2. 

What were the benchmark versions used for GIAB and CHM-eval? 
 

3. 

Do the authors expect that adding new versions of the benchmarks would be 
straightforward as GIAB develops these? 
 

4. 

vcfeval generally should be able to compare different representations of the same variant, 
as long as they exactly match, even if they are not atomized. The only reason I have found 
this not to work is if the variant caller gets part of a haplotype wrong or the genotype 
wrong, in which case the whole haplotype is called wrong even if most of the variants in the 
region are correct. Is this what the authors’ encountered? If so, it might be good to clarify 
this. A potential problem with left shifting variants is that occasionally this will cause a 
change in the haplotype, e.g., if an indel in a homopolymer is shifted past a SNV on the 
same haplotype, though is relatively rare. 
 

5. 

The number of variants for CHM-eval is lower than I'd expect. Did the authors restrict to one 
chromosome?

6. 
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