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CD4+ T cells play an important role in immune responses against pathogens and

cancer cells. Although their main task is to provide help to other effector immune

cells, a growing number of infections and cancer entities have been described in

which CD4+ T cells exhibit direct effector functions against infected or

transformed cells. The most important cell type in this context are cytotoxic

CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly

found in chronic viral infections. Here, they often compensate for incomplete or

exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-

regulated by Tregs, most likely because they can be dangerous inducers of

immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL

pathway, but they can also facilitate the exocytosis pathway of killing. Thus,

they are very important effectors to keep persistent virus in check and guarantee

host survival. In contrast to viral infections CD4+ CTL attracted attention as direct

anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are

defined by the expression of cytolytic markers and have been detected within the

lymphocyte infiltrates of different human cancers. They kill tumor cells in an

antigen-specific MHC class II-restricted manner not only by cytolysis but also by

release of IFNg. Thus, CD4+ CTL are interesting tools for cure approaches in

chronic viral infections and cancer, but their potential to induce

immunopathology has to be carefully taken into consideration.
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1 Introduction

CD4+ T cells are essential players in immune defense and control of viral infections and

cancer. These cells play a crucial role in providing cytokine signals and creating optimal

conditions that facilitate the proper functioning of other immune cells such as macrophages,

B cells and cytotoxic CD8+ T cells. Several distinct subsets of CD4+ T cells with diverse

functions have been identified, including T helper (Th) cells 1 and 2, pro-inflammatory Th17
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cells, follicular helper T cells, regulatory T cells (Tregs), and others,

each characterized by their specific properties. However, in recent

years, there has been a growing recognition of the direct protective

effector role that CD4+ T cells can play in immune responses.

Cytotoxic CD4+ T lymphocytes (CTL) were identified as an

unconventional subset of CD4+ cells possessing cytotoxic

capabilities that were thought to mainly attribute to CD8+ T cells.

First reports recognizing CD4+ T cells with cytotoxic potential

appeared more than four decades ago (1), however, they were

thought to be an artefact due to long-term culturing (2).

Subsequent evidence has disproven this initial suggestion,

demonstrating that antigen-specific CD4+ T cells exhibit direct

cytotoxicity restricted by MHC class II molecules (3, 4). Since

then, studies reporting on CD4+ CTL in both humans and animal

species steadily increased in the context of viral infections and,

recently, also in cancer.

Differentiation into effector CD4+ CTL involves the recognition

of peptide antigens presented by MHC class II molecules on antigen

presenting cells (APC) to naïve CD4+ T cells. In addition to this

priming signal, naïve CD4+ T cells need at least two more signals for

activation by APC: costimulatory molecules and pro-inflammatory

cytokines (5). After antigen presentation, expression of the

transcription factor Eomesodermin (Eomes) seems to be crucial

for the development of cytotoxic T cells in vivo (6). Additionally, T-

bet in cooperation with Eomes was suggested to modulate the

cytotoxic program in CD4+ T cells (7, 8). T-bet and Blimp-1,

induced by type I interferon and IL-2 signaling, were required for

the generation of CD4+ CTL in influenza model (9, 10). However,

other researchers also utilizing the influenza virus infection showed

that Eomes, but not T-bet plays an important role in CD4+ CTL

differentiation (11). Most likely both T-bet and Eomes are involved

in CD4+ CTL fate, depending on their maturation stage. In fact,

several studies demonstrated Eomes and T-bet co-expression in

tumor-reactive CD4+ CTL, thereby emphasizing the link between

cytotoxic and Th1 differentiation programs (7, 8, 12). Notably, a

study by Śledzińska et al. in different tumor models demonstrated

that cytotoxic features of tumor-reactive CD4+ Th1 cells can

develop also independently of Eomes (13). In this study,

depletion of Treg by anti-CTLA-4 treatment allowed for IL-2-

dependent expression of Granzyme B in T-bet+ Eomes- CD4+ T

cells that was controlled by the transcriptional regulator Blimp-1.

This suggest that initiation of the cytotoxic program in CD4+ T cells

might be dependent on the immunological micromilieu and the

pattern of their stimulation. Not only the presence of certain

transcription factors is essential, but the absence of the others is

also required. For instance, the T helper transcription factor,

ThPOK, initially prompts the development of CD4+ Th fate and

hinders thymocytes from maturing into CD8+ CTL (14). On the

other hand, the Runx family member, Runx3, abrogates CD4

expression and supports cytotoxic lineage development (15).

Although Runx3 was initially described to drive the cytotoxic

program of CD8+ T cells, it has recently been demonstrated to be

involved also in the development of CD4+ CTL (16). Not

surprisingly, researchers showed that CD4+ CTL could be defined

by the lack of the master regulator ThPOK, even though they

originated from ThPOK+ progenitor cells (17, 18).
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It is still a matter of debate whether CD4+ CTLs are a distinct

phenotype or a CD4+ T cell subpopulation. Although researchers

have tried to identify markers uniformly defining CD4+ CTL as well

as their functional features, the characterization of these cytotoxic

effectors remains challenging. In the past decades, CD4+ T cells

have been distinguished into subsets solely based on the type of

cytokines they produced (19–28). Considering the fact that the

defined CD4+ T cell subsets are plastic and able to convert into

other subsets, it has been proposed to define CD4+ T cell subsets

based on both, their effector functions and phenotype (29, 30).

More likely CD4+ T cells with cytotoxic activities develop from

several differentiation pathways. Studies show that they can

differentiate directly from naïve CD4+ T cells (10, 31). However,

more often cytotoxic activities are acquired by already mature CD4+

T cells. Reports describe CD4+ cells with cytotoxic capacity arising

from Th2 (32), Th17 (33), and even Tregs cells (34, 35),

demonstrating the plasticity of CD4+ T cells. Nevertheless, the

most common CD4+ CTL progenitor is a Th1-like subset

expressing IFNg alone or in combination with other cytokines

and effector molecules (36–39). An early study by Qui et al.

demonstrated that treatment of mice with agonistic anti-CD134

(OX40) and anti-CD137 (4-1BB) antibodies induced differentiation

of naïve CD4+ T cells, both virus- and self-antigen specific, into

cytotoxic effectors with Th1-associated cytokine production. The

costimulation-induced Eomes expression and in addition IL-2 was

required for the induction of cytotoxic features. Importantly, those

costimulation-induced cytotoxic Th1 effectors showed anti-tumor

activity in a murine melanoma model, confirming their cytotoxic

activity in vivo (40).

What are the target cells for CD4+ CTL? Reports show that

tumor cells and virus-infected cells can express MHC II and become

targets for CD4+ CTL killing. B cells are infected by several chronic

viruses and they constitutively express MHC II, since they are

potential APC. But not only APC can become CD4+ CTL targets.

Several factors can induce MHC II expression on cells that do not

express these molecules under normal conditions. For instance,

viral or bacterial infections can induce MHC II expression in lung

epithelial cells via IFNg signaling (41, 42). Additionally, epithelia or
tumor cells were shown to express MHC II following irradiation or

IFNg treatment (43–46) and even constitutive MHC II expression in

cancer cells has been described (see section 3.1). Subsequently, these

cells become subject to CD4+ CTL-mediated killing. Moreover,

several viruses evolved mechanisms to downregulate MHC I on

infected host cells to evade CD8+-mediated killing (47, 48). As

compensation, the infected host cells present viral antigens on

MHC II, which allows elimination via MHC II-dependent

pathways by CD4+ CTL. However, the frequency of these events

in vivo is the matter of future investigations.

The direct cytotoxic mechanisms of effector CD4+ T cells are

similar to those that are used by professional cytotoxic CD8+ T and

NK cells. CD4+ CTL mainly utilize two effector mechanisms:

granule-mediated exocytosis and death receptor-mediated

pathways. The granule-mediated mechanism is exocytosis of

specialized granules containing Perforin and Granzymes into

target cells (39). Eomes, which was shown to drive expression of

Perforin and Granzymes in CD8+ T cells, also plays a role in CD4+
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T cell cytotoxicity (35). Death receptor-mediated pathways include

Fas/FasL- or TRAIL-mediated apoptosis. Interaction of ligands,

expressed on the effector CD4+ T cells, binds to its receptor on the

target cells leading to recruitment of the death-inducing signaling

complex and subsequently to apoptotic cell death (6, 49). Cytotoxic

mechanisms of CD4+ CTL killing not only differ between virus

infections or types of malignancy, but may be influenced by

immunological factors even within one model system. For

instance, IL-2 concentrations and the antigen dose controlled the

switch between Perforin- or FasL-mediated cytotoxicity in the

influenza virus model (10). In the FV model we also observed

both FasL-mediated and exocytosis-mediated killing by CD4+ CTL,

which was regulated by virus dose, infection phase, and application

of immunotherapies (35, 50, 51).

CD4+ CTL often arise when CD8+ CTL are exhausted to partly

compensate for their function. CD8+ CTL exhaustion occurs in

many viral infections and malignancies, and is thoroughly

described. CD4+ T cell exhaustion is less well studied, although

some studies report on the exhaustion of conventional CD4+ T cells

(Th1 or Th2 cells) during persistent infections (52–54). Very little is

known about CD4+ CTL exhaustion. Using the FV model we

showed that cytotoxic CD4+ T cells appear during chronic

infection and keep persistent virus in check. They do this in the

context of very profound CD8+ T cell exhaustion and Treg

expansion (51, 55, 56). So there is obviously limited CD4+ CTL

exhaustion during chronic FV infection. However, these CD4+ CTL

kill via the Fas/FasL pathway and do not produce large amounts of

cytotoxic molecules (50, 51). Similar to CD8+ CTL the exocytosis

pathway of killing in CD4+ CTL is under suppression by Tregs

during chronic infection. So CD4+ CTL are partially exhausted in

persistent infections, but they can circumvent this by utilizing an

alternative pathway for target cell lysis. Moreover, various studies

indicated that CD4+ CTL responses in comparison to CD8+-

mediated killing are more transient (57, 58). The differentiation of

CD4+ T cells to CTL relies on constant antigen presentation,

whether from a virus or a tumor, and ceases once the antigen

level is reduced (57). Therefore, CD4+ CTL are most commonly

reported from chronic or latent viral infections and tumor diseases,

which is the focus of this review.
2 CD4+ CTL in chronic virus infections
and virus-induced cancers

CD4+ T cells with a cytotoxic phenotype are only present as a

small fraction under healthy physiological conditions. Their

development is most likely restricted because they are potentially

harmful as inducers of immunopathology. Their antigen

recognition is not as precise as that of CD8+ CTL which increases

the risk of unwanted cell killing. Even though the proportion of

CD4+ CTL may increase in elderly individuals at least partly due to

clonal expansion following repeated viral exposure (59, 60), the

majority of studies on CD4+ CTL, as well as their initial

investigation in vivo, originated from the realm of viral infections.

Multiple researchers reported CD4+ CTL activity in acute influenza

(9, 11, 61), ectromelia (62), vaccinia virus infection (63, 64). Such
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cells were also found in patients infected with mosquito-transmitted

dengue (65) and West Nile (39) viruses. Recently, CD4+ CTL were

described in individuals infected with SARS-CoV-2 (66). However,

most reports come from chronic viral infections and CD4+ CTL

have been identified in the blood of humans with cytomegalovirus

(67), human immunodeficiency virus (HIV) (37, 68–71), and

hepatitis viruses (72). CD4+ CTL from HIV-infected patients can

kill HIV-infected target cells in vitro (73) and most importantly,

cytotoxic CD4+ T cell responses are associated with disease outcome

in HIV-infected patients (71, 74). This underscores an important

physiological role for CD4+ CTL in controlling pathogens. CD4+

CTL have also been found in animal models of chronic viral

infections, for instance, murine lymphocytic choriomeningitis

virus (75), Friend virus (50), and simian immunodeficiency virus

(76). The findings in these models and relevant human infections

are summarized in this review.
2.1 Hepatitis viruses

Viral hepatitis is a significant global health issue, impacting

hundreds of millions of individuals worldwide. Chronic hepatitis B,

C, and D infections are strongly associated with liver cancer (77–

79), as all three viruses infect hepatocytes. They are the reason that

hepatocellular carcinoma (HCC) is the most frequently diagnosed

malignancy in many regions worldwide (80). Despite notable

advancements in treatment options against HBV (81), HCV (82),

and HDV (83) in recent years, chronic viral hepatitis remain a wide-

spread medical issue. Viral hepatitis, characterized by the

persistence of the virus in the liver, is considered to be an

immune-mediated disease, implying that the immune system

plays a crucial role in the development and progression of

chronic viral hepatitis (84), but also in virus control and

resolvement of infection (85). However, our understanding of the

mechanisms that regulate antiviral immunity during the chronic

stage of hepatitis viruses remains insufficient.

It is widely accepted that CD4+ Th cells are protective during

HBV and HCV infections (86–89). At the same time the role of

CD4+ CTL during hepatitis infection continues to be a topic of

investigation. It has been shown that hepatocytes infected with

hepatitis viruses express MHC Class II molecules on their surface

(90) and acquire antigen presenting cell function (91). Thus, they

could potentially be targeted by CD4+ CTL for killing. Indeed, CD4+

CTL, defined as Perforin-expressing CD4+ T cells, were detected in

chronic viral hepatitis, especially in HDV infection (72) (Figure 1).

Phenotypically, such CD4+ CTL exhibited a terminally

differentiated effector phenotype (CD28−, CD27−) similar to that

described for CD4+ CTL in other chronic viral infections (37). Even

though direct cytotoxic killing of hepatocytes was not investigated

ex vivo, authors provide indirect evidence that Perforin-expressing

CD4+ CTL do kill infected cells and may accelerate fibrogenesis and

hepatitis (92). Therefore, despite the fact that further studies are

required to more precisely define the role of CD4+ CTL in viral

hepatitis, this subset is very likely involved in immune-mediated

pathology. For example, CD4+ CTL are known to mediated liver

disease upon secondary infections with dengue virus (93). The
frontiersin.org
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authors of this study showed that dengue virus capsid-specific CD4+

CTL were responsible for liver cell killing through Fas/FasL

interaction and also killed APC through Perforin expression (93).

Thus, it is not surprising that MHC II-expressing hepatocytes

infected with viruses may become targets of CD4+ CTL killing.

Indeed, in the cohort of viral hepatitis patients there was a striking

correlation between CD4 Perforin expression and aspartate

aminotransferase levels that serves as a marker of hepatocyte

damage (72).

On the other hand, the loss of CD4+ CTL in patients with HBV-

mediated HCC was correlated with a higher mortality rate and a

reduced survival time (94). Moreover, in tumor biopsies from the

liver, CD107a degranulation marker (a surrogate marker for

exocytosis in cytotoxic cells) on CD4+ CTL was significantly

reduced in patients with an advanced cancer stage. This cytotoxic

activity of CD4+ T cells was shown to be controlled by local Tregs

(94). In a mouse model the beneficial therapeutic activity of CD4+

CTL was reported in a vaccination approach against HCC (95). In

this study, tumor formation was controlled by vaccine-induced

CD4+ T cells and this control was abrogated by anti-CD4 antibody

administration. This preclinical model may suggest that CD4+ CTL

inducing therapy in humans should be considered for

further investigation.
2.2 Retroviruses

First evidence for the existence of CD4+ T cells with direct anti-

viral effector functions came from studies of chronic retroviral
Frontiers in Immunology 04
infections in monkeys in the ‘90s (96). Since then, CD4+ CTL have

been described in simian immunodeficiency virus (SIV) infection of

rhesus macaques. Here, viremia increase, caused by CD8+ T cell

depletion in SIV-infected macaques, was efficiently controlled due

to a combination of antibody responses and expansion of

circulating CD45RA− CD28+ CD95+ CCR7− Granzyme B

(GzmB)+ SIV-specific CD4+ CTL (76). Similarly, Gag- and Nef-

specific CD4+ T cell responses were found in CD8-depleted

macaques during virus control (97). Another group demonstrated

cytotoxicity of an SIV Gag-specific CD4+ T cell clone that had the

capability to control viral replication (98). The main surface marker

to characterize such CD4+ CTL in SIV-infected rhesus macaques

was found to be CD29 (99, 100). CD29hi GzmBhi T-Bet+ gag-

specific CD4+ T cells were also capable of shrinking the SIV

reservoir during ART (99). SIV as well as HIV infects

macrophages as well as CD4+ T cells and those constitutively

express MHC II as APCs (101). In addition, activated CD4+ T

cells start to express MHC II, and HLA-DR is even used as common

activation marker for human CD4+ T cells (102). Thus, both cell

types that propagate viral infection are potential targets for

CD4+ CTL.

Similar to SIV, CD4+ CTL were found to be beneficial for people

living with HIV. Despite the fact that CD4+ T cells are the main

targets of HIV, including the crucial role of CD4+ T follicular helper

cells in reservoir formation and maintenance (103, 104), studies

support the vital role of CD4+ CTL in HIV control (70, 105). CD4+

CTL limit HIV pathogenesis in elite controllers (106). In acute HIV

infection CD4+ CTL were characterized as GzmA+, IFN g+, and
CD40L+ and were associated with the reduction in viral loads (71).
FIGURE 1

Schematic representation of the cytotoxic pathways exerted by CD4+ CTL in different chronic virus infections. For every virus infection, the blue
silhouette represents the model in which CD4+ CTL were described (i.e., human, primate and mouse model). Figure highlights the main effector
molecules secreted by CD4+ CTL in response to each virus (IFNg, perforin, granzymes, CD107a, or FasL). Created with BioRender.com.
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In another study similar observations were made and the phenotype

of CD4+ CTL during acute HIV infection were described as

Perforin+, GzmB+, and Eomes+ (70). Additionally, ex vivo studies

revealed that virus-specific CD4+ CTL can kill HIV-infected

macrophages and T cells (73). Moreover, an HIV vaccine

candidate induced CD4+ CTL with lytic functions (107, 108).

These lines of evidence suggest that CD4+ CTL play an important

role in HIV control and therefore could be targeted as effectors in

vaccine development and treatment interventions.

At the same time, inducing strong CD4+ T cell activation is a

debatable issue in the field of HIV vaccination. It can be a double-

edged sword since these cells may be favorable virus targets. In fact,

it has been reported that GzmB+ cells harbored more HIV than

GzmB- cells in gut CD4+ T cells stimulated with enteric bacteria in

the lamina propria aggregate culture model (109, 110).

Nevertheless, the Thai HIV phase III prime-boost vaccination

trial with ALVAC and AIDSVAX reported successful induction of

HIV-specific CD4+ CTL (111). This vaccination regimen, combined

a recombinant canarypox vector vaccine (ALVAC) and a

recombinant glycoprotein 120 subunit vaccine (AIDSVAX),

exhibited a moderate level of protection against HIV-1 infection

partly correlating with the induction of polyfunctional effector

CD4+ T cell responses (112, 113). Although stimulation of CD4+

CTL responses in HIV infection remains controversial, recent

studies suggest that CD4+ CTL can compensate for reduced CD8+

T cell cytolytic activity against HIV in the setting of CD8+ T cell

exhaustion (114), HIV-mediated downregulation of HLA I

molecules (115), or CD8-associated HIV mutational escape (116).

Therefore, while HIV-specific CD4+ CTL may be targeted by the

virus and experience depletion during the early stages of infection,

the remaining cells might play an important role in controlling viral

loads (105).

2.2.1 Friend virus
Friend virus (FV) was isolated from leukemic mice by Charlotte

Friend (117) and has since been used for identifying genes that

control susceptibility to retroviral infection. FV is a retroviral

complex comprising Friend murine leukemia virus (F-MuLV), a

replication competent helper virus that is nonpathogenic in adult

mice, and spleen focus-forming virus (SFFV), a replication-

defective virus responsible for pathogenesis (118). SFFV cannot

produce its own particles because of large deletions in the gag gene

and it spreads by being packaged in F-MuLV-encoded particles

produced in cells co-infected by both viruses. Pathology in

susceptible adult mice is characterized by a polyclonal

proliferation and subsequent transformation of erythroid

precursor cells, which results in gross splenomegaly. Resistant

mice do not develop FV-induced disease because of their efficient

immune response, but they are unable to completely clear virus-

infected cells and therefore develop a life-long chronic infection.

Although FV is also a retrovirus it has its own chapter here, because

it is the retrovirus model system in which CD4+ CTL were studied

in most detail among all retroviruses.

During the acute phase of FV infection, the primary and crucial

role of CD4+ T cells is their helper function for the antibody

responses and effector CD8+ T cells (55, 119, 120). The frequency
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of GzmB+ CD4+ T cells is extremely low during acute infection. We

could previously show that during this stage of infection Tregs as

well as CD8+ T cells negatively control the CD4+ CTL response

against FV-infected cells as well as FV-transformed cells (51, 121),

while the molecular mechanism of this suppression remains

unknown. This cellular control is probably important to prevent

CD4+ CTL induced immunopathology, which indeed occurs when

GzmB+ CD4+ T cells are experimentally expanded by

immunotherapy during an acute FV infection (122). However,

when chronic FV develops, CD8+ T cells become functionally

exhausted thereby allowing viral immune escape and the

establishment of chronicity (123). Exhausted CD8+ T cells show a

profoundly reduced killing capacity and have only limited anti-viral

activity. We already showed in the late ‘90s that CD4+ CTL then

take over in keeping virus replication in check (124). They do not

induce pathology during chronic infection because antigen loads

are low and CD4+ CTL numbers are too. The main reservoir of

chronic FV is B cells, which are MHC II+ and therefore good targets

for CD4+ CTL killing (125). The experimental proof that FV-

specific CD4+ T cells develop cytotoxic activity during the chronic

phase of FV infection against MHC II-expressing targets came from

in vitro CTL assays (126) and subsequent in vivo CTL studies (50).

The observed cytotoxic activity was FasL-dependent, while the

exocytosis pathway and Granzyme production appeared to be

suppressed by Tregs also in the context of chronic FV infection

(50, 51). We have previously demonstrated that Tregs become

highly activated and expand during an ongoing FV infection (51,

55, 56), so they constantly influence CD4+ T cell cytotoxicity. The

established in vivo CD4+ CTL assay was used to quantify their

killing capacity and defined which viral epitopes they recognize (50,

127). As expected, their killing potential was lower than that of FV-

specific CD8+ CTL (128). Hence, these cytotoxic FasL+ CD4+ T cells

can keep persistent FV in check and prevent viral rebound, but they

are not capable of eliminating the viral reservoir.

Interestingly, also GzmB+ CD4+ T cells can be induced under

certain conditions in the FV model. The cytotoxic activity of CD4+

T cells can be modulated by immunostimulatory therapies. The

administration of agonistic antibodies that target the co-stimulatory

molecule CD137 has been shown to trigger GzmB-dependent

cytotoxic pathways in CD4+ T cells and makes them refractory to

Treg-mediated suppression (50, 129, 130). We used this therapy to

induce GzmB+ CD4+ CLT in chronically FV-infected mice, which

were able to significantly reduce the viral reservoir size and even

postponed viral rebound from the reservoir in the setting of a

terminated anti-retroviral therapy (in press). Thus, CD4+ CTL

might be interesting effector cells for shock and kill approaches in

HIV cure studies.
2.3 Lymphocytic choriomeningitis virus

Another well-known murine model of persistent viral infection

is the lymphocytic choriomeningitis virus (LCMV) infection.

LCMV is a member of the Arenaviridae family and is commonly

found in rodents, particularly mice. LCMV has been extensively

studied to understand the mechanisms of persistent viral infections
frontiersin.org
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and immune responses. The virus infects a broad spectrum of

cellular targets, including dendritic cells (131), macrophages (132),

endothelial cells (133), epithelial cells (134), fibroblasts (135), and

neurons (136). As professional APC, dendritic cells, and

macrophages constitutively express MHS class II molecules on

their surface and therefore can serve as CD4+ CTL targets. CD4+-

mediated killing of target cells in LCMV-infected mice was reported

in b2-microglobulin-deficient (b2m−) mice (137). Mice lacking

b2m do not effectively express MHC class I complexes, resulting

in a deficiency of CD8+ T cell responses (138). In this setting,

LCMV-infected animals do not develop CD8+ cytotoxicity, but

instead generate MHC class II-mediated CD4+ CTL (139, 140).

These LCMV-specific CD4+ CTL express FasL and utilized the Fas-

dependent killing pathway (141). However, other group showed

that in LCMV infection both the FasL- and a Perforin-dependent

pathway can contribute to CD4+ CTL killing (75). That again

demonstrates that impaired CD8+ CTL responses are

compensated in vivo by cytotoxic CD4+ T cells.

Other authors compared the in vivo killing mediated by CD4+

versus CD8+ T cells utilizing an in vivo CTL assay during LCMV

infection (142). They detected substantial CD4+ CTL-mediated

killing of target cells loaded with the immunodominant peptide

LCMV-GP64–80 (143) in mice infected with LCMV that was

measured at 16 hours after target cell infusion. This killing

appeared less efficient as compared to the remarkably fast CD8-

mediated in vivo killing of target cells, however researchers

concluded that CD4+ and CD8+ CTL responses were similar in

magnitude and were only slower due to the FasL-dependent

pathway of CD4+ T cell killing (144). Additionally, a careful

transcriptional investigation helped to discover a new marker for

CD4+ CTL in LCMV infection (145). These cytotoxic cells express

Eomes and GzmK together with uniquely high expression of the

signaling lymphocytic activation molecule family member 7

(SLAMF7), a surface protein that was already described to

characterize CD4+ T cells with cytotoxic potential in tumor (146)

and autoimmune diseases (147).

Interestingly, experimental induction of CD4+ T cells during

chronic LCMV caused lethal immunopathology in mice (148).

Administration of vaccines to selectively induce CD4+ T cell

responses resulted in severe generalized inflammation, a cytokine

storm, and mortality. Furthermore, adoptive transfer of LCMV-

specific CD4+ T cells following acute infection induced lethal

inflammation (149). These results demonstrate the fine balance

between anti-viral immunity and immunopathology for CD4+ CTL

that has to be taken into account when designing immunotherapies

or vaccines to induce such cells.
2.4 Herpesviruses

Viruses of the Herpesviridae family affect the majority of the

human population. They establish lifelong infections, however are

largely asymptomatic in healthy individuals, while causing severe

disease in the immunocompromised hosts (150). CD4+ CTL were

described in mouse and human herpesvirus infections. CD4+ T cells

with cytotoxic effector functions were found in murine
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cytomegalovirus (MCMV) (151) and chronic infection of mice

with g-herpesvirus 68 (152, 153). Accordingly, CD4+ CTL were

isolated from peripheral blood mononuclear cells of humans

infected with human cytomegalovirus (HCMV) (36, 154). Other

authors demonstrated HCMV-specific effector CD4+ T cells that

expressed GzmA, GzmB, and Perforin with antiviral activity (67).

Moreover, HCMV-pp65-specific CD4+ CTL were described in the

cohort of older adults (155). CD4+ CTL have been observed in

individuals infected with human herpesvirus-6B, suggesting their

role in the long-term control of the disease (156).

The presence of CD4+ T cells exhibiting cytotoxic potential has

also been identified in patients and mice infected with Epstein-Barr

virus (EBV) (157). EBV is highly immunogenic virus which can be

associated with the emergence of various types of cancer affecting B

cells and epithelial cells (158). In individuals with infectious

mononucleosis, blood samples reveal the presence of CD4+ T

cells that express GzmB with potential anti-viral activity (159).

CD4+ T cells isolated from tonsils, the hotspot of EBV infection,

demonstrated cytotoxic potential in vitro (160). Cytotoxicity of

EBV-specific CD4+ T cells was shown indirectly through the

expansion of lytic cells from peripheral blood mononuclear cells,

acquired from EBV-seropositive donors. The lytic activity was

demonstrated to be facilitated through different pathways: the

secretion of the cytotoxic molecules Perforin and Granzyme (161,

162) or via the Fas/FasL pathway (163). Moreover, lytic activity of

EBNA1-specific CD4+ T cells against virus-transformed tumor cells

was observed in all EBV-mediated malignancies, including Burkitt

lymphoma (BL). BL cell lines serve as targets for the cytotoxic

activity of CD4+ T cells specific against EBNA1 (164). In a mouse

model, BL were eliminated in the absence of any CD8+ T

lymphocytes, however no direct lytic CD4+ CTL activity could be

detected in that model (165).

EBV is not only linked to the malignancies, but is associated

with the development of autoimmune diseases, such as systemic

lupus erythematosus (166), myasthenia gravis (167), multiple

sclerosis (168), rheumatoid arthritis (169), celiac disease (170),

and Sjögren’s syndrome (SS) (171). The development of SS has

been linked to EBV infection, as salivary gland biopsies taken from

SS patients demonstrate elevated levels of EBV DNA compared to

healthy salivary glands. This suggests viral reactivation and an

impaired immune system’s ability to control EBV latency (172).

Interestingly, EBV-specific T cells show cross-reactivity to

endogenous peptides from tears and saliva (173). While EBV is

commonly found in salivary gland epithelial cells of healthy

individuals, SS patients exhibit increased levels of HLA-DR

expression in their salivary gland epithelial cells (172). This allows

them to present EBV antigens to T cells and become targets of CD4+

CTL-mediated killing, which contributes to tissue damage. Indeed,

a study investigating the cytotoxic immune response in ectopic

lymphoid structures with persistent EBV infection in SS salivary

glands revealed an increase in CD4+ GzmB+ CTL that was a risk

factor for organ lesions (174). In contrast, CD8+ GzmB+

lymphocytes were impaired and did not correlate with the

damage of the salivary glands. Moreover, a positive correlation

has been observed between elevated levels of CD4+ CTL in the

peripheral blood and their increased infiltration into the salivary
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glands, which is associated with disease progression and severity

(175). Thus, CD4+ CTL might play an important role in the

pathogenesis of EBV-induced disease.

Taken together, anti-viral CD4+ CTL are found in almost every

chronic viral infection. They seem to compensate for CD8+ CTL

responses when they are poorly induced or become exhausted.

Their induction and differentiation are counter-regulated by Tregs,

most likely because they can be dangerous inducers of

immunopathology. CD4+ CTL often kill via the Fas/FasL

pathway, but they can also facilitate the exocytosis pathway of

killing. They are able to keep persistent virus in check, but especially

their FasL pathway of killing is not sufficient to eliminate chronic

viruses. CD4+ CTL are interesting tools for cure approaches in

chronic viral infections, but their potential to induce

immunopathology has to be carefully taken into account.
3 CD4+ CTL in solid cancers

Although CD4+ CTL have been recognized for decades in viral

infections, they only recently attracted attention as direct anti-

tumor effectors in solid cancers (176). Here we summarize

preclinical and clinical data indicating killing of MHC class II-

positive tumor cells by CD4+ CTL and highlighting the therapeutic

potential of this T cell subset.

First evidences for direct anti-tumor activity of CD4+ CTL were

provided by two studies in the murine melanoma model B16 in

2010 (43, 44). Tumor-bearing lymphopenic mice received adoptive

therapy with CD4+ T cells expressing a transgenic T cell receptor

(tgTCR) specific for the melanoma antigen TRP-1. The transferred

T cells eliminated large tumors and mediated durable regression.

Subsequent analyses showed production of IFNg and GzmB- and

Perforin-dependent killing of tumor cells by tgTCR CD4+ T cells in

a MHC class II-dependent manner (43, 44). Combining T cell

transfer with anti-CTLA-4 treatment enhanced the anti-tumor

activity of CD4+ CTL (44). A third study later on demonstrated

that melanoma control by TRP-1 tgTCR CD4+ CTL could also be

improved when T cells were co-administered with an agonist

antibody binding the costimulatory OX40 molecule (8).

Interestingly, evidence for the therapeutic efficacy of adoptively

transferred CD4+ T cells in the clinical setting was provided in

melanoma already in 2008. Durable remission of metastases was

achieved upon treatment of a patient with ex vivo expanded

autologous CD4+ T cell clones specific for the MHC Class II-

restricted tumor antigen NY-ESO-1 (177). Those T cells secreted

IFNg upon antigen-specific activation and were detected over several

months in the peripheral blood of the patient. Several years later, the

Rosenberg team reported about a patient with metastatic

cholangiocarcinoma who received treatment with ex vivo expanded

autologous tumor infiltrating lymphocytes (TILs), containing CD4+

T cells specific for a MHC Class II-restricted mutant tumor antigen

(neoantigen) (178). Partial regression of target lesions and disease

stabilization were achieved by transfer of a TIL product, which

contained around 25% of neoantigen-specific CD4+ T cells.

Remarkably, upon disease progression the patient was retreated

with TILs. In this case the TIL product contained >95% of
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neoantigen-specific CD4+ T cells, which again mediated disease

regression (178). In a following study, patients with different

cancers were treated with autologous CD4+ T cells purified from

peripheral blood and engineered to express a TCR specific for the

shared MHC Class II-restricted tumor antigen MAGE3. The tgTCR

CD4+ T cells induced objective clinical responses, including a

complete remission and partial regressions (179).

These cell therapy studies clearly demonstrated the clinical

relevance of tumor antigen-specific CD4+ T cells in treatment of

different cancers (177–179). Although data on cytolytic anti-tumor

activity of the transferred CD4+ T cells was not provided, release of

the effector cytokine IFNg was demonstrated. Notably, in contrast

to cytolytic granules, which act only locally at the T cell-tumor cell

interface, IFNg spreads into the tumor microenvironment (180).

The cytokine triggers activation of the JAK1/2-STAT1 signaling

pathways in bystander tumor cells, which can have cytostatic and

cytotoxic effects (181, 182). Recent studies in different murine

tumor models demonstrated that the long-distance IFNg effects

critically contribute to tumor control (183–185), and that control is

lost when tumor cells acquire resistance to IFNg, as we observed

also in the clinical setting (182, 186). Thus, CD4+ CTL could kill

their targets directly via cytolysis but also indirectly by IFNg-
dependent mechanisms. In fact, this has been demonstrated by a

recent preclinical study in which mice with different tumor

transplants, including melanoma, received adoptive therapy with

chimeric antigen receptor (CAR)-modified CD4+ T cells. The

transferred CAR-CD4+ T cells killed cancer cells via Perforin-

and IFNg-dependent mechanisms but could not eliminate IFNg-
resistant tumors (187).

Meanwhile, evidence for the presence of IFNg-producing CD4+

CTL in solid human cancers have been generated by single cell RNA

sequencing and flow cytometry analyses of tumors and tumor

infiltrates. Based on the expression of Granzymes, Perforin,

Granulysin and other cytolysis-associated markers, CD4+ CTL

have been detected in bladder cancer, colorectal cancer, lung

cancer, melanoma, and other tumors (146, 188–194). A study by

Oh et al. in bladder cancer highlighted the presence of distinct

subsets of CD4+ T CTL in the tumor microenvironment, expressing

different combinations of cytolytic genes (GZMA, GZMB, GZMK,

PRF1) . Approximately 50% of those CD4+ CTL were

polyfunctional, showing concomitant expression of the effector

cytokines IFNg and TNFa (191). Important to note, MHC Class

II-dependent CD4+ CTL were subjected to inhibition by tumor-

resident Tregs (191).

Intense characterization of tumor antigen-specific CD4+ CTL

was carried out also in melanoma. Cachot et al. applied antigen

peptide-loaded multimers for isolation and subsequent

characterization of NY-ESO-specific CD4+ CTL. Via this strategy,

MHC Class II-restricted CD4+ CTL were detected ex vivo not only

in tumors but also in tumor-infiltrated lymph nodes and peripheral

blood of melanoma patients (146). Oliveira et al. analyzed in depth

the antigen specificity and functional phenotype of tumor-resident

CD4+ melanoma TILs. They found MHC class II-restricted

neoantigen-specific cytotoxic CD4+ T cells largely exhausted and

coexisting with MHC class II-restricted neoantigen-specific

Treg (194).
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So far, the indicated studies generated exciting data about the

therapeutic potential and presence of CD4+ CTL in tumor

infiltrates. But further intense investigations are needed to

understand the molecular characteristics and development of

tumor-specific CD4+ CTL in solid cancers in order to boost their

anti-tumor activity. In this regard it should be mentioned that both,

the bladder cancer and melanoma study showed elevated expression

of SLAMF7 on tumor antigen-specific CD4+ CTL (146, 191) and

that targeting SLAMF7 with agonistic antibodies enhanced the

cytotoxic activity of CD4+ T cells (146). Thus, it is tempting to

speculate that combining SLAMF7 agonists with personalized

vaccines could be a promising strategy to specifically amplify

cytotoxic anti-tumor CD4+ T cell responses.
3.1 Direct targeting of MHC class II-
positive tumor cells by CD4+ CTL

Due to the fact that CD4+ CTL attracted attention in solid

cancers only recently, there is still limited but growing data about

their cytotoxic activity against tumor cells. So far, CD4+ T cell-

mediated killing of either MHC Class II-matched or autologous

tumor cells has been demonstrated inmelanoma, bladder cancer and

glioblastoma (12, 146, 191, 195, 196). Kitano et al. were the first to

described cytolysis of human melanoma cells by NY-ESO-specific

CD4+ T cells, that they found induced or enhanced in peripheral

blood of patients treated with the anti-CTLA-4 blocking antibody

ipilimumab. Those T cells expressed Perforin and GzmB and

efficiently killed autologous melanoma cells in an MHC Class II-

dependent manner (12). To achieve MHC Class II antigen

presentation tumor cells were either transduced with CIITA the

transcriptional activator of genes encoding theMHCClass II antigen

presentation machinery (146, 197), or pretreated with IFNg, known
as potent inducer of MHC Class II expression (12).

Important to note, a sizable fraction of melanomas shows IFNg-
independent constitutive MHC class II surface expression (194, 195,

198–200), which in general is considered a specific feature of

professional APC as dendritic cells, macrophages or B cells. So far,

the mechanisms driving constitutive MHC class II expression in

melanoma are poorly understood. Recently, we demonstrated that

JAK1/2 signaling is involved in both IFNg-induced and IFNg-
independent constitutive MHC Class II expression (195). The

pathways triggering aberrant JAK1/2 activation in the absence of

interferons remain to be determined. In line with this regulation,

patient-derived JAK1/2-deficient melanoma cells displayed a stable

MHC Class II-negative phenotype, resistant to CD4+ CTL (195).

Interestingly, prior studies showed that ERK signaling negatively

regulates constitutive but also IFNg-induced CIITA expression (201,

202), suggesting that oncogenic Ras-RAF-MEK-ERK pathway

activation in tumor cells counteracts MHC class II antigen

presentation. So far, constitutive MHC class II expression has mainly

been studied inmelanoma, but seems to be present also in other cancers

like glioma and lung cancer (195, 199, 203, 204), indicating a broader

relevance of the MHC class II-positive tumor cell immunophenotype.

According to its role in CD4+ CTL activation, melanoma cell-

intrinsic expression of MHC class II molecules has been associated
Frontiers in Immunology 08
with improved patient prognosis and response to immunotherapy

with immune checkpoint blocking antibodies (200, 205). Similar

data has been obtained for lung adenocarcinoma (206), but is

lacking for most other tumors. This should encourage research to

deepen our understanding on MHC class II regulation in different

cancers as a basis for its therapeutic manipulation and killing of

tumor cells by cytotoxic CD4+ CTL. As MHC class II-positive

tumor cells can stimulate also tumor antigen-specific Treg (194), it

is might be necessary to combine therapeutic MHC class II

upregulation on cancer cells with Treg depleting strategies.
3.2 Virus-induced CD4+ CTL for therapy of
solid cancers

As CD4+ CTL have been intensively studied in the context of viral

infections, this led to the idea of exploiting those cells also in therapy

on solid cancers. The concept is based on the observation that virus-

specific T cells have been detected among the infiltrates of different

cancers. For instance, TILs isolated from both lymph node and

subcutaneous tumors of melanoma patients contained CD8+ T cells

with specificity for viral antigen epitopes originating from CMV, EBV

or influenza A (207). CD8+ T cells specific for epitopes from those

viruses were present also among TILs from glioblastoma, colorectal

and lung cancer (208, 209). In line with the clinical observations, a

preclinical study in B16 melanoma demonstrated that virus-specific

CD8+ T cells infiltrated cutaneous tumors not only upon acute

infection with CMV or poxvirus, but were resident in lesions after

poxvirus elimination and during the chronic state of CMV infection

as well (210). The therapeutic potential of tumor-resident virus-

specific memory T cells has already been demonstrated in different

murine tumor transplant models. Activation of virus-induced T cells

by intralesional injection of viral antigen peptides delayed tumor

growth (209, 211) (Figure 2A). Alternatively, immunocojugates have

been proposed for delivery of viral epitopes into tumors (Figure 2A).

In this case, viral peptides were coupled to antibodies targeting a cell

surface protein expressed on tumor cells. Upon immunoconjugate

binding the surface complex was internalized and viral peptides were

shuttled to the ER for loading onto MHC molecules. In a xenograft

tumor model, systemic application of the immunoconjugates

mediated recruitment of adoptively transferred virus-specific T cells

into the tumor and combined administration of immunoconjugates

with immune checkpoint blocking antibody suppressed tumor

growth (212). Although the aforementioned studies focused on

CD8+ T cells, it is expected that tumor infiltrates contain also

virus-specific CD4+ CTL that could be exploited for therapy of

solid cancers by applying similar therapeutic strategies.

Notably, activation of tumor-resident virus-specific T cells might

even be applicable to cancer patients who not yet encountered an

infection with the specific pathogen. Analyses of the CD4+ T cell

repertoire from adults detected HIV-1-, HSV- and CMV-specific

CD4+ T cells in blood from unexposed individuals (213).

Surprisingly, these CD4+ T cells showed features of memory T cells

even without direct antigen contact, namely expression of memory-

associated genes, clonal expansion and rapid cytokine production.

Further analyses on HIV-1-specific CD4+ T cells from unexposed
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individuals revealed TCR cross-reactivity towards similar

environmental microbial peptides (213). Although this study did

not specifically focus on cytotoxic CD4+ T cells, it provided important

insights into cross-reactivity of virus-specific CD4+ T cells towards

similar MHC class II-presented peptides.

Currently, T cell cross-reactivity towards viral and tumor

antigens is under intense investigation, as referenced in (214)

(Figure 2B). A recent study demonstrated very broad specificity of

a MHC Class II-restricted CD4 TCR isolated form TILs of a

glioblastoma patient. Those T cells recognized different peptides

derived from pathogenic bacteria, commensal gut microbiota and

also glioblastoma-associated tumor antigens (215).

Overall, these finding suggest that redirecting pathogen-specific

CD4+ CTL towards tumor cells could be a promising mean to

enhance the efficacy of immunotherapies. However, further

investigations are needed to define the antigen cross-reactivity of

CD4+ CTL, to develop approaches that recruit pathogen-specific,

cytotoxic CD4+ T cells into tumors with low immunogenicity and to

unleash strong cytotoxic T cell responses against tumor cells in vivo

without causing severe immune-related adverse events.
4 Conclusion

Many reports on CD4+ CTL in chronic viral infections, virus-

induced cancers, and virus-independent malignancies established the

knowledge that CD4+ T cells not only serve as helper cells but also
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possess direct cytolytic activities, mainly in anMHC II-restricted way.

Given that CD4+ CTL often play protective roles in antiviral or

antitumor immunity, their molecular pathways of antigen control

need to be investigated in detail and their possible detrimental effects

should be studied when they are targeted for immunotherapy.

Therefore, it is essential to define their mechanisms of cell

differentiation and function as well as to describe their distinctive

phenotypical markers. In order to modulate CD4+ CTL activity and

improve antiviral and antitumor immunity, single-cell resolution

approaches should be intensified to further deepen the

characterization of this unique T cell subset in the future.
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FIGURE 2

Strategies to exploit virus-induced cytotoxic CD4+ T cells in therapy of solid cancers. (A) Proposed model for reactivation of virus-specific CD4+ CTL
based on endogenous and exogenous loading of viral-antigen peptides onto tumor MHC Class II molecules to mimic local re-infection with a
previously encountered pathogen. 1. Synthesis of immunogenic peptides from chosen virus; 2a. Intratumoral injection of viral-peptide vaccine; 2b.
Conjugation of immunogenic viral peptides to an antibody targeting a specific integral tumor membrane protein for internalization upon
engagement. 3. Binding of the immunoconjugate to its target; 4. Engagement-triggered internalization of the immunoconjugate complex into the
endosomal compartment; 5. Release of antibody from the complex and dissociation of the peptide from the antibody; 6. Loading of released viral
peptide onto MHC Class II molecules; 7. Transport of the peptide-MHC complex to the cell surface for presentation to CD4+ T cells. The proposed
endogenous loading model (2b-7) is based on work by Sefrin et al. (212). (B) Cross-recognition of MHC Class II-presented tumor antigen peptides by
virus-induced CD4+ CTL based on sequence similarity. Potential killing-modes of CD4+ CTL are depicted. Created with BioRender.com.
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