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1 Introduction

Exoskeletons and orthoses are frequently used to facilitate limb movements in humans

with motor impairments as they can integrate classical therapy approaches such as mirror

therapy (Kirchner et al., 2013; Kirchner and Bütefür, 2022) using the electroencephalogram

(EEG) signals. In addition to triggering exoskeleton assistance, EEG can also be used

to infer movement intentions (Kirchner and Bütefür, 2022) which has been shown to

be crucial for successful neuro-rehabilitation (Noda et al., 2012; Hortal et al., 2015).

Furthermore, EEG can also be used to deduce the subjective correctness of the behavior

of a robot that the human observes or interacts with, as demonstrated in several works

by Iturrate et al. (2015) and Kim et al. (2017, 2020).

To validate the correctness of an assistive device, it is important to gain a deeper

understanding of the level of support felt by the patients. Specifically, it is essential to

assess whether the patients felt the mistakes made by the robotic assistive system. For

some assistive devices, support can be visually observable, and subjective correctness can

be validated and adapted based on the ErrP detected from the EEG signals (Batzianoulis

et al., 2020). However, for robots worn by the patients, such as active exoskeletons or active

orthoses (Kirchner and Bütefür, 2022), the patients may not see the incorrect behavior

but feel it. Therefore, investigating whether tactile detection of incorrect behavior in an

exoskeleton or orthosis evokes similar event-related potentials (ERPs) as visually observed

behavior is of interest. This information can be used to correct the incorrect behavior

perceived by the patient [for initial results of this published dataset and further discussion

on utilizing different modalities for transferring error information, see Kim and Kirchner

(2023)].

In EEG studies, the so-called error-related potential (ErrP) is evoked when erroneous

behavior is observed (Iturrate et al., 2010; Kim and Kirchner, 2013), feedback indicating

erroneous events is received (Holroyd and Coles, 2002) or when an error occurs during

interaction (Kim et al., 2017). A comprehensive review of this is available in Chavarriaga

et al. (2014). Moreover, inferring errors from EEG by detecting ErrPs is challenging

because it requires asynchronous classification of relevant patterns (Kim et al., 2023). This

asynchronous classification often results in numerous false positives due to long interaction

times with the system or extended task execution times (Omedes et al., 2015; Spler and

Niethammer, 2015; Lopes-Dias et al., 2021). In most studies, visual stimuli were used to

evoke error-related potentials (ErrPs) (e.g., van Schie et al., 2004). While some studies
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used visuo-tactile stimuli to indicate upcoming events, the ErrPs

were still evoked by the visual recognition of errors (e.g., Schiatti

et al., 2018). To our knowledge, there are no studies in which

tactile stimuli were used to recognize errors and evoke an ErrP.

Based on the available literature, we identify this as a gap in the

research on error-related activity. In addition to the visual modality,

other modalities like tactile feedback, should be subject to closer

investigation regarding their impact on brain activity.

In this work, we introduced easily recognizable force direction

errors, opposing the planned body movements. The confirmation

that errors have been recognized was provided by the subjects

by pressing an air-filled ball. As it was likely that the subjects

would react reflexively to these errors, other biosignals such as the

electromyogram (EMG) were also recorded to better understand

error processing as a whole. This recorded EMG data would also

help us better understand what complexity in task, response, or

interaction errors is required to elicit ErrPs.

Moreover, there is a need for more in-depth exploration to

continuously classify error-related activities (Kim et al., 2023) and

distinguish partially overlapping EEG activities. However, there is

a particular shortage of openly accessible data that would enable

a larger research community to contribute. The requirement of

using robots to introduce tactile stimuli limits the number of

research groups that could conduct research on these problems.

To address this issue, we recorded a dataset of 8 subjects (10

sets per subject) wearing an active orthosis device that introduces

simple errors in its behavior. In order to allow other groups to

easily replicate and extend our work, details about the mechanical

and electrical aspects of the simple elbow orthosis have been

provided. Additionally, the experimental procedure has also been

described in detail, including relevant information about the error

complexity, subject instructions, and whether subjects should

respond explicitly to errors.

We hope that this first open-access dataset of EMG an EEG

data recorded during the processing of errors of tactile modality

will enable broader research on how assistive technology can be

improved by using EEG and EMGdata to providemore natural and

individualized support for activities of daily living. Such support is

very important for rehabilitation purposes (Kornhaber et al., 2018).

The rest of the paper is structured as follows. Section 2 provides

detailed information about the experimental design and methods

used to record the dataset. It also describes the data format and the

folder structure for a better understanding of the dataset. Section 3

presents a preliminary quality analysis of the recorded data in the

form of response-time analysis and event-related potential analysis.

Finally, in Section 4, we provide an overview of the conducted

experiment and discuss future possibilities. A more comprehensive

description of the hardware used in our setup is provided in the

Supplementary material.

2 Methods and experimental design

This section provides information about the experimental

design including details about subjects’ informed consent,

experimental setup and procedure, methods used for data

acquisition, and the formatting of the recorded dataset.

2.1 Participants

Eight healthy subjects (four male and four female; average age

21.8 ± 2.4 years; right-handed; students) voluntarily participated

in the study. A few days prior to the experiment, subjects received

an introduction and underwent preliminary testing at the lab,

which included checking the orthosis’s fit and measurement of

head circumference to determine their EEG cap size. All the

subjects provided their written informed consent and were told

they could stop the experiment at any time without consequences.

Each experiment lasted for 4.9 ± 0.6 hours on average per subject

on the same day at a stretch and all the subjects received a monetary

compensation of 10e per hour.

2.2 Experimental setup and procedure

An overview of all the protocols followed throughout the

experiment is provided in this section.

2.2.1 Subject preparation
Before the start of the experiment, each subject was prepared

with a 64-channel EEG system and an eight-channel EMG

system (see Sections 2.3.1, 2.3.2 for details). Additionally, they

were fitted with an active orthosis (see Section 1 of the

Supplementary material) on their right arm as shown in Figure 1A,

and held a small air-filled ball in their left hand (see Section 2 of

the Supplementary material). To trigger support from the orthosis,

the subjects were required to express their intention to move by

applying a torque greater than the start threshold in the movement

direction. This torque, applied at the forearm interface around the

wrist (see Figure 1A and Supplementary Figure 1) induced a change

in the elbow motor current which was then converted into the

corresponding torque value.

The torque threshold varied among subjects, depending on

their strength and the weight of their arm. It was ensured that the

start thresholds were large enough to prevent unintended starts

(refer to Section 3 of the Supplementary material). After indicating

their intention to move, the subjects were instructed to ease their

arm muscles as the orthosis took control of the movement and

applied adequate torque at the elbow joint. A comprehensive list of

the different thresholds for each subject can be found in Table 1A.

2.2.2 Experimental procedure
The experiment aimed at using tactile feedback to detect

errors intentionally introduced during the flexion or extension

movements of the active orthosis. Here, the term error refers to

a momentary change in the direction of orthosis movement for a

short duration of time (see Section 2.2.3 and Table 1B for more

details). Furthermore, the term movement trial will be used to

indicate a complete range of either flexion or extension movement.

The experiment was divided into three sessions per subject

- a preliminary session, a training session and the main session.

In the preliminary session, the subjects performed 30 movement

trials (15 flexions and 15 extensions) with no errors to obtain

a baseline. This was followed by a training session wherein the
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FIGURE 1

(A) Subject prepared with EEG and EMG electrodes wearing the orthosis on their right arm. (B) Visualization of the di�erent steps in the experimental

procedure. (C) ERPs averaged over all epochs within each event type: correct event (S48) and incorrect event (S96) for Subject AQ59D.

subjects got familiarized with how the errors felt and were also

instructed to squeeze the ball in their left hand upon detecting an

error. Ultimately, the main session consisted of 10 experimental

runs each consisting of 30 movement trials (15 flexions and

15 extensions). Within each run, six errors were randomly

introduced among the 30 movement trials (see Section 2.2.3 for

more details).

Before each run, subjects were reminded to stand still to

prevent motion artifacts in the EEG and EMG data. They were also

instructed to fixate their eyes upon a black cross against the white

wall in front of them to minimize eye artifacts in the EEG data.

The experimental run began only after subjects heard a start phrase

from the experimenter. It was also brought to their notice that if,

for some reason, they felt an error but forgot to squeeze the ball,
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TABLE 1 (A, B): Orthosis parameters; (C, D): Results of response-time (RT)

analysis based on the analysis from Kim and Kirchner (2023) (µ ± σ : mean

± standard deviation).

(A) Start thresholds for each subject

Subject
code

Start threshold
(flexion)

Start threshold
(extension)

AQ59D 1.0 N-m 1.2 N-m

BY74D 0.8 N-m 1.2 N-m

AC17D 0.8 N-m 1.2 N-m

AW59D 0.7 N-m 1.2 N-m

AY63D 1.0 N-m 1.2 N-m

BS34D 1.2 N-m 1.4 N-m

AJ05D 1.0 N-m 1.2 N-m

AA56D 1.0 N-m 1.2 N-m

(B) Operating parameters

Parameters Value

Number of errors 6

Duration of errors 250 ms

Fully extended position -10◦

Fully flexed position -90◦

Maximum deviation 0.3◦

Mean error position (Flexion) -42◦

Mean error position (Extension) -58◦

(C) Median RT for each subject over 10 datasets

Subject
code

Response
time

AQ59D 0.67 s

BY74D 0.61 s

AC17D 0.83 s

AW59D 0.72 s

AY63D 0.67 s

BS34D 0.68 s

AJ05D 0.91 s

AA56D 0.89 s

µ ± σ 0.75± 0.11

(D) Median RT for each set over 8 subjects

Dataset Response
time

Set 1 0.72 s

Set 2 0.73 s

Set 3 0.70 s

Set 4 0.71 s

Set 5 0.70 s

Set 6 0.74 s

Set 7 0.80 s

Set 8 0.76 s

Set 9 0.68 s

Set 10 0.74 s

µ ± σ 0.73± 0.03

they shall just proceed with the run. The subjects were not notified

of missed errors during the experiment. At the end of a run, the

orthosis motor automatically disabled itself, and the subjects were

informed via a stop phrase. After five runs, a 15-min break allowed

subjects to relax and remove the orthosis. A visual summary of the

whole experimental procedure is provided in Figure 1B.

2.2.3 Error introduction
As defined in Section 2.2.2, the term error refers to amomentary

change in the direction of orthosis movement for a short duration

of time (here, 250 ms, as mentioned in Table 1B). All 30 movement

trials were sequentially numbered from 1 to 30. Out of these, six

were randomly selected for the introduction of errors near the

Mean error position within the movement trial. The error position

varied for flexion and extension with aMaximum deviation of 0.3◦

from theMean error position as mentioned in Table 1B.

Furthermore, before randomly selecting the error trials, the

following conditions were considered:

• Errors were not introduced in the 1st and 2nd movement trials.

• Errors were not introduced in two consecutive movement

trials.

In practice, if the orthosis was executing flexion before the

introduction of the error, it would transition into an extension

for the specified duration of error (see Table 1B) and then resume

flexion until the end of the trial, and vice-versa.

2.3 Data acquisition

This section provides detailed information about the methods

used for recording the EEG and EMG data. Additionally, it also

describes the process of synchronization of these two types of data.

2.3.1 EEG recording
The EEG data were recorded using the 64-channel LiveAmp64

system from Brain Products GmbH1 and an ActiCap slim electrode

system2 with an extended 10–20 layout. The reference electrode was

placed at FCz and the GND at AFz electrode positions.

Great efforts were made to record high-quality EEG data and

minimize the noise in the data by keeping the impedances of all

64 electrodes below a threshold of 5 k�. This impedance check

was performed both prior to and after each experimental run. The

EEG data were recorded using the Recorder software3 (version

1.25.0001) from Brain Products GmbH. The sampling rate was

500 Hz and the measurement system used hardware filters that

limited the bandwidth of the data to a passband of 0.0 Hz–131.0 Hz.

1 https://www.brainproducts.com/solutions/liveamp/

2 https://www.brainproducts.com/solutions/acticap/

3 https://www.brainproducts.com/downloads/recorder/
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2.3.2 EMG recording
To record bipolar EMG data, the ANTmini eego amplifier4 was

used. The EMG data were recorded with a sampling rate of 1000

Hz using an adapted eego SDK5 for Python. Eight channels were

used, each measuring the muscle activity of the following muscles

on both the arms:

• M. biceps brachii

• M. triceps brachii lateral

• M. triceps brachii long head

• M. flexor digitorum superficialis

Before placing the electrodes, the skin was prepared with

Isopropyl alcohol (70% V/V). The electrodes were placed on the

muscle belly in accordance with the SENIAM guidelines (Hermens

et al., 2000).

2.3.3 Synchronization of EMG and EEG data
To synchronize EEG and EMG data for offline analysis, an

Event Trigger board (see Section 2 of the Supplementary material)

along with the Sensor & Trigger extension from the EEG system

were used. This setup enabled recording the start and end time

points of the EMG data within the EEG data. Thus, the EEG

system was used as the main device to enable the alignment of

both data streams with respect to each other. Despite the EEG

data recordings starting before EMG, the marked events served

as reference points to align both data streams. However, it has to

be noted that both data streams (EEG and EMG) were recorded

with different measurement devices with different sampling rates

(see Sections 2.3.1, 2.3.2). Nevertheless, with this approach, an

average time difference below 8.5 ms between both data streams

was achieved after evaluating the synchronicity for all recorded

data sets. This result was obtained by comparing the amount of

recorded data between the marked events in both data streams and

converting the difference into time (in ms). Please refer to Section

2.4.3 for the specification of the marked events in the EEG data.

2.4 Dataset and format

This section describes the data format, along with detailed

information about the dataset and the recorded events.

2.4.1 Data format
The recorded EEG data follows the BrainVision Core Data

Format 1.0, consisting of a binary data file (.eeg), a header file

(.vhdr), and a marker file (.vmrk).6 For ease of use, the data can

be exported into the widely adopted BIDS format as described

in Gorgolewski et al. (2016). Furthermore, for data analysis,

4 https://www.ant-neuro.com/products/eego_8

5 https://gitlab.com/smeeze/eego-sdk-pybind11/-/tree/

0ace9b329b7cf5f6d1da5d387d0f2a5c07e87ee7

6 https://www.brainproducts.com/support-resources/brainvision-core-

data-format-1-0/

processing and classification, two popular options are available -

MNE (Python)7 and EEGLAB (MATLAB).8 In contrast, the EMG

data is stored in the .txt format, where each column represents a

separate EMG channel.

2.4.2 Dataset description
In this section, the dataset’s folder structure is explained along

with the convention used for naming the files.

2.4.2.1 Folder structure

This section describes the hierarchical folder structure of the

recorded dataset. At the highest level, there are three folders,

namely EEG, EMG, and Metadata. The Metadata folder contains a

.txt file for each subject, segregated by a unique code, which consists

of meta-information about the subject as well as the measurement

sets. In addition to these files, there is also a short_description.txt

file with some general information about the whole study.

Furthermore, within each of the modality folders (EEG or

EMG), there is an additional level of folders segregated by subject

codes. Inside the EEG folder, each subject sub-folder is further

divided into two sub-folders namely data and imp. The data folder

consists of the actual measurement files as described in Section

2.4.1. In total, there is one baseline set without any errors stored

inside another sub-folder named baseline_without_error and 10

sets with deliberate errors introduced. Each header file (.vhdr)

also contains the impedance values of every electrode before the

set. Conversely, each header file inside the imp folder contains

impedance values after each set. All in all, all impedance values,

before and after the set, are available within the header files (.vhdr).

It has to be noted that, for some subjects, an additional set was

recorded for redundancy and included in this dataset under a sub-

folder named additional sets. For more detailed information, please

refer to the Metadata readme files included within the dataset.

2.4.2.2 Naming convention for data files

A consistent naming convention was followed for all our files,

dividing the filename into five segments. The first segment denotes

the date of data acquisition in yyyymmdd format (e.g., 20230424),

followed by the subject code (e.g., AC17D). The third segment

includes the experiment identifier, in this case, orthosisErrorIjcai,

followed by multi distinguishing it from previously conducted

experiments. For baseline runs, the suffix baseline_set along

with the set number (e.g., 1 or 2) was appended, while for

experimental runs with errors, only the run number was appended

at the end (e.g., set5). For instance, a filename would look like

20230424_AC17D_orthosisErrorIjcai_multi_set1.txt. It is important

to note that the term set was used to represent the data files

associated with the corresponding experimental run.

2.4.3 Recorded events
The events occurring during the run were systematically

recorded and stored in marker files (.vmrk) to enable offline

tracking. These marker files are located within the data sub-folder

7 https://mne.tools/stable/api/python_reference.html

8 https://sccn.ucsd.edu/eeglab/index.php
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of each subject inside the EEG folder (see Section 2.4.2 for data

structure). The first event (after the start of a run) was named S1

and marked the start of the EMG recording for synchronization

purposes (see Section 2.3.3 for detailed information). The event

S1 also occurred at the end of the EMG measurement. The

next recorded event was S64 which marked the start of flexion

movement. Similarly, the start of an extension movement was

marked by the event S32. In order to mark a trial without errors, the

event S48 was added around theMean error position as mentioned

in Table 1B. The event S96 occurred as soon as an error was

introduced in the trial. Additionally, if the subject squeezed the ball,

the event S80 was recorded in the marker file.

3 Analysis of data quality

In the following, we performed some basic analysis of the

recorded data to validate its data quality and briefly describe the

evoked event-related responses in EEG. Furthermore, to ensure

data quality, invalid measurement sets were categorized based on

the reason of exclusion and subsequently removed from the data

repository. The different exclusion categories are as follows:

• Subject behavior: activities that the subjects were informed

against performing (e.g.,: playing with the air-filled ball during

the experiment).

• Technical issues: issues that affected the functioning of

the orthosis (e.g.,: safety shutdown due to maximum

current/torque limit reach, issues with recording events, CAN

communication issue resulting in failure to start the orthosis

device, etc.).

• Artifacts and noise: detected in the EEG during live

visualization (e.g.,: excessive teeth clenching or head

movements).

The excluded sets of all subjects are listed below in the form of

subject code and set number followed by the exclusion category. The

excluded sets are as follows:

• AA56D, set8: Technical Issues.

• AC17D, baseline_set1: Artifacts and Noise.

• AJ05D, baseline_set1: Technical Issues.

• AJ05D, set8: Artifacts and Noise.

• AJ05D, set9: Artifacts and Noise.

• AQ59D, set1: Technical Issues.

• AW59D, set1: Artifacts and Noise.

• AY63D, baseline_set1: Subject Behavior.

Each of the rejected sets was excluded and supplemented by

an additional measurement set (as mentioned in Section 2.4.2.1).

While efforts were made to ensure high data quality, we observed

high-frequency noise in some EEG channels, likely induced when

subjects accidentally had contact with the unisolated parts of

the orthosis. Additionally, a 50 Hz noise was also observed

in the EMG data. Notably, for subject AQ59D, measurements

were taken for the muscle M. extensor digitorum instead of M.

flexor digitorum superficialis and for this subject, no alcohol

was used for skin preparation. Furthermore, for subject BY74D,

EMG data for set 3, set 4 and set 5 were not recorded due to

technical problems.

3.1 Behavioral analysis

For response-time analysis, we analyzed the time taken by each

subject to respond to error events. Asmentioned above, the subjects

were instructed to squeeze an air-filled ball after recognizing an

error. The time between the error event (S96) and the response to

the event (S80) was calculated for all events.

According to the experimental design, we expected a total of

480 responses to error events (6 error events × 10 datasets × 8

subjects = 480 error events). However, we found 9 false negative

cases (i.e., the ball was not squeezed, after an error event occurred)

and 5 false positive cases (i.e., the ball was squeezed, although

the error event did not occur). Hence, a total of 471 error event-

response pairs (480 error events - 9 false negatives) were used to

compute the response times. We obtained a median value of 0.72 s

over 471 error event-response pairs.

We also performed two additional analyses. First, we calculated

the response time averaged over all 10 sets for each subject (see

Table 1C). Furthermore, we also calculated the response time

averaged over all 8 subjects for each set (see Table 1D).

3.2 Event related potentials analysis

For ERP analysis, we analyzed the EEG data of one subject using

EEGLAB (see text footnote 8). We preprocessed the data as follows.

The raw EEGs were downsampled to 250 Hz, re-referenced to an

average reference, and filtered between 0.1 Hz and 15 Hz. The FCz

channel, used as a reference in the EEG recording, was recalculated

as an EEG channel for ERP analysis. After preprocessing, eye

artifacts were rejected by visual inspections. Hence, EEG data

without ocular artifacts was used for EEG segmentation. This

EEG data was segmented into epochs from 0.1 s to 1 s

after each event type (correct/incorrect). Epochs were averaged

within each event type with a baseline correction (-0.1 s until

stimulus onset).

For averaging epochs, we only used the error events with correct

responses i.e., true positive cases (the ball was squeezed when

error events occurred). Figure 1C shows the ERPs averaged over

all epochs for each event type (S48: correct event, S96: incorrect

event) for Subject AQ59D. The ERP morphology, i.e., the shape

and distribution on the scalp suggests that introducing errors elicits

a P300 component, specifically a P3b (Polich, 2007) component.

This may be elicited by infrequently occurring odd events to which

subjects respond, i.e., task-relevant events (Kirchner et al., 2016). In

the case of this subject, we could not observe a strongly expressed

error-related potential (ErrP) pattern, which is usually evoked by

the recognition of errors since there was a strong overlay by a

P300 potential. However, the overall shape of the evoked ERPs was

similar to the shape found in Chavarriaga et al. (2012).We observed

a first negativity around 250 ms followed by a positivity between

300 ms and 500 ms and a further negativity around 600 ms. Results
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for all subjects and grand average ERP analysis for this dataset can

be found in Kim and Kirchner (2023).

4 Conclusion

We presented and described an open-access dataset containing

EEG and EMG data from eight subjects assisted by an active

orthosis device in moving their right arm. Behavioral analysis

showed the subjects’ excellent recognition of errors which were a

momentary change in the direction of movement of the orthosis for

a short duration of time. The errors were simple and easily tactilely

detectable. The appearance of an ERP in the form of P3b indicates

that the subjects recognized the erroneous events as odd events.

The absence of a strong ErrP in the EEG during error introduction

may be attributed to the strong overlay with the elicited P300

potential and the simplicity of the error. These conclusions are

very preliminary based on an analysis of only one subject. Our

further analysis (Kim and Kirchner, 2023) showed some subjects

with strong ErrP, weak P300, and a clearly visible ErrP in the

grand average. We hope that the provided dataset and detailed

information about the experimental setup will allow its replication

enabling the research community to systematically investigate the

relationship between odd-event detection and erroneous event

evaluation evoked in the brain. A deeper understanding of this

relationship could help in the further development of approaches

that could allow automatic adaptation of an assistive device to a

subject’s individual needs.
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