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Zusammenfassung

In dieser Arbeit wurden Modelle zur Simulation reaktiver Überschallströmungen entwickelt und im-
plementiert. Dabei wurden einerseits Experimente in Stoßwellenrohren simuliert, um Zündphänomene
und Grenzschichteinflüsse zu untersuchen. Zum anderen wurden Simulationen von Detonationswellen
durchgeführt, um Eigenschaften bezüglich Zellstruktur und Zellstabilisierung zu analysieren.

Für die Simulation kompressibler Strömungen wurde zunächst der hauseigene Code PsiPhi erweitert.
Hierbei kamen approximative Riemann-Löser und charakteristische Randbedingungen zum Einsatz. Auf-
grund der dissipativen Natur von Upwind-Verfahren wurden außerdem Interpolationsverfahren höherer
Genauigkeit getestet und angewendet, um turbulente Strömungen adäquat abzubilden. Zur Simulation von
Zündprozessen wurde ein Verbrennungsmodell auf Basis der Finite-Raten-Chemie verwendet, welches im
Vergleich zu tabellierten Verbrennungsmodellen rechenintensiver ist. Daher wurden implizite und semi-
implizite Löser für Systeme gewöhnlicher Differentialgleichungen implementiert, um die Recheneffizienz
zu verbessern. Die Integration eines Operator-Splitting-Frameworks führte zu einer weiteren Reduzierung
der Rechenkosten.

Für die Simulation von Stoßwellenrohrexperimenten wurde im Anschluss ein Workflow entwickelt,
bei dem nur ein kleiner Teil des Stoßwellenrohres berechnet werden muss. Dieser Teil kann jedoch räum-
lich hoch aufgelöst werden. Hierbei wird zunächst eine kleinere Hilfsrechnung benötigt, die das initiale
Riemann-Problem zum Start des Experiments simuliert. Nachdem sich der einfallende Stoß vollständig
entwickelt hat, wird ein vorab definierter Bereich um den einfallenden Stoß herum gespeichert und in
der darauf folgenden Hauptsimulation, die nur den Endteil des Stoßwellenrohres abdeckt, als Startlösung
verwendet. Aufgrund der Bildung einer Grenzschicht hinter dem einfallenden Stoß ändern sich die Zus-
tandsgrößen am Einlassrand der Rechendomäne. Daher wurde eine Randbedingung entwickelt, die Mod-
elle für laminare Grenzschichten, turbulente Grenzschichten, Grenzschichttransition und deren Einfluss
auf die Kernströmung anhand der “Small Perturbation Theory” vereint und die Größen als Funktion des
Wandabstandes und der Zeit vorgibt. Der Ansatz wurde anhand experimenteller Daten validiert und kon-
nte Experimente reproduzieren, bei denen eine ungewollte Zündung fernab der Endwand auftrat. Darüber
hinaus konnte eine der ersten 3D-Simulationen von Stoßwellenrohrexperimenten eine durch Stoßbirfukra-
tion verursachte Zündung nachweisen.

Im zweiten Teil dieser Arbeit wurde die Ausbreitung von Detonationswellen in Kanälen und Rohren
untersucht. Um auch hier eine hohe numerische Auflösung zu ermöglichen, wurde ein relatives Ko-
ordinatensystem verwendet, sodass die gemittelte Detonationsfront stationär ist und mit einer kleinen
Rechendomäne numerisch untersucht werden kann. Die Ergebnisse wurden anhand numerischer Ruß-
folien mit experimentellen Daten verglichen. Dabei konnte die mittlere Zellweite sowie die Größen-
verteilung zufriedenstellend reproduziert werden. Dies ist bislang nur wenigen Studien gelungen, da aus
Kostengründen häufig stark vereinfachte 1-Schritt-Reaktionsmechanismen verwendet wurden. Die Daten
dienten außerdem als Grundlage für die Entwicklung eines geometrischen, effizienten Modells für die
Detonationszellstruktur. Eine Stabilitätshypothese für Detonationszellgrößen konnte anhand zeitlich hoch
aufgelöster Ergebnisse überprüft und für die hier untersuchten Mischungen bestätigt werden.
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Abstract

In this work, models for simulating reactive supersonic flows were developed and implemented. On one
hand, experiments in shock tubes were simulated to investigate ignition phenomena and boundary layer
effects. On the other hand, simulations of detonation waves were conducted to analyze properties related
to cell structure and cell stabilization.

For the simulation of compressible flows, the in-house code PsiPhi was first expanded. Approximate
Riemann solvers and characteristic boundary conditions were used. Due to the dissipative nature of Up-
wind methods, interpolation methods of higher accuracy were also tested and applied to adequately rep-
resent turbulent flows. For simulating ignition processes, a finite-rate chemistry combustion model was
employed, which is computationally more intensive compared to tabulated combustion models. There-
fore, implicit and semi-implicit solvers for systems of ordinary differential equations were implemented
to enhance computational efficiency. The integration of an Operator-Splitting framework further led to a
reduction in computational costs.

Subsequently, a workflow was developed for simulating shock tube experiments, where only a small
portion of the shock tube needs to be computed, but with high spatial resolution. Initially, a smaller
auxiliary calculation was needed to simulate the initial Riemann problem at the start of the experiment.
After the incident shock wave has fully developed, a predefined region around the incident shock wave is
saved and used as the initial solution in the subsequent main simulation, which covers only the end part of
the shock tube. Due to the formation of a boundary layer behind the incident shock, the state variables at
the inlet boundary of the computational domain change. Therefore, a boundary condition was developed,
which combines models for laminar boundary layers, turbulent boundary layers, boundary layer transition,
and their influence on the core flow based on the “Small Perturbation Theory”, specifying the variables as
a function of wall distance and time. This approach was validated using experimental data and was able
to reproduce experiments where an unintended ignition occurred far from the end wall. Additionally, one
of the first 3D simulations of shock tube experiments was able to demonstrate ignition caused by reflected
shock bifurcation.

In the second part of this work, the propagation of detonation waves in channels and tubes was in-
vestigated. To allow for high numerical resolution, a relative coordinate system was used, ensuring that
the averaged detonation front is stationary and can be numerically examined with a small computational
domain. The results were compared with experimental data using numerical soot foils. The average cell
width and size distribution could be satisfactorily reproduced. This has been achieved by only a few stud-
ies so far, as often heavily simplified one-step reaction mechanisms were used due to cost considerations.
The data also served as a basis to develop a geometrically efficient model for the detonation cell struc-
ture. A stability hypothesis for detonation cell sizes was also verified based on temporally highly resolved
results and was confirmed for the mixtures investigated here.



vi

Preface

The research presented in this thesis was conducted during my time as a research assistant at the Chair
of Fluid Mechanics at the University of Duisburg-Essen. First and foremost, I would like to express my
gratitude to my doctoral supervisor, Prof. Dr.-Ing. Andreas Kempf, who placed trust in me even as a
student and provided me with the opportunity to delve into this captivating field. Moreover, Andreas
enabled me to write my master’s thesis at a prestigious university in the United States, which allowed me
to establish vital connections. Throughout my doctoral studies, Andreas has been consistently available
to guide me towards the core aspects of my research and offer inspiration when solutions seemed out of
reach.

I would also like to extend my appreciation to Dr.-Ing. Irenäus Wlokas, who played a significant role in
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Chapter 1
Introduction

1.1 Motivation

Combustion has been used for thousands of years and is essential for the development of modern mankind.
In today’s world, the conversion of chemical energy through combustion into heat, mechanical, and elec-
trical energy is deeply integrated into everyday life.

During the combustion of hydrocarbons, various products are formed through chemical conversion.
These include water (H2O), carbon dioxide (CO2) and monoxide (CO), nitrogen oxides (NOx), and sulfur
oxides (SOx). Some of these compounds are proven to be harmful to human health, while others, known
as greenhouse gasses, absorb radiation in the infrared band. The greenhouse effect prevents the Earth’s
average temperature from falling below 0 °C and enables the existence of the plant and animal life we
know. However, the escalating concentrations of greenhouse gasses, particularly CO2 [2], intensify this
effect, leading to irreversible climate changes with unforeseen consequences. Some of these consequences
are already evident, such as the melting of glaciers. In response, global targets have been set to limit the
temperature rise to 1.5 °C or, at the very least, below 2 °C [3]. Consequently, numerous countries have
established ambitious objectives to reduce the usage of fossil fuels, thereby mitigating CO2 emissions and
other pollutants.

Fossil fuels have consistently accounted for over 80 % of the total energy demand for several decades,
while the total energy demand has simultaneously increased, driven by a growing population. However,
according to the latest report by the International Energy Agency, there is a projected decrease in reliance
on fossil fuels in the energy mix by 2030, indicating a significant shift. Although overall energy con-
sumption will continue to rise, the additional demand will be met by renewable energies. Coal is expected
to reach its maximum share of the energy mix by 2025, while gas and oil will plateau. By 2060, the
share of fossil energy is anticipated to drop below 60 %. Nevertheless, the combustion of fossil fuels will
remain integral to electrical energy generation, transportation, and heating for many decades to come.
Therefore, reducing emissions requires not only the adoption of alternative renewable energies but also
efficiency improvements in existing combustion concepts, cleaner combustion processes, and the utiliza-
tion of alternative fuels such as bio fuels and hydrogen. Furthermore, a comprehensive understanding of
fuel characteristics is imperative to enhance combustion processes.

Among alternative fuels, hydrogen holds a special position. Unlike commonly used fuels, hydrogen
lacks carbon atoms, thereby eliminating carbon dioxide and carbon monoxide emissions. It possesses the
lowest molar mass among fuels, making it highly volatile and posing storage challenges. Additionally,
hydrogen exhibits high diffusivity, resulting in high laminar flame velocities and thermodiffusive insta-
bility. It has a short ignition delay time and is considered highly reactive. These characteristics have so
far hindered the widespread adoption of hydrogen in combustion systems, especially due to safety con-
cerns. Nonetheless, there has been a rise in government-funded hydrogen initiatives in recent years. One
short-term approach to utilizing hydrogen is its simultaneous combustion with natural gas, for instance, in
stationary gas turbines. However, well-established reaction kinetics models for methane combustion (e.g.,
GRI-MECH 3.0 [4]) have proven inadequate in modeling these processes. Hence, there is an urgent need
for new reaction kinetics models, not only for the simultaneous combustion of natural gas and hydrogen
but also for combustion of other renewable fuels, to enhance combustion processes in the near future.

Fuel characterization has primarily been conducted in shock tubes since the 1950s, supplemented by
the use of Rapid Compression Machines (RCM). A shock-tube experiment, in summary, involves com-
pressing a combustible test mixture twice using a compression shock, which rapidly increases the temper-
ature and initiates chemical reactions. The ignition process occurs at nearly constant pressure and temper-



2 Chapter 1. Introduction

ature until the mixture ignites, resulting in a pressure spike. This allows to model the ignition process of
the test mixture by a zero-dimensional (0D) reactor at constant volume and constant internal energy, aid-
ing in the development of suitable reaction mechanisms for fuels. These mechanisms, in turn, are crucial
for designing and optimizing combustion systems. Initially, shock-tube experiments involved mainly Ar-
gon diluted test mixtures, and were conducted at high initial temperatures to achieve short ignition delay
times (below 1 ms). In the early 2000s, interest grew in replicating conditions encountered in gas turbine
combustion chambers or internal combustion engines, leading to the use of undiluted mixtures across a
wide temperature range, including temperatures below 1100 K and thus larger ignition delay times [5].
Discrepancies between measurement results and expectations based on existing kinetics models and zero-
dimensional reactor simulations became evident in many of the experiments under those conditions. It
became clear that multidimensional effects become more influential with longer test times, resulting in so
called non-idealities. For example, pre-ignition pressure changes can be observed during the experiment,
challenging the assumptions of constant volume and constant internal energy in 0D reactor simulations.
Gaining a detailed understanding of these multidimensional effects is crucial to ensure that experimental
results do not lead to significant errors in the kinetic models based on them.

1.2 Aim of the thesis

The primary objective of this work is to contribute to the advancement of clean and efficient combustion.
Achieving this goal requires a comprehensive understanding of the physical and chemical processes in-
volved in combustion. While experiments provide valuable insights, the extreme conditions of combustion
systems often limit optical access to small areas and single quantities. In contrast, numerical simulations
provide a plethora of quantities in each point of the numerical domain. Furthermore, simulations have
become more cost and time-efficient than experiments due to the increasing power and size of processors
and hard drives. To further enhance the affordability of simulations, lower-order models that approximate
larger-scale simulations with appropriate boundary conditions prove to be a valuable tool.

This thesis focuses on various aspects of reactive supersonic flows. The first part, which was funded
by a DFG project, investigates non-ideal effects in shock tubes through two-dimensional (2D) and three-
dimensional (3D) computational fluid dynamics (CFD) simulations. In the 2D simulations, special focus
was put on time changing variables on the inlet boundary using the so-called perturbation theory. The
impact of this newly developed boundary condition on end-wall pressure histories and ignition events are
examined. In the 3D simulations, conditions leading to reflected shock bifurcation, are explored in terms
of remote ignition events. The obtained results aim to raise awareness of the challenges associated with
reflected shock bifurcation under realistic conditions. Additionally, the findings from the 2D simulations
contribute to the development of more cost-effective low-order models. For instance, a potential low-order
model could involve a 0D reactor featuring a constant internal energy and a volume that changes size as
a function of a previously predicted pressure evolution. Several of these reactors could be placed with
different distance from the shock tube end wall to predict remote ignition.

The second part of this thesis focuses on the numerical investigation of detonation wave propaga-
tion. Utilizing detonations (combustion at constant volume) in propulsion systems holds the promise of
efficiency advantages over the currently employed Joule process (combustion at constant pressure). Con-
ceptual designs, such as rotating detonation engines (RDE), have been proposed. However, it is crucial to
ensure that detonations can stably propagate at nearly constant speeds within narrow confinements. It has
been established that sustained detonation propagation is not possible when the channel height (or tube
diameter) falls below a critical threshold linked to the characteristic size of the detonation cell structure.
Consequently, this study explores detonation propagation of hydrogen-oxygen mixtures, both with and
without ozone, to elucidate propagation characteristics and establish a connection between the size of the
detonation cellular structure and the mixture-dependent separation rate between the pressure wave and
reaction zone.
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1.3 Structure

Following the introductory chapter, the second chapter of the thesis provides the necessary theoretical
foundations to address the research problems. These include the conservation equations for compressible
and reactive systems, premixed combustion waves, and turbulence modeling in large eddy simulations
(LES). In order to solve the equations efficiently on highly parallelized systems, they must be discretized
first, and the algorithms necessary to accomplish the task are discussed in detail in Chapter 3. Chapter 4 is
dedicated to exploring the unique characteristics of shock tubes and provides the modeling of laminar and
turbulent boundary layers behind incident shock waves and investigates their influence on the flow outside
the boundary layer in confined systems.

Chapters 5-8 consist of journal papers that have either been published or are currently under review
[6–8]. Chapter 5 presents a highly resolved LES of a shock tube simulation using a stoichiometric hydro-
gen/oxygen mixture. This particular case exhibits reflected shock bifurcation, resulting in a complex flow
field and unintended ignition far from the end wall. Remarkably, this is the first 3D simulation demon-
strating such ignition. In Chapter 6, 2D simulations of shock tube experiments are presented, involving
non-reactive mixtures at varying pressure levels and experiments with a diluted hydrogen/oxygen mixture
at higher pressure. Notably, the non-reactive cases reveal unexpected pressure profiles near the end wall.
To address this, a new inlet boundary condition is introduced to accurately describe both the boundary
layer and the temporal changes in the core flow, effectively reproducing the pressure evolution. The same
inlet boundary condition is subsequently employed in the reactive simulations to replicate remote ignition
and to further validate the approach. Chapter 7 showcases 2D simulations of detonation waves in narrow
channels using a stoichiometric hydrogen/oxygen mixture, with and without the addition of ozone. The
investigation focuses on two channel heights and assesses the impact of viscous terms on cell structure
and velocity deficit. Furthermore, a comprehensive analysis of all detonation cells is conducted to ver-
ify a previously proposed hypothesis regarding a detonation cell size stabilization mechanism. Chapter
8 expands upon the previous chapter by conducting 3D simulations of detonation waves using the same
ozonated mixture as in Chapter 7. This study specifically explores the influence of geometric confinement
on the three-dimensional structure of the detonation wave front.

Chapter 9 provides a summary of additional publications with co-authorship, highlighting the broader
contributions made by the author. The final chapter offers a comprehensive summary of the most sig-
nificant results obtained throughout the thesis and provides an outlook on potential improvements and
extensions based on the current state of research.
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Chapter 2
Theory

2.1 Governing Equations for Multicomponent Combustion Systems

This section introduces the fundamental conservation equations used to describe single-phase reactive
multicomponent flow problems and can be found in many classical textbooks (e.g., [9, 10]). The fluid
phase can be treated as a continuum in many combustion problems and also applies to the combustion
systems presented in this work. It is then unnecessary to consider each molecule individually. Instead, the
macroscopic quantities pressure, temperature, and density define the state of the gas phase. This general
assumption allows the flow description by a system of coupled partial differential equations (PDE). Other
classical assumptions are made, including the coupling of pressure, density, and temperature via the ideal
equation of state (EOS) and the assumption of thermodynamic equilibrium. The Einstein index notation
is used in many of the equations outlined below, suggesting summation over a set of indices given in a
formula.

2.1.1 Mass Conservation Equation

Without consideration of any nuclear processes, the mass in a control volume can change in time only
by fluxes across the system boundaries. The continuity equation thus postulates that mass can neither be
created nor destroyed:

∂ρ

∂t
+
∂ρui

∂xi
= 0, i = 1, 2, 3 (2.1)

Equation 2.1 features the fluid mass density ρ and the velocity vector component ui in ith direction. The
equation further simplifies to a divergent-free condition for velocity fields, if the density is constant.

2.1.2 Species Conservation Equations

The composition of a gas mixture must be known in terms of multicomponent reacting systems and can
be described by both mass fractions Yα or mole fractions Xα, defined as:

Yα =
mα∑NS
α=1 mα

(2.2)

Xα =
nα∑NS
α=1 nα

(2.3)

Equations 2.2 and 2.3 feature the species index α and the number of species NS involved in the mixture.
A transport equation for individual species partial densities can be derived which, when summed over all
species, yields the continuity equation and is therefore the preferred choice:

∂ρYα
∂t

+
∂ρYαui

∂xi
+
∂ρYαVi,α

∂xi
= ω̇α, α = 1, 2, ... ,NS (2.4)

Equation 2.4 introduces the partial mass density ρYα, the chemical source term ω̇α defining the rate at
which a species is produced or consumed, as well as the species diffusion velocity Vi,α (caused by inter-
diffusion processes), which is considered relative to the bulk velocity ui.
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2.1.2.1 Diffusion Velocities

The exact computation of the species diffusion velocities Vi,α requires the solution of a linear system with
a coefficient matrix size of NS×NS at each point in space and time [10]. The calculation considers species
diffusion by concentration gradients (Maxwell-Stefan diffusion), species diffusion by temperature gradi-
ents (Soret effect), species diffusion by pressure gradients, and species diffusion by volume forces acting
differently on individual species. In the context of numerical simulations, solving the linear system can
quickly take up the majority of the computational time. It is therefore common to resort to approximations
and simpler models that are, however, suitable for the investigated problems. The most common approach
is Fick’s first law of mass diffusion, where species diffusion is exclusively driven by mass fraction/molar
fraction gradients:

ji,α = ρYαVi,α = −ρDα
∂Yα
∂xi

= −ρD′α
∂Xα
∂xi

(2.5)

D′α =
W
Wα

Dα (2.6)

Here, jα is the diffusive mass flux of species α, Dα is the diffusion coefficient in terms of mass fraction
gradients, D′α is the diffusion coefficient in terms of mole fraction gradients, W is the mean molecular
weight of the mixture and Wα is the molecular weight of species α. It has been shown in numerical tests
to be beneficial to express the diffusive mass flux by means of molar fraction gradients [9] and which is
therefore applied preferably. The mean molecular weight is computed from:

W =
1∑NS

α=1 Yα/Wα

(2.7)

If the diffusion velocities vary greatly among the species (e.g., hydrogen combustion), a popular choice for
the diffusion coefficient is the mixture averaged diffusion coefficient according to the Hirschfelder-Curtiss
approximation [11]:

1
Dm,α

=

NS∑
β,α

Xβ
Dαβ

+
Xα

1 − Yα

NS∑
β,α

Yβ
Dαβ

(2.8)

Here, the subscript m, α implies diffusion of species α into a mixture of gases and can be used directly
in Eq. 2.5 replacing Dα. The sum of the diffusion mass fluxes in a single point, as computed by Eq. 2.8,
can deviate from zero (in contrast to the multicomponent formulation), therefore violating the continuity
equation. To remove the inconsistency between the continuity equation and the mass species conservation
equations, a correction velocity VC,i can be introduced [11]:

ji,α = ρYαVi,α + ρYαVC,i (2.9)

VC,i = −

NS∑
α=1

YαVi,α (2.10)

In cases where an inert species with a simultaneously large mass fraction is present in the gas mixture, the
error can alternatively be compensated by the mass fraction of the inert species (e.g., by nitrogen, when
air is used as oxidizer). Here, only (NS − 1) species evolve following Eq. 2.4, while the mass fraction of
the inert species with index α = NS is defined as:

YNS = 1 −
NS−1∑
α=1

Yα (2.11)
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Another common approach to model species diffusion is the assumption of constant diffusion coefficients
among all species, where the diffusion coefficient is computed based on a constant Lewis number Le,
relating thermal conduction and mass diffusion:

Le =
λ

ρDα cp
(2.12)

ji,α = −
λ

Le cp

∂Yα
∂xi

(2.13)

Equation 2.12 features the specific heat capacity cp of the mixture at constant pressure and the heat conduc-
tivity λ of the mixture. The Lewis number is often set to unity, thus referring to the Unity Lewis number
approach and, by definition, does not require a correction velocity. Especially for methane flames, the
Unity Lewis assumption is in good approximation to the reference solution, whereas the assumption is not
suitable for hydrogen flames due to the high diffusive velocities of hydrogen.

2.1.2.2 Chemical Reaction Source Terms

The source terms on the right-hand side of Eq. 2.4 can be evaluated by reaction kinetics. In general, the
source term of each species is a function of all species in the system, as well as the thermodynamic state:

ω̇α = f (p,T,Y1,Y2, ...,YNS) (2.14)

In Eq. 2.14, p is the static pressure and T is the thermodynamic temperature. The vector of species
source terms is then governed by a set of coupled ordinary differential equations (ODE). Typically, fuel
and oxidizer (educts) do not react to the products in a single reaction step, but instead decompose to
intermediate species that will eventually form the stable products. The description of these processes is
based on a reaction mechanism via NR intermediate reactions, which can be represented as follows:

NS∑
β=1

ν′βrXβ −−−⇀↽−−−

NS∑
β=1

ν′′βrXβ, r = 1, 2, ... ,NR (2.15)

Expression 2.15 features the forward and backward molar stoichiometric coefficients ν′β and ν′′β of species
β with the chemical formula Xβ and illustrates that reaction r can proceed both in forward and backward
direction involving all the species with molar stoichiometric coefficients that are nonzero.

2.1.2.3 Elementary Reactions

Various expressions exist for describing a reaction and calculating its rate of progress. The most frequently
used type is the elementary reaction. An example is the reaction of a hydrogen molecule (H2) and a
hydroxyl radical (OH) to atomic hydrogen (H) and a water molecule (H2O):

H2 + OH −−−⇀↽−−− H + H2O (2.16)

The rate of progress qr of an elementary reaction r can be computed as the difference of forward and
backward reaction rates, both following the law of mass action [10]:

qr = kf,r(T )
NS∏
β=1

[
Xβ

]ν′βr
− kb,r(T )

NS∏
β=1

[
Xβ

]ν′′βr (2.17)
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Equation 2.17 states that the rates of forward and backward reaction are proportional to the product of
the corresponding molar concentrations of the involved species

[
Xβ

]
raised to the power of the respective

molar stoichiometric coefficients. The proportionality constants kf and kb are exclusively a function of
temperature and referred to as reaction rate constants. The forward reaction rate constant kf can be
calculated with the Arrhenius law [11]:

kf(T ) = A T b exp
(
−

Ea

Rm T

)
(2.18)

Here, the expression A T b represents a collision frequency, whereby the exponential function, which is
also denoted as the Boltzmann factor, features the activation energy Ea and the universal gas constant Ru.
Once the forward reaction rate constant is known, the corresponding backward reaction rate constant kb
can be derived using the equilibrium constant KC via kb = kf/KC . Finally, the reaction source term for a
species α can be calculated based on all reactions in which the respective species is present either on the
reactant or product side. Taking the molar stoichiometric coefficients into account yields:

ω̇α = Wα

NR∑
r=1

(
ν′′αr − ν

′
αr

)
qr (2.19)

2.1.2.4 Three-Body Reactions

Some reaction descriptions can benefit from the inclusion of a third body collision, providing energy and
thus changing the rate of the reaction without being chemically transformed. Every species present in
the mixture can act as a third body, although notably some third body species might have an enhanced or
reduced impact on the reaction rate. An example for a three-body reaction is the thermal dissociation of
H2:

H2 + M −−−⇀↽−−− 2 H + M (2.20)

In chemical formulas, a third body is depicted as M, while the concentration of the third body is generally
described by [M] and commonly referred to as effective concentration:

[M] =

NS∑
β=1

aβr
[
Xβ

]
(2.21)

Here, aβr is the efficiency factor of species β in the rth reaction. If all species have the same efficiency of
unity, the effective concentration becomes the total concentration of the mixture. The rate of progress of
these type of reactions can be computed as:

qr = [M]

kf,r(T )
NS∏
β=1

[
Xβ

]ν′βr
− kb,r(T )

NS∏
β=1

[
Xβ

]ν′′βr

 (2.22)

Equation 2.22 thus replaces equation 2.17 in terms of Three-Body reactions, whereby the first expression
on the right-hand-side (RHS) is added to the previous formulation.
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2.1.2.5 Pressure Dependent Reactions

Pressure dependent reactions can only be described by two different reaction-rate formulations at low and
high pressure, respectively. This could be the case, for example, if a reaction at low pressures requires
a third-body collision in order to proceed, but is perfectly described by an elementary reaction at high
pressure (or vice versa). The reaction rate must be described by suitable interpolation of the limit solu-
tions between these pressure limits. An example for a pressure-dependent reaction is the formation of a
hydroperoxyl (HO2) molecule:

H + O2 (+ M) −−−⇀↽−−− HO2 (+ M) (2.23)

The brackets indicate that the third body is only active in a pressure limit. Software, specifically devel-
oped for the computation of chemical systems like Cantera [12] or Chemkin [13], provide two types of
pressure dependent reactions, that is Fall-Off reactions and Chemically Activated Bimolecular reactions.
The reaction mechanisms used in the present work exclusively use Fall-Off reactions in the context of
pressure-dependent reactions. The forward reaction-rate constant of Fall-Off reactions is given as:

kf = kf,∞

(
Pr

1 + Pr

)
F (2.24)

Pr =
kf,0 [M]

kf,∞
(2.25)

Equations 2.24 and 2.25 feature the upper pressure limit forward reaction rate constant kf,∞, the lower
pressure limit forward reaction rate constant kf,0, both of which are computed by an Arrhenius expression,
the dimensionless pressure Pr and the Fall-Off parameter F. Different models exist for describing the
Fall-Off parameter from Lindemann [14], Gilbert et al. [15] and Stewart et al. [16]. After computing the
forward and backward reaction rate constants, Eq. 2.17 can be used to determine the rate of progress
variable.

2.1.3 Momentum Conservation Equations

The momentum conservation equations express Newton’s second law of motion, which states that momen-
tum in an infinitesimal volume can only change by convection and forces that act on the volume:

∂ρui

∂t
+
∂ρuiu j

∂x j
= −

∂p
∂xi

+
∂τi j

∂x j
+ ρ

NS∑
α=1

Yα fi,α (2.26)

Here, τi j denotes the viscous stress tensor with stress components due to deformation, while fi,α is the net
volume force of component α per unit mass. Continuous, isotropic fluids whose shear stress is proportional
to the deformation rate are called Newtonian fluids and the viscous stress tensor is given by:

τi j = τ ji =

(
µ′ −

2
3
µ

)
∂uk

∂xk
δi j + µ

(
∂ui

∂x j
+
∂u j

∂xi

)
(2.27)

Equation 2.27 features the bulk viscosity µ′, the Kronecker symbol δi j and the dynamic viscosity µ. Not
only is the bulk viscosity very difficult to determine reliably [10], it is also negligible in most combustion
applications and will therefore be discarded in the following. The term of −2/3 µ is then needed to
ensure that the bulk viscosity is zero. Equations 2.26 are referred to as Navier-Stokes equations [17,
18], if Eq. 2.27 is used to determine the stress components. The proportionality constant µ that relates
the rate of deformation with the stress, must be known to solve Eq. 2.26 and can be determined using
mixture-averaged models or polynomial functions specifically fitted for mixtures or gases. An example
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of a mixture-averaged model is the one by Bird et al. [19] (which in turn is a modification to a model by
Wilke [20]):

µ =

NS∑
α=1

Xαµα∑NS
β XβΦαβ

(2.28)

Φαβ =
1
√

8

(
1 +

Wα

Wβ

)−1/2 1 +

(
µα
µβ

)1/2 (
Wβ

Wα

)1/42

(2.29)

If the mass fraction Yα of species α is known, the corresponding mole fraction Xα can be computed from:

Xα = Yα
W
Wα

(2.30)

The sums incorporated in Eq. 2.28 can make the calculation of the mixture-averaged viscosity at any
point at any time expensive. Polynomial fits reduce the computational effort, whereby Sutherland’s law is
a frequently used method in this context [21]:

µ = µref

(
T

Tref

)3/2 Tref + S µ

T + S µ
(2.31)

Here, µref and Tref are reference values of viscosity and temperature for a specific gas mixture and S µ is
the fitting parameter.

2.1.3.1 Pressure Gradient

The pressure in the conservation of momentum equation (Eq. 2.26) appears only as a pressure gradient,
which implies that the exact pressure is not needed to solve the equation, if the gradient can be approxi-
mated otherwise. This fact is especially important in the low Mach number limit, where Eq. 2.1 and 2.26
can be discretized and recast into a Poisson type equation that can be solved to provide a pressure field.

If compressibility has to be taken into account, the previous approach can no longer be used and the
pressure must be approximated via material laws instead. In this work, the ideal gas law is used for this
purpose:

p
ρ

= T
Rm

W
= T Rs (2.32)

According to Eq. 2.32, pressure can be determined based on density, temperature and the specific gas con-
stant Rs. The temperature is typically computed from a transported energy, as pointed out in Sec. 2.1.4,
whereas in the low Mach number limit, the additional transport of energy is not necessarily required. Al-
ternative material laws exist, i.e. if pressures are very high, as is the case in rocket engines, or temperatures
are very low, real gas effects must be considered [9].

2.1.4 Energy Conservation Equation

The energy conservation equation is necessary for the closure of temperature. There are eight different
energy definitions that are candidates for conservation, which are all mathematically consistent, but have
advantages and disadvantages in the context of computational fluid dynamics [9]. The energy conserva-
tion in terms of absolute, total, internal energy stems directly from the energy balance of an infinitesimal
volume element fixed in space. Since this formulation features a single time derivative and also incorpo-
rates kinetic and chemical energy, both of which are vital in high Mach reactive flows, it is the preferred
choice for simulation of compressible flow:
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∂ρE
∂t

+
∂ (ρE + p) ui

∂xi
= −

∂qi

∂xi
+
∂τi jui

∂x j
+ Q̇ (2.33)

Here, E is the total internal chemical energy, qi is the heat flux vector and Q̇ is the net rate of external
energy input. The attribute chemical implies the inclusion of standard formation enthalpies (h0

f ) and total
implies the addition of kinetic energy (1/2 ukuk):

E = h −
p
ρ

+
ukuk

2
(2.34)

h =

NS∑
α=1

Yα hα (2.35)

hα =

∫ T

T0

cp,α(T ) dT + ∆h0
f,α (2.36)

Equations 2.34-2.36 feature the sensible chemical enthalpy h of the mixture, the sensible chemical en-
thalpy hα of species α, the specific heat capacity cp,α of species α at constant pressure and the standard
formation enthalpy ∆h0

f,α of species α. The first term on the right hand side of Eq. 2.36 represents the
sensible enthalpy, while the second term presents the chemical part. The heat flux vector qi considers heat
conduction according to Fouriers’s law and heat fluxes due to interdiffusion processes [10, 11]:

qi = −λ
∂T
∂xi

+

NS∑
α=1

hα ji,α (2.37)

The heat conductivity λ of the mixture can be either derived by temperature polynomials (similar to the
one used in Eq. 2.31), or the averaging formula by Mathur et al. [22]:

λ =
1
2

 NS∑
α=1

Xαλα +
1∑NS

α=1 Xα/λα

 (2.38)

Equation 2.33 can be further used to derive additional energy conservation equations that may be advan-
tageous in certain situations. For example, a transport equation for kinetic energy can be derived using
the momentum conservation equation (Eq. 2.26) and subtracted from Eq. 2.33. As a result, a transport
equation for absolute, internal energy e is obtained, from which, in turn, a transport equation for absolute
enthalpy h can be obtained [23]:

∂ρh
∂t

+
∂ρhui

∂xi
=

Dp
Dt
−
∂qi

∂xi
+ τ ji

∂u j

∂xi
+ Q̇ (2.39)

Dp
Dt

=
∂p
∂t

+ ui
∂p
∂x

(2.40)

Here, Dp
Dt is the material derivative of pressure and approaches a value of zero in the low Mach limit. The

effect due to friction (3rd term on the right hand side (RHS) of Eq. 2.39) can also be neglected if velocities
are small, so that a much simpler enthalpy conservation equation can be used:

∂ρh
∂t

+
∂ρhui

∂xi
= −

∂qi

∂xi
+ Q̇ (2.41)

Equation 2.41 was used in the present work for the validation of combustion models using one-dimensional
adiabatic flames.
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Table 2.1: Typical Mach numbers and normalized post-shock quantities of detonations and deflagrations
[24].

Detonation Deflagration
u1/c1 5 – 10 0.0001 – 0.03
u2/u1 0.4 – 0.7 4 – 16
p2/p1 13 – 55 0.98 – 0.99999996
T2/T1 8 – 21 4 – 16
ρ2/ρ1 1.7 – 2.6 0.06 – 0.25

2.2 Combustion

Combustion only takes place in regions, where both fuel and oxidizer are present. Furthermore, the ratio
between the quantities of fuel and oxidizer must fall within a precise range known as the flammability
limits. The lower and upper bounds of this ratio signify the thresholds beyond which sustained combustion
cannot take place. Upon fulfilling these criteria, the initiation of net exothermic reactions occurs through
an external energy source, which can be a spark or the transfer of heat from an already existing flame. In
technical combustion systems, such as those employed for power generation or the facilitation of targeted
material production, it is of high importance to ensure the thorough mixing of reactants and oxygen.
The mixing process can be completed before entering the combustion chamber, which is then called
a perfectly premixed flame. Alternatively, fuel and oxygen can be fed separately into the combustion
chamber, where convection and diffusion create flammable regions by mixing, referred to as non-premixed
flames or diffusion flames.

Both approaches have advantages and disadvantages in terms of operational security, emission ten-
dencies and flame characteristics. For example, a perfectly premixed flame can be designed to be lean,
which means that more oxygen is present, as would be necessary to completely convert the fuel into the
reaction products. As a result, unwanted emissions, such as toxic CO emissions, will be prohibited. Si-
multaneously, due to the fact that the incoming fresh gases entering the combustion chamber are within
the flammability limits, there is a possibility of flame occurrence upstream of the designated combustion
chamber in machine components that are not specifically engineered to withstand the associated stresses
and high heat fluxes, a phenomenon referred to as flashback. Furthermore, premixed flames have a sus-
ceptibility to instabilities or the occurrence of self ignition. Ultimately, such behaviors can cause the total
damage of the device. For this reason, the non-premixed approach is often used where such behavior is
inherently impossible. Safety on the one hand is bought by flame characteristics that are in many respects
inferior to those of a premixed flame. These characteristics include the formation of regions that can be
excessively lean or rich due to the mixing process. As a result, higher emission levels are often observed
as a consequence of these conditions. In practical applications, modern combustion approaches frequently
incorporate a combination of premixed streams and non-premixed streams to achieve the desired proper-
ties and balance safety considerations. This hybrid approach allows for the optimization of combustion
processes while mitigating potential risks.

2.2.1 Premixed Combustion Waves

The numerical studies presented in this work have exclusively addressed perfectly premixed mixtures.
Premixed flame properties and wave speeds are therefore discussed briefly. In general, combustible mix-
tures can react to products in three ways:

(1) Explosion: A combustible mixture is suddenly subjected to an extreme state (with a high tempera-
ture) leading to a rapid consumption of the entire fuel almost at once. Explosions can be observed
in rapid compression machines.
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Figure 2.1: Combustion wave in a one-dimensional representation. The combustion wave is fixed in space
with unburned products approaching from the left.

(2) Deflagration: The mixture is consumed within a thin flame region, referred to as combustion wave
as it propagates into the fresh mixture. The combustion wave travels at a subsonic speed. Fluid
expands in the flame and is thus accelerated.

(3) Detonation: The mixture is compressed by a shock propagating at supersonic speed. It thus shares
similarities with the explosion and the deflagration. Since the reactions are triggered by a com-
pression shock moving at supersonic speed into the fresh gas, a combustion wave is present, as in
the case of a deflagration. Simultaneously, the compression itself induces a sudden temperature
increase, analogous to that observed in explosions.

2.2.1.1 Jump Conditions

Due to drastically different propagation speeds, deflagrations and detonations will feature equally different
states behind the combustion wave [24], as presented in Tab. 2.1. The state behind a normal and steady
combustion wave can be determined using conservation laws in one dimension [10, 25, 26]. It is common
to use a control volume moving at the speed of the combustion wave, referred to as wave frame approach,
as depicted in Fig. 2.1. Velocities in a wave frame can be computed from the wave speed uw and their
counterparts in the laboratory frame and are syntactically differentiated by capital letters:

U1 = uw − u1 (2.42)

U2 = uw − u2 (2.43)

Here, U1 is the velocity of the fresh gases and U2 is the velocity of the burnt gases, both in wave frame
coordinates. The conservation equations for mass, momentum, and energy then read:
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ρ1U1 = ρ2U2 (2.44)

p1 + ρ1U2
1 = p2 + ρ2U2

2 (2.45)

h1 +
U2

1

2
= h2 +

U2
2

2
(2.46)

Equations that relate the post-wave state to the initial state are referred to as jump conditions. Post-wave
pressure p2 and post-wave enthalpy h2, for example, can be displayed as functions of initial pressure
p1, initial density ρ1, initial composition Y1, combustion wave speed U1, and density jump ρ1/ρ2 by
combining mass conservation (Eq. 2.44) with momentum conservation (Eq. 2.45) and energy conservation
(Eq. 2.46), respectively [25]:

p2 = p1 + ρ1U2
1

(
1 −

ρ1

ρ2

)
(2.47)

h2(p2, ρ2,Yα,2) = h1(p1, ρ1,Yα,1) +
U2

1

2

1 − (
ρ1

ρ2

)2 (2.48)

Eq. 2.47 and 2.48 can be solved iteratively to obtain the post-wave state for a given wave speed, e.g.
following approaches by Browne et al. [25] or by Press et al. [27]. When solving for the post-wave state,
a choice must be made for the post-wave composition Y2. Two approaches have been proven to be useful
in that regard: (a) frozen compositions or (b) equilibrium compositions. Frozen compositions keep the
exact mass fractions of the initial state (Y2 = Y1) and are strictly valid for inert gases at moderate wave
speeds only. However, the analysis sheds light on the state directly behind a detonation wave before
reactions take place and can be helpful to analyze a detonation structure. Equilibrium compositions are in
chemical equilibrium for a given post-wave pressure and density [25]. The post-wave enthalpy can then
be calculated with:

h2(p2, ρ2,Yα,2) =

NS∑
α=1

Yeq
α,2(p2, ρ2) hα(p2, ρ2) (2.49)

2.2.1.2 Chapman Jouguet

The propagation speed of detonations and deflagrations can be graphically constructed in a p–v diagram
using Rayleigh lines and Hugoniot curves. Rayleigh lines can be obtained by rewriting Eq. 2.47 in terms
of specific volumes v1 and v2:

p2 = p1 − (ρ1U1)2(v2 − v1) (2.50)

m =
p2 − p1

v2 − v1
= −

(
U1

v1

)2

(2.51)

Post-wave pressure p2 is a linear function of post-wave specific volume v2 for a fixed initial state, while
the slope m is exclusively a function of wave speed U1, as evident from Eq. 2.50 and Eq. 2.51. It is
important to note that both, initial state (1) and post-wave state (2), must lie on the same Rayleigh line. If
the initial state is fixed, the point in p1 and v1 acts as a pivot, as demonstrated in Fig 2.2 (panel a). The
initial conditions considered in Fig 2.2 are that of a stoichiometric H2–O2 mixture at a pressure of 1 atm
and a temperature of 300 K. Also evident from Fig 2.2 (panel a) is a steepening trend of the Rayleigh lines
with increasing Mach numbers, whereby the slopes are always negative irrespective of wave speed. The
Hugoniot curves, in contrast, arise from the utilization of the energy conservation equation in which the
velocity terms are substituted with thermodynamic expressions:
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Figure 2.2: Rayleigh lines and Hugoniot curves in a p–v diagram calculated for a stoichiometric H2–O2
mixture at initial pressure of 101325 Pa and initial temperature of 300 K, respectively, showing (a) a set of
Rayleigh lines at different wave speeds, (b) frozen and equilibrium Hugoniot curves, and (c) intersecting
Rayleigh lines with Hugoniot curves to construct the upper Chapman Jouguet Point.

h2(p2, v2,Yα,2) − h1(p1, v1,Yα,1) =
1
2

ṁ2
 1
ρ2

2

−
1
ρ2

1

 (2.52)

h2(p2, v2,Yα,2) − h1(p1, v1,Yα,1) =
1
2

(v2 + v1) (p2 − p1) (2.53)

Here, ṁ = ρ1U1 = ρ2U2 is the constant mass flux. Thus, Eq. 2.53 provides another set of possible
post-wave states on which the solution must lie. In contrast to the set of states given by Rayleigh lines,
Hugoniots are strictly thermodynamic relations and thus, independent of wave speed. Hugoniot curves can
be calculated for frozen mixtures or post-wave compositions in chemical equilibrium. Fig 2.2 (b) shows
the solution of both a frozen Hugoniot curve as well as a Hugoniot curve at chemical equilibrium. While
the frozen curve intersects with the initial state, a displacement is observed for the equilibrium curve due
to heat of formation. It must be noted that solutions for post-wave states must fulfill requirements from
both, Rayleigh lines and Hugoniot curves, and are therefore restricted to intersections at a given wave
speed. Figure 2.2 (c) presents the Hugoniot curve at chemical equilibrium and Rayleigh lines for three
different wave speeds.

Due to the requirement of a negative slope for Rayleigh lines, certain regions in the p–v space exhibit
nonphysical characteristics with respect to steady combustion wave solutions. These regions are identified
by a shaded background. Thus, the Hugoniot curve is separated into three segments: (1) an upper branch
with pressure p2 > p1 and specific volume v2 < v1, referred to as detonation branch, (2) a nonphysical
segment characterized by pressure p2 > p1 and specific volume v2 > v1, and (3) a lower branch with
pressure p2 < p1 and specific volume v2 > v1, denoted as deflagration branch. In order to intersect with the
detonation branch of the Hugoniot curve, Rayleigh lines must feature significant steeper slopes, indicating
higher wave speeds. Rigorous analysis (e.g., by Browne et al. [25]) further proves that combustion waves
of the detonation branch are always supersonic (U1 > c1), while combustion waves of the deflagration
branch are always subsonic (U1 < c1). This circumstance has significant influence on the interpretation of
the solutions discussed here. As detonation waves are supersonic, they cannot impact the flow upstream,
whereas deflagration waves change the flow upstream and are also affected by local flow phenomena (e.g.,
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turbulence) due to their typically low propagation speed. Jump conditions as a solution method for wave
propagation speeds have therefore been primarily used for the analysis of detonation waves. For this
reason, features of the detonation branch are discussed in more detail. Of the 3 Rayleigh lines drawn in
Fig 2.2 (c), one Rayleigh line has exactly one intersection and is therefore tangent with the Hugoniot curve.
The respective solution is unique and called Chapman Jouguet (CJ) solution and marks the minimum wave
speed for a steady propagating detonation wave. It can be shown that the entropy along the Hugoniot line
is minimum at the CJ point. It follows that entropy, as well as the Rayleigh and Hugoniot lines are tangent
in the CJ point. The slopes are thus equal and Eq 2.51 can be combined with the differential equation for
speed of sound [25]:

a2 =
∂p
∂ρ

∣∣∣∣∣
s

= −v2 ∂p
∂v

∣∣∣∣∣
s

(2.54)

∆p
∆v

= −

(
U2

v2

)2

=
∂p
∂v

∣∣∣∣∣
s

= −

(
a2

v2

)2

(2.55)

=⇒ U2 = a2

Consequently, the gas flow behind CJ detonation waves equals the speed of sound. At lower detonation
wave speeds (U1 < UCJ), there is no intersection, and thus, no solution. At wave speeds larger than CJ
(U1 > UCJ), there are two intersections. The two possible solutions for higher wave speeds are denoted as
strong and weak solution. According to Chapman [28] and Fickett and Davis [29] only the strong solution
is physically viable for detonation waves, which is explained by the fact that in this case, the flow behind
the wave is subsonic and pressure perturbations can travel upstream to alter the propagation speed. In
contrast, the flow behind the combustion wave of the weak solution is supersonic and cannot influence
the propagation speed. Additionally, as pressure perturbations can weaken the detonation wave, the speed
will decrease until CJ speed is reached. In fact, detonation waves propagating at the CJ speed are usually
observed in experiments in tubes [26].

2.3 Turbulence

A fundamental distinction is made between laminar and turbulent flows, where most flows in technical
combustion devices are turbulent, as they increase the flame speed and thus help to stabilize the flame
[9, 30]. While laminar flows are well ordered and for the most part steady, turbulent flows appear chaotic,
random, and unsteady. Nevertheless, turbulent flows are deterministic and, like laminar flows, are de-
scribed by the conservation equations (Eq. 2.1, 2.26, 2.33). The chaotic nature of turbulent flows arises
from motions (also referred to as perturbations) relative to the overall flow direction, which cannot be
damped by viscous friction [31]. Perturbations are also present in laminar flows, but here they are damped
by the viscous terms in the momentum transport equations. Whether a flow is laminar or turbulent thus
depends decisively on the influence of these two terms.

A criterion for predicting the flow condition was recognized early by Reynolds [32]. This was preceded
by the realization that measurements of the velocity field in tubes agreed almost perfectly with the singular
solution of the Navier-Stokes equations under the condition that the velocities were low and/or the cross-
section was small [32]. At higher velocities and / or larger cross sections, the agreement was no longer
present, and at the same time a higher resistance of the flow was observed. Stokes hypothesized that the
observed deviations were caused by eddies, and that the flow in a pipe would adjust itself either as direct
(laminar), or sinuous (turbulent), if the mean velocity Um (cross-section averaged) was below or above a
critical value obtained from the following expression [32]:

Kstokes µ

ρD
(2.56)
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Here, D is the diameter of the tube and Kstokes is a constant defining the flow condition. In terms of round
tubes, a direct motion was observed for values of Kstokes below 1,900 and sinuous motion for values of
Kstokes above 2,000 (The critical value for flows in smooth tubes was later corrected to a value of 2,300).
Stokes’ observations were analyzed and elaborated upon by Reynolds, which is why the dimensionless
constant is now known as Reynolds number Re and is used to characterize flow conditions in a wide
variety of applications and contexts:

Re =
ρ u L
µ

=
u L
ν

(2.57)

Here, L is a length scale (e.g., diameter of a tube or length of a plate), characterizing the respective flow
problem and ν is the kinematic viscosity. The Reynolds number can be interpreted as the ratio of inertial
to viscous forces.

Turbulent flows include a continuous spectrum of vortices / eddies different in size and strength, a
circumstance first described by Richardson [33] in 1921. According to his observations, the characteristic
length scales of the largest eddies correspond to those of the flow-defining geometry and can therefore
be strongly anisotropic. The kinetic energy necessary to maintain the largest eddies is taken from the
main flow. Henceforth, the energy is transferred to smaller and smaller eddies contained within the largest
vortices until, at a certain length scale, the viscous effects dominate and the kinetic energy is dissipated
into heat by friction. Notably, the large vortices retain a substantial amount of energy, rendering them
highly stable. As a result, it requires a longer duration for turbulent friction to break up these vortices.
Consequently, the lifespan of the vortices diminishes proportionally with their size. This energy transfer
is designated as turbulent energy cascade. As the eddies decrease in size, the velocity field tends toward
greater homogeneity, as a significant amount of geometric information is lost during the transfer of kinetic
energy. Each characteristic length scale r of eddies present in the turbulent flow can be assigned to a
corresponding Reynolds number using the velocity fluctuation u′, which in turn is a function of the length
scale r:

Re =
u′(r) r
ν

(2.58)

Length scales of large eddies that feature the highest kinetic energy, are referred to as integral length scales
lt with the integral Reynolds number Ret defined as:

Ret =
u′(lt) lt
ν

(2.59)

Typical values of the integral Reynolds number range from 100 to 2,000 [9], emphasizing that these eddies
are controlled by inertia forces and hardly by viscosity. The integral length scale can be determined based
on velocity two-point correlations, as demonstrated by Peters [30].

The smallest length scales ηk, on the other hand, at which the eddies dissipate, are denoted as Kol-
mogorov length scales with the Kolmogorov Reynolds number Rek having values of unity [34]:

Rek =
vk ηk

ν
= 1 (2.60)

Since all kinetic energy eventually dissipates, when the length scales r approach the Kolmogorov length
scale ηk, the dissipation rate of kinetic energy ε must be equal to the rate at which the largest scales
acquire kinetic energy. The dissipation rate can therefore be linked to the motion of the largest scales and
be estimated as [34, 35]:
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Figure 2.3: Kinetic energy E(k) spectrum as a function of wave number k = 1/L. The figure is based on
the one presented by Peters. [30].

ε =
u′2(lt)
τm(lt)

=
u′3(lt)

lt
(2.61)

τm(lt) =
lt

u′(lt)
(2.62)

Equation 2.61 states that dissipation of kinetic energy is proportional to the reciprocal of the characteristic
turnover time τm and proportional to the square of the characteristic velocity fluctuation, emphasizing that
the eddy transfers the majority of kinetic energy within one turnover time [34]. The dissipation mechanism
in that regard is independent on viscosity, but instead is carried out by the non-linear terms, transferring
kinetic energy down to smaller scales. Since the energy transfer rate is constant along scales, this relation
also holds true in the viscous limit [30]:

ε =
u′3(lt)

lt
=

u′3(r)
r

=
v3

k

ηk
(2.63)

The Kolmogorov hypothesis for locally isotropic turbulence postulates that the motion of the smallest
scales is governed uniquely by the dissipation rate ε and the kinematic viscosity ν. From dimensional
analysis, the three Kolmogorov micro scales for length, velocity and time can be derived [36]:

ηk =

(
ν3

ε

) 1
4

, vk =
(
ν3ε

) 1
4 , τk =

(
ν

ε

) 1
2

(2.64)

The ratio of the integral length scale and the Kolmogorov length scale illustrates the scale separation and
can be computed by combining Eq. 2.58, 2.61, and 2.64:
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lt
ηk

=

νRet
u′(lt)(
ν3

ε

) 1
4

= Re
3
4
t (2.65)

It is evident from Eq. 2.65 that the size of the smallest scales will adapt to the Reynolds number, given
constant integral length scales. It is common to sketch the kinetic energy density E(k) as a function of
wave number to demonstrate the distribution of kinetic energy in turbulent flows. The wave number in
this context is defined as the reciprocal of the characteristic length scale k = 1/r. Kinetic energy scales
with the square of velocity and can be related to the dissipation rate and the length scale r using Eq.2.63:

u′2(k = 1/r) ∝ ε2/3 r2/3 = ε2/3 k−2/3 (2.66)

In order to sketch the kinetic energy spectrum over wave number Eq. 2.66 must be differentiated with k to
yield:

E(k) =
du′2(k)

dk
∝ ε2/3 k−5/3 (2.67)

Note that Eq. 2.67 is only valid with the assumptions made by Kolmogorov in the region between the
integral length scale and the Kolmogorov length scale, where the kinetic energy scales with the famous
−5/3 slope in log-log coordinates. The qualitative energy spectrum of turbulent flow is presented in
Fig. 2.3. Kinetic energy decays in exponential fashion for wave numbers greater than the inverse of the
Kolmogorov scale in the viscous sub range. Scaling of eddies with length scales even larger than the
integral length scale does not follow universal laws but instead is highly problem dependent [30].

2.3.1 Direct Numerical Simulation

A computational fluid dynamics simulation requires a discretization of the numerical domain in terms of
finite volumes or finite differences with a corresponding mesh size ∆x. If this mesh size is in the order or
smaller than the Kolmogorov length scale, no further modelling is required and the conservation equations
(Eq. 2.1, 2.26, 2.33, and 2.4) can be solved directly. This class of simulation is called a direct numerical
simulation (DNS). Note that the simulation of a reactive flow may involve other length scales that must
also be resolved by the simulation and may be significantly smaller than the Kolmogorov length scale. For
example, this could be an adequate resolution of the flame front or a mixing length scale. Assuming now
that the Kolmogorov length scale is the smallest scale to be resolved, the mesh resolution can be related
to the integral Reynolds number. In this context, it should be noted that the order of magnitude of the
integral Reynolds number corresponds approximately to the flow-defining Reynolds number:

∆x ∼ ηk ∝ Re−3/4
t ∼ Re−3/4 (2.68)

Further, we assume that the cost of a simulation (per unit core-h) is proportional to the inverse of the
required grid resolution to the power of 4. The exponent stems from the fact that the simulation is carried
out in three-dimensional space where the integration step size is proportional to the inverse of the grid size
(as pointed out in Sec. 3.1):

[core − h] ∝
(

1
∆x

)4

= Re3 (2.69)

Equation 2.69 thus states that the cost of a three-dimensional DNS scales with the cube of the Reynolds
number. Even the latest high performance computers (HPC) are therefore limited to DNS of very restricted
cases, both in terms of domain size and Reynolds number.
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2.4 Large-Eddy Simulation

Large-eddy simulations (LES) are very common to overcome the limitations presented by the resolution
criterion of a DNS and can be used to simulate problems beyond the scope of a DNS, (e.g., semi-industrial
coal furnace [37], internal combustion engines [38], and gas turbine combustion chambers [39]). The
fundamental idea of a LES is to simulate only medium sized to large scales, as illustrated in Fig. 2.3. The
large scales contain most of the kinetic energy and cannot be considered universal, while the small scales
are assumed to be homogeneous and universal, allowing to consider the effect of the small scales with
rather simple models. Each quantity φ is thus decomposed into a filtered (or resolved) part and a residual
(or subgrid) part:

φ(x, t) = φ̄(x, t) + φ′(x, t) (2.70)

Here, the bar (.̄) indicates the resolved component φ̄(x, t) with φ′(x, t) being the unresolved contribution.
The decomposition is at first glance equivalent to the well-known Reynolds decomposition [31] in terms
of Reynolds Averaged Navier-Stokes (RANS) equations, where a quantity is decomposed into a time-
averaged component and a fluctuation. Since RANS is not used in any of the simulations presented in
this work, the approach will not be further discussed. However, due to the similarities and the popularity
of RANS, it is important to point out that general rules for simplifying the conservation equations after
the decomposition are not transferable. For example, filtering a subgrid quantity does not yield a value of
zero, unlike time averaging a fluctuation:

φ̄′(x, t) , 0 (2.71)

Also, filtering a quantity twice does not yield the result after the first filtering operation:

¯̄φ(x, t) , φ̄(x, t) (2.72)

Analogous to the Favre time averaging, the Favre filtering [40] is introduced at this point, i.e. the density-
weighted filtering of a quantity:

φ̃ =
ρφ

ρ̄
(2.73)

φ(x, t) = φ̃(x, t) + φ′′(x, t) (2.74)

2.4.1 Filtering of the Conservation Equations

In order to remove the small scales from a turbulent flow field, a filter operation is applied to every
conservation equation employed in the simulation. The filter operation can be accomplished in physical
space for an arbitrary quantity φ(x) distributed in the three-dimensional domain D, using the following
convolution operator introduced by Leonard [41]:

φ̄(x, t) =

∫
D

φ(x̆, t) G(x − x̆; ∆) d x̆ (2.75)

Here, G represents a convolution kernel for a filter with the filter width ∆. Different filter types have
been used in the past, including cut-off spectral filters, gaussian filters, and top-hat filters, as discussed in
many textbooks [9, 31, 42]. A cut-off filter in spectral space is the preferred choice in terms of spectral
CFD codes, while a Gauss filter is preferred to explicitly filter the conservation equations in physical
space. An explicit filter is particularly suitable for fundamental studies, since numerical errors of the grid
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and filter are separated. On the other hand, the full grid resolution is not used to resolve the smallest
possible structures, such that explicit LES is rarely used. Instead, most LES use implicit filtering, where
the filtering is performed by a numerical grid that is incapable to resolve the small scales in the first place,
in addition to a filter contribution that stems from the numerical schemes used. The effective filter width
can be therefore expressed as:

∆ = (1 + q) ∆x, q > 0 (2.76)

Here, q is a constant that depends on the discretization scheme. An implicit LES may become a DNS
when the grid size ∆x approaches the Kolmogorov length scale, under the condition that q is small. The
grid contribution of the filter resembles a top-hat filter, where the filter width equals the grid size and can
be considered the spatial average over the filter volume [9]:

G(x) = G(x1, x2, x3) =

1/∆3 if |xi| < ∆/2 (i = 1, 2, 3),
0 else.

(2.77)

Applying a filter to the continuity equation yields:

∂ρ

∂t
+
∂ρui

∂xi
= 0 (2.78)

Equation 2.78 can be recast, assuming commutativity of the filter operator and derivative operator (∂ρ =

∂ρ̄), and by replacing a filtered product of density with another quantity by the Favre filtered quantity
(ρu/ρ̄ = ũ):

∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0 (2.79)

The introduction of the Favre filter thus results in a filtered continuity equation that is free of terms that
require modelling.

After performing the aforementioned steps of commutativity and Favre filtering, the filtered momentum
conservation equations read:

∂ρ̄ũ j

∂t
+
∂ρ̄ũ jũi

∂xi
+
∂p̄
∂xi
−
∂τ̌ ji

∂xi
= −

∂ρ̄
(
ũ jui − ũ jũi

)
∂xi︸                ︷︷                ︸
U1

+
∂τ̄ ji − τ̌ ji

∂xi︸     ︷︷     ︸
U2

(2.80)

τ̄ ji = −
2
3
µ
∂uk

∂xk
δi j + µ

(
∂ui

∂x j
+
∂u j

∂xi

)
(2.81)

τ̌ ji = −
2
3
µ̄
∂ũk

∂xk
δi j + µ̄

(
∂ũi

∂x j
+
∂ũ j

∂xi

)
(2.82)

Equation 2.80 is formulated with all computable terms on the left hand side (LHS) and two additional
unclosed terms U1 and U2 on the right hand side. The check symbol (.̌) indicates a computable term,
replacing all unknowns by the favre-filtered or filtered counterparts. The unclosed termU1, also referred
to as subgrid scale stresses (SGS), results from the filtered non-linear term that cannot be computed
directly from the filtered solution:

∂ρu jui

∂xi
=
∂ρ̄ũ jui

∂xi
=
∂ρ̄ũ jũi

∂xi
+
∂ρ̄

(
ũ jui − ũ jũi

)
∂xi

=
∂ρ̄ũ jũi

∂xi
−U1 (2.83)
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The term is commonly written in terms of a subgrid-scale stress tensor Ti j:

U1 =
∂Ti j

∂xi
(2.84)

⇒ Ti j = −ρ̄
(
ũ jui − ũ jũi

)
(2.85)

This subgrid-scale stress tensor can be separated, using the filter decomposition from Eq. 2.74, to yield
three different subgrid-scale stress contributions [42]:

Ti j = −ρ̄
(˜̃u jũi − ũ jũi

)
− ρ̄

(
ũ′′j ũi − ˜̃u ju′′i

)
− ρ̄ ũ′′j u′′i (2.86)

= Li j + Ci j + Ri j (2.87)

Here, Li j denotes the Leonard subgrid-scale stresses describing the interaction among filtered velocities,
Ci j presents the Cross subgrid-scale stresses between filtered velocities and subgrid velocities, and Ri j are
the Reynolds subgrid-scale stresses for the interaction between subgrid velocities.

The filtered transport equation for the species mass fractions, after applying all the assumptions used
previously, results in:

∂ρ̄Ỹα
∂t

+
∂ρ̄Ỹαũi

∂xi
+
∂ ǰi,α
∂xi

= −
∂ρ̄(Ỹαui − Ỹαũi)

∂xi︸                 ︷︷                 ︸
Y1

−
∂ j̄i,α − ǰi,α

∂xi︸         ︷︷         ︸
Y2

+ω̇α︸︷︷︸
Y3

(2.88)

Y1 =
∂Si,α

∂xi
⇒ Si,α = −ρ̄(Ỹαui − Ỹαũi) (2.89)

j̄i,α = −ρDα
∂Yα
∂xi

(2.90)

ǰi,α = −ρ̄ D̄α
∂Ỹα
∂xi

(2.91)

Here, Si denotes the unresolved scalar fluxes, while the term Y2 results from filtering the diffusion term.
The filtered source term ω̇α has great importance due to strongly non-linear dependencies of state variables
and must be modeled in the vast majority of cases.

Filtering the conservation equation for total internal energy adds complexity and results in a rather
high number of terms that could be modeled [42], compared to the filtered conservation equations for
momentum and species partial densities. Applying a filter yields:

ρE = ρ̄Ẽ = ρ̄ẽ + ρ̄
ũkuk

2
(2.92)

The filtered conserved quantity ρE in Eq. 2.92 thus incorporates the unclosed term ũkuk. Various ap-
proaches have been postulated in the past to circumvent the issue and are presented in detail in the book
of Sagaut [42]. Among the more popular approaches is the consideration of a subgrid kinetic energy K
(e.g., Dubois et al. [43], Piomelli [44], Kosović et al. [45], and Ragab et al. [46]):

ρ̄Ẽ = ρ̄ẽ + ρ̄
ũkũk

2
+K (2.93)

K =
1
2
ρ̄
(
ũkuk − ũkũk

)
=
Tkk

2
(2.94)

Other popular approaches have been defined by Vreman [47, 48] that include a conservation equation for
the computable total internal energy Ě:
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ρ̄Ě =
p̄

γ − 1
+ ρ̄

ũkũk

2
(2.95)

It is important to note, however, that all the approaches align if the subgrid kinetic energy K can be
neglected, as will be discussed in Sec 2.4.2. The filtered conservation equation for the total internal energy
Ẽ then reads [42] without consideration of net rate of external energy input:

∂ρ̄Ẽ
∂t

+
∂(ρ̄Ẽ + p̄)ũi

∂xi
−
∂τ̌ jiũ j

∂xi
+
∂q̌i

∂xi
(2.96)

= −

∂ρ̄Ẽui − ρ̄Ẽũi

∂xi

 − (
∂pui − p̄ũi

∂xi

)
−

(
∂q̄i − q̌i

∂xi

)
+

(
∂τ jiu j − τ̌ jiũ j

∂xi

)
= −

∂ρ̄h̃ui − ρ̄h̃ũi

∂xi

︸                ︷︷                ︸
E1

−

∂ ρ̄2 ũiukuk −
ρ̄
2 ũiũkũk − ũiK

∂xi

︸                                  ︷︷                                  ︸
E2

−

(
∂q̄i − q̌i

∂xi

)
︸         ︷︷         ︸

E3

+

(
∂τ jiuj − τ̌ jiũ j

∂xi

)
︸                 ︷︷                 ︸

E4

E1 =
∂Qi

∂xi
⇒ Qi = −ρ̄(h̃ui − h̃ũi) (2.97)

E2 =
∂Ji

∂xi
⇒ Ji = −

ρ̄

2
(ũiukuk − ũiũkũk) + ũiK (2.98)

Equations 2.97 and 2.98 feature the subgrid-scale heat fluxes Qi and the subgrid-scale turbulent diffusion
Ji.

2.4.2 Neglected Terms

There are only a few studies in which the influence of all terms that could be modeled have been examined.
These include works by Vreman et al. [47] and Martı́n et al. [49], who draw similar conclusions despite
different configurations in terms of the Mach numbers used. The influences were put in relation to the
magnitudes of the convective term and the diffusive term. Terms that are at least one order of magnitude
smaller than the diffusive term are classified as small and terms with an impact of less than two orders of
magnitude are classified as negligible. In the filtered equations discussed here, the terms U2, E3, and E4
have been not considered, based on these findings. Also, because of the similarity of term Y2 with the
termsU2 and E3, it has been also neglected without further proof.

The subgrid kinetic energyK , which presents the isotropic part of the subgrid stress tensor Ti j, appears
both in the filtered conservation equation for momentum and total internal energy. Although a model for
this term has been proposed by Yoshizawa [50], it was deliberately disregarded here and the effects of un-
resolved subgrid kinetic energy were neglected throughout this work. The decision stems primarily from
observations made by Charles et al. [51], Erlebacher et al. [52]. First, the authors examined the extent
to which the model matches the correct value by analyzing results from DNS. A very weak correlation
coefficient of 15% was determined in that regard. More importantly, they found that the influence of
the isotropic component of the subgrid kinetic energy is significantly less than that of the static pressure.
The only exception are regions with particularly strong compression. However, shock-capturing numer-
ical schemes are used in this work, which dissipate significant amounts of kinetic energy exactly in the
vicinity of shocks, rendering a model for subgrid kinetic energy useless [42]. Ultimately, based on the
simplifications made, this results in the following set of filtered conservation equations used in this work:
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∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0 (2.99)

∂ρ̄ũ j

∂t
+
∂ρ̄ũ jũi

∂xi
+
∂ p̄
∂xi
−
∂τ̄ ji

∂xi
=
∂Ti j

∂xi
(2.100)

∂ρ̄Ẽ
∂t

+
∂(ρ̄Ẽ + p̄)ũi

∂xi
−
∂τ̄ jiũ j

∂xi
+
∂q̄i

∂xi
=
∂Qi

∂xi
+
∂Ji

∂xi
(2.101)

∂ρ̄Ỹα
∂t

+
∂ρ̄Ỹαũi

∂xi
+
∂ j̄i,α
∂xi

=
∂Si,α

∂xi
+ ω̇α (2.102)

This leaves 5 terms on the RHS whose modeling is discussed in the following.

2.4.3 Eddy Viscosity Models

In subgrid-scale modeling, a distinction is made between structural and functional models. Structural
modeling tries to approximate the modeled term as best as possible, whereas in functional models only
the effect that the subgrid scales have on the resolved scales is approximated by diffusion processes. Since
only functional models were used in this work, they will be briefly discussed below. It should also be
mentioned that besides the energy transfer from the resolved scales to the unresolved scales, the reverse
process also exists, i.e. the transfer from unresolved scales to the resolved ones, but being much weaker
and often neglected. For a long time, the focus of turbulence modeling was on the subgrid-scale stress
tensor Ti j, since this is the only term to be modeled in incompressible flows. The Boussinesq hypothesis
is usually used in this context, which states that the energy transfer from large to small scales essentially
corresponds to a molecular diffusion process. The deviatoric part of the subgrid stresses is thus defined in
analogy to the deviatoric part of the stress tensor:

T d
i j = Ti j −

1
3
Tkkδi j = −ρ̄ νt

(
∂ũi

∂x j
+
∂ũ j

∂xi
−

2
3
∂ũk

∂xk
δi j

)
(2.103)

Accordingly, in Eq. 2.103, only the molecular viscosity was replaced by a sub grid scale viscosity, also
referred to as turbulent kinematic viscosity νt. Likewise, the approach is suitable for closing the term
Ji describing subgrid diffusion in the energy conservation equation, whereby the approach is based on
previous RANS models [53]:

Ji ≈ T
d
i jũi = −ρ̄ νt

(
∂ũi

∂x j
+
∂ũ j

∂xi
−

2
3
∂ũk

∂xk
δi j

)
ũi (2.104)

Furthermore, it is assumed that the subgrid scales can be described by a characteristic length scale l0
and time scale t0 [42]. Dimensional analysis then yields the following expression for the subgrid-scale
viscosity:

νt =
l20
t0

(2.105)

This class of models is thus referred to as Eddy viscosity models and it is common to represent the char-
acteristic length scale by the product of the grid size, at which the kinetic energy must be adequately
dissipated, and a model constant Cm. The characteristic time scale, on the other hand, is represented by a
differential operatorDm, which has the resolved velocity field as argument and has unit per time.

νt = (∆Cm)2Dm(ũi) (2.106)
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The first proposed SGS model to compute the turbulent viscosity following Eq. 2.106 has been the
Smagorinsky model [54] which continues to find widespread use due to its simplicity, robustness, and low
implementation effort. The differential operator used for this model is the characteristic filtered rate of

strain S =

√
2S̃ i j S̃ i j, with S̃ i j = 1/2(g̃i j + g̃ ji), g̃i j = ∂ũi/∂x j. The following expression is then obtained

for the turbulent viscosity:

νt = (Cs∆)2 S (2.107)

Theoretical considerations exist for determining the model constant Cs when the constant is interpreted
as the ratio of the mixing length to the filter cut-off scale in analogy to Prandtl’s mixing theory [31].
Calculations result in values for the model constant of Cs = 0.148 [42]. The model constant, however, is
local, both in space and in time and usually takes values in a range between 0.1 and 0.2. Compared to the
exact turbulent viscosity in a posteriori analyses, the correlation is thus rather poor. Among the known
weaknesses of the Smagorinsky model is an increased damping of turbulence in regions with high mean
strain, during flow transition and near walls since the differential operator does not vanish for pure shear
[55].

Several models have addressed this deficiency like the wall adapting local eddy viscosity (WALE)
model [56] and the Vreman model [57]. However, while the differential operators used in these models
vanish for pure shear, they do not cancel for pure rotation unlike the characteristic filtered rate of strain.
Thus, Nicoud et al. [55] proposed a set of desirable properties for differential operators, both from a phys-
ical but also from a numerical standpoint. Besides the already mentioned requirement that the differential
operator should take values of zero for pure shear or pure rotation, the differential operator should:

• be defined by local values

• only take positive values, thus neglecting backscatter

• approach values of zero near solid boundaries and scale with the cube of wall distance

• take values of zero for two-dimensional flows

• take values of zero for axisymmetric expansion or contraction

A differential operator that satisfies all aforementioned properties and that has been established by the
authors is based solely on the singular values (σ1, σ2, σ3) obtained from the resolved velocity gradient
tensor (g̃i j = ∂ũi/∂x j). It is therefore usually referred to as the sigma model:

Dσ =
σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

, 0 ≤ σ3 ≤ σ2 ≤ σ1 (2.108)

It is important to note that the differential operator in Eq. 2.108 vanishes, whenever σ3 vanishes, which
is the case in two-dimensional flows. Since the sigma model has been used throughout this work, the
calculation of the singular values is outlined below. First, the three invariants I1,I2,I3 of matrix Gi j =

g̃kig̃k j are computed, where tr(Gi j) denotes the trace and det(Gi j) denotes the determinant:

I1 = tr(Gi j) (2.109)

I2 = 0.5
(
tr(Gi j)2 − tr(G2

i j)
)

(2.110)

I3 = det(Gi j) (2.111)

Subsequently, angles α1, α2, α3 can be calculated as a function of the invariants:



26 Chapter 2. Theory

α1 =
I2

1

9
−
I2

3
(2.112)

α2 =
I3

1

27
−
I1I2

6
+
I3

2
(2.113)

α3 =
1
3

arccos

 α2

α3/2
1

 (2.114)

The singular values are then defined by:

σ1 =

√
I1

3
+ 2
√
α1cos (α3) (2.115)

σ2 =

√
I1

3
− 2
√
α1cos

(
π

3
+ α3

)
(2.116)

σ3 =

√
I1

3
− 2
√
α1cos

(
π

3
− α3

)
(2.117)

Nicoud et al. [55] as well as Rieth et al. [58] found promising results in different setups for a model
constant of Cσ = 1.5, when used directly as a static model. Nonetheless, as pointed by the authors,
the sigma model can also be used as a starting model with intrinsic superior properties to be used in the
framework of dynamic procedures.

The dynamic procedure has been originally developed by Germano et al. [59] and extended for variable
density flows by Moin et al. [60]. The central motivation has been accuracy improvements of eddy-
viscosity type subgrid scale models by calculating the model constant dynamically, thus reflecting the
local flow state. Therefore, another test filter (typically with twice the filter width [61]) is applied to the
LES filtered momentum balance equation. Introducing a Favre filter at test filter level ( ̂̄ρũ/ ˆ̄ρ = ˇ̃u) yields:

∂ ̂̄ρũ j

∂t
+
∂̂̄ρũ jũi

∂xi
+
∂ ˆ̄p
∂xi
−
∂ ˆ̄τ ji

∂xi
= −

∂ρ̄
(
ũ jui

∧

− ũ jũi

∧)
∂xi

(2.118)

∂ ̂̄ρũ j

∂t
+
∂ ˆ̄ρ ˇ̃u j ˇ̃ui

∂xi
+
∂ ˆ̄ρ

(
ũ jũi

∧

− ˇ̃u j ˇ̃ui
)

∂xi
+
∂ ˆ̄p
∂xi
−
∂ ˆ̄τ ji

∂xi
= −

∂ρ̄
(
ũ jui

∧

− ũ jũi

∧)
∂xi

(2.119)

∂ ̂̄ρũ j

∂t
+
∂ ˆ̄ρ ˇ̃u j ˇ̃ui

∂xi
+
∂ ˆ̄p
∂xi
−
∂ ˆ̄τ ji

∂xi
= −

∂ ˆ̄ρ
(
ũ jũ

∧

i −
ˇ̃u j ˇ̃ui

)
∂xi︸                ︷︷                ︸

−∂Li j/∂xi

−
∂ρ̄

(
ũ jui

∧

− ũ jũi

∧)
∂xi︸                ︷︷                ︸

−∂T̂i j/∂xi

= −
∂Ti j

∂xi
(2.120)

Equation 2.120 introduces the subgrid scale stresses Ti j at test filter size ∆̂ and the Germano Identity Li j,
which describes the resolved stresses of those scales that fall in between the two filter sizes. The Germano
Identity relates both of the subgrid scale tensors and is computable:

Li j = ũ jũi

∧

− ˇ̃ui ˇ̃u j = Ti j − T̂i j (2.121)

It is further assumed that the deviatoric parts of both subgrid scale tensors can be described by the same
functional model (e.g., Smagorinsky model) and identical model constant Cm:

Tij −
1
3
Tkkδi j = −2Cm∆2ρ̄Dm(ũi)S̃ d

i j = −2Cmβi j (2.122)

Ti j −
1
3

Tkkδi j = −2Cm∆̂2 ˆ̄ρDm( ˇ̃ui) ˇ̃S d
i j = −2Cmαi j (2.123)
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Equations 2.122 and 2.123 both feature the traceless strain rate tensor S d
i j and can be substituted into the

traceless formulation of Eq. 2.121 to yield:

Li j −
1
3

Lkkδi j = −2Cmαi j + 2Ĉmβi j = 2CmMi j (2.124)

2Ĉmβi j = 2Cm∆2 ˆ̄ρDm(̃ui)S̃ d
i j

∧

(2.125)

Because Eq. 2.124 is tensorial with tensors that are symmetric, six independent equations are provided to
solve for a single model constant Cm, thus presenting an over determined system of equations. To address
the problem, Germano proposed to contract with another tensor (e.g., strain rate tensor S i j), in the course
of which a scalar equation is obtained. As a further improvement, Lilly [62] suggested a least-squares
method to minimize the error, essentially resulting in a contraction with the tensor Mi j. Introducing the
error QL:

QL = Li j −
1
3

Lkkδi j − 2CmMi j (2.126)

Under the minima condition (dQL/dC = 0), Cm can be obtained by:

Cm =
(Li j −

1
3 Lkkδi j)Mi j

MklMkl
(2.127)

The presented dynamic approach results in a more accurate prediction of the subgrid stresses and is able
to withdraw some of the inherent model deficiencies, but again comes with other disadvantages. Ini-
tially presented as an advantage, namely the ability of the model of modelling backscatter (kinetic energy
transfer from small to larger scales) through negative model coefficients, can in practice lead to numer-
ical instabilities through negative effective viscosities. It is therefore common to clip the values of the
obtained model coefficients. Another issue is temporally and spatially fluctuating values of the model
coefficients, arguably a result of very small values of the denominator in Eq. 2.127. Spatial averaging of
both the numerator and denominator in the respective equation is therefore desirable. Finally, the afore-
mentioned field operations (filtering and averaging operators) lead to significantly higher computational
costs compared to the static models.

2.4.4 Eddy Diffusivity Model

The Boussinesq hypothesis can also be applied to the unresolved scalar and enthalpy fluxes, i.e., the
Si and Qi terms. Thus, according to this theory, the unresolved structures primarily increase mixing
on the subgrid level. Since the eddy viscosity is typically calculated beforehand, the turbulent diffusion
coefficients can be determined via a turbulent Schmidt number Sct and Prandtl number Prt. In this context,
dynamic methods have also been developed to determine the relations locally [60, 63]. However, in most
situations it is appropriate to use constant values, e.g., Sct = Prt = 0.7. This results in the following
equations to close the terms Si,α and Qi:

Si,α = ρ
νt

Sct

∂Ỹα
∂xi

(2.128)

Qi = ρ
νtcp

Prt

∂T̄
∂xi

(2.129)
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2.4.5 Filtered Source Term Modeling

In addition to modeling the subgrid stresses, closure of the filtered source term ω̇α is essential for a proper
LES of combustion systems. As shown in Sec. 2.1.2.2, the source term is determined by the thermochem-
ical state (e.g., density ρ, temperature T , and composition Y). In certain situations, it is permissible to
derive the source term directly from the filtered quantities (e.g., [64, 65]):

ω̇α = f (ρ̄, T̄ , Ỹ) (2.130)

However, this assumption is the exception and must be justified, since the source term depends highly non-
linear on the quantities, in particular exponentially on temperature through the Arrhenius term. Therefore,
to use the filtered variables directly is recommended only, when the numerical grid is very fine, or when
the solution domain does not contain a flame front, but instead the ignition of a nearly homogeneous
mixture is simulated. In the past, many different approaches have been developed for source term closure.
Therefore, only those two approaches are presented below that have been implemented in the course of
this work or have been used in a publication.

2.4.6 Subgrid Probability Density Functions

Probability density function (PDF) methods were originally developed in the RANS context and later
suggested for application in LES by Givi [66] and Pope [67], who also introduced the filtered density
function (FDF) as a distinction to RANS. In the LES context, the FDF can be interpreted as a subgrid
distribution of the independent variables within a LES cell. Essentially, if the single point joint subgrid
FDF P of the independent variables is known, the exact value of the filtered source term can be computed
by integration over the entire sample space of the independent variables:

ω̇α =

∫
ω̇

(
ρ̆, T̆ , Y̆1, Y̆2, ..., Y̆NS

)
P

(
ρ̆, T̆ , Y̆1, Y̆2, ..., Y̆NS

)
dρ̆ dT̆ dY̆1 dY̆2 · · · dY̆NS (2.131)

Here, the breve symbol (Φ̆) denotes a sample space variable. Equation 2.131 can be simplified, if sta-
tistical independence between between the independent variables can be assumed (e.g., between density,
temperature, and mass fractions). In that case, the single point joint FDF can be determined as the product
of the marginal FDF’s:

P
(
ρ̆, T̆ , Y̆1, Y̆2, ..., Y̆NS

)
=

N∏
n=1

Pn (n̆) = Pρ (ρ̆) PT (T ) PY1 (Y1) PY2 (Y2) · · · PYNS

(
YNS

)
(2.132)

The FDF can be determined by transport equations using stochastic particles (Lagrangian method [68])
or stochastic fields (Eulerian method [69]). This approach has the advantage that the subgrid PDF can
evolve to take any form. The disadvantages include a significantly higher implementation effort, higher
computational costs and the need for other closure models (e.g., the subgrid mixing term). For this reason,
presumed FDFs are primarily used, which prescribe the shape of the FDF and are typically determined by
the first two moments (subgrid mean and subgrid variance) of the independent variable.

Gerlinger [70] investigated the suitability of presumed PDF methods specifically when using the finite
rate combustion model in RANS simulations. This is a particular challenge due to the typically high
number of scalars required to calculate the averaged source term, as the time average and variance are
required per scalar respectively. For this reason, a clipped Gaussian PDF was selected for Temperature, as
well as a joint multivariate β-PDF for Composition, as proposed by Girimaji [71]. The joint multivariate
β-PDF is fully defined when the means of the mass fractions and the sum of the variances are known for
which a transport equation has been derived. This approach was later adapted for use in a LES by Wang
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et al. [72]. Again, assuming statistical independence between density, temperature and mass fractions, the
subgrid FDF reads:

P(ρ̆, T̆ , Y̆1, Y̆2, ...Y̆NS) = δ (ρ̆ − ρ̄) PT
(
T̆
)

PY
(
Y̆1, Y̆2, ..., Y̆NS

)
(2.133)

Equation 2.133 introduces the Dirac delta distribution δ, which is only non zero if the argument is exactly
zero. Recall that Eq. 2.22, the law of mass action, can also be written in terms of mass fractions and
substituted into Eq. 2.19. After applying a spatial filter and neglecting reaction reversibility and third body
effects for clarity, the following expression is obtained:

ω̇α = Wα

NR∑
r=1

(
ν′′αr − ν

′
αr

)  NS∏
s=1

(
1

Ws

)ν′sr
 ρmr kf,rIf,r (2.134)

= Wα

NR∑
r=1

(
ν′′αr − ν

′
αr

)  NS∏
s=1

(
1

Ws

)ν′sr
 ρmr k̃f,r Ĩf,r, (2.135)

If,r =

NS∏
s=1

Yν′sr
s (2.136)

mr =

NS∑
s=1

ν′sr (2.137)

Due to statistical independence, the filtered terms can now be treated sequentially. The Dirac delta distri-
bution essentially keeps the density constant at the filtered value:

ρmr =

∫
ρ

ρ̆mr δ (ρ̆ − ρ̄) dρ̆ = ρ̄mr (2.138)

Using a Gaussian PDF[70, 73] or FDF[72] for temperature, allows to determine the filtered reaction rate
constant by integration over the entire temperature sample space:

k̃f,r =

∫
T

A T̆ b exp
(
−

Ea

Rm T̆

)
PT

(
T̆
)

dT̆ (2.139)

PT
(
T̆
)

=
1√

2πT̃ ′′2
exp

(
−

(T̆ − T̃ )2

2 T̃ ′′2

)
(2.140)

Here, T̃ ′′2 is the subgrid variance of temperature and can be calculated with algebraic models that are
based on the scale similarity assumption. Thus, approaches using a local test filter, for example proposed
by Cook and Riley [74], are suitable for determining the variance. In addition, gradient type models [75]
can be used that yield consistent results with the test filter approach on a structured grid, if a top-hat test
filter is used [76].

A viable alternative for single scalar PDF’s in LES has been proposed by Floyd et al. [76]. They
showed that a top-hat PDF is the preferred choice over a β-PDF or Gaussian PDF in many situations.
Deficiencies of the β-PDF are demonstrated for scalar mixing in multi stream configurations or for scalar
spatial evolution [76]. At the same time, the top-hat PDF is a comparatively simple distribution, namely
an equally likelihood of a scalar value within a given range of values. The PDF for temperature now reads:

PT (T̆ ) =

t0 if Ta ≥ T̆ ≥ Ta,

0 else.
(2.141)
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The temperature limits Ta and Tb, as well as the probability t0 can be calculated using the Favre filtered
temperature and subgrid temperature variance [76]:

T̃ ′′2 ≈
1
12

∆2
x

(
∂T̃
∂xi

)2

(2.142)

Ta = T̃ −
1
2

√
12 T̃ ′′2 (2.143)

Tb = T̃ +
1
2

√
12 T̃ ′′2 (2.144)

t0 =
1

Tb − Ta
(2.145)

In order to avoid the expensive integration in Eq. 2.139 during a simulation, the values of the reaction rate
constants can be calculated in advance as a function of temperature and stored in a table. The resulting
table can then be integrated so that the filtered value of the reaction rate constant is defined just over two
values Ka

f,r and Kb
f,r from the integrated table:

k̃f,r = t0


∫ Tb

0
kf,r(T̆ ) dT̆︸             ︷︷             ︸

Kb
f,r

−

∫ Ta

0
kf,r(T̆ ) dT̆︸             ︷︷             ︸

Ka
f,r

 (2.146)

Last, the expression Ĩ f ,r must be closed to compute the filtered reaction rate ω̇α by applying the multi-
variate β-FDF which is defined as follows [71]:

PY (Y̆1, Y̆2, ..., Y̆NS) =
Γ
(∑NS

s=1 βs
)

∏NS
s=1 Γ(βs)

δ

1 − NS∑
s=1

Y̆s


 NS∏

s=1

Y̆βs−1
s

 (2.147)

Equation 2.147 features the Gamma function Γ and also a Dirac delta function function which ensures
at any time that only distributions with a sum of exactly one over all mass fractions are considered. The
model parameters βm themselves are functions of the Favre filtered mass fractions and the sum of subgrid
variances σY , denoted as subgrid scalar energy [72]:

βs = Ỹs

(
1 − S β

σY
− 1

)
(2.148)

S β =

NS∑
s=1

Ỹ2
s (2.149)

σY =

NS∑
s=1

Ỹ ′′2s (2.150)

Equation 2.136 in Favre filtered formulation and substitution of Eq. 2.147 yields the expression:

Ĩ f ,r =

∫
Y

 NS∏
s=1

Y̆ν′sr
s

 PY (Y̆1, Y̆2, ..., Y̆NS) dY̆ (2.151)

=

∫
Y

 NS∏
s=1

Y̆ν′sr
s

 Γ
(∑NS

s=1 βs
)

∏NS
s=1 Γ(βs)

δ

1 − NS∑
s=1

Y̆s


 NS∏

s=1

Y̆βs−1
s

 dY̆ (2.152)
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The integral in Eq. 2.152 can be solved analytically, as demonstrated by Wang et al. [72], for closure of
Ĩ f ,r:

Ĩ f ,r =

NS∏
s=1

ν′sr∏
q=1

ν′sr + βs − q

mr∏
p=1

mr + Bβ − p
(2.153)

with mr =

NS∑
s=1

ν′sr, Bβ =

NS∑
s=1

βs (2.154)

2.4.7 Thickened Flame Model

Another popular choice for modeling the turbulence-chemistry interaction in LES with finite-rate chem-
istry (FRC), which can be used in conjunction with PDF methods or alone, is the flame thickening ap-
proach. In contrast to PDF methods, the flame thickening approach can only be used if the chemical
conversion takes place almost entirely in a subsonic flame zone (deflagration). Thus, this method is not
suitable for the simulation of detonations and auto ignition. The theory underlying this approach goes
back to considerations by Butler and O’Rourke [77]. Proportionality relations of laminar flame speed s0

L
and flame thickness δ0

L to thermal diffusion coefficient Dth and heat-release rate ω̇th are essential in the
context:

s0
L ∝

√
Dth ω̇th (2.155)

δ0
L ∝

√
Dth

ω̇th
(2.156)

Accordingly, if all diffusion coefficients in the species conservation equations and the thermal conductivity
in the energy conservation equation are multiplied by a factor F, while all reaction source terms are
divided by the same factor F, the flame can be thickened to δ0

LF to be resolved on a typical LES grid
and maintaining the laminar flame speed. The additional computational effort is very low as well as the
implementation effort, which makes this approach so attractive. However, the method comes with one
major drawback. While the laminar flame velocity is preserved, the interaction of the turbulent eddies and
the flame front is significantly affected, which is expressed by the Damköhler number:

Da =
τt

τc
=

lt
δ0

L

s0
L

u′
(2.157)

The Damköhler number compares turbulent time scales (τt) with chemical time scales (τt) and is reduced
by F in terms of thickened flames. Thus, the ability of eddies to wrinkle a flame, when thickened, is
reduced, which has implications for total fuel consumption and thus the turbulent flame speed. For this
reason, an efficiency function E is introduced to consider sub-filter flame wrinkling and therefore to model
the sub-filter turbulent flame speed sT∆. Using classical relations, the sub-filter turbulent flame speed can
be derived in terms of a sub-filter wrinkling factor Ξ∆:

sT∆ = s0
L Ξ∆ (2.158)

Ξ∆ =
|∇C|
|∇C̄|

(2.159)

Here, C is the dimensionless flame progress variable. The sub-filter wrinkling factor Ξ∆ can be determined
on the basis of transport equations (e.g., [78]) or by algebraic relations (e.g., [79–82]) that are based
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on DNS results (e.g., [83]). According to Charlette et al. [81], the sub-filter wrinkling factor can be
approximated by a power law of the form:

Ξ∆ =

(
1 +

∆

ηi

)β
(2.160)

Equation 2.160 features the inner cut-off scale ηi that denotes the size of the smallest eddies to wrinkle
the flame. The term ∆/ηi is parameterized as a function of the ratios ∆/δ0

L and u′/s0
L taking asymptotic

behavior and equilibrium assumptions of sub filter flame surface density production and destruction into
account. The efficiency function proposed by Charlette and modified by Wang et al. [84] then reads:

E = Ξ∆ =

1 + min
Fmax − 1,Γ∆

u′
∆

s0
L

β (2.161)

Fmax = max
nfp∆x

∆0
L

, 1
 (2.162)

Equation 2.161 features the sub filter velocity fluctuations u′
∆

and a function Γ∆, which is supposed to
model the net straining effects of all eddies with a characteristic size below the filter size. It is important
to note that the respective filter size is much larger than the implicit LES filter size (≈ ∆x) due to the
scaling of flame thickness [80]. The exponent β is usually set to a value of 0.5, while a dynamic procedure
proposed by Charlette et al. [85] can be used alternatively, promising more accurate results.

In order to avoid enhanced diffusion outside the flame region, a flame sensor Ω is introduced. Both
flame thickening factor and efficiency function are subsequently used exclusively within the flame front,
while the Eddy diffusivity model is turned off in the flame front. This approach is referred to as dynamic
thickened flame (DTF) model:

F = 1 + (Fmax − 1) Ω (2.163)

Several formulations for the flame sensor exist that either use the normalized flame progress or net pro-
duction rates / heat release rate to determine the flame front. A simple, yet popular flame sensor has
been proposed by Durand and Polifke [86], featuring a smooth transition of the thickening region and is
characterized by computational efficiency:

ΩPolifke = 16 [C (C − 1)]2 (2.164)

Here, C denotes the normalized flame progress variable. Another popular flame sensor was introduced
by Legier et al. [87], which uses heat release as an indicator and typically has a broader thickening zone
compared to the Polifke flame sensor:

ΩLegier = tanh
(
100

Q̇
Qmax

)
(2.165)

The conservation equations for total internal energy and partial densities now read under the assumption
that the chemical source term is sufficiently resolved due to flame thickening:
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∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0 (2.166)

∂ρ̄ũi

∂t
+
∂ρ̄ũiũ j

∂x j
= −

∂p̄
∂xi

+
∂τ̄i j

∂x j
(2.167)

∂ρ̄Ẽ
∂t

+
∂(ρ̄Ẽ + p̄)ũi

∂xi
=

∂

∂xi

(E F λ̄ + (1 −Ω) c̄p
µt

Prt

)
∂T̄
∂xi

+

NS∑
α=1

h̄α j̄i,α

 +
∂τ̄i jũi

∂x j
(2.168)

∂ρ̄Ỹα
∂t

+
∂ρ̄Ỹαũi

∂xi
=

∂

∂xi

[(
E F ρ̄ D̄α + (1 −Ω)

µt

Sct

)
∂Ỹα
∂xi

]
+

E
F
ω̇α (2.169)
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Chapter 3
Numerical Modeling

3.1 Temporal Discretization

The main objectives of LES are the investigation of unsteady phenomena and the computation of statistics
by sampling the available data. Naturally, the governing equations, as presented in Chapter 2, are advanced
in time using integration:

dφ
dt

= f (φ(t)) (3.1)

φ(t+∆t)∫
φ(t)

dφ =

t+∆t∫
t

f (φ(t)) dt (3.2)

Here, φ(t) is the vector of conserved variables defining the system state at time t and f (φ(t)) is the function
vector to compute the respective time derivatives. In our case, the function f is the sum of all terms present
in the governing equations written on the RHS, with the exception of the accumulation term on the LHS,
i.e., the sum of convective, diffusive, and source terms. Also, the function is time invariant and only
depends on the system state. Because it involves spatial derivatives and non linear terms, numerics are
required to approximate the integral. A straightforward discrete formulation is the Euler forward method:

φ(n+1) − φ(n)

∆t
= f

(
φ(n)

)
(3.3)

⇔ φ(n+1) = φ(n) + ∆t f
(
φ(n)

)
(3.4)

The superscript in φ(n) denotes the system state at time step n, with the system state at the subsequent time
step φ(n+1), separated by the time step ∆t. The Euler forward method is considered an explicit method,
since all quantities on the RHS are evaluated at time level n, which allows to directly compute the system
state of the subsequent time step. The truncation error of this discretization is of second order, i.e. reducing
the time step by a factor of 2, will reduce the discretization error by a factor of 4. However, twice as many
time steps will be required to reach the same time level. Thus, the scheme is considered locally 2nd order
accurate, but globally only 1st order [88]. The Euler explicit scheme is easy to implement but rarely used
due to its stability properties, which can be studied in terms of time step size and discretization methods for
convection and diffusion. Typically, the scalar transport equation (linear advection with constant velocity)
is used as model equation, so the findings are not necessarily applicable to the Navier-Stokes equations
that involve non linear terms. Nevertheless, the insights are valuable and are suitable for guidance even
in more complex cases. For example, if central discretization methods (Sec. 3.2.3.1) are used for the
convective and diffusive terms and a flow is considered that is dominated by convection, then the explicit
Euler method is unconditionally unstable. This means that the scheme will be unstable for every value of
∆t. If, on the other hand, the upwind discretization method (Sec. 3.2.3.2) is used for the convective term,
the following stability criterion for the time step size ∆t is obtained in absence of diffusion [88]:

CFL =
u∆t
∆x
≤ 1 (3.5)
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Here, the Courant Friedrich Lewy (CFL) number [89] is introduced. The criterion states that the scheme
will be stable, if information can ideally travel by one computational cell within a single time integration
step and the scheme can be considered conditionally stable. If diffusion is present at the same time,
another constraint must be met additionally [88]:

∆t ≤ DS
ρ ∆2

x

2 D
(3.6)

DS =
1
d
, d = 1, 2, 3 (3.7)

The equation features the diffusion coefficient D and the diffusive stability (DS) coefficient whose value
depends on the number of spatial dimensions d considered. In the vast majority of cases, the time step
will be limited by convection. However, the diffusive limit is proportional to the square of the grid size,
while the convective limit is only proportional. Thus, when the grid size approaches very small values
(in a DNS, for example), it may well be the case that diffusion limits the time step size. It should also
be mentioned that in the case of a compressible LES, a different CFL criterion must be used. In a more
general form, the time step is limited by the maximum propagation speed of information. In the case of
compressible flow, this is the propagation velocity of pressure information:

CFL =
|u ± c|∆t

∆x
(3.8)

This criterion is referred to as acoustic CFL criterion.
Another globally first order accurate method is the Euler backward method:

φ(n+1) − φ(n)

∆t
= f

(
φ(n+1)

)
(3.9)

In contrast to the Euler forward method, the function f is now evaluated for the system state at time level
n + 1, which by itself is the quantity of interest. An approximation for f

(
φ(n+1)

)
is thus needed:

f
(
φ(n+1)

)
= f

(
φ(n)

)
+ J (n)∆φ (3.10)

J (n) =
∂ f

(
φ(n)

)
∂φ(n) (3.11)

∆φ = φ(n+1) − φ(n) (3.12)

Equation 3.10 features the Jacobian Jn of the system at time level n, which can be calculated using finite
differences for each component. Substituting this expression into Eq. 3.9 yields:

(
I − ∆t J (n)

)︸         ︷︷         ︸
A

∆φ︸︷︷︸
x

= ∆t f
(
φ(n)

)︸      ︷︷      ︸
b

(3.13)

Equation 3.13 presents a system of linear equations (Ax = b) that can be solved using functions provided
by the LAPACK [90] library. This implicit scheme will be stable irrespective of the time step size ∆t, and
is therefore considered unconditionally stable. However, the costs associated with the computation of the
Jacobian matrix and the solution of the linear system are high. At the same time, the time integration step
size cannot be chosen arbitrarily large, otherwise acoustic waves would not be resolved correctly on the
numerical grid. For these reasons, explicit time integration schemes with higher accuracy and improved
stability behavior are the preferred choice for LES.
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In the special case of the finite rate chemistry model, the restrictions on time step size will, in most
cases, be even more severe than those caused by convection and diffusion. During chemical reactions,
some of the species, referred to as radicals, are produced and consumed at very high rates. As a result,
a very small time step size must be chosen such that errors are damped and not amplified [11], while
much larger integration time steps could be used for many other species that are produced / consumed at
a lower rate (e.g. nitrogen oxide). This time disparity among the species leads to a stiff system of coupled
differential equations. In fact, solving reactive systems explicitly, usually requires integration step sizes
much below those values required for an accurate solution [11]. For stiff systems of differential equations,
implicit time integration schemes allow for larger integration time steps and are consequently favored.

This leads to the situation that an explicit method is best suited for the temporal changes caused by
convection and diffusion, whereas an implicit method is mandatory to ensure that the time step size is not
overly small. Operator splitting methods are appropriate to meet both requirements.

3.1.1 Operator Splitting

Operator splitting methods have been introduced to integrate individual terms with different integration
schemes to account for drastically different properties among the terms. The method was originally pos-
tulated by Strang [91] and the associated procedure is called Strang splitting from here on. In general, the
integration takes place in three successive steps, which have a symmetrical structure:

dφ(1)

dt
= T

(
φ(1)

)
, φ(1) = φ (t) (3.14)

dφ(2)

dt
= R

(
φ(2)

)
, φ(2) = φ(1) (t + ∆t) (3.15)

dφ(3)

dt
= T

(
φ(3)

)
, φ(3) = φ(2) (t + 2 ∆t) (3.16)

φ(n+1) = φ(3) (t + 2 ∆t) (3.17)

In the equations, T is the vector of temporal changes resulting from transport processes, i.e. convection
and diffusion. Similarly, R is the vector of temporal changes due to source terms. In the first operator
splitting step, the sum of the convection and diffusion terms is integrated in time using an appropriate
explicit method together with the integration width ∆t, which is obtained using the CFL criterion. The
resulting system solution φ(1) (t + ∆t) is used as the initial solution for the second operator splitting step.
Subsequently, the chemical source term is integrated by two times ∆t, using suitable semi implicit or fully
implicit integration schemes. The third step mirrors the first step, just with an updated initial solution
φ(2) (t + 2 ∆t). The operator splitting presented has only second order accuracy in time. However, the
efficiency gained outweighs this drawback.

As noted by Wu et al. [92], deviations can occur in the vicinity of the extinction and ignition limits,
whereupon a new splitting algorithm has been proposed that circumvents the issue by adding constant
parameters in each step, where the magnitude of the constants is dictated by T at time t. This approach
eliminates the issues associated with extinction and ignition limits, but increases the memory usage:
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C
n = T (φ(t)) (3.18)

dφ(1)

dt
= T

(
φ(1)

)
+ Cn, φ(1) = φ (t) (3.19)

dφ(2)

dt
= R

(
φ(2)

)
− Cn, φ(2) = φ(1) (t + ∆t) (3.20)

dφ(3)

dt
= T

(
φ(3)

)
+ Cn, φ(3) = φ(2) (t + 2 ∆t) (3.21)

φ(n+1) = φ(3) (t + 2 ∆t) (3.22)

Because T
(
φ(1)

)
and Cn are identical, the first integration step can be omitted, reducing the number of

successive integration steps.

3.1.2 Runge Kutta

Throughout this work, Runge Kutta time integration methods have been used to advance the flow solution
in time due to convection and diffusion. Runge Kutta methods are explicit multi-step methods and in
essence a sequence of Euler explicit integration steps in which the RHS of the conservation equations is
calculated at various points in time. In the end, these evaluations k j (basically slopes) are used to estimate
a higher order solution using weight coefficients w j. A general pth order Runge Kutta scheme can be
written as [26]:

φ(n+1) = φ(n) +

p∑
j=1

w j k j (3.23)

k j = ∆t f

φ(n) +

j−1∑
i=1

β ji ki

 (3.24)

This classical approach stores each of these evaluations in memory in addition to the original solution at
time step n and an intermediate solution. Low Storage Runge Kutta procedures, on the other hand, update
the solution with each step and require only the current evaluation and the one from the previous Runge
Kutta step. Low storage Runge Kutta schemes can be expressed as [26]:

q j = a jq j−1 + ∆t f
(
φ j−1

)
(3.25)

φ j = φ j−1 + b jq j (3.26)

The low storage Runge Kutta scheme used in this work features 3 consecutive steps:

φ(1) = φ(n) + b1q1, q1 = ∆t f
(
φ(n)

)
(3.27)

φ(2) = φ(1) + b2q2, q2 = a2q1 + ∆t f
(
φ(1)

)
(3.28)

φ(3) = φ(2) + b3q3, q3 = a3q2 + ∆t f
(
φ(2)

)
(3.29)

The model coefficients a j and b j can be computed from the coefficients β ji and w j from the classical
Runge Kutta scheme. The following coefficients have been used:
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a1 = 0, b1 =
1
3

(3.30)

a2 = −
5
9
, b2 =

15
16

(3.31)

a3 = −
153
128

, b3 =
8

15
(3.32)

3.1.3 Solving Stiff Chemistry

To solve systems of stiff differential equations, semi implicit and implicit methods are well suited. Which
method is more adequate depends in particular on the time step size given by the CFL criterion. In
a reactive LES, the time step size typically has a range of ∆t = [1e-8, 1e-5] s. On the other hand, to
explicitly integrate the systems of stiff differential equations, time step sizes of ∆t ≤ 1e-9 s are usually
required. Thus, there are often several orders of magnitude between the characteristic time scales. If the
discrepancy is particularly large, the stiffness of the system of equations is especially pronounced and
fully implicit methods are the best choice. However, if the CFL dependent time step size takes values of
1e-7 s and less, then the stiffness is also less distinctive and semi-implicit methods are more efficient.

Because the chemical source term is integrated in an operator splitting framework, the differential
equations do not contain spatial gradients and are therefore classified as ordinary differential ordinary dif-
ferential equations. During time integration of the system, the density and internal energy are constant,
while temperature changes (if a Low Mach formulation is used, pressure and enthalpy are constant in-
stead). For this reason, a differential equation for temperature is added. Otherwise, an iterative Newton
Raphson algorithm would be required to update the temperature. This leads to the following system of
ordinary differential equations:

dY
dt

=
d
dt



Y1
Y2
...

YNS

T


=



ω̇1
ω̇2
...

ω̇NS

ω̇T


(3.33)

ω̇T = −

NS∑
α

ω̇αh0
f,α (3.34)

To distinguish this system from the system of conserved variables, the vector of the system is now denoted
by Y. Appropriate integration methods are discussed in the following.

3.1.3.1 CVODE

CVODE is a fully implicit ODE solver for initial value problems (IVP) embedded in the open source
SUNDIALS [93, 94] library. Stiff problems are solved using multi step variable order backward differen-
tiation formulas (BDF) [95]. One of the biggest advantages of CVODE is stability, which is due to years
of development, testing and superior error control. It is for this reason that CVODE has been used in all
publications presented in this thesis [6–8], despite more efficient alternatives are available. The library is
written in C, however, an interface for Fortran77 is provided, as well as a module for modern Fortran2003
to access CVODE C functions and structures via pointers. Both approaches have been implemented in
the scope of this work, whereby the Fortran77 interface has been preferred due the ease of use. The main
drawback of CVODE is the computational cost, which increases with the cube of the species involved
[92]. Hence, the usefulness of CVODE is somewhat limited to small to medium sized mechanisms, e.g.
hydrogen mechanisms featuring up to 9 species and less than 40 reactions.
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3.1.3.2 ODEPIM

The point implicit integration scheme for ordinary differential equations ODEPIM is based on ideas of
Liang et al. [96]. The authors decomposed the source term into a production term P and a destruction
term D and observed that the stability can be increased, if the destruction term is scaled by the ratio
Y(n+1)/Y(n):

Y(n+1) − Y(n)

∆t
= P

(
Y(n)

)
−D

(
Y(n)

) Y(n+1)

Y(n) (3.35)

Since the quantity Y(n+1) appears on the RHS, while production and destruction terms are calculated with
the system state at the previous time step Y(n), this integration procedure is considered semi implicit [97].
In contrast to the presented fully implicit Euler backward method, the equation can be solved for Y(n+1)

without introducing the Jacobian and the necessity to solve a linear system of equations:

Y(n+1) =
Y(n) + ∆t P

(
Y(n)

)
1 +

∆tD
(
Y(n)

)
Y(n)

(3.36)

The denominator in Eq. 3.36 has a dampening effect and leads to strictly non-negative results for Yn+1 [96].
As evident from Eq. 3.35, the integration scheme has only first order global accuracy like the Euler forward
scheme. Higher order procedures can be constructed using the same scaling approach [96]. Another way
to improve both accuracy and stability is the application of an inner iteration loop with iterator m [97, 98]:

Y(n+1,m) =
Y(n) + ∆t P

(
Y(n,m)

)
1 +

∆tD
(
Y(n,m)

)
Y(n,m)

(3.37)

Y(n,m=1) = Y(n) (3.38)

The iteration loop can be stopped, once all components of the system state vector have sufficiently con-
verged. In this work, the criterion of Yang et al. [98] has been adapted:

max
1≤α≤NS

∣∣∣∣∣∣ log10Y (n,m+1)
α

log10Y (n,m)
α

∣∣∣∣∣∣
 ≤ 10−5 ∧ |T (n,m+1) − T (n,m)| ≤ 10−3 K (3.39)

It is important to note that the discussed integration scheme does not involve any error control. Therefore,
if the CFL based time step size is too large, the scheme will face convergence issues. It was also found that
analytical calculations of the source term (e.g., using Cantera [12]) lead to better convergence behavior
than internal calculation methods, which are more efficient by tabulating only temperature-dependent
quantities, but thereby introduce discretization errors at the same time. The accuracy is on par with fully
implicit methods, whereby the efficiency is close to explicit methods.

3.2 Spatial Discretization

The governing equations for multi component combustion systems, as described in Sec 2.1, have to be
solved numerically. Analytical solutions for systems of coupled partial differential equations only exist
for a few cases, where several assumptions can be made to cancel a majority of the individual terms, e.g.,
steady laminar flow between two parallel plates. In general, the equations are solved on a solution domain
that is decomposed into a finite number of elements. Popular approaches to decompose the numerical
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domain are the finite difference method (FDM) and the finite volume method (FVM). In terms of the
finite difference method, the values of the conservation variables are stored in grid points that represent
the domain. The spatial derivatives present in the equations are approximated at the grid nodes by finite
differences. In contrast, in the finite volume method, the domain is represented by a finite number of small
volumes, also denoted as cells, where the cells do not overlap and share faces with the neighboring cells.
One of the biggest advantages of the FVM is the conservation property of all transported quantities as
well as the application to complex geometries. The finite volume method was used in this work and is
presented in the following.

3.2.1 Finite Volume Method

In order to apply the finite volume method, the conservation equations need to be represented in integral
form, hence, the integration of the conservation equations over a finite volume ∆V . In the following, the
conservation equation of an arbitrary scalar φ is used to derive the integral form. After volume integration
the conservation equation reads:

∫
∆V

∂ρφ

∂t
dV +

∫
∆V

∂ρuiφ

∂xi
dV =

∫
∆V

∂

∂xi

(
ρDφ

∂φ

∂xi

)
dV +

∫
∆V

ω̇φ dV (3.40)

According to the Gauß theorem [99], volume integrals of the divergence of vector fields F can be replaced
by integrals of the respective fluxes normal to the surface enclosing the integration volume:

∫
∆V

∇ · F dV =

∮
∆A

F · n dA (3.41)

Equation 3.41 features the surface normal vector n. Rewriting Eq 3.40 with the divergence terms replaced
by surface integrals and with the temporal derivative term on the left and all other terms on the RHS yields:

∫
∆V

∂ρφ

∂t
dV

︸       ︷︷       ︸
Temporal change

= −

∫
∆A

(ρuiφ) ni dA

︸             ︷︷             ︸
Convection term

+

∫
∆A

(
ρDφ

∂φ

∂xi

)
ni dA

︸                   ︷︷                   ︸
Diffusion term

+

∫
∆V

ω̇φ dV

︸     ︷︷     ︸
Source term

(3.42)

As evident from Eq. 3.42, finite volume methods ensure global conservation of the conserved quantity,
regardless of whether conservation makes sense from a physical perspective. This is due to the fact
that the flux is strictly assigned to the interface between two neighboring cells. If the flux between two
adjacent cells leads to a decrease in, for example, the left cell, the value in the right cell will increase by
the same amount. This holds true for arbitrary cell shapes. In practice, however, simple geometries like
tetrahedron- and hexahedron-shapes are used. Tetrahedrons are preferred in commercial software to allow
simulations of flows confined by complex geometries. In this work, equally sized cubic cells (hexahedron
with equidistant edge lengths) have been used, whose normalized surface normal vectors coincide with
the Cartesian direction vectors. Cubic Cartesian equidistant grids have several advantages, these include,
for example, preservation of the theoretical accuracy of numerical schemes, user-friendly implementation
of complex models, potential use of high order schemes and computational efficiency. The grid setup and
nomenclature is sketched in Fig 3.1.

3.2.2 Approximation of Integrals

The volume and surface integrals in Eq. 3.42 need to be approximated. The most common method is the
second order accurate mid-point rule [88], where volume integrals are approximated by cell center values
multiplied with volume and surface integrals are approximated by surface mid point values multiplied
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Figure 3.1: Illustration of the nomenclature used for cartesian, equidistant control volumes (CV) in the
FVM context: (a) Sketch in two dimensions of central (C) cell with indices i / j and the direct neighboring
cells denoted by celestial directions west (W), east (E), south (S), and north (N). Interfaces that are shared
among the cells mentioned are written in lower case letters. (b) Sketch to show the upwind (U) and
downwind (D) cells required to calculate the flow on the eastern face with flow direction from left to right
and (c) vice versa at western face with flow direction from right to left.

with area. By using equidistant grids, the volumes and areas of all cells are identical and result directly
from the global grid size (dA = ∆2

x, dV = ∆3
x). Also, each cell is composed of six surfaces, such that the

surface integral equals the sum of six individual surface evaluations:

∫
∆V

∂ρφ

∂t
dV ≈

∂ρφ

∂t
∆3

x (3.43)

∫
∆A

(ρuiφ) ni dA ≈
6∑

l=1

(ρuiΦ)l ni ∆2
x (3.44)

∫
∆A

(
ρDφ

∂φ

∂xi

)
ni dA ≈

6∑
l=1

(
ρDφ

∂φ

∂xi

)
l

ni,l ∆2
x (3.45)

∫
∆V

ω̇φ dV ≈ ω̇φ ∆3
x (3.46)

In general, values of conserved variables are stored and advanced at cell centers so that value evaluations
at cell centers are obsolete. However, quantities on the surfaces to determine fluxes are initially unknown
and suitable spatial discretization schemes are needed.

3.2.3 Convective Fluxes

The discretization of convective fluxes (Eq. 3.44) requires interpolation of quantities at the center point
of the surface, if the mid point approximation is used. For this purpose, spatial discretization schemes
are utilized that use the quantities at nearby cell centers for interpolation. At least two cell center values
next to the surface are required, but often values of several cell centers are used, which is also denoted as
cell stencil. The methods differ in accuracy, whereby higher accuracy is usually accompanied by lower
stability and higher computational costs. Accuracy in this context describes the decrease of the error with
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refinement of the grid. Furthermore, discretization schemes can be investigated with respect to numerical
dissipation and numerical dispersion. Numerical dissipation has a diffusive effect on the solution, which
is therefore smeared, while numerical dispersion leads to oscillations in the solution.

3.2.3.1 Central Differencing Scheme

Among the more popular spatial discretization schemes is the central differencing scheme (CDS). The term
differencing stems from the finite difference scheme that is reminiscent in determining the first derivative,
whereas in finite volume methods central interpolation would be more adequate [88]. To determine a
value at the eastern surface (e.g., that of the scalar φe) only the cell center values of the direct neighbors
φC and φE are needed:

φe =
φC + φE

2
(3.47)

The Taylor series expansions for the approximation of values φE and φC (see Fig. 3.1) developed at the
eastern surface read:

φE = φe +
∆x
1!

(
∂φ

∂x

)
e

+
∆x2

2!

(
∂2φ

∂x2

)
e

+
∆x3

3!

(
∂3φ

∂x3

)
e

+ O(∆x4) (3.48)

φC = φe −
∆x
1!

(
∂φ

∂x

)
e

+
∆x2

2!

(
∂2φ

∂x2

)
e
−

∆x3

3!

(
∂3φ

∂x3

)
e

+ O(∆x4) (3.49)

Equations 3.48 and 3.49 can be combined to resemble the CDS formulation in Eq. 3.47 in addition to
terms that are not considered by the discretization scheme and are thus classified as discretization errors.
It should be noted that terms with odd derivatives cancel out when adding Eq. 3.48 and 3.49:

φe =
φC + φE

2︸    ︷︷    ︸
CDS

−

[
∆x2

2!

(
∂2φ

∂x2

)
e

+ O(∆x4)
]

︸                         ︷︷                         ︸
Discretization errors

(3.50)

According to Eq. 3.50, the leading truncation error for CDS is proportional to the square of ∆x, making
the scheme 2nd order accurate. Also, because the leading error term features a second derivative, this
scheme is expected to suffer from dispersion errors, also known as wiggles or numerical oscillations. At
the same time, however, the error term responsible for numerical diffusion disappears, which is why this
scheme is generally a suitable choice for the simulation of turbulent flows, if numerical oscillations can
be suppressed. In the case of incompressible CFD solvers or in the case of low Mach solution algorithms,
CDS can be used in the momentum equations for the discretization of convective fluxes, since the pres-
sure gradient is determined implicitly and dispersion errors are thus smoothed. In the case of compressible
solvers, however, the pressure gradient is calculated explicitly and CDS can therefore not be used without
the use of appropriate filters [100, 101] or artificial viscosity methods [102, 103]. Another problem con-
cerns the transport of scalars that may take physically meaningful values only in a bounded range. This
applies, for example, to density, whose values must be greater than zero, or to coupled mass fractions,
whose minimum values are zero and maximum values respectively at one and whose sum must equal
exactly one. Even small oscillations can lead to a violation of the valid range, which is why further spatial
discretization methods are necessary for simulations of reactive flow.

3.2.3.2 Upwind Differencing Scheme

As with CDS, the upwind differencing scheme (UDS) has its name in the forward and backward differ-
encing schemes known from FDM. In contrast to CDS, UDS uses exactly the solution of the neighboring
cells as a function of the flow direction and thus reads:



44 Chapter 3. Numerical Modeling

φe = φU (3.51)

φU =

φC if ue ≥ 0,
φE else.

(3.52)

From here on, the notation with upwind values φU and downwind values φD will be used according to
Fig. 3.1 when the cell stencil is determined by the sign of the interpolated surface velocity. The Taylor
series expansion at point C to approximate the value on the east surface (UDS for ue ≥ 0) immediately
shows that the method is only 1st order accurate and that the leading error term corresponds to that of a
diffusive process:

φe = φC +

[
∆x
1!

(
∂φ

∂x

)
C

+ O(∆x2)
]

︸                      ︷︷                      ︸
Discretization errors

(3.53)

The low order accuracy and diffusive properties make UDS one of the most stable discretization schemes
for convective fluxes and can even handle discontinuities in the flow solution, such as compression shock
waves, and it keeps the boundedness of conserved scalars. However, there are alternatives for UDS that
also exhibit stable behavior while allowing significantly higher accuracy if the local solution permits.
These methods typically consider the sign of the velocity to apply an upwind biased cell stencil and are
non-linear. This means that the weighting coefficients in the interpolation stencil are a function of the
local solution.

3.2.3.3 Total Variation Diminishing Scheme

The total variation diminishing (TVD) scheme blends dynamically between UDS and CDS to combine
the stable behavior of UDS if it is necessary, while allowing the accuracy and low dissipation behavior
of CDS if possible. Generally, TVD schemes use a three point cell stencil with the two adjacent upwind
cells φU, φUU and the first downwind cell φD. It is assumed that CDS can be used only when the solution
is sufficiently smooth, whereas UDS is necessary when a change in gradient (i.e. second derivative) is
detected. In order to satisfy the TVD property, the total variation (TV) of a quantity at time step n+1 must
be less than or equal to the total variation at time step n with the following definition of TV by Harten
[104]:

TV(φn) =
∑

k

|φn
k − φ

n
k−1| (3.54)

TV(φn+1) ≤ TV(φn) (3.55)

Here, k describes a cell index with the sum covering all cells in the numerical domain. Given the definition,
it is natural to use a limiter function ψ(r) that takes the ratio of gradients as an argument leading to the
following interpolation scheme:

φe = φU +
1
2
ψ(r) (φU − φUU) (3.56)

r =
φD − φU

φU − φUU
(3.57)

Accordingly, UDS is recovered for limiter function values equal to zero and CDS is recovered for ψ(r) = r.
A stable second order TVD region for flux limiters in terms of r has been defined by Sweby [105]:
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Table 3.1: Definitions of popular flux limiter functions.[1].

Flux limiter function Definition
Min-mod limiter ψ(r) = max[0, min(r, 1)]
Superbee limiter ψ(r) = max[0, min(r, 2), min(2r, 1)]
Van Leer limiter ψ(r) = (r + |r|) / (1 + r)
Van Albada limiter ψ(r) = (r + r2) / (1 + r2)
Charm limiter ψ(r) = max(r, 0) (3 max(r, 0) + 1) / (max(r, 0) + 1)2
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Figure 3.2: Illustration of limiter functions ψ from Anderson et al. [111], Leer [112] (MUSCL), and Zhou
[108] (CHARM) as a function of gradient ratio r. The 2nd order TVD region, as introduced by Sweby
[105], is highlighted by a shaded background.

ψ(r) =

0 ≤ ψ(r) ≤ min(2r, 2) if r ≥ 0,
ψ(r) = 0 else.

(3.58)

Several limiter functions ψ(r) have been developed [106–108] with the aim of increasing the CDS portion
of the scheme within the TVD bounds and whose function definitions are presented in Tab. 3.1. A com-
prehensive comparison of the limiter functions available to the code used in this work has been presented
by Kempf [109] and Proch [110]. Following these results, the Charm limiter [108] has been utilized in
terms of TVD schemes.

3.2.3.4 Monotonic Upstream Scheme for Conservation Laws

The monotonic upstream scheme for conservation laws (MUSCL) is another non-linear scheme with the
aim to achieve higher accuracy while maintaining oscillation free solutions and has been originally con-
ceptualized by Van Leer [107, 112, 113]. Unlike the algebraic definition of total variation, the monotonic-
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ity constraint introduced by Godunov [114] is of geometric type, which states that an initially monotonic
distribution of quantity φ remains monotonic in the subsequent timesteps. For this purpose, the distribu-
tions of individual quantities in each cell are linearly approximated. For the respective slopes, conditions
arise to ensure monotonicity. For example, the boundary values of the linear approximation in cell C
must lie within an interval whose boundaries are defined by the averaged cell values of cell W and cell
E. Accordingly, the limiter proposed in scope of the original MUSCL scheme is also geometrically moti-
vated to limit slopes. It should be noted that any scheme with TVD property also preserves monotonicity
[115]. Apart from the specific limiter, however, an interpolation method different to the one used for TVD
schemes is used. The interpolation is based on the linear κ schemes, which were also introduced by Van
Leer [107]:

φe = φU + ψ(r)
[1 + κ

4
(φD − φU) +

1 − κ
4

(φU − φUU)
]

(3.59)

Accordingly, the interpolated value φe equals that of UDS in addition to a higher order term that takes both
upwind and downwind gradients into account. Slope limiters ψ(r) can be applied to both of the gradients,
turning the linear scheme into a non-linear scheme. Equation 3.59 also introduces the parameter κ that
allows to adjust the weights of upwind and downwind gradients. It can be shown [115] that κ-schemes
have a leading truncation error of 2nd order that, however, vanishes if κ = 1/3, resulting in an upwind
biased scheme of 3rd order. Numerical tests also showed superior behavior for κ = 1/3 [115]. According
to Roe [116], κ schemes can also be expressed in the general form of non-linear, flux limited schemes:

φe = φU +
1
2
ψ(r) (φU − φUU) (3.60)

ψ(r) = max
[
0, min

(
2r,

1 + κ

2
r +

1 − κ
2

, M
)]

(3.61)

The limiter function in Eq. 3.61 is piece-wise linear in terms of r with upper limit M. Improvements of
the original MUSCL scheme have been proposed since. Billet and Louedin [117] for example introduced
a triad of limiters that adapt to certain flow configurations, while Anderson et al. [111] presented an
improved limiter of 3rd order that has been used in this work with κ = 1/3:

ψAnderson(r) =
1
2

[
(1 − κ) min

(
r,

3 − κ
1 − κ

)
+ (1 + κ) min

(
1, r

3 − κ
1 − κ

)]
(3.62)

The limiter of Anderson et al. [111] is presented in the Sweby limiter diagram in Fig. 3.2 along with the
original MUSCL slope limiter (Eq. 3.61, κ = 0, M = 2) and the CHARM TVD limiter.

3.2.3.5 Weighted Essentially Non Oscillatory Scheme

The weighted essentially non oscillating (WENO) class of schemes, developed by Liu et al. [118], uses
a very different interpolation approach and takes the basic idea of essentially non oscillating (ENO)
schemes, proposed by Harten and Osher [119, 120], one step further. In contrast to the non-linear inter-
polation methods mentioned so far, ENO schemes do not use a limiter, but instead adapt the interpolation
stencil in order to select the smoothest polynomial for inner cell reconstruction. In turn, WENO schemes
weight the individual solutions of a finite number of sub stencils based on indicators for smoothness (IS)
to interpolate the quantity with a high order of accuracy. In general, WENO schemes can be constructed
with arbitrary formal accuracy, whereby the formal accuracy is only achieved in vicinity of smooth solu-
tions. Those sub stencils that incorporate discontinuities are omitted to remove oscillations. The WENO
method used in this work has 5th order formal accuracy, utilizes an upwind biased five point stencil (φUUU,
φUU, φU, φD, φDD) and is often referred to as classical WENO or WENO5. First, three candidates for the
interpolated value φe are computed, whereby each stencil is composed of three cells:
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φe,1 = 2 φUUU − 7 φUU + 11 φU (3.63)

φe,2 = −φUU + 5 φU + 2 φD (3.64)

φe,3 = 2 φU + 5 φD − φDD (3.65)

Further, a criterion for weighting the individual candidates is needed to increase accuracy while maintain-
ing oscillation free solutions. Jiang and Shu [121] have proposed the following smoothness indicators:

IS 1 =
13
12

(φUUU − 2 φUU + φU)2 +
3
12

(φUUU − 4 φUU + 3 φU)2 (3.66)

IS 2 =
13
12

(φUU − 2 φU + φD)2 +
3
12

(φUU − φD)2 (3.67)

IS 3 =
13
12

(φU − 2 φD + φDD)2 +
3
12

(3 φU − 4 φD + φDD)2 (3.68)

The weights ωk of the individual candidate solutions can then be calculated according to Liu et al. [118]:

ωk =
αk

α1 + α2 + α3
, k = 1, 2, 3 (3.69)

αk =
Ck

(IS k + ε)2 (3.70)

C1 =
1
12
, C2 =

6
10
, C3 =

3
10

(3.71)

Here, Ck are the optimal coefficients, that is, the smoothness indicators approach unity if the solution is
smooth, while ε is a small number to avoid division by zero. The final interpolated quantity at the eastern
face is calculated accordingly:

φe =
1
6

(
ω1 φe,1 + ω2 φe,2 + ω3 φe,3

)
(3.72)

3.2.3.6 Monotonicity Preserving Scheme

The monotonicity preserving (MP) scheme of Suresh and Huynh [122] is a formally 5th order accurate
scheme that ensures monotonicity by limiting the interpolated face value to a certain range in contrast
to slope limiting methods. The face limiting procedure has been originally proposed by Colella and
Woodward [123] in scope of the development of the piecewise parabolic method (PPM). However, the
limiting approach used in terms of the monotonicity preserving 5th order (MP5) scheme is different in
a few key aspects, as it is specifically designed for Runge Kutta time integration and because it widens
the allowed range in vicinity of extrema to increase accuracy following geometric considerations. In
calculating the interface value φe, an original interface value φOR

e is calculated first, using a fourth degree
polynomial [122]:

φOR
e =

1
60

(2 φUUU − 13 φUU + 47 φU + 27 φD − 3 φDD) (3.73)

In smooth regions, the original value will be an accurate approximation for the interface value, but violate
monotonicity near discontinuities. For this purpose, an upper limit value φUL is proposed which ensures
that the value φn+1 will lie between the values φUU and φU after a Runge Kutta stage:

φUL
e = φU + α (φU − φUU) (3.74)

CFL ≤
1

1 + α
(3.75)
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Figure 3.3: Spatial distributions of scalar φ with a) jump in the solution and b) with local extreme. Sten-
cils to compute the eastern interface value φe (green symbols) are presented by red symbols (TVD) and
additional blue symbols (MP5).

It is evident, that higher CFL numbers will result in a more restrictive upper limit value. In this work, a
value of α = 4 is used, with a theoretical CFL number limit of 0.2, which however can be increased by
a factor of 2 and still yield stable results. At the same time, if the cell averages are monotonic, then the
interface values should also be monotonic. Thus, φe is also restricted to the value range given by φU and
φD. The strictly monotonicity preserving interface value can now be expressed as:

φMP
e ∈

[
φU, φ

UL
e

]
∧ φMP

e ∈
[
φU, φD

]
(3.76)

Thus, the first interval ensures that the cell averages after a Runge Kutta stage are monotonic, while
the second interval ensures that the interpolated point values themselves are monotonic. In practice, the
strictly monotonicity preserving value can be calculated using the median function that takes three values
as input and returns the single value that lies between the other two. The median function also can be
formulated in a way that uses the efficient minmod function [122]:

φMP
e ← median

(
φU, φ

UL
e , φD

)
(3.77)

median
(
φU, φ

UL
e , φD

)
= φU + minmod

(
φD − φU, φ

UL
e − φU

)
(3.78)

minmod (x, y) = 0.5
(
sgn(x) + sgn(y)

)
min(|x|, |y|) (3.79)

The strictly monotonicity preserving scheme is very accurate in smooth regions, but it will have only first
order accuracy near extrema, a property shared with TVD and MUSCL schemes. To preserve accuracy
near extrema, the 5 point stencil employed in this scheme can be used in distinguishing extrema from
discontinuities. It is important to note that a 3 point stencil is insufficient, as demonstrated in Fig. 3.3.

This figure presents spatial distributions of a scalar φ at time t = 0, which are supposed to be convected
from left to right at constant velocity u. The cell averages initially correspond to the local values of the
exact solution and for the determination of the numerical flux the face value φe is needed. In panel a),
the scalar distribution exhibits a jump in the solution, which will lead to oscillations, when a higher order
reconstruction is used. For this reason, the spatial order of the scheme must degenerate to first order
accuracy in vicinity of discontinuities to yield φe = φU. In panel b), however, the spatial distribution is
smooth with a local extreme value, while the cell averages φUU, φU, and φD, i.e. the stencil for TVD
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and MUSCL schemes, are identical to those in panel a). Consequently, in the case of a TVD or MUSCL
scheme, the spatial accuracy will be reduced to first order again, which, however, is not necessary in this
case. Only by the additional information provided from the cell averages φUUU and φDD it becomes clear
that no discontinuity is present, a circumstance which is used by MP5 not to limit the valid interval range
to the upstream value. In order to preserve accuracy near extrema, the intervals in Expression 3.76 must
be enlarged.

In the case where a local extreme lies between the two closest cell averages φU and φD to the interface,
the interpolated value of the strictly monotonicity preserving scheme is inappropriately limited by the
interval

[
φU, φD

]
and is therefor not accuracy preserving. A viable choice to widen the interval is the

introduction of the so called median value, proposed by Huynh [124]:

φMD ← median
(
φAV, φFL, φFR

)
(3.80)

φAV = 0.5 (φU + φD) (3.81)

φFL = φU + 0.5 (φU − φUU) (3.82)

φFR = φD + 0.5 (φD − φDD) (3.83)

Expressions 3.80 - 3.83 feature the median value φMD, the average value φAV, the linearly left extrapolated
value φFL, and the linearly right extrapolated value φFR. The constraint of monotonic interpolated values
can be extended accordingly:

φMP
e ∈

[
φU, φD, φ

MD
]

(3.84)

However, in order to preserve accuracy in the situation shown in Fig. 3.3 it is also necessary to extend
the interval, which was previously limited by φU and φUL. For this purpose, Suresh and Huynh [122] have
proposed the large curvature value φLC as an additional quantity to enlarge the interval. A parabola is used
to determine φLC, using mostly upstream cell averages to construct the differences:

φLC = φU +
1
2

(φU − φUU) +
1
3

d (3.85)

d = 4 dMM
w = 4 minmod (dU, dUU) (3.86)

dU = φUU − 2φU + φD (3.87)

dUU = φUUU − 2φUU + φU (3.88)

In this context, d is a general second order difference and dMM
w is the smaller of the second order differences

adjacent to the western face, if both second order differences share the same sign. The interpolated value
that preserves both monotonicity and accuracy is then constrained by:

φe ∈
[
φU, φ

UL
e , φLC

e

]
∧ φe ∈

[
φU, φD, φ

MD
e

]
(3.89)

In order to calculate the final interface value, the minimum and maximum values of both constraints must
be used:

φmin
e = max

[
min

(
φU, φ

UL
e , φLC

e

)
,min

(
φU, φD, φ

MD
e

)]
(3.90)

φmax
e = min

[
max

(
φU, φ

UL
e , φLC

e

)
,max

(
φU, φD, φ

MD
e

)]
(3.91)

φe ← median
(
φOR

e , φmin
e , φmax

e

)
(3.92)
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3.2.3.7 Linear Test Case

The performance of the interpolation schemes can be tested using the linear advection equation at a con-
stant convection velocity u:

∂φ

∂t
+ u

∂φ

∂x
= 0 (3.93)

In the simulations, a scalar with a defined initial distribution is convected exactly once through a
one-dimensional domain, enabled by the use of periodic boundary conditions. The domain of all cases
presented here ranges from -1 m to 1 m, thus has a total length of 2 m discretized by 200 finite volumes,
which thus corresponds to a grid width ∆x of 0.01 m. In terms of time integration, the explicit low storage
Runge Kutta scheme with 3rd order accuracy has been used. Here, the CFL number for all schemes is set
to 0.4, since this value is near the stability limit for MP5. It should be noted that for the remaining inter-
polation schemes, including the formally 5th accurate WENO scheme, a larger CFL number could have
been chosen. A total of 3 cases with individual distributions have been tested with increasing demands on
the numerical methods.

The first distribution is a sine wave, presented in Fig. 3.4 a), i.e. a distribution featuring very shallow
gradients. In fact, it is difficult to keep the results of each interpolation method apart, except for UDS,
which is the only method that is 1st order accurate with a leading dissipative error term. Therefore, UDS
has visibly smoothed the sine wave after one run through. The initial profile in the second test case in
Fig. 3.4 b) corresponds to that of a Gaussian distribution, with the gradients near the maximum being
significantly steeper compared to those of the sine wave. This is also reflected in the results with more
pronounced differences between the schemes. To see the differences even more clearly, panel d) of Fig 3.4
shows a zoomed cutout in vicinity of the profile maximum. The TVD scheme smoothed the Gaussian
profile the most of those schemes, with a spatial accuracy of order of 2 or higher. The MUSCL method
behaves similarly to the TVD method with slightly less numerical dissipation. The CDS scheme stands out
in that the profile is phase shifted after one run though, but otherwise retained the initial profile satisfactory.
The phase shift can be attributed to the leading error being dispersive. For the schemes with a 5th order
formal accuracy, no difference from the initial solution can be identified. The profile of the third case is
given as [122]:

φ(x) =



exp
(
−log(2)(x + 0.7)2/0.0009

)
if − 0.8 ≤ x ≤ −0.6,

1 if − 0.4 ≤ x ≤ −0.2,
1 − |10(x − 1)| if 0 ≤ x ≤ 0.2,
sqrt

(
1 − 100(x − 0.5)2

)
if 0.4 ≤ x ≤ 0.6,

0 else.

(3.94)

This case involves not only a tophat profile, but also very narrow waves with sudden changes of the slope.
Evident from Fig. 3.4 c) are the oscillations that arise when CDS is used. For this case, two regions were
selected for a magnified view, see Fig 3.4 panel e) and f). These show an enlarged region around the first
wave, and an enlarged region of the discontinuity on the right side of the tophat profile. In particular,
panel e) reveals accurate behavior of MP5 near extrema. In addition, the discontinuity is also the least
smeared of all schemes tested. However, because the theoretical CFL limit for monotonicity preservation
is 0.2, while CFL = 0.4 has been used, small over- and undershoots can be seen. The observed behavior
can be critical in simulations of reactive flow with strictly bounded scalars, e.g. mass fractions must not
take negative values and values larger one. Lowering the CFL number will help in those situations, with
the drawback of higher CPU cost.

3.2.4 Diffusive Fluxes

Diffusive fluxes (Eq. 3.45) can be discretized using the second order accurate mid point rule along with
an approximation of the gradient on the face center. In contrast to the discretization of convective fluxes,
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Figure 3.4: Linear advection of scalar φ with the initial solution of a) sine wave, b) Gaussian distribution,
and c) four different challenging profiles with steep gradients and jumps. The panels in the right column
show close ups as highlighted by gray rectangles in the left panels.
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diffusive fluxes can be approximated by central difference schemes without the occurrence of dispersive
errors:

(
∂φ

∂x

)
e
≈
φE − φC

∆x
(3.95)

3.2.5 Approximate Riemann Solver

Hyperbolic systems of partial differential equations, such as the Euler equations of gas dynamics, require
numerical flux functions that add dissipation to capture discontinuities (e.g., compression shock waves
and contact discontinuities) without introducing excessive amount of numerical oscillations. Godunov
type schemes [125] approximate continuous data as piece wise constant on a numerical grid and the
arising discontinuity at each cell interface constitutes a Riemann initial value problem. Originally, the
exact solution for this local Riemann problem has been calculated to advance the solution in time. Near
physical discontinuities, accurate results are achieved making this approach shock capturing. In practice,
however, this scheme is highly dissipative in smooth regions and the computational cost for computing
the exact solution of the Riemann problem is high, due to iterative procedures. Dissipation can be reduced
by higher order spatial reconstruction of the state vectors to the left and right of the cell interface. In order
to reduce computational cost, Roe [106] proposed the use of an approximate Riemann solver that mimics
the exact solver in key aspects. Since then, several approximate Riemann solvers have been developed
[126]. The different procedures include flux difference splitting methods [127, 128], flux vector splitting
methods [129, 130], and flux splitting methods [131, 132]. Many of which may introduce unexpected
results in some situations. For example, the approximate Riemann solver proposed by Roe is prone for
the so called carbuncle phenomenon, where planar shocks collapse [133]. Other deficiencies have been
pointed out by Quirk [133]: (1) non-physical expansion shocks due to entropy violations, (2) negative
pressures in high Mach number flows, (3) post-shock oscillations due to slowly moving shocks, and (4)
odd even decoupling of planar shocks if aligned with the grid.

Moreover, the approximate Riemann solver used in this work is supposed to be suitable for combustion
simulations, so that numerical flux functions with matrix evaluations and partial derivatives with respect
to individual species were discarded. Instead, the computational cost should increase linearly with the
number of species. A method to which many of the mentioned deficiencies do not apply is the AUSM
method and its direct successor AUSM+.

3.2.5.1 AUSM+

The successor of the advection upstream splitting method (AUSM) [131] is denoted as AUSM+ [134] and
is more simple compared to flux vector and flux difference splitting methods. Thus it can be easily incor-
porated into an existing CFD solver and additionally corrects problems of its predecessor. These include,
for example, the elimination of low frequency oscillations behind the compression shock. Fundamentally,
in AUSM and in all methods based on it, the inviscid flux F̃ at a cell interface is divided into the convective
flux and the pressure flux to treat them separately:

F̃ = c̃
M̃ + |M̃|

2



ρ

ρu
ρv
ρw
ρH
ρY1
ρY2
...

ρYNS



+

+ c̃
M̃ − |M̃|

2



ρ

ρu
ρv
ρw
ρH
ρY1
ρY2
...

ρYNS



−

+ p̃



0
nx

ny

nz

0
0
0
...

0


(3.96)
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Here, ·̃ denotes an interface quantity and the superscripts ·+ and ·− denote a quantity left and right to the
interface. When higher order interpolation methods are used, a left biased stencil is used to compute the
state left to the interface and vice versa for the state to the right. Therefore, a definition of the interface
speed of sound c̃ and the interface Mach number M̃ is needed to compute the convective flux. The vector
components will be convected in upwind fashion with the resulting interface velocity c̃M̃. For example, if
the interface Mach number is positive, the second term will cancel out, and the vector components to the
left will be convected. There are several options to compute the interface speed of sound, like using the
upwind value, the arithmetic average, the geometric average or a function based on the critical speed of
sound [134]. All options are available in the CFD solver used in this work, whereby the arithmetic average
has been used.

The interface Mach number on the other hand is split into a left and a right running wave contribution
that are calculated via polynomials that exclusively depend on the non linear Eigenvalues u± c (used here
as M ± 1):

M̃ =M+ +M− (3.97)

M± =

1
2
(
M± ± |M±|

)
if |M±| > 1,

M±β else.
(3.98)

M±β = ±
1
2

(
M± ± 1

)2
± β(M±2 − 1)2, −

1
16
≤ β ≤

1
2

(3.99)

The equations feature the split Mach numbers M+ and M−, the Mach numbers left and right to the
interface M± and the higher order model coefficient β, which has been set to β = 1/8 as suggested by Liou
and Steffen [131].

Similar to the determination of the Mach number, the pressure is determined via the pressure splitting
functions P+ and P−:

p̃ = P+(M+)p+ + P−(M−)p− (3.100)

P± =

1
2
(
1 + sgn(±M±)

)
if |M±| > 1,

P±α else.
(3.101)

P±α =
1
4

(2 ∓ M±)(M± ± 1)2 ± αM±(M±2 − 1)2, −
3
4
≤ α ≤

3
16

(3.102)

The higher order pressure coefficient is set to a value of α = 3/16 according to the original authors
recommendation of AUSM+. Naturally, the sum of the contributions equals unity, irrespective of the
Mach numbers. It can also be seen from the equations that the method switches to pure upwinding as soon
as the flow becomes supersonic.

In general, AUSM+ is a very well suited method when it comes to simulating transonic and supersonic
flows. However, like many other upwind methods, AUSM+ suffers from excessive numerical dissipation
at low Mach numbers, which can be problematic, for example, when simulating turbulent flows where
energy is also contained in small scale vortices and is dissipated prematurely [135]. In fact, many shock
capturing schemes prevent the accumulation of kinetic energy at the grid level, which raises the question
of whether a subgrid scale model should be used at all. This disadvantage was also addressed by Liou,
the leading author of AUSM and AUSM+, and a so-called low speed alternative AUSM+-up [136] was
developed with the aim of better performance for low Mach number flows. However, this algorithm is not
parameter-free, and settings would need to be adjusted on a case-by-case basis.

3.2.5.2 SLAU2

The simple low dissipation AUSM family (SLAU) scheme by Shima and Kitamura [137] and its successor
SLAU2 [138] are, like AUSM+-up, all speed schemes. Unlike, the all speed version of AUSM however,
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this family of schemes does not use any case dependent parameters. In SLAU2, the inviscid flux is split
into a convective flux and a pressure flux. Yet an interface mass flux ˜̇m is used now instead of an interface
speed of sound and an interface Mach number:

F̃ =
˜̇m + | ˜̇m|

2



1
u
v
w
H
Y1
Y2
...

YNS



+

+
˜̇m − | ˜̇m|

2



1
u
v
w
H
Y1
Y2
...

YNS



−

+ p̃



0
nx

ny

nz

0
0
0
...

0


(3.103)

The pressure splitting approach is also adopted from AUSM+, but rearranged in a formulation with
three different terms, each serving a specific purpose:

p̃ = P+ p+ + P− p−

=
p+ + p−

2︸    ︷︷    ︸
Central Difference

+
P+ − P−

2
(p+ − p−)︸                  ︷︷                  ︸

High Speed Damping

+ (P+ + P− − 1)
p+ + p−

2︸                        ︷︷                        ︸
Numerical Damping

(3.104)

Thus, the AUSM pressure function consists of a central difference term, a damping term that is important
only when the pressure split functions P+ and P− differ greatly, and a numerical dissipation term. Accord-
ing to the authors, neglecting the third term is not an option, as instabilities will arise. Instead, in order
to decrease numerical damping at low speeds, the third term is scaled with a velocity dependent function.
The SLAU2 pressure function then reads:

p̃ =
p+ + p−

2
+
P+ − P−

2
(p+ − p−)

+
1
c̃

√
u+2 + u−2 + v+2 + v−2 + w+2 + w−2

2
(P+ + P− − 1)

p+ + p−

2
(3.105)

The interface mass flux is identical among all SLAU schemes and is based on the Roe mass flux in
terms of the primitive variables ρ, Vn, and p, where Vn is the face normal velocity component. A Roe
flux is essentially the sum of a central flux and several dissipation fluxes resulting from the Roe matrix
multiplication with the difference vector of the dependent variables (∆ρ, ∆Vn,∆p). Accordingly, this
would be the central mass flux, the density difference term, the velocity difference term and the pressure
difference term. As stated by the authors of SLAU2, not every difference term is necessary for a mass
flux function. The pressure difference term, for example, may cause the Carbuncle phenomenon at high
Mach numbers. In the process, disturbances are amplified in the shock tangential direction and cause
the structure of stable and planar shock waves to break up. Therefore, the pressure difference term is only
active at low Mach numbers, while the velocity difference term is omitted altogether. These considerations
result in the following interface mass flux:
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˜̇m =

 (ρVn)+ + (ρVn)−

2︸               ︷︷               ︸
Central Flux

−
|V̄n|

2
∆ρ︸ ︷︷ ︸

Density Difference

 (1 − g) − χ
1
2c̄

∆p︸  ︷︷  ︸
Pressure Difference

(3.106)

Vn = u nx + v ny + w nz (3.107)

|V̄n| =
ρ+|Vn|

+ + ρ−|Vn|
−

ρ+ + ρ−
(3.108)

g = g+g−, g+ = −max[min(M+, 0),−1], g− = min[max(M−, 0), 1] (3.109)

χ = (1 − M̂)2 (3.110)

M̂2 = min

1, 1
c̄

√
u+2 + u−2 + v+2 + v−2 + w+2 + w−2

2

 (3.111)

Here, χ is the function to disable the pressure difference term at high Mach numbers. The function g
meanwhile, is purely added for the special case of a supersonic expansion, to correct the mass flux under
those conditions. But in most situations, (1 − g) will be close to unity and have no effect.

There is also a high resolution modification of SLAU2 in which the third term of the pressure expres-
sion is multiplied by a so-called high resolution factor γHR, denoted as HR-SLAU2 [139]:

p̃ =
p+ + p−

2
+
P+ − P−

2
(p+ − p−)

+ γHR
1
c̃

√
u+2 + u−2 + v+2 + v−2 + w+2 + w−2

2
(P+ + P− − 1)

p+ + p−

2
(3.112)

For this purpose, the numerical dissipation term will be disabled as soon as the field is sufficiently smooth,
which means that no oscillations (wiggles) are present. The pressure field is generally used as the test
field and the high resolution factor can be calculated via a specified minimum value (e.g., γmin = 0.2) and
a wiggle detector value γw:

γHR = max(γmin, γw) (3.113)

γw =
1 − tanh

[
5πmin(p1, p2)

]
2

(3.114)

p1 = (pi+1 − pi) (pi − pi−1) (3.115)

p2 = (pi+1 − pi) (pi+2 − pi+1) (3.116)

As is evident from Eq. 3.114, if either p1 or p2 are negative due to different signs of the adjacent differ-
ences, this will translate to unity wiggle detector values and as a result, the numerical dissipation term
will be identical to that of SLAU2. In smooth regions on the other hand, the high resolution factor will
approach the minimum value γmin.

3.2.5.3 Characteristic Variables

In order to compute all quantities left (+) and right (-) to the interface, a set of variables for interpolation
must be chosen on the basis of which all the remaining quantities are calculated. Possible variables are,
for example, the primitive variables V or the conservative variables U:



56 Chapter 3. Numerical Modeling

V =



ρ

u
v
w
p

Y1
Y2
...

YNS


U =



ρ

ρu
ρv
ρw
ρE
ρY1
ρY2
...

ρYNS


It is important to note that the variables are not independent from each other. It is thus questionable to
interpolate the variables independently and neglecting interaction among them. In fact, using primitive or
conservative variables will result in over/under shoots near discontinuities as a result [140]. A solution is
the characteristic formulation of the Euler equations. First of all, the starting point are the Euler equations
in primitive notation and quasi-linear formulation using the flux Jacobian A for a one-dimensional system
[141]:

∂

∂t

ρu
p

 + A
∂

∂x

ρu
p

 = 0, A =

u ρ 0
0 u 1/ρ
0 ρ c2u

 (3.117)

Because all the Eigenvalues of the flux Jacobian are real (hyperbolic system of PDE’s), the matrix can be
converted to the diagonal matrix Λ with the matrix of the left L and right Eigenvectors R:

A = R Λ L, (3.118)

R =


1 1 1
− c
ρ 0 c

ρ

c2 0 c2

 , Λ =

u − c 0 0
0 u 0
0 0 u + c

 , L =


0 1 0
−

ρ
2c 0 ρ

2c
1

2c2 − 1
c2

1
2c2

 (3.119)

The Euler equations can now be written as:

∂

∂t

ρu
p

 + R Λ L
∂

∂x

ρu
p

 = 0 (3.120)

⇔
∂

∂t
W + Λ

∂

∂x
W = 0, dW = L d

ρu
p

 (3.121)

Most importantly, the new system of equations is decoupled, where the components of W are convected
like a scalar at the respective characteristic speed. The variables are thus denoted characteristic variables,
whereby interpolation of characteristic variables is known to suppress oscillations [140]. In practice, the
coefficients of the matrices L and R must be frozen locally [122]. Thus, an interpolation stencil with 5
points would use a single left Eigenvector matrix to determine the characteristic variables in all 5 points.
In this work, the coefficients of the left Eigenvector matrix are calculated from the values in the adjacent
cells left or right to the interface. The characteristic decomposition can also be carried out for the Euler
equations with conservative variables. The left and right Eigenvector matrices are presented by Suresh
and Huynh [122] and read:
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Rc =


1 1 1

u − c u u + c
H − uc 1

2 u2 H + uc

 , Lc =


b2
2 + u

2c −
b1u
2 −

1
2c

b1
2

1 − b2 b1u −b1
b2
2 −

u
2c −

b1u
2 + 1

2c
b1
2

 (3.122)

b1 =
γ − 1

c2 , b2 =
u2b1

2
(3.123)

After interpolation, the characteristic variables must be transformed into either primitive or conservative
variables via:

ρu
p

 = R W ∨

 ρρu
ρE

 = Rc Wc (3.124)

For the application in three spatial dimensions, 5x5 matrices could also be constructed [142], a step that
further increases the already high computational costs. However, it has been shown that it is sufficient to
perform the characteristic decomposition only for a local one-dimensional system using the corresponding
normal velocity component. The tangential velocity components and scalars are then interpolated using
standard interpolation formulae.

Another problem that has been observed in scope of this work, is the appearance of numerical noise in
stagnant regions, when SLAU2 is used with characteristic variable decomposition. Supposedly, numerical
noise is introduced as consequence of variable transformations, whereby SLAU2 fails at damping the
noise, if the magnitude of velocity takes very small values. Using AUSM+ instead, prevents the occurrence
of the observed numerical noise, indicating that the low Mach corrections of SLAU2 are responsible.
Therefore both primitive (or conservative) and the corresponding characteristic variables are interpolated.
The final value is calculated as a blend between the interpolated values using the blending function from
SLAU2. This approach is even more costly, but has proven to be very stable, while providing oscillation
free and accurate results. However, if the simulation of shock waves or detonation waves is not of major
interest, the author of this work strongly suggests to use the primitive variables instead of characteristic
variables.

Lastly, it must be addressed that the use of large stencils and characteristic decomposition can lead
to nonphysical states in isolated cases. Therefore, recursive order reduction (ROR) is used in this work
[143]. Thereby it is checked whether the interpolated pressure or the interpolated density take a negative
value. If this is the case, successive methods with lower accuracy and smaller stencils are used. As
soon as an interpolation procedure yields a physical result, the algorithm is stopped. In this work, the
following interpolation schemes were used in the appropriate order for ROR: MP5 (1), MP (2), WENO5
(3), MUSCL (4), TVD (5), and UDS (6). A log file is written during each simulation to access the number
of required order reductions.

3.2.5.4 Thornber Correction

In order to decrease numerical damping of approximate Riemann solvers at low Mach numbers, a simple
correction has been introduced by Thornber et al. [144]. The authors state that most of the numerical
damping stems from the velocity jump at the interface, whereby the jump is purely mathematical in smooth
regions and can thus be decreased:

u+ =
u+ + u−

2
+ z

u+ − u−

2
(3.125)

u− =
u+ + u−

2
+ z

u− − u+

2
(3.126)

z = min(Mlocal, 1), Mlocal = max(M−,M+) (3.127)
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Here, u is the velocity vector and z is the blending function. The authors reported of highly improved
performance in three dimensional simulations of decaying turbulence and scalar mixing.

3.2.5.5 High Order Schemes

It should be emphasized that the combination of high order spatial schemes and the midpoint rule for the
approximation of surface integrals, is not necessarily recommended. The reason is that the global spatial
accuracy will be limited to second order accuracy due to the the midpoint rule, irrespective of the spatial
interpolation method [88]. However, the application of high order spatial schemes is reasonable when a
Riemann type solver is used. This is because any jump in the states at an interface results in numerical
dissipation being applied to the fields. In smooth regions, this state difference becomes smaller with
refined grids, provided the solution is smooth. The rate at which the difference decreases is naturally higher
for higher order spatial schemes, significantly improving the solution quality at a given grid resolution.

3.3 Boundary Conditions

The numerical solution of coupled partial differential equations requires, in addition to the discussed
integration and spatial discretization methods, an initial condition and suitable boundary conditions, which
can have a significant impact on the computed solution. The boundary conditions in this work are all
realized using the concept of ghost cells. Here, the numerical domain covers the physical domain and
an additional adjacent boundary region that is comprised of a certain number of ghost cell layers. The
amount of layers needed is governed by the maximum stencil size of all discretization methods used. For
instance, the 5-point stencil of MP5 requires 3 layers of ghost cells, with 3 points covered by ghost cells
and 2 points covered by interior cells at an inlet.

Boundary conditions can usually be divided into 2 classes: (1) Dirichlet boundary conditions with
fixed values for the boundary values and (2) von Neumann boundary conditions where the boundary
values result from prescribed gradients. Suitable examples would be, an atmospheric pressure prescribed
at the outlet, or zero gradient boundary conditions where the solution on the boundary always matches
that of the inner solution, e.g. for the temperature field in terms of an adiabatic wall. The use of a
partitioned domain, which allows parallel computation of the problem on multiple CPU cores, creates
inner boundaries between the local domains of different computational regions in addition to the physical
boundaries. Ghost cells are also used here, where the values correspond to those of the adjacent inner
cells of the neighboring computational domain through message passing interface (MPI) communication.
Details regarding the standard boundary conditions available in PsiPhi and communication can be found
in the work of Proch [110].

3.3.1 NSCBC

For the simulation of compressible flows, additional requirements are imposed concerning boundary con-
ditions. A fixed value of pressure at the outlet of the numerical domain will inevitably reflect any acoustic
wave to some extent. This circumstance can be problematic if, for instance, the reflected waves interact
with a flame or the flow in inlet ducts, and has encouraged the development of non-reflective boundary
conditions.

The Navier Stokes characteristic boundary conditions (NSCBC) proposed by Poinsot and Lele [145]
have been intended to provide a framework for the development of boundary conditions that are suitable
for compressible LES and rely on the concept of characteristic waves. The approach can be used to
derive non-reflective inlet and outlet boundary conditions, as well as reflective boundary conditions for
viscous walls and many other. The cornerstones of the approach include well-posedness of the boundary
conditions according to the analysis of Oliger and Sundström [146] and Dutt [147] as well as a general
abandonment of extrapolation of individual quantities (e.g. zero gradient boundary condition). Instead,
the Navier Stokes equations are solved on the boundary with the boundary normal gradients (only those of
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the Euler equations) being replaced by characteristic expressions. The following set of equations is valid
for boundaries normal to x-direction [9, 145]:

∂ρ

∂t
+ d1 +

∂ρv
∂y

+
∂ρw
∂z

= 0 (3.128)

∂ρu
∂t

+ ud1 + ρd3 +
∂ρuv
∂y

+
∂ρuw
∂z

=
∂τ1 j

∂ j
(3.129)

∂ρv
∂t

+ vd1 + ρd4 +
∂ρvv
∂y

+
∂ρvw
∂z

+
∂p
∂y

=
∂τ2 j

∂ j
(3.130)

∂ρw
∂t

+ wd1 + ρd5 +
∂ρwv
∂y

+
∂ρww
∂z

+
∂p
∂z

=
∂τ3 j

∂ j
(3.131)

∂ρEs

∂t
+ kd1 +

d2

γ − 1
+ ρud3 + ρvd4 + ρwd5 + ...

+
∂ρHsv
∂y

+
∂ρHsw
∂z

= −
∂qi

∂xi
+
∂τ jiu j

∂xi
+ ω̇T (3.132)

∂ρYα
∂t

+ Yαd1 + ρd5+α +
∂ρYαv
∂y

+
∂ρYαw
∂z

=
∂ jα,i
∂i

+ ω̇α (3.133)

It is important to note that the presented energy equation considers only the sensible and kinetic contri-
bution. Therefore, a heat release term appears on the RHS of Eq. 3.132. This energy formulation is thus
inconsistent with the one used in this work, where the formation enthalpy is transported alongside the
sensible and kinetic energy. An expression for the space derivative of the mixture averaged formation
enthalpy must be added in Eq.,3.132 accordingly, while removing the heat release rate ω̇T :

∂ρh0
f u

∂x
= h0

f d1 + ρ

NS∑
α=1

∆h0
f,αd5+α (3.134)

However, this energy equation is strictly valid only for the FRC combustion model and would fail for
other combustion models such as flamelet generated manifolds (FGM) or the flame surface density (FSD)
model. Instead, formation enthalpy is removed from the conserved energy prior to time integration. Once
time integration is finished, formation enthalpy is added based on the updated scalars on the boundary.

Equations 3.128 - 3.133 further feature the kinetic energy k and characteristic terms di to replace nor-
mal gradients and which are provided by the analysis of Thompson [148] and presented by Poinsot and
Veynante [9]:

d =



d1
d2
d3
d4
d5

d5+α


=



1
c2

[
L2 + 1

2 (L5 +L1)
]

1
2 (L5 +L1)
1

2ρc (L5 − L1)
L3
L4
L5+α


=



∂ρu
∂x

ρc2 ∂u
∂x + u∂p

∂x
u∂u
∂x + 1

ρ
∂p
∂x

u ∂v
∂x

u∂w
∂x

u∂Yα
∂x


(3.135)

The equations include the amplitudes Li of characteristic waves, which can be retrieved from the charac-
teristic decomposition in Sec. 3.2.5.3:
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L1 = λ1

(
∂p
∂x
− ρc

∂u
∂x

)
(3.136)

L2 = λ2

(
c2 ∂ρ

∂x
−
∂p
∂x

)
(3.137)

L3 = λ3
∂v
∂x

(3.138)

L4 = λ4
∂w
∂x

(3.139)

L5 = λ5

(
∂p
∂x

+ ρc
∂u
∂x

)
(3.140)

L5+α = λ5+α
∂Y5+α

∂x
(3.141)

Here, λi are the characteristic speeds λ1 = u − c, λ2 = λ3 = λ4 = λ5+α = u, λ5 = u + c.
Characteristic amplitudes of outgoing waves can be calculated directly from interior points, while those

of ingoing waves are unknown. Determining unknown amplitudes is the last piece of the puzzle and is
achieved in the NSCBC strategy by analyzing the local one dimensional inviscid LODI relations:

∂ρ

∂t
+

1
c2

[
L2 +

1
2

(L5 +L1)
]

= 0 (3.142)

∂u
∂t

+
1

2ρc
(L5 − L1) = 0 (3.143)

∂v
∂t

+L3 = 0 (3.144)

∂w
∂t

+L4 = 0 (3.145)

∂p
∂t

+
1
2

(L5 +L1) = 0 (3.146)

∂Yα
∂t

+L5+α = 0 (3.147)

∂T
∂t

+
T
ρc2

[
−L2 +

1
2

(γ − 1)(L5 +L1)
]

= 0 (3.148)

For the case of a subsonic inlet boundary condition at the western side of the computational domain
with fixed velocities, fixed temperature, and fixed composition, the time derivatives in the respective LODI
relations vanish. It is now evident from Eq. 3.143 that L5 = L1. Because L1 is an outgoing wave and
can be calculated from interior points, the LODI relation allows to estimate L5. Using the LODI relation
for the temperature time derivative, L2 can be calculated as a function of L1 and L5. The remaining
amplitudes are all zero, if the time derivative is zero, which allows to compute all derivative terms di and
to advance the solution on the boundary in time.

If a non-reflective boundary is desired to be used at the right outlet, all amplitudes can be calculated
exceptL1, which is set to zero for a perfectly non-reflective boundary. In that case, as noted by Poinsot and
Lele [145], the boundary condition is no longer well-posed. Since no information enters the domain by
ingoing waves, an increasing divergence of the boundary pressure from the ambient reference pressure can
be the result. A better boundary condition in this case is a partially reflecting outlet boundary condition,
where the ingoing wave L1 must be functionally correlated to the ambient pressure. This makes sense
from a physical point of view, because any local pressure deviation on the outlet boundary, will result in
ingoing waves that compensate for the pressure difference. A natural choice is thus to relate the amplitude
of the ingoing wave to the pressure difference and a proportionality coefficient K:
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L1 = K (p − p∞) (3.149)

K = σ(1 − M2
max)

c
L

(3.150)

Here, Mmax is the maximum Mach number, L is a characteristic length scale and chosen to equal the length
of the domain, whereby σ is a constant to control the relaxation toward the fixed reference pressure p∞.
According to Selle et al. [149], a suitable range for σ is 0.1 ≤ σ ≤ π.
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Chapter 4
Shock Tubes

Shock tubes are an essential measuring device to establish important characteristics of various fuels. A
shock tube is a pipe made up of two chambers that are initially separated by a diaphragm. The low-pressure
chamber (driven section) usually contains a combustible mixture, while the high-pressure chamber (driver
section) contains an inert gas. At the beginning of the experiment, the pressure in the high pressure cham-
ber is gradually increased until the diaphragm bursts. In the following, a compression shock develops
and propagates into the gas of the low-pressure chamber. Simultaneously, an expansion fan establishes
towards the high-pressure chamber, which expands the initially quiescent high-pressure gas to an inter-
mediate pressure corresponding to the pressure behind the compression shock. Eventually, the incident
shock will reflect at the end wall of the driven section of the shock tube and elevate both, pressure and
temperature at the end wall, and thus initiate the ignition of the combustible mixture.

In this work, the following notation is used for the five different gas states in the shock tube. It is
common to indicate the initial state in the driver section with subscript “4” and subscript “1” for the
driven section respectively. The region of compressed driven gas behind the incident shock is denoted by
subscript “2”, where the following relationship applies: p1 < p2 < p4. The region of the expanded driver
gas is indicated by subscript “3”, where the pressure equals that of region 2: p2 = p3. The expanded
material in region 3 has a lower temperature, whereas the compressed material has a higher temperature
compared to the initial state: T3 < T4 = T1 < T2. Therefore, regions 2 and 3 are separated by a contact
discontinuity due to significantly different thermodynamic states. Nevertheless, particles in region 2 and
3 have the same velocity: u2 = u3. The region behind the reflected shock is specified by subscript “5”.

Velocities will be written in capital letters when the definition refers to a reference frame moving at
wave speed, or in lowercase letters, for definitions in laboratory coordinates. For example, the gas in
region 1 is at rest and thus, has no velocity in laboratory coordinates, but the Mach number of the incident
shock Ms can be written in terms of a velocity U1 in a reference frame moving with the incident shock
speed us:

u1 = 0 (4.1)

Ms =
U1

c1
=

us

c1
(4.2)

4.1 Ideal Shock Tube Relations

Under ideal conditions, assuming an inviscid and adiabatic flow and a calorically perfect fluid, essential
objectives can be determined on the basis of the initial parameters. These initial parameters are: the
temperatures T1 and T4, the pressures p1 and p4, the ratios of specific heats γ1 and γ4, and the molecular
weights W1 and W4 of the test and driver gas. Usually, the initial temperatures are equal to the ambient
temperature, leaving only the pressure ratio to vary the experiment, once the driver and test gas have been
chosen. Many of the relations discussed in the following can be found in the work of Mark [150] and
Glass et al. [151].

The one-dimensional conservation equations can be formulated in a reference frame moving with the
incident shock, as outlined in Sec. 2.2.1.1. The state quantities behind the incident shock may then be
specified with the jump conditions for a calorically perfect gas as a function of the initial states and the
incident shock Mach number Ms:
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M2 =

√
(γ − 1)M2

s + 2
2γM2

s − (γ − 1)
(4.3)

p2 = p1
2γM2

s − (γ − 1)
γ + 1

(4.4)

ρ2 = ρ1
(γ + 1)M2

s

(γ − 1)M2
s + 2

(4.5)

T2 = T1
2γM2

s − (γ − 1)
(γ + 1)2M2

s

(γ − 1)M2
s + 2

(γ + 1)2M2
s

(4.6)

This leaves the incident Mach number M1 as the remaining unknown to compute the post shock state.
Since isentropic relations can be used to describe the change of state across the expansion fan (region 4 to
region 3) and because the pressure of compressed and expanded fluid is identical (p2 = p3), an expression
for the pressure ratio p4/p1 can be derived as a function of the incident Mach number:

p4

p1
=

(
2γ1

γ1 + 1
M2

s −
γ1 − 1
γ1 + 1

) [
1 −

γ4 − 1
γ4 + 1

c1

c4

(
Ms −

1
Ms

)] −2γ4
γ4−1

(4.7)

Although there is no analytical solution for Ms, an approximate solution can be calculated using root
finding algorithms. Special care must be taken to start with a suitable guess, otherwise the root finding
algorithms often fail to find a solution for Eq. 4.7. It emerges from Eq. 4.7 that the incident shock Mach
number depends not only on the initial pressure ratio p4/p1, but also on the ratio of speed of sounds c1/c4.
Therefore, in order to achieve high incident Mach numbers, it is crucial to use a driver gas with a small
molecular weight (which translates to high speed of sounds c4), as demonstrated by Mark [150].

Once the incident shock reaches the end wall of the shock tube, the fluid directly following the shock is
brought to rest in an instance. Mass will accumulate at the end wall and pressure will increase, resulting in
a reflected shock that moves away from the end wall with the velocity urs into the previously accelerated
fluid in region 2. The pressure behind the reflected shock balances the reflected shock velocity, such
that the fluid passing through the reflected shock is subsequently at rest. Any variation in the velocity
of the reflected shock results in either compression or expansion of the accumulated fluid, and thus, in a
strengthening or weakening of the reflected shock. The Mach number of the reflected shock is then given
as:

Mrs =
urs + u2

c2
(4.8)

Both velocities u2 and urs are unknown yet. The particle velocity u2 in laboratory coordinates can be ex-
pressed as the difference of the incident shock speed us and the particle velocity U2 in the shock reference
frame, which can be calculated using Eq. 4.3 [150]:

U2 = us − u2 (4.9)

M2 =
us − u2

c2
= Ms

c1

c2
−

u2

c2
(4.10)

Equations 4.6 and 4.10 can be combined to obtain:

u2 = c1
2
(
M2

s − 1
)

(γ + 1)Ms
(4.11)
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Unlike the incident shock, the reflected shock does not travel into gas at rest but rather it travels with
velocity urs into a gas with the velocity u2, whereby the gas velocity behind the reflected shock u5 is zero
in laboratory coordinates. However, the coordinate system can be transformed into a system in which the
reflected shock travels into quiescent gas by shifting all velocities by u2. In this coordinate system, the
flow velocity behind the reflected shock is U5 = u2 and can be calculated via Eq. 4.11, using appropriate
values for the speed of sound and Mach number:

U5 = c2
2
(
M2

rs − 1
)

(γ + 1)Mrs
= c1

2
(
M2

s − 1
)

(γ + 1)Ms
= u2 (4.12)

The equation thus relates the Mach numbers of both incident shock and reflected shock and allows to
calculate the reflected shock Mach number [150]:

Mrs =

√
2γM2

s − (γ − 1)
(γ − 1)M2

s + 2
(4.13)

Mrs =
1

M2
(4.14)

The RHS of Eq. 4.13 is the inverse of Eq. 4.3, which then allows to compute the reflected shock Mach
number using the simple relation in Eq. 4.14. Once the Mach number of the reflected shock is known, the
main quantities of interest p5 and T5 can be determined by jump conditions, whereby p5 and T5 specify
the conditions supporting the ignition.

In the shock tube simulations that are part of this work, the state variables of the individual regions are
required. First, to determine the time steps that characterize reflection and ignition to log these events, and
second, to solve the boundary layer equations. Argon or helium, which are calorically perfect gases, are
frequently used in the driver section, while gas mixtures with temperature-dependent heat capacities are
usually present in the test section. The equations presented so far can thus not be used unconditionally.
Instead, a different approach is used to determine the incident shock speed. Crucial in that regard is
the Aitken root finding algorithm [152], that is used to minimize the error of Riemann invariants [153]
providing expressions for a constant along the characteristics u ± c, if the flow is isentropic:

2c4

γ − 1
+ u4 =

2c3

γ − 1
+ u3 (4.15)

Error←
2c4

γ − 1
+ u4 −

2c3

γ − 1
− u3 (4.16)

The error will approach zero if the incident shock speed approaches the exact value. The following
algorithm has thus been used:

1. The mixture averaged states of region 1 and 4 are calculated using the composition and single
species tabulated gas properties as function of temperature together with pressure.

2. Another Aitken root finding algorithm with temperature T2 as the unknown, is used to find the post-
shock state of a calorically imperfect fluid with frozen composition Y2 = Y1, where the error is
defined as:

Error←
u2

1

2
−

u2
2

2
+ h1(T1, p1,Y1) − h2(T2, p2,Y2) (4.17)

Alternatively, a multi variable Newton-Raphson iteration can be used to solve the jump conditions
for a calorically imperfect gas [25].
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3. The state in region 3 can be determined using pressure p3 = p2, entropy s3 = s4 and composition
Y3 = Y4. An iterative Newton-Raphson procedure is used to compute temperature using the known
entropy of the mixture:

dT =
T
cp

ds (4.18)

ds = s(T,Y3) − s3 (4.19)

4. The thermochemical states of all regions have been calculated and the error of the Riemann invari-
ants expression (4.16) can be derived. If a certain accuracy is met, the algorithm will stop and return
a suitable approximation of the incident shock speed. Otherwise, the guess for the incident shock
Mach number will be corrected and steps 1 - 4 will be repeated.

4.2 Boundary Layer Modeling

A major reason for the popularity of shock tubes is the simple design and the well-defined and nearly con-
stant pressure and temperature behind the reflected shock. In particular, when the experimental duration is
very short, the assumption of constant pressure and temperature holds. Still, if the experiment lasts longer
(i.e. up to the point of ignition), smaller changes in pressure are measured, which equally implies changes
in temperature. Even if these changes are minor, they can have a decisive influence on the ignition delay
time, which is strongly non-linearly dependent on temperature. One of the most significant contributors
to the observed pressure changes is the boundary layer, which develops behind the incident shock. As a
result, once the shock is reflected, it propagates into an inhomogeneous flow, which is why the state behind
the reflected shock changes in time. To estimate and capture these effects in simulations and experiments,
a description of boundary layers behind shock waves is necessary.

For this analysis, it is important to notice that the laminar boundary layer will eventually transition into
a turbulent boundary layer. This point of transition for boundary layers behind shock waves was studied
experimentally by Hartunian et al. [154] and is defined in terms of a transition Reynolds number:

Retr (Tw/Te) = ρe
(us − ue)2

µe

usttr
ue

(4.20)

Here, the subscript “w” represents a gas phase quantity at the wall, while the subscript “e” represents
a quantity in the external flow (outside the boundary layer), while ttr is the time needed for the shocked
boundary layer to transition. According to the experiments [154], Retr is also a function of the temperature
ratio Tw/Te. At very high Mach numbers, hence high external temperatures and small values of Tw/Te,
respectively, the flow is stabilized and transition is shifted towards larger Reynolds numbers. Two different
power fits to the experimental data have been tested in this work to estimate the transition Reynolds
number as function of Tw/Te, as the experimental data are scattered and differ by a factor of two, even
at low Mach numbers. Another valuable input from the experiments is the transition duration until the
turbulent boundary layer has fully evolved. In this thesis, it is assumed that the transition requires 100 µs
to finish.

Solutions for fully laminar and fully turbulent boundary layers have been conceptualized by Mirels
[155, 156] and will be discussed briefly.

4.2.1 Laminar Boundary Layer

For a fully laminar boundary layer solution, the Prandtl boundary layer equations for compressible flow
[157] can be used in a coordinate system, whose origin lies at the intersection of the shock tube wall and
the foot of the shock wave. Also, it is assumed that the axial pressure gradient dp/dx is negligible:
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∂ρu
∂x

+
∂ρv
∂y

= 0 (4.21)

ρ

(
u
∂u
∂x

+ v
∂u
∂y

)
=

∂

∂y

(
µ
∂u
∂y

)
(4.22)

ρcp

(
u
∂T
∂x

+ v
∂T
∂y

)
=

∂

∂y

(
λ
∂T
∂y

)
+ µ

∂2u
∂x2 (4.23)

Further, a scalar streaming function ψ is introduced for a flow with variable density (from Eq. 4.21), where
the velocity components can be calculated from the stream function [155]:

ρu
ρw

=
∂ψ

∂y
(4.24)

ρv
ρw

= −
∂ψ

∂x
(4.25)

In order to solve the equations, the approach of Blasius can be used [157], who recognized that the solution
is self-similar. Thus, the distribution of the quantities within the boundary layer can be described by a
single similarity parameter η:

η(x, y) =
yT

δ(x)
(4.26)

yT =

y∫
0

Tw

T (y)
dy (4.27)

δ(x) =

√
νx
ue

(4.28)

ψ =
√
νuex f (η) (4.29)

Here, δ(x) is the boundary layer thickness at a distance x to the shock wave front, yT is a temperature-
related wall distance, f (η) is an arbitrary function to be determined yet, and ue is the velocity of the exter-
nal flow. The boundary layer thickness is determined as the ratio of two information propagation speeds,
which represent the information propagation in the axial direction, dominated by convection and the in-
formation propagation in the vertical direction, dominated by diffusion. The wall distance is temperature-
corrected to account for a change in viscosity with temperature, which increases the information transport
by diffusion. It is assumed here that the viscosity increases linearly with temperature. Substituting the
expressions into momentum Eq. 4.22 yields [155]:

d3 f
dη3 +

d2 f
dη2 f = 0 (4.30)

f (0) = 0,
d f
dη

(0) =
uw

ue
,

d f
dη

(∞) = 1 (4.31)

Equation 4.30 is thus a third-order non-linear differential equation. In this work, the higher order differen-
tial equation has been transformed into a set of ordinary differential equations and integrated with a classic
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4th-order accurate Runge-Kutta integrator. The solution is stored in a table with η as lookup parameter.
Similarly, the energy Eq. 4.23 can be reformulated with functions f (η), s(η), and r(η) [156]:

T = Te + Te

(uw

ue
− 1

)2 u2
e

2Tecp,w
r(η) +

(
Tw

Te
−

Tr

Te

)
s(η)

 (4.32)

Tr = Te + Te

(uw

ue
− 1

)2 u2
e

2Tecp,w
r(0)

 (4.33)

Here, Tr is the so called recovery temperature, which represents the adiabatic wall temperature caused
by dissipation. It is evident that the energy equation is strictly valid only for thermally perfect gases
with constant cp and constant Prandtl number. Nonetheless, the results have also been very promising in
modeling boundary layers of calorically imperfect fluids. Solutions for s(η), r(η) can be obtained via the
following high-order differential equations, once the solution is known for f (η) and the derivatives of f :

d2r
dη2 + Pr f (η)

dr
dη

= −
2 Pr

(uw/ue − 1)2

(
d2 f
dη2

)2

(4.34)

r(∞) = 0,
dr
dη

(0) = 0 (4.35)

d2s
dη2 + Pr f (η)

ds
dη

= 0 (4.36)

s(0) = 1, s(∞) = 0 (4.37)

The acquired solutions not only allow to describe the internal structure of laminar boundary layers, more-
over, other key quantities can be derived immediately. These include the vertical displacement velocity
ve, the wall shear stress τw, and the wall heat flux qw:

ve

ue
=
ρw

ρe

√
νw

2xue

 lim
η→∞

(η − f ) +

(
uw

ue
− 1

)2 u2
e

2Tecp,w

∞∫
0

r dη +

(
Tw

Te
−

Tr

Te

) ∞∫
0

s dη

 (4.38)

τw = µw

(
∂u
∂y

)
w

= µwue

√
ue

2xνw

d2 f
dη2 (0) (4.39)

qw = −λw

(
∂T
∂y

)
w

= −
ds
dη

(0) (Tw − Tr)
√

ueρwµw

2x
cp,w

Prw
(4.40)

4.2.2 Turbulent Boundary Layer

For the description of a fully turbulent boundary layer, other approaches must be used. First, a turbulent
boundary layer is entirely unsteady and there is no unique solution for temperature and velocity profiles.
Instead, it is assumed that the time-averaged profiles of axial velocity component u and temperature T
follow power laws. Thus, the structure of the time-averaged turbulent boundary layer is self-similar,
leading to the following expression for velocity:

ξ =
y
δ(x)

(4.41)∣∣∣∣∣ u − uw

ue − uw

∣∣∣∣∣ =

ξ1/7 if 0 ≤ ξ ≤ 1,
1 else.

(4.42)
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Here, ξ is the self similarity variable of the turbulent boundary layer. Under the assumption of a unity
Prandtl number, the following profiles for temperature and density have been proposed by Mirels [156]:

ρe

ρ
=

T
Te

=

Tw
Te

(
1 + b ξ1/7 − c ξ1/7

)
if 0 ≤ ξ ≤ 1,

1 else.
(4.43)

b =
Tr

Tw
− 1, c =

(
Tr

Te
− 1

)
Te

Tw
(4.44)

In order to determine the vertical displacement velocity ve and the boundary layer thickness δ(x),
integral methods are used for the boundary layer equations (Eq. 4.21 - 4.23). The mass and momentum
equations now read:

dδ∗

dx
=

d
dx

∞∫
0

(
1 −

ρu
ρeue

)
dy (4.45)

dΘ

dx
=

d
dx

∞∫
0

ρu
ρeue

(
1 −

u
ue

)
dy =

τw

ρeu2
e

(4.46)

Equation 4.45 and 4.46 feature the boundary layer displacement thickness δ∗ and boundary layer mo-
mentum thickness Θ. Both equations can be integrated using the power law expressions for velocity,
temperature, and density:

δ∗

δ(x)
= 1 − 7

Te

Tw

[
uw

ue
I6 +

(
1 −

uw

ue

)
I7

]
(4.47)

Θ

δ(x)
= 7

Te

Tw

(
1 −

uw

ue

) [
uw

ue
I6 +

(
1 − 2

uw

ue

)
I7 −

(
1 −

uw

ue

)
I8

]
(4.48)

IN =

1∫
0

zN

1 + bz − cz2 dz (4.49)

This leaves the boundary layer thickness δ(x) as remaining unknown. Applying the chain rule to the LHS
of Eq. 4.46 yields:

dΘ

dδ
dδ
dx

=
Θ

δ

dδ
dx

=
τw

ρeu2
e

(4.50)

Because Θ/δ is no function of x, the expression can be integrated, if the wall shear stress is known.
Thus, empirical descriptions of wall shear stress as function of δ are required. These are usually obtained
from measurements of compressible flows over semi-infinite plates. In the original work of Mirels [156],
however, the Blasius friction coefficient [157] for incompressible flow has been used:

τw

ρ∞u2
∞

= 0.0225
(
ν∞

u∞δ

)1/4

(4.51)

The subscript “∞” denotes a free flow quantity. In order to improve the accuracy for compressible flow,
those quantities evaluated for free flow conditions are replaced by quantities representing an average state
within the boundary layer:
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Tm = 0.5 (Tw + Te) + 0.22 (Tr + Te) (4.52)

Tr

Te
= 1 +

(
uw

ue − 1

)2 u2
e Pr1/3

m

2 Tecp,m
(4.53)

Here, the mean temperature Tm and the recovery temperature Tr are mutually dependent, and can be
determined by an iterative algorithm. In order to apply the derived skin friction coefficient in a coordinate
system propagating with the shock, the free flow velocities must be replaced by the velocity difference
between external flow and the wall:

τw

ρeu2
e

= 0.0225 ϕ
(
1 −

uw

ue

) ∣∣∣∣∣1 − uw

ue

∣∣∣∣∣3/4 (
νe

ueδ

)1/4

(4.54)

ϕ =

(
µm

µe

)1/4 (
Te

Tm

)3/4

(4.55)

Here, ϕ is a correction value for the mean state.
Despite the corrections for compressible flow by using an average state, much better suited expres-

sions for the skin friction coefficient are available. Thus, Mirels original model has been generalized by
Petersen and Hanson [158], with the aim to allow the use of different skin friction coefficient models in a
straightforward manner. The skin friction correlation in a generalized form reads [158]:

τw

ρeu2
e

= β ϕ

(
1 −

uw

ue

) ∣∣∣∣∣1 − uw

ue

∣∣∣∣∣1−α (
νe

ueδ

)α
(4.56)

ϕ =

(
µm

µe

)α (
Te

Tm

)1−α

(4.57)

Equation 4.56 features the coefficients α and β, which determine the respective skin friction correlation.
The originally used Blasius model is recovered for α = 0.25 and β = 0.0225, while the correlation of
Spalding and Chi [159], corresponding to model coefficients α = 0.14 and β = 0.0077, has been recom-
mended by Petersen and Hanson [158] and was therefore used in this work. After substituting Eq. 4.56
in Eq. 4.50 and subsequent integration, the equations for boundary layer thickness, vertical displacement
velocity, and wall shear stress as function of x can be derived:

δ = c1 x
(
ϕ

1 − uw/ue

Θ/δ

)1−n ∣∣∣∣∣1 − uw

ue

∣∣∣∣∣ 1−α
1+α

(
νe

uex

)n

(4.58)

ve

ue
= c2

δ∗

δ

(
ϕ

1 − uw/ue

Θ/δ

)1−n ∣∣∣∣∣1 − uw

ue

∣∣∣∣∣ 1−α
1+α

(
νe

uex

)n

(4.59)

τw

ρeu2
e

= c2
Θ

δ

(
ϕ

1 − uw/ue

Θ/δ

)1−n ∣∣∣∣∣1 − uw

ue

∣∣∣∣∣ 1−α
1+α

(
νe

uex

)n

(4.60)

The model parameters c1, c2, and n can be calculated as functions of α and β, as follows [158]:

c1 =
[
β (1 + α)

] 1
1+α (4.61)

c2 =
c1

1 + α
(4.62)

n =
α

1 + α
(4.63)
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Figure 4.1: (a) Boundary layer thickness δ, (b) vertical displacement velocity v2 (in region 2), and (c) di-
mensionless wall distance y+ of the first numerical cell for shock-tube experiments performed in Duisburg
and listed in Chapter 6 Tab. 6.1. Each line represents the boundary-layer solution for simulated shock-tube
experiments in no particular order.
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Figure 4.1 shows results for boundary layer thickness δ, vertical displacement velocity v2 and dimen-
sionless wall distance y+ as function of distance x to the shock front, whereby boundary layer transition
from laminar to turbulent is considered using the definition of Hartunian et al. [154]. Each color indicates
a specific case from Chapter 6 Tab. 6.1. in no particular order. The pressures behind the incident shock
of the respective shock-tube experiments are considered low or moderate, thus, the assumption of a fully
turbulent boundary layer cannot be made and the laminar boundary layer is present in all cases. It is also
evident that turbulent boundary layers are characterized by larger growth rates, higher displacement veloc-
ities and a higher demand regarding grid resolution to resolve the boundary layer sufficiently. Therefore,
jumps appear at the location of transition.
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4.3 Nonuniformities

The presence of a boundary layer behind the incident shock acts as a mass sink term and causes the fluid
in the core flow to expand. This results in a core flow that has no axially homogeneous profile as in the
inviscid adiabatic case, but instead features axial distributions of the thermodynamic state variables, which
are referred to as nonuniformities following Mirels and Braun [160].

The small perturbation theory has been used [160, 161] to calculate the nonuniformities, where the
pressure perturbation at any location x behind the shock equals the sum of a left and a right running
perturbation-pressure wave. The particle-velocity perturbation ∆u can be determined likewise, using
acoustic relations:

∆p = ∆p+ + ∆p− (4.64)

∆u =
1
ρc

(
∆p+ − ∆p−

)
(4.65)

The computation of the pressure perturbation requires an approximation of the mass flux that is exchanged
between the core flow (external) and the boundary layer. A pressure perturbation from a right-running
wave, for example, can be calculated as [161]:

∆p = c2∆ρ (4.66)

∆p+ = c2 1
2 (c + u)

∫ x

−∞

ṁ (ξ, τ) dξ (4.67)

τ = t −
x − ξ
c + u

(4.68)

Here, ξ and τ are integration variables for x and t, and ṁ is the mass flux entering the boundary layer per
unit cross sectional area and per unit x. Equation 4.67 can be rewritten in terms of the vertical boundary-
layer displacement velocity ve and hydraulic diameter dh [161]:

ṁ(x, t) =
4
dh
ρve(x, t) (4.69)

∆p+ = p
2γ

c dh

(
1

2 (1 + M)

∫ x

−∞

ve (ξ, τ) dξ
)

(4.70)

Equations that compute the vertical displacement velocity at the edge of a boundary layer are provided in
Sec. 4.2.1 and Sec. 4.2.2 for fully laminar and fully turbulent boundary layers, respectively.

The integration in Eq. 4.70 is carried out along characteristic line segments in the regions 2 and 3
and can be rewritten in a closed form without integrals [160], assuming a fully laminar or fully turbulent
boundary layer. However, at low and moderate pressures, the distance from the incident shock to the point
of transition can be significant and affect the variation of quantities. Therefore, instead of using analytical
solutions, approximations are used, for which the characteristic lines are divided into segments, so that the
integrals can be approximated by finite sums. This approach allows to consider boundary layer transition
effects.

Apart from the pressure and particle-velocity variations, the temperature variation is required to fully
describe the gas state at a certain location xi. The temperature is not only affected by pressure waves in
isentropic manner, but also by the reduction of the shock strength due to shock attenuation. Both lead to
a variation of entropy s along the center line, whereby the entropy remains constant along the individual
particle paths. Knowing the entropy perturbation ∆s and the pressure perturbation ∆p at location xi for a
given time ti, allows to compute the temperature perturbation:
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Figure 4.2: Characteristic line segments in regions 2 and 3 of a representative shock-tube simulation,
colored by the local vertical displacement velocity at the edge of the boundary layer. The perturbations
are evaluated for a specific point in time and space (represented by the open symbol), denoted as ti and xi,
where xi typically corresponds to the computational inlet. The location xA at time tA illustrates the path
(gray dashed line) of a particle that was just shocked at time tA and reaches the location xi at time ti.
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∆T2

T2

)
xi,ti

=

(
γ1 − 1
γ1

∆p2

p2
+

1
γ1

∆s2

cv

)
xi,ti

(4.71)

Since the entropy is constant along individual particle paths, the previous shock location xA at time tA
is introduced (see Fig. 4.2), such that the particle path originating in xA intersects with the location xi at
time ti. The entropy perturbation can be related to the pressure perturbation behind the shock at time tA,
using the shock relations of a calorically perfect gas [160]:

(
∆s2

cv

)
xi,ti

=
(γ1 − 1)

(
M2

s − 1
)2

M2
s

[
(γ1 − 1) M2

s + 2
] (

∆p2

p2

)
xA,tA

(4.72)

4.4 Inlet Modeling

The typical length of shock tubes is up to several meters with diameters of 8 cm and more. If the boundary
layer shall be resolved, experience shows that a grid resolution of ∆ = 50 µm or finer is mandatory. This
results in a number of 310 billion finite volumes for the discretization of a three-dimensional domain, if
an equidistant grid is used. By today’s standards, these computational efforts are unaffordable, especially
since the demands on grid resolution at high pressures are still much higher. Even in 2D, the costs are still
disproportionately high and at the same time the effects of 3D turbulence are not taken into account. For
this reason, only a part of the shock tube near the end wall, where the shock is reflected, is simulated in
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Figure 4.3: Evolution of pressure (solid line), temperature (dashed line), and axial velocity (dotted line) at
the inlet for a representative shock tube simulation and normalized by the initial values behind the shock
in region 2.

this work. However, simulations that only cover the end part of the shock tube, have the disadvantage that
the evolution of the thermodynamic state variables and the velocity must be modeled at the inlet of the
computational domain. This concerns not only the internal boundary layer structure and its growth rate,
but also the variations in the core flow due to nonuniformities.

For this reason, at the start of each shock tube simulation in this work, the steady-state solutions of
the fully laminar and the fully turbulent boundary layer behind the incident shock are calculated first.
The results for the displacement velocity are then used to predict the time variation of pressure, axial
velocity, and temperature in the core flow, where xi is located at the computational inlet and boundary
layer transition is taken into account. During boundary layer transition, the individual solutions of the
laminar and turbulent boundary layer are smoothly blended using linear interpolation to avoid jumps.
Figure 4.2 presents those characteristic line segments that intersect at the inlet of the numerical domain xi

at a given time ti for a representative shock-tube simulation. The color of the characteristic lines indicates
the local vertical displacement velocity at the edge of the boundary layer. A blue color of the lines
in region 2 indicates negative displacement velocities and accordingly an accumulation of mass in the
boundary layer, whereas a red color in region 3 indicates the exact opposite.

The resulting temporal evolutions of pressure, axial velocity, and temperature at the inlet are presented
in Fig 4.3. It was pointed out in [160], that the values of pressure, temperature, and particle velocity are
monotonically increasing, under the assumption of a fully laminar or fully turbulent boundary layer. How-
ever, as presented in Fig. 4.3, consideration of boundary-layer transition effects can lead to a qualitative
different evolution of state quantities. Specifically at low pressure levels, a pronounced pressure minimum
is observed, which approximately overlaps with the transition point. A similar observation is made for
temperature, while temperature is also affected by shock attenuation and therefore reaches the minimum
earlier in most of the cases. The deviations from the reference values are very large for low pressure cases
and shock tubes that feature small diameters.

The combination of the boundary layer solutions and the time variations of the core flow at the inlet
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allow a two-dimensional description of the flow at the inlet. For this purpose, it is assumed, that the flow
outside the boundary layer is exclusively a function of position x and is described by nonuniformities.
Inside the boundary layer, the structure of the axial velocity component u and the temperature T is pre-
scribed, whereby the profiles are scaled in such a way that the value at the boundary layer edge equals that
of the core flow to avoid inconsistencies. The pressure inside the boundary layer also corresponds to the
value of the core flow. The gas composition is further assumed to be frozen and density can be calculated
using the equation of state. The two dimensional solution is stored in a table with wall distance y and
simulation time t as look up parameters. Once the boundary layer has transitioned, artificial turbulence is
applied within the boundary layer using the approach of Klein et al. [162] or Kempf et al. [163].

It should be noted that the vertical velocity component is not included in the solution, while it could
be calculated using Eq. 4.25. Here, the value at the wall is zero (impermeability) and approaches a larger
value at the boundary layer edge with a constant value outside the boundary layer. Therefore, this approach
is only applicable for free flows over a flat plate but inappropriate in a domain closed by walls. Thus, the
values for the vertical component are extrapolated using interior points instead. This inexact description
of vertical velocity results in artifacts at the inlet, while no impact on the flow near the end wall has been
observed. Nevertheless, the approach can be improved at this point and a Poisson-type algorithm could be
used to determine a solution for both, the pressure and the vertical velocity field, such that the continuity
equation is satisfied. Here, a Dirichlet boundary condition would be applied for the pressure directly
behind the shock and on the center line, while a zero gradient boundary condition could be used at the
wall.
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Abstract

A highly resolved three-dimensional large-eddy simulation (LES) is presented for a shocktube containing
a stoichiometric hydrogen-oxygen (H2/O2) mixture, the results are compared against experimental results.
A parametric study is conducted to test the effects of grid resolution, numerical scheme, and initial condi-
tions before the 3D simulations are presented in detail. An approximate Riemann solver and a high-order
interpolation scheme are used to solve the conservation equations of the viscous, compressible fluid and
to account for turbulence behind the reflected shock. Chemical source terms are calculated by a finite-rate
model. Simultaneous results of pseudo-Schlieren, temperature, pressure, and species are presented. The
ignition delay time is predicted in agreement with the experiments by the three-dimensional simulations.
The mechanism of mild ignition is analysed by Lagrangian tracer-particles, tracking temperature histo-
ries of material particles. We observed strongly increased temperatures in the core region away from the
end-wall, explaining the very early occurrence of mild ignition in this case.
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5.1 Introduction

Figure 5.1: Instantaneous fields of axial velocity component U (left), vertical velocity component V (right)
and velocity vector field from a 3D simulation (3Db) with a grid resolution of ∆ = 50 µm.

5.1.1 Motivation

Shock-tube experiments are a classical technique to provide data for the development of accurate reaction
mechanisms. A shock tube consists of a driver section with a pressurised (inert) gas and separated by a
diaphragm, at lower pressure, the section filled with the test gas. At a sufficiently high pressure difference
between the sections, the diaphragm bursts and a compression shock propagates into the test gas, followed
by the contact discontinuity between the mixtures. After the reflection of the shock at the end wall, the
temperature of the test gas is increased further by the reflected shock, initiating the chemical reactions
and an auto-ignition delay time can be measured. Ideally, the test gas behind the reflected shock is at rest
and homogeneous, under the assumption of an inviscid, adiabatic process. In reality, deviations from the
ideal assumptions affect the system and hence the measured auto-ignition delay time. This deviation is
negligible in some cases, but so large in other cases that the measurements must be discarded.

Such deviations have been examined and are caused by a diaphragm bursting in a finite time and by
shock attenuation [161, 164, 165] due to the formation of a boundary layer, by mild ignition [5, 166, 167]
and by shock-boundary interaction [168, 169]. This paper focuses on mild ignition, where the ignition
takes place prematurely in small spherical hotspots away from the end wall, in contrast to strong igni-
tion, where the mixture ignites simultaneously in a volume near the end wall, which is necessary for a
meaningful measurement of auto-ignition delay time. The formation of the hotspots occurs due to inho-
mogeneities in the flow field behind the reflected shock caused by the interaction of the reflected shock
with the boundary layer. Furthermore, in many cases, the shock-boundary layer interaction leads to a
bifurcation phenomena, which has been first observed in a shock-tube experiment by Mark [168].

The bifurcation is characterized by a triple point connecting the reflected shock, the oblique shock,
and the tail shock, as presented in Fig. 5.1 (left). Non-boundary-layer fluid entering the bifurcation is
compressed first by the oblique shock and then by the tail shock, resulting in less entropy production and
hence reduced temperatures behind the tail shock, compared to the core region. Due to the low Mach
number of the fluid in the boundary layer, the pressure gradient between the undisturbed region and the
boundary region behind the reflected shock reverses the boundary layer flow, resulting in a recirculation
bubble. Using several simplifications, Mark [168] suggested that a bifurcation occurs if the stagnation
pressure (in a shock-fixed frame) in the boundary layer is smaller than the static undisturbed pressure
behind the reflected shock. Davies et al. [170] found good agreement between their experiments and the
criterion proposed by Mark, for incident Mach numbers smaller than M = 3.6. A bifurcation always leads
to a highly non-uniform velocity field, clearing the way for mild ignition.
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5.1.2 Mild ignition

Voevodsky and Soloukhin [171] were the first to define a criterion for mild ignition in shock tubes after
several mild-ignition observations [172–174] had been made in experiments. They found a curve in the
p-T plane separating the mild- and strong ignition regimes, which was close to the curve of the upper
explosion limit of H2/O2 mixtures. Meyer and Oppenheim [166] emphasized another criterion by relating
the change of ignition delay time τig to the change of temperature T and found a slightly better agreement
for a threshold value of ∂τig / ∂T = -2 µs/K compared to the first criterion. This finding demonstrates the
importance of temperature fluctuations in the region behind the reflected shock and was later confirmed
by one-dimensional simulations of Oran et al. [175]. They found excellent agreement regarding simu-
lations for strong ignition conditions and qualitative agreement in the case of mild ignition. Though one
dimensionality cannot account for the effects of a non-uniform velocity field due to shock-boundary inter-
action, the numerics introduced temperature perturbations and variations in the velocity field, triggering
a mild ignition. Since then, several numerical simulations [176–180] in 2D or 3D have focussed on ig-
nition behind reflected shocks in shock tubes. Oran et al. [176] presented two-dimensional simulations
of ignition events in a stoichiometric ethylene-air mixture. For M = 2.5, strong ignition occurred, while
for M = 2.2 mild ignition was observed. Dzieminska and Hayashi [180] observed auto ignition behind
the reflected shock in the boundary layer after the ignition occurred at the end wall. Ihme et al. [177] in-
vestigated ignition kernels in a three-dimensional simulation using an AMR (Adaptive Mesh Refinement)
code with a smallest cell size of less than 10 µm. They observed ignition kernels between the tail shock
and the stagnation point of the boundary layer fluid, when using adiabatic boundary conditions. Grogan et
al. [178] performed 2D simulations and examined the effect of wall-boundary conditions and shock-tube
diameter on ignition events. The wall-boundary condition had a significant impact on the result, since
adiabatic boundary conditions resulted in mild ignition and isothermal boundary conditions in strong ig-
nition. Additionally, a larger diameter of the shock tube led to an increased ignition delay time, providing
further evidence that wall effects trigger the mild ignition. Khokhlov [179] used a 3D simulation of a
stoichiometric H2/O2 mixture to explain the development of hot spots. The authors emphasized the role
of entropy perturbations with regards to mild ignition.

5.1.3 Outline

In the first part of this work, the most important features and numerical methods of the LES-solver are
presented. Part two describes the experiment and provides basic information about the simulations and
the boundary conditions. The third part presents a parameter study and examines the mild ignition event
in 3D. Temperature histories of Lagrangian particles are used for investigating the mechanism that leads
to mild-ignition.

5.2 Numerical methods

The simulations were carried out with the LES-code “PsiPhi” [181–184], using the FVM (Finite-Volume-
Method) approach on an equidistant, Cartesian grid, preserving the formal accuracy of the numerical
schemes. In contrast to AMR methods, the high grid resolution was maintained after the shock, helping to
reduce artificial numerical diffusion in the turbulent boundary layer and hence excessive numerical mixing
that may strongly affect ignition. PsiPhi uses a distributed memory, domain decomposition approach for
parallelization, utilizing MPI (Message Passing Interface) communication and was run on up to 78,334
cores for the present simulations. The flow was described by the filtered conservation equations for mass,
momentum, energy (Eq. 5.1), and species (Eq. 5.2):
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Figure 5.2: Instantaneous pseudo-Schlieren images superimposed with temperature T in the two-
dimensional case for different grid resolutions, discretization, and turbulent initial conditions.
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The equations include the total chemical energy et, the tensor of frictional stresses τ̃i j, the diffusive flux
q̃ j of energy due to heat conduction and due to species diffusion and the correction velocity Vc,k to ensure
the conservation of mass. Further information is available from previous work [185].
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For time-integration, a third-order low storage Runge-Kutta scheme [186] is used and diffusive fluxes
are discretized by central differencing. In order to capture shocks with minimal oscillations, the approx-
imate Riemann solver “HR-Slau2” by Kitamura et al. [139] was used to calculate convective fluxes.
The primitive quantities were interpolated to each cell face using the fifth-order, monotonicity preserving
scheme by Suresh et al. [122]. Sub-filter fluxes are modelled with eddy-viscosity and eddy-diffusivity
approaches for turbulent Schmidt- and turbulent Prandtl numbers of Prt = Sct = 0.7. The turbulent viscos-
ity was computed with Nicoud’s sigma model [55]. Thermochemical and transport properties, including
binary diffusion coefficients, were tabulated for each species as a function of temperature using Cantera
[187]. Molecular viscosity of the mixture was calculated according to the modified Wilke-model [188],
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Indication ∆ ni n j nk N Cost
- µm - - - 106 CPUh

3Da 100 2,520 315 231 183 316,800
3Db 50 4,992 624 442 1,377 3,760,000
2Da 100 2,016 168 1 0.3 784
2Db 50 4,992 315 1 1.6 7,000
2Dc 25 9,984 630 1 6.3 50,000
2Dd 50 4,992 315 1 1.6 7,000
2De 50 4,992 315 1 1.6 7,000

Table 5.1: Computational grids applied for the simulations, giving the grid resolution ∆ in µm, the number
of cells over the length (ni), height (n j) and depth (nk) of the domain, the total number of cells N (in
millions), and the respective computational cost.

the mixture averaged heat conductivity was derived using the approach of Peters et al. [189] and the
mixture averaged diffusion coefficient for species k was determined by applying the equation of Kee et al.
[190]. CVODE [94, 191] was used to directly solve the reaction mechanism by O’Conaire et al. [192],
featuring 10 species and 40 reactions. Subgrid modelling of the chemical source term in this context was
not necessary, since the ratio of Taylor microscale to filter width was well above 1 throughout the domain
and more than an order of magnitude larger where the ignition occurred, i.e. in the core region. (The Tay-
lor microscale in that context is an important lengthscale, since Wang and Peters found ignition kernels to
be of the same order [193].)

5.3 Setup

5.3.1 Experiment

We simulated the experiment by Meyer and Oppenheim [166] using an undiluted-, stoichiometric H2/O2
mixture as a test gas. The pressures p5 and temperatures T5 behind the reflected shock were between 0.2–
2.1 bar and 900–1300 K respectively and incident Mach numbers ranged from 2.3 to 2.9. To distinguish
weak and strong ignition, Schlieren images were taken during each experiment. The shock tube was
unusual in featuring a rectangular cross-section of 31.75 mm × 44.45 mm therefore making the case
particularly suitable for our high-order numerics on Cartesian grids.

5.3.2 Simulations

Five simulations were carried out in two dimensions to study the sensitivity of the results on grid size,
numerical discretization scheme, and initial conditions. Two costly simulations (Tab. 5.1) were performed
in three dimensions. To lower the computational cost, only one half of the end section (250 mm) of the
rectangular shock tube was simulated for a single experiment, for which mild ignition was observed, lead-
ing to a still high computational cost of 3.8 million core hours for the largest simulation with 1.38 billion
cells. Additionally, Lagrangian particles were utilized to monitor the temperature history of material (gas)
particles in time.

For each main run, one or two smaller precursor simulations were required. The first one resembled
the typical Riemann problem, simulating not only the shock, but also the rarefaction wave. At the end
of the first simulation, the shock front was located and three-dimensional profiles with approximately 10
cells before the shock-front and 50 cells behind the shock-front were stored. Those profiles contained
realistic and thermodynamically compatible fields of temperature, pressure, velocities and species and
were used as initial solution in the following runs. Channel flow simulations, initialised with the state
behind the incident shock and periodic inlet/outlet, were executed partly to provide inlet (the open end of
the domain, opposite to the end wall) conditions and to pre-calculate the boundary layer. However, tests
showed negligible differences between these inlet conditions and a zero-gradient inlet condition applied to



82 Chapter 5. Analysis of mild ignition in a shock tube using a highly resolved 3D-LES

Figure 5.3: Instantaneous fields of pressure p, temperature T and specific entropy s at the top from a 3D
simulation (3Db). Centreline profiles of pressure p and temperature T at the bottom coloured by respective
timestep. Ignition will occur at approximately 70 mm from the end wall.

the primitive quantities for laminar boundary layers. It is important to note that incident shock attenuation
outside the computational domain was not considered at the inlet. Hence, the effect of incident shock
attenuation is highly reduced in our simulations and other effects contributing to mild ignition can be
investigated.

5.4 Results

5.4.1 Checking the numerical treatment in 2D

Results from tests in 2D are presented first. Figure 5.2 shows pseudo-Schlieren images and the ignition
kernels, visualized by superimposed fields of temperature above 1100 K. To investigate the effect of grid
resolution on ignition delay time τig (defined as time until maximum temperature in the simulation exceeds
1200 K), tests were conducted in two dimensions on grids with cell sizes of 100 µm (2Da), 50 µm (2Db),
and 25 µm (2Dc), yielding ignition delay times of 170 µs, 175 µs, and 177 µs, respectively, so that
all grid resolutions can be seen as sufficient to simulate the auto-ignition delay time. It seems that the
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Figure 5.4: Instantaneous, mirrored plot of temperature T [1000 K] on the left and instantaneous plot of
heat-release rate ω̇H [W/m3/s] on the right in a cross-section of the 3D-simulation (3Da) at 75 mm from
the end wall at 301 µs.

underlying mechanism responsible for mild ignition in the investigated case does not heavily depend
on grid resolution (at least in 2D), as long as the developing boundary layer behind the incident shock
is sufficiently resolved. Figures 5.2 a-c illustrate the ignition event for the three grid resolutions. The
locations of the ignition kernels appear to vary, though there is a consistent distance between the end wall
and the nearest ignition kernels, suggesting a minimum distance at which ignition will occur. Overall,
all ignition kernels presented in Fig. 5.2 appear between 40 and 70 mm from the end wall. In addition,
similarities are observed with respect to the geometry of the bifurcation and the most important shock
features for the three cases.

To check the effect of the discretization, a simulation was performed with a common TVD-scheme
instead of the fifth-order, monotonicity preserving scheme at a grid resolution of 50 µm (2Dd). The
ignition delay time was almost as before (τig = 173 µs). Figure 5.2 shows that the result of this simulation
is very similar to the solution of the higher order scheme at medium resolution. This is the case not only
for the ignition delay time, but also for the location of the ignition kernel and the most notable vortex and
shock structures. One might therefore consider the improvement achieved by the higher order scheme to
be comparable to a refinement by a factor of two in each direction.

To test the impact of initial conditions, velocity perturbations were added to the initial velocity field
with a standard deviation of 1 m/s. The perturbations were small and damped quickly after the start of the
simulation and one might therefore expect no change of the results. However, when comparing the second
(Fig. 5.2 b) and fifth plot (Fig. 5.2 e) at the very same timestep, it is striking that the initial conditions had
a significant effect on the locations of ignition, demonstrating a very strong sensitivity. It should be noted
though, that in the simulation without perturbations, further ignition kernels were visible shortly after and
that ignition delay time was hardly affected. These observations lead to the conclusion that a meaningful
simulation of the process in three dimensions is possible.

5.4.2 Mild ignition in 3D-LES simulations

Only three-dimensional simulations can consider realistic turbulence, but are far more expensive. Fields of
the axial and vertical velocity component of the higher resolved, three-dimensional simulation (3Db) are
depicted in Fig. 5.1 to provide a general idea of the flow fields in a bifurcated shock. Figure 5.3 presents
instantaneous fields of pressure, temperature and entropy as well as profiles of pressure and temperature
on the centreline from the same simulation. To illustrate fields in a cross-section of the shock tube, Fig.
5.4 presents temperature T on the left and heat-release rate ω̇H on the right for the three-dimensional
simulation (3Da) at a cell size of 100 µm and at a distance of 75 mm from the end wall. For convenience,
the temperature field is mirrored according to the symmetry boundary condition in the middle plane. The
yellow region in the plot of heat-release rate indicates the location of the mild ignition.
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Figure 5.5: Instantaneous volume-rendered fields of species mass fraction YHO2 in the 3D simulation (3Da)
shortly after ignition (first row) and prior to ignition inside the zoom-boxes (second row).

Figure 5.6: Ignition in 3D (3Da). Instantaneous plots of volume-rendered pseudo-Schlieren in the back-
ground and volume-rendered temperature T above 1100 K. Rectangles indicate the regions of Lagrangian
particles that are discussed in the further analysis.
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A striking feature of Fig. 5.3 is the expansion region behind the normal reflected shock, followed
by a second normal shock. Interestingly, the observed flow field is reminiscent of the flow downstream
of an overexpanded jet, leading to the formation of a shock-cell – here between the first and second
normal shock. A fine description of the flow field physics has been provided by Weber et al. [194], who
did numerical investigations of reflected shock/boundary-layer interaction in two dimensions with air as
driven gas. The leading shock has formed the classical lambda foot so that the fluid that is adjacent to the
boundary layer and that passes the oblique shock is deflected upwards. Afterwards, the fluid is compressed
a second time by the tail shock, after which the static pressure equals the static pressure behind the normal
reflected shock, as observed in Fig. 5.3. The boundary layer adjacent fluid maintains vertical momentum
across the tail shock, as seen in Fig. 5.1, although the expansion fan behind the tail shock redirects it to the
wall within a short distance. As a result, the fluid that passes the normal reflected shock, is initially forced
towards the centreline by the boundary layer adjacent fluid, before it “follows” the boundary layer adjacent
fluid outwards. Hence, the boundary layer adjacent fluid forms a Laval-nozzle shaped tube around the core
fluid. This is well illustrated by the slip line (in Fig. 5.3), which indicates the interface between the fluids
that have passed through the normal and the oblique shock. Initially, when the bifurcation structure is
small, the subsonic fluid (in a shock-fixed frame) is accelerated in the convergent part without reaching a
Mach number of M = 1. Subsequently it is compressed in the divergent part. But at some point, after the
bifurcation structure grew further, the fluid in the smallest cross section of the “Laval nozzle” reaches a
critical state and the supersonic fluid is further accelerated in the divergent part. Pressure waves originating
from the elevated pressure reservoir at the end wall cannot travel upstream any more. As a result, a non-
linear wave forms, which finally becomes the second normal shock. Since the bifurcation structure keeps
growing after the smallest cross section reached a critical value, the flow is choked and the state behind the
reflected shock changes accordingly. The axial profiles (Fig. 5.3) of this simulated flow are well in line
with the results of Weber et al. [194]. The axial profiles of temperature and pressure (Fig. 5.3, bottom)
reveal peaks behind the normal reflected shock, which are significantly higher than the values of T5 and
p5, calculated the by the shock tube theory of Mark [168]. While the pressure decreases monotonically
with end-wall distance, the temperature increases and reaches a maximum at a distance of approximately
60 mm. It is apparent that pressure and temperature are not connected by isentropic relations in this case
with strong shock bifurcation. The snapshot of specific entropy s in Fig. 5.3, illustrates the increase of
entropy with end-wall distance and the entropy production resulting from the second normal shock.

Preceding 0D reactor simulations with the same reaction mechanism revealed a peak of the mass-
fraction of HO2 immediately before auto-ignition. For that reason, it is a worthwhile indicator for the
auto-ignition progress. Figure 5.5 presents the mass fraction of HO2 shortly after ignition in the first row.
It is remarkable that the HO2 mass fraction on the centreline is up to 3 orders of magnitude higher than
near the end wall. It is clear that mild ignition must occur near the middle plane of the shock tube, at least
for this setup. The images in the second row show the ignition region at previous timesteps, implying that
local turbulent structures and temperature fluctuations might affect ignition here.

In three dimensions, an ignition delay time of 305 µs (3Da) and 256 µs (3Db) is observed, which agrees
with the experimental evidence [166] (250 µs < τig < 500 µs) and that is much faster than the ignition
delay time obtained from 0D reactor simulations, initialised with the theoretical, idealised values T5 and p5
(see Table 5.2). However, care must be taken when comparing auto-ignition delay times from simulations
with those of the experiments, due to uncertainties of the reaction mechanisms at the investigated low
temperatures behind the reflected shock. Auto-ignition delay times from the 2D simulations are clearly
shorter than those from the 3D simulations. This is mainly caused by a less pronounced incident shock
attenuation in the 2D simulations during runtime, resulting in a higher temperature behind the reflected
shock of T5 = 985 K. Besides, mild ignition in 2D simulations often took place in high strain regions next
to vortex structures that cannot survive in 3D, due to break-up of eddies into smaller eddies. Table 5.2
summarizes the auto-ignition delay time results from the simulations.

Figure 5.6 shows the ignition in the 3D case (3Da) by pseudo-Schlieren images superimposed with high
temperatures. The “mild” ignition kernel appears in a highly turbulent region where a detonation wave
develops and quickly expands, as presented in the second row of Fig. 5.6, leading to a “global ignition”
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Indication Dimensions T5 p5 τig τig,ideal/τig

- - K bar µs -
Experiment - 980 1.80 > 250 -

0Da 0 980 2.00 1020 1.00
3Da 3 980 2.00 305 3.34
3Db 3 980 2.00 256 3.98

Experiment - 990 1.80 150 -
0Db 0 985 2.02 638 1.00
2Da 2 985 2.02 170 3.75
2Db 2 985 2.02 175 3.65
2Dc 2 985 2.02 177 3.60
2Dd 2 985 2.02 173 3.69
2De 2 985 2.02 175 3.65

Table 5.2: Auto-ignition delay times τig from simulations and the experiment for an initial state p5/T5
behind the reflected shock.Also given is the ratio of ideal ignition delay time τig,ideal to observed ignition
delay time τig to illustrate auto ignition delay time reduction, due to mild ignition.

long before strong ignition would be expected after 1020 µs. The observed wave speed is 2500 m/s, which
is well in line with the theoretical result of 2600 m/s following Chapman-Jouguet theory.

5.4.3 Analysis with tracer particles

To investigate the temporal evolution of the thermochemical state of material fluid elements, Lagrangian
tracer particles were utilized. In order to reduce the number of list entries (storing the temporal evolution
of the tracked quantities), only one particle per Rank was initialised after the reflected shock reached the
location of the Rank. This corresponds to a typical particle spacing of 1 particle / 2.1 mm. The local
state was stored by the particles every few timestep achieving a high temporal resolution. For the further
discussion, only certain particles were considered, which can be categorized as i) the particle to first exceed
a threshold value of 1.0E-3 of the mass fraction of HO2; this particle is labelled “Ignition particle”, and
ii) particles that were located near the ignition particle but closer to the end wall at the time of ignition
(labelled “Closer to Endwall”), and iii) particles that were located near the ignition particle but further
away from the end wall at the time of ignition (labelled “Further away from Endwall”), and iv) particles
that were located in a region near the end wall at the time of ignition (labelled “Endwall-region”). The
boxes in Fig. 5.6 indicate the three regions and the approximate location of the ignition particle. Particles
located in the colder boundary layer near the walls ignited late and were excluded from the analysis.

Time-histories of temperature and pressure are presented in Fig. 5.7 a)-c) for the four particle classes.
The particle data show peak temperatures and pressures significantly above the expected values of T5 and
p5 in accordance with the axial profiles of Fig. 5.3. After passing the “Laval nozzle” like flow, the tem-
peratures of the ignition particle and nearby particles, settle at a higher level compared to the temperature
level of particles near the end wall. Fig. 5.7 b) illustrates this temperature offset of the particles in more
detail. Particles further away from the end wall and the ignition particle sensed local temperatures typ-
ically between 995 and 1000 K, while the particles closer to the end wall sensed temperatures between
985 K and 995 K. This is an important observation, since higher temperatures behind the reflected shock
are usually attributed to shock attenuation of the incident shock, where a subsequent change of pressure
can be observed as well and be linked to the change of temperature via isentropic relations, as reported
by Petersen et al. [165]. However, the effect of incident shock attenuation outside of the computational
domain is not modelled at the inlet, hence the reason for the temperature offset is likely to be different and
caused by the gas dynamics behind the reflected shock. The temperature peaks of the observed particles
overall increase with the distance of the particles from the end wall. However, specifically the ignition
particle seems to reach a higher peak temperature, compared to neighbouring particles, which also reflects
in the evolution of local heat release in Fig. 5.7e) . Here, the local heat release of the ignition particle is
clearly greater compared to neighbouring particles. Since the second normal shock does not appear in the
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Figure 5.7: Histories of temperature T , pressure p, heat-release rate ω̇H [W/m3] and species mass fraction
YHO2 from Lagrangian particle data. The trajectory of the ignition particle is red, particles closer to the
end wall are shown in orange, further from the end wall in blue and particles near the end wall in black.
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Figure 5.8: Temperature peaks Tmax of Lagrangian particles with respect to the end wall distance, coloured
by time τ, after the reflection of the shock.

Figure 5.9: Deviation ∆ x between position of reflected shock-front, reconstructed by Lagrangian particles,
and position of shock-front at constant speed, coloured by maximum temperature Tmax. The slope of the
inflectional tangent is 60 m/s.

data of the ignition particle, we notice that the second shock did not trigger the ignition. Nevertheless, the
ignition location is nearly identical to the location, where the second shock appeared first, at a distance of
approximately 70 mm from the end wall, as can be seen in Fig. 5.3.

At 125 µs after the compression, the HO2 concentration of the ignition particle exceeds that of a
particle that experienced the compression 50 µs earlier but which is located in a slightly cooler region. This
illustrates the sensitivity of auto-ignition delay time τig with respect to temperature, which is a prerequisite
for the event of mild ignition according to the criterion of Meyer and Oppenheim [166]. The temperature
offset of the ignition particle, compared to the temperature in the vicinity of the end wall (approximately
∆T = 20 K), results in higher conversion rates and is responsible for the mild ignition according to the
particle data.

Figure 5.8 shows the peak temperatures of the Lagrangian particles (near the centreline) and their cor-
responding end-wall distance at peak temperature, coloured by the time of peak temperature. First, the
maximum temperatures on the centreline increase with the distance from the end wall. At 110 mm, a max-
imum is reached after which the maximum particle temperatures decrease again. The varying temperature
observed in Fig. 5.8 implies that the strength and speed of the reflected shock must vary, since the state is
nearly constant in front of the reflected shock.

The particle data can be used to reconstruct the reflected shock-front in space and time and to compare
the location to a reflected shock, travelling at constant initial speed. Figure 5.9 illustrates the displacement
∆x between the observed reflected shock and an ideal reflected shock propagating at a constant speed of
570 m/s.
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Around 100 µs after the reflection of the shock at the end wall, the shock accelerates by 60 m/s,
resulting in the observed shock leading the ideal shock by 7.5 mm. The increased Mach number of the
reflected shock leads to higher temperatures behind it and hence faster ignition. It appears likely that the
acceleration of the shock-front is a result of the bifurcation growth. Weber et al. [194] also observed an
increase of reflected shock speed in two-dimensional simulations, while Matsuo et al. [195] measured a
change of reflected shock speed in their experiments.

Hot spots as a source for mild ignition have been investigated already by Lamnaouer et al. [196] in a
non-reactive, axisymmetric simulation covering the whole shocktube as well as by Khokhlov [179] in a
three-dimensional reactive simulation. However, Lamnaouer et al. observed hot spots in the vicinity of
the end wall, travelling towards the centreline in time, which we do not observe in our setup due to cold
boundary layer fluid. Khokhlov [179] on the other hand, observed mild ignition near the corner of the
shocktube, triggered by non-linear perturbations. We noted similar mild ignition locations at higher Mach
numbers, but which is not in the scope of this paper.

Hence, this observation of varying reflected shock speed, which is consistent with previous results,
enables us to link the increased speed of the reflected shock and remote ignition. We hope that our
paper contributes to the understanding of such phenomena. Hanson et al. [197] for example, reported on
repeatable remote ignition events at a constant distance away from the endwall, using H2/O2/Ar mixtures
at nearly the same temperature (T5 = 990 K) that we had in our simulations. Interestingly, the “...exact
mechanism leading to the remote ignition phenomenon is generally unknown ...” according to Hanson et
al. [197].

5.5 Conclusions

Two-dimensional simulations and three-dimensional highly resolved large eddy simulations of shock-
tube experiments have been presented. The results emphasize the importance of the role that gas dynamic
effects and turbulence play for mild ignition in shock tubes, specifically for bifurcated shocks.

The simulations in three dimensions predicted realistic ignition delay times in line with the experiment,
whereas simulations in two dimensions had less incident shock attenuation during runtime, resulting in
shorter ignition delay times.

The particle histories in time led to the conclusion that mild ignition results from an initial peak in tem-
perature and a sustained offset in temperature behind the expansion region in addition to local temperature
variations due to wave phenomena and turbulence. The ignition particle in particular was set apart from
neighbouring particles by an even higher temperature.

The observed increase of temperature behind the reflected shock, partially results from a “Laval-
nozzle” shaped core flow, caused by the displacement due to the bifurcation. This reflects in a varying
speed of the reflected shock and is consistent with earlier observations [194, 195].

Modern shock tubes have larger diameters compared to the shock tube investigated in this paper, hence
the required time until the observed flow field and the resulting effects would have an impact, is signif-
icantly longer. However, since low temperature kinetics need to be looked after, where typical ignition
delay times can exceed several ms, the observed phenomena could explain ignition events far from the
endwall (e.g. Fieweger et al. [198] or Hanson et al. [197]) even nowadays.
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Abstract

Highly resolved two- and three-dimensional computational fluid dynamics (CFD) simulations are pre-
sented for shock-tube experiments containing hydrogen/oxygen (H2/O2) mixtures, to investigate mech-
anisms leading to remote ignition. The results of the reactive cases are compared against experimental
results from Meyer and Oppenheim (Proc. Combust. Inst. 13 (1971) 1153-1164) and Hanson et al. (Com-
bust. Flame 160 (2013) 1550-1558). The results of the non-reactive case are compared against shock tube
experiments, recently carried out in Duisburg and Texas. The computational domain covers the end-wall
region of the shock tube and applies high order numerics featuring an all-speed approximate Riemann
scheme, combined with a 5th order interpolation scheme. Direct chemistry is employed using detailed
reaction mechanisms with 11 species and up to 40 reactions, on a grid with up to 2.2 billion cells. Ad-
ditional two-dimensional simulations are performed for non-reactive conditions to validate the treatment
of boundary-layer effects at the inlet of the computational domain. The computational domain covers a
region at the end part of the shock tube. The ignition process is analyzed by fields of localized, expected
ignition times. Instantaneous fields of temperature, pressure, entropy, and dissipation rate are presented to
explain the flow dynamics, specifically in the case of a bifurcated reflected shock. In all cases regions with
locally increased temperatures were observed, reducing the local ignition-delay time in areas away from
the end wall significantly, thus compensating for the late compression by the reflected shock and therefore
leading for first ignition at a remote location, i.e., away from the end wall where the ignition would occur
under ideal conditions. In cases without a bifurcated reflected shock, the temperature increase results from
shock attenuation. In cases with a bifurcated reflected shock, the formation of a second normal shock and
shear near the slip line is found to be crucial for the remote ignition to take place. Overall, the two- and
three-dimensional simulations were found to qualitatively explain the occurrence of remote ignition and
to be quantitatively correct, implying that they include the correct physics.
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6.1 Introduction

6.1.1 Shock Tubes

Shock tubes have been an important tool for many years to investigate fast reaction kinetics and to support
the development of reaction mechanisms. A membrane initially separates a pressurized inert gas in the
driver section (denoted as region 4) at an elevated pressure from the test mixture in the driven section
(denoted as region 1). The experiment starts in the instant the membrane bursts, after which a shock
(incident shock) quickly evolves due to the pressure difference. A contact discontinuity forms at the
place where the driven and driver gases touch, creating a zone of compressed driven gas between contact
discontinuity and incident shock (referred to as region 2) and a zone of expanded driver gas between
contact discontinuity and expansion fan (region 3). Eventually, the incident shock wave will reach the
end wall of the shock tube having accelerated all driven gas towards the end wall. The shock is then
reflected (reflected shock), running back towards the driver gas, and bringing the driven gas to rest, thus
increasing pressure and temperature (designated as region 5). The initial conditions are usually chosen
such that the temperature T5 behind the reflected shock exceeds 800 K, initiating chemical reactions, so
that an ignition-delay time τig can be measured [199]. It must, however, be ensured that the ignition-delay
time is sufficiently short compared to the possible test time that is limited by the arrival of the contact
discontinuity. At high temperatures and accordingly short ignition-delay times (τig < 1 ms ), a nearly
homogeneous thermodynamic state establishes (until the mixture ignites) behind the reflected shock and
the problem can be modeled as inviscid and adiabatic [200]. These well defined initial boundary conditions
allow to compare the measurements to those of a perfectly mixed reactor at constant volume.

At longer test times, several phenomena, most of them directly related to the formation of a bound-
ary layer initiated by the motion of the incident shock, can severely impact the results and lead to huge
deviations of measured ignition-delay time and the expected ignition-delay time at constant volume. The
effect of the boundary layer is well known: It decelerates the (near-wall) flow behind the incoming shock
and thus “removes” mass from the core flow and therefore affects the state in the core flow outside of the
boundary layer. The change of state in the core-flow has been modeled by Mirels [201–203], using per-
turbation theory and has been successfully applied to compute the attenuation of the incident shock or the
change of state at a given location in time. According to perturbation theory, the pressure can be approx-
imated by the superposition of the ideal pressure from an adiabatic, inviscid process and weak pressure
perturbation waves. This leads to a spatially and temporally changing distribution of state quantities be-
hind the incident shock (non-uniformities) and also affects the change of state behind the reflected shock,
as the pressure variations are amplified across the reflected shock [204]. Assuming a purely laminar or
purely turbulent boundary layer, Mirels found that the state quantities are constantly increasing between
the incident shock and the contact discontinuity. While pressure and temperature fall short compared to
the ideal values, the particle velocity behind the shock front decreases due to the reduced shock strength,
but accelerates near the contact discontinuity. Hence, the distance between the incident shock wave and
the contact discontinuity decreases and the maximum test time is reduced. In some cases, e.g., at very
low pressures, the contact discontinuity can even reach the speed of the incident shock [205]. Typically,
the boundary-layer induced variations of state lead to a slow, continuous rise of pressure (∂p5/∂t) at the
end wall.

Another boundary-layer effect is due to the interaction with the reflected shock under conditions that
promote the formation of a shock-bifurcation structure. Mark [168] developed a simple model to predict
the occurrence of the shock bifurcation and to describe the geometry and size of this structure. A brief
summary is given below.

For his analysis, Mark examined the Mach number of the fluid in the boundary layer Mbl and in the
main flow M2 in reflected-shock coordinates. Mark made the assumptions that the fluid in the boundary
layer is in thermal equilibrium with the wall and has no velocity relative to laboratory coordinates. He
found that the boundary layer Mach number Mbl (as one would expect due to the velocity deficit) is
below the Mach number of the main flow M2 at moderate Mach numbers M1 of the incident shock, as
presented in Fig. 6.1. However, if the Mach number M1 further increases, a critical point M∗1 is reached
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Figure 6.1: Sketch of a bifurcation structure, showing the speed of the reflected shock VRS in laboratory
coordinates, the particle speed u2 in region 2 in laboratory coordinates, the speed of sound a2 in region 2,
and the speed of sound abl in the boundary layer. M2 and Mbl are Mach numbers in reflected shock coor-
dinates. Solid lines indicate locations with high density gradients. Dashed lines show particle paths. The
sketch shows the bifurcation structure under flow conditions such that the Mach number of the boundary
layer is less than 1 and thus no shock occurs in the boundary layer.
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after which the boundary-layer Mach number Mbl exceeds the Mach number M2 of the main flow. This
phenomenon is due to the cooling effect of the wall. It is also worth noting that the ratio of specific heats
γ has a very large influence. The point at which the Mach number of the boundary layer exceeds that
of the main stream is reached earlier for large values of γ (e.g., M∗1 = 7.4 for γ = 1.4, M∗1 = 3.8 for γ
= 1.67). In addition, the stagnation pressure of the boundary layer pbl,st and the static pressure of the
main flow p5 behind the reflected shock were investigated and compared. At an incident Mach number
M1 close to 1, the stagnation pressure pbl,st is higher than the static pressure p5 of the main flow and
the boundary layer fluid can pass the reflected shock into the end-wall region. At higher incident shock
Mach numbers, a lower crossover point M1,L is reached, where the static pressure of the main flow p5
exceeds the stagnation pressure pbl,st instead. The interaction of shock and boundary layer is expected
to be fundamentally different at Mach numbers M1 larger than the lower cross-over point M1,L. If the
stagnation pressure in the boundary layer is below the static pressure in the main flow, the boundary layer
fluid cannot match the static pressure even after stagnating. Instead, as it works against the static pressure
of the main flow, it is decelerated until stagnation and reversely accelerated in the direction of the reflected
shock, causing the fluid to accumulate. This phenomenon is referred to as bifurcation of the reflected
shock. At even higher Mach numbers of the incident shock, the Mach number of the boundary layer
surpasses that of the main flow at the Mach number M∗1. As a result, an upper cross-over point M1,U
exists, after which the boundary-layer fluid can pass the reflected shock again and no bifurcation emerges.
It is important to note that the two crossover points are closer together in the case of large ratios of specific
heats, while the ratio pbl,st/p5 is higher at the same time (e.g., M1,L = 1.33, M1,U = 6.45 and pbl,st/p5 ≥ 0.5
for γ = 1.4, M1,L = 1.57, M1,U = 2.8 and pbl,st/p5 ≥ 0.9 for γ = 1.67). Furthermore, the assumptions that
are made to calculate the limits of this phenomenon are very conservative. In fact, shock-tube experiments
containing a gas or a mixture with large values of γ (e.g., Argon) are very unlikely to suffer from reflected
shock bifurcation [206].

A bifurcation structure is characterized by a triple point, where the oblique shock, the normal reflected
shock and the tail shock meet. A slip line emerges from the triple point, which separates fluid from
the oblique shock and the normal reflected shock. While the fluid behind the shock and along the slip
is mechanically in balance, the difference in entropy provokes instabilities and triggers the formation of
vortices. The flow field behind a bifurcated reflected shock is always inhomogeneous and the variations
in temperature can provoke the ignition from small ignition kernels (mild-ignition) [6].

6.1.2 Remote Ignition

Under ideal conditions and corresponding homogeneous fields of pressure and temperature behind the
reflected shock, the reactive mixture will always ignite at the end wall of the shock tube, as the ignition
process depends exclusively on the time that passed after the compression by the reflected shock wave.
This type of ignition is commonly referred to as strong ignition. Under real conditions, however, ignition
processes were frequently observed that start from small ignition kernels at various positions in the test
section [172–174] and often transition into a detonation. These ignition kernels can be located near the
end wall (e.g., along the slip line in case of a bifurcated shock, which will be denoted as mild ignition) or
further away, which we will refer to as remote ignition. For mild ignition to occur, the ignition-delay time
in general must exceed a certain, yet unknown, limit so that flow-induced inhomogeneities can evolve
in the flow field, which significantly reduces the local ignition-delay time. One criterion by Meyer and
Oppenheim [166] states that the change of ignition-delay time with respect to the change of temperature
(∂τig/∂T )p must be below a critical value (e.g., ∂τig/∂T = -2 µs/K for stoichiometric hydrogen/oxygen
mixtures) such that mild ignition occurs. Many numerical studies were published studying the mild igni-
tion phenomenon in shock tube-simulations in 2D [176–178] and 3D [179]. The studies focussed on the
impact of the incident shock Mach number [176], the evolution of ignition kernels due to velocity fluctu-
ations [177], the effect of wall treatment on mild ignition [178], and the development of hot spots in 3D
[179]. However, all these studies featured cases with bifurcated reflected shocks, while remote ignition
was also observed in the absence of bifurcated reflected shocks [197]. The present paper aims to shed
light on the physics of remote ignition in cases with and without bifurcated reflected shocks.
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6.2 Numerical Details

6.2.1 Code

The simulations are carried out with the in-house code PsiPhi that has been developed at Imperial Col-
lege in London and at the university of Duisburg-Essen by Kempf and co-workers [6, 183, 207, 208].
PsiPhi solves the fully compressible set of Favre-filtered conservation equations for mass, momentum,
total absolute internal energy and partial densities to simulate reactive flow problems:
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∂t

+
∂ρ̄ũi
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The equations feature the Favre-filtered velocity components ũi in the ith direction, the Favre-filtered
total absolute internal energy Ẽ, the viscous stress tensor τ̄ij, the heat-flux density q̄i due to heat conduction
and due to enthalpy fluxes caused by mass diffusion, the Favre-filtered mass fraction Ỹk of the kth species,
the source term ¯̇ωk of species k, the mixture-averaged diffusion j̄i,k of species k, and the correction velocity
Vi,c to achieve consistency between partial densities and the transported density.

Applying a LES (large-eddy simulation) filter operation to the Navier-Stokes equations leaves un-
closed terms that need to be modeled. In this work, sub-filter fluxes are modeled with the eddy-viscosity
approach for momentum and the eddy-diffusivity approach for scalars with a turbulent Schmidt- and tur-
bulent Prandtl number of Sct = Prt = 0.7, where the sub-grid viscosity is computed using the σ-model
proposed by Nicoud et al. [55]. (The sigma model has been tested extensively against the static and
dynamic Smagorinsky model, using the in-house code PsiPhi [209].)

No modeling is required with regards to the filtered chemical source term, since gradients of scalars are
small in the ignition regions. (This assumption is generally valid until combustion waves lead to strong
spatial gradients of the scalars. However, this work focuses on the period up to the ignition only.)

The finite-volume method (FVM) is utilized to discretize the equations on an equidistant, cartesian grid,
where no local refinement or coarsening is applied to ensure a high level of consistency, even in the region
behind the reflected shock, where transport and mixing must be resolved to predict weak ignition. PsiPhi
uses a distributed memory domain decomposition approach, utilizing the message passing interface (MPI)
and a non-blocking implementation for simultaneous computations and exchange of data, yielding high
parallel efficiency. Diffusive fluxes are discretized using a 2nd order accurate central-difference scheme.
The solution is advanced in time, using a low-storage explicit Runge-Kutta scheme [186] of 3rd order.

A wide range of velocities is present in simulations of shock-tube experiments. Hence, the all-speed
approximate Riemann solver HR-Slau2 [210] developed by Kitamura, is used for the computation of con-
vective fluxes, which reduces the contribution of the numerical dissipation term regarding the computation
of the interface pressure in the low Mach-number limit. The states left and right to a cell interface are de-
termined by a 5th order accurate monotonicity-preserving reconstruction scheme (MP5) by Suresh and
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Huynh [211] that either reconstructs the local, one-dimensional characteristic variables or the set of primi-
tive variables. The five-point stencil of the reconstruction scheme is also used to distinguish discontinuities
from extrema such that the accuracy reduces to first order only next to discontinuities. The reconstruction
scheme of Suresh and Huynh has been tested against the classical weighted essentially non-oscillatory
(WENO5) scheme by Scandaliato et al. [212], where it proved to be more efficient and more accurate.
Both of the reconstruction schemes have also been tested in a publication by Zhao et al. addressing the
wave propagation errors of smooth waves, when interacting with discontinuities [213], where the MP5
scheme turned out to be a good compromise regarding wave propagation errors and was slightly more
efficient than other schemes with a formal accuracy of 5th order. Further publications have dealt with the
properties and defects of shock-capturing schemes. The reader is referred to the works of Pirozzoli [214],
Larsson [215], Quirk [216], and LeVeque [217].

One of the disadvantages of using a high-order scheme and characteristic variables is the occurrence
of strong oscillations under special circumstances, for example when two discontinuities interact [218].
This can manifest in negative values of density and pressure. In order to avoid these unphysical solutions,
recursive-order reduction (ROR) is partially applied [143]. A completely different problem concerns the
numerical dissipation of a Riemann solver at low speeds, for example in a boundary layer. The jump of
normal velocity components across a cell interface is the main contribution to numerical dissipation in
the context of high-order, shock-capturing schemes, according to Thornber et al. [219]. He proposed a
simple fix [220] that relaxes the normal velocity components towards the arithmetic average as the low
Mach-number limit is reached.

Thermochemical and transport properties of individual species and reaction-rate constants are first
determined for each species with the aid of Cantera [187] and tabulated as a function of temperature to
reduce computational effort. Reaction rates are computed during runtime, using the tabulated reaction-rate
constants and the effective local concentrations. Furthermore, reaction-rate constants of fall-off reactions
that depend on pressure, are tabulated not only as a function of temperature, but also as a function of effec-
tive concentration. The mixture-averaged molecular viscosity, heat conductivity, and molecular diffusion
are determined by models of Wilke et al. [221], Peters et al. [189], and Kee et al. [190] respectively.
Direct chemistry is used, where the system of ordinary differential equations, is implicitly solved by
CVODE [191] within a Strang [91] operator-splitting framework. The reaction model FFCM-1 by Smith
et al. (foundational fuel chemistry model, 29 reactions / 11 species) [222] and alternatively the model
by O’Conaire (40 reactions / 11 species) [223] are used to simulate auto-ignition in hydrogen-oxygen
mixtures.

6.2.2 Simulation Setup and Experimental Facilities

Simulations are conducted with non-reactive mixtures (NR) and reactive hydrogen-oxygen mixtures (R)
at low pressure. The results are compared to shock-tube experiments from Berkeley (B) [166], Duisburg
(D), Stanford (S) [197], and from Texas A&M (T), as summarized in Tab. 6.1 and 6.2. Argon is used
as the main component of the test gas throughout the non-reactive cases to suppress the occurrence of a
reflected shock bifurcation. The addition of small amounts of carbon monoxide (CO) in the experiments
(NRD3-NRD6) allowed the measurement of temperature using a two-color fixed-wavelength thermometry
technique. The experiments in the (small) Berkeley shock tube with a rectangular cross section (31.75 ×
44.45 mm2) are simulated in 3D, the experiments in the other (larger) shock tubes in 2D only, due to the
high computational cost.

The numerical domain of the main simulations covers the end part of the shock tube (13.5-132 cm) to
allow a higher numerical resolution. In order to have realistic profiles of scalar quantities and velocities
behind the incident shock wave in terms of a suitable initial solution, precursor simulations from the time
of membrane rupture are performed. After the Mach number of the incident shock has reached the target
value, a part of the solution behind the incident shock is stored and applied as an initial condition for the
following main run. An isothermal no-slip boundary condition is used at all boundaries, except for the
inlet of the numerical domain, located on the “left” of the numerical domain.

Simulations that cover only the end part of the shock tube require that the evolution of the state variables
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Table 6.1: Overview of two-, and three-dimensional simulations performed in the scope of this work. D
and W depict the geometry, where D is the diameter (or the height regarding ducts) and W is the width of
the numerical domain in k-direction. The numerical grid resolution is denoted by ∆ with the number of
cells nI, nJ, and nK in the corresponding directions.

Case D W ∆ nI nJ nK

mm mm µm

2D NRT1 162 - 50 15,600 3,240 -
NRT2 162 - 50 15,600 3,240 -
NRD1 80 - 50 15,600 1,600 -
NRD2 80 - 50 15,600 1,600 -
NRD3 80 - 50 15,600 1,600 -
NRD4 80 - 50 15,600 1,600 -
NRD5 80 - 50 15,600 1,600 -
NRD6 80 - 50 15,600 1,600 -

2D RS1 141.3 - 100 13,200 1,400 -
RS2 141.3 - 100 13,200 1,400 -
RS3 141.3 - 100 13,200 1,400 -

3D RB1 31.75 44.45 50 3,978 624 884
3D RB1 31.75 44.45 50 3,978 624 884

RB2 31.75 44.45 50 2,704 624 884

Table 6.2: Overview of two-, and three-dimensional simulations performed in the scope of this work.
The shock Mach number M refers to the value just before the reflection. p1 is the pressure of the initial
quiescent gas in the driven section with the pressure p5 and T5 behind the reflected shock. The ideal
ignition-delay time τig,0 is the result of zero-dimensional reactors at constant volume/energy and τig is the
result from the two-, and three-dimensional simulations. To compute the source terms of individual species
caused by chemical conversion, either the O’Conaire mechanism or the foundational fuel chemistry model
are used.

Case Mixture M p1 p5 T5 τig,0 τig/τig,0 Mechanism

vol% mbar mbar K ms

2D NRT1 100 Ar 2.19 74.7 1481 1204 - - -
NRT2 100 Ar 2.51 48 1408 1539 - - -
NRD1 100 Ar 2.43 120 3210 1441 - - -
NRD2 100 Ar 2.20 75 1490 1198 - - -
NRD3 95 Ar / 1 CO / 4 H2 2.82 44.3 1810 1845 - - -
NRD4 95 Ar / 1 CO / 4 H2 2.67 57.9 2030 1665 - - -
NRD5 95 Ar / 1 CO / 4 H2 2.46 72 1990 1432 - - -
NRD6 95 Ar / 1 CO / 4 H2 2.30 86 1960 1269 - - -

2D RS1 94 Ar / 4 H2 / 2 O2 2.01 240 3632 992 3.750 0.61 FFCM-1
RS2 94 Ar / 4 H2 / 2 O2 2.00 240 3592 986 5.780 0.53 FFCM-1
RS3 94 Ar / 4 H2 / 2 O2 2.00 240 3592 986 6.370 0.46 O’Conaire

3D RB1 66.67 H2 / 33.33 O2 2.46 70 2053 980 1.092 0.26 O’Conaire
RB2 66.67 H2 / 33.33 O2 2.45 35 1015 974 0.142 0.99 O’Conaire
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Figure 6.2: Instantaneous numerical schlieren visualizations from two-dimensional simulations NRD1
(a) and a two-dimensional simulation with nitrogen as driven gas (b), to illustrate the effect of shock
bifurcation on the region behind the reflected shock. The reflected shock is moving to the “left”, away
from the end wall on the “right”. The schlieren visualizations are generated by computing the absolute
gradient of density, followed by division with the maximum value and subsequent application of the
decadic logarithm. The end wall of the shock tube is located on the right (x = 0 mm).

and the velocity at the inlet must be modeled. This concerns both the variation within the boundary layer
and its growth, but also the variation of the state variables in the core flow. The perturbation theory by
Mirels [202, 203] is used to compute the variation of quantities outside the boundary at the location of
the inlet of the computational domain as a function of time. The solution for a laminar boundary layer is
calculated according to Mirels [155] by solving the Blasius differential equations in a shock-fixed frame,
while the solution for the turbulent boundary layer is computed according to the equations by Petersen
and Hanson [165]. The resulting profiles of the axial flow field and the temperature field are tabulated as
function of time and are applied in terms of a Dirichlet boundary condition.

6.3 Results

6.3.1 Non-Reactive Cases

Non-reactive cases are simulated to compare the temporal pressure variation at the end wall to experi-
mental measurements, thus validating the code and the modeling of boundary-layer effects. Figure 6.2
shows numerical schlieren visualizations after the reflection of the shock with argon (Fig. 6.2a) and with
nitrogen (Fig. 6.2b) as test gases, by evaluating the absolute gradient of density. When nitrogen is used, a
pronounced bifurcation of the reflected shock is present.

The shear layer between reversed fluid and fluid that passes the oblique shock, produces turbulent
kinetic energy, while vortices form along the slip line. As a result, the fields of state and velocity are
highly inhomogeneous and the conditions are not ideal for shock-tube experiments. Argon, on the other
hand, typically suppresses bifurcation. The reflected shock is then curved due to a higher propagation
speed of the reflected shock within the turbulent boundary layer. The absence of the bifurcated shock-
induced vortices and shear layers leads to much smoother distributions of state quantities, which is a
prerequisite for meaningful results from shock-tube experiments. However, the variation of state variables
along the center line, introduced by the development of the boundary layer, still affects the state behind the
reflected shock in space and time, especially because the variations are amplified by the reflected shock
[204].

Figure 6.3 compares the evolution of pressure at the end wall for all non-reactive simulations against
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the respective measurements. The cases cover initial pressures from 44-120 mbar with pressures behind
the reflected shock ranging from 1600-3200 mbar at Mach numbers of the incident shock from 2.3-2.8.

Very good agreement is achieved in most of the cases, especially in terms of shock tubes with a large
diameter (Fig. 6.3a,b) or at high pressure (Fig. 6.3c). At low pressure or small shock-tube diameters (e.g.,
Fig. 6.3d), deviations appear after 1 ms. Deviations however are expected, as the perturbation theory relies
on the assumption that the thickness of the boundary layer is negligible compared to the height/diameter of
the shock tube. At low pressure and/or small shock-tube diameters, these assumptions are easily violated.
Nevertheless, the results are initially consistent with those of the experiments, which would not have been
the case with a primitive inflow condition neglecting the evolution of the boundary layer. The remaining
deviations can be partially attributed to shock-contact surface interaction or the arrival of the expansion
wave, effects that are not considered in the simulations. Strikingly, simulations and experiments (Fig.
6.3a,b,e-g) both show an initial decrease of pressure followed by a linear increase, which is in contrast
to the usual expectation of a purely linear increase of pressure. This assumption of a linear increase of
pressure is also incorporated in many low-order models for reactors that are used for the validation of
reaction mechanisms, thus neglecting the observed behaviour could lead to large errors. It is obvious
to attribute the unexpected drop of pressure to transition effects of the boundary layer. Therefore, the
observed characteristic evolution of pressure is only expected at low pressures behind the incident shock,
when the laminar boundary layer can not be neglected.

Figure 6.4 presents stacked center-line profiles of both pressure and temperature for simulation NRD1,
which is in excellent agreement with the experiment. The normalized pressure increase at the end of the
shock tube is linear at a value of ∂p5/∂t/p5 ≈ 3.6 %/ms and presents the only simulation with a linear
pressure evolution in this study. In contrast to the results shown in Fig. 6.3, the surfaces illustrate the
entirety of changes in time and space, where the profile for x = 0 cm (end wall) in the lower panel refers
to the solution in Fig. 6.3c. According to the results, the strength of the reflected shock increases, while
travelling upstream (away from the end wall), which is reflected in higher pressures and temperatures
behind the shock. However, the evolution of temperature and pressure at a fixed location is very different
directly at the end wall, compared to locations further away. This is well illustrated by the fact that for
a fixed time of t = 2.5 ms, the pressure decreases with the distance from the end wall whereby the tem-
perature increases. While pressure and temperature are connected by isentropic relations at the end wall,
this is clearly not the case further away from the end wall, a circumstance which is to be led back among
other things to the variation of entropy by shock attenuation. The temperature increases continuously with
distance and time such that the temperature maximum of the presented data is reached for x = 40 cm and
t = 2.5 ms and is significantly larger (≈ 50 K) than the temperature at the end wall at the same time. Such
a temperature distribution could lead to a remote ignition, if a reactive mixture were used instead.

Figure 6.5 also presents stacked center-line profiles, but for simulation NRD3, a simulation that matches
the experimental results although the initial pressure is considered very low. The differences of pressure
and temperature surfaces from the previous case (Fig. 6.4) are apparent. In this case, a characteristic valley
forms both in pressure and in temperature, independent of the end-wall distance. While the evolution at
a fixed location is qualitatively similar, the strength of the changes (gradients) decreases with the wall
distance. As in the previous case, pressure decreases with wall distance at a simulation time of t = 2.5 ms,
whereas the temperature increases, while the distribution of both the quantities along the center line is
much more homogeneous compared to the previous case. The pressure and temperature distributions at
these low pressure levels are over all very complex and the values vary strongly in time. At this point we
want to emphasize that it will be very important to quantify such effects in low-pressure experiments to be
able to interpret the measurement results.

Slice-integrated profiles of the mass flux per unit depth, are presented in Fig. 6.6 for the cases NRD1
and NRD3 and for different times. Without viscous effects and heat losses, a reflected shock of constant
strength forms, such that the fluid behind the reflected shock wave is instantly at rest. The local distribution
of the state variables of the investigated cases in contrast leads to a change in shock strength and, for
example, to a change in the momentum of the fluid behind the reflected shock, as presented in the panels
a) and b) of Fig. 6.6. In the case of NRD1, this means that the fluid behind the reflected shock wave
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illustrated as a function of end-wall distance x and time after shock reflection t. The end wall of the
shock tube is located on the right (x = 0 cm).
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Figure 6.7: Instantaneous temperature fields of simulation RS1 at different times after the reflection of the
shock wave, illustrating strong ignition and the subsequent formation of a strong wave. The end wall of
the shock tube is located on the right (x = 0 mm).

still has a residual momentum. It is eventually brought to a rest, accompanied by an increase in pressure
and temperature. In the case of NRD2, however, the fluid behind the reflected shock has a negative
momentum, hence moving in the direction of the reflected shock. The gas behind the reflected shock thus
expands, decreasing the temperature. A one-dimensional inviscid simulation of case NRD1, presented in
supplementary material (Sec. 6.5), confirms that the fluctuations visible in panel a) do not stem from the
applied algorithms, but instead are linked to the transition from the laminar to the turbulent boundary layer
and occur first at the inlet, where artificial turbulence is created in the boundary layer. The much higher
pressure in case NRD1, in contrast to that of case NRD3, causes a very early transition, which is why no
fluctuations are visible in panel b), since the boundary layer has not yet turned over at this point.

6.3.2 Remote Ignition Simulated in 2D

The observed agreement of experiments and simulations, both qualitative and quantitative, indicates that
the most important phenomena including boundary-layer effects have been simulated successfully. There-
fore the code can be used to also examine remote ignition events. Figure 6.7 presents temperature fields
at different instances of simulation RS1. Since the mixture ignites simultaneously in a region near the
end wall, this ignition can be classified as a strong ignition. The pressure increase resulting from the com-
bustion is particularly strong due to the closed end of the shock tubes, and a strong “left”-running wave is
formed.

As highlighted in Tab. 6.2, the Mach number in case RS2 and case RS3 is slightly lower than that in
case RS1, but this small difference is sufficient for the ignition to take a different course of events, as
shown in Figs. 6.8 and 6.9. Both simulations (RS2, RS3) use the same initial- and boundary conditions
and differ only in the mechanism used for solving the chemistry (FFCM-1 in terms of simulation RS2 and
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Figure 6.8: Instantaneous temperature fields of simulation RS2 at different times after the reflection of
the shock wave, illustrating mild ignition remotely from the end wall. The end wall of the shock tube is
located on the right (x = 0 mm).

O’Conaire in terms of RS3).
According to Fig. 6.8a, the ignition starts from small ignition kernels, located at a distance of approx-

imately 500 mm away from the end-wall. More ignition kernels appear at t = 3.04 ms between end-wall
distances of 400 and 600 mm before the whole mixture ignites remotely at t = 3.08 ms. Also, an increase
of temperature is observed at the end wall, which suggests that these conditions mark the transition from
a strong to a remote ignition. This means that the reduction of the ignition-delay time caused by fluid
dynamics away from the end wall just compensates for the delayed compression by the reflected shock
away from the end wall.

If the reaction mechanism of O’Conaire is used instead, the ignition event slightly deviates from the
previous result, as can be seen in Fig. 6.9, and attributed to uncertainties of the reaction mechanisms at
low temperatures. This time, ignition kernels are already visible after 2.93 ms and are located even further
away from the end wall at a distance of 600 mm, while the mixture is consumed more rapidly. However,
the largest deviation in comparison to simulation RS2 concerns the region near the end wall, where no
significant temperature increase is observed. Hence, the competition of the characteristic time scales
favors the remote ignition event. According to Tab. 6.2, boundary-layer effects in each of the simulations
(RS1,RS2,RS3) greatly reduce the ignition-delay time τig compared to the ideal ignition-delay time τig,0
as obtained from low-order simulations. The reduction is particularly pronounced in cases RS2 and RS3,
where remote ignition occurs.

The local heat-release rate ω̇HR plays an obvious and important role in the ignition process as it results
from chemical conversion and accelerates it at the same time. Figures 6.10 and 6.11 present scatter plots
of local heat-release rate over temperature, colored with the end-wall distance. Figure 6.10 shows the
result for simulation RS1 and thus for the case of a strong ignition. As expected, the heat-release rates
are initially highest at the end wall. Nothing changes subsequently in this overall picture despite higher
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Figure 6.9: Instantaneous temperature fields of simulation RS3 (carried out with the reaction mechanism
by O’Conaire [223]) at different times after the reflection of the shock, illustrating mild ignition remotely
from the end wall. The end wall of the shock tube is located on the right (x = 0 mm).

Figure 6.10: Scatter plot of local heat-release rate ω̇HR over temperature T and colored with the respective
end-wall distance x for simulation RS1.
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Figure 6.11: Scatter plot of local heat-release rate ω̇HR over temperature T and colored with the respective
end-wall distance x for simulation RS2.

temperatures at greater distances from the wall. A completely different picture emerges for Simulation
RS2. Figure 6.11b presents the distribution of local heat-release rate of simulation RS2 at the same time as
Fig. 6.10a for simulation RS1. The heat-release rates at the end wall in this case are an order of magnitude
below those observed in simulation RS1. At a time of 2 ms after the reflection of the shock, this gap
has further increased, and the heat-release rates at the end wall of simulation RS1 now exceed those
of simulation RS2 by two orders of magnitude. In contrast to simulation RS1, simulation RS2 shows
more concentrated distributions of heat-release rates prior to ignition, again emphasizing that flow-induced
temperature inhomogeneities upstream made up for the delayed compression.

In order to illustrate how these temperature variations affect the localization of ignition, we determine
the expected time of ignition after shock-wave reflection (i.e., a ”local” ignition delay time) in a post-
processing step. For each numerical cell of the computational domain, the instantaneous thermochemical
state is utilized to estimate the related ignition-delay time based on the assumption of isochoric 0D re-
actors. The results are therefore decoupled from convection and diffusion. The first panel of Fig. 6.12
presents the field of expected time of ignition, 0.75 ms after the reflection of the shock for simulation RS1.
A general spatial gradient of the expected time of ignition is recognizable in axial direction, favouring
ignition near the end wall, whereby the expected ignition times vary strongly, specifically near the walls
of the shock tube. As the process progresses, these local gradients disappear at the end wall, so that the
ignition is globally initiated instead of an ignition from smaller kernels. Results of the same type of post-
processing, but for simulation RS2, are shown in Fig. 6.12d-f. In contrast to the results from simulation
RS1, it is not possible to predict where the ignition will take place based on the result 0.34 ms after the
reflection of the shock. The field of expected ignition times remains heterogeneous until the point of
ignition, with deviations between the shortest and highest expected ignition time of about 0.3 ms. The
small kernels with the shortest expected ignition times dictate the subsequent ignition process, starting at
a distance of 500 mm.

In order to facilitate the interpretation and to quantify the flow-induced reduction of expected ignition
time as a function of axial location, the fields of expected ignition time are averaged in the vertical direc-
tion (< · >), followed by a filter operation (·̂) to eliminate fluctuations. Figure 6.13 presents the results for
simulation RS1 on the left and RS2 on the right. Solid lines in the upper panels show the averaged and
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Figure 6.12: Expected time of ignition, using instantaneous values from simulation RS1 (a-c) and from
simulation RS2 (d-f) as initial condition for isochoric 0D-reactors. The end wall of the shock tube is
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Figure 6.14: Instantaneous numerical schlieren visualizations from simulation RB1 (a) and simulation
RB2 (b), illustrating the ignition locations. The end wall of the shock tube is located on the right (x =

0 mm).

filtered profiles of expected ignition time at time tn. The dashed lines show projected profiles t∗n resulting
from shifting the previous profile tn−1 by the difference in simulation time between the samples, i.e., by
∆t = tn− tn−1. In this discussion, it is worth pointing out that the expected time of ignition increases mono-
tonically with x for RS1, whereas it is almost constant for RS2, making the location of ignition a lot more
sensitive to small perturbations. A flow-induced reduction of ignition time ∆τfi is introduced by subtract-
ing the computed profile of expected ignition time from the projected profile. This variable approximates
the reduction of ignition time due to fluid dynamics within a given time interval. It is interesting to note
that fluid dynamics reduce the ignition time independent from the axial location. Nevertheless, the trend
can be observed that the expected ignition time is reduced more at greater distance to the end wall. In case
of simulation RS2, the initially flat profile of expected ignition time thus gets altered by the fluid dynamics
such that remote ignition occurs.

6.3.3 Remote Ignition Simulated in 3D

While remote ignition in the previous cases is governed by effects due to the formation of a boundary
layer, remote ignition can also be related to the flow field evolving behind bifurcated shocks. In contrast
to the simulations in 2D, no complex inlet treatment is applied with regards to simulations RB1 and RB2,
as the bifurcation-induced effects are studied exclusively. Instead, the solution resulting from the ideal
shock relations is applied. Numerical schlieren visualizations, shortly after the ignition, are presented in
Fig. 6.14.

The upper image shows the result of simulation RB1, where the mixture ignites in the core of the
shock tube at a distance of approximately 70 mm away from the end wall. Reasonable agreement with
the experiments by Meyer and Oppenheim [166] has been achieved with an ignition-delay time of 281 µs
(approximated by the time, when the maximum temperature surpasses 1600 K) in the simulation and
one that exceeded 250 µs in the experiment. Compared to the ideal ignition-delay time τig,0 of 1092 µs
(Tab. 6.2), the ignition-delay time from this simulation is reduced by a factor of four by taking into account
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Figure 6.15: Evolution of mass fraction of hydroperoxyl (HO2) normalized by the maximum value at the
point of ignition to present the behaviour of the auto-ignition marker. Results have been obtained with
Cantera using the O’Conaire reaction mechanism. The initial conditions match the values (p5,T5) of Tab.
6.2 in terms of case RB1.

the shock-boundary layer interaction.
The ignition locations in simulation RB2 are very different, as the ignition starts near the corners close

to the slip line before a larger volume spanning the entire cross section of the shock tube ignites. Many
of the schlieren photographs by Meyer and Oppenheim [166] showed very similar ignition locations at
comparable temperatures behind the reflected shock. The reasons for the remote ignition in case RB1
were discussed in detail before [6], but are described briefly again for the sake of completeness.

One of the striking features is the formation of a second normal shock after the bifurcation structure
has grown significantly. The second shock is clearly visible in the upper panel of Fig. 6.14 at a location of
165 mm from the end wall, while it is not fully developed in the lower panel. Instead, many strong waves
can be observed at a location of 75 mm, each of which are increasing the local temperature and are thus
moving at a higher speed than the waves upstream. Eventually, they will catch up with other waves and
form the second shock wave. Similar shock-wave patterns were observed in two-dimensional simulations
as reported by Weber et al. [194].

Figure 6.16 introduces instantaneous fields of pressure, temperature, and hydroperoxyl (HO2) com-
plemented by center-line plots of pressure and temperature before the ignition has taken place, to fully
understand the physics. According to Fig. 6.15, hydroperoxyl can be used as an auto-ignition marker,
since the mass fraction increases monotonically while the growth is almost perfectly exponential over a
wide range. In contrast to the previously demonstrated auto-ignition marker, where the expected time of
ignition is evaluated based on instantaneous fields, this marker and the use of a logarithmic scale reveals
features that are not visible in the other marker field.

The existence of the second normal shock (travelling at a similar speed compared to the reflected shock)
implies an acceleration of the fluid behind the reflected shock (referred to as the core fluid) to supersonic
speeds in a coordinate frame that is fixed to the reflected shock. The flow field behind the reflected shock
is determined by displacement effects of outer-core fluid and pressure variations within the bifurcation
structure. The displacement effect of the outer-core fluid is caused by the oblique shock, as the fluid
that passes the oblique shock gains momentum in vertical direction. Combined, these effects force the
fluid in the core to follow a convergent-divergent streamline pattern which forms a Laval-nozzle shaped
stream tube, which is in fact well illustrated by the interface between core- and outer fluid along the slip
line in the temperature field. Initially, when the bifurcation structure is small and the cross-section areas,
characterizing the Laval-nozzle like flow and which are bounded by the slip line, are correspondingly
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RB1, as well as center-line plots of pressure and temperature at different times from simulation RB1. The
end wall of the shock tube is located on the right (x = 0 mm).
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large, the variations of velocity and state are also small. However, due to the growth of the bifurcation,
these variations will increase. Since the pressure drops in the core flow, as a result of the velocity gain,
fluid will be also accelerated from the end wall towards the reflected shock. Once the velocity in the
core-flow has nearly reached super sonic speed, these pressure waves will start to “pile up” and eventually
form the second shock. This evolution is well captured by the history of center-line plots in Fig. 6.16. The
additional production of entropy, caused by the second shock, is clearly evident by a sustained offset of
temperature compared to the temperature at the end wall.

Apparently, this temperature variation has huge implications regarding the distribution of ignition-
delay times, as presented in Fig. 6.17. Comparing these results to those without the occurrence of a
bifurcation, it is noticeable that the values now differ greatly from each other, namely between 0.3 and
0.9 ms in the first panel, which presents the result 99 µs after the reflection of the shock. The smallest
values are within a range of 20 to 40 mm from the end wall. After another 80 µs, the minimum has shifted
further to the “left”, now in a distance of about 70 mm to the end wall. Due to the high sensitivity of the
ignition-delay time to temperature changes, the increased temperature in this region compensates for the
delay regarding the compression of the reflected shock. Further away from the end wall (around 70 mm),
a constriction is visible (also present in Fig. 6.16), where fluid is forced from the walls towards the core.
The location coincides approximately with the formation of the second normal shock. In the following,
the cold fluid from the walls mixes with that from the core and prevents ignition in this region, as can be
seen in the third panel of Fig. 6.17. According to Fig. 6.16, the temperature to the “left” of the constriction
is even higher, while this temperature difference does not compensate for the time elapsed for the shock
wave to process the gas upstream. Therefore, the mixture ignites to the “right” of the mixing zone and
much earlier than the ignition at the end wall would have occurred.

The flow characteristics of simulation RB2 are very similar to those of simulation RB1. However, since
the second normal shock has not even formed at the time of ignition in case of simulation RB2 and since the
ignition starts first from small kernels near the slip line, the gas dynamics responsible for remote ignition
in this case must be very different. Figure 6.18 presents the expected time of ignition for simulation RB2.

Here, the conditions behind the reflected shock promote a faster ignition compared to simulation RB1.
Moreover, the field in the first panel appears much more homogeneous, and the results are overall more
comparable with the results of a strong ignition from simulation RS1. A wave pattern is also conspicuous,
whereby the orientation of the waves suggests that their origin lies in the bifurcation structure.

In order to investigate the physics of the ignition mechanism in this particular case, Fig. 6.19 shows
instantaneous fields of the dissipation rate of kinetic energy, as well as entropy of the mixture. Aside from
the expected high dissipation rates within the bifurcation and within the boundary layer, high values are
also observed along the slip line and in close proximity to the slip line. Especially after the break up of the
slip line and the subsequent formation of vortices, a broad region with very high dissipation values of more
than 107 W/kg is present. The high dissipation rates are also reflected in the field of entropy, where the
values are particularly high in the zones of the following ignition kernels. Assuming that a fluid element
in close proximity to the slip line is affected by shear with a dissipation of 5 · 107 W/kg, over a period
of 100 µs, the estimated temperature increase based on these values would be 5 K, enough to explain a
slightly earlier ignition according to the temperature sensitivity of ignition-delay times. Compared to the
ideal ignition-delay time τig,0 of 142 µs (Tab. 6.2), the ignition-delay time of 140 µs from this simulation
turns out to be almost identical, which is also supported by the strong ignition in the entire volume shortly
after. However, it is conceivable that the ignition mechanism proposed here could lead to a more significant
reduction in other cases.

6.4 Conclusion

Two-dimensional computational fluid dynamics simulations of shock-tube experiments with non-reactive
mixtures, as well as two- and three-dimensional simulations of shock-tube experiments with hydrogen-
oxygen mixtures were carried out using high-order numerics and detailed chemistry.

The non-reactive cases confirmed the measurements of pressure and temperature at the end wall in a
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Figure 6.17: Expected time of ignition, using instantaneous values from simulation RB1 as initial condition
for isochoric 0D-reactors. The end wall of the shock tube is located on the right (x = 0 mm).
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Figure 6.18: Expected time of ignition, using instantaneous values from simulation RB2 as initial condition
for isochoric 0D-reactors. The end wall of the shock tube is located on the right (x = 0 mm).
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Figure 6.19: Instantaneous fields of dissipation of kinetic energy (a) and entropy (b) from simulation RB2.
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case with a linear increase of pressure and in several cases, where the pressure initially decreased. This
phenomenon of a decreasing pressure, followed by the transition into a linear increase, can be clearly
attributed to the transition of the boundary layer, whose effects were modeled at the inlet of the computa-
tional domain. Taking these effects into account will be very important for low-order models to provide
reliable results at low pressure. A strong increase of temperature with wall distance was observed, likely
resulting from shock attenuation and decoupled from the pressure.

The event of remote ignition in an argon-diluted hydrogen-oxygen mixture was reproduced using two
different reaction mechanisms, while another simulation at a slightly higher Mach number showed ignition
in strong ignition mode. Differences of the results (using different reaction mechanisms) qualitatively and
quantitatively underline the large uncertainties of reaction mechanisms at low temperatures and the need
for improvement. Clearly, the remote ignition phenomenon in these cases was caused by the variation of
temperature along the center line, resulting from the attenuation of the incident shock.

The remote ignitions, observed in the three-dimensional simulations, however, were caused exclusively
by the complex fluid dynamics behind the reflected shock, as boundary layer effects were not modeled at
the inlet of the computational domain. If the ignition-delay time is sufficiently long, a second normal
shock might evolve before ignition takes place, leading to additional formation of entropy and regions
of higher temperature, thus reducing the local ignition-delay time. In the first case investigated, this
mechanism led to remote ignition, whereas remote ignition was initiated in the second case, before the
second normal shock had formed. Instead, shear in close proximity to the slip line caused a temperature
increase, sufficient for a premature ignition from small kernels.
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Figure 6.20: Results from simulations of the SOD shock-tube benchmark. Presented are density profiles
at a simulation time t = 0.2 s and the analytical solution. The close-up presents the solution in the vicinity
of the shock wave.

6.5 Supplementary Material

The in-house code PsiPhi has been extensively tested against one- and two-dimensional benchmarks of
inviscid flow. A small selection of results from one-dimensional simulations is presented below to demon-
strate how the shock-capturing numerical schemes used in this work perform in terms of their shock-
capturing properties.

Figure 6.20 presents results from inviscid one-dimensional simulations of the SOD shock-tube bench-
mark [224] to test reconstruction schemes and their impact on shock location and shock resolution, as
well as the effect of the time-step size by varying the CFL number. The simulations were performed on a
computational grid with 500 cells.

The results show that the location of the shock coincides with that of the analytical solution at a simula-
tion time of t = 0.2 s, regardless of the reconstruction scheme or the CFL number (and therefore regardless
of numerical viscosity) emphasizing that all implemented methods are time accurate. At a CFL number
of 0.3 the scheme is less dissipative, while the solution converges with decreasing step size. The shock
itself is captured by the same three numerical cells in terms of the MP5 scheme and is captured by four
numerical cells with regards to the TVD scheme.

Figure 6.21 presents results from inviscid one-dimensional simulations of the Shu-Osher benchmark
[225] testing the interaction of a shock wave with smooth waves, where the shock propagates into stagnant
fluid with a sine-wave density distribution. The simulations were performed on a computational grid with
500 cells.

The respective benchmark is very challenging due to the simultaneous presence of smooth waves and
a discontinuity, where the accuracy of the reconstruction scheme reduces to first order. Shock-capturing
reconstruction schemes typically introduce amplitude and phase errors, as reported by Zhao et al. [213].
The advantages of higher-order methods are obvious, with the MP5 scheme most closely matching the
reference solution.

Figure 6.22 shows results from an inviscid one-dimensional simulation of case NRD1 to test the shock
speed and to quantify numerical fluctuations that stem from the numerical schemes. The simulation was
performed on a computational grid with 2,400 cells. The reference values for the shock speed of the inci-
dent shock wave and the pressure behind the reflected shock are obtained from the shock-tube equations
for a calorically perfect gas [168]. Since the position and speed of the shock are tracked continuously
during the simulation, those values can be compared with the reference values.
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Figure 6.21: Results from simulations of the Shu-Osher benchmark. Presented are density profiles at a
simulation time t = 0.178 s and a reference solution.
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Figure 6.22: Results from a one-dimensional simulation of experiment NRD1, using Euler Equations.
Presented are profiles of density (a), profiles of momentum (b), the density profile behind the reflected
shock (c), and the propagation speed of the incident shock wave normalized by the reference speed (d).
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Panel a) and b) of Fig. 6.22 show the pressure profiles and density profiles respectively at different
simulation times. A small overshoot is visible (< 1%) behind the reflected shock, while the fluctuations
are not lasting and are quickly damped as shown in the close up in panel c). The overshoot behind
the discontinuity is more pronounced in the case of the reflected shock compared to the incident shock,
a circumstance which, according to Quirk [216], is due to the lower propagation speed relative to the
numerical grid. After a short period, during which the incident shock develops, the propagation speed of
the incident shock wave us matches the reference speed us,ref , according to the results presented in panel
d). The correct speed of the incident shock wave is also a prerequisite to match the predicted pressure p5
behind the reflected shock wave, which again is the case as presented in panel c).
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Abstract

A detonation cellular stability mechanism based on the dynamics of reactive decaying blasts is examined
through detailed analyses of two-dimensional (2D) numerical simulations of hydrogen-oxygen detona-
tions. Different from previous blast-based examinations, we resolve the transient process of decoupling
between shock and reaction fronts in decaying blasts, and correlate the size of unburnt gas mixtures be-
hind decaying shocks to that of the subsequent blast kernels. The impact on the stability mechanism of
1) chemical kinetics, 2) diffusive processes, and 3) boundary conditions are examined through a series of
simulations. At a dopant level, ozone is known to reduce ignition delay without altering thermodynamic
properties of the mixture, enabling investigation of the impact of ignition kinetics on the cellular stabil-
ity. The addition of ozone leads to a stronger coupling between shock and reaction fronts and stabilizes
the blast kernel to a smaller size. The resulting global cell size reduction in the ozonated detonation is
well described by the stability analysis and in agreement with experimental cell measurements reported
in Crane et al., Combust. Flame 200 (2019) 44–52. The inclusion of diffusive physics marginally affects
the detonation cellular structure, but causes a global propagation speed deficit. Results from two channel
heights show that cell size increases in the smaller channel due to mode-locking. A detailed grid conver-
gence study is performed, which examines both kinetic and macroscopic structural features as a function
of grid resolution. The results of the stability analysis is independent of numerical grid resolution.
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7.1 Introduction

The detonation cellular structure, ever since its discovery [226, 227], has never left the central stage of
modern detonation research. The size and shape of these detonation cells reveal useful information re-
garding the interplay between gas dynamics and chemistry and the cellular length scales also provide
key information regarding the scale and geometry of practical detonation power devices [228], such as
rotating detonation engines and pulse detonation engines. These engines are considered promising as a
new generation of energy conversion devices due to their high theoretical energy efficiencies and simple
mechanical design. Beyond power production, a basic understanding of propagation and cellular devel-
opment of detonation is critical to mitigating safety problems in hydrogen storage and utilization [229],
nuclear power plant operation [230], and all energy systems especially those that involve the use of hy-
drogen as the energy carrier [231]. In particular, the detonation cellular structure is essential to detonation
safety evaluations [232].

Detonation propagation and structures are inherently multidimensional. A characteristic cellular struc-
ture emerges [233] as a result of shock bifurcation and the interactions among incident shock, Mach stem,
and transverse wave [234]. Along with chemical reactions and heat release, these processes form the
cellular structure. Within a cell, complex, coupled dynamics evolve over its life cycle, as described ex-
perimentally using PLIF images [235]. To illustrate these dynamics, figure 7.1 presents four sequential
snapshots of a detonation wave from a two-dimensional detonation simulation, showing the evolution of
reactive gas dynamics starting from a blast kernel at the end of a previous detonation cell cycle (panel a),
leading to an overdriven shock wave at a speed in excess of the theoretical Chapman-Jouguet (CJ) speed
(panel b), the decay in the shock speed to below the CJ speed (an underdriven wave) and the separation
of the shock front from reaction front (panel c), and lastly, the birth of a new cell cycle from a new blast
kernel (panel d). Each cell cycle interacts with its neighboring cells, and these interactions produce a
sequence of spatially distributed, autonomously propagating energy centers that ensure the burned gas to
be globally choked, thus enabling the global propagation of the detonation wave.

Although the cellular structure can be easily measured experimentally, a clear picture of the relationship
between the detonation cellular structures and mixture properties is still lacking at a fundamental level.
In terms of cell size, a widely adopted approach is to relate experimental cell size to computed induc-
tion length from one-dimensional, steady-state calculations, e.g., the Zel’dovich-Neumann-Döring (ZND)
detonation, through a proportionality factor. However, the factor is known to vary significantly among
different mixtures and conditions. Over the past few decades, the proportionality factor has evolved from
a single constant [236], to a function of mixture conditions, e.g., equivalence ratio and dilution [237, 238],
and to a multi-parameter fitting involving stability parameters [239, 240]. The correlation between cell
size and induction length is sensitive also to how induction and chemical lengths are defined, all of which
is heuristic by nature [241]. Despite the varying degrees of success in using these empirical approaches, a
quantitative theory is yet to be established.

In terms of cell regularity, a wide range of regular (figure 7.1) or irregular structures have been ob-
served. Radulescu and coworkers [242–244] noted that the cellular regularity is governed by both gas-
dynamic and chemical effects; and to the first order, these two factors may be characterized by the ratio
of specific heats at the von Neumann state, γVN [243, 244], and the effective activation energy of mixture
ignition, εi [245, 246]. High γVN and low εi mixtures tend to yield regular cell structures, whereas low γVN

and/or high εi mixtures produce irregular cells with a wide range of cell size distribution [242, 243]. To
clearly isolate the gasdynamic and chemical kinetic effects, a recent study used ozone as a trace additive
[247] and demonstrated, by experiment and numerical simulation, that the theory advanced by Radulescu
to be correct.

At a detailed level, however, what modulates cell size for detonation with a regular cellular structure
remains to be an open question. Previously, we examined the cellular stability using a semi-empirical geo-
metric model [248]. In this model, shock-reaction interactions within a detonation cell cycle are described
through unsteady one-dimensional cylindrical detonation simulations. The evolving detonation structure
was then modeled in a confined space with specified boundary conditions and the assumption that the
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Figure 7.1: Snapshots of temperature fields (in lab coordinates) computed for a stoichiometric H2-O2 mix-
ture at 15 kPa and 300 K, showing the evolution from (a) the blast kernel to (b) an overdriven detonation
wave, (c) an underdriven wave and the decoupling of shock front and reaction front, and finally (d) the
onset of a subsequent detonation cell cycle. The temperature fields are superimposed by numerical soot
foils for pressure ≥ 9 bar. The detonation wave travels from left to right.
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mean shock speed within a cell is equal to the CJ speed. The model predicts that the size of the blast
kernel, defined by the spatial gap between the shock and reaction fronts at the end of a cell cycle, dictates
the size of the subsequent cell. Stable cell size emerges through the feedback control of the blast kernel
sizes in two sequential cells. The stable size is unique to a particular fuel/oxidizer mixture, and hence it
explains the notable difference in cell size in detonations of non-ozonated and ozonated hydrogen-oxygen
mixtures [241]. Not only does the proposed stability mechanism have the potential to predict stable deto-
nation cell sizes for any given mixture, it provides a physics-based context to investigate the possibility of
multiple stable cell sizes for a given mixture, and the effect of various physical processes, e.g., diffusion,
on detonation cellular structure. Nevertheless, question remains as to whether the semi-empirical geomet-
ric model is capable of revealing detonation dynamics at a fundamental level. Indeed the model relies on
assumptions that are related to initiation of cylindrical 1D detonations and global propagation speed.

The other long standing issue, in the area of numerical simulation, is the inability to reproduce cellular
features that satisfactorily agree with experimental measurements. The discrepancy may be caused by
a variety of factors. For example, many numerical detonation simulations rely on one-step or several-
step global chemistry models to reduce the computational cost. The use of detailed chemistry yielded
results that can be significantly different from those computed with one-step chemistry [249, 250]. Also
observed in numerical simulations is a dependency between cell size and initial conditions, which has not,
at least not clearly, been observed in experiments [251]. Many detonation simulations were performed
using the Euler equations [252–254], although recently researchers noted that using the Navier-stokes
(NS) equations can produce qualitatively different results [255–258]. Quantitatively, however, there is
little information about the role of diffusive physical processes on cellular structure, detonation velocity,
and boundary layer development.

In this study, we seek to address the above two issues through a set of high-resolution, two-dimensional
simulations of detonations with detailed chemistry and a quantitative test of the kinetics-resolved detona-
tion cellular stability mechanism using the simulation results. Simulations of hydrogen-oxygen mixtures
without and with ozone addition are made to provide insight into the role of chemical kinetics, diffusive
processes, and confining geometry on detonation cellular stability and propagation.

7.2 Numerical details

7.2.1 Numerical solver

Simulations are performed using the in-house code PsiPhi [6, 183, 207, 208] that utilizes the finite-volume
method (FVM) on a Cartesian, equidistant grid. A non-blocking message passing interface (MPI) based
domain decomposition parallelization is implemented and yields a high scaling efficiency. The set of
fully compressible conservation equations for momentum, total internal energy, and species is solved to
simulate detonation wave propagation:
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∂xi

+ ω̇α. (7.3)

These governing equations feature the mass density of the mixture ρ, the velocity components ui in the
ith coordinate, the static pressure p obtained from the equation of state, the viscous stress tensor τ ji, the
total internal energy E of the mixture, the absolute enthalpy h of the mixture, the heat flux qi due to heat
conduction and molecular diffusion, the partial mass density ρYα of species α, the diffusion flux ji,α of
species α, and the source term ω̇α. Key quantities just discussed are calculated as:
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The above auxiliary equations feature the mixture-averaged dynamic viscosity µ, the mixture-averaged
heat conductivity λ, the total enthalpy hα of species α, the mixture averaged diffusivity Dα of species α,
the correction velocity Vi,c to achieve consistency between partial mass densities and the transported mass
density, the standard enthalpy of formation ∆h0

f,α of species α, and the constant-pressure heat capacity cp,α

of species α.
Thermochemical and transport properties of individual species and chemical reaction rate constants

are calculated using Cantera [187] and tabulated as a function of temperature. For pressure fall-off re-
actions, the rate constants are tabulated also as a function of “effective” concentration [11], computed
as the sum of the products of collision efficiency βα and corresponding concentration [Xα] of all species
considered. The resulting tables are then used by PsiPhi during runtime to reduce the computational cost.
The mixture-averaged viscosity, heat conductivity, and species diffusivities are determined using models
by Wilke [221], Peters and Warnatz [189], and Kee et al. [11], respectively. Species production rates are
evaluated using the tabulated reaction rate constants and the local species concentrations. A Strang [91]
operator-splitting framework, 2nd-order accurate in time, is implemented to treat chemistry and transport
separately. The solution of chemistry is advanced in time by CVODE [191]. For transport, the approx-
imate Riemann solver HR-Slau2 [210] is used for the computation of convective fluxes. The states on
the left and right sides of a numerical cell interface are determined by a 5th-order accurate reconstruc-
tion scheme [211], which reconstructs the local, one-dimensional characteristic variables. The five-point
stencil of the reconstruction scheme is also used to distinguish discontinuities from extrema so that the
accuracy reduces to first order only near discontinuities. One of the disadvantages of using a high-order
scheme with characteristic variables is the occurrence of strong oscillations under some circumstances, for
example when two discontinuities interact [218]. In order to avoid nonphysical solutions, recursive-order
reduction (ROR) is applied [143]. Diffusive fluxes are calculated using the 2nd-order central difference
scheme. The solution of transport is advanced in time by a low-storage, 3rd-order explicit Runge-Kutta
scheme [186].

7.2.2 Numerical setup

Simulated mixtures are stoichiometric hydrogen-oxygen mixtures at 300 K and 15 kPa, with or without
3000 ppm ozone doping, as in the experiment [241]. Detailed reaction kinetics are used for the simu-
lation using the hydrogen sub-model of the Foundational Fuel Chemistry Model Version 1.0 (FFCM-1)
[222, 259] complemented by the Princeton ozone sub-model [260]. Table 7.1 summarizes the key ther-
modynamic and kinetic properties of the simulated mixtures, including the theoretical CJ speed VCJ, the
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XO3 VCJ TCJ Li Lhr τig Ẽa
(ppm) (m/s) (K) (mm) (mm) (µs)
0 2732 3314 0.44 0.43 0.85 4.39
3000 2734 3317 0.25 0.24 0.48 2.92

Table 7.1: Characteristic properties of the simulated hydrogen-oxygen mixtures (300 K and 15 kPa). XO3

is the molar fraction of ozone in the unburned mixture.

ID Nx Lhr/∆x Lx/Lhr CPU
(106) (103h)

EU6O 2.2 24 152 31
NS6O 2.2 24 152 31
EU6 2.2 43 85 35
NS6 2.2 43 85 31
EU24O 8.6 24 152 152
NS24O 8.6 24 152 331
EU24 8.6 43 85 304
NS24 8.6 43 85 331

Table 7.2: Overview of the core simulations performed, using Euler EU) and Navier Stokes (NS) equations
for the 6 mm narrow channel (6) and the 24 mm wide channel (24) with (O) or without ozone added. All
simulations listed use a grid resolution of ∆x = 10 µm.

equilibrium temperature TCJ, the ZND induction length Li, the half-reaction length Lhr, the ignition delay
time τig, and the dimensionless activation energy Ẽa. Based on an assessment following Gamezo et al.
[252], both Ẽa values are considered low, thus regular detonation cellular structures are expected for both
mixtures. Here, the ZND solution is obtained with the CalTech Shock & Detonation Toolbox from Browne
et al. [261] using the thermochemical data of the same reaction model.

Simulations are conducted with the Navier-Stokes (NS) equations (7.1-7.3) and the Euler (EU) equa-
tions (the same equations but removing the shear stress and diffusion terms) in two channel widths: 6 mm
(6) and 24 mm (24), with (O) and without ozone - resulting in a set of eight core simulations, as identi-
fied in table 7.2. A 10 µm grid resolution is used in all of the core simulations. In addition to the core
simulations, four supplementary simulations are performed to examine the impact of grid resolution, con-
vergence, and boundary conditions, as summarized in table 7.3. The first three supplementary simulations
are identical to the core simulation NS24O at 10 µm resolution, except their grid resolutions are changed
to 40, 20, and 5 µm. The final supplementary simulation (NS6-FS-A) uses free-slip and adiabatic boundary
conditions (as in EU6) but with diffusive transport treated in the bulk gas.

The domain length, Lx, is kept at 36 mm for all simulations, which substantially exceeds the require-
ment of Lx/Lhr ≈ 20 for mixtures with dimensionless activation energies of 10, as suggested by Mazaheri
et al. [255]. For comparison, our smallest Lx/Lhr value is 85 in the case of the non-ozonated mixture.

ID Nx ∆x Lhr/∆x Lx/Lhr CPU
(106) (µm) (103h)

NS24O-40 0.5 40 6 152 21
NS24O-20 2.2 20 12 152 83
NS24O-5 35 5 48 152 2,648
NS6-FS-A 2.2 10 43 85 31

Table 7.3: Overview of the supplementary simulations performed.
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Additionally, the grid resolution of the core simulations (∆x = 10 µm) is expected to be sufficient for re-
solving detonation dynamics according to the Lhr/∆ ≥ 25 criterion for a dimensionless activation energy
of Ẽa ≤ 10 [255]. Nevertheless, a detailed grid resolution study will be presented in the next section
considering both kinetic convergence and the convergence of all major macroscopic features.

A Dirichlet boundary condition is applied at the inlet for both transported quantities and pressure, while
the Navier-Stokes Characteristic Boundary Condition (NSCBC) [145] is used at the exit. The NSCBC
advances the full set of conservative variables by replacing the normal derivatives in the Navier-Stokes
equations by characteristic expressions from the local one-dimensional inviscid (LODI) relations, while
solving the transverse derivatives, as well as diffusive terms and source terms in accordance with the
numerical schemes applied in the inner numerical domain. This boundary condition can be set to be either
perfectly non-reflecting or partially reflecting by specifying a far field reference pressure and relaxing
towards this pressure. In this work, a partially reflecting exit is used, where the far field pressure is set
to the value of the equilibrium pressure pCJ, while the amplitude of the incoming waves is computed
by the equation of Rudy and Strikwerda [262] with a model constant of σ = 0.15. This setup allows a
numerical domain that is moved at the theoretical CJ speed relative to the laboratory reference without
wave reflection, if the flow is subsonic at the outlet. A no-slip, isothermal boundary condition is applied
at both the bottom and top of the numerical domain when the Navier-Stokes equations are solved, while
a free-slip, adiabatic boundary condition is used when the Euler equations are solved. Henceforth and
unless otherwise stated, the solutions of Navier-Stokes equations impose no-slip and isothermal boundary
conditions, while the Euler solutions imply free-slip and adiabatic boundary conditions. In all cases,
a slightly inclined planar detonation wave according to the ZND solution is specified to initialize the
simulation. This initial condition is selected to mitigate frequency biasing which could result in initial
condition dependent cell sizing, as seen in previous work by Sharpe and Quirk [251].

Figure 7.2 presents numerical Schlieren images from Euler simulations EU6 and EU24 in the 6 mm and
24 mm channels. The images show the complete numerical domain, where the detonation wave travels
from left to right. Many known features, such as wave fronts and vortices, are captured and resolved.
Also visible is the performance of the non-reflecting exit boundary condition, which does not appear to
introduce any numerical artifacts into the domain.

Computational soot foils are generated by tracking the local maximum pressure for each location
through the simulation. Figure 7.3 presents the full-length soot foil from NS24, illustrating the transi-
tion from the initial inclined 1D detonation wave into a cellular detonation. At first, a wave evolves at the
upper end of the domain as the oblique shocks are reflected off the top wall. This wave rapidly consumes
fuel, as evidenced by the generation of an array of pressures in a broad region. The wave leaves perturba-
tions in its wake, resulting in the formation of additional, weaker waves near the top of the domain. After
the reflection of the initial wave off the bottom, the downwards propagating weaker waves interact with
the reflected wave, thus promoting the initial detonation-wave kernels. Initially, cells of varying sizes start
to develop in the channel until the wave has travelled a distance of about 400 mm, after which a regular
constant-cell-size cellular pattern emerges.

7.3 Results and discussion

The goals of the numerical simulation analysis are threefold: (1) validate simulation results by compar-
ing global cellular features to those from existing experimental measurements, (2) establish the kinetics-
resolved stability mechanism by analyzing the local dynamics of the cell formation process, and (3) quan-
titatively evaluate the effect of chemical kinetics, diffusion, and boundary conditions on the stability mech-
anism and the associated detonation features. This section is divided into three sub-sections that coincide
with the three goals.
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Figure 7.2: Numerical Schlieren images from two-dimensional simulations with channel widths of (a)
6 mm and (b) 24 mm (bottom). The two simulations are EU6 and EU24, respectively. The computational
inlet is located on the right with walls at the top and at the bottom. The detonation wave travels to the
right.
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Figure 7.3: Numerical soot foil from Simulation NS24. The soot foil is broken into four parts with the
right side of the upper image connecting with the left side of the image below.
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Figure 7.4: Numerical soot foils from simulations with (a,b,e,f) ozonated (3000 ppm) and (c,d,g,h) non-
ozonated mixtures in channels with (a,b,c,d) heights of 6 mm and (e,g,f,h) 24 mm. Both Euler and NS
results are presented. The lines represent the traces of triple points.

7.3.1 Global cellular features

We discuss first the general features of the detonation cell structure beyond its initial development for all
eight core simulations. Cellular mode-locking plays a strong role in detonation in confined geometries
[263, 264]. The confinement allows only discrete channel width (w)-over-cell width λ ratios owing to
shock reflections off the walls. Despite the strong mode-locking effect, an inspection of the smoke foils of
figure 7.4 shows universal reduction in cell size from non-ozonated mixture (right column) to the ozonated
mixture (left column) under comparable conditions. The extent of cell-size reduction is in agreement with
the experimental results [241] as will be elaborated later. Subtle differences exist between the Navier-
Stokes and Euler simulations. In particular, comparing EU6 and NS6 (figure 7.4 panel b and d), we see
that in the Euler simulation weak transverse waves are visible in addition to the strong transverse waves
that are present in both EU6 and NS6 simulations. The single, strong transverse wave of the “Zig-Zag”
pattern mirrors that of the single-headed spinning mode observed in three-dimensional detonations near
the detonation limit [265, 266]. Weak transverse waves are also observed in the Euler simulation in the
wider channel (24 mm) whereas such weak waves are absent in NS24. The supplemental simulation
NS6-FS-A soot foil, using free-slip and adiabatic boundary conditions identical to those of EU6, matches
closely that of NS6, as it also yields a simple “Zig-Zag” pattern (not shown here). Hence, the boundary
conditions are not the direct cause of the weak transverse waves in EU6. Rather, the weak transverse
waves are dampened or fully suppressed by viscous dissipation. The extent of such an effect depends on
the reactive mixtures. For example, in ozonated mixtures, the weak transverse waves alternate with strong
transverse waves in the 24 mm channel with and without the viscous transport terms.

The cells computed for the wider 24 mm channel are still mode locked, and hence, they are impacted
by the channel size (figure 7.4h). Nevertheless, the large number of detonation cells available from the
simulation enables a semi-quantitative comparison with experimental measurements of cell width [241]
made in a tube of a comparable size. Figure 7.5 presents the distributions of cell widths, measured from the
experimental and numerical soot foils. In spite of the difference in geometry (a 2D channel in simulations
and a circular tube 32 mm in diameter in experiments), the experimental and simulated cell sizes and
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Figure 7.5: (a,b) Cell width probability density function from 32 mm round tube experiments [241], (c,d)
Euler simulations, and (e,f) Navier-Stokes simulations with (EU24O, NS24O) and without ozone (EU24,
NS24) in 24 mm channels.

their distributions agree well. For the ozonated mixture, cell size distributions between Euler and NS
simulations are close to each other in both the mean values and standard deviations. For comparison,
the average cell widths of the simulations (NS24: 5.03±1.11 mm, EU24: 5.01±0.93 mm) are about 13 %
below the experimental value (5.78±0.94 mm), all with comparable standard deviations.

For the non-ozonated mixture (NS24 and EU24), the mean cell width is smaller in the Euler case
than the NS case (NS24: 9.76±2.05 mm, EU24: 7.93±1.40 mm). This difference is consistent with the
observation of weak transverse wave suppression due to viscous dissipation. The NS simulations show
a generally better agreement with the experimental cell widths. We note that while it is tempting to
conclude that this better agreement is expected because of the inclusion of diffusive physics leading to
a more complete representation of the physical processes in the experiments, we caution that because of
mode locking and the different geometry and size, the comparison shown may be fortuitous and is semi-
quantitative at best. The key takeaway here is that the effect of 3000 PPM ozone doping, leading to the cell
size reduction by about a factor of two as observed experimentally, is well captured by the simulations,
thus suggesting that the overall detonation cellular dynamics is well captured by the simulations.

7.3.2 Cellular stability mechanism

In an earlier work, we proposed a detonation cellular stabilization mechanism whereby the propagation
of detonation waves is controlled by local blast kernels [248], which provides the feedback required to
modulate the cell size for detonations with regular cell sizes. The analysis, however, was subject to a
major assumption: all cell cycles propagate at an average velocity of the CJ velocity. The current work
seeks to generalize this stability mechanism through a validation of this assumption by analyzing the 2D
simulation results.

We precede our analysis by illustrating first the dynamics of the cellular structure in the context of
sequential local blasts. As figure 7.6 shows, a blast kernel is an unburnt post-shock gas pocket immediately
following the collapse of transverse waves from neighboring blasts. The kernel is over compressed; and
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Figure 7.6: (a) A subsection of the soot foil for NS24O with a series of blast kernels labeled by circles and
connected by the line. (b, c, d) Pressure (p), temperature (T ), and hydrogen mass fraction (YH2) snapshots
of a blast kernel. (e, f, g) Cell length (L), normalized average cell velocity (V/VCJ) and blast kernel size
(ri), respectively, along blast kernel line with global averages noted as dashed lines. Lines in (e, f, g) are
drawn to guide the eyes.

the ignition of this kernel is related to the generation of the overdriven wave. In figure 7.6(a), we mark
these kernels by the array of small red circles. Each kernel represents the end of the previous cell and
the birth of a new cell. Figure 7.6 (panel b, c, and d) present the pressure p, temperature T and H2 mass
fraction profiles YH2 around the blast kernel. In principle, the blast kernel marks the point of transition
of the frontal propagation from an underdriven wave in a previous cell cycle to a strongly overdriven
wave in a new cell. The size of the blast kernel ri, labeled in figure 7.6(d), is expected to control the
subsequent propagation dynamics. Plotted in figure 7.6(e), (f) and (g) are the evolution of cell length (L),
normalized cell-average propagation velocity (V/VCJ) and blast kernel size (ri), respectively, for the chain
of detonation cells shown in figure 7.6(a). From this example, it is immediately evident that individual
detonation cells do not propagate at an average velocity equal to the CJ velocity; and hence, the actual
propagation dynamics are more complex than we assumed earlier [248]. Nonetheless, the cell length,
normalized velocity, and kernel size exhibit a clear feedback behavior, as they oscillate close to their
respective stable values.

7.3.2.1 Kernel-driven cellular propagation

In our previous work we showed (using 1D simulations) that larger detonation kernels yield more robust
blasts which, when the average cell velocity is equal to the CJ velocity, yields larger detonation cells.
Given the more complex dynamics evident from figure 7.6, we seek to use the present 2D simulations to
statistically discern the role of detonation kernels on structure.

Figure 7.7(a) shows the velocity decay of a representative blast (from the NS24O simulation) along the
centerline of the detonation cell. The velocity decay is calculated as the temporal derivative of the shock
front position (VP = dRP/dt), where RP is the wave location based on a pressure threshold. Also plotted
is a fitted exponential decay function, which approximates the behavior of the velocity function. The form
of the decay function is:

V(t) = (Vmax − V∞)e−t/τ + V∞, (7.10)
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Figure 7.7: (a) Representative blast velocity profile with fitted exponential decay function, (b) fitted maxi-
mum velocity as a function of kernel size, (c) fitted decay time constant as a function of kernel size, legend
in (c) also applies to (b). Only kernels from the 24 mm simulation are included.

where Vmax is fitted to be an average of the first five points in the velocity profile. V∞ is set to a constant
value (2000 m/s for non-ozone simulations and 2100 m/s for simulations with ozone), which is based on
the stable velocity observed in the average profiles. We set V∞ as a constant value instead of fitting it
similarly to Vmax because many blasts end before a steady state value is achieved due to neighboring blast
dynamics. With Vmax and V∞ determined, τ is fitted with a least-squares minimization.

Shown in figure 7.7(b) is Vmax as a function of blast kernel size for all four core simulations in the
24 mm channel. As shown in the figure, there is little correlation between the blast kernel size and the
maximum overdriven velocity. Additionally, there is no discernible difference in the maximum overdriven
velocity among the four simulations shown. Clearly, the maximum velocity is dictated not by the size
of the blast kernel ri. Rather, the exponential decay time constant, τ, shows a strong dependence on
ri, as seen in figure 7.7(c): increasing ri leads to an increased exponential decay time scale. This result
is, in fact, entirely consistent with results from our earlier work [248], in that larger kernels sustain more
robust blast waves as the shock velocity decay is slower than smaller kernels. The more robust blast waves
resultant from larger kernels lead to, on average, larger and/or faster detonation cells. Figure 7.8(a) and (b)
show the correlations of cell length L and normalized cell averaged velocity V/VCJ with the kernel size,
respectively. Clearly shown in figure 7.8 is the monotonic relationships in spite of the statistical scatter.
Highlighted with larger and more opaque symbols in (a) are cells which propagate within 2% of the CJ
speed, and in (b) cells within 10% of the mean cell length. These cells are highlighted because they are less
influenced by competing effects from other parameters. A large kernel may lead to a faster-than-CJ speed
and mid-sized cell, a moderate speed and large cell, or some combination thereof. Given this evidence, it
is clear that the detonation kernels are useful vehicles for us to analyze and better understand detonation
cellular stability, as we shall discuss in what follows.

7.3.2.2 Cellular stabilization via kernels

Along the line of triple-point collisions (e.g., the red line shown in figure 7.6a), a larger kernel leads to
a smaller kernel in the subsequent cell, and conversely a smaller kernel produces a larger kernel in the
next cell. The chain of eight blasts in figure 7.6(f) clearly shows this phenomenon. Analysis of a large
number of sequential blasts from the present simulations confirms this description. Shown in figure 7.9(a)
is the kernel size evolution from a sequential chain of blasts in the NS24 (blue, top) and the NS24O (red,
bottom), both over a longer simulation duration. Also plotted (dotted lines) are the average kernel sizes.
Evident from the blast chains is the oscillatory behavior of the kernel size about its mean value. Also seen
in figure 7.9(a) are the early transients in the NS simulation where the kernels are substantially smaller
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Figure 7.8: Relationship between kernel size r and detonation cell length L (a) and normalized cell aver-
aged velocity V/VCJ (b). Highlighted as larger and more opaque symbols in (a) are cells which propagate
within 2% of the CJ speed, and in (b) cells within 10% of the mean cell length.

than the average kernel size and grow until they oscillate about the average size.
To confirm the kernel stabilization mechanism, figure 7.9(b) shows the correlations between the differ-

ence of subsequent and incident kernel sizes (ri+1 − ri) as a function of the incident kernel size ri for every
blast in the converged section of the numerical soot foils of NS24 and NS24O. The relative sparsity of the
NS24 data shown is due to the fewer number of detonation cells present in these simulations (as they are
larger). Also shown in figure 7.9(b) is the best-fit to data for each of the simulations. It can be seen that
despite some scatter, ri+1−ri correlate negatively to ri, indicating the feedback mechanism: blasts will tend
toward a stable size and then oscillate around that stable size, as shown by the blast chains in figure 7.9(a).
Furthermore, figure 7.9(b) is broken into four quadrants (divided by the respective vertical lines for each
simulation and the same horizontal line of ri+1 − ri = 0). The upper left and lower right quadrants indicate
a stable phenomenon (kernels moving toward the average), and the upper right and lower left quadrants
indicate an unstable phenomenon. Clearly, a majority of the points lie in the stable quadrants, and those
that are in the unstable quadrants are near the stability boundary.

To further demonstrate the feedback control, we analyze the pressure front along with the chemical
reaction front (as quantified by the temperature) of the incident shock in a cell cycle. Figure 7.10(a)
shows the temporal radial positions of the shock and reaction fronts (RP and RT , respectively) of two
representative blasts in NS24 and NS24O, in addition to a reference position (RCJ) assuming a steady CJ
propagation; note that the CJ velocity between the non-ozone and ozone simulations varies by ∼ 0.1 %,
and so only one line needs to be plotted. The shock front position is defined as the position of the leading
shock, and the reaction front is defined as the position behind the shock which first exceeds 1800 K, a
reasonable proxy for the location of maximum heat release rate in these particular mixtures. It is evident
that both blasts are initially overdriven, as seen by comparing the slopes of the RP lines and the CJ line.
Both blasts transition to be underdriven after approximately one half of the cell cycle. To magnify the
separation dynamics, figure 7.10(b) illustrates the difference of pressure front and temperature front with
respect to the CJ velocity (i.e., RP−RCJ and RP−RCJ) of a sequence of representative blasts from NS24O.
It is seen that the pressure and temperature fronts are strongly coupled during the early stage of the cell
cycle, and they begin to decouple when the blast transitions from overdriven to underdriven propagation.
Also labeled in figure 7.10(b) is the initial kernel size, ri, and two subsequent kernel sizes, ri+1 and ri+2.
In this sequence, the kernel size oscillates between larger and smaller values as expected. Importantly,
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Figure 7.10: (a) Pressure (solid line) and temperature front (dashed line) evolution for two representative
blasts from the NS24 (top, blue) and the NS24O (bottom, red) simulations. (b) Difference of pressure
front (solid line) and temperature front (dashed line) for the representative blast and the subsequent two
blasts from the NS24O simulation with regards to the location RCJ. (c) Pressure and temperature front
separation rate d(RP − RT )/dt as a function of kernel size. The inset shows a representative temporal
separation (RP − RT ) profile with fitted separation rate. Only kernels from the 24 mm simulations are
included.
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the shock and reaction front decoupling dictates the subsequent kernel size. Figure 7.10(b) illustrates the
result of the kernel feedback mechanism on cell-averaged velocity: the first cell propagates slower than
the average simulation speed; it yields a relatively large detonation kernel. The subsequent detonation
cell propagates faster than the average CJ speed, yielding a cell propagation speed close to the CJ speed.
Hence, the modulation of the detonation kernel size is also logically the mechanism by which sequential
detonation cells adjust their speed in order to produce a global average velocity close to the CJ speed.

Given that the shock and reaction front decoupling dictates the kernel size, we analyze the decoupling
rate as a function of kernel size. Figure 7.10(c) shows the average separation rate of the pressure and
temperature fronts along the cell length, d(RP − RT )/dt, after they begin to separate (defined as a gap
larger than 1

2 the ZND induction length of the mixture). Inset on figure 7.10(c) is a temporal separation
evolution for a representative blast. Evident is the nearly linear separation rate, once separation begins.
For the ozonated mixtures, the separation rate is negatively correlated with kernel size: larger kernels
correspond with a slower separation rate. A slow separation rate yields a subsequently smaller kernel. In
the non-ozonated mixtures, the trend is less clear, perhaps due to the sparser number of samples, but its
trend is still consistent with that observed in the ozonated mixtures. Again the current analysis provides
strong support to what was proposed earlier [248], that the shock and reaction separation rate is the key
mechanism that controls the kernel size and hence the cell size and its stability. Without a doubt, the
separation rate is controlled by both chemical kinetics and gas dynamics.

7.3.3 Cellular stability sensitivity

7.3.3.1 Chemical kinetics

Chemical kinetics contribute to macroscopic structural changes in detonations [241]. To illustrate this
point further, we compare the frontal propagation behavior, as first measured experimentally by Dormal
et al. [267], between the ozonated and non-ozonated mixtures. The propagation velocity of the pressure
front (VP = dRP/dt) is ensemble-averaged across all detonation cells in a given simulation. Results of this
averaging from four different simulations are normalized by the CJ velocity and shown in figure 7.11. The
time is also normalized by the average cell cycle time. One standard deviation in the velocity is plotted
as error bars. Within the uncertainty, the velocity decay across the cell cycle is seen to be self-similar
across all four simulations. The self-similarity is rather unexpected: past literature suggests that a change
in reduced activation energy Ẽa results in a different shock velocity profile within a cell cycle [252]. Here,
the addition of ozone yields a 34% reduction in Ẽa but a negligible change in the velocity profile. This
result suggests that Ẽa is not a good predictor of cell velocity dynamics. Nonetheless, the self-similarity in
velocity profiles among simulations enables an examination of the effect of kernel dynamics on structure
in an isolated manner.

Combining the results shown in figures 7.7, 7.10, and 7.11 paint a clear picture of the mechanistic effect
of ozonation and activation energy reduction on detonation cellular structure. The presence of ozone does
not affect the shock front dynamics: with the same sized kernel the pressure front propagates nearly
identically in the ozonated and non-ozonated mixture. This means that gas dynamics and heat release
govern the shock front motion, neither is dependent on the ignition kinetics. Conversely, the separation
rate between the shock and reaction fronts is dictated by the ignition kinetics: faster ignition time scales
correspond with a slower separation of the shock and reaction fronts. And as a result, the blast kernel at
the end of a cell cycle is smaller in the ozonated case as compared to the non-ozonated case. This gap,
ri+1 = RP − RT , constitutes the subsequent blast kernel size. And so, starting with identically sized blast
kernels, the ozonated case results in a smaller subsequent blast kernel as compared to the non-ozonated
case. This leads to the steady state kernels to be smaller in the ozonated case eventually, and hence, denser
and smaller detonation cells.

This detailed physical description explains why ZND induction length correlates with experimentally-
observed detonation cell size: induction length is a reasonable proxy for the separation rate of the shock
and reaction fronts. Furthermore, this physics also shows why a unified linear correlation between deto-
nation cell size and induction length is unattainable: when mixtures change, the gas dynamics and heat
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Figure 7.11: Normalized ensemble-averaged cellular frontal velocity for all EU24 (blue, dashed), EU24O
(red, dashed), NS24 (blue, solid), NS24O red, solid). Error bars show one standard deviation variability
across ensemble averaging.

release change, and thus the shock front propagation dynamics change in addition to just chemical kinetic
rates. With changes to the shock front dynamics, the shock and reaction frontal separation rates would no
longer have an identical effect on detonation cell size.

7.3.3.2 Diffusion and boundary conditions

To understand the effect of diffusive terms and boundary conditions on overall detonation cellular stability
we examine the full set of simulations performed in the present work. Table 7.4 summarizes the stable
kernel size r̄ compared to the average cell width λ̄, as well as the slope m of the best-fit lines for the ri vs.
(ri+1 − ri) stabilization plot (as seen in figure 7.9b) for all eight core simulations. The average kernel sizes
r̄ listed in table 7.4 show several clear trends.

The first is that r̄ drops by approximately a factor of two when using ozone across all conditions. This
is explainable physically because ozone slows the separation rate between the shock and reaction fronts,
which yields a smaller stable kernel size.

The second trend is that the kernel sizes for viscous simulations are larger than their inviscid coun-
terparts. Typically the kernels are larger by about 10%, although notably NS6 features kernels twice as
large as EU6. This enlargement of detonation kernels is hypothesized to be due to (1) viscous effects
retarding ignition, and thus growing the shock-reaction gap, and (2) isothermal and no-slip walls leading
to a change of ignition dynamics near the walls. Similar observations regarding the role of viscous effects
on cell structure, although with somewhat different boundary conditions, were made by Xiao et al. [268].

Thirdly, the ratio between cell size and kernel size λ̄/r̄ is relatively invariant across all simulations,
varying from 7.40 to 9.15. The slope of the kernel stabilization mechanism m can be linked to qualitative
cellular stability. EU6 has the largest slope of all simulations, and is strongly oscillatory between a one-
cell and a half-cell propagation mode (figure 7.4c). Meanwhile, the strongly mode-locked simulations,
EU6O, NS6O, and NS6, have relatively small slopes. In the middle are simulations in the larger channel
which have moderate stability with less influence from the boundaries. Overall, the kernel stabilization
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ID λ̄ r̄ λ/r̄ m
mm mm

EU24 7.93 1.04 7.62 -1.09
EU6 6.58 0.77 8.55 -1.47
NS24 9.76 1.29 7.57 -1.01
NS6 11.91 1.61 7.40 -0.85
EU24O 5.03 0.55 9.15 -1.28
EU6O 3.99 0.51 7.82 -0.77
NS24O 5.01 0.61 8.21 -1.28
NS6O 4.09 0.55 7.44 -1.04

Table 7.4: Key results from cell stability analysis including the stable kernel size r̄, the average cell width
λ̄, the slope m of the best-fit lines to the data clouds for all eight core simulations.

mechanism can explain changes in apparent cell size with respect to mixture and geometry. Note, however,
that our analysis does not preclude an alternative stable kernel size developing, as in the cases observed
by Sharpe and Quirk [251]. Although not observed in the present simulations, it is possible that multiple
stable kernel sizes exist, each of which can have its own corresponding kernel thermodynamic state. This
more detailed stability description, particularly regarding the possible non-uniqueness of cellular structure,
is left to future work.

To investigate the effects of viscosity and boundary conditions on global detonation features, we per-
formed spatial and temporal averaging of key scalars in the domain. Figure 7.12 presents space- and
time-averaged profiles of p, T , and YH2 from NS (dashed lines) and EU (solid lines) simulations for the
ozonated mixture in the two channels and in comparison to the profiles from the ZND solution (dash-
dotted lines). The averaged profiles were computed by first finding the local shock front of each each
point in the y-z plane, and then using the one-dimensional solution behind each local shock front for aver-
aging. The averages are normalized by the frozen post-shock pressure pps, the CJ equilibrium temperature
TCJ, the fresh-gas fuel mass fraction YH2,fg, and the induction length Li, all of which are obtained from
ZND calculations based on the equilibrium CJ speed. In the Euler cases, the downstream temperature
(TCJ) and composition matches that of the ZND solution. The differences observed around the shock front
are likely due to the two-dimensionality of the shock front. In the NS cases, a pressure deficit from the
ZND solution is clearly visible, whereby the pressure deficit is up to 12 % in the 6 mm channel and 5 % in
the 24 mm channel. A temperature deficit is also present in the NS cases, although the deficit is less sig-
nificant in the 24 mm channel compared to the ZND solution. The temperature deficit has a small impact
on fuel consumption, which we use as a measure of detonation wave thickness. The latter is approximated
by the distance between the wave front and the intersection point where the fuel mass fraction reaches
95% of the equilibrium value, YH2,eq:

YH2,95 − YH2,0

YH2,eq − YH2,0
= 95 %. (7.11)

This criterion is shown with horizontal and vertical dashed lines in figure 7.12. The detonation wave
thickness is about two times the ZND thickness, irrespective of the transport equations used (EU and
NS). The increase in thickness is caused by the transient nature of the detonation propagation: as a 2D
detonation transitions from highly overdriven state to substantially underdriven state, the induction time
also changes significantly. After decoupling, the shock and reaction fronts separate appreciably, causing
the wave to thicken, on average, as compared to the ZND solution.

Understanding detonation propagation speed is important for the accurate prediction of detonation
limit behavior. Substantial differences in propagation speed are observed between the inviscid and viscid
simulations. An obvious reason for the differences is momentum and heat losses in the boundary layer.
Thereby, mass accumulates in the boundary layer, which causes an expansion of the core flow [202].
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Figure 7.12: (a,b) Sample-averaged profiles of pressure normalized by the frozen post-shock pressure pps,
(c,d) temperature normalized by the CJ equilibrium temperature TCJ, and (e,f) hydrogen mass fraction
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Figure 7.13: Detonation wave velocities VDW computed by differentiating the cross-width averaged deto-
nation wave front locations. The theoretical CJ speed is indicated by the horizontal dashed lines. Shown
in the plots are results from the Euler simulations (solid lines) and from the Navier-Stokes simulations
(dashed lines), and from a Navier-Stokes simulation with free-slip/adiabatic boundary conditions (dash-
dotted line). Inset in panel (a) shows the dominant amplitudes as obtained from a fast Fourier transform
using the velocity data from EU6O.

Since the flow in the wave frame is initially subsonic, pressure perturbations can propagate toward the
wave front and thus weaken the detonation. Accordingly, the wall-induced losses lead to a velocity deficit
that is absent in the simulations with the free-sliding and adiabatic boundary conditions. In addition to
the boundary layer-induced losses, there is also a geometric coupling between the cell structure and the
confining geometry, particularly in the 6 mm cases, potentially leading to macroscopic changes in velocity.

Figure 7.13 presents the temporal evolution of the detonation propagation speeds, computed as the
time derivative of the location of the detonation wave front averaged across the channel width. The figure
also shows smoothed profiles obtained from a Gaussian filter in time (the filter width is given as the
standard deviation and was set approximately equal to the timescale of the formation of one cell). The
fluctuations in the velocity signal are related to the cell density. The inset in figure 7.13(a) shows the result
of a fast-Fourier transform with a dominant frequency of f = 760 kHz in case EU6O. As expected, the
oscillations of the velocity can be linked to the cellular cycle, with each complete cell cycle featuring two
velocity spikes, the first for the incident kernel explosion, and the second peak corresponding to the two
resultant kernel explosions on the top and bottom vertices of the cell. As such, the detonation cell size
can be approximated by L = 2VDW/ f , where VDW is the average detonation wave velocity. For example,
for EU6O, this results in L = 7.2 mm which is in excellent agreement with the numerical soot foil at
L = 7.3 mm.

Common to all Euler simulations is that the propagation speed is slightly larger than the corresponding
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ID VDW VCJ dh λ 1 − VDW
VCJ

Cm
(

dh
λ

)−1

m/s m/s mm mm [%] [%]
NS6O 2665 2734 12 4.09 (4) 2.49 2.46 (2.40)
NS24O 2722 2734 48 5.01 (4) 0.42 0.75 (0.60)
NS6 2661 2732 12 11.91 (6) 2.59 4.46 (2.23)
NS24 2733 2732 48 9.76 (8) -0.04 0.91 (0.74)
NS6-FS-A 2759 2732 12 11.94 (6) -0.99 4.44 (2.23)

Table 7.5: Propagation speeds VDW, hydraulic diameter dh, cell width λ, normalized velocity deficit 1 −
VDW/VCJ and expected velocity deficit based on correlations Cm (dhλ)−1 for all NS simulations. Values in
brackets indicate cell widths and expected velocity deficits for the next stable configuration. The constants
Cm are mixture dependent, where Cm = 0.0446 is used for hydrogen-oxygen mixtures and Cm = 0.0720
for hydrogen-oxygen mixtures with ozone.

theoretical CJ equilibrium speed, as sometimes observed in hydrogen oxygen mixtures [269]. The Navier-
Stokes simulations, in contrast, typically yield propagation speeds below the theoretical CJ equilibrium
speed. The detonation wave in a 6 mm channel with ozone, for example, propagates at 2665 m/s in the
NS case as compared to the CJ speed of 2734 m/s. In the Euler case, the speed increases to 2756 m/s,
3.3 % higher than the NS case. In the wider channel (24 mm), the increase between Euler and NS cases is
only 1.1 %. The same trend is observed for the non-ozonated mixtures, although notably, the propagation
speed in NS24 is still slightly above the CJ equilibrium value. For the present 2D setups, a direct compar-
ison with the velocity deficits observed in the 32 mm tube experiments is not possible due to the different
hydraulic diameter dh (ratio of wetted perimeter to flow-through-area) between the 2D channel and tube.
The hydraulic diameter for a 3D round tube is dh = d, while the hydraulic diameter for a 2D channel,
considering an infinite width, is dh = 2h, where h is the channel height. To compare the present simula-
tions and experiments, the correlation (1 − VDW/VCJ = Cm λ/d) provided in Shi et al. [265] can be used
to estimate the expected velocity deficit based on the ratio of hydraulic diameter dh to cell width λ. This
correlation is shown to be valid for d/λ > 2/π, the loss-dominated branch, as opposed to the cell-structure
dominated branch. All values of dh/λ in this work are larger than 2/π. Cm is a mixture-dependent constant
and is provided by Shi et al. [265] for the two mixtures considered in the work, with Cm = 0.0446 for sto-
ichiometric hydrogen-oxygen mixtures and Cm = 0.0720 for hydrogen-oxygen mixtures with 3000 ppm
ozone. The propagation speeds, velocity deficits and expected velocity deficits based on the correlation
for the NS simulations are summarized in table 7.5.

The correlation predicted value for the velocity deficit is 2.46 % for the NS6O case and 0.75 % for
the NS24O case. Hence, in the 6 mm channel, the empirically predicted value agrees with that of the
simulation but is somewhat higher than the numerically determined value in the 24 mm channel. The
6 mm case without ozone complicates the interpretation of an appropriate cell size λ in the correlation due
to the effect of strong mode locking. Evident from the comparison between EU6 and NS6, the detonation
appears to be ‘close’ to transition to a one-cell mode. We have thus added, in brackets, the predicted
value for the next stable cellular configuration (i.e., for NS6, one cell across, where λ = 6 mm). For
the NS6 case, the numerically measured value (2.59 %) falls between the empirically predicted half-cell
(4.46 %) and one-cell (2.23 %) configuration. In terms of simulation NS24, we observe a velocity decrease
of 1.03 % by adding viscous terms. The resulting propagation velocity, however, is slightly above the CJ
value and the velocity deficit is thus under predicted. All numerically predicted velocity deficits are within
1% of the predicted values from the experimentally-derived correlation.

To determine if insufficient domain length is leading to small discrepancies in observed versus pre-
dicted velocity deficit, the wave-frame Mach number is analyzed. Figure 7.14 shows sample averaged
contours of Mach number of the ozonated mixture in the 6 mm and 24 mm channel. Note that the Mach
number in the ZND calculations as well as the Mach number evaluated in the 2D simulations are based
on the frozen speed of sound, with the term 1 − M2

f appearing as denominator in the ZND equations for
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Figure 7.14: Sample averaged (approximately 50 samples per case) contour surfaces of frozen Mach
number for simulations NS6 in panel (a) and NS24 in panel (b). Isolines are presented for the frozen
Mach number approached in the ZND calculation (blue, dotted) and for a frozen Mach number of 1 (red).
Note that due to a larger velocity deficit in the small channel and a subsequent shift of detonation wave
location, the post shock region is shortened in the small channel.

detailed chemistry [269]. Consequently, if the CJ speed from the equilibrium solution is used as the input
shock speed in the ZND calculations, the Mach number will asymptotically approach a Mach number
smaller than 1, with M f ,∞ = 0.95 for the present mixture with and without ozone using FFCM-1. Isolines
of Mach number are drawn for the value of M = 0.95 (blue, dotted) and for a Mach number of 1 (red,
solid). We note that using the frozen sound speed, as opposed to the equilibrium sound speed, represents
the upper limit of pressure wave propagation speed [269, 270]. It is evident that the post shock flow in
the 6 mm channel quickly approaches a Mach number of 1 in the wave frame, which is typically denoted
as the sonic locus. The sonic locus divides the post flow region into a subsonic region in which the char-
acteristics C+ and C− point in opposite directions and a supersonic region where the characteristics point
in the same direction. As has been outlined by Kasimov and Stewart [271], the supersonic region has no
effect on the detonation wave, suggesting that the region able to weaken the detonation wave has been
fully resolved in the numerical domain of the 6 mm configurations. This explains the satisfactory agree-
ment between experimental correlations and numerically derived velocity deficit. In the 24 mm channels
on the other hand, pockets of supersonic flow are present, while the averaged Mach number on the outlet
boundary is still subsonic (N2S24: 0.975, NS24O: 0.982). We thus speculate that the somewhat smaller
velocity deficit as compared to experiment in the 24 mm channels could be due to an insufficient domain
length.

In order to analyze the effect of viscous terms, isolated from boundary layer losses, an additional viscid
simulation of the mixture without ozone, denoted NS6-FS-A, was conducted in the 6 mm channel but with
free-slip and adiabatic boundary conditions. It can be seen in figure 7.13(c) that the filtered velocity of
NS6-FS-A converges towards the same value observed in the Euler simulation EU6. At the same time,
however, the mode locked cell size equals that of the viscid simulation NS6 with half a cell size across
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Figure 7.15: Numerical soot foil from Simulation NS6-FS-A. The soot foil is broken into four parts with
the right side of the upper image connecting with the left side of the image below.

the channel height, as presented in figure 7.15. This finding is interesting, as velocity deficit and cell
enlargement are usually linked [268]. Yet, in this case, cell enlargement is observed without the presence
of a global velocity deficit. We conclude that a) local viscous effects, i.e., diffusion of momentum and
heat as well as conversion of kinetic energy into heat, can also lead to a change in induction time and,
as a consequence, cell enlargement and b) cell enlargement in absence of boundary layer losses does
not impact propagation speed in this case. This observation does not necessarily contradict previous
observations, where the simulations did not independently vary local viscous effects and boundary layer
losses.

To visualize the magnitude of local viscous effects, we have conducted a budget analysis of each
viscous simulation. Six individual terms are investigated for this analysis, and are denoted by Ti:

T1 =
∂ρuui

∂xi
, T2 = −

∂p
∂x
, T3 =

∂τ1i

∂xi
,

T4 =
∂ρhui

∂xi
, T5 =

∂τ jiu j

∂xi
, T6 =

∂

∂xi

(
λ
∂T
∂xi

)
.

T1, T2, and T3 capture the rate of change of axial momentum from convection, pressure, and diffusion,
respectively. T4, T5, and T6 are terms determining the rate of change of total internal energy due to con-
vection, dissipation, and heat conduction, respectively. Figure 7.16 presents the fields present in the Euler
equations (T1 +T2 for momentum, T4 for energy) in the left column. The middle column is terms present
only in the Navier-Stokes equations (T3 for momentum, T5 + T6 for energy), and the right column is the
ratio between the second and first columns. In figure 7.16, the top row plots terms from the momentum
equation, and the bottom row plots terms from the energy equation. As expected at high Mach numbers,
the flow is dominated by convection and pressure gradients with amplitudes that are two orders of mag-
nitude above those of the viscous contributions. There are regions, however, where the magnitudes are
similar, indicating the local viscous contributions are comparable to the convective contributions. These
viscous contributions are suspected to cause cell enlargement in simulation NS6-FS-A. High magnitudes
of viscous terms are generally observed in proximity to strong waves, pronounced vortices and, as ex-
pected, in the boundary layer. Note that only the bottom part of the channel is plotted, and so the boundary
layer is visible only on the bottom of the plots. To isolate the mean effect that the boundary layer has on
the flow, the main loss terms (T3,T6) have been volume-integrated (1/∆x

∫
V TidV,V = H ∆x 1m) in each

slice normal to axial direction and averaged in time. According to the Gauß divergence theorem, the result
of volume integrated divergence equals that of integrating the fluxes over the closed surface of the volume.
Since the normal gradients in the axial direction are small compared to the normal gradients adjacent to
the wall, the integration is expected to reveal the impact of the boundary layer. The resulting profiles are
presented in figure 7.17. It can be seen that the averaged effects of the loss terms are identical among
all NS simulations. We thus hypothesize that the observed losses are neither influenced by the channel
width nor by the detonation structure, e.g., cell size and cell density, supporting the previous assumption
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Figure 7.17: (a) Cross-width integrated values of tangential stresses (T3), (b) cross-width integrated values
of thermal conduction (T6), and (c) volume integrated values of both terms, normalized by the change of
momentum flux and enthalpy flux respectively. Functions of type a|x|−1/5 + b and a|x|−1/2 + b are fitted,
using data in the range xs = [−18,−12] mm.

of the loss based regime reported in Shi et al. [265]. Here, xs is the averaged location behind the shock
wave. Data points that are close to the shock front (|xs| < 1.5 mm) were excluded from the analysis due to
large noise in the averaged profiles. Analytical solutions for laminar and turbulent boundary layers behind
shock waves moving into stationary fluid have been added and were obtained by Mirels [272], who solved
the Blasius boundary-layer equations in a frame fixed to the shock wave for a laminar boundary layer
using integral methods and expressions for skin friction in a shock-fixed frame for a turbulent boundary
layer. The theoretical laminar boundary-layer height is proportional to the square root of shock distance
x, while the turbulent boundary layer height is proportional to the fifth root of x. The wall-heat flux and
wall friction are anti proportional to distance x with the same exponent. Functions of type a|x|−1/2 + b
and a|x|−1/5 + b are fitted to both the friction term (T3) and to the heat conduction term (T6), as presented
in figure 7.17. Clearly visible is the excellent agreement of the fitted laminar boundary layer function for
both the friction and heat conduction terms. It must be noted that turbulence is intrinsically different in
2D and 3D flows. Therefore, agreement with the turbulent boundary profiles should not be expected, but
instead deviations from the laminar function fit once transition is happening. Nonetheless, the present
results indicate that the mean effect of the loss terms can be related to the evolution of a laminar boundary
layer in the simulations.

The observation of a laminar boundary layer with no evidence of boundary layer transition may be
surprising given the high velocity and pressure. Apart from the obvious explanation to relate this circum-
stance to the known dissipative nature of upwind schemes, there is also experimental evidence to put the
results into context. Hartunian et al. [273] measured boundary layer transition behind shock waves and
found that the Reynolds number Retr, at which boundary layer transition occurs, is initially constant for
weak to medium strength shocks. However, once the shock waves approach a strength with temperature
ratios of T1/T2 ≈ 0.5, the transition Reynolds number starts to increase significantly. The authors at-
tributed this behavior to high wall heat fluxes, which would stabilize the laminar boundary layer. For a
shock wave with identical propagation speed to the detonation wave studied here, the transition distance
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behind the wave front can be estimated using the relations presented in the paper (see appendix 7.9). Ac-
cordingly, the transition distance is between 29 mm and 44 mm and thus near the outlet or even outside
the numerical domain. Because the mentioned transition Reynolds number is strictly valid only for shock
waves, this finding can only be used as an estimate and boundary layer transition behind detonation waves
is left to future work.

To show that the determined mean effect of the loss terms is large enough to explain a reduction in
propagation speed, figure 7.17(c) presents the loss terms integrated over the entire domain and normalized
by the change of momentum flux ṁ∆u and sensible enthalpy flux ṁ∆hs obtained from the ZND equilibrium
solution. Because the mass flux ṁ is 4 times larger in the 24 mm channel and since the integrated loss terms
are similar for all channel heights, the normalized losses between simulations in 24 mm and 6 mm channels
deviate approximately by a factor of 4, as expected. The difference observed between the channel widths is
of similar magnitude to the observed differences in propagation speed. Furthermore, this analysis confirms
the observation from the simulation with the Navier-Stokes equations with the free-slip and adiabatic walls
(NS6-FS-A): a nearly identical velocity behavior from NS6-FS-A and EU6 shows that the velocity deficit
behavior is due to the boundary layer.

7.4 Conclusion

A detonation cell stability mechanism was studied in detail using 2D numerical simulations. Simulations
of propagating detonations in channels (6 mm and 24 mm in width) were performed using detailed chem-
istry and both Euler and Navier-Stokes formulations. Stoichiometric hydrogen-oxygen mixtures with and
without ozone doping (3000 PPM) were tested. The following conclusions were drawn:

1) Numerical soot foils confirm the experimental observation that ozone reduces the characteristic cell
size of detonation structure. The reduction stems from the reduced separation rate between shock and
reaction fronts of a local blast, leading to a smaller blast kernel size thus smaller cell size. Simulated cell
size distributions agree well with the experimental data, in spite of the difference between simulation and
experiment in the geometries in which detonations propagate.

2) We confirm that the blast kernel and its size at the end of a detonation cell cycle controls the growth
of the shock/reaction gap in the next cycle, which ultimately determines the blast kernel size for a new
blast. We show that the kernel size dictates the propagation characteristics of the resultant new blast. Each
mixture has a unique stable point it tends to, resulting in a characteristic cell size for that mixture. The
stable point is controlled strongly by ignition kinetics (highlighted by the difference between ozonated
and non-ozonated mixtures), and weakly by diffusion terms (shown by the increase in stable kernel size
for NS simulations vs Euler simulations).

3) The viscous terms in the Navier-Stokes simulations have a minor impact on the blast dynamics and
thus the cellular structure: Consistently among all cases, smaller stable kernel sizes establish in the Euler
simulations, which typically translates into smaller detonation cell sizes unless geometric mode locking
prevents such a solution. In the 6 mm channel without ozone, the diffusion terms increase the cell size by
nearly a factor of 2, in the 24 mm channel without ozone, the diffusion terms increase the cell size by 25%.
No such increase in cell size was observed in the ozonated mixtures. Cell enlargement was also observed
in absence of a velocity deficit, presumably due to local effects from viscous terms.

4) In the Navier-Stokes simulations, a drop in propagation speed was observed (compared to Euler
simulations), specifically in the narrow channel. This velocity deficit is conclusively shown to be due to
the development of a laminar boundary layer.

Lastly, we caution, however, that the 2D simulations conducted here neglect the role of transverse
waves in the third dimension of any real detonation waves, that are shown to modify the resultant cellular
structure [274] and thermodynamic state and resultant cellular velocity within detonation cells [8].

All conclusions in this work are shown to be grid independent.
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7.5 Grid resolution study

Simulation of highly-compressible reacting flows is often particularly sensitive to grid resolution. To
confirm that the core simulations are satisfactorily converged, additional viscid simulations of the ozonated
case in the 24 mm channel are performed at ∆x = 40, 20, and 5 µm. The ozone case was chosen due to
its smaller characteristic length scales, therefore being the more demanding case of the two mixtures
considered in this work.

7.5.1 Cell sizes

Numerical soot foils of NS24O and the supplementary simulations at the other three resolutions are pre-
sented in figure 7.18, together with the statistical distribution of the cell widths. Cell width λ is measured
for every complete cell in the converged portion of the soot foil using an automated script (details of the
algorithmic approach are presented in appendix 7.8). Also plotted is the distribution of experimental cell
size measurements [241] for direct comparison.

In contrast to previous grid studies for mixtures with highly irregular detonation cell structures [257],
the impact of grid resolution on cell size is less distinct in our work; there is no statistical difference in
the computed cell sizes over the range of the numerical resolutions studied. As shown in figure 7.18, the
mean cell sizes are 5.18±1.08 mm, 4.48±0.74 mm, 5.01±0.93 mm and 5.02±0.88 mm for 40, 20, 10, and
5 µm resolutions. Qualitatively, the cell shape appears somewhat different in the 40 µm simulation, with
triple point paths lighter in color (i.e., lower pressure) and less curved, while there is no discernible dif-
ferences among the other three simulations. Within the range of grid resolution tested, other macroscopic
properties, including kernel stabilization (cf. section 7.3.2) and velocity deficit (section 7.3.3), are shown
to be also grid independent in appendix 7.6.

7.5.2 Heat release rates and species concentrations

To provide a quantitative estimate of the effect of finite resolution simulations on local heat release rates,
we evaluated the inaccuracy when approximating Arrhenius kinetics with discrete computational cells
over a domain with continuous gradients. The kinetic error for a given computational cell is estimated
by calculating the net production rate of each species as well as the heat release rate, and comparing
them with the respective rates from a group of sub-cells corresponding to the original cell with a ten-fold
increase in resolution. To determine the thermodynamic states and composition for the sub-cells with the
increased resolution, a linear interpolation is performed based on the immediately adjacent computational
cells. This is equivalent to applying a Large Eddy Simulation (LES) sub grid model with an assumed top
hat filtered density function (FDF), as proposed by [275], and testing if the sub grid model still has an
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Figure 7.18: Grid resolution study showing converged numerical soot foils and cell-size distributions for
grids of (a) 40, (b) 20, (c) 10, (d) 5 µm resolution. The simulation parameters are those of case NS24O.
The cell width λ computed for each case is shown as the mean value averaged over N cells and its one
standard deviation.

effect on the results. The normalized absolute deviation of the source term ω̇ (either species production
or heat release rate) computed on the original grid and the sum of the source terms ω̇i computed on the
interpolated grid is then used as an error measure ε:

ε =

∣∣∣∣∣∣∣∣ ω̇ −
1

nD

∑nD

i=1 ω̇i

ω̇

∣∣∣∣∣∣∣∣
This equation considers the number n of sub cells in each of D dimensions, with D = 2 and n set to 10
for the present work. It is important to note that this method will likely predict relatively large errors
for computational cells at shock fronts due to large gradients. Because the characteristic length scales
associated with shocks are much smaller than the grid scale (i.e., `shock � ∆x), a linear interpolation
inside a cell with a shock is physically under resolved. This inevitable inaccuracy is considered when
analyzing the results.

To account for computational cells of different states within the entire domain, we used a Monte Carlo
sampling method to calculate the errors of heat release rates in 10 000 randomly chosen cells within a
single temporal snapshot. The distribution of these errors is shown in figure 7.19 in 1% increment. The
inset of figure 7.19 panel (c) shows the H2 consumption rate error distribution at ∆x = 10 µm also in 1%
increment. At ∆x = 40 µm, the heat release rate error is already insignificant, with over 60 % of the cells
showing less than 1 % error. In comparison, at 10 µm resolution, over 80 % of cells show less than 1 %
error in heat release rate; and the error in H2 consumption rates is similar to that of the heat release rate,
as expected. The inset of figure 7.19 panel (d) shows the fraction of cells with heat release rate errors ¿
5 % for each grid resolution. Large errors occur primarily in shock-containing computational cells. For
a well-converged simulation, however, the number of cells with large errors decreases by approximately
one half as grid resolution doubles. In the 10 µm simulation, 3 % of cells contain errors greater than 5 %,
while in the 5 µm simulation, 1.3 % of cells contain such errors, both showing a reasonable convergence
behavior. Importantly, the uncertainty of the reaction model employed is around 5% in the laminar flame
speed and 10-20% in ignition delay times [259]. Hence, the errors introduced by the finite resolution are
at least comparable to or smaller than the reaction model uncertainty.
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Figure 7.19: Distributions of error in heat release rate from Monte Carlo sampling (n = 10 000) of
computational cells at the four grid resolutions (a) 40 µm (NS24O-40), (b) 20 µm (NS24O-20), (c) 10 µm
(NS24O), (d) 5 µm (NS24O-5). Insets in panel (c) and panel (d) are the error distributions of the H2
consumption rate and the fraction (in %) of cells with heat release rate errors larger than 5% as a function
of grid resolution, respectively.
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Figure 7.20: Time-averaged distributions of free radical intermediates (H, OH and HO2) in p − T space,
whereby the first row shows the results at the coarsest grid resolution of 40 µm, while the fourth row shows
the results for the finest grid resolution tested (5 µm). The last row presents isolines at values of 0.1 and
0.8.
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Convergence of the chemical species concentrations is examined next by comparing computed inter-
mediate species mass fractions. The highly non-linear dependence of reaction rates on temperature and
compositions renders this convergence criterion more stringent than that of heat release rates. Specifi-
cally, mass fractions of selected intermediate species are sampled as a function of the local temperature
and pressure. Samples are taken in a region behind the shock-wave front that excludes the boundary
layer, and from 25 snapshots among all available time steps. Figure 7.20 presents the sample-averaged
distributions of the mass fractions of YH, YOH, and YHO2 from 1000-3200 K and 2-10 bar. In each panel,
the white dashed line illustrates the relation of the frozen post-shock pressure and post-shock temperature
over a range of Mach numbers of a normal shock. The grey solid line illustrates the evolution of pressure
and temperature from the ZND solution; its top endpoint corresponds to the equilibrium (CJ) condition of
the reactive mixture. With these dividing lines, the solution can be classified roughly into three regions
(labeled in the top left panel). Region I is dominated by fluid samples that are compressed by underdriven
waves. Region II is dominated by fluid samples compressed by overdriven waves. Region III features high
pressures with temperatures below the corresponding post-shock values; the states in this region are likely
to stem from fluid samples that are compressed by two (or more) weaker shocks (e.g., underdriven deto-
nation waves and/or transverse waves) instead of one strong shock. For atomic hydrogen, distributions in
region I are similar at all grid resolutions. The distributions in regions II and III from the finer resolutions
(10 µm and 5 µm) are similar to each other, but differ notably from those of the coarser resolutions (20 µm
and 40 µm). The agreement between the distributions at grid resolutions of 10 µm and 5 µm is particularly
well demonstrated in the last row of figure 7.20, which presents the isolines at mass fractions of 0.1 and
0.8 for all species considered. For the two finer grids the isolines match closely for all four species and
in all three regions, while the isolines for the two coarser grids deviate notably from those of finer grids
even in region I. This is most noticeable for the HO2 radical. Nevertheless, the analysis just presented
provides a reasonably support for achieving grid convergence at ∆x = 10 µm resolution; the results from
∆x = 10 µm agree very well with those of 5 µm.

7.6 Invariance of conclusions based on grid resolution

To ensure that the conclusions of this work are unaffected by grid resolution, the major post-processing
tasks are repeated for three grid resolutions: 20, 10, and 5 µm for the NS24O case. Already shown in the
main text in figure 7.18 is the comparison of the soot foils for different grid resolutions. There is little or
no quantitative or qualitative difference in the cellular structure between the 20, 10, and 5 µm simulations.

The blast kernel dynamics conclusions are also unaffected by grid resolution. Figure 7.21(a) shows the
statistical description of the stabilizing mechanism for the three numerical resolutions (mirroring figure 7.9
a). Evident is that the stabilizing mechanism is present at all grid resolutions, and shows similar slopes.
The blast propagation decay behavior as a function of numerical resolution is shown in figure 7.21(a)
(mirroring figure 7.7 c) as the dependence between kernel size, r, and exponential decay constant, τ.
Evident is that the 5 and 10 µm simulations display nearly identical behavior, showing that the 10 µm
simulation is well converged. The 20 µm simulation show slightly different behavior, where the values of
τ are slightly lower than the other simulations for the same kernel size, but the overall trend is the same.
The final quantity analyzed for all three grid resolutions are the pressure and temperature front separation
rates (d(RP−Rt)/dt) as a function of kernel size. All three simulations appear to display similar behaviors,
with separation rate inversely proportional to kernel size, again showing excellent convergence.

The propagation velocity behavior for the three grid resolutions is shown in figure 7.22(a). All three
simulations show nearly identical initial transients, and the steady velocity among the three simulations is
within 0.5 %. The 5 and 10 µm simulations have particularly close propagation velocities, showing that
stable propagation velocity is well-converged in these simulations.

The average pressure behind the shock is also analyzed for each of the three simulations shown in
figure 7.22(b). The nearly identical profiles again indicate excellent convergence.

The grid resolution requirements to resolve boundary layer are particularly high. Figure 7.23 presents
the loss term analysis, in the same format as figure 7.17 in section 7.3.3, for the 40, 20, 10, and 5 µm
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Figure 7.23: (a) Cross-width integrated values of tangential stresses (T3), (b) cross-width integrated values
of thermal conduction (T6), and (c) volume-integrated values of both terms, normalized by the change of
momentum flux and enthalpy flux respectively at different grid resolutions.

simulations. While the results of the integrated loss term for momentum in panel (a) from the 20, 10,
and 5 µm simulations agree at some distance from the wave front, large discrepancies are observed for the
40 µm simulation, suggesting that the boundary layer is not captured. Similar conclusions are made for
the cross-width integrated loss term of energy in panel (b), although deviations are observed for the 20 µm
simulation. The excellent agreement between the 5 µm and 10 µm simulations show that the boundary
layer conclusions are not affected by the resolution, once a sufficient resolution is reached.

All macroscopic properties analyzed show that the 10 µm simulation is well-converged, and further-
more that the conclusions made in this work are insensitive to numerical resolution.

7.7 Sensitivity to kinetic mechanism

Several kinetic mechanisms for modeling the finite-rate kinetics of hydrogen combustion exist. Recently
developed mechanisms include Konnov’s of Lund University [276], HP-MECH [277], the UCSD mech-
anism [278], and the Foundational Fuel Chemistry Model Version 1.0 (FFCM-1) [222, 259] used in this
work. To understand the sensitivity of the results to the given kinetic mechanism, ZND calculations are
performed with each of the four mechanisms listed above. The resultant ZND temperature and pres-
sure profiles are plotted in Figure 7.24. While not identical, calculated induction lengths from the four
mechanisms are within 11% of one another, which is within the typical 2 sigma experimental uncertainty
of combustion measurements (e.g., shock tube ignition delay time) constraining the mechanisms [279].
FFCM-1 was chosen because the reaction model was subject to a rigorous optimization and uncertainty
minimization analysis against a wide range of data (see, [222]). No other available model has gone through
that level of quantitative scrutiny.
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Figure 7.24: Computed ZND profiles for FFCM1, Lund mechanism (Konnov), HP-MECH, and the
UCSD Mech. Plotted is temperature (left) and pressure (right) as a function of position behind the shock
wave. Conditions are stoichiometric hydrogen-oxygen at 15 kPa initial pressure (same conditions as non-
ozonated simulations). Legend applies to both figures.

7.8 Kernel post-processing

Extracting statistics from individual detonation cells and ignition kernels requires extensive post-processing.
The first step in this post-processing is calculating the numerical soot foil, as described in section 6.2. The
locations of individual blast kernels are then approximated from the soot foil by finding regions of local
maxima, exceeding 8 bar in pressure, in the soot foil. The local maxima correspond to the highest pressure
zone in a single cell cycle, and typically is close to the location of the blast kernel initiation. After this
automated step, the soot foil, with the local maxima superimposed, is manually inspected to ensure accu-
racy of the algorithm. A soot foil will typically have 0-10 errors for kernel locations which are manually
removed. Note that this process does not exclude somewhat fainter ignition kernels, like those found in
the EU24 and EU24O simulations (see Figure 4).

Once the approximate locations of kernels are determined (their locations called pa), then the exact
locations of the kernels are found. This is achieved by loading 10 frames prior to the approximate kernel
location and time, and searching for a condition where a large pressure rise occurs (found to perform well
as 60 times the initial pressure, p0) directly behind the shock wave. This pressure rise corresponds to two
Mach stems colliding, and indicates the start of the collapse of the transverse waves. The point at which
this occurs is defined to be the end of the cell cycle, and one end of the blast kernel, and we shall call this
point pr. The other end of the blast kernel is found to be the maximum Euclidean distance between pr and
the isoline of YH2 = 0.04 (corresponding to burned gas) within 15-degrees with respect to the x-direction.
Snapshots of the regions around the approximate kernel location (pa) and the exact kernel locations, pr

and p`, are shown in figure 7.21. The Euclidean distance between points pr and p` is the kernel size r.
We note that calculating the area of the kernel as opposed to the Euclidean distance between the front
and back of the kernel does not impact the overall conclusions of the work. The kernel size is chosen for
consistency with past work [248].

To determine the cell width, as shown in figures 7.5 and 7.18, the set of all points pr in the domain is
analyzed. For every point pr,i, the nearest neighboring point pr,i, j is calculated, conditioned that the angle
between pr,i and pr,i, j is less than 30 degrees in the y-direction, and conditioned that the x-position of
pr,i, j is greater than that of pr. The resultant cell widths are then superimposed on a numerical soot foil,
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Figure 7.25: Top row: pressure, temperature, and hydrogen mass fraction of the approximate kernel
location as determined from soot foil local maxima analysis from representative kernel, with approximate
kernel location, pa, labeled. Bottom row: exact kernel location with left (p`) and right (pr) kernel points
labeled on the hydrogen mass fraction plot. Also superimposed on both YH2 plots is the location of the
shock front.

and verified manually.
To determine the velocity distribution of individual cells, which are used to determine the quantities

displayed in figures 7.7-7.10, a line is drawn from pr,i to the subsequent kernel, pr,i+1, defined as `i. The
intersection point, defined as pint,i between the shock front and the line `i is found for every time step. The
temporal radial position of the blast wave is then the distance between pr,i and pint,i. An identical process
is performed with the temperature front to determine the temperature front radial position.

7.9 Boundary layer transition distance

The definitions and syntax of Hartunian et al. [273] are used in the following. The transition Reynolds
number Retr is a function of the wall temperature Tw (equal to the temperature of the quiescent gas) and
the temperature of the compressed gas Te (external in reference to the gas within the boundary layer). The
ratio of these temperatures in the present case equals Tw/Te = 1667/300 = 0.18, which corresponds to a
transition Reynolds number of Re = 2 000 000 to 3 000 000. The length scale chosen to characterize
the Reynolds number is that of the distance a particle travels from its initial position until it reaches the
transition location L = (Us − Ue)/Ue Usttr in reference to flow over a flat plate. Here, Us is the shock
speed (in our case equal to the detonation wave speed) and Ue denotes the speed of the compressed gas
in wave coordinates, while ttr represents the time that passes until the onset of turbulence is measured at
a fixed location. The kinematic viscosity νe is based on the state of the compressed gas. Accordingly, the
value of transition time can be determined to ttr = 10.61 µs to 15.92 µs. During that time, the shock wave
travels a distance xtr = Usttr = 28.97 mm to 43.46 mm.
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Abstract

Three-dimensional (3D) detonation simulations solving the compressible Navier-Stokes equations with
detailed chemistry are performed in both square channel and round tube geometries. The simulations
are compared with each other and with two-dimensional (2D) channel simulations and round tube exper-
iments of identical mixture and conditions (stoichiometric hydrogen-oxygen with 3000 PPMv ozone at
300 K and 15 kPa) with the goal of understanding the effect of confinement and boundaries on detona-
tion structure. Results show that 3D detonations propagate with highly inhomogeneous blast dynamics,
where blasts emerge not only from intersections of two transverse waves (similar to 2D propagation) but
also from intersections of many transverse waves (unique to 3D detonations in the confinements tested).
Intersections of many transverse waves lead to extreme thermodynamic states and highly overdriven wave
velocities, well in excess of those seen in the ZND model and in 2D simulations. 3D simulations in the
square tube show highly regular blast latticing, smaller detonation cells, and highly oscillatory velocities
when compared to the round tube simulations. Round tube simulations show more spatially non-uniform
blast dynamics. The conclusions reached in the current work are found irrespective of numerical grid
resolution.
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8.1 Introduction

Developing a better description of realistic multi-dimensional detonations hinges on understanding their
structural features. Multi-dimensional detonations exhibit a characteristic cellular structure that results
from the interaction of Mach stems, incident shocks, and transverse shocks [227, 281]. As one of the
most measured and observed features of detonations, detonation cells appear to correlate with a variety
of propagation properties [282] including deflagration to detonation transition (DDT) length [283, 284],
critical diameter [285], and detonation limits [286, 287].

It is well-known that detonation confinement has a strong influence on its propagation characteris-
tics. Indeed, if a geometry is substantially smaller than the characteristic cell size, detonations fail [288].
But confinement, or lack thereof, can also influence the cellular structure itself: partially unconfined det-
onations exhibit a cellular structure qualitatively different from those propagating in channels or tubes
[289]. Detonations of practical interest (i.e., those in engines, accident scenarios, etc.) propagate in a
wide variety of geometries, including unconfined spaces, but more often tubes and channels of various
types [290, 291]. Therefore, understanding how detonation structure responds to various confinements is
of both fundamental and practical significance.

Most experimental work observing detonation cellular structure relies on bulk, 2D representations of
the structure as measured on tube walls or in thin channels (i.e., soot foils or optical diagnostics), or, oc-
casionally, as measured head-on. Meanwhile, computational studies are typically limited to 2D studies
of detonation, or 3D simulations in small, simple domains due to the high simulation cost along with the
challenge in post-processing large 3D simulations [227]. The most complete description, from both exper-
iments and simulations, of 3D cellular propagation in literature exists for rectangular channels [292–301],
which generally describe a highly regular structure with rectangular or diagonal shocks strongly coupled
to the confining geometry. Some time-resolved 3D simulations also exist for tube geometries, primarily in
spinning, near-spinning, or strongly geometry-locked modalities [302–305]. More time-resolved 3D mea-
surements, with detailed quantification, of detonation propagation in various types of confinements are
needed to develop a comprehensive understanding of how 3D detonation structures evolve. More specifi-
cally, head-on and soot foil measurements of detonation propagation in round tube geometries suggests a
substantially different propagation mode compared to the propagation in rectangular geometries, but little
information exists on the details or implications of these differences [306].

This study aims to better understand and quantify detonation structural response to confinement by
performing side-by-side 3D detonation simulations with two different geometries commonly used in ex-
periments: square channels and round tubes, as well as a 2D companion simulation in a channel. We will
also contrast the 2D and 3D results from this study to experimental results in tubes. The aims of this work
are then (1) to build an improved understanding of the 3D cellular propagation mechanism, and in doing
so, to understand how this differs from the well-developed description from 2D studies (as described, for
example, in [307, 308]), and (2) to describe how the 3D propagation is affected by confinement. We ex-
amine, in particular, the velocity evolution and the thermodynamic states encountered in blast waves in
3D simulations with varying confinement and contrast the results to 2D simulations. Quantifying maxi-
mum pressure and temperature has important implications for future modeling in terms of predicting real
gas effects [309, 310], the role of vibrational relaxation on detonation structure [311, 312], and the ap-
plicability of chemical kinetic models [222]. Understanding the range of thermodynamic states also has
important implications for heat transfer rates [313] and material requirements [314] for real devices. This
work relies on well-resolved 3D cellular detonation simulations. Specifically, we solve the compressible
Navier-Stokes equations with detailed chemistry (shown to be important by Taylor [250]) with isother-
mal and no-slip boundary conditions to provide the highest fidelity simulations possible. The mixture
simulated is stoichiometric hydrogen-oxygen at 300 K and 15 kPa, with 3000 PPMv ozone doping. This
mixture is chosen because it has been experimentally studied in some detail [315] and it has a relatively
stable cellular structure.
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8.2 Numerical solver and setup

The simulations are performed with the in-house code PsiPhi [6, 183] that solves the fully compressible
set of conservation equations for mass, momentum, total internal energy, and partial densities. The equa-
tions are discretized on an equidistant Cartesian grid utilizing the Finite Volume Method. An approximate
Riemann solver computes convective fluxes at cell interfaces with the aid of a monotonicity preserving
reconstruction scheme featuring a theoretical accuracy of 5th order, while a 2nd order central difference
scheme is used for diffusive fluxes. A Strang Operator Splitting framework allows an explicit time inte-
gration of convection and diffusion with a 3rd order accurate Runge-Kutta scheme, and an implicit time
integration of chemical kinetics using CVODE. Sub-filter dynamics are modeled with an eddy viscos-
ity/diffusivity approach. The filtered chemical source term is computed based on the resolved fields of
pressure and mass fractions with a presumed tophat PDF [76] of temperature for the purely temperature
dependent reaction rate constants to account for non-linear behavior similar to the approach given in [72].
More details of the solver can be found in [6, 183].

Figure 8.1: Isometric snapshots of the 3D square channel simulation (a) and the 3D round tube simulation
(b) at the 20 µm grid resolution. Both are taken from the well-converged portions of the simulations.
Plotted is pressure pseudocolor; the colorbar applies to both figures. Mixture and conditions of both
simulations are stoichiometric hydrogen-oxygen with 3000 PPMv ozone additive at 15 kPa initial pressure.

The chemical kinetics model used is the hydrogen sub-model of the Foundational Fuel Chemistry
Model Version 1.0 (FFCM-1) [222, 259] with the Princeton ozone model [260]. Two 3D geometries are
considered: a square channel 12 x 12 x 12 mm, and a round tube 12 mm in diameter and 12 mm in
length. A 2D simulation 24 mm in channel width and 36 mm in length is also performed. The round
tube simulation is set up in a rectangular domain, where the effects of walls are modeled with the efficient
immersed boundary technique. The boundary conditions used are no-slip and isothermal (300 K) for the
walls, a Dirichlet boundary condition for the inlet, and a partially reflecting boundary condition for the
outlet [145]. This setup allows the numerical domain to be moved at CJ speed relative to the laboratory
reference without wave reflection. Three simulations are performed using three different numerical grid
resolutions for each 3D geometry: 40 µm, 20 µm, and 10 µm, while the 2D simulation is performed at
10 µm. The finest simulation contains 24 numerical grid points per half reaction length, approximately
the minimum criterion established for low activation energy mixtures (like ozonated hydrogen-oxygen)
by Mazaheri et al. [255]. The coarsest simulations are initialized with an inclined ZND detonation wave,
while the finer simulations are initialized with a converged solution from the coarser resolutions. The
finest 3D simulations (10 µm) are run on 64,000 cores for approximately 150 wall-clock hours, equating
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to a total cost of approximately 10 million CPU-hours per simulation. Each grid coarsening reduces the
computational cost by roughly an order of magnitude.

8.3 Results and discussion

Snapshots of a pressure pseudocolor are shown for both the 3D square channel (a) and round tube (b)
simulations in Fig. 8.1. These snapshots are chosen in the well-converged portion of the simulations
to exclude any memory effects from initial conditions. The two snapshots clearly show a substantial
difference in the detonation structure between the two simulations. As other researchers have observed in
the past [294, 299], the square channel exhibits a highly regular structure with ignition kernels occurring
on a nearly perfectly spaced square grid. Although there are some deviations from the dominant structure
(see upper right corner of Fig. 8.1a), the dominant structure is highly stable as evidenced by the fact that
this structure is maintained throughout the entire simulation despite these deviations. The tube simulation,
on the other hand, has no clearly discernible regular structure. Local shock waves of varying strength are
observed throughout the detonation frontal structure, including reflections off the wall.

8.3.1 Cellular structure

Numerical soot foils are calculated, based on maximum pressure history, for the 3D channel and tube sim-
ulations and compared to those from 2D simulations and round tube experiments. The soot foils from the
3D simulations are calculated exclusively using the pressure data near the shock front for computational
simplicity, and are thus an approximation of the full numerical soot foil. Nonetheless, they exhibit the
characteristic cellular features expected, and are useful to analyze and compare with 2D numerical soot
foils and experimental soot foils. Figure 8.2 shows the soot foils for the 3D square channel (a) and round
tube (b) simulations as well as the 2D simulation (c) and the experiment (d), all with the same mixture
and conditions (and in the case of the 3D and 2D simulations, at the same grid resolution of 10 µm). The
experimental soot foil is a sub-section of the full foil obtained from a detonation tube experiment with
tube inner diameter of 32 mm [315]. Clearly seen from Fig. 8.2 are the differing cellular structures among
the various geometries. The square channel produces detonation cells which appear narrower but as long
or longer as compared to those from the tube geometry. Meanwhile, the 2D simulation produces cells
more characteristic of the tube simulation, and the experimental soot foil and the 3D tube simulation also
appear qualitatively similar. Notably missing from the 2D simulation is the white banding which appears
transverse to the dominant cellular structure and shows out of plane transverse waves that collide with the
wall. The square channel shows highly regular banding, while the 3D tube simulation and tube experiment
show similarly more random banding.

Cell structure statistics, recorded from hand-measured cells, are shown in Fig. 8.3. As observed qual-
itatively, the aspect ratio (cell length divided by width) from the square channel simulation is notably
larger than that of the round tube simulation, which is primarily due to a smaller average cell width. The
2D simulation has both an aspect ratio and mean cell width somewhat in between the two 3D geome-
tries. Meanwhile, the agreement in aspect ratio between the 3D tube simulation and tube experiments
is good, although the distribution is somewhat wider in the case of the experiments. This is expected:
more perturbations may exist in the experiments as compared to simulation (e.g., rough walls, mixture
inhomogeneities) which can broaden the distribution of cell morphologies.

8.3.2 Blast dynamics

To better understand the nature of the detonation structures, and shed light on the differences between the
3D square channel and round tube simulations, we analyze the blast dynamics resultant from detonation
kernel ignitions. Detonation kernels (pockets of post-shock unburnt gas which experience rapid ignition
after transverse wave collapse), and their resultant blasts, are key to understanding cellular structure [308].
Figure 8.4 shows isosurfaces (6 bar and 10 bar) from sub-domains (4 x 4 x 4 mm) of the square channel
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Figure 8.2: Numerical (a, b, c) and experimental (d) soot foils for identical mixture and conditions in
different geometries: 3D square channel simulation (a), with dashed white lines showing channel corners,
3D tube simulation (b), 2D simulation (c), and tube experiments (d). All simulations at 10 µm grid
resolution. All numerical soot foils have the same color bounds with a maximum of 10 bar (white) and
minimum of 2 bar (black). Propagation is from left to right.
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Figure 8.3: Soot foil statistics measured from Fig. 8.2. The left column contains cell width statistics, and
the right column cell aspect ratio (cell length divided by cell width). The length and width of 50 cells were
measured from each soot foil.

Figure 8.4: Isosurfaces of 6 bar (green) and 10 bar (yellow) from snapshots of the 3D square channel
(a) and round tube (b) simulations at 40 µm grid resolution. Snapshots were selected to highlight ker-
nel formation structure in each geometry. Detonation waves in both simulations propagate in the x-axis
direction.
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(a) and round tube (b) simulations, with specific snapshots chosen to highlight the detonation kernels
shortly after transverse wave collapse. Apparent in Fig. 8.4 are the different appearances of the kernels
between the two simulations. Both simulations contain what we term as ‘line’ kernels, which result from
two transverse waves intersecting, and ‘multi’ kernels, which result from more than two transverse waves
intersecting. The multi kernels, as expected, generally have more extreme states (as shown by the higher
values of pressure in Fig. 8.4) as compared to the line kernels. The wave alignment from the boundaries
of the square channel lead to a highly regular kernel structure which contain square lattices of line kernels
and multi kernels. In the square channel, the multi kernels are almost always the result of the nearly
simultaneous intersection of four waves. Meanwhile, in the round tube, a more irregular kernel structure
is observed (see Figs. 8.1b, 8.4b, S1 of the Supplementary Material). In the round tube the multi kernels
are often the result of three transverse waves collapsing, but sometimes are the result of up to five waves
collapsing, although not always at exactly the same time.
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Figure 8.5: Wave velocity D (a, b), post-shock pressure PPS (c, d), and post-shock temperature TPS (e,
f) for eight blasts from line (dashed lines) and multi (solid lines) blasts for detonations in the 10 µm grid
resolution 3D square channel (a, c, e) and 3D round tube (b, d, f).

The different kernel structures between detonations in these geometries lead to differing subsequent
blast propagation dynamics. To better understand this behavior, we consider the propagation character-



166 Chapter 8. Three-dimensional detonation structure and its response to confinement

istics of blasts resultant from line kernels and multi kernels from each geometry. Figure 8.5 shows the
shock velocity D, the post-shock pressure PPS , and the post-shock temperature TPS , as a function of time
for eight examples of line and multi blasts from each geometry. The blast dynamics are calculated by
selecting, by hand, the center of a line kernel or multi kernel (a particular y, z location) at inception and
tracking the shock location and post-shock properties of this y, z location for 2 µs (or until another shock
intersects this location). Blasts are selected that occur both on the walls and in the center of the domain.
In general, no major difference in the resultant propagation characteristics are observed between the wall
and central blasts.

Consistent between both geometries is that multi kernels (solid lines in Fig. 8.5) have higher velocities
and more extreme states when compared to line kernels. The multi kernels yield blasts which propagate
initially at upwards of 5 km/s (about 1.8 times the CJ speed) while the line kernels propagate around 3.5
km/s (about 1.3 times the CJ speed). Both decay to an underdriven wave after about 1.5 µs. Meanwhile,
the multi blasts lead to more extreme post-shock pressures (up to 3 MPa) and temperatures (almost 4000
K), while the line kernels yield more modest conditions (1 MPa and 2500 K). We note that even the line
kernel blasts contain states substantially more extreme than the ZND Von Neumann state (PVN = 0.45
MPa, TVN = 1667 K for this mixture).

Also plotted in Fig. 8.5a and b is the averaged velocity of blasts in the 2D simulation (averaged across
over 50 blasts in the well-converged portion of the simulation). Interestingly, the propagation velocity
of the 2D blasts is somewhat in between the multi and line blasts from 3D. 2D blasts are the result of
two transverse waves intersecting, and so it may be expected that the propagation velocity would be more
similar to the line blasts. The deviation between line blasts and 2D blasts is possibly explained by the
stronger geometric confinement of the 2D blasts (i.e., cylindrical blasts versus spherical blasts) [316].

Between the square channel and the round tube simulations, the most notable difference in the blast
dynamics is the blast-to-blast variability. In the channel simulation, each line kernel and multi kernel
exhibit notably consistent dynamics, as seen in Fig. 8.5a, c, e. This consistency is presumably because
the highly regular structure leads to similar transverse wave strengths and post-shock unburnt gas pocket
size among all line and multi blasts. Furthermore, all multi blasts are the result of exactly four blasts. As
a result, the blast dynamics in the channel geometry can be classified as a bimodal distribution, depending
on whether it is a multi blast or a line blast. In contrast, the round tube dynamics are more widely
spread. The multi blasts still contain velocities and states more extreme than the line blasts, but a variety
of manifestations of blasts exist for both categories. Generally, the multi blasts in the round tube are as
strong or weaker than the multi blasts from the square channel, likely because they can be the result of
three, four, or five blasts, while the line blasts are somewhat stronger to somewhat weaker than those from
the square channel. From the limited sample size presented here, the blast dynamics in a round tube follow
a uniform, but broad distribution, with a variety of blast strengths observed.

8.3.3 Bulk detonation velocity

The difference in blast dynamics manifests in differing bulk velocity characteristics between the channel
and tube geometries. Bulk velocity is calculated by differentiating in time the furthest point forward in
the x-direction of the shock wave for each simulation. The averaged propagation velocity u, shown in
lower-left corner of Fig. 8.6, between the two simulations is nearly identical, with propagation around
97% of the CJ speed. The magnitude of this propagation velocity is in good agreement with experimental
measurements of detonations of the same mixture propagating in geometries larger than its characteristic
cell size [287, 315]. Notably different between the simulations, however, is the magnitude of velocity
fluctuations. The channel contains bulk velocity excursions nearly three times in magnitude compared
with the tube (114 m/s versus 44 m/s). The more strongly overdriven waves, and more significantly, the
temporal coupling of the overdriven waves, lead to the much stronger oscillations in the square channel
as compared to the round tube. This difference in velocity behavior further shows that detonations in
the square channel exhibit a highly regular, oscillating structure, while detonations in the tube geometry
contains a variety of modes, temporally misaligned, which leads to the more stable velocity behavior.
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Figure 8.6: Bulk detonation velocities for the final 50 µs of the 10 µm grid resolution 3D square channel
(left) and 3D circular tube (right) simulations. Dashed line shows averaged propagation velocity (u) while
dotted line shows CJ velocity.

8.3.4 Role of 3D confinement in detonation

Comparing cellular structure, blast dynamics, and bulk velocity of detonation in the square channel versus
the round tube leads to a clearer picture of the role confinement plays on detonation propagation. Square
confinement leads to a highly regular shock structure composed of square lattices (see Figs. 8.1, 8.4, S1).
This regular structure leads to bimodal blast dynamics, depending on whether two or four shocks intersect
to initiate a blast (i.e., line versus multi kernels). The regularity of the structure leads to multi kernels
which are both very strong and also temporally aligned with other multi kernels in the domain. The strong
ignitions along with the highly regulating boundaries likely lead to the narrower detonation cells in the
square channel (as compared to the round tube) and the temporal alignment leads to a highly oscillatory
bulk velocity. Meanwhile, round boundaries do not lead to discernibly regular head-on structure, and
analysis of blast dynamics show highly variable dynamics for both line and multi kernel blasts. From this
perspective, the detonation propagation in square channels versus round tubes is substantially different.
Moreover, the square channel propagation is the result of a strong coupling between perfectly smooth and
straight boundaries and blast formation and propagation. In engineering situations where boundary irreg-
ularities and mixture inhomogeneities exist, this coupling may be disrupted and detonations in channels
may more closely resemble those in round tubes.

8.3.5 Computational grid convergence

To ensure the numerical grid resolution used is sufficient to fulfill the aims of this work, we simulated
detonation propagation in both 3D geometries at 40 µm, 20 µm, and 10 µm grid resolutions. Qualitatively,
all three resolutions in the square channel exhibit the same highly regular propagation behavior described
above while all three resolutions in the round tube show a similarly irregular behavior. Snapshots of head-
on pressure pseudocolor plots for each geometry and resolution combination are shown in Fig. S1 of the
Supplementary Material (SM), supporting this observation. Noted in Fig. S1, however, is that the different
resolutions can yield differing quantities of shock structures within the domain. Notably, fewer shocks are
observed in the 10 µm simulations (for both the square channel and round tube) as compared to the 20
µm and 40 µm simulations. The differences in number of shocks among resolutions translates directly to
different detonation cell sizes. The side-wall soot foils for each simulation are shown in Fig. S2 of the SM,
while the mean and one standard deviation of cell width and cell aspect ratio are shown in Fig. 8.7. The
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Figure 8.7: Cell width (a) and cell aspect ratio (b) as a function of numerical grid resolution for the round
tube (purple squares) and the square channel (blue circles) simulations, and tube experiments (dotted black
line and shaded bands). Error bars and shaded bands denote 1 standard deviation.

statistics are measured from 50 cells in the well-converged portion of each simulation. Also plotted in Fig.
8.7 are the mean and one-standard deviation of the cell width and cell aspect ratio from experiments in a
32 mm round tube [315] with an identical mixture. Clearly, the cell width is a function of grid resolution
for both geometries, as shown in Fig. 8.7a, with finer resolutions yielding larger detonation cells (as also
observed in [303]). At the finest resolution considered in the current work, the cell size may not have
been fully converged, and so we treat the absolute values of quantities derived with some caution. The
reasonable agreement in cell width between the tube simulation (7.1±0.7 mm for 10 µm resolution) and
the tube experiment (5.5±0.8 mm) give confidence in the simulations, at least in terms of the purposes of
this work: to derive mechanistic insight into the propagation characteristics of 3D detonations of the two
geometries. To ensure convergence in the analyses of interest, analyses are repeated for all grid resolutions,
including cell aspect ratio, blast propagation characteristics, and bulk velocity. As shown in Fig. 8.7b, cell
aspect ratio is largely invariant across grid resolutions and in terms of aspect ratio an excellent agreement
is observed between the tube simulation and tube experiment. Conclusions which result from analyses of
other quantities of interest (blast propagation, shown in Fig. S3 and discussed in SM, and bulk velocity,
shown in Fig. S4 and also discussed in SM) are also consistent across the grid resolutions tested, which
indicate that the conclusions drawn in this work are not sensitive to grid resolution.

8.4 Conclusions

In this work, we performed detailed simulations of detonation propagation in a 3D square channel and a 3D
round tube, along with a 2D channel, and compared the simulations with results from a tube experiment.
By analyzing and comparing the cellular structure, blast dynamics, and bulk velocity, we conclude:

1. Three-dimensional detonation propagation consists of complexes of shock waves yielding line (two
blasts intersecting) and multi (more than two blasts intersecting) kernels. The multi kernels contain
substantially more extreme states, and lead to much faster local wave velocities, as compared to
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the line kernels. These multi-dimensional features lead to more complex detonation dynamics as
compared to 2D simulations.

2. Detonations in square tubes lead to a highly regular structure containing square lattices of shocks,
while tubes lead to substantially more complex and distributed blasts.

3. Two-dimensional detonations exhibit blast characteristics which are in between the behaviors of the
line kernel blasts and the multi kernel blasts, likely due to the difference in dimensional confinement
of these blasts.

4. Spatial confinement plays a strong role in detonation propagation. This raises the question whether
detonation cells and their sizes can be described as fundamental properties of an unburnt mixture
without considering the impact of boundary conditions on their measurement and analysis.

These conclusions are found irrespective of the numerical grid resolution used.
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Chapter 9
Summary and Outlook

9.1 Summary

The presented work investigates reactive supersonic flows using two-dimensional and three-dimensional
simulations, specifically employing large eddy simulations (LES) with finite rate chemistry (FRC). To
facilitate these investigations, the LES and direct numerical simulations (DNS) code PsiPhi, initially de-
veloped by Prof. Dr.-Ing. Andreas Kempf for simulating turbulent flames at low Mach numbers, was
extended for compressible flows. The necessary modifications encompassed implementing an operator
splitting approach to decouple temporal changes due to transport and reactive source terms, introducing a
new density-based kernel for a single Runge-Kutta step, employing various approximate Riemann solvers
based on the advection upstream splitting method (AUSM) to calculate convective fluxes, utilizing dif-
ferent high-order interpolation formulas, extending diffusive fluxes by incorporating the friction term for
conserved energy, and employing characteristic boundary conditions with non-reflective properties. Ad-
ditionally, a prototype for finite rate chemistry, originally developed by Fabian Proch, was expanded for
simulating compressible flow. Further enhancements involved improving efficiency by implementing im-
plicit and semi-implicit ordinary differential equation (ODE) solvers to handle the chemical source term,
and incorporating subgrid models using a probability density function (PDF) model for temperature and a
dynamic flame thickening (DTF) approach.

In the first study, a highly resolved three-dimensional LES on 2.2 billion cells was employed to in-
vestigate an experiment conducted by Meyer and Oppenheim [317] involving a stoichiometric hydrogen-
oxygen mixture in a small rectangular shock tube. The remote ignition observed in the experiment was
successfully replicated. The ignition delay time closely matched the experimental evidence, although
there remains a significant uncertainty in the low-temperature range due to the kinetics model utilized.
For analysis, numerous Lagrangian particles were randomly introduced into the domain at the beginning
of the simulation. These particles were then integrated over time using the local flow velocity, while
recording the experienced thermochemical state. Post-processing involved extracting the particles that
were in close proximity to the ignition kernel at the time of ignition. Notably, these particles displayed a
considerably higher temperature than those localized near the originally anticipated ignition location close
to the end wall. To explain the observed higher temperature, a detailed analysis was conducted on the ve-
locity field induced by reflected shock bifurcation. The analysis revealed that the bifurcation structure
causes a displacement effect on the core flow, resulting in a Laval nozzle-like effect that accelerates the
core flow significantly. This acceleration occurs first in a convergent section and subsequently in a diver-
gent section, leading to the formation of a second normal shock with additional entropy production and
correspondingly higher temperature. This premature ignition phenomenon has important implications as
shock bifurcation affects real mixtures more frequently than mixtures diluted with argon. Failure to detect
remote ignition can result in erroneous measurement of the ignition delay time, leading to inaccuracies in
future kinetic models.

In the first study, the inlet boundary was assumed to have constant state variables. However, this
assumption is highly simplifying and can deviate significantly from the actual values. The review criti-
cized this assumption accordingly. Thus, the second study addressed this criticism by employing an inlet
boundary condition that incorporates the development of a laminar boundary layer and its transition to
a turbulent boundary layer. Outside the boundary layer, the state variables change according to Mirels’
small perturbation theory [160]. To validate the approach, two-dimensional simulations and experiments
conducted in Duisburg and Texas were compared, specifically examining pressure and temperature at the
shock tube end wall for pure argon as well as mixtures of argon, carbon monoxide, and hydrogen. The
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experiments measured pressure end wall evolutions that follow a curve with an initial decline, followed by
a monotonic pressure rise at low initial pressures. This differs from the commonly accepted assumption
of a monotonic and linear pressure increase. The simulations demonstrated that this pressure curve can be
attributed to an extended boundary layer transition. To match the experimental pressure and temperature
histories, accurate estimation of the turbulent Reynolds transition number and boundary layer transition
duration is crucial. The approach was further tested in the same study for shock tube experiments with
hydrogen/oxygen mixtures diluted with argon [318], comparing cases with different Mach numbers of the
incident shock. At high Mach numbers, ignition occurs directly at the shock tube end wall. As the Mach
numbers decrease, the ignition delay time increases, and higher temperatures induced by the boundary
layer far from the shock tube end lead to premature ignition upstream. While the ignition delay time
differs from that in the experiments, the phenomenon of remote ignition was successfully reproduced.
These results demonstrate that the proposed approach can effectively simulate shock tube experiments
and represents a significant improvement over traditionally used Dirichlet boundary conditions.

The third study focused on the propagation of detonation waves in hydrogen/oxygen mixtures with and
without ozone doping. Due to the demanding requirement of resolving the detonation structure on the nu-
merical grid, two-dimensional simulations were employed, which correspond most closely to propagation
in infinitely wide channels. Surprisingly, the agreement in detonation cell size between the simulations
and experiments conducted in tubes was remarkably good. Additionally, the simulation successfully re-
produced the effect of ozone, which leads to a decrease in cell size when added to the hydrogen-oxygen
mixture in small amounts. The high temporal resolution data obtained from the simulation was employed
to test a previously postulated hypothesis of cell size stabilization [319], which was confirmed. The hy-
pothesis suggests that a small amount of fuel results in a weak detonation kernel with a relatively low
propagation velocity of the overdriven shock wave front. This enhances the decoupling of the shock wave
front and reaction zone, leading to a larger amount of fuel in the subsequent detonation kernel. The study
also examined two different channel heights and the influence of viscous terms. Significantly, the inclu-
sion of viscous fluxes, especially for the small channel height, revealed a notable velocity deficit. The
formation of the boundary layer was identified as the dominant factor contributing to this observation. In
contrast, the impact on the detonation cell structure was minimal.

The fourth study addressed the disparity in detonation dynamics and structure between three-dimensional
and two-dimensional simulations. Due to the high computational cost, the majority of detonation simu-
lations are still performed in 2D, which motivated this study. Three dimensional LES simulations were
conducted for two distinct geometries: a square cross-section and a circular cross-section, both consider-
ing the hydrogen-oxygen mixture with ozone doping. To study the detonation front in terms of structure
and dynamics, 3D fields with high temporal resolution were required, resulting in significant memory re-
quirements. Consequently, new output routines were designed to reduce memory usage. The axial position
of each point on the front was determined, and this information was sent to corresponding communicator
root ranks, which collectively wrote 2D fields consisting of the x-coordinate, pressure, and temperature
related to the wave front, significantly reducing memory requirements. This information enabled the re-
construction of soot foils along arbitrary surfaces. Furthermore, new message passing interface (MPI)
communicators were created to facilitate writing reduced 3D fields, such as those from one-eighth of the
domain. The results demonstrated highly organized detonation structures for the square cross-section,
with transverse shock waves traveling parallel to the walls. In contrast, a chaotic and complex structure
was observed for the circular cross-section. Therefore, the geometry of the confinement significantly in-
fluences the detonation structure. Moreover, 3D detonations exhibit different types of detonation kernels.
In 2D simulations, detonation kernels form when two triple points collide. In 3D simulations, triple points
exist along curves, and the collision of two curves leads to the formation of line kernels. Additionally,
there are multi kernels where more than two blast waves intersect, resulting in more extreme conditions.
The maximum pressures of detonation kernels in 2D lie between those encountered in line kernels and
multi kernels in 3D, leading to a wider distribution of kernel states in 3D. Notably, the extracted cell sizes
from the data were similar for both 2D and 3D simulations.
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9.2 Outlook

The studies conducted in this thesis have successfully introduced a workflow for shock tube simulations.
Several simulations have reproduced pressure evolutions at the shock-tube end wall and the occurrence
of unwanted remote ignitions triggered by shock bifurcation or boundary layer-induced axial temperature
distribution. The importance of accurately treating the inlet boundary, in addition to employing efficient
and accurate solution algorithms, has been demonstrated.

One drawback of the current workflow is the requirement of a precursor simulation, which must have
the same dimensions in the vertical and lateral directions as the main simulation. In this precursor simu-
lation, the initial Riemann problem is calculated, and the incident shock wave can evolve naturally. At the
end of the precursor simulation, the solution around the incident shock is stored and can be utilized in the
main simulation to initialize the incident shock wave near the inlet. In contrast, if the incident shock is
instead approximated by jump conditions, significant perturbations will arise, eventually interacting with
the reflected shock. The workflow can be greatly simplified by fully modeling the fields behind the inci-
dent shock. In this case, the simulation starts precisely at the moment before the incident shock reaches
the end wall. The boundary layer and core flow can be approximated using the same models employed
at the inlet boundary, while artificial turbulence must be introduced using the turbulence generator within
the turbulent part of the boundary layer. This would involve estimating the Reynolds stress tensor and
an average representative length scale using numerical or experimental data for compressible boundary
layers.

Another important aspect is the development of low-order models. For the sake of efficiency and con-
venience, the boundary layer modeling and calculation of non-uniformities have been performed within
PsiPhi at the beginning of the simulation so far. However, in order to distribute the models, the Python
programming language is much better suited. Hence, porting these models into Python code is desirable.
In the long term, pressure predictions should be used as a boundary condition in 0D reactor simulations
to predict phenomena such as remote ignition efficiently. Currently, the models can only predict pressure,
temperature, and axial velocity behind the incident shock. However, for their application as a boundary
condition in reactors, the approach would need to be extended to account for the evolution behind the re-
flected shock. The work of Rudinger [320] can be employed to describe the variation of variables behind
the reflected shock.

Another workflow has been established to simulate the propagation of detonation waves. In this case,
a relative coordinate system is used, which moves at the speed of the detonation wave. Consequently,
Dirichlet boundary conditions are applied at the inlet, with the axial velocity component equaling the
detonation wave speed, while a non-reflecting boundary condition is used at the outlet, where the flow
might still be subsonic. This approach offers the advantage of computing only the detonation wave front
and the key region behind it, enabling the use of a finer grid resolution. Since the detonation velocity
can only be estimated a priori (due to the presence of boundary layer losses), the inflow velocity may
need to be adjusted to ensure that the detonation wave is stationary on average. An improvement would
be achieved by automating the determination of the detonation wave velocity and implementing a correc-
tion mechanism. Additionally, while the current research has focused on mixtures with an ordered cell
structure, other fuels, like methane, exhibit a more chaotic and complex cell structure. The proposed cell
stabilization mechanism should be investigated for such mixtures as well.

In simulations of detonation waves, a conventional flame front does not exist. As a result, dynamic
flame thickening methods cannot be employed for subgrid closure. Instead, assumed PDF methods, such
as the tophat PDF for temperature, are more suitable and have already been utilized. In the context of
Reynolds-averaged Navier-Stokes (RANS), a multivariate beta PDF for mass fractions has been employed
Gerlinger [70]. However, before applying these methods in large eddy simulations (LES), their suitability
needs to be verified through a posteriori analyses.

Furthermore, efficiency improvements are always desired to enable larger or more complex simula-
tions. The implementation of CVODE has already yielded efficiency gains over explicit methods with
sub-stepping for integrating the chemical source term. Semi-implicit methods with error control and



9.2. Outlook 173

adaptive step size offer the potential for additional performance improvements. Consequently, a prototype
for a proprietary ODE solver suite in PsiPhi has been implemented, which currently includes the implicit
Euler method, explicit Runge-Kutta methods with error control and step-size adjustment, and the classical
Rosenbrock integration method. The interfaces are standardized and can also be used for integrating other
stiff terms. The Jacobian matrix required for implicit and semi-implicit methods is estimated using finite
differences, but alternatives for a more efficient approximation of the Jacobian matrix have been employed
[92]).

Hybrid convective methods could further improve the simulation quality. Riemann solvers are known
for their stability but also high numerical dissipation, which impacts the generation and decay of turbu-
lence. Conversely, purely central differencing schemes exhibit low numerical dissipation at the expense
of stability. In density-based solvers, artificial dissipation approaches must be employed along with cen-
tral schemes to eliminate high-frequency components. To address this, central differencing schemes of
higher order and suitable filters [100, 101] have already been implemented in PsiPhi. Alternatively, ma-
trix artificial dissipation methods can be employed [102]. A promising approach could involve primarily
applying central differencing schemes and artificial dissipation, except in a few cells near discontinuities
where approximate Riemann solvers are used. For this purpose, sensors already exist that reliably detect
compression shocks [321].
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A.1 Impact of shock-tube facility-dependent effects on incident- and reflected-
shock conditions over a wide range of pressures and Mach numbers

Authors: D. Nativel, S. P. Cooper, J. T. Lipkowicz, M. Fikri, E. L. Petersen, C. Schulz
This paper was previously published in ‘Combustion and Flame, 217, D. Nativel, S. P. Cooper, J. T.
Lipkowicz, M. Fikri, E. L. Petersen and C. Schulz, Impact of shock-tube facility-dependent effects on
incident- and reflected-shock conditions over a wide range of pressures and Mach numbers, 200-211,
Copyright©Elsevier (2020)’ [322] and the abstract is reprinted with permission from Elsevier. The author
J. T. Lipkowicz contributed by corrections, discussions, proof reading, and by providing a numerical tool
that predicts boundary layer growth rates of both laminar and turbulent boundary layers.

Abstract

In real shock tubes, deviations from the ideal gas-dynamic behavior can affect experiments and complicate
data analysis and interpretation. These non-ideal effects depend on the shock-tube geometry and therefore,
results (e.g., ignition delay times) may vary between different experimental facilities. To clarify the influ-
ence of geometry and operating procedures, these effects were investigated in four geometrically different
shock tubes located in two laboratories, Texas A&M University and the University of Duisburg-Essen. In-
cident shock-wave attenuation and pressure rise (dp*/dt) were measured behind reflected shock waves over
a 2.1–4.1 Mach number and a 0.1–3.0 MPa post-reflected-shock pressure range. A strong influence of the
Mach number on dp*/dt was observed for all facilities and conditions, whereas only a slight influence was
found for shock-wave attenuation. Both dp*/dt and attenuation were higher by about a factor of two for
the shock tubes with approximately half the inner diameter (8.0 vs. 16.2 cm). These findings are analyzed
through correlations with initial pressure, inner diameter, Mach number, and specific heat ratio. The im-
plication of non-ideal effects on experiments with reactive mixtures and related combustion experiments
is discussed. Extreme conditions of dp*/dt were derived from the correlations and used to understand the
effects of an equivalent dT*/dt on simulated ignition delay times of two reactive systems (CH4/air and
C7H16/air). It was found that smaller shock-tube diameters with respectively larger dp*/dt show shorter
ignition delay times (especially at temperatures below 1000 K for the C7H16/air case). Therefore, the
geometry constraints must be considered in simulations through dp*/dt inputs in the chemical kinetics
simulation for the extreme cases to account for non-ideal effects.
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A.2 Geometric modeling and analysis of detonation cellular stability

Authors: J. Crane, X. Shi, J. T. Lipkowicz, A. M. Kempf, H. Wang
This paper was previously published in ‘Proceedings of the Combustion Institute, 38(3), J. Crane, X.
Shi, J. T. Lipkowicz, A. M. Kempf and H. Wang, Geometric modeling and analysis of detonation cellular
stability, 3585-3593, Copyright ©Elsevier (2021)’ [241] and the abstract is reprinted with permission
from Elsevier. The author J. T. Lipkowicz contributed by providing data from 2D numerical simulations of
detonation propagation that helped in the model development. The author J. T. Lipkowicz also contributed
by corrections, discussions and proof reading.

Abstract

A geometric model with a low computational complexity capable of simulating detonation behavior in
physical systems is proposed. In support of the geometric model development, a series of cylindrical
1D simulations with a variable size initiation kernel are performed in hydrogen-oxygen mixtures. From
these 1D simulations a detonation cell stabilization mechanism is identified. The stabilization mechanism
is predicated on the size of the gap between the pressure and temperature fronts at the point where the
average pressure front velocity along one cell length is equal to the CJ velocity. This gap, in a mul-
tidimensional detonation, is the ignition kernel of a subsequent blast, and dictates the formation of the
subsequent cell. Serial analysis of blasts in this context leads to a unique stable blast kernel size for any
mixture, which, within the uncertainty of the initial kernel state, can predict the experimental cell length
for mixtures considered in this study. Using a tabulation of the 1D simulations as an input, a formulation
and sample results of the geometric model are shown. The geometric model can reproduce both qualitative
and quantitative features of experimental detonation cellular structure.
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A.3 An experimental/numerical investigation of non-reacting turbulent flow
in a piloted premixed Bunsen burner

Authors: J. Pareja, J. T. Lipkowicz, E. Inanc, C. D. Carter, A. M. Kempf, I. Boxx
This paper was previously published in ‘Experiments in Fluids, 63, J. Pareja, J. T. Lipkowicz, E. Inanc,
C. D. Carter, A. M. Kempf and I. Boxx, An experimental/numerical investigation of non-reacting turbulent
flow in a piloted premixed Bunsen burner, Copyright©Springer (2022)’ [323] and the abstract is reprinted
with permission from Springer. The author J. T. Lipkowicz contributed by code development, running all
non-reactive simulations and by post-processing tasks for statistics. The author J. T. Lipkowicz also
contributed by corrections, discussions and proof reading.

Abstract

In this paper, an experimental study of the non-reacting turbulent flow field characteristics of a piloted
premixed Bunsen burner designed for operational at elevated pressure conditions is presented. The gener-
ated turbulent flow fields were experimentally investigated at atmospheric and elevated pressure by means
of high-speed particle image velocimetry (PIV). The in-nozzle flow through the burner was computed
using large-eddy simulation (LES), and the turbulent flow field predicted at the burner exit was compared
against the experimental results. The findings show that the burner yields a reasonably homogeneous,
nearly isotropic turbulence at the nozzle exit with highly reproducible boundary conditions that can be
well predicted by numerical simulations. Similar levels of turbulence intensities and turbulent length
scales were obtained at varied pressures and bulk velocities with turbulent Reynolds numbers up to 5300.
This work demonstrates the burner’s potential for the study of premixed flames subject to intermediate
and extreme turbulence at the elevated pressure conditions found in gas turbine combustors.
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A.4 Numerical Analysis of a Turbulent Pulverized Coal Flame Using a
Flamelet/Progress Variable Approach and Modeling Experimental Ar-
tifacts

Authors: D. Meller, J. T. Lipkowicz, M. Rieth, O. Stein, A. Kronenburg, C. Hasse, A. M. Kempf
This paper was previously published in ‘Energy Fuels, 35(9), D. Meller, J. T. Lipkowicz, M. Rieth, O.
Stein, A. Kronenburg, C. Hasse and A. M. Kempf, Numerical Analysis of a Turbulent Pulverized Coal
Flame Using a Flamelet/Progress Variable Approach and Modeling Experimental Artifacts, 7133-7143,
Copyright ©ACS Publications (2021)’ [324] and the abstract is reprinted with permission from ACS
Publications. The author J. T. Lipkowicz contributed by support in the code development, by corrections,
discussions and proof reading.

Abstract

A coaxial burner with a hydrogen-supported pulverized coal flame, operated by the Central Research Insti-
tute of Electric Power Industry (CRIEPI, Japan), is investigated numerically. The flame is modeled using
massively parallel large eddy simulation (LES). A flamelet/progress variable (FPV) approach is used for
modeling the complex multiphase flow of the laboratory coal flame. A four-dimensional tabulation method
based on non-premixed flamelets is introduced, which uses two mixture fractions for the hydrogen pilot
and coal volatiles, respectively, as well as the absolute enthalpy and the reaction progress to parametrize
the thermochemical space. Simulations are compared to the experiments in terms of the temperature, gas-
phase velocities (with and without consideration of buoyancy), and gas compositions along the centerline
and in the radial direction at different heights. The effect of the suction probe on the scalar field mea-
surements is tested by simulating this probing, observing relative changes up to 50% in various quantities
and locations. By consideration of these probe effects, the agreement between the experiment and simu-
lation can be improved significantly; at the same time, the simulation also provides the unperturbed scalar
fields, without probing effects. The new flamelet model gives a robust and cost-effective prediction of the
investigated laboratory flame, provided that the probing effects are considered.
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A.5 A conservative Eulerian-Lagrangian decomposition principle for the
solution of multi-scale flow problems at high Schmidt or Prandtl num-
bers

Authors: M. Leer, M. W. A. Pettit, J. T. Lipkowicz, P. Domingo, L. Vervisch, A. M. Kempf
This paper was previously published in ‘Journal of Computational Physics, 464, M. Leer, M. W. A. Pettit, J.
T. Lipkowicz, P. Domingo, L. Vervisch and A. M. Kempf, A conservative Eulerian-Lagrangian decomposi-
tion principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers, Copyright
©Elsevier (2022)’ [325] and the abstract is reprinted with permission from Elsevier. The author J. T.
Lipkowicz contributed by support in the code development, by corrections, discussions and proof reading.

Abstract

The simulation of turbulent flow that involves scalar transport at high Schmidt or Prandtl numbers is a
major challenge. Enhanced Schmidt and Prandtl numbers demand an excessive increase in numerical res-
olution. Otherwise, the accuracy of transport would suffer substantially through unresolved information
and numerical diffusion. With the aim of providing an efficient alternative for such applications, this paper
presents a simulation method that is based on a novel Eulerian-Lagrangian decomposition principle (ELD)
of the transported quantity. Low-pass filtering of the initial scalar quantity field separates it into a smooth
low-frequency component and a fine-structured high-frequency component. The low-frequency compo-
nent is represented and transported according to the Eulerian description by applying the Finite Volume
Method (FVM) with a numerical resolution according to the Kolmogorov scale. The high-frequency com-
ponent is translated into the Lagrangian description by the formation of particles, which are transported in
parallel. By exchanging information between the two components, a re-initialisation mechanism ensures
that the frequency-based decomposition is maintained throughout the simulation. Such ELD approach
combines the efficiency of the FVM with the numerical stability of Lagrangian particles. As a result of
the frequency-separation, the latter are by principle limited to zones of small scales and thus effectively
complement the FVM. Furthermore, the particle information allows details of the scalar quantity field to
be reconstructed that extend into the sub-grid level. By using a mixing layer setup, the proposed method
is tested for a range of Schmidt numbers, and the numerical costs are considered and discussed.
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A.6 Detailed simulations of the DLR auto-igniting pulsed jet experiment

Authors: E. Inanc, J. T. Lipkowicz, A. M. Kempf
This paper was previously published in ‘Fuel, 284, E. Inanc, J. T. Lipkowicz and A. M. Kempf, Detailed
simulations of the DLR auto-igniting pulsed jet experiment, Copyright ©Elsevier (2022)’ [326] and the
abstract is reprinted with permission from Elsevier. The author J. T. Lipkowicz contributed by support in
the code development, by corrections, discussions and proof reading.

Abstract

Numerical simulations of an auto-igniting pulsed jet in a vitiated co-flow experiment by DLR (German
Aerospace Center) are conducted by highly-resolved large-eddy simulations using direct chemistry with
an augmented reduced mechanism. The experiments consist of two operation modes: continuous injec-
tion used for code-verification and pulsed injection utilized for fundamental investigation of auto-ignition
dynamics. Initially, reference one-dimensional self-igniting counter-flow flames are investigated. Then,
a grid convergence study has been performed. It is shown that even a coarser grid would be sufficient to
describe the ignition chemistry since the ignition kernel appears at low velocities and fuel-lean conditions
in zones of low scalar dissipation rates. For the statistically steady jet, numerical predictions are in a
very good agreement with the experiments, giving confidence in the applied models. For the pulsed jet,
all of the predicted ignition delay times and locations are in the range of the experimental observations.
Time-resolved statistics reveal that thermochemical properties of the gas in a pulsed jet achieve states that
are impossible to reproduce in laminar conditions. For further analysis, hydroxyl and formaldehyde are
chosen as a marker for the established flame and for the ignition, respectively. In laminar conditions, these
two species are perfectly correlated. However, the unsteady dynamics of the pulsed jet invalidates the
correlation between the minor species chemistry prior to ignition. This yields the discrepancy in the auto-
ignition delay time and the location of the ignition kernel between different pulses, as the thermochemical
state needed for the ignition occurs in a random manner.
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[3] V. Masson-Delmotte, H. O. Pörtner P. Zhai, D. Roberts, P.R. Shukla J. Skea, A. Pirani,
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[89] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen der mathema-
tischen physik. Mathematische Annalen, 100(1):32–74, 1928.



Bibliography 185

[90] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, and A. McKenney. LAPACK users’ guide. SIAM, 1999.

[91] G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5(3):
506–517, sep 1968. doi: 10.1137/0705041. URL https://doi.org/10.1137%2F0705041.

[92] H. Wu, P.C. Ma, and M. Ihme. Efficient time stepping for reactive turbulent simulations with
stiff chemistry. In 2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics
and Astronautics, jan 2018. doi: 10.2514/6.2018-1672. URL https://doi.org/10.2514%2F6.
2018-1672.

[93] D.J. Gardner, D.R. Reynolds, C.S. Woodward, and C.J. Balos. Enabling new flexibility in the
SUNDIALS suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on
Mathematical Software (TOMS), 2022. doi: 10.1145/3539801.

[94] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S. Wood-
ward. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans.
Math. Software, 31(3):363–396, 2005. doi: 10.1145/1089014.1089020.

[95] C.W. Gear. The automatic integration of ordinary differential equations. Communications of the
ACM, 14(3):176–179, mar 1971. doi: 10.1145/362566.362571. URL https://doi.org/10.
1145%2F362566.362571.

[96] L. Liang, C. Jung, S.-C. Kong, and R.D. Reitz. Development of a semi-implicit solver for detailed
chemistry in i.c. engine simulations. In ASME 2005 Internal Combustion Engine Division Spring
Technical Conference. ASMEDC, jan 2005. doi: 10.1115/ices2005-1005. URL https://doi.
org/10.1115%2Fices2005-1005.

[97] V.R. Katta and W.M. Roquemore. Calculation of multidimensional flames using large chemical
kinetics. AIAA Journal, 46(7):1640–1650, jul 2008. doi: 10.2514/1.33131. URL https://doi.
org/10.2514%2F1.33131.

[98] S. Yang, V. Yang, W. Sun, S. Nagaraja, W. Sun, Y.J., and X. Gou. Parallel on-the-fly adaptive
kinetics for non-equilibrium plasma discharges of c2h4/o2/ar mixture. In 54th AIAA Aerospace
Sciences Meeting. American Institute of Aeronautics and Astronautics, jan 2016. doi: 10.2514/6.
2016-0195. URL https://doi.org/10.2514%2F6.2016-0195.

[99] O. Forster. Analysis 3: Maß-und Integrationstheorie, Integralsätze im IRn und Anwendungen,
volume 3. Springer-Verlag, 2012.

[100] C.A. Kennedy. Comparison of several numerical methods for simulation of compressible shear
layers, volume 3484. NASA, Langley Research Center, 1997.

[101] J. Ray, C.A. Kennedy, S. Lefantzi, and H.N. Najm. Using high-order methods on adaptively re-
fined block-structured meshes: derivatives, interpolations, and filters. SIAM Journal on Scientific
Computing, 29(1):139–181, 2007.

[102] E. Turkel and V.N. Vatsa. Effect of artificial viscosity on three-dimensional flow solutions. AIAA
journal, 32(1):39–45, 1994.
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