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HUMAN-COMPUTER INTERACTION

People with motor impairments experience reduced mobility, social 
exclusion, and dependence on caregivers. Although assistive 
technologies have the potential to enhance independence and well-
being, their development often overlooks user involvement. This 
oversight -- coupled with designs that limit user autonomy -- leads to 
unmet needs and increased stress for end users.

This thesis addresses current limitations by focusing on user 
integration and improving shared control approaches for assistive 
robotics enhanced by Artificial Intelligence (AI). Key contributions 
include identifying user needs, exploring robot motion intent 
communication, introducing the innovative Adaptive DoF Mapping 
Control (ADMC) shared control approach, and presenting the AdaptiX 
framework for developing and evaluating multi-modal interaction 
designs. 

The effectiveness of ADMC and AdaptiX are demonstrated in real and 
simulated scenarios, emphasising user-centred design, AI-enhanced 
applications, and in-silico testing. This thesis also outlines future 
research opportunities to advance AI-enhanced assistive robotics, 
aiming for the full inclusion of people with physical impairments in 
social and professional spheres. 
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Abstract 

The global population of individuals with motor impairments faces substan-
tial challenges, including reduced mobility, social exclusion, and increased 
caregiver dependency. While advances in assistive technologies can augment 
human capabilities, independence, and overall well-being by alleviating care-
giver fatigue and care receiver weariness, target user involvement regarding 
their needs and lived experiences in the ideation, development, and evalu-
ation process is ofen neglected. Further, current interaction design concepts 
ofen prove unsatisfactory, posing challenges to user autonomy and system 
usability, hence resulting in additional stress for end users. Here, the ad-
vantages of Artifcial Intelligence (AI) can enhance accessibility of assistive 
technology. As such, a notable research gap exists in the development and 
evaluation of interaction design concepts for AI-enhanced assistive robotics. 

This thesis addresses the gap by streamlining the development and evalu-
ation of shared control approaches while enhancing user integration through 
three key contributions. Firstly, it identifes user needs for assistive techno-
logies and explores concepts related to robot motion intent communication. 
Secondly, it introduces the innovative shared control approach Adaptive DoF 
Mapping Control (ADMC), which generates mappings of a robot’s Degrees-of-
Freedom (DoFs) based on situational Human-Robot Interaction (HRI) tasks 
and suggests them to users. Thirdly, it presents and evaluates the Extended 
Reality (XR) framework AdaptiX for in-silico development and evaluation of 
multi-modal interaction designs and feedback methods for shared control 
applications. 

In contrast to existing goal-oriented shared control approaches, my work 
highlights the development of a novel concept that does not rely on computing 
trajectories for known movement goals. Instead of pre-determined goals, 
ADMC utilises its inherent rule engine – for example, a Convolutional Neural 
Network (CNN), the robot arm’s posture, and a colour-and-depth camera feed 
of the robot’s gripper surroundings. This approach facilitates a more fexible 
and situationally aware shared control system. 

The evaluations within this thesis demonstrate that the ADMC approach signi-
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fcantly reduces task completion time, average number of necessary switches 
between DoF mappings, and perceived workload of users, compared to a 
non-adaptive input method utilising cardinal DoFs. Further, the efectiveness 
of AdaptiX for evaluations in-silico as well as real-world scenarios has been 
shown in one remote and two laboratory user studies. 

The thesis emphasises the transformative impact of assistive technologies 
for individuals with motor impairments, stressing the importance of user-
centred design and legible AI-enhanced shared control applications, as well 
as the benefts of in-silico testing. Further, it also outlines future research 
opportunities with a focus on refning communication methods, extending 
the application of approaches like ADMC, and enhancing tools like AdaptiX to 
accommodate diverse tasks and scenarios. Addressing these challenges can 
further advance AI-enhanced assistive robotics, promoting the full inclusion 
of individuals with physical impairments in social and professional spheres. 
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Zusammenfassung 

Menschen mit motorischen Beeinträchtigungen stehen vor großen Heraus-
forderungen, einschlie lich eingeschränkter Mobilität, sozialer Ausgrenzung 
und zunehmender Abhängigkeit von Betreuungspersonen. Assistive Tech-
nologien können die Mobilität und Unabhängigkeit der Betrofenen fördern 
und ihr allgemeines Wohlbefnden verbessern. Allerdings ist zu beobachten, 
dass die Einbeziehung der Zielgruppe in Bezug auf ihre Bedürfnisse wäh-
rend der Entwicklungs- und Evaluationsphase häufg vernachlässigt wird. 
Darüber hinaus erweisen sich aktuelle Konzepte des Interaktionsdesigns 
of als unbefriedigend. Sie stellen Herausforderungen für die Autonomie 
der Zielgruppe und die Bedienbarkeit dar, was zu zusätzlichem Stress für 
die Betrofenen führt. Künstliche Intelligenz (KI) kann die Zugänglichkeit 
assistiver Technologien optimieren und verbessern, insbesondere durch den 
Einsatz von assistiver Mensch-Roboter-Kollaboration. Es besteht insoweit 
eine Forschungslücke in der Entwicklung und Evaluierung von Interaktions-
designkonzepten für KI-unterstützte assistive Robotik. 

Diese Arbeit adressiert diese Forschungslücke, indem sie die Entwicklung 
und Evaluierung von Ansätzen für KI-unterstützte assistive Robotik optimiert 
und die Integration der Zielgruppe durch drei wesentliche Punkte verbessert. 
Erstens werden die Bedürfnisse der Nutzenden von assistiven Technologi-
en identifziert und Konzepte für die Kommunikation geplanter Roboter-
bewegungen erforscht. Zweitens führt sie das innovative ADMC-Konzept 
für eine unterstützte Bedienung des Roboters ein. Dieses Konzept basiert 
auf der situationsspezifschen Erfüllung der an das Mensch-Roboter-Team 
gestellten Aufgaben durch die Generierung von Kombinationen von Roboter-
Freiheitsgraden, die dem Bedienenden vorgeschlagen werden. Drittens wird 
das XR-Framework AdaptiX zur in-silico-Entwicklung und Evaluation von mul-
timodalen Interaktionsdesigns und Feedbackmethoden für Anwendungen 
der KI-unterstützten Bedienung vorgestellt und evaluiert. 

Im Gegensatz zu bestehenden Ansätzen wird in dieser Arbeit ein neuartiges 
Konzept entwickelt, das nicht auf der Berechnung von Bewegungen zu bereits 
bekannten Zielen basiert. Anstelle von vordefnierten Endpunkten verwen-
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det ADMC seinen inhärenten Regelmechanismus – z.B. ein Convolutional 
Neural Network (CNN), die Ausrichtung des Roboterarms sowie ein Farb-
und Tiefenbild der Umgebung. Dieser Ansatz ermöglicht ein fexibleres und 
situationsangepasstes System. 

Die im Rahmen dieser Arbeit durchgeführten Studien zeigen, dass der ADMC-
Ansatz die zur Aufgabenerfüllung benötigte Zeit, die durchschnittliche An-
zahl der notwendigen Wechsel zwischen Freiheitsgradabbildungen und die 
wahrgenommene Arbeitsbelastung der Nutzenden signifkant reduziert. Dies 
wurde mit einer nicht-adaptiven Eingabemethode verglichen, welche rein 
kartesische Freiheitsgrade verwendet. Darüber hinaus wurde die Efzienz 
von AdaptiX für die Evaluierung sowohl in-silico als auch für Anwendungen 
in der realen Welt nachgewiesen. 

Insgesamt wird der positive Einfuss von assistiven Technologien auf 
Menschen mit motorischen Beeinträchtigungen hervorgehoben. Auch die 
Bedeutung von nutzerzentriertem Design, verständlichem Verhalten KI-
unterstützter Anwendungen und die Vorteile von in-silico-Tests werden be-
tont. Darüber hinaus werden Forschungsmöglichkeiten skizziert, wobei der 
Schwerpunkt auf der Weiterentwicklung von Kommunikationsmethoden, 
Szenarien für ADMC und Werkzeugen wie AdaptiX liegt. Lösungen in diesem 
Bereich können die Entwicklung von KI-gestützter assistiver Robotik vor-
antreiben und die vollständige Integration von Menschen mit körperlichen 
Beeinträchtigungen in soziale und berufiche Bereiche fördern. 
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1 
INTRODUCTION 

Assistive technology is of fundamental importance for persons with 
permanent or temporary functional difficulties as it improves their 
functional ability, and enables and enhances their participation and 
inclusion in all domains of life. 

– WHO and UNICEF [235] 

Figure 1.1: Filling a glass of water, supported by an assistive robot. Robotic arms 
support users with motor impairments in day-to-day tasks like drinking. Effective 
implementation requires thoughtful design to enhance user benefits and support 
self-determined living. © Kevin Rupp, Frankfurt UAS 
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Introduction 

1.1 Motivation and Research Gap 

In 2023, the World Health Organization (WHO) reported that 15% of the global 
population lives with a disability [234]. In Germany alone, by the end of 2021, 
7.8 million individuals were ofcially classifed as severely disabled [206]. No-
tably, more than 58% of these cases were associated with physical disabilities, 
afecting a total of 4.5 million people. For many in this demographic, motor 
impairments have led to a signifcantly – and ofen permanently – reduced 
ability to move their extremities. This diminished mobility frequently leads 
to exclusion from social and professional contexts [235] and an increased 
reliance on caregivers for daily tasks, creating a near-constant need for their 
presence [142]. Furthermore, these concerns are amplifed by the ageing 
population, who ofen encounter similar challenges to those with disabili-
ties [204], and the growing demand for ageing in place solutions [152]. 

Assistive technologies serve as essential tools for individuals with motor im-
pairments, frequently providing practical solutions to enhance their mobility 
and independence [51, 141, 161] (see Figure 1.1). These technologies, ranging 
from simple aids to advanced robotic systems, address specifc needs and 
empower users to navigate daily tasks with greater autonomy [22, 45]. By 
reducing dependence on caregivers and facilitating participation in social 
and professional activities, assistive technologies contribute to substantially 
enhanced well-being, health, and overall eudaimonia [208]. While caregiver 
fatigue is well-documented [23, 114], care receivers also experience weariness 
when consistently surrounded by their assistants [53]. The opportunity to 
spend time without constant human presence, even for a few hours – and 
possibly facilitated through assistive technologies – can enhance the quality 
of life for individuals with motor impairments [30]. By lessening the constant 
need for caregivers, those once reliant on human assistance are empowered 
to regain their independence and achieve valuable alone-time. Recent ad-
vances in (semi-)autonomous technologies have made this level of support 
possible and prompted the onset of robotic device integration into selected 
aspects of our personal and professional lives. These innovations foster close-
quarter collaborations with robots across diverse domains, spanning from 
industry assembly lines [28] to mobility aides [66] and patient care [182]. 

2 



Motivation and Research Gap 

Focusing specifcally on assistive robotic systems, Kyrarini et al. – in their com-
prehensive literature review – underscored the positive impact of these so-
called cobots in supporting individuals with motor impairments in Activities 
of Daily Living (ADLs) [128]. Among these systems, assistive robotic arms 
emerge as a particularly valuable and versatile subset of collaborative tech-
nologies, capable of autonomously performing everyday pick-and-place op-
erations [21]. Yet, new challenges arise when robots are assigned (semi-
)autonomous tasks, potentially introducing additional stress for end users. 
As such, they need to be adequately addressed before and during the (pre-
)ideation, design, and development process [176] – hereinafer denoted as 
research process. Notably, Pollak et al. [176] emphasise the diminished sense of 
control experienced by users when using a cobot’s autonomous mode. Their 
study demonstrates that transitioning to manual mode not only enabled par-
ticipants to regain control but also reduced stress levels noticeably. These 
fndings are further corroborated by Kim et al., whose comparative study on 
control methods demonstrate markedly higher user satisfaction among the 
manual mode cohort [117]. 

In contrast to standardised industrial settings, care environments demand 
fexibility as cobots assist non-tech-savvy users in various, ofen highly 
situation-dependent, ways [54, 66, 71, 120, 210]. Operating robots in these 
contexts remains a signifcant challenge, as users need to consistently main-
tain oversight to operate the system efectively and safely. As emphasised 
by Stephanidis et al., transparency, understandability and accountability are 
foundational elements for achieving successful Human-Computer Interac-
tion (HCI) [208]. Yet, a fundamental issue arises from the type of robots 
used, as multiple Degrees-of-Freedom (DoFs) require either complex multi-
dimensional input devices or a division into diferent modes with two-
dimensional joystick controls [140, 177]. The former is ofen impractical for 
individuals with motor impairments [44, 116], while the latter introduces time-
consuming mode switches, frequently increasing task completion times [103]. 
Consequently, these commonly used control methods ofen prove unsuitable 
when designing assistive robotic solutions for people with motor impair-
ments. 

3 



Introduction 

Addressing these issues, shared control systems – leveraging the advantages 
of Artifcial Intelligence (AI) – can streamline and enhance robot operation 
accessibility in Human-Robot Interaction (HRI) / Human-Robot Collabora-
tion (HRC) [2, 193]. Their success depends on well-designed communication 
of the robot’s motion intent, ensuring users are consistently aware of and 
understand the level of support provided by the system [1]. Additionally, 
accommodating diferent users and their respective abilities may require 
tailored input devices or customised multi-modal feedback methods [105]. 
These challenges are compounded by the inherent difculties in conducting 
research studies that require the physical interaction of robots and humans. 
Logistical complexities, high transportation costs, safety concerns related to 
robots and associated teething problems, recruitment challenges, and the 
limited availability of the target user groups collectively contribute to the 
intricacy of HRI research [12, 34, 120, 122, 147]. 

Research Gap 

A notable research gap exists in the development and evaluation of in-
teraction design concepts and multi-modal feedback methods for AI-
enhanced assistive robotics, specifcally when aiming for a user-centred 
design process to empower individuals with motor impairments in their 
day-to-day lives. 

1.1.1 Motivating AI-enhanced Shareds Control for Assistive 
HRI 

In a typical scenario motivating my research, a wheelchair-mounted assistive 
robotic arm, such as the Kinova Jaco 2 [118], enables users to perform essential 
ADLs like drinking or eating (see Figure 1.2). This setup presents users with 
the challenge of operating six or more DoFs, necessitating complex input 
devices or cumbersome and potentially confusing mode switches. While 
manual control systems allow individuals to manoeuvre assistive robotic arms 
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Motivation and Research Gap 

(a) (b) 

Figure 1.2: Usage of an assistive robotic arm, in a domestic setting. In (a), the robotic 
arm is used to drink a glass of water; (b) shows the mounting to a wheelchair. The 
user controls each robot DoF sequentially via a joystick mounted on the armrest, 
with a button integrated into the wheelchair’s headrest to alternate through the 
DoFs. 

with direct movement control, these methods are ofen time-intensive and, in 
current commercial oferings [14, 64, 118], limited to predefned movements 
along specifc DoFs. In contrast, autonomous robots can manage ADLs for 
people with motor impairments but may introduce a new form of dependence, 
potentially compromising the desired sense of autonomy [20]. 

AI-based shared control systems, as detailed by Erdogan and Argall [62], 
represent a continuum of autonomy. This spectrum ranges from systems 
predominantly favouring manual control – and only subtly refning user in-
puts – to those where users mainly issue high-level commands for robotic 
execution. The gradient represents the nuanced balance of user involvement, 
from direct, moment-to-moment control to more abstract, directive interac-
tions, illustrating the diverse approaches to augmenting human capabilities 
through robotics [208]. In uniting both approaches, shared control systems 
involve users directly in the control loop [179, 238] on an operational level [70]. 
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Introduction 

These systems consider user inputs while also incorporating robotic deci-
sions or suggestions to enhance system usability. This dual approach aims 
to maintain user independence by allowing personal input and autonomy 
while benefting from the efciency and precision of automated technol-
ogy [109, 157]. Shared controls thus represent a balanced solution by merging 
human intuition with robotic efciency to improve the usability of assistive 
technologies [15, 29, 68]. 

1.1.2 Motivating a Shared Control Framework in Assistive HRI 

Shared control approaches are viewed with cautious optimism for their po-
tential to enhance efective HRI, but several challenges currently impact – 
and potentially hinder – their widespread implementation. Addressing these 
obstacles is essential for advancing and practically implementing shared 
control systems for assistive technologies where user-centred design and 
adaptability are desirable [76, 111]. Researchers encounter challenges during 
the research and evaluation stages, including: 

Challenge 1 – Exploration of Shared Control Systems: Developing shared 
control systems for assistive technologies requires extensive experi-
mentation, fne-tuning, and balancing between user and robot control 
input [130]. 

Challenge 2 – Understanding Robot Behaviour: Despite extensive research 
into design solutions to communicate robot motion intent, clear insights 
into the entities, dimensions, and relations are still lacking. In assistive 
robotics, visualisation and feedback modalities must be precisely tai-
lored to individual user needs and abilities, as there is no one size fts all 
solution [105]. 

Challenge 3 – Diverse Requirements for Input Devices: The suitability of 
input devices can vary greatly between users. Individual capabilities 
and needs may necessitate multi-modal input or require selecting from 
diferent input modalities [12]. 
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Challenge 4 – Conducting In-person User Studies: The physical intermin-
gling of robots and humans for research studies presents substantial 
challenges, including logistical and transportation complexities, safety 
concerns with robots in close proximity to humans, and the varying 
availability of target users [34]. 

Addressing these challenges presents difculties for shared control re-
searchers, as rigorous testing demands considerable resources and time, 
ofen constraining fexibility for the to-be-tested variables, such as the level of 
assistance the system provides, interaction design, intervention strategies, 
and use-case scenarios. Furthermore, the bulky, costly, and intricate nature 
of assistive robotic arms in associated research studies may hinder the in-
volvement of the target group in the research process due to logistical and 
safety concerns. As one option to to facilitate a holistic and fexible approach 
to these challenges, my thesis proposes a modular and open framework for 
in-silico development and evaluation of shared control approaches, including 
options for updated suggestions, attention detection and guiding, as well as 
multi-modal control and feedback support. Adopting a simulation approach 
akin to those already successfully employed in industrial settings [144, 160, 
217] allows for the exploration of diferent shared control applications while 
integrating various input devices and visualisation modalities, while address-
ing – at least partially - the challenges of integrating the target group in the 
research process. 

Research Opportunities 

Motivating AI-enhanced Shared Controls for Assistive HRI: Applica-
tions of AI-enhanced shared controls can combine the benefts of 
(semi-)autonomous actions with the fexibility of manual controls. This 
presents a signifcant research opportunity to fne-tune the optimal bal-
ance between human and algorithmic control inputs, enhance system 
legibility, and devise intervention strategies to improve the usability and 
accessibility of shared control-based assistive technologies. 
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Motivating a Shared Control Framework in Assistive HRI: AI-enhanced 
shared control applications require rigorous testing to determine the 
system’s optimal parameters, which ofen entails considerable resource 
and time investments. A promising research opportunity involves the de-
velopment of a testbed environment for in-silico research and evaluation 
of assistive robot shared control applications, serving as a benefcial in-
termediate stage prior to real-world testing. This approach can increase 
fexibility and resource efciency for HRI researchers while facilitating 
the early involvement of target users in the research process. 

1.2 Research Structure and Key Findings 

This thesis addresses the research gap through a three-step process (STEP I– 
III). Each stage includes a central guiding question (Q) and highlights key 
fndings from my research contributions. Any corresponding publication (P) 
is illustrated in Figure 1.3 and listed in Related Publications for each step. 

STEP I STEP IIISTEP II

Ethnographic
Study of User 

Needs 
[P2]

Scoping
Review 

Robot Intent
[P5]

Adaptive DoF
Mapping 
Control

[P4]

Visual/Haptic
Directional

Cues
[P3, P6]

Human-AI 
Collaboration

in Robotics
[P8]

AdaptiX
Framework 
as D&D Tool

[P4]

Adaptive 
Control in 3D 

Space
[P1]

Single-DoF
Control Input 

and 
Feedback

[P9]

Different 
Input Devices 

for ADMC
[P10]

Visual 
Perceptual
Feedback

[P7]

Figure 1.3: Overview of the thesis research structure, including an architecture of 
the thesis’s thematic connections across STEP I–III, along with the corresponding 
publications. 
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Research Structure and Key Findings 

In STEP I, recommendations are provided to understand the needs of tar-
get users with motor impairments regarding assistive technologies and the 
potential role of assistive robotic arms in addressing these needs. These rec-
ommendations stem directly from the user group and are derived through 
an ethnographic study. Further, the concept of robot motion intent within 
HRI is defned through a comprehensive scoping review, and its entities, 
properties, dimensions, and relationships are clarifed to enhance communi-
cation and collaboration among researchers. Based on the fndings in STEP I, 
STEP II delineates key factors infuencing cooperation between humans and 
AI-enhanced robots, explicitly focusing on motion legibility, integration of 
user control input, and intervention possibilities. This step also presents a 
new shared control application with diverse visualisation options for DoF 
mappings and concludes with introducing the comprehensive AdaptiX frame-
work. Lastly, STEP III reports empirical concept evaluations of AdaptiX in 
Virtual Reality (VR), Mixed Reality (MR), and Augmented Reality (AR) en-
vironments – consolidated under the term Extended Reality (XR) [95] – in 
remote and laboratory studies. During the evaluation process, the frame-
work was improved based on the feedback received from each individual 
evaluation, following a user-centred design process [106]. 

The individual sections reported in this thesis are embedded in two research 
projects (MobILe: 16SV7866K and DoF-Adaptiv: 16SV8565), supported by the 
German Federal Ministry of Education and Research (BMBF). Here, I collab-
orated with diferent partners from TU Dortmund University, Westphalian 
University of Applied Sciences, Frankfurt University of Applied Sciences, German 
Research Center for Artifcial Intelligence GmbH (DFKI), Friedrich-Wilhelm-
Bessel-Institut Forschungsgesellschaft mbH (FWBI), HIDREX GmbH, pi4_robotics 
GmbH, and munevo GmbH. The aim of both research projects was to use 
(semi-)autonomous robotic arms to support people with motor impairments 
by enhancing user capabilities and supporting self-determined living. 

I switch from I to the scientifc plural we when referring to papers conducted 
in collaboration with others. The contributing authors are clearly identifed 
in the Statement of Contributions following the last chapter of this work. 
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Introduction 

1.2.1 STEP I: Analysing User Needs and Robot Intent Commu-
nication 

STEP I delves into the early stages before the ideation process by clarifying 
user’s needs from their own perspective and by delineating the various con-
cepts associated with robot intent communication. The latter addresses the 
necessity for a mutual understanding between humans and their robotic 
assistants through a scoping review that clarifes various aspects of robot 
motion intent within HRI. The former comprises an ethnographic study of in-
dividuals with motor impairments, specifcally their execution of ADLs. This 
study identifed essential requirements for an assistive robotic arm tailored 
to day-to-day tasks. The step centres around the guiding question: 

Q1 How can legible AI-enhanced assistive robots be efectively integrated in 
domestic care settings while accounting for subjective needs? 

STEP I Key Findings 

User-derived Recommendations: Current assistive technologies ofen 
adapt solutions initially designed for the general population to ad-
dress the perceived needs of individuals with motor impairments, ofen 
without direct involvement from the target group. Our ethnographic 
study [P2] emphasises that structural, social, and collaborative concerns 
exist and that they need to be addressed throughout the research process. 
This approach yielded eleven recommendations for designing robotic 
drinking aids, informed by the expressed needs and observed lived expe-
riences of our study participants. A signifcant fnding from our research 
is the frequent desire expressed by participants to spend time without 
constant assistance, a need that can be met by developing efective and 
safe assistive technologies. Focusing specifcally on a drinking aid, the 
positive adaptation of such technology would enhance access to hydra-
tion, a critical aspect ofen necessitating the presence of caregivers. 
Moreover, our user-centred approach underscores the benefts of involv-
ing the target group in the early research stages to enhance the likelihood 
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of future user acceptance of assistive technology. Finally, our utilisation 
of Google Cardboard to simulate the use of a robotic arm ofers an efcient 
and fexible solution, showcasing the efectiveness of VR technology to 
introduce HRI scenarios to users. 

Intent Communication Model: Establishing efective communication 
of a robotic system’s intent to users is essential for fostering collabo-
ration and preventing task failures in HRI. Based on insights from our 
systematic literature review [P5], we devised a model for robot motion 
intent communication. This model highlights the primary entities of 
robot, intent, and human and identifes a communication fow among 
them resembling the classic HCI model introduced by Schomaker [191]. 
A central fnding from our research is the signifcance of factors such 
as attention, state, and instruction, which ofen serve as essential pre- or 
post-cursors for explicit motion intent communication. Furthermore, 
we extracted several empirical fndings that underscore the connection 
between intent information and intent location. These insights are im-
portant for developing more legible feedback methods to foster a shared 
understanding of robot behaviour. Our work supports researchers to 
better align their work with the suggested dimensions, thereby making it 
easier to assess and compare diferent studies (e.g., [137, 138, 192, 222]). 

Related Publications: [P2] and [P5] 

1.2.2 STEP II: Concept & Design of AI-enhanced Assistive 
Robotics 

STEP II explores challenges linked to the collaboration between humans and 
AI-enhanced robots to extract empirical implications – covering the chal-
lenges of legibility, user control, and intervention – and to fne-tune user 
and system interactions. Based on these fndings, a novel shared control ap-
proach – Adaptive DoF Mapping Control (ADMC) – is proposed, which utilises 
the multi-dimensional mapping of a robot’s DoFs to allow for a simplifed 
control by the user with a low-DoF input device. Subsequently, a set of several 
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feedback methods – involving visual and haptic modalities – were conceptu-
alised and developed accompanying ADMC to communicate suggested DoF 
mappings. The step concludes with introducing and implementing the Adap-
tiX framework. This framework includes a VR simulation environment and 
extensive customisation options, and as such, streamlines the integration 
of the target group into the research process, reduces operational overhead, 
and enhances overall efciency. 

The guiding question in STEP II is: 

Q2 How can we engage in collaborative eforts with an AI-enhanced system 
by reducing input complexity? 

STEP II Key Findings 

Challenges in Human-AI Collaboration for Assistive Robotics: AI-
enhanced systems can support users – especially when their interaction 
modalities are limited – in controlling an assistive robotic arm. In our 
work [P8], we identifed three primary challenges associated with inter-
acting with an AI-enhanced assistive robot and derived corresponding 
empirical implications. These insights were integral to the development 
of the AdaptiX framework [P4]. 

Shared Control Approach: Expanding on prior research and related work, 
we introduce ADMC, a context-aware shared control approach using mul-
tiple robot DoFs mapped onto a low-DoF standard input device (e.g., a 
joystick) [P4]. This eliminates the need for complex multi-dimensional 
input devices – which are ofen impractical for individuals with mo-
tor impairments – and reduces time-consuming mode switches during 
Cartesian robot control. Adopting the ADMC approach can facilitate 
the simplifed and accessible operation of an assistive robotic arm for 
ADLs, thereby increasing independence from constant human care and 
company. 
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Feedback of Directional Cues: We devised visual feedback methods 
by leveraging insights from our research on robot motion intent com-
munication [P5]. These visualisations create a safe and collaborative 
environment, allowing users to comprehend movement directions and 
implications based on DoF mappings [P6]. Additionally, we demonstrate 
the efcacy of vibrotactile haptic feedback in conveying directional cues 
from the robot [P3]. This ofers an alternative to visual feedback, catering 
to individuals with visual impairments or addressing visual clutter from 
augmented information in a given scenario. 

Comprehensive Framework: Ensuring efective addressing of the target 
group’s concerns and well-designed intent communication is impera-
tive for implementation of shared control systems in assistive robots. 
Our AdaptiX framework [P4] facilitates the development and assess-
ment of robotic applications in-silico. It serves as a vital intermediary 
between concept ideation, development, and evaluation, ofering HRI 
researchers enhanced fexibility and promoting efcient resource allo-
cation (e.g., [83]). Notably, using a virtual model during the development 
stages simplifes the seamless integration of the target group. 

Related Publications: [P3], [P4], [P5], [P6], and [P8] 

1.2.3 STEP III: Evaluating Interaction Design & Robot Intent 
Communication 

In STEP III, I present a visual approach to communicate the robot’s world 
perception, ensuring object-aware navigation. Additionally, this phase in-
volves the evaluation of our AdaptiX framework and the ADMC shared control 
approach. Using the XR framework introduced in STEP II, we conducted both 
remote and laboratory studies, employing a virtual robot in a simulation 
environment or a physical robot in the real world. The evaluations include 
systems with varying numbers of DoFs for user input and exploration of 
diferent input devices. The guiding question is: 
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Q3 How does the AdaptiX framework support researcher in developing and 
evaluating ADMC and other shared control approaches using low-DoF 
input devices? 

STEP III Key Findings 

Number of Input-DoFs: In our initial evaluation [P1], we employed a 
two-dimensional input for our shared control approach [P4], with ADMC 
utilising one axis for Optimal Suggestion and the other for Adjusted Sug-
gestion. Participants raised concerns about the dynamically changing 
mapping of combined DoFs and the two-DoF input device. Subsequent 
studies [P9, P10] adopted a one-dimensional input for ADMC. Here, we 
demonstrated that adaptive controls signifcantly reduce task comple-
tion time, average number of necessary mode switches, and perceived 
workload compared to Cartesian control. 

Suggesting an Updated DoF Mapping: Leveraging the benefts of adaptive 
controls, we conducted a comparison between two ADMC variants: Con-
tinuous and Threshold, distinguished by the time of suggestion communi-
cation to the user [P9] via legible and straightforward visualisations [P7]. 
We found no signifcant diferences between Continuous and Threshold, 
which suggests that both discrete and continuous communication of 
movement suggestions enable users to efciently utilise adaptive control 
methods. Qualitative interviews further supported these fndings. 

Exploring Input Devices: Expanding on the Threshold variant of ADMC, 
we employed AdaptiX to assess three distinct input devices for command-
ing a physical assistive robotic arm: a motion controller, assistive buttons, 
and a head-based approach [P10]. Although all participants successfully 
controlled the robotic arm with each input device to accomplish the 
project task, the study’s results underscore the heightened efectiveness 
of hand-operated input methods compared to a head-based interaction 
approach. 

Related Publications: [P1], [P4], [P7], [P9], and [P10] 
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1.3 Contribution 

Assistive technologies empower individuals with disabilities by promot-
ing self-determination and independent living [203], reducing dependence 
on human caregivers [10, 151], and enabling people to stay in their own 
homes [87] – a key consideration in an ageing population [3]. However, these 
systems are ofen designed for the target group with limited input from the 
community. Adopting a user-centred design process enhances user accep-
tance of upcoming assistive technologies by incorporating users’ insights 
into their respective capabilities and needs [86, 98]. Building on this perspec-
tive, this thesis delves into the research process, presenting user-derived 
recommendations for an assistive drinking aid [P2] and a robot intent com-
munication model [P5]. The model aids future researchers in aligning their 
work with suggested dimensions, facilitating the assessment and comparison 
of HRI studies. 

We built on Goldau and Frese’s two-dimensional shared control approach [84] 
and extended it into three-dimensional space, thereby increasing the po-
tential DoFs and enabling a more precise representation of ADLs [P4]. It 
mitigates the need for complex – and ofen impractical for individuals with 
motor impairments – multi-dimensional input devices and time-consuming 
mode switches during Cartesian robot control through DoF mappings. For 
an legible behaviour, we developed visual and haptic feedback methods to 
communicate the resulting movement direction [P3, P6], including an arrow-
based gizmo visualisation approach, in the AdaptiX framework. 

The comprehensive AdaptiX framework, with its modular architecture and 
additional functionality, facilitates the development and evaluation of assis-
tive robot control applications in-silico and in real-world settings, ofering 
enhanced fexibility, promoting efcient resource allocation, and integrating 
the user group into the research process. Moreover, this thesis evaluates the 
AdaptiX framework and ADMC shared control approach. AdaptiX efectively 
enables the research of new interaction designs and feedback techniques 
in-silico, supporting real-time suggestions by user attention guiding. It also 
allows quick assessments of diferent input devices through its standardised 
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User Input Adapter, successfully serving as an interface between the physical 
robot and virtual communication via a XR Head-Mounted Display (HMD). 

Research Contribution 

This thesis contributes to AI-enhanced assistive robotics in domestic care 
settings through three key advancements. First, it provides an under-
standing of user needs regarding assistive technologies and delineates 
various concepts associated with robot motion intent communication. 
Second, the innovative shared control approach ADMC is presented, 
which generates DoF mappings based on the situational HRC task and 
communicates them as suggestions to the user. Third, the XR framework 
AdaptiX is introduced and evaluated for in-silico development and eval-
uation of multi-modal interaction designs and feedback methods for 
shared control applications. This work efectively narrows the research 
gap by facilitating the development and evaluation of shared control 
approaches while simplifying user integration into this process. 
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2 
BACKGROUND AND DEFINITIONS 

Chapter Two contextualises the thesis within the current HRI / HRC research 
landscape and defnes foundational terminology essential for subsequent 
discussions. Key focal points include assistive robotics in domestic care, 
applications of shared control methodologies, and the implementation of 
multi-modal feedback strategies. 

2.1 Human-Robot Interaction & Collaboration 

The term robot encompasses a diverse array of (semi-)automated devices 
characterised by varying capabilities, technologies, and physical forms [88]. 
These versatile entities have the potential to contribute to our daily lives by 
providing assistance in workplaces, aiding with household tasks, and even 
accompanying us in public spaces [4, 17, 139]. Despite variances in DoFs and 
mobility among these cyber-physical systems, their diverse applications can 
augment human capabilities and improve efciency [74]. Initially champi-
oned in industrial settings, robots performed strenuous tasks like manipu-
lating and welding heavy components, typically within confned areas [102, 
229]. And while they were originally viewed as mere tools to be operated 
remotely by human workers [187, 236], their evolution in functionality and 
purpose has been remarkable. The advent of lightweight materials [50, 85, 
134] and the integration of safety sensors [55, 175, 225] enabled robots to 
become more adaptive to human presence, facilitating them to shut down or 
adjust operations when humans are in close proximity or when encountering 
resistance [78, 92, 188]. 

These advancements have led to the emergence of cell-less HRI [18], facili-
tating innovative applications like collaborative assembly tasks [196], craf-
ing [173], or assisting people with disabilities in their daily activities [170]. A 
comprehensive review by Ajoudani et al. investigated various approaches 
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to HRI, charting their evolution and emerging adoption over the past two 
decades [4]. They highlight the success of combining human cognitive skills 
– intelligence, fexibility, and responsiveness – with the precision and ca-
pacity for repetitive tasks inherent in robots. To delineate the spectrum of 
human-robot teaming, Matheson et al. categorised various types of cell-less 
HRI based on the degree of interaction proximity [143]. These include coex-
istence (sharing the same space at diferent times), synchronised (occupying 
the same space but not concurrently), cooperation (no spatial or temporal 
separation but working on separate tasks), and collaboration ( jointly working 
on a task with interdependent actions). 

These categorisations underline the importance of communication and trans-
parent interaction in successful HRI. While advancements in human-aware 
navigation primarily focus on enabling robots to interpret and respond to 
human behaviour [126], it is equally imperative to facilitate humans’ under-
standing of robotic conduct [124]. As highlighted by Matheson et al., the 
increasing physical intermingling of humans and robots accentuates the 
signifcance of efectively communicating robot motion intent for safe and 
efcient collaboration, constituting a foundational aspect of explainable 
robotics [143]. 

2.2 Assistive Robotics in Domestic Care 

Optimising and streamlining collaborations becomes particularly important 
when designing for vulnerable user groups, such as with assistive technolo-
gies for people with motor impairments. Assistive robotics have the potential 
to substantially enhance independence and improve care by providing sup-
port and alleviating the burden on caregivers, thereby improving the quality 
of life for those requiring care [22, 36, 101, 117, 148, 214]. Exactly how assistive 
robotic systems can assist individuals with motor impairments has gained 
increasing attention in research. Notably, the Robots for Humanity project 
led by Chen et al. [43] and a seminal study by Fattal et al. [66] examined the 
feasibility and user acceptance of such technologies. While the ultimate aim 
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is to fully (re-)integrate individuals with motor impairments into professional 
and social spheres, a recurring observation in their works is that current assis-
tive technologies primarily focus on enabling the performance of ADLs [174]. 
These actions range from fundamental tasks such as eating and drinking to 
more complex activities like grooming and dressing [47]. 

Ongoing technological advancements are continually expanding the capabil-
ities and enhancing the performance of cobots in the tasks they can perform 
for – and with – their users. In a study by Gallenberger et al., camera systems 
and machine learning were integrated into an autonomous robotic feeding 
system to identify food types and plan the picking and delivery process to 
the user’s mouth [75]. Another approach, as detailed by Canal et al., used a 
learning-by-demonstration framework for feeding tasks [36]. These projects 
highlight robotic capacity to autonomously complete tasks with minimal 
user intervention, focusing on the technical aspects of developing assistive 
technology rather than fne control by users. This emphasises that imple-
menting safe and user-friendly robotic solutions can fundamentally improve 
the quality of life for individuals requiring assistance [185]. Additionally, by 
assisting caregivers in their responsibilities and even facilitating certain tasks 
to be accomplished without human assistance, the overall quality and acces-
sibility of care are enhanced [125]. The resulting increase in independence is 
particularly benefcial for individuals with motor impairments, meeting the 
community’s desire for extended periods of alone-time and privacy [168]. 

In their research, Drolshagen et al. discovered that individuals with disabili-
ties generally adapt well to working alongside cobots, even in close proxim-
ity [59]. Overall, robotic assistance tends to be positively received by people 
with motor impairments, especially when their specifc needs are considered 
in the design process [67], and when sufcient oversight is provided to ensure 
a sense of security [24]. As such, efective communication of the robot’s mo-
tion intent emerges as a crucial factor for achieving high acceptance among 
end users. These fndings are corroborated by Beaudoin et al., who investi-
gated the long-term usage of the Kinova Jaco – a robotic arm representing a 
notable advancement in assistive technology [19]. Their study covered various 
themes, including improvements in daily task capabilities, satisfaction levels 
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with the Jaco system, psychological impacts, and the broader implications for 
users and their caregivers. According to Beaudoin et al., nearly all participants 
reported increased autonomy in certain aspects of life and noted positive 
psycho-social efects. Notably, a marked success was the improved ability of 
participants to drink independently using the Kinova Jaco, thereby reducing 
their dependence on human assistance while simultaneously increasing their 
well-being and health through continuous access to beverages [35, 49, 97]. 

2.3 Shared Control Applications for Robots 

The appropriate level of autonomy in assistive robots is a common point 
of contention. Highly autonomous systems [218] that reduce user interac-
tion to mere oversight have been found to elicit stress [176] and feelings of 
distrust [242] among users. Conversely, at the other end of the spectrum, 
manual controls with only minor adjustments to the user’s input [201] can be 
challenging, or even impossible, for users with certain types or degrees of 
impairments to operate [43, 112]. Shared control presents a middle ground 
by integrating manual user operation through standard input devices with 
algorithmic assistance from computer sofware to adjust the resulting mo-
tion. This approach addresses concerns associated with purely autonomous 
systems and manual controls [1]. In shared control, there is a collaborative 
efort between the user and the robot on the operational level, empower-
ing individuals with motor impairments to actively participate in their care. 
Consequently, such methods can enhance the sense of independence and im-
prove ease of use compared to entirely manual controls [70]. By maintaining 
a balance between autonomy and user involvement, shared control systems 
can provide a more acceptable and comfortable experience for individuals 
relying on assistive technologies [90, 181, 220]. 

A distinct approach is the shared control system proposed by Goldau and 
Frese [84]. This system integrates the cardinal DoFs of a robotic arm based on 
the situational task and aligns them with a low-DoF input device. The process 
involves attaching a camera to the robotic arm’s gripper and using a Convolu-
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tional Neural Network (CNN) trained on ADLs performed by individuals with-
out motor impairments [84], akin to the learning-by-demonstration method 
used in autonomous robots [36]. The CNN then provides a set of re-mapped 
DoFs, ranked according to their predicted efectiveness for the given situation, 
allowing users to execute a variety of movements as required. Furthermore, 
this CNN-based approach ofers extensibility, as it can be trained to distin-
guish between many diferent situations, enhancing its practicality for every-
day use. In their proof-of-concept study, which involved a two-dimensional 
simulation environment featuring a robotic gripper representation and a 
target object, Goldau and Frese [84] observed faster task execution with the 
proposed system than manual controls. However, users perceived the shared 
control approach as more complex, expressing their preference for a more 
extensive training phase – even in this low-DoF environment. Their fndings 
highlight the need for more intuitive and responsive interaction feedback 
when controlling a robot. 

My research in AI-enhanced assistive robotics builds on Goldau and Frese’s 
approach, but extends it from two dimensions to three-dimensional space. 
This extension increases the potential DoFs, enabling a more precise repre-
sentation of ADLs. By incorporating additional functionality, visualisations, 
and a Robot Operating System (ROS) integration, my work facilitates the 
development and evaluation of innovative interaction and control methods 
based on a shared control approach. 

2.4 Multi-Modal Feedback Methods 

Safe and efective HRC relies on a seamless communication of robot motion 
intent [143]. The subsequent sections ofer an overview of multi-modal feed-
back methods designed to convey directions and guide the user’s attention 
efectively . 
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2.4.1 Directional Visualisations 

In recent years, AR technology has increasingly been applied in HRC con-
texts [13, 56], with much prior research focusing primarily on HMDs, Mobile 
Augmented Reality (MAR), and Spatial Augmented Reality (SAR) to visualise 
robot motion intent [93, 184, 228]. Rosen et al. showed that AR could ofer 
signifcant improvements over traditional desktop interfaces in visualising 
intended robot motions [184]. Their study demonstrated that a AR/MR HMD 
allows humans to determine where the robot is going to move more quickly 
and accurately compared to existing two-dimensional baselines. However, 
existing literature predominantly addresses visualising motion intent for 
autonomous robotic systems [9, 38, 52, 93, 209, 230]. These studies explore 
how AR can efectively communicate the planned trajectory or behaviour of 
robots, thereby enhancing predictability and safety in shared environments. 
In their comprehensive literature review, Suzuki et al. examined the inter-
play between AR and robotics in greater detail, highlighting the potential 
of AR-based visualisations for conveying information such as movement 
trajectories or the internal state of the robot [212]. Their work underscores 
the potential of AR technologies in enhancing communication between hu-
mans and robots, which is crucial for safe and efcient HRC. However, their 
review does not delve deeply into the specifc categorisations or intricacies 
associated with intent, suggesting a need for further research in understand-
ing and classifying its multifaceted nature. Moreover, limited attention has 
been given to communicating suggestions for robot intentions and associated 
control modalities. This approach not only displays the robot’s current or 
planned actions but also provides users with intuitive interfaces and feedback 
mechanisms to understand and infuence these actions. 

In my research, I am using diferent XR feedback technologies, including VR, 
MR, and AR. Within this research scope, we implement visual feedback by 
simulating AR in a VR environment and utilising directional cues registered 
in three-dimensional space. This method allows users to comprehend var-
ious movement directions for both actual control and the suggested DoFs 
combinations. A primary strategy involves the use of arrows, a straightfor-
ward and universally understood visualisation technique as demonstrated 
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in prior works [197, 200, 228]. The overarching goal is to provide users with 
an intuitive and efcient means to interpret and interact with the suggested 
movements and controls of the robotic system. 

2.4.2 Vibrotactile Haptic Feedback 

Research on vibrotactile signals as a feedback modality highlights their ef-
cacy in directing attention, guiding actions, and conveying patterns [94, 96, 
231]. Barralon et al. conducted a study on pattern recognition using a vibro-
tactile belt equipped with eight actuators, where participants were tasked 
with selecting the correct corresponding visual representation [16]. Lee and 
Starner proposed BuzzWear, a wearable tactile display with three vibration 
actuators designed for notifcation purposes by modulating intensity, pattern, 
direction, and starting point [131]. Their fndings show that afer 40 minutes 
of training, subjects could already distinguish between 24 patterns with up 
to 99% accuracy. Vibrotactile haptic feedback fnds application in guidance 
contexts as well. Lehtinen et al. conducted a study using a vibrotactile glove 
to assist in a visual search task on a fat plane displayed on a wall [132]. Their 
fndings showcased that the impact of visual complexity can be signifcantly 
mitigated through enhanced spatial precision in the guidance provided. 

However, while certainly successful for specifc tasks, a prevalent challenge 
in tactile displays is their limited resolution. To address this constraint, re-
searchers have turned to tactile illusions for simulating smooth movement 
patterns [46], such as Phantom Sensations [6, 169], Apparent Tactile Motion [33, 
119, 195], and the Cutaneous Rabbit illusion [79, 149, 180, 205]. Tan et al. per-
formed a study using a 3 x 3 tactile display, employing the Cutaneous Rabbit 
sensation to communicate eight two-dimensional directional cues. They 
achieved successful cue recognition, demonstrating the attainable spatial 
resolution when using vibrotactile haptic feedback [213]. While prior re-
search has predominantly concentrated on two-dimensional directional cues 
(e.g., [213]) or enabled users to feel directions as they approach with their 
hand (e.g., [94]), our objective is to convey three-dimensional directional 
cues. We extend the work established by Tan et al. [213] for communicating 
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two-dimensional directions and expand upon it by combining their base with 
pulse or intensity mapping to also communicate the gradient. This novel 
approach leverages vibrotactile feedback for more nuanced and spatially 
aware interactions, potentially improving user navigation and understanding 
of robotic movement or environmental cues. 

2.4.3 Feedback Modalities for User Attention Guidance 

In shared control systems, directing user attention to the robot’s assistance is 
imperative to prevent potential hazards such as collisions [172]. This becomes 
especially important when either party manoeuvres the robot in a manner 
that might exacerbate the situation or when something out of the ordinary 
happens. Various feedback modalities have been proposed to guide user 
attention as a supplementary feedback mechanism alongside AR [26, 40, 
159]. Incorporating multi-modal feedback – including auditory, visual, and 
tactile/haptic signals – improves system predictability and user response, 
thus facilitating prompt and informed decision-making. 

Similar strategies are employed in autonomous vehicles, which issue Take-
Over-Requests (TORs) for the human operator to regain control in complex 
situations [8, 239]. This TOR prompts the driver to assume manual control of 
the vehicle to prevent a collision or to drive in areas the vehicle cannot handle 
autonomously. Auditory, visual, and tactile/haptic modalities are commonly 
used for TORs [240] – either as a single sensory input [172] or a combination 
of multiple variants [171]. Simulation studies, along with research on reaction 
times to diferent sensory stimuli, indicate that multi-modal feedback results 
in the lowest possible reaction times in shared control systems [31, 57, 123]. 
By integrating these feedback mechanisms, existing assistive robotics can 
enhance safety and efciency. Many systems including robots are already 
equipped with screens, speakers, and vibration motors, facilitating the addi-
tion of robust, multi-modal feedback and – thereby – improving the overall 
efectiveness of shared control systems. Based on these insights, I propose 
using multi-modal feedback as an efective means to convey an update to 
suggestions for DoF mapping and to garner user attention. 
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3 
AI-ENHANCED ASSISTIVE

HUMAN-ROBOT COLLABORATION 

The availability of context and the use of context in interactive 
applications offer new possibilities to tailor applications and systems 
on-the-fly to the current situation. However, context influences and 
often fundamentally changes interactive systems. 

– A. Schmidt [190] 

Chapter Three delineates the contributions of ten research papers centred 
on designing and developing interaction and feedback modalities for assis-
tive HRC. In the initial stage – STEP I – the discussion revolves around two 
papers: [P2], which analyses user needs and concerns regarding assistive 
robotic arms, and [P5], which covers a comprehensive literature review on 
how robots communicate their intent. STEP II details the concept and de-
sign of AI-enhanced assistive robotics, beginning with the development of 
a shared control approach by mapping DoFs [P4, P8]. It further examines 
diferent approaches for communicating these DoF mappings, including visu-
alisations [P6] and vibrotactile haptic feedback [P3]. Further, a transitional XR 
framework is introduced, serving as an innovative in-silico testbed environ-
ment which can be used throughout the research process and for evaluating 
shared control applications in user studies [P4]. Publication [P4] contributes 
to STEP II and STEP III, with the former concentrating on the framework’s 
development and the latter exploring its practicality through remote [P1] and 
laboratory studies [P9, P10], employing a virtual robot in a simulation envi-
ronment or a physical robot in the real world. Due to revisions between these 
user studies, AdaptiX was evaluated in diferent versions. Lastly, STEP III 
details the development and evaluation of visualisations communicating the 
robot’s environment perception to the user, particularly in terms of detected 
obstacles [P7]. Each step includes specifc research questions, an introductory 
summary, and detailed insights from the corresponding papers. 

25 



AI-enhanced Assistive Human-Robot Collaboration 

AI-enhanced DoF Mapping

1-DoF Input

Mode Switch

DoF Mapping Feedback

Update of DoF Mapping

Control Robot / Read Data

Figure 3.1: Overview of the AI-enhanced DoF mapping concept, including the im-
portant entities for collaboration: the user, the control system, and the robotic arm. 

The system proposed in this thesis adopts an AI-enhanced DoF mapping 
concept to enable users to control a high-DoF robotic arm with a single-DoF 
control input (see Figure 3.1). By generating a combination of several DoFs, 
the system suggests a mapping for multi-dimensional movements of the 
robotic arm. This mapping, along with any updates to it, is conveyed to the 
user through multi-modal feedback. By manipulating a single-DoF input 
device, users can control the robot along the generated DoF mapping. Addi-
tionally, they have the option to perform a mode switch to activate another 
combination of DoFs. By combining the user input and the activated DoF 
mapping, the system regulates the robotic arm and ensures the intended 
robot movement by interpreting its data. 

3.1 STEP I: Analysing User Needs and Robot Intent 
Communication 

STEP I explores user needs and concerns towards an AI-enhanced assistive 
robotic arm, as well as the factors infuencing efective robot intent com-
munication. Centred on supporting individuals with motor impairments in 
ADLs, the frst research question (RQ) arises from the recurrent challenges 
faced by the target demographic, compounded by the diverse spectrum of 
impairment types and severity levels: 
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RQ1.1 What are the essential needs of individuals with motor impairments 
for an assistive robotic arm? 

To address RQ1.1, I present the fndings of an ethnographic study, resulting 
in recommendations for the embedding of assistive robotic arms in the users’ 
day-to-day life [P2]. Through interviews and in-situ observations conducted 
in participants’ homes, we obtained a comprehensive understanding of user 
needs regarding their care, thereby giving the community a voice in the 
research process. 

As robots gain greater autonomy, their interactions with humans in shared 
spaces become more frequent. This necessitates the development of a mu-
tual understanding between humans and their robotic counterparts, as high-
lighted in research question: 

RQ1.2 How can robots efectively communicate their intended movement, 
and what comprises this intent? 

In response to RQ1.2, I propose a robot motion intent model based on a scop-
ing review [P5]. Our review seeks to clarify the defnition, properties, and 
relationships of robot motion intent within the feld of HRI. Furthermore, 
the study ofers an extensive overview of the various types of visualisations, 
modalities frequently used in communicating robot motion intent, along with 
derived empirical implications, and suggests numerous avenues for future 
research. 

3.1.1 Ethnographic Study of User Needs 

Assistive technologies are increasingly recognised as a meaningful addition in 
domestic care settings, capable of reducing the need for constant human sup-
port and providing opportunities for individuals with physical impairments 
to regain some level of independence [168]. However, studies conducted by 
Klein [121] and Merkel and Kucharski [153] highlight cases of non-acceptance 
and non-use. They advocate for a shif towards devices that are better aligned 
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with the needs of the target group. Similarly, Vines et al. recommend involving 
future users in the developing progress to enhance product acceptance [227]. 

In our ethnographic study [P2], we explored user perspectives regarding 
potential systems assisting with drinking and eating tasks. Through inter-
views and in-situ observations involving 15 users with motor impairments, we 
gained a situational perspective and derived a set of requirements towards 
assistive technologies. The interviews were structured into four sections, 
covering participants’ living situations, attitudes towards eating and drinking, 
required levels of assistance, and preferences for an ideal robotic aid. To 
introduce participants to the concept and to simulate a close-contact setting, 
we employed a Google Cardboard [89] with a stereoscopic video featuring 
our laboratory robot setup. This lightweight solution proved essential since 
interviews took place in participants’ homes. The video depicted a robotic 
arm delivering a glass of water to the user’s face, with the original sounds of 
the robotic aid increasing the authenticity of the experience. Focusing on 
participants’ consumption of food and drinks with the assistance of their care-
givers, the in-situ observations recorded the relative location of the assistant, 
methods employed, and communication between both parties. Based on our 
analysis, we derived a set of eleven recommendations for a robotic drinking 
aid. These recommendations are categorised into three groups addressing 
structural, social, and collaborative concerns, as illustrated in Figure 3.2. 

Collaborative ConcernsStructural Concerns Social Concerns

#1 Dimensions of the 
Robotic Arm

#2 Physical 
Attachment

#3 Taking Design 
Seriously

#4 The Care Situation 
and Social Aspects

#5 Safety #6 Privacy/Autonomy

#7 Data Privacy and 
Security

#8 Ease of Use
#9 Interaction Design 

and Interaction 
Technology

#10 Robotic Arm as 
Combined Drinking 

and Eating Aid

#11 Robotic Arm as a 
General Aid

Figure 3.2: User derived set of recommendations that support researchers and 
practitioners in designing assistive robots, categorised into three groups addressing 
structural, social, and collaborative concerns. 

Consistent with the fndings of Fattal et al. [66] and others [153, 216], our 
results indicate structural concerns expressed by our participants. Conse-
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quently, our fndings underscore the necessity for recommendations per-
taining to the physical characteristics of the robotic arm and attachment 
site. Participants further emphasised the importance of limiting the total 
number of assistive systems in their homes. Consequently the ideal versatile 
robotic aid should perform multiple tasks, supporting many diferent ADLs. 
A crucial insight revealed participants’ desire to spend time without their 
assistants, which requires them to complete ADLs on their own with robotic 
support. This autonomy would promote independent and self-determined 
living [30], while simultaneously alleviating caregivers and addressing the 
well-documented caregiver fatigue [114]. Participants particularly valued the 
inclusion in the design process of a device developed specifcally for them. 
The VR environment of the Google Cardboard allowed us to virtually bring the 
robot to the participants and mitigated logistic challenges. This involvement 
fosters a sense of ownership and ensures that the resulting recommendations 
are fnely attuned to their unique needs. Beyond the individual impact, these 
recommendations represent a crucial step in bridging the gap between tech-
nological design and the nuanced contexts of the target group and – as such – 
increase acceptance of future assistive technology within the community. 

3.1.2 Scoping Review: Robot Motion Intent 

As robots increasingly operate within shared spaces alongside humans, their 
growing autonomy – especially in close-contact interactions – underscores 
the need for a mutual understanding. While robotic research addresses this 
challenge from sensory and path planning perspectives, as seen in human-
aware navigation [126], the feld of HRI focuses on enhancing human compre-
hension of robot behaviour [25, 184, 228]. However, the intricacies of human 
communication ofen get lost in this context, requiring an understanding of 
robotic behaviour from its own frame of reference. Yet, progress in this area 
is impeded by the lack of a clear defnition of robot motion intent. The usage of 
this concept is ofen ambiguous, encompassing various aspects without con-
sistent defnition or specifcation by researchers. Instead, similar underlying 
ideas have been explored in the literature under terms such as conveying 
the inner state of a robot [215], communicating a spatial perception of the 

29 



AI-enhanced Assistive Human-Robot Collaboration 

outside world [27], or expressing a forthcoming/planned movement, either 
directly or indirectly [39, 146]. 

To investigate essential and current themes in robot intent communication, 
we conducted a scoping review [P5], following a multi-step process in accor-
dance with the Preferred Reporting Items for Systematic Reviews (PRISMA) [166] 
guidelines. The analysis revealed that several papers either presented, com-
bined, or empirically compared multiple intents. Consequently, we systemat-
ically extracted all individual intents from the paper corpus (n= 77), resulting 
in a total of 172 unique intents. Analysing the identifed intents, we mapped 
the primary entities robot, intent, and human, and identifed a communication 
fow among them resembling the HCI model proposed by Schomaker [191]. 
Refecting on all entities, our analysis of the intents revolved around: 1) why 
they were communicated (goal), 2) who communicated them (robot), 3) what 
they communicated (intent), 4) to whom they were communicated (human), 
and 5) in which circumstances they were communicated (context). Dimen-
sions, categories, and properties emerged from the data through an open 
coding process of the extracted answers. Specifcally, we identifed the kind 
of robot, location of intent, type of intent, information of intent, and role of 
human as our dimensions with the resulting intent communication model 
shown in Figure 3.3. 

Robot

Location
- On-Robot
- On-World
- On-Human

- Robotic Arm
- Humanoid
- Mobile Robot

Type

Human

Role
- Collaborator
- Observer
- Coworker
- Bystander

- Motion
- Attention
- State
- Instruction

Information
- Spatial
- Temporal

Intent

Kind

Figure 3.3: Overview of the intent communication model from robot to human. The 
three entities (i.e., robot, intent, human) and their dimensions are derived from our 
literature corpus [P5]. The flow of communication parallels the human-computer 
interaction model from Schomaker [191]. 

By delineating the dimensions of intent information, we found that the spatial 
property plays a signifcant role. Information registered in space establishes 
a direct connection between real-world objects and displayed information, 
whereas information unregistered in space lacks this immediate link, re-
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quiring an additional mental step to establish the connection. Consequently, 
conveying information unregistered in space may be less intuitive, prompting 
researchers to explore various combinations of information to mitigate this 
challenge. Findings addressing the spatial property indicate that both discrete 
and continuous information are efective for communicating intent, with 
the combination of these two forms proving to be the most practical method 
in conveying robot intent. Additionally, for the intent location dimension, 
we found that most of the review’s corpus leans towards presenting intent 
information as close as possible to the robot’s target to ensure a comprehen-
sive situational understanding by the user. Most importantly, our scoping 
review emphasises the need for a broader perspective on robot motion intent, 
revealing that it encompasses intent types that may initially appear unre-
lated to motion. Our analysis identifed attention, state, and instruction as 
crucial elements, ofen serving as necessary pre- or post-cursors for efective 
communication of explicit motion intent. 

3.1.3 Summary & Next Steps 

STEP I embodies two aspects, with the frst focusing on gathering in-
formation and analysing user needs regarding an assistive robotic arm 
(RQ1.1), while the second delves into the examination of prior usage of 
robot motion intent in the literature (RQ1.2). 

Ensuring the efectiveness of assistive technologies relies on usability 
for the target group. End users, being the most knowledgeable about 
their capabilities and needs, play a key role in determining the opti-
mal interaction methods with robotic devices. Hence, considering the 
user’s preferred collaboration mode, whether high-level (e.g., command-
based) or manual (e.g., joystick-, button-based), becomes imperative. 
Equally essential is transparent communication of the current mode 
to users and their human assistants. By extending our interviews with 
a stereoscopic video of our laboratory robot setting, we observed that 
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VR simulation solutions can prevent excessive workload of the possibly 
vulnerable users during the research process and accelerate prototyp-
ing [219]. Furthermore, partially focusing on the research process in 
simulation – as seen here by using Google Cardboard – helps alleviate 
the challenges posed by the bulky, expensive, and intricate nature of 
assistive robotic arms. Presenting new interaction and control options 
becomes much less time-consuming while simultaneously excluding 
potentially dangerous close-contact situations with users before glitches 
are managed [P2]. 

Our scoping review reinforces the demand for a more holistic under-
standing of robot motion intent, which encompasses various intent cate-
gories initially seeming unrelated to motion [P5]. However, our analysis 
uncovers that attention, state, and instruction consistently serve as essen-
tial prerequisites either before or afer conveying explicit motion intent. 
Tailoring approaches for diferent types of intent, intent information, 
and intent location provides an opportunity for multi-modal feedback. 
This not only informs the user about the robot’s intended movement but 
also ofers a chance for timely intervention. 

3.2 STEP II: Concept & Design of AI-enhanced As-
sistive Robotics 

In STEP II – guided by the fndings of STEP I – I explore shared control applica-
tions, analyse challenges associated with human-AI collaboration and derive 
empirical implications from this. Based on these insights, I introduce the 
concept of our ADMC shared control approach, which generates and suggests 
DoF mappings to the user. Subsequently, visualisations and a vibrotactile 
haptic communication approach for these DoF mappings are conceptualised. 
The step concludes with the introduction and implementation of the AdaptiX 
framework, which facilitates both the development and evaluation of shared 
control applications. 
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Several challenges complicate the efective development of shared control ap-
proaches, potentially hindering progress if not adequately addressed. Highly 
autonomous systems [218] reduce the amount of required user interaction 
but may induce stress [176] and feelings of distrust in users [242]. On the other 
hand, manual controls [201] can be challenging, or even impossible, due 
to user motor impairments [43, 112]. Developing successful shared control 
systems for assistive technologies necessitates extensive experimentation, 
fne-tuning, and a delicate balance between user and robot control input [130] 
to reconcile the advantages and disadvantages of the autonomy spectrum 
extremes. Additionally, there is a noticeable gap in understanding optimal 
system strategies for specifc situations and the diverse user profles within 
the target user group, leading to the research questions: 

RQ2.1 What considerations are essential when designing shared control ap-
plications? 

To address RQ2.1, insights from two research projects are presented, as de-
tailed in [P8] and [P4]. The former delineates three main challenges when 
interacting with an AI-enhanced systems, while the latter introduces our 
novel shared control approach – ADMC. 

RQ2.2 How can an intended movement direction by DoF mappings be com-
municated? 

To communicate the recommended movement direction to the user (RQ2.2), 
I examine various visualisation concepts from our work [P6]. Additionally, I 
introduce a feedback concept that goes beyond visualisations by utilising vi-
brotactile haptic feedback, as explored in our HaptiX concept and subsequent 
evaluation [P3]. 

RQ2.3 How can logistical burdens be reduced and the target group be better 
involved in the research and evaluation process? 
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To include the target group during the research and evaluation process while 
simultaneously reducing logistical burdens associated with in-home robot 
installations and laboratory visits (RQ2.3), I propose a comprehensive XR 
testbed environment [P4] for the in-silico development and evaluation of 
AI-enhanced shared control approaches and multi-modal feedback meth-
ods [P4]. In assistive robotics, the customisation of visualisation, feedback 
modalities and – maybe most importantly – the selection of suitable input 
devices [12] is paramount to address individual needs and abilities, recog-
nising the absence of a one size fts all solution [105]. AdaptiX, featuring a 
VR simulation environment and extensive customisation options, not only 
facilitates the integration of the target group into the research process but 
also reduces operational overhead and enhances overall efciency. The open 
source AdaptiX framework presented in this thesis is available for use by 
future researchers. 

3.2.1 Human-AI Collaboration in Assistive Robotics 

Current HRI research highlights a signifcant challenge faced by developers: 
optimising the autonomy level of assistive robots [130]. Striking a balance is 
crucial, as purely autonomous systems [218] – where users primarily issue 
high-level commands for the robot to execute – may diminish user interaction 
and trust. On the other end of the spectrum, manual controls [201], with only 
minimal alterations to the user’s input, could prove impractical for users 
with specifc impairments [117, 176, 242]. Various approaches are currently 
in use across diferent settings to achieve a balance, including time-optimal 
methods [103], blended mode switching [65], shared control templates [178], 
and body-machine interfaces [107]. These shared control approaches – com-
bining manual input with algorithmic assistance – represent a promising 
research direction. However, drawing from the relevant literature identifed 
in [P4, P8], we delineated three main challenges when interacting with an 
AI-enhanced assistive robot [P8]. Addressing these challenges is crucial for 
establishing the viability of shared control solutions. 
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AI Legibility: While objectively the robot system is designed to act in the 
user’s best interest, user trust is not guaranteed. Establishing trust 
necessitates transparency and legibility that users can comprehend. 
Additionally, users should be able to intervene in the robot’s control in 
the event of errors or incorrect suggestions for interaction. Efective 
communication of intent also involves capturing or guiding the user’s 
attention, which, in turn, may require employing multi-modal stimuli 
tailored to the situation and user capabilities. 

AI User Control: Prioritising user control presents challenges in robot inter-
action, where the complexity and DoF limitations of available input 
devices can pose usability issues. To achieve an optimal shared control 
balance, we propose starting with a minimised set of user interactions 
and increasing that on demand, depending on the individual capabili-
ties. While optimal ways of accomplishing a goal may require complex 
intervention from the robot, such interventions may be challenging for 
users to understand and, therefore, trust. A low DoF of the user input 
further allows a more extensive selection of specifc input devices to 
be used to control the robot. 

AI Intervention: The aim is to keep users in the loop so that they can in-
tervene appropriately whenever the AI reaches its limits. However, 
avoiding the imposition of sole decision-making on the user is crucial 
to mitigate cognitive demand and temporal delays. Optimal efciency 
is achieved through the implementation of a four-eye principle, where 
the AI operates with implicit user consent until intervention becomes 
necessary to fulfl the task’s goal. 

Previous research (e.g., [174]) has demonstrated that pick-and-place tasks are 
ubiquitously necessary to perform ADLs. Consequently, it is important that 
shared control applications are implemented frst for these straightforward 
tasks before more complex sequences are examined. If users encounter 
difculties in comprehending shared controls for pick-and-place tasks, it 
is plausible that more intricate tasks could lead to additional frustration. 
Therefore, we designed and optimised our initial version of ADMC to perform 
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pick-and-place tasks with an assistive robotic arm. Our work highlights the 
benefts and importance of sensible interaction design, which addresses these 
challenges and requires both a deep understanding of and interconnection 
with the AI technology. 

3.2.2 The Adaptive DoF Mapping Control Concept 

The original adaptive concept presented by Goldau and Frese involves inte-
grating the primary DoFs of a robotic arm based on the current context and 
aligning them with a low-DoF input device [84]. This alignment is achieved 
by attaching a colour-and-depth camera to the robotic arm’s gripper and 
training a CNN using individuals without motor impairments to perform 
ADLs, akin to the learning-by-demonstration approach used in autonomous 
robots demonstrated by Canal et al. [36]. In a proof-of-concept study, Goldau 
and Frese compared the control of a simulated two-dimensional robot using 
manual controls and CNN-based controls. While their approach showed the 
successful usage of DoF mappings, it lacks integration into realistic real-world 
scenarios. 
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Figure 3.4: Concept of ADMC using a CNN. (a) Control pipeline for proposed adap-
tive shared control and (b) matrix representation of DoF mappings: columns repre-
sent input-DoFs, rows represent output-DoFs, and subsets represent modes [P4]. 
Two columns were added to represent zero movement mappings in Finger Mode. 

Building on Goldau and Frese’s methodology [84], our work [P4] extends their 
approach from two dimensions to three-dimensional space. This expansion 
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increases the number of potential DoFs, allowing for a more accurate rep-
resentation of ADLs within our framework. In our adaptive DoF mapping 
concept – denoted as ADMC – the objective is to ofer a set of DoF mappings 
arranged by their efectiveness in executing the pick-and-place task used in 
our experiments. These DoFs mappings (see Figure 3.4) are suggested by a 
rule engine (e.g., a CNN or script-based approach). The concept of usefulness 
assumes that maximising the cardinal DoFs of the robot aligned with an 
input DoF while progressing toward the next goal is the most advantageous 
approach. 

This optimal DoF mapping suggestion is considered the preferred choice, 
primarily due to a substantial reduction in the need for mode switches when 
multiple DoFs are consolidated into a single motion. Combining more DoFs 
– provided it is suitable for the given context – minimises the necessity for 
mode switches. Consequently, the DoF mappings are organised based on the 
number of DoFs they combine. Additionally, alongside the Optimal Suggestion, 
a second suggestion is presented, representing an orthogonal variation of the 
frst suggestion. This second option ofers the highest degree of variability in 
spatial direction while keeping the number of combined DoFs unchanged. 
Users may fnd this secondary suggestion valuable for adjusting their position 
while maintaining a sensible orientation toward the next goal. The following 
DoF mappings were employed: 

Optimal Suggestion: Combining translation, rotation, and fnger movement 
(opening and closing) into one suggestion, causing the gripper to move 
towards the target, pick it up, or release it on the intended surface. 

Adjusted Suggestion: An orthogonal suggestion based on Optimal Sugges-
tion but excluding the fnger movement. Allows the users to adjust the 
gripper’s position while still being correctly orientated. 

Translation Suggestion: A pure translation towards the next target, disre-
garding any rotation. 

Rotation Suggestion: A pure rotation towards the next target disregarding 
any translation. 

Gripper Suggestion: Opening or closing of the gripper’s fngers. 
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3.2.3 Concepts to Visualise AI-generated Movements 

The objective of achieving a high level of AI legibility revolves around en-
hancing the understanding of how the AI reassigns input mapping or adjusts 
the movement trajectory of the robot. In our survey on robot motion intent 
approaches [P5], we observed that, for conveying location information such 
as movement direction, head-mounted technology such as AR HMDs are 
efective in visually representing proposed robot movement [48]. Although 
this research has explored robot motion intent, there needs to be more insight 
into what works best in various situations and for various user demograph-
ics. Customising the visualisation and feedback modality is paramount, as 
there is no one size fts all solution [105]. To address this issue, we proposed 
design concepts spanning a spectrum between two extremes – indicative and 
explanatory [P6]. Indicative feedback focuses on essential information only, 
providing a swif and straightforward solution suitable for profcient robot 
users. In contrast, explanatory feedback entails showing movements in great 
detail, ofering extensive information that particularly beneft novice users. 

DoF-Indicator: In this concept, Light Emitting Diodes (LEDs) are attached to 
the robot’s axis and joints communicate active (LED lights up) and inac-
tive (LED does not light up) DoFs. Alternatively, LEDs could be mounted 
on a bar in front of the user and referring to each joint by the corre-
sponding number (e.g., joint 1 – 7). Users of the system must derive the 
resulting movement direction based on the active DoFs. Consequently, 
this form of visualisation is likely better suited for experienced users. 

DoF-Combination-Indicator: Here, DoF mappings are communicated 
through a simplifed representation of the robot itself, capable of execut-
ing movements in only two DoFs simultaneously, such as rotating and 
extending the arm. This approach reduces the complexity of the robot 
and enhances the user’s comprehension of the intended movement. 
As an AR representation, it either can be displayed separately in the 
corner of the AR screen or overlays the actual robot, further decreasing 
the robot’s complexity. 
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Gizmo Visualisation: With this visualisation approach, gizmos – arrows, 
planes and point clouds – convey the robot’s current movement ca-
pabilities. Planes represent a two-dimensional representation of the 
intended movement possibility (e.g., x/y or x/z plane). Point clouds ex-
tend this by a third dimension, enabling a visualisation of a (complex) 
three-dimensional space surrounding the robot. Alternatively, arrows 
indicate the respective movement directions based on the DoF map-
ping and even provide a forward and backward direction in terms of 
controlling the robot. Arrows may vary in shape, being either straight 
or curved, depending on the complexity of the DoF mapping. 

Demonstration: Current movement possibilities are demonstrated either 
through the physical robot itself or an AR ghost representation. In both 
cases, rapid movement signifes the intended motion. 

Arrows – as one of the simplest gizmo visualisations – are commonly em-
ployed to represent movement directions, both in HRI and everyday applica-
tions. Previous studies have demonstrated their efectiveness in visualising 
the robot motion intent of a Baxter robotic arm in AR [186], as well as a mo-
bile robot’s trajectory in SAR [39, 104, 145]. Findings by Zein et al. show that 
an arrow-based MR visualisation leads to a signifcantly lower workload 
compared to either auto-completed trajectories without a visualisation or 
traditional teleoperation [241]. This emphasises the suitability of arrow-based 
visualisations to communicated the intended movement directions of the 
ADMC approach. 

Beyond Visualisation for AI-generated Movements 

Human perception of objects in their environment predominantly relies on 
the sense of sight. However, situations may arise where this ability can be 
impaired or entirely unavailable. These circumstances may include objects 
being obscured by other items or User Interface (UI) elements (i.e., visual 
clutter) or being positioned outside the individual’s feld of view. Additionally, 
optical perception may be limited or impossible for vision-impaired individu-
als. In addressing this, Burke et al. demonstrated that the haptic modality can 
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partially compensate for the absence of visual information and, in certain 
instances, outperform audio-based cues [31]. This type of feedback can be 
particularly valuable when the visual channel is overwhelmed by distracting 
information [42, 115]. It can also be efectively combined with other sensory 
modalities. 

Building on these insights, our research [P3] investigated various design ap-
proaches for conveying three-dimensional directional cues using vibrotactile 
feedback. The study involved the development of two conditions based on 
the Cutaneous Rabbit [80] illusion and one condition based on Apparent Tactile 
Motion [33] to communicate two-dimensional directions. The gradient of the 
overall three-dimensional direction was subsequently encoded using meth-
ods such as the number of discrete vibration pulses, vibration intensity, or a 
combination of both. Our fndings demonstrate that users can understand 
three-dimensional directional cues and associate them with forthcoming 
movements. This approach can be employed to map AI-generated movement 
suggestions onto vibration input on the hand to improve accessibility. Varia-
tions in the intensity of the actuators can indicate the degree of directional 
change, allowing users to better visualise the generated trajectory. 

3.2.4 The AdaptiX Framework as a Research and Evaluation 
Tool 

AdaptiX [P4] facilitates the development and evaluation of shared control 
applications in a high-resolution transitional MR environment. The XR frame-
work incorporates a VR simulation environment featuring a virtual robotic 
arm (e.g., a Kinova Jaco 2) and ofers extensive customisation options. This 
in-silico approach streamlines the research process while simultaneously 
reducing overhead and increasing efciency. An overview of the framework’s 
architecture is presented in Figure 3.5. 

In addition to Cartesian robot control, our study incorporates our proposed 
ADMC concept as the standard shared control approach. ADMC operates 
on suggestions generated by a rule engine (e.g., a CNN or script-based ap-
proach) for user control. The script-based approach is particularly valuable as 
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Figure 3.5: Overview of the AdaptiX architecture, illustrating each component, their 
directional communication, and the crossover from and to the framework [P4]. The 
user input is either used for Cartesian Control or Adaptive DoF Mapping Control 
(ADMC). For ADMC, either a CNN-based or script-based rule engine can be selected. 

it helps mitigate potential biases that may arise from more generic methods 
like CNN-based controls, which are currently still limited in scope [41, 77, 
133]. Integrated directly into the Unreal Engine [61], our ADMC concept al-
lows researchers and developers to fully customise control methods, system 
behaviour, and feedback techniques using C++ or Blueprints. 

AdaptiX supports various pre-implemented input devices and ofers an adap-
tor class for streamlining the development and implementation of additional 
input devices. This adaptability allows researchers and developers to efort-
lessly incorporate their own innovative ideas and concepts. The integration 
of a ROS interface within AdaptiX facilitates seamless connections to non-
simulated physical robotic arms, thereby enabling bidirectional interactions 
and data exchange through a DigitalTwin and PhysicalTwin approach. Straight-
forward trajectory programming is made possible by manually guiding the 
Tool Center Point (TCP) of a simulated or physical robotic arm to a desired 
location and recording both its position and orientation for future replay. The 
system further provides customisation options by allowing adjustments to 
specifc details such as camera positions and background scenes, thus creat-
ing a highly customisable environment. AdaptiX enables the exploitation of 
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the entire continuum of MR. This extends the use of the transitional frame-
work to new scenarios and environments – including the real world. Conse-
quently, the virtual and real environments of the robotic arm are aligned, 
allowing researchers to seamlessly switch between the user controlling the 
real and virtual robot. The level of MR can be adjusted in various steps (cf. 
the virtuality continuum of Milgram and Kishino [156]). The MR environment 
setups include: 

1. the completely real environment with the real robotic arm, 

2. the real environment extended with visual cues, 

3. the real environment into which the virtual robot is transferred and 
displayed (with and without visual cues), 

4. the virtual environment into which the real robot is transferred and 
displayed (with and without visual cues), 

5. the completely virtual environment with the virtual robotic arm. 

Integrating the modular and extendable AdaptiX framework provides a com-
prehensive foundation for developing novel interaction designs and feedback 
methods for shared control applications. AdaptiX ofers advantages in both 
remote and in-person studies, eliminating the need for a physical robotic 
device during initial ideation and prototyping stages, thereby enhancing fex-
ibility, accessibility, and efciency. Additionally, it streamlines the research 
process by obviating the need for researchers to start from scratch when 
implementing their individual solutions. 

3.2.5 Summary & Next Steps 

STEP II outlines the conceptual development of AI-enhanced assistive 
robotics, which includes the exploration of human-AI collaboration [P8], 
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the application of shared control using ADMC [P4], and the development 
of visual [P6] as well as vibrotactile haptic [P3] feedback methods to 
convey robot motion intent. These eforts result in a XR framework for 
the research process [P4] of shared control applications in HRI. 

Considering the primary challenges associated with collaboration be-
tween humans and AI-enhanced systems (RQ2.1), we devised and devel-
oped a shared control approach (ADMC) that priorities user control while 
facilitating seamless intervention strategies and provides legible DoF 
mapping suggestions through multi-modal feedback methods (RQ2.2). 
The objective of the ADMC approach is to present a set of DoF mappings 
ordered based on their efectiveness in accomplishing a pick-and-place 
task, which are integral to many ADLs. In this context, a useful map-
ping maximises the cardinal DoFs of the robot assigned to a low input-
DoF. This shared control application enables users to control a complex 
robotic arm with a reduced input DoF. Based on an initial training of 
the CNN, the system is not limited to cardinal DoFs or pre-determined 
motions of an autonomous system. However, it retains the capability to 
accurately represent and execute those, while also adapting to a wider 
range of movements and behaviours. Therefore, the system provides a 
DoF mapping that adapts to the current environmental and situational 
HRC task goal. 

One signifcant aspect of predicting robot behaviour is understanding its 
motion intent and comprehending how it conceptualises its actions [P5]. 
To address this, we focused on visual solutions that communicate the 
robots AI-generated motion intent to a human collaborator. Our ap-
proach entails a design exploration employing various visualisation tech-
niques to optimise user understanding of DoF mapping efect, ideally 
resulting in increased safety and fostering end user acceptance. We ofer 
diferent sets of visualisations tailored for both novice and experienced 
users. 

Furthermore, we introduce a solution to evaluate novel interaction tech-
niques and feedback methods with the target group without physically 
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transporting the robot to the users’ homes or study participants to the 
laboratory. This approach mitigates additional logistical burdens and 
ensures the involvement of the target group into multiple steps of the 
development process (RQ2.3). Additionally, future researchers stand to 
beneft from using AdaptiX. They can leverage its capabilities across 
the entire spectrum of MR and choose to develop a fully immersive VR 
environment, basic AR visual cues or even a desktop application using a 
pure screen space. With the simulated and real-world environments of 
the robotic arm perfectly aligned, nearly seamless switching between 
controlling the real and virtual robot is possible and can be adjusted 
during run time to provide optimal interaction solutions. 

3.3 STEP III: Evaluating Interaction Design & Robot 
Intent Communication 

The fnal step of this thesis encompasses an empirical concept evaluation of 
perceptual feedback and ADMC within AI-enhanced assistive HRI. The initial 
paper [P7] focuses on communicating robot perception during autonomous 
tasks within a care environment. Especially in this context, promptly relay-
ing any identifed objects and obstacles to the user is crucial for enhancing 
trust in the assistive technology system. Furthermore, the exploration and 
assessment of the ADMC concept are detailed across three papers: two VR 
simulation studies – one remote [P1] and one in-lab [P9] – and one MR in-lab 
study involving the control of a physical assistive robotic arm [P10]. Revisions 
made between these user studies prompted evaluations of various updated 
versions of AdaptiX. 

As such, STEP III explores concepts of AI-enhanced assistive HRI, evaluated 
within the AdaptiX framework along these research questions: 

RQ3.1 How efectively can an autonomous robotic system communicate its 
perception, and how well can users recognise perception errors? 
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I addressed RQ3.1 by creating a scenario in which the gripper of an au-
tonomous robotic arm navigates through a set of obstacles, placed on a ta-
ble [P7]. I compared three visualisation concepts to assess the user’s ability 
to recognise obstacles as perceived by the robot. 

RQ3.2 How efcient is the ADMC approach in three-dimensional space with 
a two-DoF input device for moving an assistive robotic arm? 

To address RQ3.2, we assessed the ADMC approach in a remote VR study, 
wherein participants performed pick-and-place tasks, comparing an adaptive 
approach with a non-adaptive control method [P1]. Participants were tasked 
with controlling the robotic arm along the suggested DoF mapping with one 
joystick-axis and the alternative DoF mapping with the second axis. 

RQ3.3 What is the efciency of ADMC when refning the interaction design 
and use a one-DoF input device for moving the robotic arm? 

Building on the experiences and results of our initial user study [P1], we 
optimised our control concept to an one-dimensional input (RQ3.3). Addi-
tionally, we evaluated diferent time points for communicating DoF mapping 
suggestions to users in a VR laboratory study [P9], as well as diferent input 
devices for controlling a physical robot [P10]. 

3.3.1 Visual Perception Feedback for AI-enhanced Assistive 
Robotics 

As a precursor to the AdaptiX framework [P4], we developed a three-
dimensional testbed environment to facilitate studies for (semi-)autonomous 
HRI in close-contact scenarios [P7]. The reported studies [P7] explored vari-
ous visualisation approaches to efectively convey the robotic arm’s percep-
tion, especially information regarding detected objects within its physical 
environment. This perception communication is essential as any failure in 
object detection may harm the user, leading to unintended incidents such as 
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knocking over items or causing damage during interaction. We applied this 
concept to a breakfast scenario, where a robot assists in tasks like picking up 
a bottle and pouring water into a glass. 

Here, we investigated three diferent SAR visualisations for robot percep-
tion [P7]. Although primarily confned to two dimensions, research in the 
context of motion intent has demonstrated that SAR can be adapted to cover 
a dynamic workspace that includes multiple surface areas [9, 38]. In our sce-
nario, this adaptation is relevant for interacting with objects both on a table 
and retrieving objects from shelves. SAR has the capacity to augment larger 
areas of the surroundings, potentially extending beyond the user’s physical 
feld of view. Unlike HMDs, SAR can also be viewed by secondary users. How-
ever, the achievable feld of view depends on the mounting position of the 
projection system. While SAR may expand the visible augmentation area, it 
still faces challenges in efectively communicating information about objects 
that are of-screen, a challenge that we addressed in our research [P7] by 
investigating the efectiveness on-screen and of-screen components of the 
visualisations. In two web-based remote studies – one with the target group 
and one with the general public – we compared the efciency of the visuali-
sations when the robot fails to recognise an object, such as when the object 
leaves the sensor coverage, resulting in the deactivation of the corresponding 
visualisation. Both quantitative and qualitative fndings underscored the sig-
nifcance of an easily comprehensible visualisation (e.g., Line [P7]). We use 
this approach for conveying the motion intent of the assistive robotic arm, 
employing straightforward gizmo visualisations, such as arrows [P6], in our 
AdaptiX framework [P4]. 

3.3.2 Visualising Adaptive DoF Mappings in 3D Space 

In our initial study [P1], we used the AdaptiX framework to investigate the 
proposed ADMC control method alongside associated visual cues for difer-
ent DoF mappings. The study aimed to assess the performance of the novel 
adaptive control method – adapted from Goldau and Frese [84] – within a 
three-dimensional environment in comparison to the standard mode-switch 
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approach featuring cardinal DoF mappings. Additionally, the study explored 
the impact of variations in the appearance of visual cues on the performance 
of the adaptive control method. Due to the at-the-time ongoing COVID-19 pan-
demic [233], the research was conducted remotely within a VR environment 
created by the AdaptiX framework. Participants without specifc backgrounds 
were recruited, provided they had access to the necessary hardware for an 
immersive experience, such as an Meta Quest 2 [154] VR HMD. 

During the study, participants were tasked with repeatedly executing a simple 
pick-and-place operation by controlling a virtual Kinova Jaco 2 using one of 
three control types. These control types included the Classic visualisation, a 
method based on Double Arrow cues employing two arrows attached to the 
gripper’s fngers, and a visually simplifed version called Single Arrow, which 
utilised only one arrow positioned in the middle of the gripper. Comparative 
results revealed that adaptive controls required signifcantly fewer mode 
switches than the classic control methods. However, there were no notable 
improvements in task completion time or perceived workload. Participants in 
the study also expressed concerns about the dynamically changing mapping 
of combined DoFs and the use of a two-DoF input device. 

3.3.3 Single-DoF Control Input and Multi-Modal Feedback 

In a subsequent study [P9], we assessed two new adaptive control methods for 
an assistive robotic arm, one of which incorporated a multi-modal approach 
for guiding the user’s attention. The study was conducted in a laboratory 
setting to corroborate or challenge the initial investigation fndings [P1] re-
garding participants’ interaction with the assistive robotic arm using the 
AdaptiX framework. In this adaptive system, continuous calculations deter-
mined the optimal mapping of DoFs for task completion while in motion. 
These calculations were presented to users as alternative control options dur-
ing the task. Users could cycle through suggestions by pressing a button on 
the input device or continue with the current DoFs. The study compared two 
variations, namely Continuous and Threshold, which difered in the timing of 
when suggestions were presented to the user. These were contrasted against 
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a non-adaptive Classic control method, examining efects on task completion 
time, mode switches, perceived workload, and user opinions. Results indi-
cated comparable performance between Continuous and Threshold in terms 
of quantitative measures and qualitative insights, suggesting both methods 
efectively conveyed directional cues to users. 

3.3.4 Different Input Devices for ADMC 

A third study [P10] highlights the MR capabilities of the AdaptiX framework 
and its integration potential with various input devices. Here, we employed 
the Varjo XR-3 [224] XR HMD to explore an interaction design and feedback 
technique akin to the Threshold approach [P9]. By incorporating the XR HMD, 
the prototype creates an AR environment for the user, augmenting the physi-
cal setup with visual cues. Unlike the previous study [P9] involving a virtual 
pick-and-place task, this setup incorporates physical objects, a physical drop 
area, and a physical robotic arm with AR cues delivered through the headset. 
Participants compared three assistive input techniques: 1) a head-based con-
trol method utilising head defection on the pitch axis for continuous input 
and on the roll axis for mode-switching, 2) a gamepad input using the Xbox 
Adaptive Controller [155] extended with Logitech Adaptive Gaming Kit [135] 
buttons for discrete input, and 3) the control-stick of a Joy-Con [162] motion 
controller, serving as a baseline in comparison to our previous approach [P9]. 

Both of our selected input methods – Joy-Con and Logitech Adaptive Gaming 
Kit buttons – show promise as efective approaches for controlling a robotic 
arm within a shared control application. Our research fndings indicate that 
both hand-operated input methods, whether providing discrete or continuous 
input data, ofer several advantages: frst, they reduce the perceived workload 
of the user, and second, they enhance user perceptions of perceived usefulness, 
perceived ease of use, emotions, and comfort during interaction with the robotic 
arm. This suggests that hand-operated input methods can improve the user 
experience and usability of shared control applications for robotic arms. 
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3.3.5 Summary & Future Work 

To address RQ3.1, our research on perceptional feedback visualisa-
tions [P7] demonstrated the advantages of straightforward and easy-
to-understand visualisations. We applied this approach to communicate 
motion intent in subsequent research studies [P1, P9, P10]. The Line vi-
sualisation, preferred in both studies [P7], has not been integrated as a 
perceptional feedback visualisation into AdaptiX yet, but it is planned 
for future versions. 

Our remote study [P1] using AdaptiX proved to be efective in evaluating 
new interaction designs and feedback techniques. A notable advantage 
of this approach is that the physical robotic device does not need to be 
physically present during these initial studies when testing and assessing 
critical design components. We showed that adaptive mappings of the 
robot’s DoFs – ADMC – can lead to a signifcantly lower number of mode 
switches compared to standard control methods. However, our study 
could not conclusively show improvements in task completion time or 
reduced cognitive load. Also, challenges concerning the understanding 
of DoF mappings resulting from the two-dimensional input device were 
raised during the study (RQ3.2). 

The integrated multi-modal feedback [P9] is a crucial feature of AdaptiX, 
capable of supporting real-time suggestions by guiding user attention. 
Regarding RQ3.3, we examined possible efects for our single-DoF con-
trolled ADMC compared to Classic on task completion time, number 
of necessary mode switches, perceived workload, and subjective user 
experience. Although some participants found the combined visual-
auditory-haptic multi-modal feedback to be “irritating” [P9], it efectively 
conveyed updated suggestions. In contrast to our previous study [P1], we 
show the signifcant efciency to adaptive control methods compared to 
non-adaptive approaches. Future studies may continue exploring diverse 
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input and feedback modalities along with corresponding user contexts 
using AdaptiX as a virtual simulation framework to enabling the seamless 
setup of further user research. 

By integrating virtual cues into a real-world setting [P10], the research 
moved closer to reality on the MR-continuum than the previous two 
case studies [P1, P9]. Here, AdaptiX proved to be a successful and user-
friendly interface bridging the gap between physical robot control and 
communication via an XR HMD. One key advantage of AdaptiX is its abil-
ity to quickly evaluate diferent input devices’ efciency in controlling 
the robotic arm within the context of adaptive DoF mappings. The stan-
dardised User Input Adapter ofers researchers the fexibility in choosing 
from various technologies, supporting continuous, discrete, and abso-
lute user input methods. Moreover, its modular nature allows for further 
customisation to meet specifc research needs. 

I invite the research community to further enhance the AdaptiX frame-
work according to their specifc contexts and needs. Researchers are 
encouraged to create custom levels or scenarios and integrate new inter-
faces into the framework. This collaborative approach can contribute 
to the continued development and versatility of AdaptiX, expanding its 
potential applications in the feld of AI-enhanced assistive HRC. 
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4 
DISCUSSION 

In Chapter Three, I presented ten research papers and delineated their con-
tributions to the development and evaluation of a shared control approach 
in AI-enhanced assistive robotics. Building on this foundation, Chapter Four 
contextualises the signifcance of this work within the broader landscape of 
HRI. 

The chapter commences by refecting on the overarching research approach, 
along the three guiding questions: Q1) how can legible AI-enhanced assistive 
robots be efectively integrated in domestic care settings while accounting 
for subjective needs, Q2) how can collaborative eforts with an AI-enhanced 
system facilitated by reducing input complexity, and Q3) how does the Adap-
tiX framework support researcher in developing and evaluating ADMC and 
other shared control approaches using low-DoF input devices? Subsequently, 
the discussion explores two fundamental challenges within HRI that are 
addressed by this work: frst, enhancing the likelihood of successful human-
centred design through strategic integration of the target group, and second, 
establishing legible control systems, which is particularly vital with a target 
group that already relies on others for a signifcant portion of their daily 
activities. 

4.1 Critical Reflection of the Research Approach 

Predefned key elements have shaped the overarching research approach and 
design choices outlined in this thesis, thereby infuencing its ultimate out-
comes. This includes the central focus on designing legible AI-enhanced con-
trol approaches for assistive robotic arms for people with motor impairments 
in a user-centred design approach, focusing specifcally on pick-and-place 
tasks-based ADLs. To address Q1, STEP I reports an ethnographic study with 
the target demographic to explore enhancing daily routines with assistive 
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systems. Drawing on insights from prior studies [189, 226] highlighting low ac-
ceptance rates and underutilisation of assistive devices, this thesis prioritises 
designing based on expressed user needs. While the in-situ home visits of-
fered a more realistic depiction of the lived realities of the target demographic 
than laboratory settings, it is important to note the limited geographic dis-
tribution of study participants, potentially impacting generalisability of the 
reported insights. Furthermore, understanding the robot’s behaviour is cru-
cial for successful HRC, especially for non-tech-savvy users unfamiliar with 
complex robotic arms and close interactions [124, P5]. By facilitating efective 
communication of robot motion intent, I sought to increase understanding and 
predictability towards the system and create legible AI–enhanced assistive 
robots for our target user group. To communicate directional cues – based on 
the ADMC’s DoF mapping – we chose XR HMDs, as they signifcantly improve 
users’ understanding of robot motion intent [P5]. Even though current HMD-
technology is not able to provide an immersive XR experience efciently (due 
to, e.g., size, weight, battery), research can and should use these concepts [37, 
223]. Bulky XR HMDs are particularly unsuitable for individuals with motor 
impairments, especially given the varied – and in some cases progressively 
deteriorating – physical capabilities. As such, current XR HMDs present a one 
size fts all approach that does not address these individual circumstances [11, 
12, 105]. Consequently, the proposed ADMC interaction design concept and 
multi-modal feedback modalities were not evaluated with the target demo-
graphic in STEP III, leading to results that should be interpreted relative to 
each other rather than in absolute terms. Nevertheless, evaluating the ADMC 
concept in a XR environment still provides valuable insights that can be ex-
trapolated to the target group. Study participants remained seated, simulating 
the position of being in a wheelchair. They also used low-DoF input modali-
ties akin to those used by individuals with motor impairments to control their 
assistive devices. Looking ahead, future research should prioritise includ-
ing intended users in individual case studies to gain a more comprehensive 
understanding of potential challenges and validate or contest the insights 
gained in [P9] and [P10]. 

In addressing Q2, the proposed shared control ADMC approach introduced in 
STEP II solely focuses on the concept of combining a robot’s DoFs to generate 
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distinct DoF mappings [P4, P8]. These mappings, based on an underlying rule 
engine (e.g., CNN or script-based approach), are communicated to the user 
as three-dimensional directional cues [P6]. By reducing input complexity 
through this DoF mapping, users can control a high-DoF robotic arm via a 
low-DoF input device. This approach builds on Goldau and Frese’s proposed 
combination of specifc robot DoFs [84], but extends it from two-dimensional 
to three-dimensional space and incorporating environmental and situational 
awareness, facilitating its use for pick-and-place tasks-based ADLs. In con-
trast, existing literature has primarily focused on goal-oriented shared control 
applications [7, 91, 178, 237]. In such systems, the goal-oriented approach 
involves detecting or determining the intended movement goal, computing 
a corresponding trajectory, and incorporating user input to keep the user 
in the loop. Contrary to this, the ADMC concept does not work with a fxed 
goal location. Instead, it utilises its inherent rule engine, the arm’s posture, 
and a colour-and-depth camera feeds of the robot’s gripper surrounding. 
This approach enables a more fexible and situationally aware shared con-
trol system, integrating human cognitive skills (i.e., intelligence, fexibility, 
responsiveness) with the robot’s precision for successful HRI [4]. 

To evaluate the interaction design of our ADMC concept (Q3), we used a 
task-specifc script [P1, P9, P10] as the underlying rule engine to provide DoF 
mappings. To ensure a more deterministic study setting and mitigate poten-
tial biases, we decided against a more holistic but currently limited method 
like a CNN-based control [41, 77, 133]. However, it is important to acknowl-
edge that our task-specifc script proves efective solely within a controlled 
experimental environment, where the positions and rotations of all relevant 
objects and obstacles are factored in. Nevertheless, from a user perspective, 
the system still proposes situationally aware DoF mappings and provides op-
portunities to adjust them, whether based on AI or a predefned task-specifc 
script. Thus, I recognise that our studies may not comprehensively assess the 
quality of ADMC when employing a CNN as the rule engine. 

Due to the then-ongoing COVID-19 pandemic, we conducted a remote VR 
study [P1] to evaluate the initial iteration of our ADMC approach. Despite 
being unsupervised due to the pandemic’s constraints – and infuenced by the 
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additional participants’ efort to download and install the study environment 
on their hardware – I consider our study setup reasonable under the given 
circumstances and capable of yielding reliable results. Additionally, we con-
ducted supervised laboratory studies in [P9] and in [P10] to evaluate our ADMC 
approach, confrming signifcant improvements in adaptive control methods 
over non-adaptive ones. In our second user study [P9], the lack of measurable 
diferences between diferent time-based communication methods for feed-
forward recommendations – Continuous and Threshold – suggests that both 
discrete and continuous communication of movement suggestions enable 
efcient usage of adaptive control methods. While participants overall ex-
pressed positivity towards adaptive control methods, individual preferences 
varied considerably between both approaches. Some participants favoured 
the higher level of control aforded by Continuous, while others preferred the 
comfort provided by Threshold. Consequently, future development of adaptive 
control methods should – in accordance with Burkolter et al. [32] – incorpo-
rate personalisation options to enhance comfort, end user acceptance, and 
accommodate any future changes of capabilities. 

Customisation would be particularly advantageous for Threshold-based con-
trols, as several participants expressed irritation with the haptic and audio 
signals. Allowing users to adjust modalities, signal intensity, and even the 
threshold itself may enhance usability while retaining the benefts of an adap-
tive method. Furthermore, when evaluating diferent input modalities [P10], 
we observed a signifcant increase in perceived workload [100] during the 
head-based interaction. This was substantiated during post-interviews, with 
participants reporting mental demand and difculties aligning their actions 
with the suggested arrow directions. We also noticed that the Varjo XR-3 HMD 
might be too bulky and heavy to be used for head-based interaction – espe-
cially for precise interactions that take a longer time. Moreover, we observed 
that the specifc initial placement of objects were perceived as disadvanta-
geous compared to others, as the robot is fxed in place and has to perform 
unlegible movements for novice users to reach the target. However, further 
experimental studies are needed to determine which factors shape personal 
preferences and how customisation or crossover methods can deliver the 
best results. 
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4.2 Design of Human-centred AI 

Despite the increasing prevalence of automation facilitated by AI across vari-
ous domains, such as autonomous driving [108], content curation [81], and 
fnancial decision-making [82], it is imperative to recognise the crucial role 
humans play in these systems. AI’s long-term success and efectiveness is 
contingent on acknowledging that human agency is critical in its design, 
implementation, and use. As such, the concept of Human-centred AI (HCAI) 
focuses on creating AI systems that amplify and augment rather than substi-
tute human abilities [199], which is conceivably particularly valued by a user 
group that already relies on assistance for many aspects of their lives. HCAI 
seeks to preserve human control in a way that ensures AI meets human needs 
while simultaneously allowing users to increase autonomy, retain agency, 
and remain in the loop regarding their care. 

Research by Stephanidis et al. [208], and Ozmen Garibay et al. [165] represents 
a signifcant step towards human-centred design in assistive technologies. 
They emphasise involving users as collaborators rather than mere recipients 
of technology, recognising their unique insights into their needs, capabilities, 
and lived circumstances. At the core of this approach lies a collaborative, 
interdisciplinary methodology that prioritises the direct involvement of users 
and co-design processes. Echoing their sentiments, the WHO recommends 
viewing users as active collaborators in the delivery of assistive technology 
services rather than passive recipients [235]. Similarly, the WHO emphasises 
that individuals who use assistive technology generally possess valuable in-
sights into their unique needs and circumstances. Adopting this approach 
ensures that assistive technologies not only promote accessibility and the 
enhancement of physical capabilities but also fundamentally improve men-
tal well-being and self-determined living. Additionally, Stephanidis and Sal-
vendy’s Design for All approach in the feld of HCI integrates human-centred 
design principles with accessibility and assistive technologies, including Uni-
versal Design principles for physical products and constructed spaces [207]. 
This approach prioritises users as central to the interaction design process, 
particularly focusing on individuals with disabilities. Following these princi-
ples, our user-centred co-design process, beginning with our ethnographic 
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study [P2], allows for a deeper understanding of our target demographic’s 
nuanced needs, concerns, and daily challenges. 

Further, when aiming to adhere to the foundational principles of Stephanidis 
and Salvendy [207], it is imperative to assess the practical implications of 
adopting human-centred approaches in the design, development, and deploy-
ment of assistive technologies [167, 202]. This involves critically examining 
how such methodologies have already been implemented in real-world sce-
narios and their impact on user satisfaction and overall efectiveness. As 
such, evaluating case studies where collaborative, interdisciplinary method-
ologies have led to innovative solutions can ofer valuable insights into best 
practices and potential pitfalls [129, 164]. Allowing an easy evaluation of case 
studies, the AdaptiX framework [P4] supports HRI research by facilitating an 
evaluation of assistive robots’ interaction design in-silico to ensure the efec-
tiveness and acceptance of these robotic aids already in the early research 
stages and iterative prototype creation by shifing the burden away from 
study participants to the researcher while reducing the total burden. User 
feedback gathered in these early evaluations is essential to assess the system’s 
requirements to ensure they meet the user’s needs. When then progressing 
to physical prototyping, the shared control approach, interaction design, 
and feedback methods can be directly transferred into real-world scenarios, 
mitigating the need and researcher’s efort of starting from scratch. 

Moreover, the role of emerging technologies such as AI and the Internet of 
Things (IoT) in enhancing the adaptability and personalisation of assistive 
devices ofers another promising area for exploration [73, 158, 163], for exam-
ple, by using wearable and environmental sensors to provide professional 
assistance services [72]. However, the integration of AI into assistive technolo-
gies also raises ethical considerations around privacy, data security, and the 
potential for increasing the digital divide [60, 63, 150]. In our ADMC shared 
control approach [P4], the posture data of the robotic arm as well as – when 
using the CNN as underlying rule engine – the feed of a colour-and-depth 
camera are integrated. This data is used to suggests DoF mappings based on 
the environmental and situational contexts, focusing solely on objects and 
obstacles to provide useful mapping suggestions. Recordings within this CNN 
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approach are not stored and only used as live input, mitigating the threat 
of privacy issues. Examining these ethical questions is vital for ensuring 
that technological advancements align with the fundamental values of eq-
uity, inclusively, and human dignity [110, 221]. And, while the integration of 
human-centred design principles marks a signifcant advancement in the 
feld of assistive technologies, it is only the beginning [99, 164]. The ongo-
ing dialogue between researchers, practitioners, users, and policymakers 
must continue to address both challenges and opportunities brought by tech-
nological innovation. Future research should focus on developing scalable, 
sustainable models for co-design that prioritise the diverse needs and ca-
pabilities of all users, ultimately leading to more accessible, efective, and 
empowering assistive technologies. 

4.3 The Human in the Loop 

A prevalent challenge in assistive robotics is identifying efective methodolo-
gies and technologies for controlling such robots [232]. Devices in this cate-
gory ofen have a large number of DoFs, rendering them complex in terms 
of maneuverability [127]. For instance, an assistive robotic arm equipped 
with a basic gripping mechanism can execute movements within a three-
dimensional space, including translational motions along Cartesian coordi-
nates and rotational movements such as yaw, pitch, and roll [5, 211], typically 
comprising between fve to seven DoFs [194]. Conventional control interfaces, 
like joysticks, are limited to managing two DoFs. To control a high-DoF robotic 
device with a lower-DoF input device, a strategy called mode switching is 
employed [136]. However, this approach requires users to select a specifc 
mode, temporarily disregarding other DoFs. Although high-DoF input de-
vices exist, their accessibility remains limited for individuals with motor 
disabilities [58, 113, 183]. In their exploration of HRI mechanisms utilising 
conventional button-based mode switching systems, Herlant et al. showed 
that upwards of one-sixth of the total operational time was spent on mode 
alteration [103]. Their research substantiated the premise that the imple-
mentation of automatic mode switching enhances user satisfaction [103], 
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particularly within deterministic simulation environments and when objec-
tives are clearly defned [220]. 

For supporting users, shared control applications merge manual user input 
and algorithmic assistance, addressing the limitations of fully autonomous 
or manual systems [1]. They promote a cooperative interaction between the 
user and the robot, signifcantly aiding individuals with motor impairments 
in participating more actively during day-to-day tasks. Consequently, this 
strategy enhances independence and usability compared to purely manual 
controls [70]. Providing a comprehensive overview, Flemisch et al. proposed 
the relationship between shared control, shared and cooperative guidance 
and control, and human–machine cooperation, with increasing autonomy of 
the system [69, 70]. As shown, human–machine cooperation and shared and 
cooperative guidance support on a strategic (e.g., navigation) and tactical (e.g., 
guidance) level, requiring reduced user interaction and therefore leading 
to elicit stress [176] and feelings of distrust [242] among users. Although the 
system is designed to act in the user’s best interest, addressing this issue 
requires the user to build trust, necessitating transparency and legibility that 
users can comprehend [P8]. By facilitating legible interactions and controls, 
users can intervene if the shared control application makes a mistake or 
gives inappropriate suggestions for interaction. Communicating robot intent 
further requires directing the user’s attention, eventually necessitating multi-
modal stimuli, depending on the situation and the user’s capabilities [P5]. 
By maintaining a balance between autonomy and user involvement, shared 
control systems – functioning on the operational level [70] and keeping the 
user directly in the loop – can provide a more acceptable and comfortable 
experience for individuals relying on assistive technologies [90, 181, 220], 
something that is particularly important when designing for people that 
already have to rely on others for heightened support. 

Based on these fndings, our ADMC shared control approach aims to increase 
the users’ sense of being in control – as confrmed by participants in [P9], by 
including user input directly into the outcome. ADMC suggests mappings of 
several robot DoFs to the user based on efectiveness and usefulness in exe-
cuting the current task and situational environment [P4]. The concept of use-
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fulness assumes that maximising the cardinal DoFs of the robot aligned with 
an input DoF while progressing toward the next goal is the most advantageous 
approach. The user controls the robot along the resulting DoF mapping move-
ment direction with a classic two-dimensional input device (e.g., a joystick), 
with one input axis controlling robot movement and the second performing 
a mode switch action to choose from diferent DoF mappings. Evaluations 
demonstrate that our ADMC approach signifcantly reduces task completion 
time [P9], the average number of necessary mode switches [P1, P9], and the 
perceived workload [P9] compared to a non-adaptive input method. Moreover, 
qualitative insights revealed that non-adaptive Classic control method could 
still be a valuable addition in specifc situations when ADMC suggestions did 
not match their expectations, confrming the the users’ preferences for more 
manual shared control approaches rather than autonomous aids. 
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5 
CONCLUSION 

The old computing was about what computers could do; the new 
computing is about what users can do. Successful technologies are 
those that are in harmony with users’ needs. They must support 
relationships and activities that enrich the users’ experiences. 

– B. Shneiderman [198] 

Figure 5.1: Grasping an object from a shelf by using ADMC. The interaction and 
feedback methods for our AI-enhanced assistive robot were evaluated with the 
target group. Participants were tasked with picking up various objects from a shelf 
and placing them into a basket on a table in front of them. The ADMC approach 
was assessed using three different input devices: head-based controls, assistive 
buttons, and a joystick. © Matthias Kraus, masapido Filmproduktion 
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5.1 Summary of Research Contributions 

Assistive technologies can have a transformative impact on individuals with 
motor impairments by fostering autonomy, facilitating independent living, 
and reducing the reliance on human caregivers. With an ageing population 
presenting additional substantial challenges, the potential benefts of these 
technologies are becoming increasingly apparent. However, the development 
of such technologies ofen neglects the perspectives and insights of the very 
individuals they aim to assist. Adopting a user-centred design approach can 
substantially improve the acceptance and efectiveness of new assistive tech-
nologies by incorporating direct feedback from users regarding their specifc 
needs and capabilities. This includes striking a balance between autonomous 
actions by assistive aids and potentially demanding manual controls, thus 
harmonising the respective advantages of both extremes of the assistive tech-
nology autonomy spectrum. This shared control approach ensures that users 
are optimally supported while retaining control over their care to the greatest 
extent possible. 

In this context, my thesis presents an interaction design approach for AI-
enhanced assistive HRI. As such, my work began with the preliminary stages 
before the research process, mainly focusing on two key perspectives: frst, 
presenting recommendations for an assistive robotic drinking aid based on 
extensive user feedback and in-situ observations, and second, introducing 
a robot intent communication model. Both the user-derived recommenda-
tions and the intent communication model are intended for use by future 
researchers in designing and developing accessible, acceptable, and legible 
robotic aids. Stepping into the initial stages of the research process, this 
work extends the concept of shared control from two dimensions [84] into 
three-dimensional space. Our ADMC concept increases the DoFs available for 
controlling a robotic arm, resulting in a more precise representation of ADLs. 
This approach addresses the limitations posed by complex multi-dimensional 
input devices and time-consuming mode switches for individuals with motor 
impairments [140, 177]. 
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To communicate the resulting movement direction, visual and haptic feed-
back methods – including a gizmo visualisation technique – have been de-
veloped and integrated into the transitional XR framework AdaptiX. With 
its modular design and additional functionalities, AdaptiX streamlines the 
design, development, and evaluation of assistive robot control applications 
in both virtual simulations and real-world settings. Emphasising fexibility, 
AdaptiX facilitates optimal resource usage and fosters enhanced involvement 
of the target user group in the research process, thus promoting efective 
collaboration and user-centred design. Furthermore, this thesis evaluated the 
iteratively developed framework and its included ADMC approach through 
several empirical user studies. AdaptiX emerged as a valuable tool for the 
development and evaluation of novel interaction designs and feedback mech-
anisms in virtual environments, facilitating real-time user feedback through 
attention guidance. Moreover, it enables swif assessment of various input 
devices through its standardised User Input Adapter, efectively bridging the 
gap between physical robots and virtual communication via XR HMDs. 

5.2 Future Work 

The research presented in this thesis can serve as a foundational framework 
for future researchers and practitioners to expand the discussed concepts by 
integrating novel approaches in AI-enhanced assistive robotics. Consequently, 
forthcoming studies should investigate the topics outlined below: 

5.2.1 Communicating Updated DoF Mapping Suggestions 

In our user study [P9], we evaluated whether updated DoF mapping sug-
gestions should be continuously communicated or provided afer reaching 
a specifc diference between the currently activated and suggested map-
ping. Both methods did not exhibit any signifcant quantitative or qualitative 
diferences, underscoring the necessity for individualisation options to ac-
commodate diferent user capabilities and needs. In this study, only the DoF 
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mapping considered to be the most useful was directly presented to the user. 
The other modes (i.e., adjusted, translation, rotation, and gripper) had to 
be assessed and selected sequentially through mode switches. Future work 
could compare diferent at-a-glance DoF mapping visualisations to assist users 
in selecting the most helpful mode for their tasks without having to switch 
sequentially through all diferent modes. This might also improve compara-
bility of diferent visualisation approaches. Likewise, diferent input methods 
to directly select a specifc mode can be designed, developed, and evaluated 
to mitigate the sequential one-button-click approach and probably further 
decrease task completion time and perceived workload of the users. 

5.2.2 ADMC Approach in Industrial Settings 

The shared control approach introduced in this thesis – ADMC – was designed 
to assist individuals with motor impairments in carrying out ADLs assisted by 
a robotic arm. Consequently, the AdaptiX framework was primarily conceived 
and optimised to facilitate the development and evaluation of DoF mapping 
suggestions for pick-and-place tasks, as they are part of many ADLs. However, 
the application possibilities of AI-enhanced robotic arms extend beyond do-
mestic care to other domains, including the industrial and manufacturing 
sectors, where robots have long been utilised to support workers. Recent 
advancements in robotics have led to the emergence of cell-less HRI [18], facili-
tating innovative and close-contact collaborations, sharing the same physical 
space. As such, workers may use a robotic arm as a third hand and could en-
counter issues because of limited capacity for input modalities – akin to the 
previous target group of people with motor impairments. A focused ethno-
graphic study to identify key aspects for efective and seamless HRC in the 
workplace should be conducted as an initial step to gather specifc user needs. 
Based on the respective fndings, an adapted approach of specifc DoF map-
pings can be designed and developed to better suit the evaluated industrial 
tasks. The industrial environment may also impose certain restrictions on a 
multi-modal feedback approach, such as increased ambient light and noise, 
which need to be considered during the research process. Additionally, and 
in contrast to the previous target group, workers in industrial settings may be 
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able to use diferent kinds of input/feedback technology and diferent types 
of robotic arms, requiring further evaluation steps and situation-specifc 
customisation options. 

5.2.3 Enhancement of DoF Mapping Suggestions 

ADMC represents a concept and initial implementation of a shared control 
approach utilising DoF mappings based on an underlying rule engine (e.g., a 
CNN or script-based approach). The CNN’s training dataset was derived from 
a learning-by-demonstration approach, using participant movement data dur-
ing pick-and-place tasks. Conversely, a script-based approach was employed 
for a predictable behaviour of the model and therefore more controlled user 
studies, constraining the use case to specifc scenarios and tasks. In compre-
hensive real-world contexts, numerous additional factors must be considered 
to suggest the appropriate DoF mapping for the current environment, sce-
nario, task, and state. Future research can focus on enhancing the underlying 
rule engine by refning training strategies, integrating environmental and 
contextual data, and analysing human movements across a broader range 
of daily tasks. Such a comprehensive AI-enhanced model would enable the 
robotic arm to operate efectively in a wide variety of scenarios – therefore 
increasing its universality – and achieve more precise control in tasks like 
grasping objects from a shelf (see Figure 5.1). Furthermore, such a model 
may be used in diferent variants of shared control approaches, each tailored 
to create a mapping based on the output of the AI. Moving forward, the un-
derlying research can be expanded by the integration of multiple diferent – 
and potentially more efcient – assistive robots, able to perform an increased 
and diversifed array of tasks. Additionally, various innovative interaction 
designs, feedback methods, and intervention strategies could be investigated 
when interacting with AI-enhanced robots. 
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5.3 Concluding Remarks 

Assistive technologies are instrumental in improving the independence and 
quality of life for individuals with motor impairments. Central to the suc-
cess of these innovations is the active involvement of the target group in the 
research process. Their frsthand insights into their contexts and lived expe-
riences are invaluable, ensuring that solutions are efectively tailored to truly 
meet their needs. Finding operational and technological solutions to facilitate 
end user inclusion in this process ensures that they can contribute efectively 
and impactfully. By adopting accessible design principles and leveraging 
inclusive technologies – like the in-silico tool AdaptiX – researchers can create 
environments where all stakeholder voices are heard and respected. 

Furthermore, placing emphasis on meaningful shared control and improving 
the legibility of assistive technologies is essential to mitigate dependency 
and foster greater user acceptance. Empowering users to maintain control 
over their devices and care routines not only encourages autonomy but also 
reinforces their sense of agency. By adopting user-centred approaches and 
incorporating customisable features, solutions can be tailored to meet in-
dividual needs, thereby fostering trust, acceptance, and – consequently – 
independence. 

Looking ahead, future research should focus on refning and expanding upon 
the concepts introduced in this thesis. This includes further exploration of 
communication methods for updated DoF mapping suggestions, extending 
the application of the ADMC approach to other settings, and enhancing the 
underlying AdaptiX rule engine to accommodate a broader range of tasks 
and scenarios. By addressing the discussed challenges and building on the 
foundation laid out in this work, the feld of AI-enhanced assistive robotics 
can continue improving the quality of life for individuals with physical im-
pairments and contribute to a future where their full inclusion in social and 
professional spheres becomes a reality. 
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Statement of Contributions 

The research within this thesis would not have been possible without my su-
pervisor, colleagues, and the students I supervised. The table below separates 
my contribution from others’ to the included papers. 

Table A.1: Clarifcation of my own and others’ contributions to the projects 
included in this thesis. 

Paper My Contribution Co-author(s) Contribution 

[P1] I developed an initial ver- K. Kronhardt and S. Rübner – in the 
sion of the Unreal Engine 
framework, co-developed 

context of their scientifc speciali-
sation course – extended the given 

the concept and method- Unreal Engine framework by a script-
ology, provided resources, based adaptive control approach, de-
supported in the study de- veloped an arrow-based visualisa-
sign, conducted the vali- tion, and extended the framework 
dation, and have been in- for a remote study. They conducted 
volved in writing and edit- the study, performed data curation, 
ing the paper. and created the frst draf of the pa-

per. F. F. Goldau and U. Frese pro-
posed the initial idea of DoF map-
ping. J. Gerken provided feedback 
on the paper. 
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[P2] I was the leading author, 
conducted the interviews 

A. Baumeister conducted the inter-
views, in-situ observations, and the-

and in-situ observations, 
did the thematic analyses 
and the main part of the 
paper writing. 

matic analysis together with me, 
supported the study design, and 
contributed to the paper writing. S. 
Schneegass, B. Klein, and J. Gerken 
provided feedback on the paper. 

[P3] I was the leading author, 
developed the concept, as-
sisted in developing the 
prototype, designed the 
study, supported the on-
site data gathering, and 
did the data analysis. 

T. Franzen built – in context of 
his master’s thesis – the prototype 
and conducted the study. K. Kron-
hardt supported the study design. U. 
Gruenefeld assisted in the data anal-
ysis and writing the paper. S. Schnee-
gass and J. Gerken gave feedback on 
the paper. 

[P4] I was the leading au-
thor, co-developed the 
concepts, developed the 
sofware architecture, and 
built the comprehensive 
framework. 

F. F. Goldau co-developed the con-
cepts and framework modules. K. 
Kronhardt was involved in the ini-
tial phases of the framework and co-
developed the concept. U. Frese and 
J. Gerken gave feedback on the pa-
per. 

[P5] I was the leading author, 
conducted the literature 
review, and analysed the 
data to derive the intent 

U. Gruenefeld created two of the fg-
ures and supported the paper writ-
ing. U. Gruenefeld, S. Schneegass, 
and J. Gerken were involved in the 

communication model 
and empirical fndings. 

analysis phase to discuss derived en-
tities, dimensions, and properties of 
the model. Additionally, they gave 
feedback on the paper. 



[P6] I was the leading author 
and co-developed the visu-
alisation concepts. 

[P7] I was the leading author, 
developed the initial pro-
totype, conducted both re-
mote studies and inter-
views, and analysed the 
data. 

[P8] I was the leading author 
and coordinator. 

[P9] I was the leading author, 
designed the study, sup-
ported the onsite data 
gathering, and analysed 
the data. 

K. Kronhardt and T. Franzen co-
developed the visualisation con-
cepts in brainstorming sessions 
with me. J. Gerken provided feed-
back on the paper. 

K. Kronhardt added a study mode 
to alternate conditions to the proto-
type. T. Franzen assisted in the ini-
tial data analysis. U. Gruenefeld sup-
ported designing the study, analysis 
of data, and writing of the paper. S. 
Schneegass and J. Gerken gave feed-
back on the paper. 

K. Kronhardt supported with the 
conceptual ideas within this paper 
and the draf creation. J. Freien-
stein supported the manuscript’s 
draf creation and refnement. J. 
Gerken co-authored the paper and 
gave feedback. 

K. Kronhardt – in context of his mas-
ter’s thesis – built upon the given 
prototype, conducted the study, and 
contributed to the data analysis, sup-
ported the writing, and provided the 
fgures in the paper. F. F. Goldau and 
U. Frese proposed the initial idea of 
DoF mapping. J. Gerken provided 
feedback on the paper. 



[P10] I was the leading author, 
developed the overall 

K. Zinta – in context of his bache-
lor’s thesis – co-developed the pro-

concept, co-developed totype and conducted the user study. 
the prototype within the 
framework environment, 

J. Gerken providing feedback during 
the ideation phase. 

set the study design, and 
analysed the study data. 
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Abstract: Robot arms are one of many assistive technologies used by people with motor impairments.
Assistive robot arms can allow people to perform activities of daily living (ADL) involving grasping
and manipulating objects in their environment without the assistance of caregivers. Suitable input
devices (e.g., joysticks) mostly have two Degrees of Freedom (DoF), while most assistive robot arms
have six or more. This results in time-consuming and cognitively demanding mode switches to
change the mapping of DoFs to control the robot. One option to decrease the difficulty of controlling
a high-DoF assistive robot arm using a low-DoF input device is to assign different combinations of
movement-DoFs to the device’s input DoFs depending on the current situation (adaptive control). To
explore this method of control, we designed two adaptive control methods for a realistic virtual 3D
environment. We evaluated our methods against a commonly used non-adaptive control method that
requires the user to switch controls manually. This was conducted in a simulated remote study that
used Virtual Reality and involved 39 non-disabled participants. Our results show that the number
of mode switches necessary to complete a simple pick-and-place task decreases significantly when
using an adaptive control type. In contrast, the task completion time and workload stay the same. A
thematic analysis of qualitative feedback of our participants suggests that a longer period of training
could further improve the performance of adaptive control methods.

Keywords: assistive robotics; human–robot interaction (HRI); shared user control; augmented reality;
virtual reality; visual cues

1. Introduction

Robotic solutions are becoming increasingly prevalent in many areas of our pro-
fessional and personal lives and have started to evolve into collaborators [1,2]. A non-
negligible number of people live with motor impairments, ranging from slight limitations
to severe paralysis [3]. While a near-complete integration into professional and social life is
the final goal, current assistive robotic technologies focus on performing activities of daily
living (ADLs). These include tasks ranging from essentials such as eating and drinking to
more complex behaviors such as grooming and activities associated with leisure time [4].

A general problem with assistive robotic solutions is finding suitable methods and
technologies for controlling such robots. Assistive robotic devices are often characterized as
having a large number of Degrees of Freedom (high-DoF). For example, a robotic arm with
a simple gripper can freely operate in 3D space and move along Cartesian space as well as
yaw, pitch, and rotate. This typically results in five to seven DoFs. Standard input devices,
such as joysticks, only cover two DoFs. To control a high-DoF device with a low-DoF input
device, mode switching is used. This means that at any point in time, the user has to select
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a mode, which then maps the two DoFs of the input device to two of the total available
DoFs of the robot while neglecting the others. While high-DoF input devices do exist, they
are not often accessible for people with motor impairments.

Using a human–computer interface with a standard button-based mode switching
setup, Herlant et al. discovered that more than one-sixth of the total execution time is spent
changing the currently selected mode [5]. They showed that automatic mode switching
leads to increased user satisfaction within a deterministic simulation environment and with
a predefined goal.

Our latest research findings provide a proof-of-concept for a novel method of shared
control of an assistive robot. We evaluated the idea within a 2D simulation environment [6].
The novel control method uses a Convolutional Neural Network (CNN) to adaptively
generate DoF mappings based on camera data of the current situation. From a user
perspective, this system can help the user choose an optimal mapping of available control
DoFs for a low-DoF input device, either automatically or upon the user’s request. In this
paper, we build on this approach, focusing in particular on the user interface. Having an
adaptive mapping of control DoFs to the input device can be challenging to understand
and learn, which is why there is a need for visual feedback to convey that information to
the user. The approach in our previous work included visual cues in the form of arrows.
While the results are promising (see Section 2), the limitation of a 2D environment means
that it is difficult to predict how this approach transfers to 3D. For example, certain DoF
combinations might be more difficult to display with arrows in a 3D environment and lead
to visual clutter.

The goal of this paper is to explore the proposed novel control method, as well as
possible visual cues for the DoF mappings. In particular, we want to explore how the
novel, adaptive control method performs in a 3D environment compared to the standard
mode-switch approach with cardinal DoF mappings and whether changes in the visual
cues have an impact on the performance of the adaptive control method.

We conducted a remote online study with 39 non-disabled participants, in which we
compared three different control types with different DoF mapping behaviors and visual
cues. These were Classic and Double Arrow, which used two arrows attached to the fingers
as visual cues, and a visually reduced variant Single Arrow. Single Arrow only used one
arrow through the middle of the gripper (see Section 3 for a detailed description of each
control type).

The study was conducted inside a 3D Virtual Reality (VR) environment, utilizing Head-
Mounted Displays (HMDs) for an immersive experience (see Section 4.3 for a complete
description of the virtual environment). The participants repeatedly performed a simple
pick-and-place task, controlling a virtual robot arm using the three control types (see
Section 4.5 for a detailed description of the study design).

Due to the ongoing COVID-19 pandemic, we opted to recruit non-specific participants
that had access to the required hardware (an Oculus Quest VR-HMD) to participate in our
study. None of the recruited participants reported living with any motor impairments. We
acknowledge this limitation and discuss how our findings can be transferred to the target
group of people with motor impairments in Section 7.

As our main contribution, we present findings from our study, which compare our
two adaptive control types with the standard mode-switch control type, explicitly focusing
on task completion times, number of mode switches and workload. In addition, we
contribute an extensive discussion of qualitative results from voice recordings of our
participants, providing a deeper understanding of the benefits and challenges of each of
the three control types.

2. Related Work

To assist people with physical or cognitive impairments, prior research often suggests
possible solutions that use robots that automate specific tasks [7–10]. Assistive robots
are found in a variety of designs. There are stationary robots specifically designed for
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meal-assistance [11], socially assistive robots for elderly people and people with cognitive
impairments [12], navigational robots for blind people [13], and many more examples,
both in research and commercially. Besides stationary robots (e.g., fixed to a table) [14],
there are also moving robots attached to mobile platforms [15,16] or mounted to the user’s
wheelchair [9].

To help people with motor impairments, assistive robot arms are widely used, both
within the workspace and in performing ADLs [17]. Their flexibility allows for many
different applications, such as feeding assistance [18], fetch and pick-up tasks [15], and
cataloging of books [7].

Robotic assistance is generally well-received by people with motor impairments. Drol-
shagen et al. found that people with disabilities quickly accept working with robots, even if
the robots are in close proximity [19]. Regarding ADLs specifically, Pascher et al. conducted
an ethnographic study with 15 participants with tetraplegia, multiple sclerosis, Locked-In
Syndrome, and similar diseases [20]. They found that people with motor impairments
would prefer to perform ADLs themselves with the help of a robotic aid as opposed to
with the help of another person. People with motor impairments want to “live more
independently” and “gain increased autonomy”.

However, automating ADLs, as suggested in research, can have unintended conse-
quences. Pollak et al. conducted a study comparing manual and autonomous modes of
collaboration with a collaborative robot (cobot) [21]. They found that using the manual
mode in which the cobot would perform tasks only upon interaction with the participants
decreased stress significantly. The participants felt “more capable of coping with and
controlling the situation” than in the autonomous mode.

Similarly, Kim et al. conducted a study with subjects with spinal cord injuries using
an assistive robot arm in either a manual or an autonomous mode [22]. They found that
overall task completion times for manual and autonomous usage for trained participants
were similar, but user satisfaction was higher in manual mode. This is despite the fact
that autonomous usage decreased the effort necessary to perform tasks significantly. The
authors call for more flexible interfaces to control assistive robot arms.

When interacting with robots that carry out movements, a study by Cleaver et al.
showed that users generally prefer to have a visual representation of the robot’s future
movements. However, having this visualization does not significantly affect the perfor-
mance when executing tasks using the robot [23]. When using a visual representation of
robot motion intent, the most prominent solution is to show the robot’s movement using
arrows [24–26]. In addition, most of these approaches rely on Augmented Reality to overlay
the visual representation on the user’s real environment.

Heeding the call for more flexible interfaces, we proposed in our recent work an
adaptive control concept for assistive robot arms that promises to allow users to be in
control at all times while still providing them with more assistance during ADLs than the
standard mode switch control concept [6]. In this proposed concept, a CNN interprets the
video feed of a camera attached to the robot arm and adaptively outputs the most likely
movement DoFs.

With current control concepts, users with low-DoF input devices, such as simple
joysticks, can only move the gripper of an assistive robot arm in cardinal directions (i.e.,
movement and rotation around Cartesian X-, Y-, and Z-Axes). The user has to switch and
choose between the provided mappings of input DoFs to some of the robot’s DoFs. This
may include the pairings of different DoFs of the robot that are less than ideal for the given
situation, resulting in many time-consuming and mentally demanding mode switches.
Additionally, in any given mode, an input on an axis of a low-DoF device would move the
gripper only in the cardinal direction currently assigned to this input DoF. Combinations of
multiple output DoFs (such as orbiting an object, which is the combination of rotation and
translation) require more than one input DoF (e.g., both the X- and Y-Axes of a joystick) to
be engaged simultaneously in such systems.
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To solve this problem, we proposed a representation of these assignments of input
DoFs to output DoFs in the form of a matrix similar to the one seen in Figure 1 in our
previous work. Each row in that matrix represents a cardinal output DoF, while each
column represents the input DoFs of an input device. The values in a column determine
which movement the robot’s gripper will perform if the input DoF is engaged. For example,
an identity matrix would yield a behavior identical to the cardinal mode switch approach,
as each input DoF is only mapped to one cardinal output DoF.

X − Axis
Y − Axis
Z − Axis

Roll
Pitch
Yaw

Gripper

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0.5 0 0 0
0.5 0 0 0 0.5 0 0
0 0 0.5 0.5 0 0 0
0 0.5 0 0 0.5 0 0
0 0.5 0 0 0 0.5 0
0 0 0.5 0 0 0.5 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1. Two different DoF mappings as matrices—(Left): classic control (one input DoF controls
one cardinal output DoF); (Right): arbitrarily combined controls (one input DoF controls more than
one cardinal output DoF at the same time).

This representation allows for combinations of multiple output DoFs for one input
DoF. For example, if the first column contains a value of 0.5 in the first two rows, engaging
the first input DoF would result in a diagonal movement along the XY plane of the robot’s
coordinate system (see the matrix on the right in Figure 1). According to the current
situation, the proposed control concept adaptively fills this matrix to create the most useful
combination of output DoFs.

We then conducted a small study with a 2D proof-of-concept simulation for our
proposed control concept. A total of 23 participants used a “standard” and an “adaptive”
control type for a simulated 2D robot that could drive forwards, sideways, rotate around
its center, and close its fingers to move blue boxes to target red boxes (see Figure 2). This
is the 2D equivalent of a simple pick-and-place task in 3D. Both control types switched
modes after five seconds without user input.

The results of our study showed that, subjectively, the “adaptive” control was sig-
nificantly faster but significantly more difficult than the “standard” control. “Adaptive”
control also led to significantly shorter sequence execution times.

While these findings are promising, the concept requires further evaluation in 3D
and in a more complex environment with devices that have more DoFs. We set out to
do precisely that: evaluate the proposed concept of adaptive control in a more complex
environment with a robot arm with seven DoFs.

Figure 2. The simulated robot with two out of the four cardinal DoFs (left) and two adaptive DoFs
(right) [6].

3. Control Types for a 3D Environment

To compare the standard control type of switching between cardinal modes to the
adaptive approach, we implemented three control types (see Figure 3) in a simulated 3D
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environment (see Section 4.3). This simulated environment is meant to act as a proxy for a
potential Augmented Reality (AR) implementation. There, users would control an assistive
robot arm and see the visual feedback superimposed on the real world and robot via an
AR-HMD device. Instead, in our 3D simulation, users wear an Oculus Quest VR-HMD,
which superimposes the visual feedback directly in the computed 3D scene. An overview
of the environment and the control types described in the following sections is provided as
a video (see Video S1).

All three control types use arrows as visual cues. Specifically, the arrows show which
direction the gripper will move if a user engages the corresponding input DoF. To allow the
users to predict the robot’s movement when engaging the input DoF with positive values
(e.g., pressing the control stick up) and negative values (e.g., pressing the control stick
down), the arrows have two heads. Each arrowhead points towards the corresponding
movement direction.

(a) (b) (c)

Figure 3. Visualization for the different control types: (a) Classic; (b) Double Arrow; (c) Single Arrow.

Using visual cues in 3D as opposed to 2D often causes visual obstruction, e.g., if the
gripper is close to the table, the active DoF would lower the gripper towards the table. In
that case, the arrows would clip through the table, making them partially invisible to the
user. It would also be common that the robot’s gripper itself obstructs parts of the arrows,
making them harder to see and interpret. To eliminate these problems, the arrows were
made translucent and are always rendered above all other objects yet shown at the correct
depth as if looking through whatever is blocking them. This behavior is similar to viewing
the scene through Augmented Reality glasses, which would overlay the arrows onto a real
scene as opposed to showing the arrows as part of the real world that can be blocked by
other real-world objects.

To more easily communicate the currently active mode, all control types show a blue
indicator above the robot gripper consisting of four spheres, each representing a mode (see
Figure 3). The sphere representing the currently active mode is darker and less translucent
than the inactive ones, indicating how many modes are left to switch through before
returning to the first.

3.1. Manually Designed DoF-Calculations

The focus of this study was to evaluate how adaptively changing DoF mappings
would impact the participant’s experience in a more complex 3D environment. While we
proposed a CNN to perform these calculations in our previous work [6], there are other
ways of calculating these DoF mappings. We developed a manually scripted method of
calculating these DoF mappings for the specific task used in the study instead of training a
CNN. This method generates a matrix with the same rules described in our previous work
(see Figure 1) to represent DoF mapping, thus providing the possibility of equal movements
as generated by a CNN trained on camera data. Since our primary focus is the participant’s
experience with the adaptively changing DoF mappings, we assumed that this approach
would significantly decrease the possibility of unpredictable behavior while having little
impact on the applicability of our findings to a system using a CNN. A detailed description
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of the generated output values is presented in the description of the adaptive control types
(see Sections 3.3 and 3.4).

This approach is akin to the widely used “Wizard of Oz” method, in which the output
of a proposed system is instead provided by a human to test the user experience of that
proposed system before finishing the implementation. In our case, we instead simulated
the output of a complex CNN using a simpler system. As with “Wizard of Oz” experiments,
our results should therefore be applied to the user experience with the system using a CNN,
but the absolute performance measures may vary.

We developed three control types—Classic, Double Arrow, and Single Arrow—to func-
tion with different assistive robot arms and different input devices. To conduct the study,
we decided to use the widely available stand-alone VR headset Oculus Quest. The Oculus
Quest consists of the headset itself, and two motion controllers, one for each hand, with
several buttons and a control stick each. Participants executed a simple pick-and-place
task (see Section 4.6) in our VR environment using a virtual model of the Kinova Jaco robot
arm using each of the control types (see Section 4.3 for a detailed description of the virtual
environment and the VR setup).

3.2. Classic Control Type

The Classic control type implements the standard mode switch control type most
commonly used to control assitive robot arms. This means that an input DoF always
corresponds to a cardinal output DoF. Given the seven cardinal DoFs of the Jaco robot arm
(X-Translation, Y-Translation, Z-Translation, Roll, Yaw, Pitch, Open/Close fingers) and two
input DoFs (the X-Axis and Y-Axis on a motion controller’s control stick) four modes are
available to the users:

1. X-Translation + Y-Translation;
2. Z-Translation + Roll;
3. Yaw + Pitch;
4. Open/Close fingers + Nothing.

The last mode has no assigned output DoF for the X-Axis on the control stick to allow
the users to learn an axis-to-action mapping.

Users can switch modes by pressing the A-Button on the right-hand motion controller.
This allows them to perform the tasks at their own pace and assess the usefulness of a
mode as long as they need to. Whenever the A-Button is pressed while the fourth mode is
active, the first mode is selected again, allowing the users to cycle through modes at will.

Two arrows attached to the fingers of the gripper show the users which motion the
gripper would perform, given a user’s input on the respective input DoF. Red arrows repre-
sent the movement assigned to the Y-Axis of the control stick, and green arrows represent
the movement assigned to the X-Axis of the control stick. As the motion controllers are also
rendered in the virtual environment, we added a visual representation onto the control
stick rendered in-game. A cross with one red axis and one green axis is shown on the
motion controller to indicate which direction corresponds to which color. A blue sphere
surrounds the A-Button to match it to the blue mode indicator (see Figure 4).
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Figure 4. The virtual motion controller with directional indicators and the robot arm with matching
arrows visualizing the currently selected mode.

3.3. Double Arrow Control Type

The Double Arrow control type implements the proposed adaptive control method
using two arrows to show the position of the fingers if a user engages an input DoF.
Therefore, each input DoF corresponds to a combination of cardinal DoFs determined
based on the current situation. To ensure comparability with the Classic control type in
regards to the number of mode switches necessary to return to the starting mode, four
modes were developed. The modes are ordered by their complexity and usefulness to the
users’ goal of reaching the next target.

As in the Classic control type, two arrows attached to the fingers of the gripper show
the users which motion the gripper would perform, given a user’s input on the respective
input DoF. Red arrows represent the movement assigned to the Y-Axis of the control stick,
and green arrows represent the movement assigned to the X-Axis of the control stick.

The first mode assigns the Y-Axis of the control stick to a movement that both rotates
and translates the gripper towards the next target simultaneously. More precisely, if the
gripper is further than 10 cm away from the target, the movement is oriented towards a
point 15 cm above the target. If the gripper is closer than 10 cm to the target, the movement
is oriented towards the actual target. This ensures that the gripper tends to grasp and
let go of objects from above, as opposed to trying to do so from the sides and thereby
possibly crashing into the table. If the gripper is within reach of an object or target point
where an object is supposed to be placed by the users, it also allows them to open and
close the fingers. The X-Axis of the control stick in the first mode is assigned the same
movement as the Y-Axis but rotated by 90◦ to allow for corrections perpendicular to the
Y-Axis movement.

To provide users with more options, the second mode assigns the Y-Axis of the control
stick to a linear translational movement towards the object and the X-Axis of the control
stick to a rotational movement of the gripper towards the next target. Both of these
assignments were chosen since only moving or only rotating are less likely to further
the goal of the users. However, the individual movements themselves are still integral
movements for coordinating the gripper orientation and some movement towards the
goal. In the optimal case, this means that users would not need to use this mode, as both
orientation and positioning would be taken care of simultaneously by the first mode.





Technologies 2022, 10, 30 8 of 23

The third mode assigns the Y-Axis of the control stick to the opening or closing the
fingers, depending on whether an object was currently held or not. The X-Axis of the
control stick has no assignment in this mode to ensure comparability with the Classic
control type.

If users stop moving the gripper, they should always be able to move the same way
they did before. To ensure this, the fourth mode always assigns the X- and Y-Axis of
the control stick the same mappings that were last used to move the gripper. Otherwise,
users who would want to assess if they had moved the robot far enough for their personal
preference using a given mapping would have no possibility to correct their course.

The system calculates the next movement mappings whenever the users stop moving
the robot. However, the system does not instantly assign the first mode to be active, as
this would disrupt the users’ flow of control (i.e., they might have stopped to asses the
situation and then decided to continue with the DoF mapping they were using). Moreover,
this would harm comparability to the Classic control type (as no automatic mode switches
happen in that control type). This means that whenever the users stop moving, the blue
mode indicator would show the fourth mode as being active, and a press on the A-Button
would lead to the newly calculated first mode.

3.4. Control Type Single Arrow

During the development of Classic and Double Arrow we discovered that, while two
arrows are a perfectly suitable visualization for a 2D environment, these arrows can result
in a large amount of visual clutter during complex movement in 3D environments. We
decided to develop a visualization that reduces visual clutter in a 3D environment and
compare its usage to the Double Arrow control type.

Dubbed Single Arrow, the input-to-output DoF mappings are calculated in the exact
same way as the mappings in Double Arrow. Switching between modes is also handled in
the same way as in Double Arrow. However, the visualization changes from displaying two
arrows at the tips of the fingers to displaying one arrow in the middle of the gripper, with a
slight offset to allow certain movements to be displayed. This reduces visual clutter for all
situations except when the fingers move.

4. Materials and Methods

We present a remote study with 39 participants to compare the proposed concept of
adaptive control (in two variations) against the standard mode-switch control concept. In
particular, we measured task completion times, the number of mode switches necessary to
perform a task, the workload necessary to use the different control concepts via a NASA
Raw-TLX (NASA Raw Task Load Index), and the participants’ personal ranking of the
three presented control types. Participants used their own Oculus Quest headset to perform
a simple pick-and-place task using a virtual robot inside a realistic 3D environment.

4.1. Hypotheses

We propose the following hypotheses:

• Average Task Completion Time

– H1 Double Arrow leads to lower task completion time than Classic. The adaptive
control of Double Arrow should significantly reduce the movements necessary
to perform the task by combining different cardinal DoFs into one continuous
movement, which otherwise would each have to be adjusted separately.

– H2 Single Arrow leads to lower task completion time than Double Arrow. Only using
one arrow for each DoF mapping should reduce visual clutter. This should lead
to a shorter processing time of the suggested movements, reducing the total time
to execute a task.

• Average Number of Mode Switches
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– H3 Double Arrow leads to fewer mode switches than Classic. The adaptive control
of Double Arrow should reduce the necessity to switch modes significantly. Since
different DoFs are combined depending on the current situation, a change in po-
sition and rotation brings the robot arm closer to the target and can be performed
without mode switches.

– H4 Single Arrow and Double Arrow need roughly an equal number of mode switches.
The behavior of the two adaptive control types is the same. Thus, while it might
take participants longer to understand what movements they can perform with
Double Arrow as opposed to Single Arrow, they should switch modes approxi-
mately as often in both control types.

• Workload

– H5 Double Arrow leads to lower NASA TLX scores than Classic. The adaptive
control of Double Arrow calculates sensible movements to reach the next goal
position and rotation. Thus, it should alleviate the participants from having to
think of a sequence of movements to reach their goal, reducing workload. This is
in contrast to the findings of our previous study, in which participants perceived
the Adaptive control as more complex than the Standard control [6]. We expect the
benefit of pre-calculated DoF combinations and the workload of developing a
sequence of movements in cardinal DoFs to be higher in a 3D environment than
in a 2D environment. Therefore, the workload for the adaptive control types
should be lower than for Classic in 3D.

– H6 Single Arrow leads to lower NASA TLX scores than Double Arrow. Since we
assume that reduced visual clutter leads to a shorter processing time for the
suggested movements, the NASA TLX scores of Single Arrow should be lower.

4.2. Participants

In total, 39 people participated in our study (12 female, 26 male, 1 non-binary), which
led to a data-set of 936 individual trials (8 per control type, 24 per participant). The
age of participants ranged from ≤19 to 69, with 20 to 29 being the largest group with
22 participants. Four participants had prior experience with controlling an assistive robot
arm, and no participants declared any motor impairments. All participants received EUR
10 as compensation unless they specifically denied the offer.

Due to the ongoing COVID-19 pandemic, we opted to perform a remote study using
VR. We did not specifically search for participants with motor impairments because the
potential target audience for people with VR setups at home that also have motor impair-
ments appeared too small. There would not be enough time to gather enough participants
in a realistic time frame. Instead, we searched for any participants that had access to the
necessary equipment (an Oculus Quest headset, see Section 4.3) and were able to install our
study software on their devices. With these non-specific participants, the performance mea-
sures for executing the tasks in our study with the different control types (see Section 4.6)
can be compared relative to one another, even though they may not be representative of
the intended target audience of such an assistive device. We acknowledge this limitation,
which is further discussed in Section 7.

Participants were recruited via announcements in different social media communi-
ties relating to VR (e.g., r/OculusQuest: https://www.reddit.com/r/OculusQuest/, ac-
cessed on 3 January 2022), social media communities regarding assistive technologies (e.g.,
r/AssistiveTechnologies: https://www.reddit.com/r/AssistiveTechnology/, accessed on
3 January 2022), and platforms for acquiring participants specifically for XR studies (e.g.,
XRDRN: https://www.xrdrn.org/, accessed on 3 January 2022) among other more local
announcements.

To ensure that VR sickness symptoms did not influence our results, the participants
filled out the Virtual Reality Sickness Questionnaire (VRSQ) at the end of the study [27]. The
VRSQ measures nine items on a four-point Likert scale and results in a value between 0 and
100, where 0 means no symptoms experienced and 100 means all symptoms were severe.
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Reported values were low (Mean: 11.30, Std.-Dev.: 11.38), and none of the participants
selected the “Severe” option for any of the items.

4.3. Apparatus

We designed a Virtual Reality environment based on a photogrammetry scan of a real
room. The environment included a virtual model of the Kinova Jaco (Kinova Jaco robot arm:
https://assistive.kinovarobotics.com/product/jaco-robotic-arm, accessed on 3 January
2022) robot arm attached to a table, a red target surface, a blue block, and two virtual
screens—one for descriptions and questionnaires and one that would show example photos
of the control types (see Figure 5). We decided to use a virtual model of a real robot arm
(Kinova Jaco) to stay as close to a physical system as possible. Additionally, the Kinova Jaco
robot arm is specifically designed and often used as an assistive device for people with
motor impairments [5].

Figure 5. The virtual environment: description screen (Left); screen with example photos of the
control types (not shown); Kinova Jaco with visualisation for control type Single Arrow (Right); table
with blue block and red target (Bottom).

The virtual environment was created with the Unreal Engine 4.26 and was developed
to be deployed to the Oculus Quest VR headset. Participants had to either own or have
access to such a headset and be able to install the study software on that headset using a
computer (Windows, macOS, and Linux could be used). Although we tested our software on
the original Oculus Quest hardware, we did not explicitly exclude the use of the newer and
very similar Oculus Quest 2 headset. The Oculus Quest consists of the VR headset and two
motion controllers, one for each hand. Each motion controller has several buttons and a
control stick. Participants controlled the robot using the right motion controller of the VR
headset. In particular, the control stick of the motion controller moved the robot according
to the currently active control type. This enabled the participants to control which DoFs
were being used and how fast the robot would move. The A-Button was used to switch to
the next mode cyclically, returning to the first mode when a mode switch was performed in
the last mode.

To simulate the movement of the robot arm, the inputs did not move the joints of the
robot as they would with a physical robot arm. Rather, the gripper of the virtual robot arm
is moved in 3D space according to the inputs, and the arm of the robot is programmed to
adopt a correct pose automatically. This was implemented using the physics system of the
Unreal Engine.
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4.4. Procedure

Participants were directed to a website with a brief introduction to the study, the
duration of the study (around 30 to 45 min), the technical and non-technical prerequisites
to participate in the study, and a description about what data would be collected during
the study. Participants were informed that certain metrics and usage data, such as task
completion times, will be recorded and sent to our servers during the study. They were
also informed that they would need to fill out a short questionnaire after each condition of
the study and that they would be able to record a short audio message after each condition.
Lastly, participants were informed that cookies were being used on our website. Each
participant gave informed consent by pressing a clearly labeled button to continue and
start the study. After giving their consent, participants were instructed on how to install
and open the study application and what to do when they were finished with the part
of the study inside the VR headset. During the study, neither a video of the participants
surroundings through the VR headsets external cameras and sensors nor a screen-recording
was captured.

Next, the participants put on their VR headsets and opened our study application.
They were greeted with a brief explanation of the study on a large virtual screen. Except for
the questionnaires after each control type, any text that was available to read on that screen
was also simultaneously read aloud as a prerecorded voice-over. The participants interacted
with this screen via a common interaction method that was also used in the menus of the
Oculus Quest headset: pointing a ray that originated from the motion controller towards
the screen and using the trigger to confirm input.

After the study explanation, the participants were presented with a description of the
first control type they would be using and the task they would be performing. This explana-
tion was supplemented with an image on a second smaller virtual screen. The descriptions
were written in a way that described how the gripper would move in relation to the current
situation. We did not explicitly describe the intentions behind the different modes and their
order in Double Arrow and Single Arrow (to provide ideally optimal mappings) to prevent
possible biases. Otherwise, the participants might have been inclined to trust the adaptive
mappings against their own judgment, thereby changing their behavior.

The explanation of each control type was followed by a series of trials of our pick-and-
place task (see Section 4.6) the participants had to execute to progress through the study.
For each control type, the task was performed once as a training trial and then eight more
times for the same control type. During these eight trials, the task completion time and the
number of mode switches performed was recorded.

After executing all trials for a control type, the participants were presented with the
NASA Raw-TLX questionnaire to capture the participants’ workload. Additionally, the
participants could record a short audio message to point out additional things they felt
were relevant during the execution of the trials. The recording of the audio message was
optional. After filling out the questionnaire and optionally recording an audio message,
the participants would continue with the next control type until they had executed all trials
for all three control types.

Upon finishing the VR part of the study, participants received a unique code to
be entered in a form on our website to complete the VRSQ [27] and our questionnaire.
We asked the participants to report their demographic data and rank the control types
presented in the VR section of the study. Lastly, participants left their contact information
to receive the compensation.

4.5. Study Design

We used a within-subjects design with the control type as an independent variable
with three levels: (1) Classic, (2) Double Arrow, and (3) Single Arrow. Each participant
performed eight trials of a pick-and-place task for each of the three control types (see
Section 4.6). Additionally, they performed one training trial for each control type to
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familiarize themselves with the control type. The order of control types shown to the
participants was fully balanced.

We measured three dependent variables for each control type: Average Task Completion
Time, Average Number of Mode Switches, and Workload via a NASA Raw-TLX questionnaire.

Average Task Completion Time in seconds While participants executed each trial with
the robot arm, the time to complete the task was measured for each participant. Then, the
average task completion time for each control type was calculated across all participants.
Average Number of Mode Switches While participants executed each trial with the robot
arm, each mode switch executed by pressing a button on the input device was counted and
stored as the number of mode switches. Then, the average number of mode switches for
each control type was calculated across all participants.
Workload via a NASA Raw-TLX questionnaire After completing all trials within each
control type, the participants were asked to fill out a NASA Raw-TLX questionnaire to
obtain information about the participants’ perceived workload. The questionnaire consists
of the following six criteria, which participants would rate on a scale of 0 to 100 in steps
of 5: mental demand, physical demand, temporal demand, performance, effort, and
frustration [28].

In addition, the participants could record a short description of their experiences
in the form of a voice message, although this was not mandatory. The recorded voice
messages were transcribed and analyzed by multiple researchers to identify underlying
themes and common impressions the participants had while using the virtual robot arm
(see Section 5.2). Participants also provided a personal ranking of the three control types in
a questionnaire at the end of the study.

4.6. Task

Participants were asked to repeatedly place a blue block onto a red target using the
assistive robot. Participants performed this task eight times per control type. We did not
use two blocks per trial to reduce variability in our results. We decided to use a simple pick-
and-place task instead of a specific ADL (e.g., drinking from a glass) since pick-and-place
tasks are part of many ADLs. Moreover, a specific ADL might have caused problems with
participants’ preconceived notions of that task (e.g., they would approach the glass in a
particular way, while the adaptive system would approach it differently). This would have
possibly distracted them from evaluating the control types as a whole, which we wanted
to avoid.

In each of the eight trials per control type, the position of the blue block changed to one
of eight predefined positions around the red target surface. The order in which the positions
were used in the eight trials was randomized for each participant and control type.

5. Results

We recorded both quantitative and qualitative data from the participants during the
trials. This section presents the results of each section from our data analysis.

5.1. Quantitative Results

The recorded quantitative data for each trial included task completion time (in seconds)
and the number of mode switches. For each control type, the quantitative data included the
NASA Raw-TLX results and the Rank given to the control type by the participants (lower
rank numbers are better). The used abbreviations and symbols are:

• IQR: Interquartile Range;
• SD: Standard Deviation;
• SE: Standard Error;
• p: p-value as an expression of the level of statistical significance;
• N: Sample Size;
• χ2(2): Chi-Squared with two degrees of freedom;
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• F: F-Statistic for the Repeated-Measures ANOVA;
• M: Mean;
• df: Degrees of Freedom for the calculation of χ2 for the Friedman Tests.

5.1.1. Task Completion Time

For each participant, we averaged the task completion times (see Table 1) of the trials
for each control type. In an exploratory analysis, we removed outliers that had average
task completion times ≥ 2.2 ∗ IQR of the mean task completion time in at least one control
type [29] (see Figure 6). Four outliers were excluded this way, leaving 35 participants for
analysis of task completion times. An inspection of QQ-plots found the resulting data-set
to follow a normal distribution.

Table 1. Statistics for average task completion times (in seconds, N = 35).

Classic Double Arrow Single Arrow

Mean 47.41 42.62 44.04
Median 44.66 37.75 41.23
Std.-Dev. 12.55 19.28 22.24
IQR 14.03 24.33 31.68

Figure 6. Boxplots for average task completion times.

To determine whether the control types had an effect on average task completion
times, we performed a Repeated-Measures ANOVA (RM-ANOVA). However, we found no
significant main effect (F(2, 64) = 1.31, p = 0.28).

In addition to the effect of control types, we examined whether the starting condition of
a participant had an impact on task completion times. We included the starting condition as
a between-subjects factor for the RM-ANOVA and discovered a significant interaction effect
between the starting condition and the task completion times (F(4, 64) = 8.86, p < 0.001).
Analyzing simple main effects, we discovered that the task completion times for Classic
stayed roughly the same regardless of the starting condition. However, both adaptive
control types heavily suffered when they were the starting condition (see Figure 7). A post
hoc pairwise comparison (Estimated Marginal Means, Bonferroni adjusted) showed that
task completion times for Single Arrow (M = 54.66 s, SE = 5.9) were significantly longer than
those for Double Arrow (M = 33.74 s, SE = 4.6) if Single Arrow was the starting condition
(p = 0.001). Conversely, task completion times for Double Arrow (M = 57.89 s, SE = 5) were
significantly longer than those for Single Arrow (M = 37.82 s, SE = 6.41) if Double Arrow was
the starting condition instead (p = 0.002). Another significant difference was found if Single
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Arrow was the starting condition: Classic task completion times (M = 48.23 s, SE = 3.57)
were longer than those of Double Arrow (M = 33.74 s, SE = 4.6) in that case (p = 0.013). The
other comparisons yielded insignificant results.

Figure 7. Estimated Marginal Means for average task completion times.

5.1.2. Mode Switches

To determine whether there were differences between the average number of mode
switches between control types we used an RM-ANOVA. Due to a software error, mode
switch data were only recorded correctly for 20 participants. We found a significant effect of
control types on the average number of mode switches (F(2, 38) = 8.08, p = 0.001). Pairwise
comparisons revealed that there were significant differences (p < 0.05) between the average
number of mode switches for both adaptive control methods (Double Arrow: M = 12.93,
SD = 3.91; Single Arrow: M = 14.23, SD = 5.15) and the Classic control method (M = 17.87,
SD = 4.8). We found no significant difference between the average number of mode switches
for Single Arrow compared to Double Arrow (p = 0.11, see Table 2 and Figure 8).

Figure 8. Boxplots for average number of mode switches.
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Table 2. Statistics for average number of mode switches (N = 20).

Classic Double Arrow Single Arrow

Mean 17.87 12.93 14.23
Median 16.50 11.63 12.31
Std.-Dev. 4.80 3.91 5.15
IQR 7.00 5.09 7.91

5.1.3. Workload and Rank

Each participant completed a NASA Raw-TLX questionnaire after completing the task
with each control type, rating each dimension on a scale from 1 to 100. To evaluate whether
there were any differences between the control types regarding workload, Friedman Tests
were performed for both the overall NASA TLX value as well as the individual dimensions
of the questionnaire. No significant differences were found for either the overall NASA
TLX value (χ2(2) = 5.33, p = 0.07) or the individual dimensions (see Table 3).

We also evaluated whether the users preferred one control type over the others. To do
so, the participants ranked the control types after completing all tasks. A lower number
means the participant ranked that control type higher. No significant differences were
found for the ranks (χ2(2) = 0.97, p = 0.65) (see Table 4).

Table 3. Statistics for individual NASA TLX Dimensions on a scale from 1 to 100 (df = 2, N = 39 for
all Friedman Tests).

Mental Physical Temporal Performance Effort FrustrationDemand Demand Demand

Classic (Mean) 53.33 30.26 36.92 32.05 48.59 41.41
Classic (Std.-Dev.) 24.64 21.67 21.07 20.48 24.84 24.52

Double Arrow (Mean) 56.28 28.21 40.38 38.97 52.82 43.08
Double Arrow (Std.-Dev.) 22.93 16.20 25.06 25.50 24.08 26.40

Single Arrow (Mean) 48.97 27.56 36.03 40.64 51.41 38.33
Single Arrow (Std.-Dev.) 24.69 22.94 20.56 26.61 23.25 26.34

Mean Ranks

Classic 2.04 1.92 1.96 1.73 1.79 1.92
Double Arrow 2.21 2.17 2.18 2.15 2.18 2.17
Single Arrow 1.76 1.91 1.86 2.12 2.03 1.91

Friedman Tests

χ2 4.23 2.07 2.38 4.86 3.15 1.76
Exact Significance 0.12 0.37 0.31 0.09 0.21 0.43

5.2. Qualitative Results

Participants were asked to describe their experience with the control type they used
in a voice message. They were asked to elaborate on the ease of controlling the robot,
their understanding of movement directions, and the predictability of the next movement
directions.

In total, 23 of the 39 participants recorded a message for all three control types. In
addition, only four participants recorded voice messages for two of the three control types,
and one participant just recorded a single voice message. This resulted in 26 voice messages
for each control type.
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Table 4. Statistics for NASA TLX on a scale from 1 to 100 and ranking on a scale from 1 to 3 (df = 2,
N = 39 for all Friedman Tests).

NASA TLX Rank

Classic (Mean) 40.43 1.87
Classic (Std.-Dev.) 17.11 0.77

Double Arrow (Mean) 43.29 2.05
Double Arrow (Std.-Dev.) 15.32 0.86

Single Arrow (Mean) 40.49 2.08
Single Arrow (Std.-Dev.) 17.29 0.84

Mean Ranks

Classic 1.85 1.87
Double Arrow 2.29 2.05
Single Arrow 1.86 2.08

Friedman Tests

χ2 5.33 0.97
Exact Significance 0.07 0.65

5.2.1. Thematic Analysis

The voice recordings were analyzed with the Thematic Analysis method described by
Braun and Clarke [30]. This method was chosen because it has the flexibility to identify
themes within the unstructured feedback from the recorded voice messages. Throughout
the analysis, we identified themes related to our hypotheses, which gave us a better insight
into how participants perceived their experience and success in executing the given tasks.

First, we transcribed the voice messages to be able to analyze them. Although most
participants recorded their messages in English, a few recorded them in German. Some of
the statements in the following chapters were therefore translated into English. Second, two
of our researchers performed the Thematic Analysis using the six-phase method described
by Braun and Clarke [30]. Each researcher read each transcribed voice message to become
familiar with the participant’s feedback. They then marked certain paragraphs and phrases
to identify underlying topics related to our hypotheses that were relevant within multiple
data-sets. Each marked phrase was assigned a short code describing its topic. We used
the software Obsidian (Obsidian markdown note-taking software: https://obsidian.md,
accessed on 3 January 2022) for managing and tagging the transcribed messages in a simple
markdown text format with links and tags. Third, codes were organized and grouped into
themes, and descriptive titles were assigned to each theme. For a visual representation,
we developed visual thematic graphs; one of which is shown in Figure 9. Although some
comments were related to several themes, we decided to sort them into the theme with
the best fit. Fourth, themes were revised and evaluated by reading the related phrases
and codes again to ensure that each theme was internally homogeneous. Fifth, both
researchers worked together to refine the themes and compile them into a single thematic
map presented in Figure 10. Sixth, a summary of the results was written based on the final
thematic map.
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Figure 9. Early thematic map with codes shown in yellow and themes shown in blue.

Figure 10. Final thematic map with themes shown in green and sub-themes shown in gray.

5.2.2. Results of the Thematic Analysis

We identified the following themes in the combined thematic map: visualization of
robot movement, cognitive demand, predictability of mode switching, predictability of movement
and learning. The excerpts from one participant’s audio messages were marked with the
participant’s unique number (e.g., P26 for the 26th participant out of the total 39 partici-
pants). Since participants often referenced the previous control types they used, we also
added which control type they were referring to in brackets when citing them.

Visualization of robot movement: This theme comprises the difficulties and benefits
of the visualization of the robot’s movement. As expected when transferring over a
visualization from a 2D environment to 3D, perspective was one source of errors across all
three control types. P5 stated, “Depending on the orientation of the robot arm, I could not
see exactly which way the arrows were going.” P4 added, “Sometimes moving the robot
was a bit difficult because it just did not feel natural from different perspectives.”

Regarding the control types Double Arrow and Single Arrow, many participants men-
tioned that the arrows are either hard to interpret or hard to see. Interestingly, the partici-
pants did not mention this problem with the Classic control type. Participants stated, “[. . . ]
the arrows that follow the change of the movement direction are a little more difficult and
a little bit less intuitive to understand than the previous trial [control type Classic]” (P9),
and “I think it is more difficult than the previous control type because it has more abstract
movement [. . . ]” (P25). Besides the curved arrows, many participants found it difficult to
associate the differently colored arrows of the visualization with the different input DoFs
across all three control types. P31 made this clear after using the Single Arrow control type.
They said, “The hardest part working with this method of motion was determining which
direction pushing the analog stick would actually move the robot.”

Across both adaptive control types, participants mentioned the helpfulness of the
arrows. P25 commented, “I think it was confusing at first, but those red and green arrows
helped a lot to understand how the robot moved.” After using the Double Arrow control
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type, P8 mentioned, “Controlling the robot was better than before [control type Single
Arrow], because one could tell more easily where the arm would go, based on the multiple
arrows”. This suggests the possible benefits of having multiple arrows in the Double Arrow
control type.

Cognitive demand: In this theme, we consolidated statements that describe a higher
or lower cognitive demand while using a specific control type. Across all three control
types, some participants mentioned a high cognitive demand. After using the Single Arrow
control type, P17 stated, “This one was more cognitively demanding than the previous
one [control type Classic], maybe because this one did not have straight movement but a
lot of rotational movements”. P18 found it to be “a bit confusing, but okay.” Participants
described the Classic control type as “confusing” (P8) and “counter intuitive” (P18). Using
the Double Arrow control type, P21 expressed the need to focus on the task and added, “I
do not think you could do anything else while using this control method”.

While mentions of lower cognitive demand were equally frequent in total, many
participants found the Classic control type to be “easy” or “easy to understand” (P6, P9,
P25, P27, among others). After using the Classic control type, P39 added, “Here it was best
to intuitively remember where each function was”. This suggests a connection with the
next two themes regarding predictability.

Predictability of mode switching: This theme describes the ability of the participants
to anticipate the next set of movement combinations that the system provides when the
participant executes a mode switch. Many of the difficulties participants had with the
predictability were with the adaptive control types Single Arrow and Double Arrow. When
using the Double Arrow control type, P17 noted, “In this condition, I was not sure whether
cycling through the different types of movements in there always were consistent. That
was very confusing.” We also identified this statement as an expression of an increase
in cognitive demand. For the same control type, P21 added, “I did not know which
combination would be next when I pressed A”. Using the Double Arrow control type, P23
mentioned, “I could not predict the next movement, because I did not understand in
which order the different movements are shown to me next.” We think this participant
confused the ever-changing nature of the adaptive suggestions with the different modes.
Only a few participants mentioned difficulties with predicting the next mode in the Classic
control type. P37 said, “Predictability was uncertain as well, until the later moves where
I had enough training to do it effectively.” Additionally, many participants mentioned
that they had to switch modes many times to find the proper movement they needed in a
given situation, especially with the adaptive control types. Using the Double Arrow control
type, P3 stated, “So if I wanted it to go down I would have to switch through multiple
modes [. . . ]”. Furthermore, using the Double Arrow control type, P5 mentioned, “I had to
click through many modes to find the movement that I thought would bring me closer to
the block”.

Mentions of good predictability were also spread across all three control types, al-
though these were less common. For the Classic control type, P39 stated, “It was very easy
to understand and especially the predictability was the easiest here”. Using the Single Arrow
control type, P37 mentioned, “The ease of understanding the movement was a lot easier as
well. With some of the movement directions being easier to understand and predict before
they show up.” After executing the tasks with the Double Arrow control type, P37 added,
“It seemed more predictable and overall, a more optimum way of doing things”.

Predictability of movement: In contrast to the previous theme, this theme is about
predicting how and where the robot arm will move when using the currently selected
mode. As visualization plays a big part when predicting the robot’s movement, this theme
is related to the first theme about visualization. Only a few participants mentioned the
predictability of movement directly. After using the Double Arrow control type, P4 said, “So
I tried to do one thing and it would do a completely other thing. It felt really unnatural
to try and get to the cube and even to pick it up”. For the Classic control type, P10 stated,
“Because of the immediate predictability [. . . ], it was much easier to control the robot and
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to steer it into different vectors to approach the block in the different positions”. Using
the Single Arrow control type, P10 added, “Therefore I could understand very well how it
would move and how it would work out so I could reach the target”.

Learning: This theme describes the participants’ impression of their learning experi-
ence while using the different control types. Across all three control types, participants
reported that they grew better at performing the tasks over time. For the Classic control
type, P26 stated, “Using this robot arm is pretty easy if you learn how to use them, [. . . ]”.
After using the Double Arrow control type, P25 mentioned, “The predictability of the next
movement directions, I think, is easier as you practice with it, [. . . ]”. For the Single Arrow
control type, P39 said, “The more I practiced, the more confidence I got [. . . ]”.

As participants used the different control types, they noticed a learning effect even
across the different control types. After finishing all trials of all control types, ending
with the Double Arrow control type, P25 said, “The predictability of the next movement
directions, I think, is easier as you practice with it, [. . . ]” After using the Single Arrow
control type, P33 stated, “Maybe I simply have more experience now, if I performed better
in this task in any way”.

Even though many participants felt that they needed more practice with the tasks so
that they are easier to perform, some described that the process of learning felt relatively
easy. When finishing the tasks with the Classic control type, P16 stated, “It was quicker
to get familiar with the system.” P33 expressed some difficulties with the Double Arrow
control type but added, “At least it did not take long to notice a learning effect”.

Additionally, we identified many instances where participants reported that they liked
the second adaptive control type they used better than the one before, regardless of which
control type came first and which came second. This also suggests that a learning effect
is taking place. After using the Double Arrow and then the Single Arrow control types, P27
stated, “I don’t know what is the difference between double arrow and single arrow, but
single arrow is much easier to control”. For the Double Arrow control type, P31 stated, “This
method is a little bit easier to use than the second method [Single Arrow control type], but I
think that was more a function of having a little bit more experience”.

6. Discussion

Initially, our assumptions were that the overall task performance would be best when
using the Single Arrow control type, followed by Double Arrow, and Classic would have
the worst task performance. In comparison to the results of our previous study [6], the
new results are not as pronounced in a realistic virtual 3D setting, at least not without
considering the learning effects.

Regarding the task completion times, both Hypothesis 1 and Hypothesis 2 could
not be substantiated. However, the interaction effect between the starting condition and
task completion times suggests that, with time to learn, the adaptive control types could
perform better than the Classic type. This is corroborated by participants’ reports, as many
participants said that their performance and understanding of the adaptive control types
improved during the tasks. It is also worth noting that more participants experienced the
second adaptive control type as “better” than the first, implying a learning effect not only
for one control type but between control types.

Regarding mode switches, Hypothesis 3 and Hypothesis 4 could be substantiated
by our results. From Classic to Double Arrow, we measured a significant reduction in
the number of mode switches necessary to perform the task. In contrast, there was no
significant difference between Double Arrow and Single Arrow. Interestingly, this contrasts
the participants’ opinions that they felt they had to switch many times to get to a mode
that performed a movement they expected. However, this reduction in mode switches
might be of higher benefit for people with motor impairments than for non-disabled people.
Switching modes using a button requires a certain level of dexterity and causes the user to
constantly divert their attention away from the original task, so more mode switches can
cause more fatigue and time consumption, as explained by Herlant et al. [5]. The impact
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of this difference in the number of mode switches on people with motor impairments can
thus only be evaluated in a future study with participants with motor impairments.

Regarding workload, Hypothesis 5 and Hypothesis 6 could not be substantiated. This
could have multiple reasons. For example, the participants expressed that the predictability
of the adaptive control types was low and that they did not necessarily know how the robot
would move, even with the arrows. These impressions, combined with the statements
regarding positive learning effects and overall high cognitive demand, could mean that
with increased exposure to the adaptive control types, users could have a lower workload
than with Classic.

According to some participants, using visual cues in a 3D environment caused prob-
lems with perspective. This made it difficult for them to predict how the robot would
move, even with the visual cues provided by the arrows. To mitigate this problem, our
concept might be combined with a “digital twin” of the robot arm, which demonstrates the
movement virtually before the real robot performs it physically [31].

To improve the overall predictability of the system, both regarding the suggested
modes and the movements of the robot, a training mode could be implemented. In this
mode, the users would be able to teach the system the way they want specific tasks to
be performed [32]. This should increase predictability, as the participants would know
the proposed movements will be (partially) based on their own instructions. In addition,
Spatial Augmented Reality can help the user’s understanding of the robot’s perception, e.g.,
which object the robot assumes the user wants to interact with [33]. In combination with
the already implemented visual cues, this can help the users predict the robot’s movement
more accurately.

After further research and refinement of our proposed control methods, they might
allow assistive robot arms to help with ADLs that currently require the help of caregivers or
more complex robots, such as dressing [34] or bathing [35]. The fact that the users always
stay in control of the robot while the robot performs more fluent, natural movements could
also allow people with motor impairments to use the robot in social situations, e.g., at the
workplace [36].

7. Limitations

Our study did not specifically involve or focus on people with motor impairments.
Thus, we need to discuss how our results can be transferred to this target group. First,
the absolute performance measures cannot be generalized to this target group. Individual
differences are usually high within people with motor impairments due to varying degrees
of physical limitations [37]. However, the study did not aim to provide absolute results
in terms of performance but rather an insight into the relative performance of the three
different control types. Since they all rely on the same physical interaction concept, we
believe that the way motor impairments might affect performance should be comparable
for all three control types. Second, Augmented Reality is necessary to provide the user
with the type of visual feedback we implemented for our study. We are aware from our
prior research that current-generation AR-HMDs are often not accessible to people with
motor impairments. AR-HMDs such as the Microsoft HoloLens are too heavy and conflict
too often with health-supporting systems [38]. We conducted this research with the firm
belief that future AR hardware solutions will cope with requirements for people with motor
impairments. We acknowledge, however, that this might make the visual feedback designs
inapplicable for real-world systems at this point in time or the immediate future.

Additionally, our study involved the use of the Oculus Quest system and the Oculus
Quest Motion Controller as the only input device. In the real world, however, assistive robot
arms can be controlled with a wide range of input devices depending on the abilities and
preferences of the person using them. We specifically only used the most basic functionality
of the Motion Controller (the control stick and one button) to ensure that the results are
also applicable when using a different input devices with two input axes. It is still possible
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that the use of different input devices might add more complexity to the overall usage of
such a system.

Another limitation is the nature of our study being performed as a remote study. The
level of control is limited for such a method, which means that the level of engagement of
participants can vary. We addressed this limitation by keeping the duration of the study
relatively short (30–45 min) and designing the task so that we could easily identify cases
in which participants did not follow the study protocol. Our analysis further shows that
only a few participants were identified as extreme outliers. In addition, the focus on one
set of hardware devices made it possible to harmonize and control the kind of immersive
experience that participants engaged with, further reducing potential biasing effects, such
as low frame rates or other hardware-performance-related issues. Given the current COVID-
19 pandemic, we believe that our study setup is sensible and still able to provide robust
results. Still, we aim to replicate at least part of the study in a lab environment and with
people with motor impairments in the future.

It is possible that our study does not provide insight into the quality of adaptive
control through the means of a CNN. We simulated the adaptive control method to be
able to have full control in the study. Otherwise, imperfect DoF mappings would have
overshadowed the potential effects of the different visualizations, thus making it difficult
to draw conclusions. As discussed, we believe that our approach significantly decreases
the possibility of unpredictable behavior while having little impact on the applicability of
our findings to a system using a CNN, as long as this CNN is able to perform at a high
level of quality regarding the DoF mappings.

8. Conclusions

We conducted a study exploring and evaluating the user experience of an adaptive
control concept for assistive robot arms in a realistic virtual 3D environment. Our results
suggest a significant benefit of such an adaptive control concept regarding the necessary
number of mode switches. However, task completion times and workload do not change
when using an adaptive control concept without more intensive training.

By evaluating the interaction between the starting conditions and task completion
times and applying a thematic analysis of qualitative data, we conclude that there could
be a significant benefit of training that would reveal the potential of an adaptive control
concept. Therefore, future work should consider longer training sessions before evaluating
task completion times and workload. The targeted user group of assistive robot arms
would use such devices not just once but daily and over extended periods and thus have
more time to learn how to use the device. Therefore it is important to assess whether the
adaptive control concept might have high cognitive demand in the beginning but is better
than the Classic approach once the users are trained.

Our results seem to suggest that there is little to no difference between Single Arrow
and Double Arrow regarding how well they convey the robots currently active DoF mapping
to the users. However, an improved visualization could reduce the overall high cognitive
demand users have experienced. Therefore, future work will also focus on different types
of visualizations, which will not be restricted to MR-headsets and overlayed arrows but
could (additionally) show the robot’s future path using spatial Augmented Reality [39].

Future work should (whenever possible) include participants with motor impairments
since their experience is vital in designing assistive technology [4]. The impact of a lower
number of mode switches enabled by an adaptive control concept should be especially
evaluated with people with motor impairments. This could significantly improve their
execution of activities of daily living.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/technologies10010030/s1. Video S1: An Overview of the Envi-
ronment and Control Types.
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Abstract. Being able to live independently and self-determined in one’s
own home is a crucial factor or human dignity and preservation of self-
worth. For people with severe physical impairments who cannot use their
limbs for every day tasks, living in their own home is only possible with
assistance from others. The inability to move arms and hands makes it
hard to take care of oneself, e.g. drinking and eating independently. In
this paper, we investigate how 15 participants with disabilities consume
food and drinks. We report on interviews, participatory observations,
and analyzed the aids they currently use. Based on our findings, we
derive a set of recommendations that supports researchers and practi-
tioners in designing future robotic drinking and eating aids for people
with disabilities.

Keywords: Assisted living technologies · Human-centered
computing · Meal assistance · Participation design · People with
disabilities · Robot assistive drinking · Robot assistive feeding · User
acceptance · User-centered design · User participation

1 Introduction

At the end of 2019, 7.9 million people classed as severely disabled were living
in Germany [47]. With over 58% of these cases being attributed to physical
disabilities, motor impairments affected an total of 4.6 million people; 11.2%
of which are suffering from impaired functionality to a complete loss of motor
control of their extremities. Additionally a further 10.4% were also affected by
impairments in the spinal and torso region.
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(a) Filling a glass of water (b) Grasping a glass to drink

Fig. 1. Robotic arms can support users with motor impairments in their everyday
drinking and eating task. We explore how such systems should be designed to provide
a benefit to the users and support them in living a self-determined life.

Functional loss of the use of extremities can be caused by upper spinal cord
trauma and degenerative diseases. Those afflicted are struggling, or are simply
unable, to perform every day tasks independently of others. One very prominent
area is the one of nutrition. Being self-sufficient in terms of being in control of
food and water intake is not only beneficial to ones health but also immensely
important for ones self-worth [30].

Assistive technologies are increasingly becoming a vital factor in the field of
assisted living; minimising the need for constant care and allowing people with
motor impairments to regain some independence [35]. Initial studies by Klein [24]
and Merkel and Kurcharski [34] indicated that assistive technology often meets
non-acceptance and non-use and propose that devices need to focus more on
the needs and preferences of the target group. Using a participatory approach
integrating future users in the developing progress is recommended to promote
a higher acceptance of the final product [50].

We conducted an ethnographic study in this work to shed light on how users
envision future systems supporting them with everyday drinking and eating
tasks. We interviewed 15 users with motor impairments, presented a robotic
aid as a potential assistive system, and conducted in-situ observations of their
drinking and eating behavior and used tools. We gained significant insight into
user opinions and derived recommendations regarding structural, social, and col-
laborative concerns of future assistive systems like a robotic drinking aid (cf.,
Fig. 1. These recommendations will help designers and engineers in a technology-
focused domain to build systems that actually help people.

2 Related Work

Traditionally the focus in the field of developing assistive technologies has been
on functionality from an engineering point of view. Recent findings however
highlight the need to include future users and their perceived needs in the design
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process [26]. In this section we first examine previous work done on concepts of
user participation and collaborative approaches. In a second step, we present
projects that already analysed the use of robotic devices to support people with
disabilities and how these aids are valued by their users.

2.1 User Needs

In recent years, there has been growing interest in the concept of user partici-
pation in the design of new assistive technologies. Groundwork laid by Thielke
et al. [48] and Merkel and Kucharski [34] expressed the need for this collabo-
rated approach to maximize user acceptance. They indicated various methods
for integrating the user group as well as family, caregivers and assistants into
the innovation process. Focus groups, qualitative interviews, visits of the primary
users’ homes, and participant observation can provide significant insights into
the needs and wants of the user group. The recommendation for this participa-
tory approach that integrates the future users in the developing progress is also
noted by Frennert and Östlund [17] and Eftring and Frennert [13], confirming
the findings by Klein and Merkel and Kurcharski.

During the development of a robotic therapy support system, Duckworth et
al. used three different methods to include the future users preferences into their
work [12]. Clinicians and patients were interviewed, given a questionnaire concern-
ing the design of a robotic therapy support system and had the opportunity to use
the developed robot during counselling sessions. They came to the conclusion that
a participatory design provides essential information for the development of assis-
tive technology and increases the chance of a positive user experience.

Using a similar approach, Mandy et al. conducted a qualitative study with
users of the Neater Eater to gain an in-depth understanding of their user experi-
ence [29]. They report that self-feeding devices increase the life quality of people
with disabilities significantly and support a more equal relationship between
those who are in need of care and their carers. They stress the need of a positive
approach towards assistive technologies for a wide general acceptance.

2.2 Human-Robot Collaboration in the Field of Supporting People
with Disabilities

Robotic solutions can make a significant contribution to regaining independence
and improving care by supporting and relieving caregivers, thus improving the
quality of life of those in need of support [5].

A growing body of literature has examined the impact of assistive robotic
systems in supporting people with motor disabilities. Work done by Chen et
al. [9] for the Robots for Humanity project and Fattal et al. [14] looked into the
feasibility and acceptance of robotic systems as assistive technologies. A common
finding was that the robotic devices are often designed to assist with several
activities of daily living. These devices are usually large; consisting of a robotic
arm on a mobile module. They require a barrier-free environment and rooms
with sufficient space to fit into and be able to move around safely. In contrast,



334 M. Pascher et al.

Pascher et al. noted the potential of smaller, lightweight solutions designed for
individual tasks [36], indicating that a specialized aid would be more accessible
in terms of size and portability.

Research by Gallenberger et al. used camera and machine learning for an
autonomous robotic feeding system to detect types of food items present and to
plan the picking-up and transportation to the mouth of the user [18]. An alterna-
tive approach is presented by Canal et al. describing a learning-by-demonstration
framework to feed the user [8]. Both projects ensure the ability of the robotic arm
to fulfill its autonomous tasks without any fine-control of the user focusing on the
technical aspects of the development process of assistive technology.

A 2019 study by Beaudoin et al. focused on the long-term use of the robotic
armJACO [4], a recent advance in assistive technologies. They researched improve-
ments of everyday task capabilities, satisfaction with JACO, psychological impact
and the implications for users and their caregivers using a similar quantitative app-
roach as employed in this study. Beaudoin et al. reported that almost all partici-
pants gained more autonomy in certain life aspects and experienced a number of
positive psycho-social impacts. One such success was the increased capability of
participants to drink independently of human support using JACO, thus reduc-
ing the amount of care and attention needed and increasing well-being and overall
health by having a continuous access to beverages.

Interaction technologies such as gaze-based interaction and head movement
have been explored to operate, e.g. a PC [11,38,40] and a robot [22,41,45]. Alter-
natively, brain-computer interfaces were used to control a robotic arm [1]. How-
ever, today’s ubiquitous technology interaction scenarios are much more tightly
integrated in everyday activities and require different interaction interfaces [28].

3 Study

The goal of this work is to understand users’ requirements and demands of
assistive technology that supports them with drinking and eating. For this, we
conducted an ethnographic study consisting of an interview including a VR
presentation of a robotic support system and in-situ participatory observations
of their drinking and eating habits, with 15 participants afflicted by a varying
degree of motor impairments.

3.1 Participants

In preparation for the main study, we opted to evaluate our methods with a
pilot participant allowing us to adapt the study design before approaching the
remaining participants. Participants were chosen in collaboration with the Cen-
ter for Paraplegic Patients Hamburg, the Locked-in-Syndrom e.V. Berlin, and
the State Association of the German Society for Multiple Sclerosis Hessen e.V.
We recruited 15 participants with a permanent and significant degree of compro-
mised mobility of the extremities and the reliance on support for the consump-
tion of food and drinks. Table 1 presents the participants split by gender, age,
and diagnosis. 4 female and 11 male participants took part in the main study;
the mean age was 42.07 years (SD = 16.68) and all were categorized as severely
disabled.
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Table 1. Overview of the pilot and main study participants

ID Gender Age Diagnosis

Pilot Female 60 Multiple sclerosis

P1 Male 18 Spinal cord injury; incomplete at level C3

P2 Male 46 Spinal cord injury; complete at level C4 & some
rudimentary mobility until level C5

P3 Male 41 Spinal cord injury; incomplete at level C3 (right body-side
has some mobility until level C5)

P4 Male 30 Spinal cord injury; incomplete at level C3

P5 Female 62 Locked-in syndrom

P6 Male 50 Spinal cord injury; incomplete at level C4

P7 Male 38 Spinal cord injury; incomplete at level C3 & complete at
level C5

P8 Male 30 Spinal cord injury; complete at level C3

P9 Male 22 Spinal cord injury; complete from level C3 to C7

P10 Male 48 Spinal cord injury; complete at level C4 & C5

P11 Female 60 Multiple sclerosis

P12 Male 50 Inclusion body myositis

P13 Female 51 Locked-in syndrom

P14 Male 34 Spinal cord injury; complete at level C5 & C6

P15 Female 51 Arthrogryposis

3.2 Procedure

Each session took place in the participants’ homes which allowed us to conduct
the interview, observation of drinking and eating habits as well as analysis of
commonly used aids in a natural setting. In most of the cases a caregiver or
assistant was present.

Interview. Due to the nature of the physical impairments faced by the partici-
pants, obtaining their consent had to be adapted to their particular capabilities.
After reading or listening to a researcher reading the consent form, participants
signed the form by themselves or had their spoken agreement recorded. In other
cases, an authorized caregiver signed the form on behalf of the participant.

The interview part was structured in four sections; each focusing on a dif-
ferent aspect detailing their living situation, attitudes regarding drinking and
eating, level of assistance needed as well as wishes towards an ideal robotic aid.
In the first part we aimed to understand their current living situation by estab-
lishing how many hours they spend in their wheelchair, where they spend most
of the time, and where they eat and drink at home.

Next, we were interested in their value propositions and preferences regarding
drinking and eating. The participants were asked to describe a typical meal-
time routine, what they generally consume, and which preparations are needed.
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Further, we wanted to know if drinking and eating is seen as a necessary task or
can also convey enjoyment. Participants were also asked if they consume food
and drinks if they are not at home (at work, in a restaurant).

The third step focused on the process of drinking and eating in an assistive
setting including the communication with their caregivers/assistants and any
improvised aids used.

In the final step of the session, we focused on the use of a proposed robotic
arm as a drinking and eating aid. To familiarize participants with the concept
they were shown images of different eating support systems and wheelchair-
extension-type robotic arms that are already on the market, e.g. iEat [3], Obi [10],
JACO [23], and iArm [2]. To simulate the situation of sitting in front of an actual
robotic arm performing tasks in a close-contact environment we used Google
Cardboard [20] and a stereoscopic video of our in-lab robot setting. Conducting
the interviews in the participants’ homes made this lightweight solution neces-
sary. Figure 2 shows the robotic arm bringing a glass of water to the user’s face
(in this case simulated by the camera lens). To further the realism of the situ-
ation, participants were able to experience the actual sounds of the robotic aid
by simultaneously listening to an audio recording.

Fig. 2. Stereoscopic video in a first-person perspective of sitting in front of a robotic
arm performing tasks in a close-contact environment

Following this experience we inquired about the participants’ perception of
the robotic aid including their likes and dislikes of the simulation and any changes
they would appreciate from an end-user perspective. We encouraged them to
express wishful thinking without worrying about current technological capabili-
ties. We were also interested in how the participants would like to interact and
collaborate with the robot. Special interest concerned the preferred location of
attachment (e.g. table, wheelchair or self-mobile) and which additional functions
should ideally be available.
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Any additional thoughts, wishes, and suggestions of the participants were
recorded for use in future research.

Participatory Observations. This part of the study focused on observing
participants consume food and drinks (cf., Fig. 3) with the assistance of their
caregiver. Observations of the relative location of the assistant, the methods
used, and the communication between both parties were recorded. Depending
on the specific type of impairment participants were either laying in their beds
or sitting in their wheelchairs. Filming these interactions allowed for easy access
during data analysis.

(a) Eating (front view) (b) Eating (back view)

(c) Drinking with a straw (d) Drinking with glass contact

Fig. 3. Observation of eating drinking habits together with their caregiver

Analysis of Commonly Used Aids. During the qualitative interviews we
found that every study participant uses some kind of aid to facility food and
drink consumption (cf., Fig. 4). In order to consume the necessary amount of
fluids, tea and water are provided in teapots (cf., Fig. 4b) or in large dispensers
(cf., Fig. 4c). Large dispensers contain enough beverages for all day without the
need for re-filling by an assistant. We recorded images of these aids to increase
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our understanding of the help people need and want when confronted with tasks
they cannot independently do anymore.

(a) Standard drinking straw
for a glass of water

(b) Drinking straw/hose for
warm and cold tea

(c) Filling glass with a dis-
penser

(d) Modification of ma-
chines (by adding parts)

(e) Self constructed bottle
opener

(f) Portable cutlery set

(g) Hydro flask (h) Mouth-stick rest (i) Lifter

Fig. 4. Analyzed aids in the participants’ homes which are currently used

3.3 Limitation of Our Study

The main target group of our study were people with quadriplegia caused by
spinal cord injury. The noticeable skewed ratio of more male than female partic-
ipants reflects statistic by the WHO [51] and German Federal Statistical Office
(Destatis) [47] of a 2:1 male-to-female ratio for overall recorded spinal cord
injuries worldwide [33]. Additionally, a higher number of women refused to take
part in our study as they felt uncomfortable with the study design (e.g. getting
filmed while eating and drinking).
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Use of a Robotic Arm During the Study. One participant (P15) has rudimentary
mobility functions in her lower right arm which allows her to use a joystick-
controlled robotic arm for nearly every activity of daily living including consum-
ing food and drinks, manipulating objects and basic hygiene. Figure 5 illustrates
how she handles the tasks with her robotic arm.

(a) Drinking (b) Eating

Fig. 5. Observation on the use of a robotic arm (JACO) for the consumption of food
and drinks

4 Results and Recommendations

Based on the analysis of interviews, observations, and images we devised a set of
user-centered design recommendations for a robotic drinking aid. Recommenda-
tions are split into three sections referring to structural, social and collaborative
concerns respectively. All materials were transcribed, coded, and categorized
independently by two researchers. We focus on processes related to drinking and
eating, interactions between participants and caregivers, and additional topics
of interest. All participants were interviewed as experts in their own right, as
they can accurately describe and explain their situation, their abilities, limita-
tions and needs. Therefore, our analysis method for the interviews and ques-
tionnaires followed the qualitative content analysis approach from Mayring [32].
Based on a predetermined interview guide established by the research team, ques-
tions belonging into different categories were discussed with study participants.
Descriptive and normative statements concerning housing and living situation,
individual wishes and needs regarding food and drink intake and attitude towards
robotic aids were analysed [7]. The analysis of videos and images was based on
the qualitative hermeneutical approach from social sciences by Reichertz and
Englert [39] and the photo analysis by Pilarczyk and Mietzner [37]. In a first
step, the videos and photos were cataloged according to content (e.g. drinking
aid) and subject (e.g. drinking with a straw). Next, the videos were viewed,
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transcribed and coded. In a last step the photos were viewed again and theme-
oriented photo series formed, e.g. photos showing self-made aids. Overall we
conclude that photos provide additional information to the videos and inter-
views or can be used to better describe findings but do not provide much value
as standalone objects.

4.1 Structural Concerns

Any design process starts with a structural framework defining size, weight and
materials to be used. Whilst the choices might make sense from a purely technical
point of view the preferences of the end-user should still be considered. Nobody
benefits from the development of an assistive technologies that ends up too big
in size to be used in the home of the typical end-user. With the aim being the
widespread usage of the new device, taking wishes, where technically possible,
regarding size and design into considerations can only be beneficial to future
acceptance.

Dimensions of the Robotic Arm. Although all but one of the participants
reported living in accessible housing, barriers including narrow hallways remain.
During the in-home session we found several of the participants housings to
be either too small for current robotic aids or lacking in space due to other
large assistive devices present. Care beds and tables, lifters and wheelchairs are
essential to support people with disabilities living in their own homes. Adding
another large-size device taking up space can be problematic and in some cases
impossible.

P10: “There is a second wheelchair somewhere, then maybe there is a bed-
side table somewhere, and there is a lifter somewhere and the shower chair
somewhere. (...) At some point, many run out of space.”

Recommendation 1

A robotic drinking aid should be primarily designed for saving space. The
arm has to have the ability to fold itself during waiting/suspended-mode.
And include the possibility of space-saving storage when not in use.

Physical Attachment. Types of suitable attachment methods vary depending
on individual preferences, type of wheelchair used, and space availability in the
participants’ homes. Frequent changes between user location (bedroom/living
room and bed/wheelchair) is a further factor to consider. Some participants use
a chin-controlled electronic wheelchair. This poses an additional challenge for
possible attachment methods and hinders both control and movement of the
robot during the drinking and eating process because the joystick is in this case
directly in front of the mouth.
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P13: “It would be great to be able to fix the arm to the table with a small
screw clamp. (...) Adding it to the wheelchair might be good too. But in any
case it must be easy to dismantle.”

Recommendation 2

Different mounting options for the robotic arm have to be available to
allow attachment to different surfaces and care devices including mobility
aides, resting chairs or overbed/side tables. Special consideration has to
be given to the restrictions imposed by types of wheelchairs used.

4.2 Social Concerns

The advantage of an interdisciplinary approach as outlined in this study is the
combination between technical necessities and preferences of the end-user. Dur-
ing our analysis we found that the majority of respondents were much more
worried about’social concerns’ than technical aspects.

Taking Design Seriously. Stigmatization of people with disabilities is an
ongoing problem highlighted in a number of studies and literature e.g. [31].
All participants have reported that they worry about unwanted attention and
further stigmatisation by using too-conspicuous aids. Almost all asked for the
robotic arm to be unobtrusive and designed with a positive public image in mind.

P14: “I can imagine that design is relatively important, because it is likely
the crucial factor whether people accept it and whether they want to integrate
it into their environment, right?”

Recommendation 3

The design should range between something plain and unobtrusive to a
chic lifestyle product. The arm should be recognizable as a technical tool
and not mimic a human arm by using skin-colored coloration or skin-like
material.

The Care Situation and Social Aspects. All participants relied on care from
in-home relatives for their daily needs. Additionally all but one also employed
professional personal care assistants. Due to the limited possibilities of outside
interactions the bond with family members and other regular caregivers was
observed as particularly strong and important for the mental well-being of the
participants.

Interviewer: “Would you describe the exchange between you and your assis-
tant during mealtime as formal or informal?” P4: “Very informal, just about
everyday life. Not just about mine. They tell me about themselves. And then
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you just sit together and talk about everything that is going on. Daily events,
personal matters, politics, experiences, about everything really.”

Recommendation 4

Disruptions of conversations and social interactions by the drinking
aid have to be minimized. The robotic arm should be placed without
obstructing the line of sight between user and assistant. Sound and noises
have to be kept to an absolute minimum to avoid distractions.

Safety. Safe use must be guaranteed for primary and secondary users from the
onset. Teething problems must be avoided at all costs; therefore strict adher-
ence to safety protocols for direct physical proximity is vital. People within the
target group are already faced with numerous health concerns [6,46] and many
participants expressed worries about additional injury risks posed by the robot.
Worries surrounded their inability/decreased ability to move out of the way if
the robotic arm does not stop at a certain distance from their face. A frequently
suggested solution would be an adjustment to have the robot bringing a cup
with a straw close to the mouth - but not directly touching it; thus enabling the
user to cover the last few centimeters on their own accord.

Solutions include the aid of a straw to avoid the drinking cup being delivered
directly to the mouth. Allowing users the final approach increases their feeling
of autonomy, control and safety.

Interviewer: “What could prevent you from using the robotic arm?”
P2: “Teething troubles, something every device has at the beginning. If problems
with the programming come up and the whole weight of the robot would fall on
me.”

Recommendation 5

Apply the principle of safety first and design for scenarios of use avoiding
body-contact.

Privacy. All participants require 24/7 assistance with results in very limited
privacy. They all stated that they have to drink a lot during the day for health
reasons. Particularly in the case of paraplegia, it is necessary to consume up to
three liters of fluid a day to support digestion and temperature regulation [21].
Being able to regulate fluid intake independently and not having to ask for
assistance every time they want to drink would allow users to spend several
hours at a time without a caregiver. A frequently recorded hope concerns the
increase of time being alone gained by integrating the drinking aid into the users’
lives.
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P4: “And you really sometimes want to be all alone. And even if I send
my assistants to go shopping and have an hour alone here or there, that’s not
comparable to really being alone.”

Recommendation 6

Users have to be able to use the device, once set up, independently or with
minimal assistance. Once operational, assistants and caregivers should
not need to interact with the device at all. Potential components worn by
the user need to fit securely to prevent a constant need of re-adjustments
(cf., guidelines for wearability [19]).

Data Privacy and Security. Only a small number of participants were con-
cerned about data protection. Some however expressed concerns about the type
of data collected, storage options, as well as access to it.

P6: “If there is a camera then I do not know where these images are going.
Especially if the robot is connected to the internet.”

Recommendation 7

Transparency about collected and stored data have to be maintained to
reduce uncertainty and skepticism about modern technology. Storage of
personal data, including camera images, should be avoided and frame-
works for voice commands should work offline as much as possible. If
data have to be stored, it has to be stored securely.

4.3 Collaborative Concerns

Effective assistive technologies only work if they can be used by the target group
without major effort. End-users know best what they are capable of and how
they feel most comfortable interacting with the robotic device. Therefore it is
important to consider the way they want to collaborate with their robotic aid.

Ease of Use. The aim of using assistive technologies is increased indepen-
dence of the end-user; something that is only possible if the devices are easy
and straight-forward to use. Especially in the case of changing caregivers, it is
exhausting for users to repeatedly train others in the use of their robotic aid.

P1: “That means that I might not need a nurse anymore, but a technician.
Because I already struggle to instruct the carers; and that is just to trigger three
commands on my computer.”
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Recommendation 8

Ease of use, preferably as ready-to-use design, should be the aim of the
assistive technology. Given the potential of frequently changing assistants,
intuitive design and an obvious command structure are required to ensure
a short - if at all necessary - familiarization periods. No prior knowledge
or training by secondary users can or should be expected and if anything
a short introduction guided by the primary user has to be sufficient. The
robotic arm should be - once adjusted to a mounting spot - ready to use
and easily used.

Interaction Design and Interaction Technology. Participants in the study
indicated various desires regarding the interaction with the robotic aid. Due to
the frequent changes in position during the day, it is important that the robotic
arm is usable in a lying and in a sitting position either from a bed and from a
wheelchair.

The majority of the participants already use voice controlled components in
their homes, e.g. telephone, door opener, and lighting fixture. However, these
components generally cannot be compared with modern smart devices as they
do not connect to the internet. Only one participant used an smart speaker
for smart home solutions. Other participants refrained from using devices with
internet based voice control due to unreliable internet connections or - more
often - out of concerns towards data security.

P14: “So I think it would be great if it was using voice control. (...) I think
using a joystick or something similar is also very complex. But if I only have to
say: “Give me a glass of water”, and that would work, that would be great.”

Recommendation 9

Whilst voice control is preferred for control and interaction, speech
impairments must be taken into account with the extra requirements
they pose. Additionally, data security has been identified as a concern
when usage of internet based voice control is suggested. Offline solu-
tions are preferable to address these worries. Alternatively, eye-tracking
devices and data glasses can be viable options. Participants preferred
the former two options compared to head gestures and headsets. Par-
ticipants preferred eye-tracking control via gaze-dwelling on either real
world components or virtual objects in combination with the data glass’s
user interface.
For users with residual hand and arm functions, a switch among semi-
autonomous mode and manual mode via direct joystick control is inter-
esting as it allows greater flexibility and adaptation to daily needs, due
to the fact that in a semi-autonomous mode scenarios have to been learnt
by the robot. The current mode has to communicated to the users and
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assistants, e.g. by a ring of two-colored LEDs around the robot’s flange
like a bracelet.

Robotic Arm as Combined Drinking and Eating Aid. All Participants
are excited about the prospect of a functional drinking aid, allowing them to
independently regulate their fluid intake. In contrast, few participants can imag-
ine regularly using a robotic arm for food consumption. Those who can still eat
independently due to residual functionality in their upper extremities would like
to use and maintain this ability. A robotic arm as an eating aid is only interest-
ing for this group if food can be cut into small pieces with the help of the arm.
A cutting function would further increase their autonomy and enable participa-
tion in meal preparation; in their eyes another step towards social integration.
Participants who have their food served to them expressed satisfaction with the
assistance they receive from other people. They would like to continue in this
way because they value this social interaction and note that people can be more
flexible and spontaneous in responding to all eventualities. This includes emer-
gency situations such as choking or spillages, a worry of a number of participants
from our focus group voiced.

P5: “I would prefer [the aid] of my husband, because we do communicate a
little throughout lunch. I think when the robotic arm feeds you, there is just
silence.”

Recommendation 10

When prioritising the development of robotic assistance the first focus
should be on fluid intake. The scenario of eating with a robotic arm is
influenced by various complex aspects, such as social interactions, which
need further exploration.

Robotic Arm as a General Aid. Participants frequently expressed a desire
for a robotic arm with a distinct grasping function beyond a mere drinking aid.
Desired functions include manipulating objects, such as picking something up,
taking something out of a cabinet, or being able to lift things. Fine motor tasks
such as turning the pages of a book or grasping easily breakable items were also
desired. In addition, particularly the younger participants would like to be able
to operate a game console. Furthermore, some of the participants would also like
to use a robotic arm for aspects of basic care, such as combing hair or brushing
teeth.

Participants who still eat independently also showed interest in the topic of
cooking. A robotic arm that can cut food, handle cooking utensils, and assist
with setting the table would increase autonomy and lead to more participation
in the entire process of eating. Participants expressed the wish to handle even
fragile objects like raw eggs or eat small but delicate snacks like crisps. Although
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fears of possible stigmatization due to the use of the robotic arm exist, overall
the hope that a robotic arm with various functions could promote independent
and self-determined living whilst also giving relieve to caregivers was expressed.

P4: “Having such an arm fulfill different functions such as gripping, I think
that makes more sense because it would then be more versatile.”

Recommendation 11

Apart from functioning as a drinking and eating aid, a robotic arm
should be developed to fulfill other everyday tasks. Since participants
fear stigmatization over having too many tools, a robotic aid with vari-
ous functions would meet greater acceptance.

5 Discussion

Our ethnographic study provides recommendations for future research and devel-
opment as well as hypotheses that should be tested for further validation. In the
context of our target user group, implementing a solution based on our rec-
ommendations will still require adaptation to fit individuals with their specific
physical abilities, along with further research to verify that a designed assis-
tive system does indeed support the user. Recommendations regarding “Taking
Design Seriously” and “Privacy” concern interaction devices that might lead to
further stigmatization by drawing unwanted attention and require asking for
assistance for wearing or re-calibration - both aspects the target group wants to
avoid.

5.1 End-User Involvement in Assistive Technology

Assistive technologies are on the rise, with a number of different robotic aids
already on the market or in various stages of development [15,25]. Studies by
Scherer[43] and Verza [49] have shown that these devices, albeit useful in an
assistive setting, can have a high rate of non-acceptance and non-usage. There
is a growing body of literature indicating that this is due to the exclusion of the
end-user from the design process [16]. In recent years the field of collaborative
work between developers and end-users (or their advocates) has grown but is
still in its infancy as discussed by Lee et al. [27] and Simonsen [44]. Our work
represents such a collaborative approach investigating the needs and wants of the
end-user in regards to a robotic drinking and eating aid. In fact, participants
particularly valued the inclusion in the design process of a device developed
specifically for them.

5.2 Potential Autonomy

One important finding is that participants want the possibility of spending time
without their assistants. Specifically drinking as continuous hydration through-
out the day is vital for people with disabilities which results in a near-constant
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need of care when drinking independently is not possible [21]. Thus, the most
important capability of the robotic system should be to support the users with
drinking. On the other hand, however, the participants also noted that the num-
ber of assistive systems should be limited and, thus, the system should provide
multiple tasks. This trade off will be a core challenge for future developers.

5.3 Importance of Structural Concerns

Our results confirm findings by Fattal et al. [14] and others [34,48] as similar
structural concerns are also expressed by our participants. Thus, our results also
highlight the need for recommendations related to the physical characteristics
of the robotic arm and attachment site.

5.4 In-Home Methodology

In this study we recorded the preferences people with severe motor disabilities
have towards a robotic drinking and eating aid in terms of functionality and
design. We used in-home sessions to interview our participants and record their
everyday behaviours in a familiar setting. We opted for this particular approach
to increase authenticity of our observation in accordance with Sakowska [42].
Combining all findings from our conversations and observations allowed us to
gain significant insight in the actual living situation and challenges faced by the
target group. We believe the in-home methods used in this study to represent
a much more accurate picture than studies conducted in artificial laboratory or
workshop environments. One downside of this approach, however, is the limita-
tion to a small geographical area, potentially limiting the generalizability.

6 Conclusion

People with motor disabilities face a number of obstacles when confronted with
everyday tasks such as drinking and eating. Assistive technologies have the
potential to greatly improve the quality of life of the target group; however
their user acceptance has been challenged by previous work. In this paper we
investigated how drinking and eating aids are perceived by conducting inter-
views and participatory observations. By analyzing the relationship with food
and drink intake as well as analyzing the wishes for future assistive technologies
we were able to better understand the needs and wants of the target group.

Our research has highlighted the importance of acknowledging structural,
social, and collaborative concerns in respect to the design of a robotic arm,
defining a set of recommendations for the designs of robotic drinking aids. These
recommendations represent an important step in bridging the gap between tech-
nological design and the preferences of the target group, thus increasing the
likelihood of acceptance of any further assistive technology.
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Long-term use of the JACO robotic arm: a case series. Disabil. Rehabil. Assist.
Technol. 14(3), 267–275 (2019). https://doi.org/10.1080/17483107.2018.1428692

5. Bemelmans, R., Gelderblom, G.J., Jonker, P., de Witte, L.: Socially assistive robots
in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Dir.
Assoc. 13(2), 114–120 (2012). https://doi.org/10.1016/j.jamda.2010.10.002

6. Bickenbach, J.: International Perspectives on Spinal Cord Injury. World Health
Organization, Geneva (2013)

7. Bogner, A., Littig, B., Menz, W.: Interviews mit Experten. QS, Springer, Wies-
baden (2014). https://doi.org/10.1007/978-3-531-19416-5
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(a) Rabbit Single (b) Rabbit Dual (c) Motion Intensity

Figure 1: Coding of the gradient for a) Rabbit Single, (b) Rabbit Dual, and (c) Motion Intensity. The orange arrow represents the
gradient of the directional cue with an intended increase over time. The timing, duration, number of pulses, and intensity (S1 –
S7) of the three actuators (T1 – T3) are illustrated for each condition.

ABSTRACT
In Human-Computer-Interaction, vibrotactile haptic feedback of-
fers the advantage of being independent of any visual perception
of the environment. Most importantly, the user’s field of view is
not obscured by user interface elements, and the visual sense is
not unnecessarily strained. This is especially advantageous when
the visual channel is already busy, or the visual sense is limited.
We developed three design variants based on different vibrotac-
tile illusions to communicate 3D directional cues. In particular, we
explored two variants based on the vibrotactile illusion of the cu-
taneous rabbit and one based on apparent vibrotactile motion. To
communicate gradient information, we combined these with pulse-
based and intensity-based mapping. A subsequent study showed
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that the pulse-based variants based on the vibrotactile illusion of
the cutaneous rabbit are suitable for communicating both direc-
tional and gradient characteristics. The results further show that a
representation of 3D directions via vibrations can be effective and
beneficial.
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1 INTRODUCTION
People perceive objects in their environment primarily through
their sense of sight. However, this ability can be reduced or not pos-
sible at all in certain situations. Objects might be covered by other
things / user interface (UI) elements (visual clutter) or be outside
the human field of view. In addition, visual perception may be lim-
ited or impossible due to visual impairments. Previous research has
shown that the haptic modality can, to some extent, compensate for
the lack of visual information and outperform audio-based cues [3].
It can also be applied in combination with other modalities and can
offer an additional information channel if, for example, the visual
channel is overloaded due to distracting information [5, 14].

Directing attention, guiding, and transmitting patterns via vi-
brotactile signals have already been researched and found to be
useful feedback modalities [11, 12, 26]. Barralon et al. studied pat-
tern recognition using a vibrotactile belt with eight actuators and
tasked participants to select the corresponding correct visual rep-
resentation [2]. Lee and Starner proposed BuzzWear, a wearable
tactile display with three vibration actuators for notification pur-
poses that function by modulating intensity, pattern, direction, and
starting point [16]. After 40 minutes of training, subjects could
distinguish between the 24 patterns with up to 99% accuracy. Vi-
brotactile feedback is also used in the context of guidance. Here,
a study by Lehtinen et al., used a vibrotactile glove to support a
visual search task on a flat plane on a wall [17].

However, a common challenge is that tactile displays have a
limited resolution. Therefore, researchers have simulated smooth
movement patterns with the help of tactile illusions [6], such as
Phantom Sensations [1, 19], Apparent Tactile Motion [4, 15, 23], and
Cutaneous Rabbit [7, 18, 21, 24]. Tan et al. conducted a study using
a 3 x 3 tactile display and applied the Cutaneous Rabbit sensation
to explore the communication of eight 2D directional cues (north,
northeast, east, southeast, south, southwest, west, and northwest)
and the successful recognition of these cues [25].

While previous work focused on 2D directional cues (e.g., [25])
or allowed users to feel directions upon approach with their hand
(e.g., [11]), we are not aware of any work that aims to communicate
3D directional cues. In particular, our work differs from approaches
such as [12], who aim to push or pull the hand toward a known
target in 3D space but who therefore do not actually need to encode
3D information for the vibration pattern itself. It also differs from
work such as [27] which used a Tactile Vision Substitution System
(TVSS) to communicate 3D shapes of a static object by directly
mapping image features such as contours on a 20 x 20 tactile display.

Our approach builds on the idea of Tan et al. [25] to communicate
2D directions. We combine their base with pulse or intensity map-
ping to simultaneously communicate the gradient. Furthermore, we
explore the influences of different haptic illusions (i.e., Cutaneous
Rabbit and Apparent Tactile Motion) on the comprehension of direc-
tional cues. Our work contributes three specific design proposals
for communicating 3D directional cues as well as a study on the
effectiveness and subjective experience of this non-visual approach
to direction mapping.

2 CONCEPT
Within the scope of our experiment, three variants were developed
to map vibrotactile 3D directional cues. For the 2D direction, the
vibrotactile illusions of the Cutaneous Rabbit and Apparent Tactile
Motion were used. We extended these by a pulse- and intensity-
based approach to communicating the gradient of the 3D directional
cue (see Figure 1).

2.1 Rabbit Single: Cutaneous Rabbit with
Pulse-based Approach

This condition is based on the Cutaneous Rabbit for communicating
2D direction, a tactical illusion that can influence the design of
vibrotactile patterns. This illusion was discovered in 1972 by Gel-
dard [8]. The sequence of taps on different vibrotactile actuators is
perceived as a continuous movement between the different points.
Each directional cue is abstracted using three control points for
the actuators (illustrated as dashed lines in Figure 1). Depending
on the distance resulting from the gradient of the directional cue,
the number of pulses triggered at each actuator is determined in
a range of 1 – 7 with a Burst Duration (BD) of 125ms, an Inter-
Stimulus Interval (ISI) between pulses of 50ms, and an Inter-Burst
Interval (IBI) between actuators of 100ms. The closer the control
point of the direction cue is to the hand, the higher the number of
vibration pulses (see Figure 1a).

2.2 Rabbit Dual: Cutaneous Rabbit with a Pulse-
and Intensity-based Combined Approach

Rabbit Dual is based on Rabbit Single but includes a second ad-
ditional encoding for the gradient of the 3D directional cue. In
addition to the number of pulses, we mapped three different inten-
sity levels on the distance of the directional cue to the palm (see
Figure 1b). We based the distinct intensity levels on prior work by
Gescheider et al., who measured a just noticeable relative difference
threshold – Just-Noticeable Difference (JND) – with values of 0.26
at 4 dB above the perceptual threshold [9]. To communicate and
distinguish between up- and downward gradients, three distinct
intensity levels were selected - a baseline level in the middle and
one low- as well as one high-intensity level. The anticipated ben-
efit of this condition was that gradient comprehension would be
improved due to the dual encoding.

2.3 Motion Intensity: Apparent Tactile Motion
with Intensity-based Approach

This condition applied the same intensity mapping for the gradient
as Rabbit Dual, but without the pulses. In contrast to the Cutaneous
Rabbit sensation with distinct pulses as in Rabbit Single and Rabbit
Dual, here we applied the vibrotactile illusion of Apparent Tactile
Motion. This was first studied in the early 20th century by Burtt [4]
and is commonly referred to as the Phi Phenomenon. The illusion
is created by an overlap in the start times of two actuators – Inter-
Stimulus Onset Asynchrony (SOA), calculated as 𝑆𝑂𝐴 = 0.32𝑑 +
47.3𝑚𝑠 , where 𝑑 is the vibration period of an actuator – 450ms.
Instead of two individual actuators, a single stimulus is perceived
as moving from the position of the first triggered actuator T1 to the
second actuator T2 – or from actuator T2 to T3 (see Figure 1c). A
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(a) Actuator Placement as
provided by SensorialXR

(b) 2D Directions (c) Study Setup

Figure 2: For the 2D directional cues, we used (a) the placement of all actuators across the hand to (b) communicate five different
directions. Here, (c) illustrates the study setup, with the arm resting on the armrest while the hand is in the air.

potential benefit of this illusion is that it may feel more like a natural
movement, as it disguises the limited number of actuators. After
pilot tests, a starting intensity value of 0.22 and a JND value of 0.3
were chosen, which made the intensity levels easily distinguishable.
Thus, a total of seven possible intensity levels were defined.

2.4 Implementation
To develop our approach, we use the 3D game engine Unreal En-
gine 4 optimized for usage with a Meta Quest 2 Virtual Reality (VR)
Head-Mounted Display (HMD). This allows for the use of a virtual
environment in which the participants can concentrate purely on
the haptic feedback without being visually distracted. It also pro-
vides a simple way to visually explain the directional cues to the
participants and record their responses for rating scales. As a haptic
display, we chose the SensorialXR glove as a commercially available
device with Software Development Kit (SDK) interface to the Un-
real Engine 4. With ten actuators – Linear Resonant Actuator (LRA)
vibration motors, fixed in place – (see Figure 2a), SensorialXR gloves
are among the models with the most vibration motors per hand.
Thus, they offer the potential to map the 3D directional cues with
the highest possible vibrotactile resolution [22].

3 STUDY
We conducted a within-subjects experiment with 14 participants to
explore and understand the differences and similarities between the
three presented designs for vibrotactile feedback (independent vari-
able) regarding their effectiveness in communicating 3D directional
cues. As participants were supposed to feel and comprehend direc-
tional cues without any additional visual feedback, we conducted
the study in person and within a neutral VR environment, which
allowed participants to focus entirely on the vibrotactile feedback.
The age of participants ranged from 21 to 31 years, with a mean age
of 25.71 years (𝑀 = 25.71, 𝑆𝐷 = 2.972). Four were female, ten were
male, and all were university students of various subjects. None
of the participants reported any visual impairment, and all were
right-handed.

3.1 Procedure
The study was conducted in multiple comparable physical localities.
Before commencing, participants were fully informed about the
project objective and the various tasks they had to complete. Each
participant gave their full and informed consent to partake in the
study, have video and audio recordings taken, and have all the
relevant data documented. Participants wore a HMD on their head
and a vibrotactile glove on the right hand while being asked to
keep their right arm rested on an armrest with the palm facing
down (see Figure 2c) to avoid any external factors. In the left hand,
participants held a controller to control the VR environment.

For each condition, each participant performed six training trials.
For each trial, the vibrotactile feedback was repeated three times,
and a corresponding visualization was shown to indicate the direc-
tion in 3D supporting the participant’s mental model. For the actual
task, participants were shown a neutral-colored background in VR
without any visual representations of the 3D direction. Participants
were able to trigger the start of the trial with the VR motion con-
troller. In total, they completed 30 measured trials per condition,
resulting in 90 measured trials per participant and 1,260 measured
trials in total. The 30 trials consisted of 2 (blocks) x 5 (2D direction)
x 3 (gradient). The variable 2D direction represented a typical set of
five possible mappings of straight horizontal, vertical and diagonal
directions, which were physically located on the surface of the hand
(see Figure 2b). They represented the direction in x-z-coordinates
of the overall 3D directional vector. The gradient encoded the direc-
tion in y-coordinates: either up, down, or neither any gradient. To
counter learning and fatigue effects, we applied a Balanced Latin
Square design for the order of the three conditions. The order of
trials was randomized within each block. Between each condition,
participants were able to rest their hand for five minutes. The aver-
age session lasted for 45 minutes and concluded with a debriefing.
Non of the participants mentioned any sensory or muscle fatigue.
Participants received 15 EUR in compensation.

3.2 Variables and Research Questions
For dependent variables, we measured the accuracy of the compre-
hension of the 2D direction (x-axis, z-axis) and the gradient (y-axis).
We are measuring the two variables (2D direction and gradient)
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Figure 3: Measured performance for 2D direction and gradient estimation as well as task loadmeasured with the NASARaw-TLX
(lower score is better). For the task load subscale “frustration” no bars are visible because all three conditions have a median
score of 0.

separately, as commonly done within the research community (e.g.,
estimation of direction and distance for HMDs [10]). The main
reasoning here is that orientation in 3D space and especially de-
scribing directions in 3D can be challenging for participants and
could negatively affect the validity of the measurements. To do so,
we presented participants with a UI panel in VR after each trial. The
panel showed five pictures with all 2D directions in a top-down view
and, subsequently, three pictures of all gradients in a lateral view.
Participants used the VR controller to select the fitting represen-
tation for each. These two variables were measured with a binary
outcome (correct, incorrect) and summarized as percentages of cor-
rectly identified outcomes across all trials per person and condition
(ratio scale). In addition, we measured mental workload after each
condition via the NASA Raw-Task Load Index (NASA RTLX) [13]
and additional Likert-scale statements regarding the comprehensi-
bility of the directional cue. We also collected qualitative feedback
in a semi-structured interview after each condition as well as at the
end of the study, which is when we also asked participants to rank
the three conditions.

As the study is exploratory in nature, we were interested in
finding out more about the specific features of our three feedback
conditions. In particular, we were interested in the following re-
search questions:

RQ1: Do multiple encodings of gradient, as in the condition
Rabbit Dual, improve the comprehension of gradient information
and reduce mental workload?

RQ2: Does apparent movement, as in the condition Motion In-
tensity, improve comprehension of 2D direction? We assume that
to be the case as the transition by overlapping of vibration be-
tween the actuators may be easier to comprehend and interpret
as a path compared to the sensation of isolated pulses as for the
Rabbit conditions.

RQ3: How would participants experience and rate vibrotactile
communication of 3D direction overall and with regard to each
individual condition?

4 RESULTS
For our applied inferential statistics, we distinguished between ratio
and ordinal data. The estimation percentages for 2D direction and
gradient are ratio data, while the Likert items – including task load –
are ordinal data. For ratio data only, we first applied a Shapiro-Wilk
test to check for normality. We found that none of our ratio data is
normally distributed. Thus, we treated all our data in the same way
and directly applied non-parametric tests, specifically Friedman
tests. Thereafter, we conducted Wilcoxon Signed-rank tests with
Bonferroni correction for our post-hoc analysis. The effect sizes of
the Wilcoxon tests are reported as r (r: >0.1 small, >0.3 medium,
and >0.5 large effect).

4.1 Estimation of 2D Direction
We asked participants to estimate the two-dimensional direction
on a ground plane. The median (interquartile range) percentages
of correct 2D direction estimations for each condition are (in de-
scending order): Rabbit Dual =93.3% (IQR=12.5%), Rabbit Single
=91.7% (IQR=13.3%), and Motion Intensity =78.3% (IQR=16.7%). All
percentages are compared in Figure 3a. Since our data is not nor-
mally distributed (p<0.01), we directly ran a Friedman test that
revealed a significant effect of condition on 2D direction estimation
(𝜒2(2)=17.70, p<0.001, N=14). Post-hoc tests showed significant dif-
ferences between Rabbit Single andMotion Intensity (W=83, Z=2.62,
p=0.018, r=0.50) as well as Rabbit Dual and Motion Intensity (W=0,
Z=-3.30, p<0.001, r=0.62). However, we did not find a significant
difference between Rabbit Single and Rabbit Dual (W=15, Z=-1.88,
p=0.182). Here, we can conclude that both Rabbit Single and
Rabbit Dual result in better estimation performance for 2D
direction thanMotion Intensity.

4.2 Estimation of Gradient
We asked participants to estimate the gradient behavior of the com-
municated cue. The median (interquartile range) percentages of



HaptiX: Vibrotactile Haptic Feedback for Communication of 3D Directional Cues CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Table 1: Pairwise comparisons for individual statements, Bonferroni-adjusted, p-values: <0.05 (*), <0.01 (**), and <0.001 (***).

Statement
Rabbit Single
test statistic

vs. Dual
p-value

Rabbit Single
test statistic

vs. Motion I
p-value

ntensity
effect size

Rabbit Dual v
test statistic

s. Motion I
p-value

ntensity
effect size

S1
S2
S3
S4

Z= 0.00
Z=-0.07
Z=-1.17
Z=-0.17

p=1.000
p=1.000
p=0.838
p=1.000

Z=2.89
Z=2.58
Z=3.06
Z=2.84

p<.001***
p=.029*
p=.003**
p=.006**

r=0.55
r=0.49
r=0.58
r=0.54

Z=3.04
Z=2.80
Z=2.97
Z=2.69

p=.004**
p=.013*
p=.003**
p=.018*

r=0.57
r=0.53
r=0.56
r=0.51

correct gradient estimations for each condition are (in descend-
ing order): Rabbit Dual =93.3% (IQR=5.8%), Rabbit Single =91.7%
(IQR=8.3%), and Motion Intensity =56.7% (IQR=10.0%). All percent-
ages are compared in Figure 3b. Since our data is not normally
distributed (p<0.001), we ran a Friedman test that revealed a sig-
nificant effect of condition on gradient estimation (𝜒2(2)=19.00,
p<0.001, N=14). Post-hoc tests showed significant differences be-
tween Rabbit Single and Motion Intensity (W=102, Z=3.11, p=0.002,
r=0.59) as well as Rabbit Dual and Motion Intensity (W=0, Z=-3.30,
p<0.001, r=0.62). However, we did not find a significant difference
between Rabbit Single and Rabbit Dual (W=30, Z=-1.42, p=0.501).
Here, we can conclude that both Rabbit Single and Rabbit
Dual result in better gradient estimation performance than
Motion Intensity.

4.3 Task Load
The results of task load ratings asmeasured by the NASA RTLX [13]
are shown in Figure 3c. The median (interquartile range) task load
scores for each condition are (in ascending order): Rabbit Single
=22.5 (IQR=12.7), Rabbit Dual =24.5 (IQR=7.9), and Motion Intensity
=28.3 (IQR=20.0). We ran a Friedman test that revealed a significant
effect of condition on task load (𝜒2(2)=13.50, p=0.001, N=14). Post-
hoc tests showed a significant difference between Rabbit Dual and
Motion Intensity (W=105, Z=3.30, p<0.001, r=0.62). However, we did
not find any significant differences between Rabbit Single and Rabbit
Dual (W=39, Z=0.00, p=1.000) or between Rabbit Single and Motion
Intensity (W=20, Z=-2.04, p=0.120). Here, we can conclude that
Rabbit Dual induces a lower task load than Motion Intensity.

4.4 Individual Statements and Preferences
After each condition, we asked participants to rate four statements,
each on a 7-point Likert scale (1=strongly disagree, 7=strongly
agree). The results and statements are shown in Figure 4. We
found significant main effects for all four statements (N=14; S1:
𝜒2(2)=14.09, p<0.001; S2: 𝜒2(2)=11.35, p=0.003; S3: 𝜒2(2)=17.08,
p<0.001; S4:𝜒2(2)=12.79, p=0.002). Pairwise comparisons are shown
in Table 1. Here,we can conclude that Rabbit Single and Rabbit
Dual are rated significantly more positively than Motion In-
tensity for all four statements. No difference was found between
Rabbit Single and Rabbit Dual. Regarding overall preference, eight
participants preferred Rabbit Dual, while six voted for Rabbit
Single as their favorite. None of the participants preferred Motion
Intensity.

4.5 Interviews
During the interviews, participants were explicitly asked to com-
ment on the duration of the vibration as well as what may have

eased or hindered their comprehension. They also had to explain
their overall preference and comment on the overall experience and
sensation of interpreting 3D directional cues via vibrotactile feed-
back. For the analysis, the verbal data was first transcribed by one
author and then summarized. The statements were then counted
for each question. In addition, across all questions, we applied open
coding to identify hidden themes. Data from one interview (P2)
was not recorded due to a technical issue. Therefore, only the data
from 13 participants was included.

Regarding the duration of the vibration, both Rabbit conditions
were perceived as having adequate duration (Rabbit Single: 10 vs 3
who thought it could have been longer; Rabbit Dual: 13:0), while
10 participants would have preferred a longer duration for Motion
Intensity. For the latter, participants struggled to feel the gradient
correctly, as mentioned by five participants (e.g., P7 said that the
“[duration was] a little bit short, enough for [2D] direction, but
for intensity [gradient] it was really bad.”) The varying strength of
the vibration was also an issue, as the most distant control point
was criticized as having a too weak vibration, which meant that
“some vibrations got lost” (P5). This also interfered with the com-
prehension of 2D direction. The smooth transition of movement in
Motion Intensity was still found to be a pleasant experience, but the
mentioned drawbacks regarding the gradient detection prevailed,
according to P4 (RQ2). When comparing pulse with intensity for the
mapping of gradient, P12 noted an interesting further advantage of
pulse, as “One could decide about the gradient in retrospect even if
one wasn’t sure before. When the last actuator vibrated many times,
then it must have been an upwards gradient.” This also implicitly
highlights the problem of immediacy, which required attention and
did not allow repetition of the feedback. As P10 put it, “in case you
did not fully pay attention, there wasn’t a repeat to make sure.” This
sentiment was echoed by P12. Consequently, the dual encoding of
a gradient in the Rabbit Dual condition was cited by most as the
main reason for preferring that condition (RQ1). P11 noted, “I did
not just have the number of pulses, but in addition the intensity
and that somehow better stuck in my head.”

5 DISCUSSION
Overall, responses during the interview and the quantitative data
are in agreement. They show significant and substantial advan-
tages of Rabbit Single and Rabbit Dual compared toMotion Intensity,
which we did not expect in such clarity. The parity between these
two then is again visible from all angles, with preference being
nearly balanced (8 vs. 6). Still, the interviews showed that for Mo-
tion Intensity, participants did like the smooth transition between
the individual feedback factors, which however failed to have a
measurable advantage (RQ2). A main reason for this may be that
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Figure 4: Participant responses to the four rated statements (Likert items ranging from 1: strongly disagree to 7: strongly agree).

we found that the mechanisms to communicate 2D direction and
gradient can interfere with one another. In particular, the intensity
gradient mapping had a negative effect on the 2D direction map-
ping in Motion Intensity, as the minimum vibration sometimes “got
lost” (P5), when users did not pay close attention. While pre-tests
suggested otherwise, individual differences among the perception
of our participants as well as potential fitting issues with the glove
(see limitations below) may have resulted in this issue. From the
comments of participants, we have to assume that Rabbit Dual was
affected by this problem as well, although to a lesser degree; the si-
multaneous pulse mapping implicitly included repeated vibrations
of the same actuator at least twice.

Our analysis also showed that the type of feedback may require
more training for participants to get accustomed to. P13 summa-
rized this point nicely: “Maybe if you market that [...] and someone
develops a game for it [...], then I might like it, and in a year, no one
can imagine a world without it.” Others noted the effort involved,
with P10 saying they “found that it was really exhausting since you
are not used to it.” Still, the overall experience of using vibrotactile
feedback to interpret 3D directional cues was described as “sur-
prisingly good” (P7) and prompted many ideas for use cases, such
as medical scenarios (operating table with limited visuals), people
with visual impairments in daily life as well as when driving a bike
or motorcycle.

Limitations: As an exploratory study, our results should be per-
ceived as preliminary and require further testing and confirmation.
In particular, our results may be limited due to the number of par-
ticipants (14), which also led to the design not being fully balanced.
In addition, all participants in our study were right-handed, which
could affect our results. We also found that more training may be
required to compensate for initial learning effects, as the type of
feedback is so unusual and novel for participants. In addition, the
SensorialXR glove only provides a fixed setting of the actuators and

offers a “one-size-fits-all” size, which showed to be problematic
for some users with smaller hands, where the actuators were not
always in tight contact with the skin. For future research prototypes
adding additional Velcro around the actuators might help.

6 CONCLUSION
This work aimed to explore different design approaches to commu-
nicate three-dimensional directional cues with vibrotactile feedback.
We developed two conditions based on the Cutaneous Rabbit illu-
sion and one based on Apparent Tactile Motion to communicate
2D direction. The gradient of the overall 3D direction was then
encoded by the number of discrete vibration pulses, the vibration
intensity, or a combination of both. Our study showed that three-
dimensional directional cues can be communicated by Rabbit Single
and Rabbit Dual with a high success rate for both the 2D direction
and gradient (median for Rabbit Single: 91.7%, Rabbit Dual: 93.3%)
– significantly better compared to Motion Intensity. With respect
to our research questions, we found partial evidence for RQ1, as
multiple participants specifically mentioned the dual mapping for
gradient as a benefit. Still, for the quantitative data, both Rabbit con-
ditions performed more or less identical. RQ2 has to be dismissed
at this point. However, as revealed by our qualitative analysis, we
believe that the Apparent Tactile Motion illusion can also be a vi-
able option for future designs, as the smooth transition between
actuators was appreciated by participants. The challenge will lie in
overcoming the inferences we found between 2D directional and
gradient intensity mapping.

Future Research: In our work, we aim to apply this approach to
communicate the intended movements [20] of a semi-autonomous
robot in collaborative scenarios, where vision alone may not be
sufficient to successfully predict robot motion. In Figure 5 an assis-
tive robot arm is illustrated, which is manually controlled by the
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Figure 5: An assistive robotic armwith AI-created directional
movement recommendations. The cyan arrow indicate the
current movement direction of the arm, while the blue arrow
shows the recommendation, which would be mapped as 3D
directional cues on the glove. Note: The cyan and blue arrows
are only for presentation purposes.

user but is supported through an Artificial Intelligence (AI) which
provides real time directional movement recommendations. Here,
our approach could be used to map these directional movement
recommendations as vibration input on the hand. Changes in the
intensity of the actuators indicate the amount of directional change,
thus enabling the user to better imagine the generated trajectory.
We also encourage researchers to both replicate our design and
study and apply it to different use cases. Future research should
also investigate variables such as the effect of higher-resolution
tactile displays, different setting of actuators, or other approaches
to encode gradient (e.g. through different vibration frequencies,
varying linear and non-linear intensity levels), which were not pos-
sible with the SensorialXR technology. Furthermore, results of our
study should also be evaluated with participants with a dominant
left hand or their non-dominant hand.
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Fig. 1. Setup with (a) a user’s view in the Virtual Reality (VR) simulation environment, (b) setup of interaction
with a physical robot, and (c) a combined view of physical robot and visual cues in Mixed Reality (MR).

With the ongoing efforts to empower people with mobility impairments and the increase in technological
acceptance by the general public, assistive technologies, such as collaborative robotic arms, are gaining
popularity. Yet, their widespread success is limited by usability issues, specifically the disparity between user
input and software control along the autonomy continuum. To address this, shared control concepts provide
opportunities to combine the targeted increase of user autonomy with a certain level of computer assistance.
This paper presents the free and open-source AdaptiX XR framework for developing and evaluating shared
control applications in a high-resolution simulation environment. The initial framework consists of a simulated
robotic arm with an example scenario in Virtual Reality (VR), multiple standard control interfaces, and a
specialized recording/replay system. AdaptiX can easily be extended for specific research needs, allowing
Human-Robot Interaction (HRI) researchers to rapidly design and test novel interaction methods, intervention
strategies, and multi-modal feedback techniques, without requiring an actual physical robotic arm during
the early phases of ideation, prototyping, and evaluation. Also, a Robot Operating System (ROS) integration
enables the controlling of a real robotic arm in a PhysicalTwin approach without any simulation-reality gap.
Here, we review the capabilities and limitations of AdaptiX in detail and present three bodies of research
based on the framework. AdaptiX can be accessed at https://adaptix.robot-research.de.
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1 INTRODUCTION
Robotic arms as assistive technologies are a powerful tool to increase self-sufficiency in people with
limited mobility [33, 44], as they facilitate the performance of Activities of Daily Living (ADLs)
– usually involving grasping and manipulating objects in their environment – without human
assistance [50]. However, a frequent point of contention is the assistive robot’s autonomy level. The
reduction of user interaction to just oversight with purely autonomous systems elicits stress [51]
and feelings of distrust in their users [67]. On the other side of the autonomy spectrum, manual
controls can be challenging - or even impossible - to operate, depending on the significance and
type of impairment. Shared control – a combination of manual user control through standard input
devices plus algorithmic support through computer software adjusting the resulting motion – may
have the potential to mitigate both concerns [1]. Here, both the user and the robot share a task on
the operational level, enabling people with motor impairments to get involved in their assistance.
As a result, such approaches can increase the feeling of independence while improving ease of use
compared to manual controls [17].
A characteristic real-world scenario, motivated by our research, has an assistive robotic arm

(e.g., a Kinova Jaco 2) attached to a wheelchair to support the user in ADLs. Here, the user is
challenged with operating six or more Degrees-of-Freedom (DoFs), which requires complex input
devices or time-consuming and confusing mode switches. This potentially results in increased task
completion time and user frustration [21]. Addressing this, shared control systems can facilitate
more straightforward and accessible robot operation. However, they may require well-designed
communication of robot (motion) intent, so that the user retains awareness and understands the
level of support they get from the system [45]. Also, different users might need distinct input
devices or require multi-modal input to account for varying abilities.

Based on our experiences, we identified several challenges that currently influence and potentially
impede the effective development of shared control approaches:

• Shared control systems for assistive technologies still pose open questions requiring consid-
erable experimentation, tweaking and balancing between user and robot interaction [34].

• While much research explored robot motion intent, there is little insight into what works
best in which situation and for which type of user. In assistive robotics, the visualization and
feedback modality must be carefully adapted to the user’s needs and abilities as there is no
“one size fits all” solution [23].

• Similarly, suitable input devicesmay vary between users. Depending on individual preferences
and capabilities, multi-modal input or the choice between different input modalities may be
required [2].

• Bringing robots and humans physically together during research studies is difficult due to
the laborious and costly transportation, safety concerns with robots and general availability
of the user group [6].
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Contribution. To allow researchers, designers and developers to address these challenges
holistically and flexibly, we present AdaptiX – a free, open-source XR framework 1. Aimed at
Design and Development (D&D), AdaptiX combines a physical robot implementation with a
3D simulation environment. The simulation approach (analogous to simulations in industrial
settings [37, 42, 59]) mitigates the assistive robotic arm’s bulky, expensive, and complex nature. It
also makes the integration of visualization feedback or different input modalities easier to explore
and test, while a Robot Operating System (ROS) interface allows the direct transfer to the real
robot. Testing new interaction and control options becomes much less time-consuming while
simultaneously excluding potentially dangerous close-contact situations with users before glitches
are managed [44]. In total, the framework facilitates the development and evaluation of assistive
robot control applications in-silico and creates a practical and effective step between ideation,
development, and evaluation, allowing HRI researchers more flexibility and facilitating efficient
resource usage.

To summarize, the AdaptiX framework contributes the following:
• AdaptiX allows researchers to rapidly design and test novel visualization and interaction
methods.

• The framework integrates an initial concept and implementation of a shared control approach.
• The integrated ROS interface facilitates connection to a non-simulated – physical – robotic
arm to perform bidirectional interactions and data.

• The framework’s concept enables a code-less trajectory programming by hand-guiding the
simulated or physical assistive robotic arm to the specific location and saving the position
and orientation of the Tool Center Point (TCP).

• Recording TCP data enables replaying user-controlled robot movements and results in a fully
customizable system. Options include changing specific details during replaying, such as
repositioning cameras or re-rendering background scenes.

• Finally, the entire continuum of Mixed Reality (MR) can be exploited in the AdaptiX envi-
ronment. This allows applications in Virtual Reality (VR), pure screen space, Augmented
Reality (AR), simultaneous simulation and reality, and pure reality (cf. the virtuality continuum
of Milgram and Kishino [41]).

2 RELATEDWORK
While robotic arms are a particularly useful and versatile subset of assistive technologies, their
widespread success is limited by a number of design challenges concerning the interaction with
their human user. In recent years, a growing body of research addressed these concerns and
associated optimization options to increase their usability, e.g., [12, 20, 34]. During the AdaptiX
development process, we aimed to include functionality to address the challenges of shared control
optimization [19], intent communication [45], and attention guidance [48].

2.1 Shared Control for Assistive Robots
Current shared control systems operate along an autonomy continuum, respectively balancing user
input and system adjustments. At one extreme, the systems tend to be heavily manual, with only
minor adjustments to the user’s input [56]. On the other end are systems where users primarily
provide high-level commands for the robot to execute [60]. A number of different approaches –
including time-optimal [21] and blended mode switching [16], shared-control-templates [52] and
body-machine-interfaces [29] – are currently employed in various settings.

1AdaptiX framework. https://adaptix.robot-research.de, last retrieved May 20, 2024.
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A fundamentally different approach is the shared control system proposed by Goldau and Frese
[19]. Their concept combines a robotic arm’s cardinal DoFs according to the current situation and
maps them to a low-DoF input device. The mapping is accomplished by attaching a camera to the
robotic arm’s gripper and training a Convolutional Neural Network (CNN) by having people without
motor impairments perform ADLs [19] – similar to the learning-by-demonstration approach for
autonomous robots by Canal et al. [7]. The CNN returns a set of newly mapped DoFs, ranked
by their assumed likeliness based on the CNN for the given situation, allowing users to access a
variety of movements for each situation. In addition, the CNN-based approach allows the system
to be easily extendable as the same system can be trained to discriminate between many different
situations – making it a viable concept for day-to-day use. Goldau and Frese [19] conducted a
proof-of-concept study comparing the control of a simulated 2D robot with manual or CNN-based
controls. Task execution was faster with their proposed concept; however, users experienced it as
more complex than manual controls [19].

Our framework AdaptiX is influenced by Goldau and Frese’s approach, but extends it from 2D to
3D space. This increases the number of possible DoFs, which allows for an accurate representation
of ADLs in the framework. By adding functionality, visualizations, and a ROS integration, AdaptiX
can be used to develop and evaluate novel interaction control methods based on this approach for
shared control, which we refer to as Adaptive DoF Mapping Control (ADMC).

2.2 Robot Motion Intent
Regardless of the specific interaction details, it is necessary to effectively communicate the intended
assistance provided by the (semi-)autonomous system [4]. Clear communication between robots
and humans enhances the shared control system’s predictability, avoids accidents, and increases
user acceptance.
A crucial element of the D&D process of robotic devices is, therefore, the testing of intent

communication methods. Choreobot – an interactive, online, and visual dashboard – proposed by
van Deurzen et al. [61] supports researchers and developers to identify where and when adding
intelligibility to the interface design of a robotic system improves the predictability, trust, safety,
usability, and acceptance. Moreover, Pascher et al. [45] provide an extensive overview of the various
types of visualization and modalities frequently used in communicating robot motion intent. These
range from auditory [10] and haptic [9] modalities to anthropomorphizing the robot and using its
gaze [38] or gestures [18]. Their findings are substantiated by Holthaus et al. [24], who used an
ethnographic approach to derive a comprehensive communication typology.
While all these intent communication modalities are viable, visual representations of future

movements are often quoted as less workload-intense for the end-user [13]. AR is, therefore,
unsurprisingly a frequently used tool to convey detailed motion intent [8, 22, 53, 63, 65], allowing
interactions to become more intuitive and natural to humans [36]. Suzuki et al. emphasize the
benefits of AR-based visualizations for communicating movement trajectories or the internal state
of the robot [58].

The visual feedback employed by AdaptiX mimics AR in a VR environment with directional cues
registered in 3D space. This approach allows the user to understand different movement directions
for the actual control and the suggested DoF combinations. To streamline understanding the control
methods, one of our primary approaches is the usage of arrows – a straightforward and common
visualization technique to communicate motion intent [54, 55, 63].

2.3 Feedback Modalities for User Attention Guidance
When creating systems using shared control, it is crucial to guide the user’s focus to the assistance
the robot is offering [49]. This guidance is particularly important if either party is moving the
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robot in a way that could lead to collisions or worsen the situation. To enhance the predictability
of shared control systems, various feedback modalities have been proposed to guide user attention
as a secondary feedback mechanism to AR. The goal is to provide a feedback solution that results
in short reaction times, enabling users to quickly direct their focus to the information provided by
the robot.
In the related discipline of autonomous driving systems, if the vehicle encounters a situation

it was not programmed or trained to handle, it will issue a Take-Over-Request (TOR). This TOR
prompts the driver to take manual control of the vehicle to prevent a collision or to drive in areas
the vehicle cannot handle autonomously.
Auditory, visual, and tactile/haptic modalities are commonly used for TORs [64] – either as a

single sensory input [49] or a combination of multiple variants [48]. Simulation studies, along with
research on reaction times to different sensory stimuli, indicate that multi-modal feedback results
in the lowest possible reaction times in shared control systems [5, 14, 31].

Implementing these feedback methods into existing assistive robot systems would be straightfor-
ward as the necessary output devices – like screens, speakers, or vibration motors – are commonly
already present. To allow researchers to evaluate the benefits of the different modalities, AdaptiX
includes three modes for attention guiding: visual, auditory, and tactile/haptic. Developers can
either choose one modality or follow a multi-modal approach.

3 FRAMEWORK CONCEPT
The AdaptiX XR framework facilitates the development and evaluation of HRI shared control
applications in an easy-to-use, high-resolution transitional MR environment. Equipped with a
VR simulation environment containing a virtual Kinova Jaco 2 and ample customization options,
researchers can streamline their D&D process while simultaneously reducing overhead and boosting
efficiency. Figure 2 provides an overview of the framework’s architecture.

Physical Robotic ArmVirtual Robotic Arm

Native Robot 
Joystick Input

AdaptiX Framework for Unreal Engine

Record & Replay

ROS Interface

XR HMD

Cartesian Control

CNN-based 
Approach

Script-based 
Approach

User Input 
Adapter

Adaptive DoF
Mapping Control

Multi-Modal 
Feedback

Keyboard

Gamepad

XR Motion 
Controller

Joystick

SteamVR

Tracking

Alignment of 
Environment

Web

OR

OR

Fig. 2. Overview of AdaptiX ’ architecture, illustrating each component, their directional communication, and
the crossover from and to the framework. The user input is either used for Cartesian Control or Adaptive DoF
Mapping Control (ADMC). For ADMC, either a CNN-based or script-based rule engine can be selected.

In addition to an Cartesian robot control, we propose ADMC as an initial shared control approach,
using suggestions by a rule engine (e.g., a CNN or script-based approach) to be controlled by the
user. ADMC is implemented directly into the Unreal Engine to enable researchers and developers
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to fully customize the control methods, systems behavior, and feedback techniques by coding in
C++ or Blueprints.
AdaptiX supports several pre-implemented input devices and provides an adapter class for an

easy development and implementation of further input devices. This supports researchers and
developers to easy implement their ideas and concepts. The integrated ROS interface facilitates
connection to a non-simulated – physical – robotic arm to perform bidirectional interactions and
data exchange in a DigitalTwin and PhysicalTwin approach.

AdaptiX enables effortless trajectory programming by manually guiding the TCP of a simulated
or physical robotic arm to a desired location and recording its position and orientation. Recorded
data of user-controlled robot movements can be replayed. Offering the adjustment of specific details,
such as camera positions and background scenes, results in a highly customizable system.

The aim is to provide a modular and extensible framework so that research teams do not need to
start from scratch when implementing their shared control applications.

3.1 Adaptive DoF Mapping Control (ADMC)
For the adaptive DoF mapping – referred to as ADMC – of the robotic arm, the goal is to present
a set of DoF mappings ordered based on their effectiveness in accomplishing the pick-and-place
task used in the experiment. The concept of “usefulness” assumes that maximizing the cardinal
DoFs of the robot assigned to an input-DoF while progressing towards the next goal is the most
advantageous option.
This DoF mapping, referred to as the optimal suggestion, is assumed to be the best choice due

to a significant reduction in the need for mode switches when multiple DoFs are combined into a
single movement. The more DoFs are combined (assuming it is sensible for the given situation), the
fewer mode switches are required. As a result, the DoF mappings are ordered based on the number
of DoFs they combine.
In addition to the optimal suggestion, the second suggestion is a selection of an orthogonal

variation of the first suggestion, which has the highest probability and most variation in spatial
direction and keeps the number of combined DoFs unchanged. This secondary suggestion is likely
useful to users as they can utilize it to adjust their position while maintaining a sensible orientation
toward the next goal. The following DoF mappings were used (see Figure 3):

(a) (b) (c) (d) (e) (f)

Fig. 3. Suggestions as Visualized in the ADMC, (a) Continue previous movement, (b) Optimal Suggestion, (c)
Adjustment Suggestion, (d) Translation Suggestion, (e) Rotation Suggestion, (f) Gripper Suggestion. Colors:
Bright cyan arrow: Currently active DoF mapping. Dark blue arrow: Next most likely DoF mapping.

(1) Optimal Suggestion: Combining translation, rotation, and finger movement [opening and
closing] into one suggestion, causing the gripper to move towards the target, pick it up, or
release it on the intended surface.
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(2) Adjustment Suggestion: An orthogonal suggestion based on (1) but excluding the finger
movement. Allows the users to adjust the gripper’s position while still being correctly
orientated.

(3) Translation Suggestion: A pure translation towards the next target, disregarding any rotation.
(4) Rotation Suggestion: A pure rotation towards the next target disregarding any translation.
(5) Gripper Suggestion: Opening or closing of the gripper’s fingers.

3.1.1 CNN-based Approach. For the CNN approach, a color-and-depth camera is attached to the
gripper of an assistive robotic arm. The live video feed is transmitted to a CNN, which is trained
using data collected from non-impaired individuals performing ADLs using the robotic arm along
with a high-DoF input device. The CNN does not need a model of the environment to provide these
mappings. Principal Component Analysis (PCA) is employed to transform the CNN’s output into a
matrix D̂, where each column represents a combination of cardinal DoFs along which the robotic
arm can move.
Next, a subset of D̂ is selected, containing as many columns as the number of DoFs provided

by the input device. This selected subset is referred to as D, and it serves to map input-DoFs to
output-DoFs. When an input-DoF is engaged, the robot’s movements are determined by the values
in the corresponding vector of D, which proportionally activate the robot’s cardinal DoFs. A mode
switch is defined as the exchange of D with a different subset of D̂. This enables the system to switch
between various mappings of input-DoFs to output-DoFs, adapting the robot’s control according
to the user’s needs and preferences. A visual representation of this control pipeline is depicted in
Figure 4a.
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Fig. 4. Concept of adaptive DoF mapping control. (a) Control pipeline for proposed adaptive shared control
and (b)matrix representation of DoF mappings: Columns represent input-DoFs. Rows represent output-DoFs.
Subsets represent modes. Two empty columns were added to represent zero movement mappings in Finger
Mode.

D̂ is a square matrix with dimensions based on the number of cardinal DoFs available on the
robot to be controlled. In the case of the Kinova Jaco 2 [30], this results in a 7 × 7 matrix. This
matrix represents a mapping of input-DoFs to output-DoFs when the number of DoFs in both cases
is equal. The values in each column, ranging from -1 to 1, indicate the proportion with which the
specific cardinal DoF is utilized when engaging the corresponding input-DoF.

By defining D̂ as an identity matrix, each input-DoF is mapped to a single output-DoF. Selecting
an equal number of columns from D̂ to form matrix D allows for manual control with mode
switching along cardinal DoFs. Moreover, this representation enables the combination of multiple
cardinal movements into arbitrary output DoF mappings. For example, a (transposed) column of
(0.5, 0.5, 0, 0, 0, 0, 0) would result in diagonal movement along the X- and Y-Axes of the robot. Such
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combinations enable the offering of complex movements with different proportions depending on
the situation, enhancing the control options available to users. The identity matrix for a Kinova
Jaco 2 with a 3-DoFs joystick is illustrated in Figure 4b.

3.1.2 Script-based Approach. As an alternative rule engine for our ADMC concept, we implemented
a task-specific script. This approach eliminates potential biases that a more generic, but currently
limitedmethod like a CNN-based control might introduce. It is essential to note that our task-specific
script is effective only in a controlled experimental environment.

The task-specific script assesses the end effector’s current position, rotation, and finger position
relative to a target, allowing it to adaptively calculate the matrix D̂. This script recommends optimal
movements to pick up an object and place it onto a target drop area, maximizing the combination
of as many DoFs as possible. Additionally, it provides other DoF combinations that may be less
beneficial to mimic the idea that each subsequent column in D̂ has a decreasing likelihood of
being useful. These additional DoF mappings are ordered by the number of combined DoFs in a
decreasing manner.

To validate the effectiveness of this approach, we conducted pilot tests, comparing it to aWizard-
of-Oz method. In this scenario, a human “simulated a CNN” to explore user interaction with such a
system.

3.1.3 Point of Time to Communicate the Suggestion. Our ADMC concept uses an adaptive DoF
mapping system to recommend DoF mappings to the users depending on the current situation. The
system visualizes the currently active DoF mapping as a bright cyan and the suggestion as a dark
blue arrow (see Figure 3). This suggestion can be communicated – based on the the configuration –
either continuously or only if the next most likely movement direction differs from the currently
active DoF mapping by a certain threshold.
To calculate this threshold – the difference between the currently active and new most likely

DoF mapping –, cosine similarity [57] is used, ranging from exact alignment [0%] to total opposite
direction [100%]. The formula for cosine similarity of two n-dimensional vectors is defined as:

cosine similarity = cos
(
�𝒂, �𝒃

)
=

�𝒂�𝒃
‖�𝒂‖‖�𝒃 ‖

=

∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖√∑𝑛

𝑖=1 (𝑎𝑖 )2
√∑𝑛

𝑖=1 (𝑏𝑖 )2
(1)

To implement a difference value, the cosine similarity needs to be transformed. As a cosine
similarity of -1 indicates completely opposed vectors, the difference value needs to return 1 – i.e.
the maximum possible difference – for a cosine similarity value of -1. A cosine similarity of 1,
indicating exact similarity, should return a difference value of 0 – i.e. no difference. Perpendicular
vectors with cosine similarity 0 should return a difference value of 0.5 – i.e. a 50% difference. To
calculate the difference value d, the following formula is used:

difference d = 1 −
cos

(
�𝒂, �𝒃

)
+ 1

2 (2)

This difference value represents the difference between two vectors. While the user moves the
robot with an active DoF mapping, the adaptive DoF mapping system reevaluates the situation and
calculates new suggested DoF mappings. The default difference value is set to 0.2 (20% difference
between currently active and new most likely DoF mapping).

3.2 Full Mixed Reality Continuum
In our framework, we created an environment in which the entire continuum of MR is exploitable.
This extends the use of AdaptiX to new scenarios and environments – including the real world. The
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(a) (b) (c)

(d) (e) (f)

Fig. 5. MR continuum with (a) only the real robotic arm in real environment, (b) augmenting of directional
cues in the real environment with the real robotic arm, (c) additional visualizing the gripper and base of the
virtual robotic arm in the real environment, (d) visualizing the simulated robotic arm in the real environment,
(e) visualizing the real robotic arm in the virtual environment, and (f) visualizing the simulated robotic arm
in the virtual environment.

virtual and real environments of the robotic arm are aligned, allowing researchers to seamlessly
switch between the user controlling the real and virtual robot. The level of MR can be adjusted in
various steps (cf. the virtuality continuum of Milgram and Kishino [41]).

The MR environment setups include:
(1) the completely real environment with the real robotic arm,
(2) the real environment extended with visual cues,
(3) the real environment into which the virtual robot is transferred and displayed (with and

without visual cues),
(4) the virtual environment into which the real robot is transferred and displayed (with and

without visual cues),
(5) the completely virtual environment with the virtual robotic arm.
A comparison of the user’s view in reality and simulation can be seen in Figure 5. MR continuum

level (1) is suitable for study baseline-condition, without any multi-modal feedback to the user. In
level (2) an AR visualization technique is mimicked, showing the whole physical setup augmented by
basic cues. Especially level (3) and (4) enable customizing either the robot itself or the environment
to extent/exchange the physical setup but still not loosing the context. In (3) users can interact
with a totally new or customized robot while being in a familiar environment. World’s distractions
can be excluded in (4) while the the original robot is presented. Finally, level (5) provides a VR
environment that can be fully customized.

3.3 Interfaces
We designed AdaptiX to facilitate the comparison of different interaction designs, intervention

strategies, and feedback techniques for shared robot control. The initial version of the framework
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includes interface types for extending user input, ROS integration, and multi-modal feedback.
However, this baseline can easily be customized and extended by future development.
3.3.1 User Input. We provide a standard control approach where pressing a keyboard button moves
the end effector along cardinal DoFs (x, y, z, roll, pitch, yaw, opening and closing the gripper). Using
build-in functionalities, the designated keyboard input can easily be adjusted to other input devices
like gamepads, joysticks, or customized assistive input appliances.

In contrast to tele-operating the robotic arm, a follow-me approach for any trackable object in 3D
space – e.g., the user’s handheld VR motion controller – was implemented. The robot’s end effector
directly follows the movement of the trackable object, which corresponds functionally to direct
control. This can be used to generate high-dimensional input and record intended behavior quickly,
providing an easy way of interacting and controlling the robot, especially for inexperienced users.

3.3.2 ROS Integration. The ROS integration allows for a bidirectional exchange of information
between the simulation and a real robot, mirroring the robot’s state in-silico and vice versa. Figure 6
shows the involved components: a ROS bridge facilitates the multi-device connection between the
framework and the real robot while exchanging robot data. On the ROS side, the messages for the
arm position and orientation control and the values for the angle-accurate control of the gripper
fingers are read in via the ROS subscriber node. They are then processed, and the robot arm and
gripper are controlled through our action client. In addition, the joint angles, the TCP, and the
position of all three gripper fingers are published via ROS, which are then input by our Unreal
Engine framework. The virtual and real robots are synchronized via ROS every 0.1 seconds.

Based on this, our framework provides – depending on the specific context – both a DigitalTwin
and PhysicalTwin approach, allowing the control of either with the other.

Unreal Engine ROS

AdaptiX
Framework

Kinova
Jaco 2

ROS node

/UE_TCP_position /j2s7s300_driver/pose_action/tool_pose
cartesian_pose_client()

/UE_gripper_angles /j2s7s300_driver/fingers_action/finger_positions
gripper_client()

/j2s7s300_driver/out/tool_pose

/j2s7s300_driver/out/joint_state

Fig. 6. Component connections of the ROS interface for mixed reality.

3.3.3 Multi-Modal Feedback. To communicate any combination of DoFs, our framework supports
several visual cues to illustrate the intended movement trajectory and provides multi-modal
feedback extensions via audio and haptic-tactile feedback. Visual feedback can be either provided
dynamically attached to the virtual/physical robot’s end effector, stationary in the world, or attached
to the user’s view.

AdaptiX aims to support the development of novel multi-modal interaction and feedback designs
either in the pure VR simulation testbed environment or by interacting with a real robot in MR,
which mimics an AR setting due to the stereoscopic video-feed. Moreover, it is also possible to
show the real robot in our VR simulation environment instead of the simulated one.
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Figure 7 shows three exemplary AR-style visualizations provided by the framework, including (a)
a robotic ghost overlay, (b) discrete waypoints in 3D, and (c) a variety of multidimensional arrows.
Though varying in design, these visualizations can effectively communicate the robot’s motion
intent to the user.

Ghost: A visualization of robot motion intent by showing an additional version of the robot (or
specific components) registered in 3D space, in another color and/or opacity. These visualizations
communicate the exact position and orientation a robot at a given time, behaving precisely as
though the real robot had been moved this way.
Waypoints: This visualization technique augments the position of a robot (or in our case, the

gripper of the robotic arm) in 3D space at a certain point in the future. Usually, the robot navigates
linearly between these Waypoints, which increases predictability.
Arrow: Among visualizations arguably the most basic but certainly also the most familiar (as

seen in traffic navigation systems, road signs, and on keyboards). Arrows are found both in straight
and curved varieties, where curved arrows indicate a rotation. Given the abundance of Arrows in
daily life, it makes sense that many robot motion intent visualizations use them.
Classic: This visualization also uses Arrows, but in our prototype they are used as a baseline

condition to evaluate adaptive and non-adaptive controls. Here, as with the standard input device
Kinova Jaco 2, two axes can be controlled simultaneously and the user has to choose between
different translations and rotations by mode-switching.

(a) Ghost (b) Waypoints (c) Arrows

Fig. 7. Visualization examples pre-implemented in the framework.

All interfaces are modular, enabling quick adaptations and switching between variations. This
flexibility allows for studies with clean methodologies and easy comparisons without additional
overhead. The community is invited to extend the implementations with any interfaces or control
methods desired for their research.

3.4 Recording and Replay
AdaptiX contains an easy-to-use general-purpose system to record, store and replay simulation data,
including detailed information about robot states, execution times, or the states of various objects
in the environment. The recording system generates Comma-separated values (CSV) text files,
which can be accessed with any data manipulation software (e.g., Python or MATLAB). The added
output functionality differs significantly from the replaying system provided by the underlying
Unreal Engine, which is mainly designed for visual replays and – among other things – does not
support a CSV file format.
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In addition, AdaptiX ’s recording and replaying system is entirely customizable. Camera re-
positioning or re-rendering background scene options are included in the initial version. By default,
the recording system tracks the user’s view, the robotic arm, and all moveable actors in the virtual
environment. All other objects are assumed to be stationary, thus part of the level, and ignored as
such. This approach allows for the randomization of background scenes by re-rendering.

The system stores the assigned virtual meshes, scales, possible segmentation tags for each tracked
object, and the complete pose data per frame. During the replay process, all objects that were
initially recorded in a specific level are swapped with the corresponding data stored in the loaded
recording. However, if a different scene is being loaded, the objects from that scene are used instead.
In every subsequent frame, all objects are positioned at their respective position until the loaded
recording has finished. The system permits custom code to be run at the end of each loaded frame,
thus enabling de-bugging and data rendering during replays.

Overall, AdaptiX facilitates the lightweight storage of recordings as CSV files with the option to
render and store complex and large-scale data (e.g., images or videos) for subsequent evaluation.
This lightweight approach is particularly useful when deploying experiments on external devices
or recording extensive datasets.

4 FRAMEWORK IMPLEMENTATION
The AdaptiX simulation environment is based on the game engine Unreal Engine 4.27 [15]. The

advanced real-time 3D photoreal visuals and immersive experiences provide a suitable foundation
for our framework, and assets for future extensions are readily available. Unreal Engine 4.27 includes
integrated options for various hardware setups, thus enabling the framework to be deployed on
different operating systems while utilizing most currently available VR/MR/AR headsets, gamepads,
and joysticks. At the time of writing, Unreal Engine 4.27 is free to use, has a considerable user space,
and allows unrestricted publications of non-revenue generating research products like the AdaptiX
framework. Detailed implementation descriptions can be accessed in the README provided in the
repository at https://adaptix.robot-research.de.

Fig. 8. Example scenario provided in AdaptiX including a table, a virtual Kinova Jaco 2 robotic arm and colored
blocks on the tabletop.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 244. Publication date: June 2024.



AdaptiX – A Transitional XR Framework for Assistive Robotics 244:13

4.1 Simulation Environment
The AdaptiX default scenario centers on the photogrammetry scan of an actual room that contains
a table with an attached virtual robotic arm (see Figure 8). A simulated camera is mounted on the
arm’s gripper. We added a toggle-off option to hide the camera from the user’s view.

The framework includes a straightforward testbed scenario for pick-and-place operations, mim-
icking the basic principles of most ADLs. The simulation centers around a red surface as a drop
target and a blue block as the to-be-manipulated object. Once the object has been successfully
placed, the setup randomly re-positions the blue block on the table surface, and the task can be
repeated.
We optimized the robotic arm simulation for operation via a VR motion controller with an

analog stick, several playable buttons, and motion capture capabilities (e.g., Meta Quest 2 [39]).
These options provide a workable foundation to implement and test diverse interaction concepts,
including adaptive concepts which can be configured to match the individual physical abilities of
the intended user.

By incorporating the Varjo XR-3 [62] – a particularly high-resolution XR-Head-Mounted Display
(HMD) – we implemented a transitional MR environment. Using two HTC VIVE trackers [26],
the virtual and real worlds are synchronized so that the robots’ working areas are identical. By
including the HTC VIVE motion controller [25], it is then possible to control the physical robot
directly via the PhysicalTwin approach of AdaptiX (see Figure 1).

The virtual robotic arm is designed as a modular entity, allowing easy integration to new levels
following the Unreal Engine’s ActorBlueprint class structure.

4.1.1 Simulated Robotic Arm. The commercially available Kinova Jaco 2 assistive robotic arm [30]
is specifically designed as an assistive device for people with motor impairments. It is frequently
used by a) the target audience and b) researchers – e.g., [3, 21] – during HRI studies, hence the
suitability for inclusion in AdaptiX.

We designed the simulated Kinova Jaco 2 as close as possible to the actual product, using virtual
meshes generated directly from computer-aided design (CAD) files provided by the manufacturer.
Much like in reality, the virtual arm consists of a series of individual links connected by angular
joints as shown in the annotated rendering of the assembled model Figure 9.

AsAdaptiX – including the operation of its simulated robotic arm – is optimized for HRI studies, it
focuses on user interaction rather than low-level robot control, whilst also able to incorporate those.
Hence, rather than following the standard base-up control, the simulated arm moves in reverse:
the user’s input directly controls the end effector’s motion; the connected joints are positioned to
connect the end effector with the base.Each intermediate joint is modeled as a dampened spring
with the links unaffected by gravity. This also resolves the redundancy, i.e., joint angle ambiguity a
7-jointed robot has.

Fig. 9. Virtual Robotic Arm with Physics Constraints: purple capsules represent links, green discs represent
angular constraints.
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This approach allows for nearly arbitrary motion of the end effector and a semi-realistic in-
teraction of the arm with the environment. As a beneficial side effect, developers can disconnect
the end effector from the rest of the arm and allow the user to control a free-floating robot hand
without any constraints. However, the internal physics engine to realistically handle collisions and
interactions between the end effector and the environment is still active.

Likewise, we based the grasp concept on a custom interaction design for robotic grasping rather
than physics. Physics-based grasping in a virtual environment is a challenging task [27] and would
require substantial preparation and asset fine-tuning from future developers who use the framework.
Instead, we defined a logic-based approach that we consider sufficiently realistic for shared control
applications: an object is regarded as grasped once it has contact with two opposite fingers while
closing the gripper until the fingers open again. The grasped object is rigidly attached to the end
effector, keeping its relative position stable and moving alongside the end effector until released.

4.1.2 Simulated Camera System. Computer-aided robot control usually requires a camera system –
or a comparable sensor – to measure context information about the current environment for the
underlying software function. To provide a realistic equivalent in simulation, AdaptiX contains
a virtual version of the commercially available Intel Realsense D435 [28]. This camera system is
commonly used in research applications [11, 66] and can deliver aligned color and depth images.
The built-in color sensor generates depth data by applying a stereo-vision algorithm using grayscale
image data of two built-in infrared (IR) imagers. To improve the texture information captured by
the IR imagers, the camera also includes an IR projector, which projects a static pattern on the
scene.
As with the simulated robotic arm, the virtual camera system is a modular actor that can be

arbitrarily placed within the simulation environment. Its mesh and texture are derived directly
from the manufacturer’s CAD files to optimize authenticity. The virtual camera system includes all
image sensors of the original, plus an optional virtual sensor generating a segmented image of the
scene. We designed the virtual sensor parameters to be as close as possible to those of the actual
sensors. They include – but are not limited to – sensor dimensions, lens structure, focal length, and
aperture.
Because the framework can provide depth information directly from the 3D simulation, the

virtual depth camera does not need to calculate its data using stereo-vision but instead yields
perfect per-pixel depth information. If stereo-vision-generated depth data with realistic noise,
errors, and other algorithm-specific effects is needed, the virtual system also delivers the IR images
for a manual calculation.
Additionally, the simulated camera system supports the usage of the image data in-simulation

and storing the data on disk for applications such as dataset generation or logging.

4.2 Adaptive DoF Mapping Control (ADMC)
The adaptive DoF mapping is implemented in the object Axis Wizard, which provides functions to
calculate the optimal suggestion, as well as the other possible optimizations. The calculation relies
solely on the virtual objects in the simulation environment instead of object recognition or camera
data to enable development and evaluation without a physical robot setup. However, the camera
feed for object recognition can be activated by developers to read positions and orientations. In
addition to the positions and orientations of the Gripper Mover and the Current Target (which can be
an object to pick up or a target surface to place the object on, depending on the context), two other
parameters of Axis Wizard are important to ensure the correct calculations for the pick-and-place
task – Minimal Hover Distance and Hover Height.
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Disregarding the handling of edge cases, the calculation of the optimal suggestion is taken care
of in three steps: 1) calculating Translation, 2) calculating Rotation, and 3) calculating the finger
movement variable Gripper. The Blueprints for implementation details are provided in Appendix A.

4.2.1 Calculation of the Optimal Suggestion. Minimal Hover Distance represents the distance –
projected on the XY-plane – between the Gripper Mover and the Current Target. When this distance
is smaller than the Minimal Hover Distance (see Figure 12 in the appendix), the Axis Wizard uses
a point above the Current Target for its calculations – referred to as the Target Point, instead of
the Current Target’s position to prevent the robot from getting too close to the table, allowing for
proper gripper rotation. Then, a vector from the Gripper Mover’s position towards the Target Point
is calculated, normalized, and inversely rotated by the Gripper Mover’s rotation. This calculation
returns a unit vector pointing from the Gripper Mover toward the target point in the Gripper Mover’s
reference frame. This vector is then scaled by the Vel Trans value of the Kinova Jaco 2 to get a
translation of the size of the movement performed by the Kinova Jaco 2 during one frame.

Hover Height determines the height of the aforementioned point above the Current Target. If the
XY-projected distance between theGripper Mover and the Current Target is smaller than theMinimal
Hover Distance, the Axis Wizard directly uses the Current Target’s position for its calculations
instead of the point above it.
To calculate the optimal suggestion’s Rotation, the Translation – calculated in the first step – is

used as input for the Make Rot from X node. This node returns a rotator representing the rotation
required to make an object point toward the direction indicated by the input vector – target point.
To mitigate an additional roll of Gripper Mover, the inverse value is added, keeping the Gripper
Mover’s orientation largely steady. Additionally, since only a small part of the rotation is performed
during one frame, the rotator is scaled down. The calculation for the Rotation, excluding edge cases,
is depicted in Figure 13 in the appendix.

4.2.2 Calculation of Gripper values. The Gripper value only depends on whether the target point
is within reach of the robotic fingers, either with or without additional movement (i.e. if the fingers
are almost close enough, there will be a movement towards the target point, otherwise the fingers
will engage without moving the gripper) and whether or not an object is currently being grasped
(i.e. if an object is grasped and the gripper is close to the target point, it suggests to open the fingers,
otherwise close them).

4.2.3 Calculation of the Adjustment Suggestion. The adjustment suggestion is calculated by rotating
the optimal suggestion’s Translation by 90° around the Y-Axis, keeping the same Rotation and setting
the Gripper value to 0. This results in a DoF mapping which moves roughly along the Gripper
Mover’s Z-Axis, or colloquially "up and down" between the fingers if the optimal suggestion is
seen as "forward and backward". As Rotation is kept the same between the optimal and adjustment
suggestions, the resulting movement keeps the fingers roughly facing the direction of the Current
Target.

The translation, rotation, and gripper suggestions use much simpler calculations. The translation
suggestion calculates a vector from the Gripper Mover towards the Current Target, inversely rotates
it by the Gripper Mover’s rotation to put it into the Gripper Mover’s reference frame and uses that
as the Translation value for the suggested Adaptive Axis. This vector is also what the rotation
suggestion uses to calculate a Rotator representing a rotation towards the Current Target. The
gripper suggestion checks whether an object is currently being grasped. If so, the suggestion is to
open the fingers (Gripper = -1). Otherwise, the suggestion is to close the fingers (Gripper = 1).

4.2.4 Attention Guidance in Threshold. Both the Continuous and Threshold approaches share the
same core calculation for DoF mappings. However, the Threshold approach has an additional task:
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determining whether the optimal suggestion significantly differs from the currently active DoF
mapping. This task is more related to visualization than the DoF mapping calculation itself and is
managed by the Gizmo object.
The Gizmo object contains a Realtime Threshold variable, which represents the threshold as

a value between 0 and 1. It also includes a function called Adaptive Axes Nearly Equal, which
determines whether two Adaptive Axes are nearly equal by checking if their difference is below the
Realtime Threshold. The threshold value is chosen to be between 0 and 1 to align with a percentage of
difference (see Section 3.1.3), providing a more intuitive understanding of the amount of difference
compared to the cosine similarity value used as the basis for the difference calculation.
As the Unreal Engine does not provide an arbitrarily sized vector structure, the calculations

required needed to be programmed manually rather than with built-in vector operations. Therefore,
two math expression nodes were defined, one calculating the dot product of two 7D vectors and
the other calculating the magnitude of a 7D vector. Using these, the cosine similarity between two
Adaptive Axes could be calculated in Unreal Blueprints (see Figure 14 in the appendix). To forego
the transformation of the cosine similarity into a percentage difference, the Unreal Engine’s Nearly
Equal node was used to determine whether the cosine similarity was nearly equal to 1 – meaning
the vectors align – with a threshold of 2 * Realtime Threshold. The threshold needed to be multiplied
by 2 as the range of the cosine similarity has a magnitude of 2. The result of this calculation is a
boolean value that is true if the difference between the Adaptive Axes is below the threshold and
false otherwise.

The resulting value is then used by the Gizmo to show the arrow corresponding to the optimal
suggestion. It is also used to notify the Game Mode – an object representing the game, keeping
track of study variables, etc. – that the threshold was broken. This triggers an event that causes
a 1kHz sound to play and a haptic effect to occur on the motion controller. A reset variable is
used to prevent the sound from constantly triggering. However, there appears to be a specific
point during movement at which it is possible for users to stop their input and the software to get
caught in a loop of firing the event and resetting it, causing a constant sound and vibration. If users
continued their movement, the software stopped firing the event, seizing the sound and vibration.
Unfortunately, this was only noticed during the experiment, which is why the problem persists in
the current software version. Assuming Threshold is to be used in future research, a better solution
for a single fire execution of the notification needs to be developed.

5 LIMITATIONS
In HRI research, the leading factor impacting user experience is usually the chosen method of
(shared) control and the respective interfaces. Using frameworks like AdaptiX allows researchers
to tweak these variables toward high user satisfaction through methodological studies and experi-
ments.

However, like any simulation, AdaptiX only approximates reality and contains ingrained limita-
tions when working with the system and evaluating generated results.

5.1 Scenario Selection
In the initial version, AdaptiX provides only a single level, as seen in all screenshots of this
work. This scenario functions mainly as a model for simple tasks. As such, it lacks environment
interactions or varying backgrounds and is not designed for a specific assistive task.

This single level might need to be revised to represent the complete application range of assistive
shared control, which is why extensions are required. As such, AdaptiX ’s modular design allows
the community to generate custom levels for their specific research interests effortlessly.
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5.2 Simulation Sickness caused by Head Mounted Display
HMDs are a popular tool to create immersive virtual environments, frequently used in research and
industrial settings. However, using a HMD in HRI can create a significant displacement between
the virtual object and the physical world through effects related to the resulting limited field of
view, reduced depth perception, and distorted spatial cues.

For applications within the AdaptiX framework, these issues could result in users experiencing
motion sickness, disorientation, discomfort, and potentially decreased performance when interact-
ing with the simulated robotic arm or virtual objects. Researchers must consider these artifacts when
designing experiments, especially when developing studies including qualitative questionnaires or
when comparing different levels of MR continuum.

5.3 Simulation Environment
The simulation environment centers on the photogrammetry scan of an actual room that con-
tains a table with an attached virtual robotic arm. Compared to a 3D modeling of a room, the
photogrammetry does not provide a high resolution, leading to a partial blurred appearance.
AdaptiX does not provide a photo realistic virtual environment (yet). However, in our studies,

the slightly blurred appearance never seemed to have had a negative effect. On the contrary, it has
helped participants focus on the scene’s relevant parts (i.e. the robot and objects). Researchers and
developers are invited to create and evaluate a 3D modeled environment.

5.4 Simulated Robotic Arm
If controlled entirely in simulation, the robotic arm (as described in Section 4.1.1) does not move
identically to an actual Kinova Jaco 2 because of implementation decisions favoring physical
interactions over accurate per-joint robot actions. In most other cases, the individual joints are in
relatively realistic positions, even though they might not be identical to the underlying solution
provided by an inverse kinematic of the real robot.
Especially in the follow-me approach (see Section 3.3.1), it is possible to reach outside of the

mechanical range of the robotic arm. Due to the entirely physics-based connection, this results in
partially disconnected joints. However, this is only an issue of visualizing the robotic arm in the
simulation environment and does not affect the control or the TCP data recording.

Likewise, grasping simulated objects is based on a custom implementation, and grabbed objects
are firmly attached to the end effector. Care must be taken for objects that are – in reality – too
heavy for the gripper, have slippery surfaces, or have mechanical dimensions that make the object
unstable when held. Theoretically, this “ideal kind of grasping” allows the virtual robot to move
any arbitrarily large and heavy object. To address this, we added the object tag Graspable that
allows developers to define permitted – and by omission – unpermitted objects.

5.5 Simulated Camera System
Although the simulated camera is based on manufacturer CAD files, comparison tests failed
to deliver completely identical data to the actual recording system. These variances stem from
environmental differences between simulation and reality, as light or dust/other particles in the air
will cause effects in the produced image. However, these effects can be added in post-production or
– if required – activated in the framework. By default, the respective settings are disabled as they
would primarily introduce noise that not every developer might want.

On a technical level, the images generated by the virtual system differ slightly in terms of data
types. The virtual grayscale IR images consist of three identical color channels instead of a single
channel in reality. Also, the virtual IR and color images include an additional fourth alpha channel,
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which is not used in our framework. The generated depth data format also differs, as the actual
camera system generates images as 16-bit unsigned integer, and the simulation provides them as
16-bit signed floats. The depth data generated by the framework is pixel-perfect, which ignores
various camera system effects that occur in reality by the calculation of depth using stereo-vision.

All these technical differences are addressed within the framework through data transformation
and should not noticeably affect the output of AdaptiX. However, researchers and developers should
be aware of these adjustments for future developments and extension.

5.6 ROS Interface
The ROS interface connects the virtual with a real robot, each with its own environmentally-
determined set of limitations. This results in some logical inconsistencies while using the interface.
The obvious velocity limitations of the real system result in delayed execution if reality is to follow
the simulation. Therefore, the maximum velocity of the virtual robotic arm is set automatically to
the physical characteristics after enabling ROS. Also, as the virtual joints are not controlled by an
inverse kinematics (IK) but instead based on physics, the interface sends only end effector poses to
the real robot, omitting individual joint poses. This may result in differing robot configurations,
with only the end effector point being aligned in some instances.

When sending pose data from the real robot to the virtual twin in simulation, most of these
restrictions do not apply. The simulated robot can move arbitrarily fast, and its configuration aligns
automatically with the real system. The only restriction is that, by default, no further information
about the natural environment is available, resulting in a relatively empty virtual environment if
relying purely on the ROS interface.

When designing expansions, developers also must be aware that ROS and Unreal Engine differ in
handedness. ROS is based on a right-handed coordinate system, while the Unreal Engine uses a
left-handed approach. AdaptiX internally does the necessary transformation for the robotic arm but
will not automatically calculate this for other position and orientation data, e.g., obstacles. However,
researchers can mitigate this by applying the provided coordinate transformation methods of the
robotic arm to any further object.

6 FRAMEWORK EXAMPLE ADAPTIONS
The AdaptiX framework has been successfully used and adapted in three case studies evaluating

interaction concepts and multi-modal feedback with remote and laboratory-based focus groups.
6.1 Example Adaption 1: Adaptive Control of an Assistive Robot
In an initial study [32], the AdaptiX framework was used to explore the proposed ADMC control
method with associated visual cues for various DoF mappings.
In particular, we analyzed how the novel adaptive control method – proposed by Goldau and

Frese [19] – performs in a 3D environment compared to the standard mode-switch approach with
cardinal DoF mappings. They also investigated whether changes in the visual cues’ appearance
impact the performance of the adaptive control method. Three different types of control with
varying visual cues and methods of mapping DoFs were compared in a remote online study. These
included the Classic visualization, one based on Double Arrow using two arrows attached to the
gripper’s fingers, and a visually reduced variant Single Arrow, using only one arrow through the
middle of the gripper. See Figure 10 for a graphical comparison.

Due to the ongoing COVID-19 pandemic, the study was conducted entirely in a VR environment
created by AdaptiX. Non-specific participants were recruited that had access to the required
hardware (an Oculus Quest VR-HMD) for an immersive experience.
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(a) Classic (b) Double Arrow (c) Single Arrow

Fig. 10. Evaluated interaction design and visualizations [32].

The participants repeatedly performed a simple pick-and-place task by controlling the virtual
Kinova Jaco 2 using one of the three control types. Comparative results established that adaptive
controls require significantly fewer mode switches than the classic control methods. However, task
completion time and workload did not improve. Study participants also mentioned concerns about
the dynamically changing mapping of combined DoFs and the 2-DoF input device.
Framework contribution: AdaptiX demonstrated its effectiveness in this remote study to

evaluate new interaction designs and feedback techniques. The innovative advantage is that the
physical robotic device does not need to be present during these preliminary studies when testing
and evaluating essential design elements. The Record & Replay functionality of AdaptiX allowed
a remote analysis of participants data. This VR approach significantly increases the potential to
include end-users in the research and design process while at the same time decreasing cost, time
involvement, and accessibility concerns.

6.2 Example Adaption 2: Communicating Adaptive Control Recommendations
A follow-up study [46] evaluated two new adaptive control methods for an assistive robotic arm,
one of which involves a multi-modal approach for attention guiding of the user.
We used AdaptiX in a laboratory study to cross-validate the initial study’s findings on how

participants interact with the environment. The adaptive system re-calculated the best combination
of DoFs to complete the task during movement. These calculations were presented to the user
as alternative control options for the current task. Users cycled through these suggestions – by
pressing a button on the input device – to make a suitable selection or continue moving with the
previous active DoFs (see Figure 11).

They contrasted the variants Continuous and Threshold, differing in the time at which suggestions
are communicated to the user, against a non-adaptive Classic control method. Possible effects on task
completion time, the number of necessary mode switches, perceived workload, and user opinions on
each control method were compared. Further, we establish that Continuous and Threshold performed
equally well in quantitative and qualitative insights. Consequently, both are promising approaches
to communicating proposed directional cues effectively.

Framework contribution: The integrated multi-modal feedback is an integral feature of Adap-
tiX, capable of supporting the system’s real-time suggestions by user attention guiding. Although
some participants experienced the combined visual-auditory-haptic multi-modal feedback as “irritat-
ing” [46], it effectively communicated updated suggestions. One application of virtual frameworks
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like AdaptiX might be the differentiation between different modality types and corresponding
user preferences in an easy-to-set-up study. Highlighting the advantage of our framework, we
could evaluate our different visualizations and multi-modal feedback without implementing a VR
environment [46].
Based on the successful implementation of AdaptiX in this laboratory study, we are confident

that the framework performs well in remote and in-person studies.

(a) (b) (c)

Fig. 11. Suggested control alternatives in light blue, visualized as in case study 2: (a) Moving forward and
downward towards the object, (b) Closing the fingers to grasp the object, and (c) Moving towards the target
area.

6.3 Example Adaption 3: Comparing Input Devices for Controlling a Physical Robot in
Mixed Reality

A third study [47] highlights the MR capability of the framework and the integration options with
different input devices. This study used the Varjo XR-3 XR-HMD to explore a similar interaction
design and feedback technique to our Threshold approach [46]. By incorporating this XR-HMD,
the prototype mimics an AR environment (see Section 3.2) to the user, seeing the physical setup
augmented by visual cues. Instead of a virtual pick-and-place task as before, this study combined a
physical object, a physical drop area, and a physical robotic arm with AR cues delivered via the
headset.
Participants compared three assistive input techniques: 1) a head-based control by using the

deflection of the head on the pitch axis for continuous input and on the roll axis for mode-switching,
2) a gamepad input by using the Xbox Adaptive Controller [40] extended with Logitech Adaptive
Gaming Kit [35] buttons for a discrete input, and 3) the control-stick of a Nintendo Joy-Con [43]
motion controller – as a baseline to our previous study [46].

Framework contribution: With its real-world setting augmented by virtual cues, the research
moved closer to reality on the MR-continuum than the previous two case studies. AdaptiX suc-
cessfully performed as an easy-to-use interface between the usage of a physical robot and virtual
communication via a XR-HMD.
It also allowed the research team to quickly evaluate the efficiency of different input devices

with the potential to control the robotic arm along the adaptive DoF mapping. The standardized
User Input Adapter enables researchers to easily chose between different technologies – supporting
continuous, discrete, and absolute user input – and further extend it to their needs by its modular
nature.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 244. Publication date: June 2024.



AdaptiX – A Transitional XR Framework for Assistive Robotics 244:21

7 CONCLUSION
Integrating AdaptiX into HRI research can streamline the development and evaluation of new
interaction designs and feedback techniques for controlling assistive robotic arms. The framework
is advantageous in remote and in-person studies as its usage negates the need for a physical robotic
device during the initial ideation and prototyping stages, thus increasing flexibility, accessibility,
and efficiency.
An initial shared control concept by adaptive DoF mapping is provided and implemented to

support researchers and developers to either change, extend, or exchange methods with their ideas.
In studies using a physical robot, the integration of ROS bridges the gap to reality, by enabling
a bidirectional connection between virtual and physical robotic arm. ROS allows developers and
users to choose between a DigitalTwin and PhysicalTwin approach while interacting with AdaptiX.
Using AdaptiX, researchers benefit from the entire continuum of MR. As the simulated and real-
world environments of the robotic arm are perfectly aligned, nearly seamless switching between
controlling the real and virtual robot is possible. This functionality allows applications in pure
screen space, VR, AR, simultaneous simulation/reality, and pure reality. AdaptiX ’s 3D teach-in
interface facilitates a code-less trajectory programming of an assistive robot by hand-guiding
the simulated or real robot to the specific location and saving the position and orientation of
the tool center point. These waypoints are interpolated to a combined movement trajectory. The
framework’s recording/replaying system is entirely customizable. It includes options to change
details during replay, such as repositioning cameras or re-rendering background scenes. A fully
integrated recording of participants interacting with the robot is possible, which can be analyzed
afterward to evaluate the specific research variables.

Taken together, AdaptiX is a free and open-source tool that enables HRI researchers to test and
evaluate their shared control concepts for assistive robotic devices in a high-resolution virtual
environment. The cited case studies clearly demonstrate the benefits researchers and developers
can draw from using the framework. The near-endless customization options allow users to tweak
the initial version to their specific research needs, resulting in practically tailor-made environments.

7.1 Framework Extensions
We invite the community to extend the AdaptiX framework based on their requirements needs by
creating custom levels/scenarios and integrating new interfaces. AdaptiX can be accessed free-of-
charge at https://adaptix.robot-research.de. Refer to the README provided in the repository for a
detailed description of how to implement experiments in AdaptiX.
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A BLUEPRINTS OF ADMC IMPLEMENTATION

Fig. 12. Calculation of the translation for the Optimal Suggestion: Excerpt of Blueprint code calculating the
Translation value of the Adaptive Axis for theOptimal Suggestion. Not pictured: Edge case handling for gripping
an object.
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Fig. 13. Calculation of the Rotation for the Optimal Suggestion: Excerpt of Blueprint code calculating the
Rotation value of the Adaptive Axis for the Optimal Suggestion. Not pictured: Edge case handling.
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Fig. 14. Adaptive Axes Nearly Equal function to prepare the multi-modal attention guiding of the user.
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(a) Motion [120] (b) Attention [67] (c) State [117] (d) Instruction [128]

Figure 1: (a) Robot motion intent: The robot communicates its intended motion (e.g., a trajectory of the robot’s intended
movement path is visualized in Augmented Reality [120]). Furthermore, our analysis revealed three additional types of intent
that complement robot motion intents. (b) Attention: A robot aims to catch the user’s attention for subsequent movement
activity (e.g., by moving its whole body [67]). (c) State: A robot communicates its state so that a human can predict future
motions and identify potential conflicts before they occur (e.g., the robot communicates its movement activity with the help of
a colored LED stripe [117]). (d) Instruction: The robot aims to provide specific instructions so that the human can assist further
movement (e.g., by requesting to open a door [128]).

ABSTRACT
Robots are becoming increasingly omnipresent in our daily lives,
supporting us and carrying out autonomous tasks. In Human-Robot
Interaction, human actors benefit from understanding the robot’s
motion intent to avoid task failures and foster collaboration. Finding
effective ways to communicate this intent to users has recently re-
ceived increased research interest. However, no common language
has been established to systematize robot motion intent. This work
presents a scoping review aimed at unifying existing knowledge.
Based on our analysis, we present an intent communication model
that depicts the relationship between robot and human through
different intent dimensions (intent type, intent information, intent

location). We discuss these different intent dimensions and their
interrelationships with different kinds of robots and human roles.
Throughout our analysis, we classify the existing research literature
along our intent communication model, allowing us to identify key
patterns and possible directions for future research.
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1 INTRODUCTION
The field of Human-Computer Interaction (HCI) has moved beyond
traditional user interfaces and interaction technologies. The om-
nipresence of Artificial Intelligence (AI) research and development
requires our field to scrutinize the applicability of established design
practices [2, 106]. Human interaction with AI is evolving away from
being like operating a tool to being more like interacting with a
partner, which is particularly interesting concerning Human-Robot
Interaction (HRI) [53]. The area of HRI has been studied for a long
time inHCI and, in particular, the CHI community [4, 65, 75, 90, 122].
For example, Arevalo Arboleda et al. [4] and Villanueva et al. [122]
investigated combining robots and Augmented Reality (AR) tech-
nology to enable intuitive teleoperation, while others have explored
on-site control of robot swarms [65] and home robots [75] as well
as communication of emotions and intentions to the human [90].

Robots are versatile, they can assist us in our workplaces, support
us at home, and accompany us in public spaces [1, 9, 76]. The
applications of robots are manifold, significantly increasing human
capabilities and efficiency [46]. While robots come in many forms,
robotic arms in particular have been shown to be suitable for and
adaptable to different use cases, such as production lines [15] and
domestic care [96]. Here, they are known as cobots who support
their users in Activities of Daily Living (ADLs), such as eating and
drinking, grooming, or activities associated with leisure time.

As robots have a physical form, they tend to move and operate
in the same space as humans. With advances in the degree of auton-
omy allowing for effective close-contact interaction, there is a need
for a shared understanding between humans and robots. While
robotic research tackles this from a sensory and path planning
perspective (e.g., human-aware navigation [69]), the field of HCI
(and HRI in particular) has been concerned with how humans may
better understand robot behavior [12, 99, 124]. The subtleties of
human communication are usually lost in this context, and robotic
behavior needs to be understood from its own frame of reference.
Robots are not a monolithic entity; with the many different types
come just as many unique ways of conveying information, which
could lead to erroneous interpretations by their human counterpart.
An added complication is the increasing number of close-contact
situations that allow little time to recognize and correct errors.
This has led to numerous research efforts in recent years to find
ways for robots to effectively communicate their intentions to their
users [68]. This includes the direct communication of plannedmove-
ments in space [54], but also less obvious means, such as drawing
a user’s attention to the robot [67], communicating the robot’s
movement activity state (e.g., active or inactive due to failure) [110],
and facilitating human oversight by communicating their external
perception of the world [57].

While all of these examples are concerned with communicating
robot motion intent, they differ tremendously in their methods and
goals. Other researchers, such as Suzuki et al., have subsequently
identified robot motion intent as an essential research area [113].
But beyond further solution approaches, the field needs a common
understanding of the concept of robot motion intent (i.e., what do
we actually mean by intent, what are relevant intent dimensions,
and how does the communication of robot motion intent influence
the relationship between robot and human).

To this end, we conducted a scoping review of current approaches
to communicate robot motion intent in the literature. Based on our
findings, we introduce an intent communication model of motion
intent, which depicts the relationship between robot and human
through the means of different intent dimensions (intent type, intent
information, and intent location; see Figure 1). We further discuss
these different intent dimensions and their interrelationships with
different kinds of robots and human roles. Throughout our anal-
ysis, we classify the existing research literature along our intent
communication model to form a design space for communicating
robot motion intent. Practitioners and researchers alike may further
benefit from this work for the design and selection of specific mech-
anisms to communicate motion intent. We identify future research
directions and current gaps, which are further highlighted in an
interactive website that lists the papers and allows comparisons
based on user-selected categories.1

Our contribution is two-fold: 1) a survey contribution that in-
cludes our analysis and classification of previous literature as well as
future research (cf. contribution from Wobbrock and Kientz [129]),
and 2) a theoretical contribution that introduces an intent commu-
nication model and describes the relationship of its entities.

2 BACKGROUND
In this section, we will illustrate the need for communicating robot
motion intent and discuss the current understanding of the term,
which provides the foundation for our scoping review.

Robot is an umbrella term that describes a miscellaneous collec-
tion of (semi-)automated devices with various capabilities, tech-
nologies, and appearances[52]. These cyber-physical systems are
often differentiated by their Degrees-of-Freedom (DoF) or ability
to move and manipulate their environment. In industrial assembly
lines, robotic arms manipulate and weld heavy parts [126], often in
restricted areas [59]. Enabled by lightweight materials and safety
sensors, robots have started to adapt to their users – today, they
shut down when humans get too close or when resistance to the
robot’s movement is detected. This has led to the development of
cell-less HRI [10], which has also paved the way for further sce-
narios, such as supporting people with disabilities in their daily
lives [97]. Ajoudani et al. trace in their review paper several ap-
proaches of HRI, how it evolved, and how it increased over the last
two decades [1]. They conclude that the success of HRI comes from
combining human cognitive skills (i.e., intelligence, flexibility, and
ability to act in case of unexpected events) with the robot’s high
precision and ability to perform repetitive tasks.

Matheson et al. proposed different types of such cell-less HRI, de-
fined by their closeness of interaction [78]. They include coexistence
(separation in space but not in time), synchronized (no separation
in space but in time), cooperation (no separation in space or in time,
but still not working on the same task), and collaboration (human
and robot work on a task together, where the action of one has
immediate consequences for the other). These works indicate that
communication and interaction between robots and humans are
critical to successful HRI. While research in human-aware naviga-
tion aims to make the robot smart enough to understand human

1Interactive Data Visualization of the Paper Corpus. https://rmi.robot-research.de, last
retrieved February 16, 2023.
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behavior and react to it [69], supporting humans in understanding
robot behavior is equally important [68]. As the work by Math-
eson et al. highlights, humans and robots increasingly share the
same physical space in HRI, which makes communicating robot
motion intent a particularly relevant aspect for safe and effective
collaboration and a prerequisite for explainable robotics [78].

However, robot motion intent is a rather vague term and lacks a
clear definition. Further, it is not consistently used by researchers
in the field. Instead, similar underlying concepts have been investi-
gated under terms such as situational awareness [74], forthcoming
operation [80], or robot signaling system [117]. Suzuki et al., as
part of their extensive literature review covering the relationship
between AR and robotics, emphasize the potential of AR-based
visualizations for communicating movement trajectories or the in-
ternal state of the robot [113]. However, as their literature review
extends beyond intent communication, they do not further discuss
or define different types of intent, nor do they provide a deeper
understanding of intent properties.

Our work presents a systematic overview of the field and ad-
dresses the current issues by conducting a scoping review. Such a
review or survey contribution helps to organize the published re-
search of the field and enables reflection on previous findings after
the field has reached a level of maturity [129]. The goal of our review
is to provide a clear understanding and definition of robot motion
intent, its properties, and its relationships within HRI. Furthermore,
our work provides a first discussion to relate our HRI findings to the
growing domain of Automated Vehicles (AVs), so-called external
Human-machine interfaces (eHMIs), which have identified similar
research and design challenges [11, 28, 32, 33, 100].

3 METHOD
Scoping reviews provide an overview of the extent, range, and na-
ture of evolving research areas. They help to summarize research
findings and identify research opportunities [5, 123]. Our approach
is in line with previous work by Ghafurian et al. [48], Muñoz et
al. [85], and Wallkötter et al. [125]. We applied Preferred Reporting
Items for Systematic Reviews (PRISMA) [94] guidelines, focusing on
theMeta-Analyses Extension for Scoping Reviews (PRISMA-ScR) [119].

For an overview of each step in our paper selection process,
please refer to Figure 2. We will discuss specific details of the in-
dividual steps in the following subsections. (1) Based on an initial
screening of relevant literature, potential search terms were identi-
fied to perform a systematic query using three primary databases in
the field of HRI (ACM Digital Library, IEEE Xplore, and ScienceDi-
rect; see Section 3.1). (2) A filtering step was applied based on an
algorithmic analysis of the total corpus to identify the most relevant
terms related to the topic (see Section 3.2). (3) The resulting set
of 822 papers was manually screened in a two-step process, and
eventually, additional sources were found through a cross-check of
the references in selected papers (see Section 3.3). The final corpus
consists of 77 papers.

3.1 Initial Query
We explored a variety of query terms and their combinations be-
cause, as discussed, the field currently lacks a coherent and estab-
lished terminology. In addition, we found several terms to be used

in ambiguous ways, in particular terms such as communication and
motion. Therefore, we decided on a broad search in this first step to
increase recall and reduce the risk of overlooking relevant literature.
We aimed to encompass a variety of different robot technologies
while still focusing on the concept of intent, even though the word
may be used in a variety of circumstances. We searched the titles,
abstracts, and keywords of the databases’ full-text collections with
the following combined terms2:

(robot* OR cobot* OR drone*) AND (intent* OR intend*) (1)

3.2 Algorithmic Filtering
Due to our initial search being quite broad, further filtering was
required to identify relevant papers. The initial set allowed us to
apply an algorithmic approach similar to that of previous research
done by O’Mara-Eves et al. [92]. Specifically, we applied the Term
Frequency-Inverse Document Frequency (TF-IDF) [102] method to
identify frequently used terminology within our corpus. TF-IDF
has been shown to be suitable for information retrieval in literature
reviews [73, 112]. First, we preprocessed the entries by a) combining
each paper’s title, keywords, and abstract into one field, b) fixing
encoding issues such as & (and), ° (degree), and — (emdash), and c)
converting the strings to lowercase as well as removing punctua-
tion, numbers, symbols, and standard English stop-words from the
corpus and replacing tokens with their lemmatizations [77]. For the
creation of the TF-IDF-weighted document-term matrix, we calcu-
lated the Term Frequency (TF) for each term of our corpus, taking
the static Inverse Document Frequency (IDF) into account, and com-
puted the TF-IDF for each term over all documents. The resulting
TF-IDF-weighted document-term matrix is shown in Table 1.
From the first 150 entries of the TF-IDF sorted list of tokens, three
researchers independently qualified related terms to communication
and motion – two terms we had decided to leave out of the initial
broad query due to word ambiguity. During the following consen-
sus process, we excluded related terms that were too general and
ambiguous (e.g., “show” is frequently used in “Our results show[...],”
“present” in “In this work we present[...],” “demonstrate” in “We
demonstrate in our results[...],” or “perform” in “We performed a
study[...]”). All identified terms were then used in the filtering step
by applying the following logic to the title, keywords, or abstract
of each paper in our corpus:

(communicat* OR visual* OR feedback*)

AND (motion* OR movement* OR interaction*) (2)

For a paper to be accepted, a term from the cluster “communication”
and another from “motion” (both OR operation) had to appear in
the title, keywords, or abstract (AND operation). As a result, 822
papers remained in our corpus.

2ScienceDirect does not support the wildcard “*” but uses stemming and lemmatization
techniques. In order to achieve search results based on wildcards “*,” we modified the
combined term to: (robot OR cobot OR drone) AND (intent OR intention OR intend OR
intended).
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Reasons for exclusion (see Section 3.3):
• Pre-exclusion - 27
• Human intent - 291

• System design - 201
• No robot intent -187

Reasons for exclusion (see Section 3.3):
• Pre-exclusion - 9
• Human intent - 14
• System design - 201

• No robot intent -187
• No approach or prototype - 4

Figure 2: Flow chart of the corpus selection process with the identification of publishers and the initial search query (see Sec-
tion 3.1), the reduction of the set by algorithmic filtering (see Section 3.2), and the manual screening (see Section 3.3), which
resulted in 77 papers.

Table 1: Sorted list of terms from the TF-IDF-weighted document-term matrix. The selected terms are highlighted in bold.

Rank Term TF IDF TF-IDF Rank Term TF IDF TF-IDF

1 human 6,547 0.92 6,052.89 7 interaction 3,383 1.33 4,515.61
2 control 6,769 0.87 5,902.24 15 movement 1,920 1.88 3,606.34
3 system 7,612 0.69 5,218.61 61 communicat 1,059 2.32 2,455.03
4 motion 3,640 1.42 5,154.59 140 feedback 665 2.74 1,820.08
5 model 3,978 1.24 4,938.74 143 visual 674 2.67 1,802.90

3.3 Manual Screening
The final phase of our paper selection process required manual
screening, following an approach similar to that of Doherty and Do-
herty [34]. The process involved abstract screening, full-text screen-
ing, and reference screening. During the screening of all abstracts,
we identified 706 out of 822 papers as not fitting into the scope
of this review. The full-text analysis of the remaining 116 papers
reduced the set to 48 papers. In addition, we screened the refer-
ences cited by the set of 116 papers that were assessed for full-text
screening. We identified 29 further relevant references, which we
then included. This led to a final set of 77 papers, which were exam-
ined in the following. During the abstract and full-text screening,
we pre-excluded 36 papers in unfitting paper formats still in the
corpus, such as proceedings front matter, workshop calls, survey
papers, or semi-duplicates – when two papers essentially presented
the same contribution, due to one being a work in progress and
the other a full paper. We also excluded 305 papers that aimed to
convey the human’s intent (to the robot) but not the robot’s intent
(e.g., Kurylo and Wilson [70]). Similarly, we removed another 210
papers where the research did not focus on the intention of robot

motion (no robot intent). For example, 1:1 teleoperated devices
(e.g., vanWaveren et al. [121]), or work focusing on AVs and eHMIs.
We excluded another 220 system design papers that focused on
aspectus such as aesthetics, mathematical models of motion plan-
ning, or definitions (e.g., Girard et al. [50]). Eventually, we removed
four papers where no approach or prototype was developed and
reported (e.g., Thellman and Ziemke [118]).

4 INTENT COMMUNICATION MODEL
Through our literature review, we aim to improve understanding
of the communication of robot motion intent by analyzing previous
research. To that end, each author analyzed our literature corpus
(n=77) in a multi-step process. It was discovered that several papers
presented, combined, or empirically compared multiple intents (on
average, more than two per paper). Therefore, we first systemat-
ically extracted all individual intents, resulting in a total of 172
intents. By screening these intents, we identified the primary en-
tities (robot, intent, and human) as well as a communication flow
between these entities that parallels that of the HCI model from
Schomaker [104]. However, in contrast to the HCI model, we focus



How to Communicate Robot Motion Intent: A Scoping Review CHI ’23, April 23–28, 2023, Hamburg, Germany

Robot

Location
- On-Robot
- On-World
- On-Human

- Robotic Arm
- Humanoid
- Mobile Robot

Type

Human

Role
- Collaborator
- Observer
- Coworker
- Bystander

- Motion
- Attention
- State
- Instruction

Information
- Spatial
- Temporal

Intent

Kind

Figure 3: Overview of the intent communication model from robot to human. The three entities (i.e., robot, intent, human) and
their dimensions are derived from our literature corpus. The flow of communication parallels the human-computer interaction
model from Schomaker [104]. The main dimensions (i.e., kind, type, role) are discussed in Section 4, while a focused analysis of
intent information and location is presented in Section 5.

solely on the communication of intent from robot to human, as
previous research has already covered the inverse [62]. Further-
more, we identified a top-level entity, goal, which describes the
motivation to communicate intent, as well as a low-level entity,
context, which describes the situation in which the intent is com-
municated. Reflecting on all entities, we analyzed the intents by
asking 1) why they were communicated (goal), 2) who communi-
cated them (robot), 3) what they communicated (intent), 4) to whom
they were communicated (human), and 5) in which circumstances
they were communicated (context). Dimensions, categories, and
properties emerged from the data through an open coding process
of the extracted answers; specifically, we identified kind of robot,
location, type of intent, information of intent, and role of human
as our dimensions. The resulting intent communication model is
shown in Figure 3. In the following, we present our findings for the
three primary entities (robot, intent, and human), which we define
and support by giving examples. We also discuss the context of
communicating robot motion intent.

4.1 Human
In HRI, we can distinguish between different scenarios based on
how involved a human is in the task performed by the robot. For
the entity human, we utilize these levels of closeness between robot
and human to define the different roles of human. Moreover, all four
roles of human are illustrated in Figure 4.

4.1.1 Definition. The human has a crucial role during HRI, which
strongly impacts which intents need to be communicated. From the
analyzed intents of our corpus, we derived four different roles of
human (collaborator, observer, coworker, and bystander). The roles
are ordered by the degree of human collaboration and involvement
with the robot, starting with the most involved (see Figure 4). These
roles are also closely connected to the overarching goal of the HRI.
Here, we found supporting collaboration, oversight, and coexistence to
be of primary importance. In the following, we define the different
roles, discuss their relationships to overarching goals, and support
them with examples.

Collaborator. When in the role of a collaborator, a human works
with a robot on a shared task in the same space and at the same
time [78]. Thus, communication of robot motion intent in this con-
text is for supporting collaboration. It aims to foster the coordination
of robot and human actions regarding space and time to allow them

to work together on a shared task (e.g., a human-robot assembly
team in a manufacturing scenario [3]). The action of one of the two
(i.e., robot or human) has immediate consequences for the other.
For example, consider the scenario of a robot handing an object to
a human [36, 89]. Here, the human has to precisely anticipate and
coordinate with the time and place the object will be positioned
to enable efficient handover. To that end, Dragan et al. propose a
robotic arm that applies so-called legible motion, allowing the hu-
man to infer the goal of motion quickly and with certainty [36]. The
role of a collaborator represents the closest degree of HRI, as they
form a team in which both depend on each other. In our literature
corpus, a collaborator is described in 18 papers and is the recipient
of 37 different intents.

Observer. A human functions as an observer when their main
job is to supervise the task that is being carried out by the robot.
Although they mostly just watch, an observer must be ready to inter-
vene and take control of the robot. In this context, communication
of robot motion intent is for the goal of supporting oversight. Here,
the robot has to provide information to the human to allow effective
intervention when needed. Fundamentally, supporting oversight
refers to the ability of a human to judge and evaluate if a robot
is operating within its intended parameters. For example, in work
by Hetherington et al., the robot communicates its movement paths
to an observer, which enables the observer to foresee and prevent
potential collisions of the robot with obstacles [60]. Others commu-
nicate the inner state of the robot, allowing an observer to anticipate
potential task failures that may occur due to problems with the
robot itself, e.g., faulty sensor information [8, 57]. An observer is
described in 47 papers and is the recipient of 94 intents.

Coworker. In the coworker role, the human works next to the
robot but handles their own task. While these tasks may be part of a
shared overarching effort or entirely disconnected, they take place
in the same shared workspace (e.g., a robotic arm that picks up one
out of two objects and leaves the other one for the human [71]).
In the coworker context, communication of robot motion intent is
for the purpose of supporting coexistence. Here, the human needs
to understand the robot’s motion to avoid safety-critical situations
(e.g., colliding with the robot). In Aubert et al., a robot and human
pick up objects from a shared bin for their individual tasks [6]. Here,
communication of robot motion intent can help the human to coordi-
nate their actions and avoid collisions with the robot. Chadalavada
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Figure 4: Comparison of the four human roles. The goals are further broken down by tasks to illustrate the relationships
between the three entities (human, robot, and goals). A) The human (collaborator) and robot work on the same task. B) The
human (observer) observes the robot and task but does not directly contribute. C) The human (coworker) and robot work on
different tasks that contribute to the same goal. D) The human (bystander) and robot work on different tasks that contribute to
different goals.

et al. showed that communication of motion intent through Spatial
Augmented Reality (SAR) can improve perceived safety with mobile
robots [20]. In their study, it meant that participants could choose
safer walking paths and get closer to the robot without subsequent
safety shutdowns. In our literature corpus, a coworker is described
in six papers and is the recipient of 18 intents.

Bystander. The human is a bystander when they do not share the
same task or the same task goal with the robot but still occupy an
area overlapping the robot’s physical workspace. Like the coworker
role, the bystander role involves communication of robot motion in-
tent to support the goal of supporting coexistence. A bystander needs
motion information to avoid collision and feel safe. For example,
imagine a human and a robot encountering each other in a corridor.
To allow the human to choose a walking path that avoids colli-
sion, the robot can move to one side and communicate its intended
movement path in advance [83, 127]. A bystander is described in
17 papers and is the recipient of 23 intents.

4.2 Intent
We identified four different types of intent that the robot can com-
municate to the human to express its intentions, contributing to
increased transparency. We consider these types to be the main
dimension for classifying intent in the following text. In addition,
we identified the dimensions location and information, as shown
in Figure 3, which help to further classify and describe intent. Given
their great importance, they are discussed separately in Section 5.

4.2.1 Definition. As our literature review focused on communicat-
ing robot motion intent, a majority of the corpus (69% of all papers;
54% of all unique intents) deals withmotion intent. Nevertheless, we
identified additional intent types that are related to motion intent
and of equal importance (i.e., attention, state, and instruction). All
types of intent are described below and the relationship of each to
motion is explained. Furthermore, we found that for each type of
intent, we can further distinguish between an intent that is related
to the robot and one that is related to the world (more details can
be found in the individual paragraphs below). An overview of all
types of intent and associated papers can be found in Table 2.

Motion. These intents are the main type of intent. Motion intent
is concerned with explicitly communicating future motions (i.e.,

actions that the robot will perform). As our survey is focused on
robot motion intent, it encompasses more than 50% of the identified
unique intents in our corpus. Most of the described intents deal
with robot self-actions, aiming to indicate future robot movement.
Thereby, users may be able to improve the coordination of their
actions in concert with the robot’s behavior to avoid collisions and
improve safety. For example, Chadalavada et al. employed SAR to
communicate future movement direction as well as the specific
path the robot will take, which helped bystanders feel safe around
a robotic forklift [20]. World actions are activities that manipulate
the world around the robot. Again, this may help the bystander
to coordinate their activities, but it also helps the observer to un-
derstand when to take over control from the robot. Psarakis et al.
applied this concept of world actions in a VR simulation to visually
augment the nearby objects that the robot planned to grasp [98].

Attention. Intents that communicate the need for attention are a
supportive element. They precede a motion intent to shift human
attention toward the robot or process, especially when the humans’
attention is not guaranteed (e.g., because they focus on their own
tasks). For example, Bolano et al. used acoustic feedback to alert
the human and shift their attention toward the robot whenever it
detected a possible collision [14]. An example of robot-focused at-
tentionwas presented by Furuhashi et al., who designed an assistive
robot based on the commercial Roomba device as a hearing dog that
can notify deaf users of important events [45]. Here, the system
uses physical touch to gain the human’s attention by gently bump-
ing into their body. As an example of world-focused attention, Mutlu
et al. had a humanoid robot quickly look at an object of interest.
They studied whether collaborators were able to understand the
robot’s gaze cues and correctly identify the object (among several
others) that the robot had chosen as its object of interest [88]).

State. A robot communicating its state allows a human to deduce
potential futuremotions and identify conflicts before they occur. For
example, a robot could collide with nearby objects due to errors in
its sensor system. However, robot communication of the detected
objects enables a human to take over control and mitigate the
issue. For state intents, we distinguish between robot self-perception,
meaning the state the robot communicates about itself (e.g., simple
text feedback presented on a display that indicates states such as
“stop” or “moving” [80]), and robot world perception, meaning the
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Table 2: Overview of different intent types, sorted by their categories and subcategories, with their counts (and percentages) of
identified relevant papers (max. 77) and unique intents (max. 172). Note: Papers may include multiple unique intents and can
therefore appear in multiple categories and subcategories.

Category Subcategory Number of
Papers (%) Intents (%)

References

Motion
Robot Self-Actions

World Actions

38 (49.35%)

15 (19.48%)

75 (43.60%)

18 (10.47%)

[3, 12–14, 16, 17, 20, 21, 23, 27, 30, 31, 35–
37, 42, 44, 49, 54, 55, 58, 60, 63, 72, 79–83,
99, 101, 115, 120, 124, 127, 128, 130, 132]
[3, 6, 21, 25, 40, 41, 57, 61, 64, 66, 71, 84,
89, 95, 98]

Attention Robot-Focused Attention
World-Focused Attention

6 (7.79%)
4 (5.19%)

8 (4.65%)
5 (2.91%)

[6, 14, 19, 24, 45, 67]
[74, 88, 109, 111]

State Robot Self-Perception

Robot World Perception

23 (29.87%)

8 (10.39%)

27 (15.70%)

12 (6.98%)

[3, 7, 8, 18, 29, 31, 38, 43, 55, 63, 74, 79,
80, 91, 105, 110, 114, 116, 117, 124, 128,
131, 132]
[3, 21, 30, 31, 57, 101, 128, 132]

Instruction Robot-Centered Instructions
World-Centered Instructions

10 (12.99%)
9 (11.69%)

16 (9.30%)
11 (6.40%)

[8, 19, 39, 45, 51, 67, 74, 86, 108, 117]
[3, 8, 13, 16, 21, 22, 84, 98, 128]

communication of the perceived state of the world (e.g., visually
highlighting objects in the environment that the sensor system has
successfully detected, allowing the user to predict and understand
subsequent robot movement [57]).

Instruction. In several papers, we identified instruction intents
that accompany robot motion. For example, if a robot is blocked by
an obstacle, it can instruct a human to remove the obstacle so it can
continue its motion. Instructions can be robot-centered instructions
when they stand in relation to the robot itself (e.g., Moon et al.
applied head gaze cues to communicate instructions to the user to
complete the handover of an object from the robot’s gripper [84]).
Or, in contrast, instructions can be world-centered instructions when
they stand in relation to the world (e.g., a robot instructing a human
to push a button on a wall to open an elevator so that it can continue
its movement [128]).

4.2.2 Relationship to Human. Communicating a robot’s intended
motion to the human helps to improve the perception and under-
standing of the robot’s behavior. However, humans that are, for
example, not involved in the robots’ task – perhaps because they
are focusing on their own tasks (coworker) or are just uninvolved
in general (bystander) – often need an additional cue to be able
to read robot motion intent, which makes the intent type attention
necessary (e.g., by an acoustic prompt [6]). State intents enable a
human to see not only the next motion but also the internal state
and planning, enabling them to understand actions ahead of time.
Such intents also support observers in their task of supervising the
robot. Finally, collaboration means a constant shifting of who is in
charge when humans and robots work together on a shared task.
Therefore, motion, state, attention, and instructions are all necessary
intents for providing a baseline for collaboration (collaborator).

4.3 Robot
In our corpus, we identified three different kinds of robot, which
together form the robot entity.

4.3.1 Definition. We identified three main kinds of robots: robotic
arm, humanoid, and mobile robot. These, in order, represent a spec-
trum of increasing mobility and flexibility based on the area of
deployment, starting with stationary robots (still with many DoF)
and ending with robots that are inherently mobile (which also
includes mobile arms with many DoF on a platform). Based on dif-
ferent robots, researchers have investigated different intents with
varying frequencies. In the following, we illustrate each kind of
robot with examples from our literature corpus.

Robotic Arm. Robotic arms can be described as a chain of axis
links. They are typically fixed to one place and can have a manipu-
lator [47]. Nowadays, they are the industry standard in production
lines of factories [15] and work alongside humans in HRI environ-
ments [35]. Robotic arms are described in 13 papers and send 22
intents.

Humanoid. Humanoids have two robotic arms with manipula-
tors, a torso, a head, eyes, and, often, basic facial expressions. Due
to the two robotic arms, humanoids have more DoF than single
robotic arms. Still, humanoids are often fixed to one place and lack
mobility. Nonetheless, they are an important part of HRI when
working with humans in a shared workspace [72, 99]. In rare cases,
they can move in space, imitating human movement. Here, anthro-
pomorphic features of the robots – such as gaze or certain gestures
– can decrease the time required to predict the robot’s intent [49].
Humanoids are described in 11 papers and send 21 intents.

Mobile Robot. With the addition of mobility comes increased
flexibility. Mobile robots can be deployed in the air, on the ground,
or in water. For this kind of robot, we have actively chosen to define
them more broadly to include robots that appear only once in the
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corpus. Formobile robots (also referred to as drones), we distinguish
between ground drones without a manipulator that move between
locations, ground drones with amanipulator that can alsomanipulate
the world, flying drones that maneuver through the air, and water
drones that operate on water or underwater. Communicatingmotion
intent helps ground drones without a manipulator to, for example,
lead or follow a human to a specific place [51]. It can help ground
drones with a manipulator to, for example, communicate which
object they intend to pick up [21]. Flying drones or water drones,
on the other hand, can communicate their motion intent by flying
or driving in a pattern [91, 114]. All kinds of drones can appear
alone [27] or as a swarm of drones [17].Mobile robots are described
in 53 papers and send 129 intents.

4.3.2 Relationship to Intent. As mobile robots move around more
freely, they frequently encounter human bystanders who cross their
paths. Consequently, mobile robots often have to first shift the hu-
man’s attention toward the robot’s display, preparing them for the
communication of the robot’s intended motion. For example, a pro-
jection in front of the robot can catch the attention of a bystander
while simultaneously informing about the direction of driving [79].
At the same time,mobile robots need to communicate their state and
planning of actions ahead of time, either the inner state (e.g., what
is the current mission status [74]) or the perceived world state (e.g.,
which objects are detected [31]).Humanoids and robotic arms, on the
other hand, are often deployed in collaborative scenarios, teaming
up with humans. Here, robots need to communicate their intended
motion to coordinate their actions with a human collaborator (e.g.,
which items the robot intents to pick next from a shared bin [6] or
when objects are to be handed over to the collaborator [89]).

4.4 Context
The context describes the setting of the HRI scenario. While the lo-
cation is an essential part of the context, there is more: for example,
the social environment [103]. Nonetheless, we consider the location
helpful to define HRI scenarios. In our analysis, we found various
types of locations, including workplace, domestic, and outdoor. In
workplace settings, the robot is frequently part of an assembly line
or, more generically, a manufacturing process (e.g., collaborating
with a human worker [117]). However, workplace locations also
include industrial settings, offices, or generic work rooms. In total,
42 papers took place at a workplace location. In domestic environ-
ments, robots support a task at home (e.g., by picking cups up off
a kitchen table [36]). Here, we found five relevant papers. Finally,
in two papers the robot could move freely outside (e.g., fulfilling a
mission and communicating its status [38]). Apart from these, 28
papers had no particular location specified. Instead, the authors
of these papers investigate more generic scenarios of robot motion
intent (e.g., by stating that a robot moves between two locations
but without fine details of these locations [80]). For these scenarios,
it is unclear which locations are most relevant.

5 ANALYSIS OF INTENT INFORMATION AND
LOCATION

In addition to the different types of intent discussed in the previous
section, two other dimensions of intent emerged from the data:
Intent information (which refers to the data communicated by the

robot) and intent location (which describes from where the intent
is communicated to the human). In this section, we define these
dimensions, illustrate their application with examples, and present
a summary of empirical findings concerning their usage.

5.1 Intent Information
Based on our analysis of how the intent is communicated as well
as what is communicated, we derived two main properties for
categorizing intent information: spatial and temporal.

5.1.1 Spatial Property. The primary approach to convey spatial
information is to embed it directly into the environment, i.e., have
it registered in space. We identified 105 matching intents. We
can further classify such intents as conveying local information (74
intents) or directional information (31 intents). Local information
aims to precisely relate the information to the surrounding space by
showing an exact position that naturally may contain orientation
information as well. Han et al., as an example, convey local infor-
mation by using SAR polygon visualizations to frame and highlight
detected objects on a table, allowing a human observer to supervise
the robot’s intended movement and manipulation actions [57]. In
contrast, directional information aims to communicate the explicit
direction of movement (e.g., an arrow pointing in the direction of
movement [20] or toward an object or person of interest [61]).

Information that is unregistered in space, however, employs an
abstract encoding of the spatial property. In total, we identified 67
matching intents. This category includes the following types of in-
tent: Description, symbol, and signal. Description (11 intents) applies
to scenarios in which textual or verbal information is used (e.g., the
robot informs the human verbally before initiating a movement to
perform a touch [25]). Symbol (25 intents) applies to cases in which
a symbolic representation is used to form the intent communication
(e.g., a mobile robot that nods its head to request a human follow
before moving toward its destination [39]). Signal (31 intents) ap-
plies when components are turned on/off to indicate a change (e.g.,
an acoustic prompt is turned on to gain attention for the upcoming
communication ofmotion intent [6]). Mini maps provide an abstract
but geographical encoding that includes the relationships among
different objects in the environment [22, 124, 132].

Empirical Implications. While information registered in space
provides a direct link between real-world objects and the displayed
information, information unregistered in space lacks this connection
and requires an additional mental step to create this link. Conse-
quently, information unregistered in space may be less intuitive, and
thus researchers have explored different combinations of informa-
tion to mitigate that. Andersen et al. as well as Wengefeld et al.
showed that combining multiple types of intent information that
are unregistered in space (e.g., text description and symbol icons)
helps to effectively communicate motion intent to the user [3, 128].
On the other hand, Staudte and Crocker found that combining both
categories (registered & unregistered), which in their case involved
a robot gazing at a specific object while a verbal description of the
object played, leads to successful perception and understanding by
the user [111]. Similarly, Bolano et al. later showed that a verbal
description of the target can be combined with visual feedback of
the motion endpoint to achieve the same improvement [14].
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5.1.2 Temporal Property. The temporal property of intent informa-
tion is about the distinction between having a discrete or continuous
information flow. Discrete information has a fixed, distinct ap-
pearance in time and is beneficial for communicating robot motion
intent because it enables the human to detect a change (i.e., the
information appears) and it signals at which point the information
loses its relevance (i.e., it disappears). For example, Aubert et al.
equip their humanoid robot with a display that shows the number
of the next bin it will approach, thereby allowing a human to avoid
conflict with the robot [6]. Overall, we identified 89 intents that
communicate discrete information. Continuous information, as
has been provided in 83 intents, is available throughout the whole
task or over several task phases (i.e., it is visible independent of its
relevance to the current task). It enables the human to observe the
robot, compare it with the world, and evaluate the correct task exe-
cution. Tsamis et al., for example, implemented AR visualizations
for a Head-Mounted Display (HMD) to continuously communi-
cate the intended movement space of a robotic arm by placing a
semitransparent red sphere around the robotic arm [120].

Empirical Implications. Faria et al. showed that both discrete
and continuous information are effective for communicating a follow
me intent with spherical robots [39]. Koay et al. also evaluated both
temporal properties using a robot dog that guides people living with
hearing loss. However, they found that a motion-based approach
(continuous), in which the robot’s head movements request users
to follow, is more successful than using a flashing Light-Emitting
Diode (LED) stripe (discrete). They attribute this to the fact that head
movements are more straightforward to interpret [67]. The findings
of Aubert et al. suggest that combining discrete and continuous
information is the most effective method. They showed that the
combination of a motion-based approach (continuous) and a display
approach (discrete) to communicate the robot motion end-point
outperformed both uni-modal intent communication conditions [6].

5.1.3 Cross Relations. Inherently, the information of every intent
has spatial and temporal properties. In the following, we describe
the relationships between these properties of intent information.

For unregistered in space, the temporal property is almost evenly
distributed between discrete and continuous information. Here, sig-
nal is an exception, as discrete (23 intents; e.g., having flashing
lights attached to a mobile robot to indicate a discrete change of
movement direction, similar to a car [60]) is used more often than
continuous (eight intents; e.g., an LED stripe attached to the robot to
continuously communicate the remaining distance to the target po-
sition through a color-coded progress bar [8]). Signals are primarily
used to communicate sudden changes. Accordingly, such discrete
events are naturally communicated as discrete intent information.

For registered in space, we see an uneven distribution for both
subcategories. Intent information classified as local is mostly com-
municated as continuous information (50 intents; e.g., using SAR
to continuously highlight an area in a workplace where the ro-
bot will be active during its movements and action [3]) instead
of discrete (24 intents; e.g., using SAR to highlight a button on a
wall that must be pushed by a human for the robot to continue
its movement [128]). We think that robot motion likely relates to
a continuous event because it is meant to happen over time and
takes place continuously. Intent information classified as directional

is mostly communicated as discrete information (23 intents; e.g., a
display is attached to the top of a mobile robot, communicating the
intended movement direction with an arrow [80]) and only seldom
as continuous (8 intents; e.g., a drone is visualized as an eye in AR,
constantly looking in the direction of movement [124]). The reason
is that directions are primarily used to communicate an updated
movement direction to the human; therefore, it makes sense that
they are most often given as discrete information.

5.2 Intent Location
Various technologies can enable the communication of robot motion
intent. We found that, in particular, the placement of these tech-
nologies (on-robot, on-world, and on-human) can help to classify the
different approaches in the literature, as there is often a relationship
between the placement and specific types of technology.

On-Robot can be further divided into robot-only technology or
additional robot-attached devices. We identified 114 intents com-
municated through on-robot technology. As an example for the
subcategory robot-only, Moon et al. utilize the head orientation of
the robot, mimicking a gaze cue, to communicate mid-air locations
for its intended movement as an instruction to the user [84]. Nearly
half of all categorized intents that utilize on-robot technology fall
into that subcategory, which is of particular interest because it
limits the need for additional technology and often involves imita-
tion of human-to-human behavior. The robot-attached subcategory
requires some additional hardware to be mounted to the robot (e.g.,
SAR, LED, or displays). For example, Wengefeld et al. attach a laser
projection system to the robot and thereby communicate various
types of intents, including state, motion, and instruction [128].

On-World has received relatively little attention in the literature.
It includes, for example, small displays attached to the workspace
at object bins [6], or a desktop display (to visualize motion intent)
with speakers (to gain attention) next to the robot’s workspace [14].
While the inability to change the environment may be less desirable
from a generalizability perspective, for some technology, it adds
significant benefits. In particular, SAR would be easier to realize
with a fixed projector position on-world and it would allow for larger
projection areas. We identified eight different intents on-world.

On-Human includes head-attached technologies, which primarily
refers to HMD devices, which allow more complex visualizations.
Gruenefeld et al., for example, experimented with different spatial
visualizations, such as visualizing the intended movement path,
previewing future locations of the robot arm, or visualizing the
activity area as a whole [54]. In addition, some approaches rely on
hand-held technologies. Correa et al., for example, used a tablet
device displaying various types of information (map, live view, next
steps) to support oversight and communicate motion intent [31].
We identified 50 intents on-human.

Empirical Implications. For the intent location, it is gener-
ally better to output information closer to the target. For exam-
ple, LeMasurier et al. compared several motion-based and light-
based approaches for humanoids to communicate an intended start
of movement at an assembly workplace. They saw that an LED
bracelet located closest to the workspace was the most noticeable
and least confusing [72]. Furthermore, researchers found evidence
that humans may prioritize on-human technology over on-robot
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technology. For example, Che et al. were able to show that the use
of a vibrotactile bracelet worn by the user led to a better expression
of the robot’s motion intent, reduced users’ effort, and increased
users’ trust in the robot during a collision-avoidance movement
when compared to a solely robot-based approach using legible mo-
tion [23]. Finally, combining multiple output technologies can fur-
ther increase performance. For example, Mullen et al. investigated
a multi-modal approach for communicating robot interference in a
sorting scenario that combined an AR-HMD visualization and ac-
tive feedback via a vibrotactile bracelet. They found that combining
both feedback types outperformed the single modality baselines. It
allowed the human tomore efficiently teach the robot and decreased
the required interaction time. [86].

5.3 Relation between Location and Information
In the following, we provide insights into the relationship between
intent location and intent information (cf. Table 3).

5.3.1 Registered in Space. To communicate location information
registered in space, most researchers rely on head-attached tech-
nologies, such as AR-HMDs (on-human). For example, Tsamis et al.
implemented AR visualizations to communicate an intended move-
ment trajectory of a robotic arm [120]. They placed small spheres
along a defined path in 3D space from the robot’s end-manipulator
to a specific destination. They found that using their system im-
proved task completion and robot idle times, with fewer interrup-
tions to the overall workflow. In addition, users reported increased
feelings of safety and trust toward the robot. In contrast, Correa
et al. proposed a tablet visualization that showed a live camera feed
of the mobile robot highlighting recognized objects in its environ-
ment via a wireframe in the visualization [31]. In addition to intents
displayed on-human, robots are often used to convey information
directly through specific movements or pointing (on-robot). For
example, Holladay et al. used a robotic arm and its end-effector to
communicate a directional cue by pointing toward an object placed
on a table [61]. The resulting pointing configurations were reported
to make it easier for novice users to infer the target object. Another
example for displaying information on-robot is provided by Het-
herington et al. They used SAR to project an arrow in the intended
movement direction of the mobile robot on the floor [60]. Their
results show that projected arrows were more socially acceptable
and more understandable than flashing lights. Finally, information
registered in space can be outputted on-world. For example, Cleaver
et al. used their web-based environment [26] to compare four differ-
ent conditions of visualizing the intended movement trajectory of
a mobile robot on a world-located display [27]. In contrast, Aubert
et al. placed small displays on three bins and used bin numbers and
progress bars to indicate from which bin the robot coworker would
next withdraw an item. However, the display-based approach could
not significantly reduce the number of physical conflicts [6].

5.3.2 Unregistered in Space. Interestingly, a relatively large num-
ber of symbol information is communicated through the robot
itself (on-robot). Here, we found many approaches where the ro-
bot performs specific movement patterns that the human has to
decode appropriately. A symbolic approach is shown by LeMa-
surier et al. [72]. They slightly move the robot’s manipulator to

the left and right to communicate an intended movement start.
This approach received relatively high ratings on several measures;
however, the authors recommend that the addition of light signals
near the workspace and the origin of motion (like an LED bracelet)
may provide a benefit to HRI in shared spaces. Song and Yamada
provide an example of the type symbol by using different static
and dynamic light patterns on a robot-attached colored LED stripe
to illustrate different states of the robot [108]. Communication of
signal information is mainly achieved through robot-attached tech-
nology, such as LED or audio speakers. Wearable technologies can
also show spatially unregistered information (on-human). Che et al.
propose a vibrotactile bracelet worn by the user to communicate
an initiated collision-avoidance movement of a mobile robot [23].
This approach led to a better expression of the robot’s motion in-
tent, reduced users’ effort, and increased users’ trust in the robot.
Furthermore, Walker et al. implemented a radar-like mini-map in
the corner of an AR visualization to illustrate the relative position
of the user to a drone [124]. Although the radar provides the user
with the means to rapidly locate the robot relative to their own
position, some participants mentioned that they did not need to
use the radar much because they always faced the drone. Finally,
unregistered information can also be presented on-world. Bolano
et al. propose verbally describing the updated destination of the
robot’s end-manipulator via a speaker in addition to the screens
placed in the shared workspace [14]. They found that users better
understood the robot’s intended motion, including when the robot
had to reroute itself to avoid collision.

5.3.3 Discrete. Discrete information is usually presented directly
on-robot. As an example of robot-attached technology, Domonkos
et al. attached a colored LED stripe to the base of a robotic arm
to communicate the intended direction of movement to a human
coworker [35]. In contrast, Glas et al. proposed a mobile robot that
performs head gestures to initiate either a follow-me or lead-me
request to the human [51], relying on the robot itself as in robot-only.
Gu et al. evaluated a visual feedback displayed through an AR-HMD
(on-human), indicating the plannedmovement direction of the robot
via an arrow visualization [55]. They found that the visualization
improved perceived safety and task efficiency. Instead of relying
on the visual modality, Mullen et al. proposed discrete feedback
through a vibrotactile bracelet that is activated to communicate
robot interference, triggering the human to move in order to allow
the robot to continue its movement [86]. Their findings show that
vibrational feedback can reduce the time required to notice and
respond to an intent. Aubert et al. equipped bins (from which items
could be chosen) in the environment with speakers to emit discrete
auditory information on world [6]. They recommend not solely
relying on auditory information, but using it in a multi-modal
approach, which is further supported by Bolano et al. [14].

5.3.4 Continuous. Like discrete information, continuous informa-
tion is primarily displayed on-robot. Matsumaru et al. attached an
omnidirectional display on-robot, projecting an eyeball-like visual-
ization that effectively communicates the direction of movement to
a human [81]. In contrast, Dragan et al. propose performing legible
motions with a robotic arm itself to communicate the next object
it will grasp [36], which they found enabled fluent collaboration.
As an example of communicating intents on-human, Walker et al.
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Table 3: Overview of intents with different properties of intent information (by rows) in combination with intent location (by
columns) – up to three example references are listed for each category. Please note that each intent has a spatial and a temporal
property.

Category Subcategory On-Human
Head-Attached Hand-Held

On-World On-Robot
Robot-Only Robot-Attached

(Spatial)
Registered

Local
Directional

35 [54, 99, 124]
3 [55, 101, 124]

3 [31, 127]
0

4 [6, 14, 27]
0

22 [12, 16, 36]
14 [61, 83, 84]

10 [30, 60, 128]
14 [20, 60, 80]

(Spatial)
Unregistered

Description
Symbol
Signal

0
5 [124, 132]

0

1 [31]
0

3 [23, 24, 86]

1 [14]
1 [22]
2 [6, 14]

0
14 [51, 67, 72]

0

9 [79, 111, 128]
5 [3, 7, 108]

26 [35, 115, 117]
Total 43 (25.00%) 7 (4.07%) 8 (4.65%) 50 (29.07%) 64 (37.21%)
(Temporal)
Discrete

15 [55, 89, 98] 4 [23, 24, 86] 5 [6, 14] 19 [45, 49, 72] 45 [19, 39, 130]

(Temporal)
Continuous

28 [21, 120, 132] 3 [31, 127] 3 [14, 22, 27] 31 [17, 18, 36] 19 [29, 57, 81]

display a symbolic representation of a focusing eye lens in an AR-
HMD, encoding the relative distance to the next target [124]. Their
results show a significant improvement in users’ understanding of
robot motion intent. Watanabe et al. proposed presenting continuous
visual feedback via a tablet to inform a wheelchair passenger of a
robot’s intended motion path [127]. Lastly, continuous information
can be displayed on-world. Chandan et al. proposed a map visual-
ization for a stationary tablet display that continuously shows the
locations of three mobile robots and other objects of interest [22].
They found this approach significantly improved the participants’
ability to observe and assist the robot. Similarly, albeit only studied
in a web-based experiment, Cleaver et al. proposed a 3D visualiza-
tion displayed on a 2D screen to continuously communicate the
intended path of a mobile robot [27].

6 DISCUSSION AND FUTURE RESEARCH
In the following, we discuss key findings of our literature survey and
formulate future research directions as takeaway messages for the
HCI community. The organization of the section follows the three
entities human, intent, and robot from our intent communication
model and concludes with a discussion of the overall model.

Human. From the analyzed intents of our corpus, we derived
four different roles of human (collaborator, observer, coworker, and
bystander). In our analysis, we found that the human role is strongly
related to the overarching goals of communicatingmotion intent – a
specific goal can be directly derived given a specific human role. For
example, if the HRI scenario involves the human taking the role of
an observer, themotion intent needs to help with fostering oversight.
As a result, this indicates that practitioners and researchers should
explicitly define the role and, thereby, the involved human stake-
holders before settling on the robot or specific intents they may
want to communicate. The human roles we found in a bottom-up
process through our analysis align well with the previous work of
Onnasch and Roesler [93]. In contrast to Onnasch and Roesler, the
role of the operator did not show up in our analysis. We suggest
this is because robots are not manually operated by humans in our

corpus, as this would not require the robot to communicate any
intent [53].

Future Research: Our analysis showed that nearly all papers
a) investigate individual human roles, e.g., they (often implicitly)
pick one and focus on that, and b) design and study only for a 1:1
relationship between human and robot. The only exceptions to this
are Faria et al., Kirchner et al., and Palinko et al., who investigate the
legibility of robot movement for a group of humans [41] or explore
the use of gaze cues to allow the robot to choose their human
collaboration partner from a group of humans [66, 95]. This limited
involvement of multi-user groups is, of course, to be expected in an
emerging field that first needs to establish certain ground truths.
Involving multiple persons or even multiple robots and persons
complicates HRI tremendously, yet we think this is the subsequent
step research must take. In particular, it would be interesting to
reflect on the suitability of specific technologies (e.g., SAR will
likely be better suited to satisfy multi-user scenarios compared to
HMD technology).

Intent Types. Through our scoping review of robot motion in-
tent, we observed that communication of motion often requires
additional intents that serve as pre- or post-cursors to the commu-
nicatedmotion intent. Furthermore, we found that robot motion can
also be indirectly communicated: For example, by communicating
only the robot’s state (e.g., [8]) or by instructing a human to open
a door so the robot can continue on its path (e.g., [127]). These var-
ious types of intent demonstrate the different facets of robot motion
intent, which represent both actual intended movement trajectories
and related communication. We see that as a key finding, distin-
guishing our work from previous research that focuses primarily
on the communication of motion intent [99, 113, 124]. With our
survey, we are confident that other researchers will start to adopt a
more holistic and precise use of the term robot motion intent and,
for example, start highlighting the need for related intents, as we
found in our analysis.

Future Research: Researchers should investigate how the differ-
ent types of intent may best be combined to achieve specific intent
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communication goals. Currently, there is little empirical knowledge
about, for example, when and to what extent a robot may need to
first communicate attention before effectively being able to com-
municate motion intent. Further research should also challenge our
classification of types of intent and potentially extend them.

Intent Information and Location. We derived two main properties
that categorize our identified intent information related to space:
registered in space (61.05%) and unregistered in space (38.95%). This
almost-even distribution reveals that a lot of relevant research not
only focuses on information that aims to convey local or directional
information (e.g., a resulting trajectory [27]), but also on more
abstract representations, namely description, symbol, and signal.
These are often much less complex and indicate that robot motion
intent can be communicated without visual 3D representations of
future movement. This shows that there are viable alternatives to
wearing special on-body technology, resulting in fewer system costs
and a decreased setup time. An alternative can be the intent location
on-robot. In previous work, researchers have refined robots with
anthropomorphic elements – such as eye-like features or certain
movement gestures – to communicate motion intent. Our literature
review identified 15 such instances, specifically applying eye- or
head-gaze (e.g., looking at an object to indicate a handover between
human and robot [84]). While anthropomorphic elements may not
be as precise as digital representations through technology means
(e.g., visualizations in AR), they share the same baselines as in
Human-Human Collaboration (HHC). The general assumption is
that, in turn, they can be easily understood by users and can mostly
be integrated into the actual HRI. A possible combination with
a verbal description provides a multi-modal output to the user,
resulting in faster recognition of the specific object [111].

Future Research: While previous research has explored combi-
nations of spatially registered and unregistered information [111],
we are unaware of research that has contrasted their effectiveness.
Therefore, current design decisions may be based more on the avail-
ability of particular technology and less on the intended outcome.
Future research should explore this further so that practitioners
can more accurately judge the potential trade-offs between sim-
ple or complex information and related technology use. Regarding
the use of anthropomorphic features, the integration of such com-
munication cues has been explored regarding their legibility and
effectiveness in communicating robot motion intent. However, their
implicit consequences (e.g., causing the human to ascribe human-
like behavior to the robot) may still need to be fully explored. The
means and cues of communication have significant consequences
for the trust relationship between humans and robots [56].

Robot. When looking at the three kinds of robots and their usage
in research, we can see that the physical properties of a robot have
a large impact on communication means: In particular, the on-robot
location for intent communication. Some robots come with pre-
installed displays, while others have anthropomorphic features
built in. Flying drones, on the contrary, require some kind of remote
communication tool (often in the form of HMDs) to communicate
over a larger distance. Robots are also an area of much technical
experimentation, i.e., many researchers are building or customizing
their own robots. For example, one may add anthropomorphic
features to a robotic arm. As a result, researchers tend to use these

built-in or customized features to communicate intent. They may
often have only a particular kind of robot available; thus, they are
limited to a certain way of communicating robot motion intent. Of
course, this limits the generalizability of current findings, as each
robot conveys unique features that can impact HRI.

Future Research: These findings show that many research
endeavors explore only certain kinds of robots. A more systematic
approach is called for to investigate the various kinds of robots and
their impacts on communicating robot motion intent. We also found
that more and more research applies simulation environments in
Virtual Reality (VR) to explore HRI. Nevertheless, we need more
studies to validate such findings and provide a broader foundation
for their generalizability.

Context. Compared with previous research in AVs [28, 32] and
eHMIs [33], we can identify several similarities, despite the substan-
tial differences in the context of use and robot technology. Colley
et al. found that visualizing internal information processed by an
Augmented Virtuality (AV) could calibrate trust by enabling the
perception of the vehicle’s detection capabilities (and its failures)
while only inducing a low cognitive load [28]. Currano et al. ex-
plored the interaction between complexity of head up displays,
driving style, and situation awareness [32]. In the area of eHMIs,
researchers have been able to distinguish between different natures
of message (e.g., danger and safety zones) [33]. These correspond
to our identified types of intent, highlighting different meanings for
the user for the provided intent. In the context of AVs, the informa-
tion used to formulate the actual intent is primarily unregistered in
space. It uses text, symbols, and audio prompts. The intent primar-
ily describes the vehicle’s state (e.g., automated/manual, cruising,
yielding) or advice/instructions to the pedestrian (e.g., to allow safe
road crossing). The large differences between the fields of research
result primarily from the standardizations in automotive research,
such as roads, road signs, markings, and restrictions. Nevertheless,
there are potential overlaps.

Future Research: The two fields have, from our perspective,
not yet shared many cross-activities among researchers, which
could lead, for example, to transferring those motion intent tech-
niques that have shown to be effective in one field to the other.
We could imagine that future research could benefit both sides if a
more holistic perspective is applied. In particular, the research for
eHMIs in AVs could benefit from more exploratory technological
approaches in HRI, such as making use of AR-HMDs and applying
more advanced visualization to communicate motion intent. While
this may not be relevant for the near future, as such devices are not
yet consumer-ready, this may change over the coming years.

The Model. The overall model is an abstract characterization
of the current literature on robot motion intent. It may be seen as
a summary of the current understanding of the design space for
robot intent communication, where it illustrates all components and
highlights their interconnection. Thereby, future researchers and
practitioners should benefit from themodel by using it as a guidance
and checklist throughout the design phase of such Human-Robot
scenarios; i.e., being guided to carefully think and decide upon
different types of intents or whether intent information should be
encoded spatially or temporally. In addition, the model can help
to unify the language of robot motion intent and thereby support
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researchers and practitioners to find related work as well as help
to identify research gaps.

Future Research:We invite researchers to actively challenge
the model and thereby helping to develop the field even further.
They should scrutinize whether the design space is sufficiently clas-
sified or how it can and needs to be extended to cover future work.
As our model was derived from the analysis of our literature corpus,
it is fitted to the gathered research. Nonetheless, one can utilize
novel research contributions that will be published in the future to
revisit and evaluate the model (i.e., to investigate if novel contribu-
tions can still be described by our model). Moreover, we imagine
that a more thorough discussion in the context of eHMIs may ben-
efit the model as well as incorporating other lines of research that
are concerned with communicating intent, such as Sodhi et al. or
Müller et al. [87, 107].

7 CONCLUSION
This paper provides two main contributions: 1) a survey contri-
bution that includes an analysis and classification of previous lit-
erature as well as future research directions, and 2) a theoretical
contribution that introduces an intent communication model and
describes the relationships of its entities, dimensions, and underly-
ing properties. In particular, our work highlights that robot motion
intent requires a broader perspective on robot intent and that it
includes intent types that may seem, at first glance, unrelated to
motion. However, in our analysis, we found that attention, state, and
instruction are important and often necessary pre- or post-cursors
to communicate explicit motion intent. We also found that only
a few papers explicitly discuss or present the type of intent they
aim to communicate and they also lack clear descriptions of intent
information or location. Our work aims to help researchers in the
future to better align their work with the suggested dimensions,
making it easier to assess and compare different studies. Therefore,
we aim to provide a foundation for a unified language regarding
robot intent, even beyond motion. From a practical perspective, the
classification of the existing research literature along our intent
communication model helps researchers and practitioners alike to
understand the design space for communicating robot motion intent.
As it is an emerging field, much work has focused on finding novel
approaches and solutions to communicate robot motion intent in
one way or another. We have identified multiple areas of need for
future research directions. However, we would like to emphasize
once more that, above all, the field needs more systematic analysis
and comparison of different approaches to improve understanding
of the influences of different intent dimensions and properties. We
believe that the presented intent communication model provides an
empirically deducted foundation to inspire and guide such work.
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Figure 1: Communicating Cobot’s Motion Intent Feedback via Gizmo Approach

ABSTRACT
Nowadays, robots collaborate closely with humans in a growing
number of areas. Enabled by lightweight materials and safety sen-
sors, these cobots are gaining increasing popularity in domestic
care, supporting people with physical impairments in their every-
day lives. However, when cobots perform actions autonomously,
it remains challenging for human collaborators to understand and
predict their behavior. This, however, is crucial for achieving trust
and user acceptance. One significant aspect of predicting cobot
behavior is understanding their motion intent and comprehending
how they "think" about their actions. We work on solutions that
communicate the cobots AI-generatedmotion intent to a human col-
laborator. Effective communication enables users to proceed with
the most suitable option. We present a design exploration with dif-
ferent visualization techniques to optimize this user understanding,
ideally resulting in increased safety and end-user acceptance.
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1 INTRODUCTION
Robotic solutions are becoming increasingly prevalent in our per-
sonal and professional lives, and have started to evolve into close
collaborators [3, 7, 10]. These so-called cobots support humans in
various ways that were unimaginable just a few years ago. Enabled
by technological advances, newer lightweight materials, and im-
proved safety sensors, they are gaining increasing popularity in
domestic care, supporting people with disabilities in their everyday
lives [11].
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However, new potential issues arise when cobots are tasked
with (semi-)autonomous actions, resulting in added stress for end-
users [13]. Particularly close proximity collaboration between hu-
mans and cobots remains challenging [8]. These challenges include
effective communication to the end-user of (a) motion intent and
(b) the spatial perception of the cobot’s vicinity [12].

2 RELATEDWORK
In recent years, Augmented Reality (AR) technology has been fre-
quently used for human-robot collaboration [2, 6]. Previous work
focused primarily on the use of Head-Mounded Displays, Mobile
Augmented Reality, and Spatial Augmented Reality for the visu-
alization of cobot motion intent [8, 14, 16]. Rosen et al. showed
that AR is an improvement compared to traditional desktop inter-
faces when visualizing the intended motion of robots [14]. Previous
literature has focused mainly on visualizations of motion intent
for autonomous robotic systems [1, 4, 5, 8, 15, 17], communicating
recommended cobot intention and its control methods has however
not attracted as much attention.

3 TESTBED ENVIRONMENT
In earlier work, we developed an adaptive control interactionmethod
based on a recommendation system generated by a Convolutional
Neural Network [9]. From the cobot’s seven Degrees of Freedom
(DoF), the adaptive control combined several DoFs to provide a
more straightforward control to the user with fewer necessary
mode-switches.

The virtual environment, including a virtual model of the Kinova
Jaco1 robot arm was developed to be compatible with the Oculus
Quest 22 VR headset (see Figure 1). This provided us with a VR
testbed environment for developing and evaluating further feedback
techniques.

4 VISUALIZATION CONCEPTS
Our proposed concepts fall into a spectrum with two extremes —
indicative and explanatory. Indicative: Focus on crucial informa-
tion only, quick and easy solution, suitable for experienced cobot
users. Explanatory: Movements are shown in great detail, high
level of information, especially helpful for new users.

DoF-Indicator: LEDs attached to the cobot’s axis and joints - or
mounted on a bar in front of it - communicate active and nonactive
DoFs (see Figure 2). Likely more suitable for experienced users,
allows understanding of current DoF mapping by the recommenda-
tion system plus resulting movement abilities.

DoF-Combination-Indicator: Movement ability is commu-
nicated by a simplified representation of the cobot only showing
two modalities, e. g. rotating and extending (see Figure 3). The AR
representation (aka "fake joint") either overlays the real cobot or
can be displayed separately in the corner of the AR screen.

Gizmo Visualisation: Arrows, planes and point clouds com-
municate the current movement ability of the cobot (see Figure 4).
This allows for several different design options. A first arrow-based
approach was already successfully evaluated in a previous study [9].

1Kinova Jaco robot arm: https://assistive.kinovarobotics.com/product/jaco-robotic-
arm, last retrieved April 29, 2022
2Oculus Quest 2: https://www.oculus.com/quest-2/, last retrieved April 29, 2022

(a) (b)

Figure 2: DoF-Indicator: (a) LEDs attached to the cobot; (b)
LEDs mounted on a bar.

(a) (b)

Figure 3: DoF-Combination-Indicator: (a) as an AR overlay;
(b) as an icon in the screen corner.

Figure 4: Gizmo Visualization: (left) simple: straight and
curved arrows; (center) planar: planes of movement; (right)
cloud: 3D-cloud of possible boundary positions.

Demonstration: Current movement possibilities are demon-
strated through either the actual cobot or an AR representation.
With both options a quick movement indicates the intended motion.

Future work will see the implementation of the various visualiza-
tion options. Through this, we expect to gain a number of valuable
insights regarding the explainability of AI behavior in the context
of robotic movements.
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Abstract: Nowadays, robots are found in a growing number of areas where they collaborate
closely with humans. Enabled by lightweight materials and safety sensors, these cobots are gaining
increasing popularity in domestic care, where they support people with physical impairments in
their everyday lives. However, when cobots perform actions autonomously, it remains challenging
for human collaborators to understand and predict their behavior, which is crucial for achieving
trust and user acceptance. One significant aspect of predicting cobot behavior is understanding their
perception and comprehending how they “see” the world. To tackle this challenge, we compared
three different visualization techniques for Spatial Augmented Reality. All of these communicate
cobot perception by visually indicating which objects in the cobot’s surrounding have been identified
by their sensors. We compared the well-established visualizations Wedge and Halo against our
proposed visualization Line in a remote user experiment with participants suffering from physical
impairments. In a second remote experiment, we validated these findings with a broader non-specific
user base. Our findings show that Line, a lower complexity visualization, results in significantly faster
reaction times compared to Halo, and lower task load compared to both Wedge and Halo. Overall,
users prefer Line as a more straightforward visualization. In Spatial Augmented Reality, with its
known disadvantage of limited projection area size, established off-screen visualizations are not
effective in communicating cobot perception and Line presents an easy-to-understand alternative.

Keywords: cobot; human–robot collaboration; visualization techniques; projection; virtual reality

1. Introduction

While robots were previously taught to perform simple repetitive tasks, they have
started to evolve into collaborators in our professional and personal lives [1,2]. As a result,
these so-called cobots support humans in various ways that were unimaginable just a
few years ago. One area that has seen drastic advances in human–robot collaboration is
domestic care, with cobots supporting people with physical impairments [3]. These assist
people in various ways [4], from activities of daily living (ADLs), including basic tasks such
as drinking, eating, and grooming, to leisure-time activities [5,6]. In domestic care, cobots
reduce the need for the constant presence of caregivers, empowering people previously
reliant on others for help to regain their independence. Our previous research on the needs
of people with physical impairments showed a strong desire for privacy and alone time,
which can undoubtedly be achieved with reliable robotic support [7].

However, new challenges arise when cobots are tasked with autonomous or semi-
autonomous actions, resulting in additional stress for end-users [8]. Close proximity
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collaboration between humans and cobots remains particularly challenging [9]. These
challenges include effective communication to the end-user of (a) motion intent and (b) the
spatial perception of the cobot’s vicinity [10]. Accurate communication increases our
understanding of the cobot while avoiding the unpredictability regarding impending
steps, motions, and sensed environment parameters. While visualizations of motion intent
have been extensively studied [9–14], communicating cobot perception has received less
attention [15]. We define cobot perception as the sensory information acquired to com-
putationally understand the surroundings, including the detection and identification of
objects of interest in the physical vicinity. In our work, we communicate these sensory
information acquired by the cobot using three different visualization techniques. Users
benefit from receiving information about and understanding a cobot’s spatial perception as
perception failures, including errors in computer vision and object perception, can occur.
Without communication, these are otherwise difficult to predict and to understand [16,17].
Accordingly, there is a clear need to accurately express cobot perception to their human
collaborators to improve the correct prediction of the cobot behavior [18].

Augmented reality (AR) technology is a promising medium to communicate cobot
perception, with the possibility to directly show relevant perceptual information in the
user’s line-of-sight whilst linking 3D with the physical world. In previous work, AR
technology has shown encouraging results for the visualization of motion intent [9,12].
Any visualization technique aiding users in understanding the cobot’s perception of its
surroundings needs to effectively communicate all objects both within the visible area
of the user and outside (or “off-screen”). The off-screen area is defined by the field of
view of the user but, more importantly, limited by the means of the AR systems spatial
visualization capabilities.

The release of the first Microsoft HoloLens resulted in an increased focus on approaches
relying on Head-Mounted Displays (HMDs) [9]. However, even state-of-the-art HMD-
AR such as the Microsoft HoloLens 2 (https://www.microsoft.com/de-de/hololens, last
retrieved 30 December 2021) have a restricted display area which limits the field of view
of the user [19]. Recent studies on the design preferences of people living with physical
impairments also revealed that these displays are often impractical or not usable at all
for the target population [20]. In addition, HMDs prevent direct information exchange
with secondary users such as caregivers, thereby excluding them from providing necessary
support. Similarly to HMDs, approaches using Mobile-AR (MAR) also limit the field of
view through their display size and orientation, rendering them potentially unusable for
people with physical impairments [21].

Spatial Augmented Reality (SAR) is another approach using projection techniques
to augment the surface in the environment [22]. While essentially limited to 2D, research
for motion intent has shown that SAR can be adapted to cover a dynamic workspace that
encompasses multiple surface areas [10,11], e.g., in our scenario, this refers to interacting
with objects “on a table” and “retrieving objects from shelves”. Due to the significant
decreases in the cost of projection technology and advances in pico-sized projectors, SAR
has garnered increased interest in recent years [23]. SAR can augment larger areas of the
surroundings, exceeding even the physical field of view of the user, and unlike HMDs,
can be observed by secondary users. However, the possible field of view depends on
the mounting position of the projection technique. While SAR may increase the visible
augmentation area, the problem for effectively communicating off-screen objects still exists
and is currently unsolved.

We investigated the potential visualization approaches that communicate the cobot’s
perception and particularly the information about detected objects in its physical surround-
ings. Information about physical objects are critical, as any breakdown in the successful
detection of such objects by a (semi-) autonomous cobot can result in errors in behavior
with the potential to harm the user, such as knocking over objects or even destroying them
in the process. We applied this scenario to a breakfast situation in which a cobot supports a
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person with physical impairments in performing basic tasks such as picking up a bottle
and pouring a glass of water.

We used two established off-screen visualization techniques from research on small
screens, namely Wegde [24] and Halo [25], where off-screen guidance is a well-explored
topic. We added a third visualization technique Line (see Figure 1), which aims to reduce the
potential drawback of visual clutter of Wegde and Halo as well as reduce the level of detail
encoded in the visualization. All three approaches are used to continuously communicate
the position of each object as they are perceived by the cobot. The user should immediately
recognize a failure in object detection as the visualization for the lost object ceases.

(a) (b) (c)

Figure 1. The compared visualization techniques to communicate the cobot’s perception are (a) Halo;
(b) Wedge; and (c) Line.

We conducted two remote user studies exploring the efficiency, effectiveness, and task
load of all three off-screen visualizations when communicating robot perception. First, we
provided an exploratory experiment with 12 participants from our target user group of
people with physical impairments. Second, we followed up with a validation experiment
with 116 participants without physical impairments. Both studies show that a simple
but clear visualization approach such as Line provides advantages for robot perception
communication, both in terms of user preferences as well as objective measures. The remote
nature of our study was adapted (a) to accommodate for social distancing guidelines during
the SARS-CoV-2 pandemic; and (b) to allow for a more controlled and risk-reduced setup
for target group participants.

2. Related Work

Previous literature has focused on (a) the usage of cobots for care support; (b) AR in
human–robot collaborations; and (c) visualization techniques for target localization. We
focus on ways cobots can effectively communicate their perception.

2.1. Cobots for Care

In 2021, the World Health Organization estimated that 15% of people live with some
form of disability. (WHO. Disability & Health Report. https://www.who.int/news-room/
fact-sheets/detail/disability-and-health, last retrieved 30 December 2021). Building on this,
7.9 million people are classed as severely disabled in Germany alone. (DESTATIS. Disability
Facts and Figures—Brief Report 2019. https://www.destatis.de/DE/Themen/Gesellschaft-
Umwelt/Gesundheit/Behinderte-Menschen/Publikationen/Downloads-Behinderte-Menschen/
sozial-schwerbehinderte-kb-5227101199004.html, last retrieved 30 December 2021). Over 58%
of these cases cover people with physical impairments and therefore we focused on this
group for our study. In particular, we concentrated on people with a permanent and signifi-
cant degree of compromised mobility of the extremities. Ample literature has examined
the impact of assistive robotic systems in supporting people with motor impairments. The
works of Chen et al. [5] for the Robots for Humanity project and Fattal et al. [6] looked into
the feasibility and acceptance of robotic systems as assistive technologies. Both found that
robotic devices are often designed to assist with several different activities of daily living,
often resulting in larger robotic devices that frequently require a robotic arm mounted on a
mobile unit. Drolshagen et al. investigated the acceptance of robots in sheltered workshops,
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finding that robots are quickly accepted and close proximity is preferred [26]. Currently, a
trend can be observed towards the research into cobots in domestic care to support people
in their everyday lives [27–32]. One elementary part of everyday tasks is the consumption
of food and drinks [7]. Based on this, the present study investigates cobot assistance for
people with physical impairments during a standard breakfast scenario.

2.2. Augmented Reality in Human–Robot Collaboration

In recent decades, AR technology has been frequently used for human–robot collab-
oration [33]. Previous work has mainly focused on the use of HMDs, MAR, SAR and
the visualization of the robot motion intent [9,34,35]. Rosen et al. showed that AR is an
improvement compared to classical desktop interfaces when visualizing the intended
motion of robots [34]. However, while visualizations of motion intent have been studied
extensively in previous work [9–14], communicating cobot perception remains an open
challenge. It is vital that the human user can recognize what the semi-autonomous robotic
system perceives explicitly (e.g., objects such as a glass or a bottle) because this enables
users to recognize any occurred error in the robot’s perception [16,17]. The non-perception
of objects can have especially drastic consequences, as often demonstrated in autonomous
driving. (Guardian. https://www.theguardian.com/technology/2018/mar/19/uber-self-
driving-car-kills-woman-arizona-tempe, last retrieved 30 December 2021.) In this paper,
we focused on the communication of cobot perception, and in particular, different methods
to make the cobot’s sensor-based detection of objects in its surroundings visible and clear
to the user.

2.3. Visualization Techniques for Object Localization

As discussed in Section 1, AR, and in particular HMD-AR or MAR, reduce the field of
view of the user as they either only display information in a small part in front of the user’s
eye (HMD) or on the available screen area. This means that they often require guiding the
users’ attention to an off-screen object of interest. For example, Biocca et al. proposed the
Attention Funnel to achieve this attention shift [36]. However, these mostly depend on the
possibility of MAR and HMD approaches to easily adjust the field of view by turning the
device or head. Adapting them to SAR might be difficult as the projection is often fixed. In
addition, these approaches are not usually meant to highlight and identify multiple objects
in the surroundings. They would likely overwhelm the user with too much visual clutter.

However, there is a large body of research in the context of off-screen visualization
techniques, originally addressing the challenge of small-screen devices, which could pose
a promising approach for this particular challenge. Halo is an early off-screen visualiza-
tion method proposed by Baudisch et al. and initially intended for small, rectangular
screens [25]. It uses circles with their center around off-screen objects and their radius just
large enough to cut the screen’s border. Using Halo, the distance information is encoded in
the arcs themselves and directly incorporates the scale of the scene, which was preferred by
the users. Furthermore, Halo can be extended to on-screen objects by drawing the circle
around the object. Wedge is another frequently used off-screen visualization technique pro-
posed by Gustafson et al. [24]. It visualizes off-screen objects by attaching isosceles triangles
to them. Two corners of the triangle are always on screen; the third is fixed to the point of
interest. This leads to an encoded distance information by an amodal completion as with
Halo. Similarly to Halo, Wedge can also be used to visualize in-view objects. Gruenefeld et al.
already demonstrated in two studies that both Halo and Wedge are transferable to AR;
however, they did not investigate SAR [37,38]. To address this, we applied off-screen
visualization techniques to SAR and investigated their effectiveness for conveying cobot
perception by visualizing all objects currently detected by the sensor system.

3. Experimental Approach

In this paper, we investigated how to communicate cobot perception in a scenario
related to activities of daily living (ADL). Our main target group are people with physical
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impairments. Our previous work—an ethnographic study to establish recommendations
for the development of a robotic drinking and eating aids—has shown a clear need for
(semi-) autonomous assistive technology during meal time [7]. Hence, we focused on a
breakfast situation at a kitchen table (see Figure 2a). Our goal is to help users understand
the cobot and its actions so that users are able to understand how the cobot works and
predict potential failures. Overall, this should contribute to better collaboration and foster
trust and acceptance.

Our research investigates the subjective experience, effectiveness, and efficiency of
different visualization approaches. We conducted two independent remote studies with
12 participants in the first and 116 participants in the second experiment, analyzing a total
of three different visualizations. In the first experiment (see Section 4), 12 people with
physical impairments—the target group—participated and delivered valuable quantitative
and qualitative insights. After this, we conducted a second experiment (see Section 5
Experiment II: Validation Study) with 116 participants without impairments to verify our
findings. We selected the established visualizations Halo and Wedge (see Section 3.2.3) and
compared them to a simplified line-based visualization—Line.

All visualizations served the purpose of optically highlighting and indicating each
object on a kitchen table that the sensory system of the cobot is currently detecting. The
challenge for the user is to understand a potential failure of the system, indicated by
the ceased highlighting of a previously perceived object. The studies required users to
recognize these failures and indicate the object no longer detected by the cobot.

We applied a SAR solution using a projector to display visualizations on the table sur-
face, as detailed in Section 3.2. This visualization technology enables a dynamic workspace
of the cobot with visual cues directly projected in the working area of the kitchen table.

3.1. Experimental Task

We wanted to determine which visualization technique allows users to recognize the
cobot’s perception errors quickly, accurately and with minimal effort. Therefore, users were
presented with a simple task (see Sections 4.4 and 5.4). They had to observe a virtual scene
where a robot arm was moving across a breakfast table containing multiple items. Initially
the current visualization technique shows each object as detected and perceived by the
cobot. After a randomized time in an interval of 5–15 seconds in experiment I (see Section 4)
and an interval of 3–15 seconds in experiment II (see Section 5), the cobot ceased to detect
a random object; indicated by a vanished visualization. The user had to a) recognize this
situation as quickly as possible and b) identify the no longer perceived object.

3.2. Apparatus

Here, we describe the developed apparatus of both experiments. In particular, we
(a) describe our 3D testbed environment; (b) compare different mounting settings of the projec-
tor and report the concluding setting; and (c) introduce the selected visualization techniques.

3.2.1. 3D Testbed Environment

We developed a simulation of the robot setup present in our laboratory using the
Unity3D Game Engine. ( https://unity.com/, last retrieved 30 December 2021) We used Bio
IK ( https://assetstore.unity.com/packages/tools/animation/bio-ik-67819, last retrieved
30 December 2021) to simulate the robot’s inverse kinematics. The project was exported
as a WebGL application and hosted online for easy access by the participants within
their particular web-browser environment. Any user interaction with the prototype was
performed through mouse clicks, enabling participants with motor impairments to use
their respective pointing devices.

For the virtual robot, we used a simulated KUKA LBR iiwa 7 R800 robot with a Robotiq
2-Finger 85 gripper module attached to the robot’s flange. A simulated projector connected
to the virtual flanch of the gripper/robot points towards the object of interest. Alternative
mounting positions of the projector are discussed in Section 3.2.2. A virtual plane with a cir-
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cular cutout restricts the simulated projection radius, creating a circular shape of projection
to ensure the same size of projection to every site (projection distance: 50 cm; projection ra-
dius: 15 cm). The robot is located in front of a table (dimensions: 120 cm × 60 cm × 75 cm)
with five items one might find in a hypothetical breakfast scenario (a box of cereals, a carton
of milk, a plate of fruits, a bowl and a mug). See Figure 2 for a glance at the setup and a
closeup on the projection.

(a) 3D testbed environment showing the breakfast setup. (b) Line visualization.

Figure 2. Screenshots of the 3D testbed environment. (a): showing the complete setup with the
five items placed on the table; (b): showing the Line visualization with one object on the table not
perceived by the cobot.

3.2.2. Different Mounting Settings of the Projector

As part of the projection-based cobot perception visualization development process,
we compared different potential mounting options for a pico-sized projector in a real-world
setting with a real robot. As illustrated in Figure 3, we compared a top-mounted projection,
e.g., from the ceiling, with a side-mounted projection, e.g., by using a tripod, with a cobot
flanch-mounted projection by attaching it next to the gripper.

Top-mounted projection: Because of the large distance between the projector and table
surface, a top-mounted projection has a large area. It can cover the whole workspace,
e.g., the surface of the table, to visualize cobot perception. However, as shown in Figure 3a,
objects in the vicinity of the cobot arm are not visualized. In addition, any visualization
trying to highlight objects directly beneath the gripper is not visible due to the shadow that
is cast by the cobot device itself.
Side-mounted projection: Attaching the projector at one side of the table tackles this issue
of visualizing the objects of interest beneath the gripper and also enables a quite large
projection area (see Figure 3b). However, a shadow can still hide the visualization related
to objects in the vicinity of the cobot’s arm due to the same reasons.
Cobot flanch-mounted projection: By mounting the pico-projector to the cobot’s flanch
next to the gripper, the cobot or its gripper do not cast a shadow within the projection
area. Because the light comes from above, the size of the objects’ shadows is reduced in
contrast to the other projector settings, as shown in Figure 3c. As a drawback, the projection
area is limited, and therefore, increases the need for visualization which can also highlight
off-screen objects, which are currently not placed within the projection area.
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(a) (b) (c)

Figure 3. For our work, we compared three different mounting-settings of a projector in the
cobot’s workspace to communicate cobot perception. The compared settings are (a) top-mounted;
(b) side-mounted; and (c) cobot flanch-mounted projection. The direction of the projection is indi-
cated by an arrow.

A top- or side-mounted setting leads to a large projection area but casts a shadow that
a visualization cannot overcome. Here, it is especially hard to take into account the shadow
cast by the robot arm and compensate for its’ impact on a presented visualization. Whereas
a flanch-mounted setting enables visualizing the objects that need the most attention in
the case of cobot failure—the objects right under the gripper—but reduces the projection
area. However, as discussed, we aim to explore whether this issue can be tackled by using
off-screen visualization techniques.

3.2.3. Selected Visualization Techniques

In our user study, we compare three different visualization methods: (a) Halo; (b) Wedge;
and (c) Line. Halo and Wedge are well-established off-screen visualization techniques taken
from previous work (see Section 2.3), while Line is proposed by us (see Figure 4).

Halo: Off-screen objects are visualized by attaching circles around objects, which any
person around the table can see as well. These circles are always drawn with a radius
as large as necessary to visualize part of the circle in the on-screen area. This means that
the user can (a) understand the direction of the target object in the off-screen area; and
(b) determine the distance, as this is encoded through the radius of the circle. For on-screen
objects, we kept the circle visualization and show the radius to be 5 cm larger than the
radius of the object’s footprint.
Wedge: While the approach works similarly to Halo, here, off-screen objects are visualized
by attaching isosceles triangles to them. Two corners of the triangle are always on-screen;
the third is fixed to the point of interest. The distance is encoded via an amodal completion
of the triangle, which avoids overlapping and leads to a reduced visual clutter. This allows
a more accurate determination of the object’s distance compared to Halo. For on-screen
objects, we decided to keep the triangle attached to the corner of the object, pointing
towards its center. The on-screen triangles point from the projection center to the object’s
center, comparable to arrow-based techniques [37].
Line: While Halo and Wedge try to encode distance information quite accurately, they
also lead to visual clutter when many off-screen objects are visualized at the same time.
Therefore, as a baseline, we propose a reduction to a simple line-based visualization
technique. Here, a line connects the center of the projection to each object’s center. Several
lines—for each object one—are “shining” in a manner resembling a beam from the center
in every direction (see Figure 2b). We still encode some distance information through the
light intensity of the Line visualization.
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(a) (b)

(c) (d)

Figure 4. A detailed overview of (a) the setup highlights the different parts as (1) on-screen object;
(2) off-screen object; and (3) the projection area. The (4) main features are highlighted for the selected
visualization techniques (b) Halo, (c) Wedge, and (d) Line.

As previous research shows that both Wedge and Halo work well within the realm of
small-screen devices, we wanted to explore whether this can be adapted to the presented
SAR off-screen problem. Visual complexity, in general, could cause problems when rapid
judgments are necessary. Given that users need to recognize errors quickly and accurately,
we wanted to add a visually less complex visualization method with Line. Still, all visual-
izations allow the user (a) to see that an object is recognized and (b) to infer its position
relative to the projection center.

4. Experiment I: Target Group

The first experiment compared different visualization techniques following our experi-
mental approach (see Section 3). We involved participants of the target group—people with
physical impairments. Our goal was to explore how to best communicate cobot perception
feedback to potential users for such essential tasks such as having breakfast to enable a
more independent and self-determined life.

4.1. Study Design

To evaluate the performance of different visualization techniques for conveying cobot
perception, we conducted a within-subjects remote user study with an counterbalancing
order of the visualization techniques. Our independent variable was the visualization
technique with three levels (Line vs. Wedge vs. Halo).
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As dependent variables, we used a mixed-methods approach. As quantitative mea-
sures to evaluate task performance, we took into account recognizability, accuracy, reaction
time, task load and individual Likert-scaled items. Furthermore, we collected qualitative
data in the form of subjective feedback from our participants.

The recognizability describes the percentage of how often the simulated cobot failure
was correctly recognized. To analyze this, we counted the number of trials on which a
participant clicked—to interrupt the trial—only after an actual cobot failure happened. We
acknowledge that this measure only gives an indication of recognizability, as we cannot
be sure whether the participants really recognized the failure or simply thought that it
should already have happened. Still, it excludes those clicks that happened before a failure
occurred, where we can be sure that participants did not correctly judge the situation.

The accuracy describes the percentage of how often the correct affected object was
identified. To determine the accuracy, we compared the selected object by the participants
that they thought was no longer perceived by the cobot with the correct one. The result
could either be correct or incorrect (0, 1).

For the reaction time, we measured the time from which a cobot’s perception error
happened to the point in time when the participant performed a mouse click (or equivalent
input device). To reduce the impact of individual differences on reaction time, which can
be quite large given not just cognitive differences but also differences in input devices and
physical abilities, we measured a baseline reaction time for each participant and subtracted
the median of this testing from the individual measurement. The resulting reaction time is:
timereaction = timeclicked − time f ailure − median(treactionPreTest).

We used the mean of the task load scores by dimensions as measured by the NASA
Raw-Task Load Index (Raw-TLX) [39] to determine the participants’ perceived task load
during the trials.

After each visualization, we asked three 7-point Likert-items (1 = strongly agree,
7 = strongly disagree) to determine participants’ ability to detect which objects were
perceived by the cobot and which were not, that neither the cobot itself nor the number of
objects made it hard to observe the scenario, and if visualizations were understandable. We
reported the mean values of each 7-point Likert-item.

We asked our participants to sign up for post-test interviews if they were interested.
Unfortunately, only two of the participants did so. We conducted a 25-min telephone
interview with these two participants on the same day that they participated in the remote
experiment. Here, eleven open-ended questions were asked about the following topics:

• Status quo and acceptance of technology support;
• Appearance and implications;
• Trust and understanding;
• Preference and reason;
• Importance of a perceptual feedback;

4.2. Research Questions

To explore the suitability of the three selected visualizations, our research was guided
by the following set of research questions:

RQ1 Do Wedge and Halo—because of their more detailed integrated distance information—
enable the more accurate identification of failure objects or does the extra visual
clutter disturb the user?

RQ2 Do the different visualization techniques have an influence on the reaction time,
i. e., are certain visual features quicker to recognize, process and thereby identify
when they vanish?

RQ3 How do users recognize the task load of different visualizations? Is the extra vi-
sual clutter of Wedge and Halo considered a problem or does the integrated dis-
tance information actually help reduce the task load?
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4.3. Participants

Twelve volunteers participated in this experiment: three females, three males and
six who preferred not to say. They fell into four age groups: two participants were aged
between 30 and 39 years; three participants were aged between 40 and 49 years; two
participants were aged between 50 and 59 years; and one participant was aged between 60
and 69 years. Four participants preferred not to state their age. All participants suffered
from complex motor impairments caused by spinal cord injuries and required assistance
in everyday life. Only one participant had prior experience with cobots, while three
participants mentioned some experience with toy robots.

Participants were recruited via announcements in different social media communities
regarding assistive technology (e.g., Paraplegie.ch, Assistive Technology Community. https:
//community.paraplegie.ch/de/forum/hilfsmittel-technologie, last retrieved 30 December
2021) and social media discussion communities for people suffering from multiple sclerosis
(MS) (e.g., mein.ms-life, Community for people suffering from multiple sclerosis (MS).
https://mein.ms-life.de/ms-community/, last retrieved 30 December 2021) among other
more local announcements. Participants did not receive any monetary compensation.

4.4. Procedure

Before the experiment started, participants were informed about the study and the
experimental setup. This was implemented as a landing page for the study’s URL. Par-
ticipants had to give their informed consent by enabling a checkbox. Through another
checkbox, they gave us the permission to use their anonymized recorded data. After a short
demographic questionnaire, participants performed a reaction time test. We measured their
reaction time when clicking on a screen as soon as a change in display color occurred. Ten
repetitions allowed us to define the median time needed for the participant to react to a
stimulus. We used this datum to determine the actual reaction time after recognizing a
cobot perception error, thus reducing variability between subjects because of individual
differences (e.g., latency of input devices, differences in physical abilities).

Participants then viewed a screen describing the first visualization method. We used
images highlighting and describing any part of the visualization and a full text which gave
step-by-step instructions. In a subsequent trial run, they watched the cobot perform a set of
movement paths—which differed from those in other trials. Participants were instructed to
click anywhere on the screen as soon as they noticed the disappearance of a visualization
connected to an object. Right after they did click on such a case, a screen appeared which
showed all potential target objects next to each other. The participants could then choose
the item they thought the cobot did no longer perceive without any time constraints. Once
this trial run was completed, the cobot performed twelve different movement paths as
repetitions of this task, counting towards the data analysis. Participants viewed the twelve
pre-programmed paths in random order. Six paths had an on-screen object disappear and
six paths had an off-screen object disappear. Objects disappeared after a random time of
between 5 and 15 s.

Once they completed all twelve paths for one visualization, participants filled out a
NASA Raw-TLX questionnaire to report their workload. They also answered three addi-
tional questions specifically tailored to the respective experiment to evaluate their preferred
visualization. The entire process was repeated with the two remaining visualization meth-
ods. The order in which the three visualization types were shown was counterbalanced
using a Latin-square design. This experiment lasted an average of 40 min. The two partici-
pants who volunteered for the post-test interview did take part in this, as stated, on the
same day as participating in the online study.

4.5. Results

During the Line technique run, one participant did not generate valid reaction times,
as they performed mouse clicks before the cobot failure actually happened in every single
trial. While this may be caused by an ineffective visualization, the fact that this hap-
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pened in each trial and usually instantaneously after the start led us to the conclusion
that the participant did not follow the test protocol. Consequently, this participant was
excluded, which resulted in 11 remaining valid participant responses. We did not assume
normality for the statistical analysis of our quantitative data and therefore we relied on
non-parametric tests. Given the within-subject design with three conditions, we first ap-
plied a Friedman test as omnibus test followed by Wilcoxon tests as post hoc pairwise
analysis with Bonferroni–Holm correction applied. Overall, the experiment resulted in 396
(11 participants × 3 visualization techniques × 12 trials) measured trials excluding train-
ing trials. Used abbreviations and symbols are:

• SD: Standard deviation;
• χ2(2): Chi-squared with two degrees of freedom;
• p: p-value as expression of the level of statistical significance (p: ≤0.05 *, ≤0.01 **,

and ≤0.001 ***);
• N: Sample size;
• W: Minimum sum of ranks;
• Z: Normalized minimum sum of ranks;
• r: Effect size (r: >0.1 small, >0.3 medium, and >0.5 large effect).

4.5.1. Recognizability: Percentage of Correctly Recognized Cobot Failures

In each trial, the cobot failed after 5–15 seconds. Participants had to respond with
a mouse click to verify that they recognized the failure. However, in certain trials, par-
ticipants did not click at all (Wedge = 3 trials; Halo = 2 trials; Line = 0 trials) or clicked
before the object disappeared (Halo = 11 trials; Wedge = 3 trials; Line = 1 trials). From the
reaction test at the beginning of the experiment, we calculated a median of the reaction
time for each participant. This was taken into account to count those trials as unsuccessful,
when the individual reaction to a cobot failure was faster than the median reaction time
(Line = 12 trials; Halo = 11 trials; Wedge = 8 trials). The mean percentage of correctly recog-
nized trials per participant for each visualization are (in descending order): Line = 90.2%
(SD = 19.7%); Wedge = 89.4% (SD = 10.6%); and Halo = 81.8% (SD = 17.8%). A Friedman
test showed no significant main effect of percentage of recognized failures on visualization
(χ2(2) = 4.71, p = 0.095, N = 11).

Moreover, we can distinguish between correctly recognized on-screen and off-screen
objects. The mean percentage of correctly recognized on-screen objects for each visualiza-
tion are (in descending order): Line = 92.4% (SD = 20.2%); Wedge = 87.9% (SD = 15.1%); and
Halo = 78.9% (SD = 27.0%). A Friedman test showed no significant differences (χ2(2) = 4.26,
p = 0.119, N = 11). The mean percentage of correctly recognized off-screen objects for
each visualization are (in descending order): Wedge = 90.9% (SD = 11.5%); Line = 87.9%
(SD = 19.8%); and Halo = 84.8% (SD = 13.9%). A Friedman test again showed no significant
differences (χ2(2) = 1.19, p = 0.552, N = 11).

4.5.2. Accuracy: Percentage of Correctly Identified Failure Objects

For the percentage of correctly identified objects that the cobot failed to perceive
during the trial, we only considered all trials for which participants responded after the
cobot failure happened (n = 345) and therefore had a chance to select the correct object.
The mean percentage per participant of correctly identified failure objects per visualization
are (in descending order): Line = 94.4% (SD = 7.1%); Wedge = 77.8% (SD = 15.9%); and
Halo = 72.5% (SD = 19.9%). A Friedman test showed a significant main effect (χ2(2) = 8.72,
p = 0.012 *, N = 11). Post hoc pairwise comparisons using a Wilcoxon signed-rank with
Bonferroni correction showed a significant difference between Halo and Line, but not
between any other pairs (see Table 1).





Sensors 2022, 22, 755 12 of 24

Table 1. Pairwise comparisons of accuracy for the visualization techniques: Wedge, Halo, and Line.

Comparison W Z p r

Wedge vs. Halo 33 1.39 0.563 0.30
Wedge vs. Line 2 −2.25 0.070 0.48
Halo vs. Line 1 −2.55 0.023 * 0.54

* p ≤ 0.05.

4.5.3. Reaction Time

For the reaction time, we only considered trials for which participants correctly re-
sponded, meaning that participants clicked after the failure happened, responded before
the trial ended (10 seconds after the cobot failure happened) and clicked on the correct
object (n = 282; Line = 112, Wedge = 92, Halo = 78). We measured the time from the
failure of the cobot visualization to the participant’s mouse click. Again, we considered
the median reaction time from the reaction test during the beginning of the study. The
mean reaction time per visualization without extreme outliers (≥3 × IQR) was calculated
for each participant.The mean reaction times for each visualization calculated over the
means of the participants (without values ≥3 × IQR) are (in ascending order): Line = 1.11 s
(SD = 1.05 s); Wedge = 2.51 s (SD = 1.47 s); and Halo = 4.26 s (SD = 2.63 s). The reaction
times are plotted in Figure 5.

Figure 5. Comparison of the reaction times for the three different visualization techniques: Wedge;
Halo; and Line.

A Friedman test revealed a significant main effect of reaction time on visualization
(χ2(2) = 11.64, p = 0.003 **, N = 11). Post hoc pairwise comparisons using a Wilcoxon
signed-rank with Bonferroni correction showed a significant difference between Halo and
Line, but not between any other pairs (see Table 2). Concerning reaction times, we can
conclude that Line has a significant lower reaction time than Halo.

Table 2. Pairwise comparisons of reaction times for the visualization techniques: Wedge; Halo;
and Line.

Comparison W Z p r

Wedge vs. Halo 8 −2.22 0.073 0.47
Wedge vs. Line 59 2.31 0.056 0.49
Halo vs. Line 64 2.76 0.009 ** 0.59

** p ≤ 0.01.





Sensors 2022, 22, 755 13 of 24

4.5.4. Task Load

The mean of the task load ratings as measured by the NASA Raw-Task Load In-
dex (Raw-TLX) [39] are (in ascending order): Line = 22.89 (SD = 16.47); Halo = 40.83
(SD = 17.28); and Wedge = 47.13 (SD = 22.89). A Friedman test revealed a significant main
effect of task load on visualization (χ2(2) = 7.09, p = 0.029 *, N = 11). Post hoc pairwise
comparisons using a Wilcoxon signed-rank with Bonferroni correction showed a significant
difference between Wedge and Line (W = 60, Z = 2.40, p = 0.041 *, r = 0.51) and Halo and
Line (W = 56, Z = 2.04, p = 0.042 *, r = 0.44), but not between Wedge and Halo (W = 44,
Z = 0.98, p = 0.730, r = 0.21). Concerning the task load, we can conclude that Line has
a significantly lower task load than Wedge and Halo. The resulting task load scores per
individual dimension of the TLX are presented in Figure 6.

Figure 6. Comparison of the task load dimensions for the three different visualization techniques:
Wedge; Halo; and Line.

Mental demand: A Friedman test revealed no significant main effect of mental demand on
visualization (χ2(2) = 15.69, p = 0.058, N = 11);
Physical demand: A Friedman test revealed no significant main effect of physical demand
on visualization (χ2(2) = 5.43, p = 0.066, N = 11);
Temporal demand: A Friedman test revealed no significant main effect of physical demand
on visualization (χ2(2) = 4.89, p = 0.087, N = 11);
Performance: A Friedman test revealed a significant main effect of physical demand on
visualization (χ2(2) = 8.79, p = 0.012 *, N = 11). Post hoc pairwise comparisons using a
Wilcoxon signed-rank with Bonferroni correction showed a significant difference between
Halo and Line (W = 66, Z = 2.93, p = 0.003 **, r = 0.63), but not between Wedge and Halo
(W = 21.5, Z = −1.03, p = 0.668, r = 0.22) and Halo and Line (W = 39, Z = 1.20, p = 0.744,
r = 0.26);
Effort: A Friedman test revealed no significant main effect of physical demand on visual-
ization (χ2(2) = 3.21, p = 0.201, N = 11);
Frustration: A Friedman test revealed a significant main effect of physical demand on
visualization (χ2(2) = 7.39, p = 0.025 *, N = 11). Post hoc pairwise comparisons using a
Wilcoxon signed-rank with Bonferroni correction showed a significant difference between
Halo and Line (W = 45, Z = 2.82, p = 0.012 *, r = 0.60), but not between Wedge and Halo
(W = 17, Z = -0.76, p = 0.977, r = 0.16) and Halo and Line (W = 26, Z = 0.99, p = 0.703,
r = 0.21).
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4.5.5. Individual Likert-Items

After each visualization, we asked 3 7-point Likert-items (1 = strongly agree–7 = strongly
disagree). Participants stated that the visualization helped them understand the position of
the objects on the table for Line (Md = 2, IQR = 2.5) while they slightly disagreed for Wedge
(Md = 5, IQR = 1.5) and Halo (Md = 5, IQR = 1.5). A Friedman test showed a significant
main effect (χ2(2) = 6.45, p = 0.040 *, N = 11). Post hoc pairwise comparisons using a
Wilcoxon signed-rank with Bonferroni correction showed a significant difference between
Wedge and Line (W = 53.5, Z = 2.69, p = 0.018 *, r = 0.57, but not between Wedge and Halo
(W = 20, Z = 0.18, p = 0.891, r = 0.04) and Halo and Line (W = 55.5, Z = 2.02, p = 0.146,
r = 0.43).

Moreover, participants voiced that they could easily notice the cobot failure for Line
(Md = 2, IQR = 2), while they slightly disagreed Halo (Md = 5, IQR = 2) and Wedge (Md = 6,
IQR = 2). A Friedman test revealed a significant main effect (χ2(2) = 9.5, p = 0.009 **,
N = 11). Post hoc pairwise comparisons using a Wilcoxon signed-rank with Bonferroni
correction showed a significant difference between Wedge and Line (W = 45, Z = 2.83,
p = 0.012, r = 0.60), but not between Wedge and Halo (W = 11.5, Z = 0.09, p = 0.969, r = 0.02)
and Halo and Line (W = 49, Z = 2.19, p = 0.094, r = 0.47).

Furthermore, participants stated that for them, the cobot itself does not interfere with
the recognition of the visualizations for Line (Md = 3, IQR = 2). In contrast, they slightly
disagreed for Wedge (Md = 4, IQR = 1) and Halo (Md = 5, IQR = 1.5). A Friedman test
revealed a significant main effect (χ2(2) = 7.09, p = 0.029 *, N = 11). Post hoc pairwise
comparisons using a Wilcoxon signed-rank with Bonferroni correction showed a significant
difference between Halo and Line (W = 43.5, Z = 2.55, p = 0.035 *, r = 0.54), but not between
Wedge and Halo (W = 2.5, Z = −1.98, p = 0.234, r = 0.42) and Wedge and Line (W = 29.5,
Z = 0.90, p = 0.867, r = 0.19).

4.5.6. Qualitative Insights

We applied open coding, followed by a thematic analysis of our interview data. We did
this to find patterns of two participants’ opinions and thoughts about the cobot assistance
and presented visualizations. Once all the interviews were completed, two researchers
transcribed all audio recordings and open coded the transcriptions. We then conducted
an online affinity diagram of the open codes and organized the codes into groups, using
Miro (https://miro.com, last retrieved 30 December 2021)—an online whiteboard [40].
During the telephone interview, we asked 11 open questions covering the status quo, a
need for assistive technology, trust against such a cobot, if visualizations can increase this
trust and understandability of cobot’s perception, and which visualization technique they
would or would not prefer and why. Because we asked open questions, we could identify
further insights from the participants in addition to the one related to the visualizations.
We identified four main themes, which we outline below.

Scenario and Technology Support

Both participants relied on assistance during breakfast from their caregivers and
were interested in the concept of a cobot-supported breakfast routine. P2: “I am entirely
open-minded and always interested in trying new things.” However, several concerns
were voiced, including the worry about the cost of a robotic aid and replacing the hu-
man caregiver, thus resulting in decreased social interaction. One additional design fea-
ture was frequently requested: the ability to mount the robotic arm to a wheelchair to
increase flexibility.

Trust and Understanding

From the onset, the overall trust towards a robotic aid was high. However, the
same principles as with humans apply; trust has to be earned. Participants indicated
that their confidence in a cobot increased when they observed the cobot’s perception and
communicated with it. P1: “I understood the cobot’s perception visualization, which helped
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me trust the system because I could see which objects were perceived by the cobot”. Easy-
to-understand visualization methods can help address this concern by clearly displaying
the cobot’s perception, allowing for a greater level of user oversight.

Positive Feedback

Post-experiment feedback was positive. Participants were generally happy with the
overall look and appearance of the cobot, a frequent concern of potential users. The
off-screen visualization helped increase trust and user acceptance by increasing the collabo-
rative effort between the human and cobot. Participants preferred the proposed new Line
type over traditional visualization methods. P1: “I liked Line the most because there was
always a clear reference, and I could see when something was out of order, even when I
was looking somewhere else”.

Problems and Drawbacks

When designing for non-tech-savvy users and physically vulnerable people, great care
must be taken that the technology works consistently before releasing it for general use.
P1: “I assume that any teething problems have been removed beforehand. That is why I
already have a certain basic trust”. This also increases end-user acceptance and addresses
frequently mentioned reservations concerning the cobot making more mistakes than a
human caregiver. P2: “I only have my caregivers as a reference. So if the cobot does not
knock something over more often than my caregivers, I would be happy. However, even if
the cobot would make a few more mistakes, I could forgive the cobot”.

Participants voiced several issues concerning possible communication methods. Both
Wedge and Halo were regarded as excessively complex and difficult to understand. P1: “I
had problems recognizing Wedge because it was difficult to interpret the truncated arrows
correctly”. P2: “I did not prefer the visualization with the circles [Halo]. I really could
not distinguish anything, and when something was gone, I could only guess which object
it was”.

4.6. Discussion

The results show a clear overall preference for a simple visualization technique such
as Line to communicate which objects are recognized by the cobot. More complexly shaped
visualizations, such as Wedge and Halo, lead to a comparatively higher task load in detecting
unperceived objects.

4.6.1. Performance of Visualizations

No statistically significant results were found concerning correctly perceived cobot
failures with overall high detection rates. This indicates that all three visualizations were
effective in communicating the failure states.

However, there were differences in efficiency, with Line showing a significantly lower
reaction time than Halo but not Wedge. Interestingly, the same results apply for accuracy, as
Line shows a significantly higher accuracy compared to Halo. This indicates that the simple
coding of Line has benefits even when the user has to understand which object is affected.
The added information of the distance coding of Halo does not seem to overcome potential
limitations due to visual clutter. While descriptive data do show differences between Line
and Wedge, statistical tests do not confirm this, potentially due to low statistical power in a
study with only twelve participants.

In our study, we were unable to confirm the advantages of Wedge in contrast to Halo in
error rate and completion time as mentioned by Gustafson et al. [24]. While the descriptive
data do show differences, another reason might be the round projection area. One potential
advantage of Wedge compared to Halo is to overcome the corner-density problem of the
latter [25], which is not applicable to round shaped-screens. This is in line with findings
from Gruenefeld et al., who also found that with a round visualization area, the advantage
of Wedge over Halo is less strong [37].
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4.6.2. Task Load

We found that Line could significantly reduce participants’ task load compared to
the more complex Wedge and Halo. We believe this to be due to the simpler shape of Line,
resulting in less visual clutter. In contrast to the other visualizations, with Line, users’ focus
of attention is on the gripper and center of the projection, which allows them to directly
observe any changes. Using Line does not require the user to observe the periphery, making
the visualization easier to interpret. Special consideration must be given to design an
easy-to-view visualization, with objects and paths large enough to be identified at a glance.

4.6.3. Usefulness and Trust

Qualitative insights showed a clear preference for Line, mainly due to its avoidance
of overlapping visualizations as with Halo and the amodal completion of the triangle
as in Wedge. Although initial confidence in the robot’s abilities is high, this needs to be
maintained through constant and consistent correct behavior and clear communication.
Our participants noted that higher levels of trust develop whereas failures happen rarely.
Participants highlighted that a higher rate of mistakes compared to a human caregiver
would result in lower acceptance and trust in the cobot.

4.6.4. Limitations

One of the main issues we faced when conducting this experiment was the small
sample size. This limitation highlights the difficulty of designing for and involving people
suffering from severe disabilities. The ongoing SARS-CoV-2 pandemic amplifies the prob-
lem as access to people is further restricted. Nonetheless, we believe that the remote nature
of our study enabled us to gain valuable insights while granting access to participants
from a wider geographic range. In addition to the low number of participants, even fewer
participants were willing to participate in interviews via telephone, resulting in a limited
number of qualitative data.

In our experiment, we did not measure trust with standardized questionnaires.
Nonetheless, during our interviews, participants reported insight into how they would trust
the cobot in this scenario. Hence, we did not address trust in-depth, i. e., with standardized
measures, and thereby, our results can only be the foundation for further hypotheses and
research concerning trust in cobots.

While this experiment was able to explore the potential benefits and drawbacks of
the three selected visualization techniques, it did not provide clear statistical evidence
in several cases. In particular, the differences between Line and Wedge did not show
statistically significant effects, although Wedge is conceptually quite similar to Halo. Two
difficulties can account for this, one being the overall small sample size and the second being
the higher level of individual differences in the target group, potentially overshadowing
smaller effects.

5. Experiment II: Validation Study

Based on the limitations of experiment I (see Section 4), we conducted a second experi-
ment open to a non-specific user group, aiming to gain statistical evidence on particular
hypotheses gained from this first experiment. Therefore, we also opted to exclude Halo from
this second experiment, as results regarding this technique were already quite clear in the
first. While the absolute results of such a second experiment with a non-specific user group
may not be applicable to the target user group of people with physical impairments, we are
confident that the relative results are. The main reasoning here is that the experimental task
only requires very little physical interaction and the kind of physical interaction (mouse
click) is kept constant for both tested visualizations Line and Wedge.

5.1. Study Design

Based on the study design of experiment I (see Section 4.1), we designed the second
experiment as a within-subjects remote user study. Here, we changed, based on the results
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of experiment I (see Section 4.5), our independent variable to visualization technique with
two levels (Line vs. Wedge). The order of the visualization techniques was counterbalanced.
We used the same quantitative measures to evaluate task performance (recognizability,
accuracy, reaction time, task load, and individual Likert-scaled items).

5.2. Hypotheses

Based on the results of experiment I, which showed the potential advantages of Line,
we developed the following set of hypotheses:

Hypothesis 1 (H1). We hypothesize that Line can select the failure object with higher accuracy
than Wedge. Results in experiment I already point in this direction. It seems that the user is mostly
focused on the gripper and thereby the center of the projection, which benefits Line, as any change in
the visualization can be directly seen in the center. While this should first benefit the recognizability
of the failure, it also seems to have a positive effect on the accuracy, as the target object can usually
be inducted from the vanishing line. Thereby, this should outweigh the better distance encoding
of Wedge.

Hypothesis 2 (H2). We expect that Line allows quicker reaction times when the cobot’s sensors
lose track of an object compared to Wedge. We believe this to be the case because with Line, as
before, the focus of attention is on the gripper and center of the projection, which allows the user
to directly observe any changes in the Line visualization. In contrast, Wedge requires the user to
observe the periphery.

Hypothesis 3 (H3). As a consequence of prior hypotheses, we also hypothesize that Line will lead
to a lower task load. The Line visualizations that are characteristically displayed beneath the gripper
and thereby in the center of the projection require less attention shifts from the user—which should
be visible in task load measures.

5.3. Participants

In total, we collected data from 209 participants. Since the experiment was conducted
as an online study, the data of those participants were checked with regard to plausibility.
We wanted to make sure that we did not include data from participants who simply ”clicked
through” the study without actually following the task protocol. Therefore, as a reasonable
limit, we decided to remove participants whose median time of the mouse click (timeclicked)
was less than three seconds. The limit of three seconds was chosen as the task scenario was
designed in such a way, that it took at least three seconds for a cobot failure to happen.

This check led to the exclusion of 93 participants. The remaining 116 participants were
categorized into four age groups: 85 of them were between 18 and 29 years old; 21 of them
were aged between 30 and 39 years; one was between 40 and 49 years old; and four of them
were 50–59 years old; and another three were 50–59 years old. Two participants preferred
not to state their age.

In total, 63 participants had used a robot before the experiment, while 53 participants
had no prior experience using robots. The remaining ten participants did not mention
their prior experience using robots. Among all participants, 49 had previous experience
using robots in the form of toy robots. In addition, 15 participants had used drones, eight
had used service robots and another seven had used industrial or humanoid robots before.
Furthermore, six participants had experiences with robots other than those mentioned.

Participants were recruited via SurveyCircle (https://www.surveycircle.com/, last
retrieved 30 December 2021)—an open platform for survey submissions among other more
local announcements. Participants did not receive any monetary compensation, but earned
“survey ranking points” for their own study on SurveyCircle.
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5.4. Procedure

The experiment followed the same procedure as described in Section 4.4, with the
only difference being that, in all twelve pre-programmed paths, only off-screen objects
disappeared after a random time between 3 and 15 seconds. We changed the focus onto
off-screen targets, as here lie the main conceptual differences between the visualizations.

5.5. Results

For the analysis, we did not assume the normality of our quantitative data, especially
since the measure reaction time was not normally distributed but generally right-skewed.
Other measures, such as accuracy, are dichotomous by nature and therefore not on a
metric scale. As a result, we applied non-parametric statistical tests. Given the within-
subject design of our evaluation, we applied Wilcoxon signed-rank tests. Overall, we had
2784 (116 participants × 2 visualization techniques × 12 trials) measured trials, excluding
training trials.

5.5.1. Recognizability: Percentage of Correctly Recognized Cobot Failures

The cobot failed after 3–15 seconds in each trial. Participants responded with a mouse
click to verify that they recognized the failure. However, in certain trials, participants
did not click at all (n = 189; Line = 105 trials and Wedge = 84 trials) or clicked before the
visualization disappeared (n = 1111; Wedge = 601 trials and Line = 510 trials). From the
reaction test at the beginning of the experiment, we calculated a median for the reaction
time of each participant. This was taken into account to count those trials as unsuccessful,
when the individual reaction to a cobot failure was faster than the median reaction time
(n = 22; Wedge = 15 and Line = 7). The mean percentage of correctly recognized trials for
each visualization are (in descending order): Line = 64.8% (SD = 29.8%) and Wedge = 59.5%
(SD = 31.0%). A Wilcoxon signed-rank test showed no significant difference between the
Wedge and Line (W = 1559, Z = −1.56, p = 0.120, r = 0.10, N = 116).

5.5.2. Accuracy: Percentage of Correctly Identified Failure Objects

For the percentage of correctly identified objects that the cobot failed to perceive during
the trial, we again only considered all trials for which participants responded after the cobot
failure happened (n = 1462). The mean percentage per participant of correctly identified
failure objects per visualization are (in descending order): Line = 72.7% (SD = 27.9%) and
Wedge = 64.4% (SD = 30.1%). A Wilcoxon signed-rank test showed a significant difference
between Wedge and Line (W = 1561.5, Z = −2.34, p = 0.019 *, r = 0.15, N = 116).

5.5.3. Reaction Time

For the reaction time, we only considered all trials in which participants correctly
responded, meaning participants clicked after the failure happened, responded before
the trial ended (10 seconds after the cobot failure happened) and clicked on the correct
object (n = 1100; Line = 608, Wedge = 492). We measured the time from the failure of the
cobot visualization to the participant’s mouse click. Again, we considered the median
reaction time from the reaction test during the beginning of the experiment. The mean
reaction time per visualization without extreme outliers (≥3 × IQR) was calculated for each
participant. The mean reaction times for each visualization calculated over the means of the
participants (without values ≥3 × IQR) are (in ascending order): Line = 1.72 s (SD = 1.51 s)
and Wedge = 2.07 s (SD = 1.81 s). The reaction times are plotted in Figure 7.
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Figure 7. Comparison of reaction times for the two different visualization techniques: Wedge and Line.

A Wilcoxon signed-rank test showed no significant difference between Wedge and Line
(W = 2254, Z = 1.44, p = 0.151, r = 0.11).

However, it appears that there is a potential interaction effect between the order vari-
able (start visualization) and the independent variable (visualization). When participants
started with Line, the means are (in ascending order): Wedge = 2.11 s (SD = 1.94 s) and
Line = 3.32 s (SD = 3.11 s). A Wilcoxon signed-rank test showed a significant difference
between Wedge and Line (W = 413, Z = −2.17, p = 0.030 *, r = 0.22).

Looking at Wedge as the start visualizations, the means are (in ascending order):
Line = 1.24 s (SD = 1.02 s) and Wedge = 2.01 s (SD = 1.64 s). A Wilcoxon signed-rank test
showed a significant difference between Wedge and Line (W = 904, Z = 2.57, p = 0.009 **,
r = 0.25).

This effect shows that the mean of Wedge is relatively stable, independently of it being
the first or second condition participants encountered (first condition: M = 2.11 s; SD = 1.94
s and second condition: M = 2.01 s; SD = 1.64 s). A Wilcoxon signed-rank test showed
no significant difference (W = 725; Z = 0.84; p = 0.404; r = 0.08). However, the mean of
Line depends on the ordering of the condition (first condition: M = 3.32 s; SD = 3.11 s
and second condition: M = 1.24 s; SD = 1.02 s). A Wilcoxon signed-rank test showed this
difference to be statistically significant (W = 1062, Z = 4.10, p ≤ 0.001 ***, r = 0.41).

5.5.4. Task Load

The mean of the task load ratings as measured by the NASA Raw-Task Load Index
(Raw-TLX) [39] are (in ascending order): Line = 42.39 (SD = 15.02) and Wedge = 47.19
(SD = 16.03). A Wilcoxon signed-rank test showed a significant difference between Wedge
and Line (W = 4483.5, Z = 3.19, p = 0.001 ***, r = 0.21). Concerning the task load, we can
conclude that Line has a significantly lower task load than Wedge. The resulting task load
scores per dimension are presented in Figure 8.
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Figure 8. Comparison of task load dimensions for the two different visualization techniques: Wedge
and Line.

Mental demand: A Wilcoxon signed-rank test showed a significant difference between
Wedge and Line (W = 3068, Z = 2.52, p = 0.011 *, r = 0.17);
Physical demand: A Wilcoxon signed-rank test showed no significant difference between
Wedge and Line (W = 1498.5, Z = 1.25, p = 0.211, r = 0.08);
Temporal demand: A Wilcoxon signed-rank test showed a significant difference between
Wedge and Line (W = 2900, Z = 2.24, p = 0.025 *, r = 0.15);
Performance: A Wilcoxon signed-rank test showed a significant difference between Wedge
and Line (W = 3618, Z = 2.35, p = 0.018 *, r = 0.15);
Effort: A Wilcoxon signed-rank test showed no significant difference between Wedge and
Line (W = 3158.5, Z = 1.92, p = 0.055, r = 0.13);
Frustration: A Wilcoxon signed-rank test showed a significant difference between Wedge
and Line (W = 3783.5, Z = 2.67, p = 0.007 **, r = 0.18).

5.5.5. Individual Likert-Items

After each visualization, we asked 3 7-point Likert-items (1 = strongly agree–7 = strongly
disagree). Participants voiced that the visualization helped them to understand whether an
object on the table was not detected by the cobot for Line (Md = 4, IQR = 2), while they
slightly disagreed for Wedge (Md = 5, IQR = 3). Post hoc pairwise comparisons using a
Wilcoxon signed-rank showed a significant difference (W = 2857, Z = 2.28, p = 0.022 *,
r = 0.15).

Moreover, participants stated that the number of objects on the table did not disturb
them for Line (Md = 3, IQR = 3) and Wedge (Md = 3, IQR = 3). Post hoc pairwise
comparisons using a Wilcoxon signed-rank showed a significant difference (W = 1808,
Z = 2.31, p = 0.021 *, r = 0.07).

Then, in the last question, participants mentioned that the visualization was always
understandable for Line (Md = 3, IQR = 3), while they slightly disagreed Wedge (Md = 4,
IQR = 3). Post hoc pairwise comparisons using a Wilcoxon signed-rank showed no
significant difference (W = 2654, Z = 3.31, p ≤ 0.001 ***, r = 0.22).

6. Discussion

Results from experiment II are in line with those from experiment I (see Section 4.6).
Both highlight the advantages of using a straightforward visualization such as Line to
show off-screen objects recognized by the cobot. Complex visualizations, such as Wedge,
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appear to lead to a higher amount of errors in detecting perception failures, identifying the
corresponding object, and a perceived higher task load.

6.1. Performance of Visualizations

Both experiments found no statistically significant results concerning correctly rec-
ognized cobot failures. All visualizations appear effective in communicating the cobots’
failures. However, the recognition percentage dropped in the second experiment, as even
with Line, participants were only able to correctly recognize cobot failures in 64.8% of the
trials, compared to 90.2% in the first experiment. Potentially, the small but intrinsically
motivated participant group in the first experiment did try to follow the protocol more
closely. An alternative explanation might be an excessively conservative exclusion criteria
(median response time smaller than 3 seconds) in experiment II.

When cobot failures were correctly recognized, a significant difference between Line
and Wedge regarding accuracy became apparent. The percentage of correctly identified
failure objects was highest with the Line (72.7%) visualization. This mirrors the results
from experiment I, where the difference between Halo and Line was significant in favor of
Line, with descriptive data showing an advantage also compared to Wedge. Hence, we can
accept Hypothesis 1.

Regarding the reaction time, the overall trend resembles the first experiment, with
Line having the lowest mean reaction time. However, the difference was again not statisti-
cally significant. Thus, we cannot accept Hypothesis 2. Interestingly, due to the simpler
experimental design with only two conditions, we observed an interaction between the
order of the conditions and the two different visualization techniques.

When participants worked with Line as the second visualization, the reaction time
significantly improved compared to those cases in which participants started with Line—
which, in turn, was not the case for Wedge). We concluded that Line might need a longer
learning phase for participants to fully benefit from it. Why this is the case, however,
remains an open question for future research.

6.2. Task Load

We found that Line significantly reduces participants’ task load compared to the
visually more complex Wedge technique. Therefore, we can accept our Hypothesis 3. We
attribute this to Line not requiring attention shifts but rather allowing the user to focus
on the gripper at all times. It also does not require amodal completion to decode the
distance information, which, as the accuracy results show, is not necessary to understand
and identify which object is affected.

6.3. Individual Likert-Items

The results of the individual Likert-items show that Line received better scores than
Wedge. The simpler design of Line ensures that cobot failure and the corresponding object
can be better detected, making this visualization more obvious than Wedge. For both
visualizations, the number of objects in the experiment, five, did not disturb participants.
This might, of course, change with a larger amount of objects, which could be necessary for
more complex scenarios.

6.4. Limitations

The high number of excluded participants (93) infer that a remote study setup has
less oversight, potentially enticing participants not to follow the study protocol. This issue
required the need for careful data cleaning. One reason could be that further guiding of the
participants was not possible.

Since participants could not be observed during the experiment, we cannot say
whether they ran the experiment on a suitable device and whether their full attention
was on the trials. Based on the reduced level of control, we expect additional noise in our
data which may overshadow certain effects. This is a common problem with remote stud-
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ies, as one cannot ensure, for example, identical technical conditions for each participant.
Nonetheless, we do not believe that there has been a systematic bias in our data due to this
reduced level of control.

Based on the experiences from experiment I, we deliberately did not include more
open-ended questions or even an interview apart from the 7-point Likert-scale items.
Experience shows that with a remote online study, the longer it takes, the higher the chance
of participants dropping out. Therefore, we decided to keep the study as short and concise
as possible and focused on quantitative data.

In addition to projection orientation, special considerations regarding ambient light
and background effects have to be taken into account when using SAR. Our investiga-
tion neglected these external factors as they are present independently of the projection
orientation. Nevertheless, more research is required to better understand their influence.

7. Conclusions

We investigated the performance differences of three visualization techniques in com-
municating cobot perception for a Spatial Augmented Reality setup, specifically focusing on
people with physical impairments as potential end-users. We were particularly interested
in comparing well-established off-screen visualization techniques to a reduced and straight-
forward line-based visualization for perceived objects inside and outside the projection
area. The first experiment focused on 11 target group participants, while 116 non-specific
respondents participated in the second experiment. Both experiments analyzed and com-
pared the effectiveness, efficiency, subjective satisfaction and task load of the visualization
techniques Halo, Wedge and Line. While the reaction times showed only minimal differences
between Line and the established off-screen visualization techniques, Line did significantly
improve the percentage of correctly identified failure objects and persistently lowered
participants’ task load. This result is mirrored by qualitative feedback from two target
group participants, each highlighting the importance of an easy-to-understand visualiza-
tion of the cobots’ perception. Overall, our results stress that communicating the cobots’
perception, including identification failures, is invaluable for assessing the overall situation
and improving end-user trust. Our results generalize to similar pick-and-place workbench
situations but may have limited applicability for more complex scenarios without a clearly
defined environment. Overall, our findings add to a growing body of user-centered HRI
literature with the overarching goal of increased user acceptance and confidence in cobots.
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Abstract. Assistive technologies and in particular assistive robotic
arms have the potential to enable people with motor impairments to
live a self-determined life. More and more of these systems have become
available for end users in recent years, such as the Kinova Jaco robotic
arm. However, they mostly require complex manual control, which can
overwhelm users. As a result, researchers have explored ways to let such
robots act autonomously. However, at least for this specific group of
users, such an approach has shown to be futile. Here, users want to stay
in control to achieve a higher level of personal autonomy, to which an
autonomous robot runs counter. In our research, we explore how Artifi-
cial Intelligence (AI) can be integrated into a shared control paradigm. In
particular, we focus on the consequential requirements for the interface
between human and robot and how we can keep humans in the loop while
still significantly reducing the mental load and required motor skills.

Keywords: Assistive Technologies · Human-Robot-Interaction Mixed
Reality · Shared Control · Visual Cues

1 Introduction and Motivation

When controlling an assistive robotic arm, one major challenge from a human-
robot interface perspective is the mapping between available input controls and
resulting robot movements. Assistive robotic arms capable of performing arbi-
trary pick-and-place tasks in 3D-space require at least seven Degrees-of-Freedom
(DoFs): x-, y- and z-translation, roll, pitch, yaw, and opening/closing the robot’s
fingers (cardinal DoFs). Therefore, there is no direct mapping possible with most
input devices. As a result, the user needs to constantly switch between modes,
i.e., flip through several pre-defined mappings between input and output space.
Research has shown that such mode switching requires a considerable amount
of time and cognitive demand [2,5,12].
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Much research in assistive robotics is concerned with autonomous robotic
functions [4,10,18,30]. From that perspective, the mode switching dilemma may
seem moot with robots gaining more and more autonomy through advanced
Artifical Intelligence (AI) and thereby reducing the need for such direct control
altogether. However, studies have shown that people with motor impairments
may prefer manual control over autonomous execution, as they see the robot not
so much as another agent but as a tool to regain self-determination (e.g., [16,28]).

To tackle this dilemma, different approaches along the continuum of shared
control methods were proposed (e.g., [8,11,12,15,17,27,29,33]). The concept
of shared control has great potential to design communication and control
between humans and robots [1]. For assistive robotic arms, however, the var-
ious approaches address the issue on different levels, sometimes reducing the
involvement of the user to simply indicate an object to be picked [33]. Other
approaches directly addresses the mode switching issue, with Herlant et al. sug-
gesting time-optimal mode switching along the cardinal DoFs [12] and – based
on Dijkstra’s algorithm – to predict when the robot should switch modes.

Recently, Goldau & Frese proposed an approach integrating a Convolutional
Neural Network (CNN), which interprets live camera data from the gripper to
constantly describe the probabilistic distribution of intended DoF robot motion
and, accordingly, optimal mapping of DoFs [11]. In principle, the idea is that
the user gets a suggestion not just for when and how to switch mode but going
beyond cardinal DoFs suggestions, allowing more flexible and adaptive DoF
combinations.

In our work, we explored the feasibility of such a CNN-based approach,
identified empirical implications for shared control systems, and what kind of
human-robot interaction design is feasible [17,24,27]. For this paper, we present
the main challenges we identified and how our work has aimed to address these.
In summary, these challenges are:

– AI legibility: Given an AI which is able to automate mode switches, the
user needs to understand the behavior and actions of the AI. A system which
changes input mappings without notification or explanation would be per-
ceived as unpredictable.

– AI user control: Given an AI which is able to automate mode switches, the
user must stay in the loop and have a final say in making the choices.

– AI intervention: Given an AI which is able to automate mode switches, the
user needs to expect and prepare for AI mistakes. Therefore, they need to
interfere with the AI and, at best, make it reconsider the mode switching.

2 Engineering Context: Simulation Environment

In our research, we found that – given the complexity of robotic arms in combi-
nation with the limitations of current AI technologies – a testbed environment
that allows the integration of different control mechanisms and user interface
components facilitates engineering.
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To that end, we developed AdaptiX [24], a transitional XR framework for
shared control applications in assistive robotics. AdaptiX resembles a real-world
scenario, where an assistive robotic arm (here a Kinova Jaco 2 ) is used to facil-
itate pick-and-place tasks as we observed that they are part of many Activities
of Daily Living (ADLs). The system combines a physical robot implementation
with a 3D simulation environment. This approach, reminiscent of simulations
used in industrial contexts [19,22,32], helps to address challenges associated with
bulky, expensive, and complex assistive robotic arms. Researchers are empowered
to streamline their Design and Development (D&D) process, reducing complex-
ity and enhancing efficiency. The system’s integrated Robot Operating System
(ROS) interface enables seamless connectivity to a physical robotic arm, sup-
porting bidirectional interactions and data exchange through a DigitalTwin and
PhysicalTwin approach.

In addition to Cartesian robot control, the framework includes Adaptive DoF
Mapping Controls (ADMC), an initial shared control approach that employs AI-
generated suggestions, subject to user approval and control. Figure 1 provides
an overview of the framework’s architecture.

Fig. 1. Overview of AdaptiX ’ architecture, illustrating each component, their direc-
tional communication, and the crossover from and to the framework [24].

AdaptiX is built on the foundation of the game engine Unreal Engine 4.27 [7].
This game engine is renowned for its advanced real-time 3D photorealistic visuals
and immersive capabilities, making it an ideal choice for our framework. Further-
more, it offers a rich set of assets that can be readily used for future expansions.
Unreal Engine is versatile and supports a variety of hardware configurations,
allowing the framework to be deployed across different operating systems. It is
compatible with a wide range of Virtual Reality (VR), Mixed Reality (MR), and
Augmented Reality (AR) headsets, as well as gamepads and joysticks, making
it suitable for development in both C++ and Blueprints.

In the default scenario within AdaptiX, the focus is on a room that has been
meticulously scanned using photogrammetry techniques. This room contains a
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table with an integrated virtual robotic arm, as depicted in Fig. 2. The simulation
of the robotic arm has been optimized for operation via a VR motion controller,
which features an analog stick, several functional buttons, and motion capture
capabilities. An example of a compatible motion controller is the Meta Quest
2 [20].

As most real-world scenarios will include pick-and-place operations [9,16,31,
35], we designed a straightforward testbed scenario which requires to move a
blue block to a red target area.

Fig. 2. Virtual environment consisting of (left to right): a virtual canvas, the motion
controller, a table with a blue object and red target, and a Kinova Jaco with an arrow-
based visualization [27].

We integrated the Varjo XR-3 [34], a high-resolution XR Head-Mounted
Displays (HMD), to create a seamless MR environment. By employing two HTC
VIVE trackers [14], we synchronized the virtual and real worlds, ensuring that
the operational spaces of the robots were perfectly aligned. This synchronization
enables the adjustment of the MR level in multiple increments, as outlined in the
virtuality continuum proposed by Milgram and Kishino [21]. A visual comparison
between the user’s perspective in the real world and the simulation is presented
in Fig. 3.

The MR continuum comprises different levels. Level (1) serves as the study’s
baseline condition, offering no multi-modal feedback to the user. At level (2), the
system mimics an AR visualization technique, which overlays the entire physical
setup with basic cues. Especially level (3) and (4) enable customizing either
the robot itself or the environment to extent/exchange the physical setup but
still not loosing the context. In (3) users can interact with a totally new or
customized robot while being in a familiar environment. World’s distractions
can be excluded in (4) while the original robot is presented. Level (5) provides
a VR environment that is entirely customizable.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. MR continuum with (a) only the real robotic arm in real environment, (b)
augmenting of directional cues in the real environment with the real robotic arm,
(c) additional visualizing the gripper and base of the virtual robotic arm in the real
environment, (d) visualizing the simulated robotic arm in the real environment, (e)
visualizing the real robotic arm in the virtual environment, and (f) visualizing the
simulated robotic arm in the virtual environment [24].

3 AI-Enhanced Shared Control

This section will provide more details about our previous research and how we
addressed the three main challenges stated at the end of Sect. 1 – AI legibility, AI
user control, and AI intervention. Therefore, we illustrate initial design concepts,
work in progress, and prototypes that were evaluated in user studies.

3.1 AI Legibility

In the context of our research, achieving a level of AI legibility is mostly con-
cerned with making it easier to understand how the AI would reassign the input
mapping and/or change the movement direction of the robot. In our recent
survey on such robot motion intent approaches [25], we found that, for com-
municating location information (such as a movement direction), head-mounted
technology such as AR HMDs allow to represent the robot movement visually
and have shown to provide a potential fruitful approach [6]. Although research
has explored robot motion intent, there needs to be more insight into what
works best in various situations and for different user types. Customizing the
visualization and feedback modality is crucial, as there is no “one size fits all”
solution [13].

We proposed different design concepts that fall into a spectrum with two
extremes – indicative and explanatory [26]. Indicative: Focus on crucial infor-
mation only, quick and easy solution, suitable for experienced robot users.
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Explanatory: Movements are shown in great detail, high level of information,
especially helpful for new users.

DoF-Indicator: LEDs attached to the robot’s axis and joints – or mounted
on a bar in front of it – communicate active and nonactive DoFs (see Fig. 4).
Likely more suitable for experienced users because of indirect communication of
movement, it communicates the DoF mapping and resulting movement abilities.

(a) (b)

Fig. 4. DoF-Indicator: (a) LEDs directly attached at each robot’s joint; (b) LEDs
mounted on a bar in front of the robot referring to each joint (1–7) [26].

DoF-Combination-Indicator: Movement ability is communicated by a sim-
plified representation of the robot only able to move two DoFs simultaneously,
for example, rotating and extending the arm (see Fig. 5). The AR representation
either overlays the real robot or can be displayed separately in the corner of the
AR screen. This visualization decreases the robot’s complexity.

(a) (b)

Fig. 5. DoF-Combination-Indicator: (a) as an AR overlay, supporting robot and visu-
alization in line of sight; (b) as an icon in the screen’s corner [26].

Gizmo Visualization: Arrows, planes and point clouds communicate the cur-
rent movement ability of the robot (see Fig. 6). This allows for several different
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Fig. 6. Gizmo Visualization: (left) simple: straight and curved arrows; (center) pla-
nar: planes of movement; (right) cloud: 3D-cloud of possible positions [26].

design options. A arrow-based approach was already successfully evaluated in
previous studies [17,27].

Demonstration: Current movement possibilities are demonstrated through
either the actual robot or an AR ghost-representation. With both options a
quick movement indicates the intended motion.

Visualization Approaches. Based on our initial concepts, we have explored
augmenting the users’ view with directional movement cues both in true – three-
dimensional – AR (registered in 3D, [17,27]) as well as in 2D as symbolic repre-
sentations on a data glass (for both refer to Fig. 7).

The former allows information-rich visualization and has shown in our studies
to allow users to sufficiently anticipate a new suggested input mode mapping and
corresponding movement direction [27].

The latter provides the advantage that the technology is already market
ready and the devices are lightweight to carry and relatively easy to set up
(compared to AR HMDs). However, without the ability to display directional
visual cues registered in 3D space, the visual feedback is separated from the
interaction space (robot) and may be more difficult to align with the current
robot movement. In our work, we are currently exploring different visual forms,
as can be seen in Fig. 7 c) and d).

In addition, we have been exploring other modalities which could either
replace or complement visual feedback to increase the legibility of the AI. In [23],
we explored different designs for vibrotactile feedback to communicate three-
dimensional motion directions. We developed two conditions based on the Cuta-
neous Rabbit illusion and one based on Apparent Tactile Motion to communicate
2D direction. The gradient of the overall 3D direction was then encoded by the
number of discrete vibration pulses, the vibration intensity, or a combination of
both. Our study showed that three-dimensional directional cues could be com-
municated with a high success rate for both the 2D direction and gradient, but
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(a) (b)

(c) (d)

Fig. 7. Visualization examples for directional cues of an AI-supported robotic control
in a VR 3D environment: (a) Ghost & (b) Arrows [24], and a real-world setting via
data glasses, e.g., Google Glass EE2 : (c) Ring & (d) Points.

may benefit from dual-encoding of the gradient information as well as individ-
ual customization of the specific implementation of the vibrotactile feedback
patterns (see Fig. 8).

(a) 3D Gradient (b) 2D Directions (c) Study Setup

Fig. 8.Vibrotactile directional cues (a) 3D Gradient encoding with pulses and intensity
mapping (b) 2D direction encoding across the hand (c) illustrates the study setup,
with the arm resting on the armrest while the hand is in the air [23].

Empirical Implications. Through related work and our own research, we iden-
tified that – while the robot system is designed to act in the user’s best interest
– the user still needs to build trust, which requires transparency and legibility
that they can comprehend. They should also be able to interfere with the robot’s
control if the robot makes a mistake or gives inappropriate suggestions for inter-
action. Communicating intent further requires having the user pay attention or
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guiding the attention of the user, requiring multi-modal stimuli, depending on
the situation and the capabilities of the user.

3.2 AI User Control

For the user to remain in control, automatic mapping of input modes may not be
desirable. Instead, we have explored different ways which allow users to stay in
control but also benefit from the potential increase in efficient task completion. In
their original approach, Goldau & Frese [11] asked users to wait for five seconds
without interacting with the robot to trigger a new mapping.

As this has shown to cause some level of frustration, we explored ways for the
user to directly request a new mapping [17] as well as integrating a continuous
or threshold-based feedforward visualization of an updated mapping [27]. The
latter has shown positive effects, as the user thereby can always compare the
current movement and mapping with an update from the AI, but only switch to
that when they feel that it changes the movement direction to achieve the task
better.

In both studies, Classic – a non-adaptive control mode inspired by theKinova
Jaco 2 standard joystick input – relies on mode switching to access and control
all DoFs one after another and was used as a baseline condition. In comparison
to Classic, our AI-based ADMC methods significantly reduced (1) the task
completion time, (2) the average number of necessary mode switches, and (3)
the perceived workload of the user.

Users may have diverse input device preferences and capabilities. This calls
for the availability of multi-modal input options or the ability to choose between
different input modalities [3]. To enable such user input, our simulation environ-
ment provides a standard control approach where pressing a keyboard button
moves the end effector along cardinal DoFs (x, y, z, roll, pitch, yaw, opening
and closing the gripper). Using further build-in functionalities, the designated
keyboard input can easily be adjusted to other input devices like gamepads,
joysticks, or customized assistive input appliances.

Empirical Implications. While the goal is to keep users in control, the com-
plexity of both the robot interaction and the DoF limitations for available input
devices can easily make the system very difficult to use. Therefore, in order to
find the sweet spot for shared control, we propose to start with a rather mini-
mized set of user interaction and increase that on demand and depending on the
individual capabilities. Users should not be confused by too many interaction
options or overly complex movements. While optimal ways of accomplishing a
goal may require complex intervention from the robot, these interventions may
be difficult for users to understand, and therefore trust. In addition, keep the
DoF of input devices low as this maximizes the amount of assistive devices capa-
ble of controlling the robot.

Our previous research and related work show that pick-and-place tasks are
ubiquitous and necessary to perform ADLs. It is, therefore, important that
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shared control is first implemented for these simple tasks before more complex
sequences are examined. If users struggle to understand shared controls for pick-
and-place tasks, we believe it is highly likely that more complex tasks may cause
further frustration.

3.3 AI Intervention

While our approaches for AI user control allow some level of intervention, since
the user can decide when to accept the updated input mapping as provided by
the AI, it has some limitations. If the AI algorithm – as suggested by Goldau
& Frese – is not able to provide a useful mapping, the user may become stuck
with little flexibility to trigger the AI to update the mapping. We are currently
exploring different approaches to tackle this issue for the specific shared control
mechanism. One rather straightforward approach would be to allow the user to
disable the AI and go back to manual mode switching of Cartesian DoFs. This
of course may decrease the acceptance and perceived usefulness of the AI.

Fig. 9. The current DoF mapping (cyan arrow) does not allow to move to the blue
object. By changing the perspective (green mode and arrow), the gripper is rotated in
place to allow the CNN to suggest a new DoF mapping by an updated camera feed.
(Color figure online)

A different way, which directly builds on the understanding of how the AI,
in this case a CNN, operates, would be to find a way for the AI to change
perspective – quite literally (see Fig. 9). If the robotic arm, or more specifically
the gripper with the integrated or mounted camera is triggered to perform a
small location repositioning, basically resulting in the robot looking around, the
CNN will receive a new input which may result in a new and potentially better
mapping.
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Especially when the CNN is confronted with more than one choice (e.g.,
several objects in sight and vicinity of the gripper/camera) and has to choose
one of them, based on the AI algorithm, rather than resulting in a draw. This
kind of deadlock would only be resolved by a manual – Cartesian DoF – control.
More suitable would be to either increasing AI’s confidence of the chosen object
by user input in the selected direction or decreasing by moving away, leading to
a re-calculation and updated DoF mapping suggestion.

Empirical Implications. The aim is to keep the user in the loop so that they
can intervene appropriately whenever the AI reaches its limits. However, this
must strive for a balance that does not place sole decision dependency on the
user to avoid access cognitive demand and temporal delays. Instead, establishing
a four-eye principle with the AI functioning with implicit user consent until
intervention is the most efficient approach to fulfilling the task’s goal.

4 Conclusion

In this paper, we summarized our experiences for engineering AI-enhanced
shared-control methods for assistive robotic arms. In particular, we identified
three main challenges in AI legibility, AI user control, and AI intervention. Our
work highlights the benefits and importance of sensible interaction design, which
addresses these challenges and requires both a deep understanding of and inter-
connection with the AI technology. We also found that there is still much to
be explored, in particular in the area of AI intervention approaches which go
beyond circumventing the AI.
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In Time and Space: Towards Usable Adaptive Control for Assistive
Robotic Arms

Max Pascher1,2 and Kirill Kronhardt1 and Felix Ferdinand Goldau3 and Udo Frese3 and Jens Gerken1

Abstract— Robotic solutions, in particular robotic arms, are
becoming more frequently deployed for close collaboration with
humans, for example in manufacturing or domestic care envi-
ronments. These robotic arms require the user to control several
Degrees-of-Freedom (DoFs) to perform tasks, primarily involv-
ing grasping and manipulating objects. Standard input devices
predominantly have two DoFs, requiring time-consuming and
cognitively demanding mode switches to select individual DoFs.
Contemporary Adaptive DoF Mapping Controls (ADMCs) have
shown to decrease the necessary number of mode switches
but were up to now not able to significantly reduce the
perceived workload. Users still bear the mental workload of
incorporating abstract mode switching into their workflow. We
address this by providing feed-forward multimodal feedback
using updated recommendations of ADMC, allowing users to
visually compare the current and the suggested mapping in
real-time. We contrast the effectiveness of two new approaches
that a) continuously recommend updated DoF combinations or
b) use discrete thresholds between current robot movements
and new recommendations. Both are compared in a Virtual
Reality (VR) in-person study against a classic control method.
Significant results for lowered task completion time, fewer mode
switches, and reduced perceived workload conclusively establish
that in combination with feedforward, ADMC methods can
indeed outperform classic mode switching. A lack of apparent
quantitative differences between Continuous and Threshold
reveals the importance of user-centered customization options.
Including these implications in the development process will im-
prove usability, which is essential for successfully implementing
robotic technologies with high user acceptance.

I. INTRODUCTION

While robotic devices have long been put behind fences for
safety reasons, advances in the development of such (semi-)
autonomous technologies have started to permeate almost all
aspects of our personal and professional lives. These include
increased close-quarter collaborations with robotic devices
– from industry assembly lines [1] to mobility aides [2].
Assistive robotic arms are a particularly useful and versatile
subset of collaborative technologies with varied applications
in different fields, e.g., [3], [4].

Yet, new challenges arise when robots are tasked with
(semi-) autonomous actions, resulting in additional stress
for end-users if not correctly addressed during the design

1Max Pascher, Kirill Kronhardt, and Jens Gerken are with the
Westphalian University of Applied Sciences, Human-Computer Inter-
action, 45897 Gelsenkirchen, Germany max.pascher@w-hs.de,
kirill.kronhardt@w-hs.de, jens.gerken@w-hs.de

2Max Pascher is also with the University of Duisburg-
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3Felix Ferdinand Goldau and Udo Frese are with the University of
Bremen, Mathematics & Computer Science, 28359 Bremen, Germany
fgoldau@uni-bremen.de, ufrese@uni-bremen.de

process [5]. Pollak et al. highlight the decreased feeling of
control users experienced when using a robot’s autonomous
mode. Switching to manual mode allowed their study par-
ticipants to regain control and decrease stress significantly.
These findings are corroborated by Kim et al. whose compar-
ative study of control methods resulted in markedly higher
user satisfaction for the manual mode cohort [6].

A proposed solution from previous work [7] to these
challenge are adaptive controls – referred as Adaptive DoF
Mapping Controls (ADMCs) – which merge the advantages
of (semi-) autonomous actions with the flexibility of manual
controls. They combine multiple DoFs dynamically for a
specific scenario to assist in controlling the robot. In our
concept, a Convolutional Neural Network (CNN) interprets
a camera’s video feed of the environment and dynamically
combines the most likely DoFs for a suggested movement.
Building on this, we already showed that such ADMC com-
binations of the robot’s DoFs can lead to a significantly lower
number of mode switches compared to standard control
methods [8]. However, our study could not show that this
may also improve task completion time or reduce cognitive
load. Also, challenges concerning the understanding of DoF
mappings were raised during the study.

Based on these previous findings, the present study eval-
uates two novel ADMCs methods for an assistive robotic
arm. We compare the variants Continuous and Threshold,
differing in the time at which suggestions are communicated
to the user, against a classic control method. In detail, we
examine possible effects on task completion time, number of
necessary mode switches, perceived workload, and subjective
user experience. Our contribution is two-fold:

1) We demonstrate that both ADMC methods signifi-
cantly reduce the task completion time, the average
number of mode switches, and the perceived workload
of the user.

2) Further, we establish that for Continuous and Thresh-
old, each has specific advantages which some users
may prefer over the other, raising the need for cus-
tomizable configurations.

II. RELATED WORK

Collaborative robotic solutions have received much attention
in recent years. Previous work has generally focused on (a)
different designs of robot motion intent and most recently (b)
ADMCs for robots. The latter requires a critical yet seldom
addressed topic in how collaborative robots can effectively
communicate recommended movement directions to their
user.

2023 32nd IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN)
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A. Robot Motion Intent

Advance knowledge of the intended robot behavior and
subsequent movements within the physical world are critical
for effective collaboration when humans and robots occupy
the same space and need to coordinate their actions [9]. In
previous work, we analyzed existing techniques of commu-
nicating robot motion intent and identified different intent
types as well as several intent properties, such as location and
information or the placement of the technology [10]. Users
generally prefer to have the robot’s future movements repre-
sented visually [11]. To convey detailed robot motion intent,
researchers often rely on Augmented Reality (AR) [12], [13],
[14], as “with the help of AR, interaction can become more
intuitive and natural to humans” [15].

Effective communication of robot motion intent is par-
ticularly relevant when using ADMCs for assistive robotic
arms, as in such a shared or traded control environment each
interaction needs to be precisely coordinated.

B. Adaptive DoF Mapping Controls

Traditionally, robot control methods include individual com-
mands for each DoF, requiring frequent mode switches for
controlling translations, rotations, and gripper functionality.
Herlant et al. called into question the suitability of these
standard control methods as task completion time markedly
increases by using user-initiated compared to time-optimal
mode switches [16].

To tackle this issue, we proposed in previous work the
concept of ADMC – a dynamic combination of multiple
DoFs, thus adjusted to specific scenarios or tasks [7]. This
streamlining decreases the need for constant mode switching,
resulting in faster and more efficient task fulfillment. In [7]
we implemented a CNN as control unit to provide these
dynamic DoF mappings and gave the user a triggering
mechanism to request an update. In a 2D simulation study
which had a 4-DoF robot control mapped to a 2-DoF input
device, we found promising results.

We then extended this approach into a 3D VR simulation,
thereby mapping a 7-DoF robot control to a 2-DoF input
device [8]. We evaluated two ADMC methods – differing in
their respective movement suggestion concept – against the
baseline control method Classic. Simulating the effect of a
CNN, our work relied on a task-specific script to provide
DoF mappings based on the relative position and orientation
between gripper and target. This removed the potentially
confounding effect of a suboptimal CNN implementation.
Results showed that the number of mode switches was sig-
nificantly reduced compared to Classic, but task completion
time was unaffected. Users reported high cognitive demand
and difficulties understanding the mapping to 2 different
input DoFs. In addition, the system felt difficult to predict
and required trial and error [8].

III. ADAPTIVE DOF MAPPING CONTROLS

Building on our previous work [8], we created a VR sim-
ulation of a Human-Robot Interaction (HRI) experimental
setup to compare different ADMC methods to a non-adaptive

baseline condition Classic. Like in previous work [8] we
applied a task-specific script to explore our ADMC methods.
We tackle previous issues by 1) visualizing not only the
current but also the forthcoming DoF mapping suggestion
(improving predictability) and 2) reducing the input to a
single DoF (reducing cognitive demand). We propose two
approaches as different trade-offs between control fidelity
and cognitive demand.

The VR simulation includes a virtual model of the Kinova
Jaco 21 – a commercially available assistive robotic arm
frequently used in HRI studies, e.g., [4], [16]. Our proposed
visual feedback mimics AR, with directional cues registered
in 3D space. This allows the user to understand different
movement directions for the actual control and the suggested
DoF combinations. To simplify understanding, we use ar-
rows, a straightforward and common visualization technique
to communicate motion intent [9], [17], [18].

As a control method for the ADMCs, we implemented a
task-specific script. This removed any potential bias that a
more generic but currently still technically limited approach
such as a CNN-based control method may introduce. Of
course, our approach only works in a controlled experimen-
tal setting. The task-specific script evaluates the gripper’s
current position, rotation, and finger position relative to a
target. The DoF mapping system then suggests five different
movement options (referred in the following to as modes) –
in order of assumed usefulness – to the user.

1) Optimal Suggestion: Combining translation, rotation,
and finger movement [opening and closing] into one
suggestion, causing the gripper to move towards the
target, pick it up, or release it on the intended surface.

2) An orthogonal suggestion based on (1) but excluding
the finger movement. Allows the users to adjust the
gripper’s position while still being correctly orientated.

3) A pure translation towards the next target, disregarding
any rotation.

4) A pure rotation towards the next target without moving
the gripper.

5) Opening or closing of the gripper’s fingers.
During movement, the ADMC system re-calculates the best
DoF combinations to fulfill the specific task, which are then
presented as new suggestions. Users cycle through these
modes – by pressing a button on the input device – to
select a suitable one or continue moving with the previous
active suggestion (see Figure 1). A suggestion indicator is
visible above the gripper when users are not moving the
robot to distinguish between the modes. Five slanted cubes
represent the possible suggestions. The cubes appear gray
if no suggestion is active and turn blue to indicate that a
new suggestion is selected. The cube corresponding to the
selected mode increases in size. In contrast to our previous
work [8] and to the dual axis system of the baseline control
method (see Figure 2), only one input axis is required to
control the robotic arm. Consequently, the cognitive demand

1Kinova Robotic arm. https://assistive.kinovarobotics.
com/product/jaco-robotic-arm, last retrieved June 24, 2023.
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on the users is reduced as they can focus on evaluating one
movement rather than two simultaneous suggestions.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Suggestions as visualized in the ADMC methods,
(a) Continue previous movement, (b) Optimal Suggestion,
(c) Adjustment Suggestion, (d) Pure Translation, (e) Pure
Rotation, (f) Open / Close Fingers.

Continuous: This control method uses continuous feedback
of robot motion intent to increase oversight of updated
movement suggestions. Continuous feedback enables users
to move in a direction and constantly evaluate the updated
optimal suggestion by the ADMC system. If found fitting,
users can switch to a new suggestion and move the robot
in the updated path to fulfill the task. Here, two directional
indicators are virtually attached to the robotic arm’s gripper:
a light blue and a dark blue arrow. The former represents the
currently selected movement option (mode) mapped to the
input axis. The forward movement of the input axis moves
the gripper in the direction the arrow is pointing; engaging
it backward moves the gripper in the arrow’s reverse direc-
tion. The dark blue arrow represents the currently optimal
suggestion at a given time. Users can only move the robot
along the dark blue arrow if they switch to that suggestion
first – which causes both arrows to overlap. While this
approach increases transparency, users might be distracted
by the constantly updating suggestions, potentially leading
to more mode switches and perceived workload.
Threshold: In contrast to Continuous, Threshold uses time-
discrete and multimodal feedback to indicate optimized
movement suggestions. Again, a light blue arrow maps the
selected movement option (mode) to the input axis. New
suggestions are only shown to the users if the optimal mode
differs – by a set degree – from the current movement. We
followed Singhal et al. and used a cosine between-vector sim-
ilarity measure to calculate this threshold [19], ranging from
exact alignment [0%] to total opposite direction [100%]. In
pretests, we determined a 20% difference between the current
and optimal vector as the suggestion threshold. If exceeded,
a short vibration pulse to the input device and a 1kHz sound

inform the users of an updated suggestion. In addition, a
dark blue arrow appears which visualizes the new suggested
movement. Users can continue the active movement, switch
to the new suggestion, or cycle through the other four modes
before deciding on one. Unlike with Continuous, users can
therefore entirely focus on the movement they are currently
performing until explicitly notified and directed to a new
suggestion. We expect Threshold to reduce perceived work-
load compared to Continuous as it does not require constant
evaluation of the visual feedback. However, we expect task
completion time to increase, as Threshold systematically
interrupts the users’ workflow. Additionally, Threshold might
result in a perceived loss of control, potentially negatively
influencing usability.

IV. STUDY METHOD AND MATERIALS

To explore the effectiveness of our ADMC methods, we
conducted a supervised, controlled experiment as a VR sim-
ulation study with 24 participants. We compared our ADMC
methods to Classic, which relies on mode switching to
access and control all DoFs one after another. Approaches as
Classic are well established (e.g., when driving a car) and are
predictable and transparent for the user. Comparing ADMC
methods to Classic allows HRI researchers to disentangle
their respective advantages and disadvantages.

A. Study Design

We applied a within-participant design with control method
as an independent variable with three conditions: (1) Clas-
sic, (2) Continuous, and (3) Threshold. Every participant
performed eight training trials and 24 measured trials per
condition, resulting in 72 measured and 24 training trials
per participant and 1,728 measured trials in total. To counter
learning and fatigue effects, the order of conditions was fully
counter-balanced. We measured the following dependent
variables:

1) Average Task Completion Time For each trial, we
measured the time in seconds needed to pick an object
and place it on the target surface.

2) Average Number of Mode Switches For each trial,
we recorded every mode switch conducted by pressing
a button on the input device.

3) Perceived Workload After completing each condi-
tion, we measured cognitive workload with the NASA
Raw-Task Load Index (NASA Raw-TLX) question-
naire [20].

4) Subjective Assessment After completing each condi-
tion, we measured the five dimensions of the Question-
naire for the Evaluation of Physical Assistive Devices
(QUEAD) [21]. After completing all trials, participants
were further asked to rank the three conditions.

After each condition, participants were prompted with sev-
eral open questions regarding their experience, their under-
standing of the control methods and the directional cues, plus
any issue of interest they considered noteworthy. Addition-
ally, participants were asked how they proceeded in situations
when they could not solve the task at first.
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Video and audio recordings of the interviews with the entire
study cohort were assessed independently by two researchers.
Open coding was applied to gather participants’ opinions of
the different control methods. We used Miro2 – an online
whiteboard [22] – to complete an affinity diagram of the
open codes. Codes were then organized into themes (see
Section V-F).

B. Hypotheses

Overall, we expected ADMC methods to reduce not just
mode switches (as in prior work [8]) but – due to the
advances in our designs – also improve on task completion
time and workload.

H1: Continuous and Threshold lead to a lower task com-
pletion time compared to Classic. However, we expect
Continuous to perform faster compared to Threshold,
as the latter systematically interrupts the user during
interaction.

H2: Continuous and Threshold result in fewer mode
switches compared to Classic. We expect Continuous
to require more mode switches than Threshold, as
users have no clear guidance about when to switch
modes. This may cause them to oversteer or accept
new suggestions inefficiently.

H3: Continuous and Threshold cause lower perceived
workload compared to Classic. However, we expect
Continuous to cause a higher workload compared to
Threshold, as it requires constant evaluation of the
visual feedback while Threshold allows the user to
relax until further notification.

C. Apparatus

Developing and testing new concepts for a robotic arm
involves inherent challenges associated with a real robot’s
physical bulk and complexity. Quickly changing the exper-
imental setup, adding feedback components, or providing
information to the user further complicate testing regimes.
We created a 3D testbed environment for HRI studies in VR
to address these challenges. This testbed contains a simulated
robotic arm (a virtual model of the Kinova Jaco 2) with
multiple control mechanisms and a standardized pick-and-
place task. Visual feedback mimics AR, with directional cues
registered in 3D space. A Meta Quest motion controller is
used as an input device to control the robotic arm.

Photogrammetry scans of an actual room were used to
design the VR environment, which was created using the
Unreal Engine 4.27 and optimized for usage with a Meta
Quest VR Head-Mounted Display (HMD) (see Figure 2).
During the study, user behavior was recorded with appropri-
ate software on a Schenker XMG Key 17 laptop with Windows
10 64-bit and Oculus Link connected to the VR headset.

For our implementation of the baseline control method
Classic, users cycled through four distinct modes to access
all seven robot DoFs, as they are mapped on a two-DoF

2Miro. https://miro.com, last retrieved June 24, 2023.

joystick, such as the control-stick on a Meta Quest motion
controller:

1) X-Translation + Y-Translation
2) Z-Translation + Roll
3) Yaw + Pitch
4) Open/Close fingers

We illustrate the current mapping between the robot’s DoFs
and the input device through two arrows attached to the grip-
per. Light blue arrows indicate the robot’s DoF assigned to
the first, dark blue arrows to the second input axis. Looking
at the joystick in VR, the same color-coded visualization is
applied.

Users press a button on the input device – the A-Button of
the Meta Quest motion controller – to switch between modes,
cycling back to the first one at the end. Four blue spheres –
in contrast to the slanted cubes used in our ADMC methods
– above the robotic arm’s gripper indicate the total number
of available and the currently active mode when users are not
moving the robot. The sphere representing the active mode
is bigger and brighter than the spheres of inactive modes.

Fig. 2: Virtual environment consisting of (left to right): a
virtual canvas, the motion controllers, a table with the blue
object and red target, and a Kinova JACO with an arrow-
based visualization

D. Participants

A total of 24 participants took part in our study (7 female,
17 male). The participants were aged 19 to 37, with a mean
age of 26 years (SD = 4.85 years). No one declared any
motor impairments that might influence reaction times. Five
participants had prior experience with controlling a robotic
arm. Participants were recruited from a university campus
and an online appointment form.

E. Procedure

Utilizing the benefits of a standardized and portable VR
simulation environment, the study was conducted in multiple
comparable physical localities. Before commencing, partici-
pants were fully informed about the project objective and the
various tasks they had to complete. Every participant gave
their full and informed consent to partake in the study, have
video and audio recordings taken, and have all the relevant
data documented.
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A study administrator observed the experiment on a laptop
and briefed participants on using the hardware as well as the
general functionalities of the study environment. Once set up,
users followed command prompts embedded in the virtual
simulation environment. For each of the three conditions,
the following steps were performed:

1) Participants were given a written and standardized
explanation of the control method used in the current
condition.

2) Participants conducted eight training trials for famil-
iarization with the respective control method.

3) Participants then conducted 24 measured trials.
4) Interview and questionnaires.

After completing all conditions, participants ranked the three
control methods from most to least preferred and explained
the reasoning behind their decision. The study concluded
with a de-briefing. The average session lasted for 90 minutes
and participants were compensated with 30 EUR.

F. Experimental Task

The experimental task is based on our previous work and
resembles a common pick-and-place scenario [8]. A blue
object appears on a table in front of the participant, which
signals the start of a trial. The user has to control the robot
from its starting position to pick the object and place it on
a red target surface, also located on the table. To change
the DoF mapping – for trial fulfillment – users could switch
modes. Upon completion, the blue object disappears, and the
robot automatically returns to the original starting position.
A new blue object appears when this position is reached,
and a new trial commences. For each trial, the position of
the blue object is placed in one of eight possible locations
spaced evenly around the red target surface. Each position
occurred once during training and thrice during measured
trials. However, the order of appearance was randomized.
We used a neutral block shape rather than specific objects to
avoid bias and ensure trial comparability.

V. RESULTS

The study comprises 1,728 (24 participants × 3 control
methods × 24 trials) measured trials. Training trials were
excluded from the analysis.

We explored the distribution of the data through QQ-plots
and either applied parametric Repeated Measures Analysis
of Variance (RM-ANOVA) or non-parametric Friedman tests.
For the latter, post-hoc pairwise comparisons using Wilcoxon
signed-rank test with Bonferroni correction followed the
omnibus test. Relevant effect sizes were calculated with r:
>0.1 small, >0.3 medium, and >0.5 large effect.

A. Task Completion Time

Mean task completion time calculated per participant and
control method (see Fig. 3) resulted in Threshold = 16.54s
(SD = 4.09s); Continuous = 16.61s (SD = 4.77s); and
Classic = 30.96s (SD = 4.89s). Outliers [N = 3] with
average times ≥ 2.2 ∗ IQR of the mean task completion
time in at least one control method were excluded [23]. The

QQ-plot of the remaining 21 participants followed a normal
distribution.

Fig. 3: Raincloud Plots for Average Task Completion Time
and Mode Switches

A RM-ANOVA found a significant main effect (F(2, 36)
= 130.92, p ≤0.001). A post-hoc pairwise comparison (Bon-
ferroni corrected) showed a significant difference between
Continuous and Classic (p ≤0.001) as well as between
Threshold and Classic (p ≤0.001). No significant difference
was found between Continuous and Threshold (p ≥0.999).

B. Mode Switches
We used a non-parametric Friedman test, as our data was not
normally distributed, to determine differences between the
average number of necessary mode switches between control
methods. Two outliers – based on ≥ 2.2 ∗ IQR of the mean
value – were excluded prior to further analysis. This resulted
in mean numbers of mode switches for Threshold = 9.28
(SD = 1.26); Continuous = 9.93 (SD = 1.47); and Clas-
sic = 19.55 (SD = 2.93) for N = 22. We found a significant
main effect (χ2(2) = 33.82, p ≤0.001, N = 22). Post-
hoc pairwise comparisons showed a significant difference
between Continuous and Classic (Z = −4.11, p ≤0.001,
r = 0.62) as well as Threshold and Classic (Z = −4.11,
p ≤0.001, r = 0.62). Again, we found no significant dif-
ference between the two ADMC methods (Z = −1.51,
p = 0.131, r = 0.28) (see Fig. 3).
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C. Perceived Workload

NASA Raw-TLX [20] scores [scale from 1 to 100] for
all participants resulted in mean task load values of
Threshold = 22.67 (SD = 13.86); Continuous = 23.23
(SD = 13.26); and Classic = 34.24 (SD = 14.65). We
applied a Friedman test which revealed a significant main
effect for perceived task load: (χ2(2) = 9.87, p = 0.007,
N = 24). Post-hoc pairwise comparisons show significant
differences between Continuous and Classic (Z = −3.03,
p = 0.002, r = 0.44), Threshold and Classic (Z = −2.76,
p = 0.006, r = 0.40), but not between Continuous and
Threshold (Z = −0.21, p = 0.830, r = 0.03).

D. Evaluation of Physical Assistive Devices

The QUEAD encompasses five individual scales (3 to 9
items each, 7-point Likert). Friedman tests for individual
dimensions revealed significant main effects for Perceived
Usefulness (PU), Perceived Ease of Use (PEU), Emotions
(E), and Comfort (C), but not for Attitude (A). Post-hoc pair-
wise comparisons indicate significant differences between
Continuous and Classic for PU, PEU, and C as well as
between Threshold and Classic for PU and PEU (refer to
Table I for detailed scores).

TABLE I: Statistics for individual QUEAD dimensions:
Perceived Usefulness (PU), Perceived Ease of Use (PEU),
Emotions (E), Attitude (A), and Comfort (C).

PU PEU E A C

Descriptive Statistics

MClassic 4.98 4.87 5.00 4.81 5.65
SDClassic 1.39 1.20 1.71 1.75 1.71

MContinuous 5.68 5.80 5.90 5.42 6.44
SDContinuous 1.05 1.04 1.25 1.48 0.78

MThreshold 5.77 5.90 5.68 5.44 6.13
SDThreshold 1.02 0.97 1.43 1.58 1.14

Friedman Tests

χ2(2) 7.49 15.22 7.20 1.76 6.39
p 0.022 ≤0.001 0.026 0.422 0.040
N 24 24 24 24 24

Pairwise Comparisons

Classic vs. Continuous

|Z| 2.32 2.47 1.85 — 2.29
p 0.021 0.014 0.064 — 0.022
r 0.33 0.36 0.27 — 0.33

Classic vs. Threshold

|Z| 2.68 2.90 1.28 — 1.23
p 0.007 0.003 0.202 — 0.220
r 0.39 0.43 0.18 — 0.18

Continuous vs. Threshold

|Z| 0.62 0.38 1.03 — 1.70
p 0.538 0.706 0.302 — 0.089
r 0.09 0.05 0.15 — 0.25

E. Individual Ranking

Participants ranked the control methods in order of prefer-
ence from 1 = favorite to 3 = least favorite. Mean values in

ascending order are Continuous = 1.67; Threshold = 2.04;
and Classic = 2.29. A Friedman test revealed no significant
main effect (χ2(2) = 4.75, p = 0.100, N = 24).

F. Qualitative Insights

Overall, the open coding process led to the identification of
five main themes, as discussed below.

1) Familiarization: While all three control methods in-
cluded a training phase, comments suggest that in particular
the ADMC methods required familiarization. Here, partici-
pants felt the controls were sometimes “inverted” (P3) and
wanted to “move the stick in the direction the arrow was
pointing at” (P6). They also reported that “it takes a while
to get used to” (P24), but “routine set in fast” (P18).

2) Handling Adaptive DoF Mapping Suggestions: The
study cohort showed a relatively uniform response to the two
ADMC methods with clear distinctions between Threshold
and Continuous. In Threshold, many participants “trusted the
system” (P23) and switched to the new suggestion as soon
as they perceived the multimodal indicator. They “did not
have to think a lot” (P4) and “relied on what the suggestion
says” (P7). This dependence on the system caused some to
“draw a blank when something went wrong because [they]
forgot they had other options” (P8). One participant even
tried using the Threshold control method with eyes closed,
which “worked surprisingly well” (P7).

In contrast, participants evaluated the suggestions in Con-
tinuous more thoroughly, as they had to decide when to
switch without the help of threshold-based indicators. Some
participants waited for suggestions with relatively simple
direction cues, such as “straight arrows” (P6, P16) as an
indication to switch modes, while others trusted their “gut
feeling” (P23). Uncertainties of “How do I approach this?”
(P23) were more frequent in this control method than
Threshold. Participants dealt with problems in both ADMC
conditions in one of two ways to find alternative suggestions
that better align with their needs. They cycled through
the further offered suggestions for an alternative option or
reversed their current movement direction until a different
suggestion was offered.

3) Visualization: Overall, participants understood the dif-
ferent visualizations. Yet, difficulties arose in all three con-
ditions relating to depth perception and understanding if the
gripper is positioned correctly to pick or place the object.
Some participants suggested a “laser pointer” (P16) to indi-
cate the gripper’s position above the table for improved depth
perception. This is a known problem for robot teleoperation.
In the past, researchers have suggested and explored AR
Visual Cues to counter that, which include similar approaches
as the ones mentioned by our participants [24], [25].

Interestingly, some participants “manipulated” the second
mode of Classic (X- and Y-Translation) to mimic this effect,
as that mode shows straight up- and downward pointing
arrows as directional cues along the y-axis.

4) Multimodal Feedback: As described above, most par-
ticipants used Threshold as intended, switching to the next
suggestion when they received the multimodal feedback.
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However, some participants experienced the haptic and audio
indicators as “irritating” (P20) or “weird and horrible” (P17).
The poignant statement “If I had to do this for five more
minutes, it would be too annoying.” (P7) reveals some
participants’ strong reactions to this control method. As a
possible mitigation, one participant suggested implementing
multiple thresholds of varying intensity instead of a singular
one that “instantly beeps loudly at me and says ’Do this
now!’” (P24).

5) Control vs. Comfort: Participants reported substantial
differences in the level of control and comfort between
Classic, Continuous, and Threshold. By nature, Classic of-
fers the highest control level but requires participants to
decide individually on every task step. In contrast, Threshold
allowed participants to perform tasks “entirely brainlessly”
(P16) and only press “forward, then A, then forward, then
A” (P17). Many participants expressed that they “felt too
directed by [Threshold]” (P8), attesting Continuous a higher
level of comfort or “freedom to experiment” (P24). Overall,
participants described Continuous as a reasonable compro-
mise or “the golden middle” (P14) between the comfortable
execution in Threshold and the high level of control in
Classic.

VI. DISCUSSION

Adaptive DoF mapping controls have already been indicated
to have benefits over classic methods [7], [8]. Yet, research
is still limited, and analysis of time-based dimensions of
directional cues is lacking. In this paper, we examined
to what extent the two ADMC methods, Continuous and
Threshold, differ from the Classic baseline – and each other
– in terms of task completion time, necessary mode switches,
perceived workload, and subjective assessment.

Significant results for all four metrics partially support our
initial hypotheses. Most strikingly, ADMC methods reduced
task completion time (H1) and mode switches (H2) by 50%
respectively compared to Classic. As previously suggested
by Kim et al., this establishes that ADMC methods lead to
faster and less involved execution of pick-and-place tasks [6].
These findings are in line with previous work [7], underlining
the benefits of ADMCs compared to Classic controls.

In contrast to previous results [8], our novel ADMC meth-
ods were able to significantly lower task completion time and
perceived workload compared to the Classic method. The
latter finding also partially supports H3. This highlights that
ADMCs which communicate the suggested recommendation
to the user – irrespective of timing – were able to increase
usability. Notably, the decreased workload of ADMCs is
particularly meaningful as the end goal should be the smooth
integration of robotic devices into people’s lives and work-
flows, not to add stress.

Turning to the second part of our analysis – contrasting
different time-based communication of feed-forward recom-
mendations – we found no significant differences in the
four metrics between Continuous and Threshold. The lack of
measurable differences between Continuous and Threshold
implies that both discrete and continuous communication of

movement suggestions allows users to use ADMC methods
efficiently. Insights gained by the results of the QUEAD
and our qualitative interviews corroborate these findings,
while the latter also helped to provide a more distinguished
analysis.

Overall, participants expressed a positive stance regarding
the ADMC methods. However, individual preferences vary
greatly between Continuous and Threshold. While some
participants preferred the higher level of control Continuous
allowed, others favored the comfortable execution possible
with Threshold. Consequently, future development of ADMC
methods should – in accordance with Burkolter et al. – in-
clude individualization options to increase comfort and end-
user acceptance [26]. Customizations would be particularly
beneficial for Threshold-based controls as participants re-
peatedly criticized the multimodal feedback. Allowing users
to adjust the modalities, the signal intensity, and even the
threshold itself may improve usability while still offering
the advantages of ADMC.

In contrast to expectations derived from our initial hy-
potheses, qualitative insights revealed that the Classic con-
trol method could still be a valuable addition in specific
situations. Participants felt an apparent lack of control when
the ADMC suggestions did not match their expectations. To
improve usability, ADMC methods could incorporate static
suggestions for certain situations. A potential way to address
this could be combining ADMC and static suggestions using
only the most common input-DoFs.

However, further experimental studies are needed to dis-
entangle exactly which factors shape personal preferences
and how customizations or crossover methods can deliver
the best results.

A. Limitations
We explored the proposed ADMC methods in a VR simu-
lation environment. While the usage of virtual simulations
in industrial settings has been successfully established [27],
[28], [29], future work should confirm if our promising
findings can be replicated in the real world with a physical
robot.

VII. CONCLUSIONS

Our ADMC methods Continuous and Threshold are promis-
ing approaches to communicate proposed directional cues
effectively. We extend our previous work [8] by demon-
strating that ADMCs significantly reduce task completion
time (1), the average number of necessary mode switches
(2), and the perceived workload of the user (3). Further,
we establish that Continuous and Threshold perform equally
well in quantitative measures while qualitative insights reveal
individual preferences.

The observations of this study provide valuable implica-
tions for any HRI researcher involved in designing novel
ADMC methods for human-robot collaborative settings. Fu-
ture work should focus on disentangling quantitative and
qualitative feedback of focus groups to develop optimal robot
motion control methods, thus increasing usability, safety and
– ultimately – end-user acceptance.
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ABSTRACT
Robotic arms, integral in domestic care for individuals with mo-
tor impairments, enable them to perform Activities of Daily Liv-
ing (ADLs) independently, reducing dependence on human care-
givers. These collaborative robots require users to manage multiple
Degrees-of-Freedom (DoFs) for tasks like grasping and manipulat-
ing objects. Conventional input devices, typically limited to two
DoFs, necessitate frequent and complex mode switches to control
individual DoFs. Modern adaptive controls with feed-forward multi-
modal feedback reduce the overall task completion time, number
of mode switches, and cognitive load. Despite the variety of in-
put devices available, their effectiveness in adaptive settings with
assistive robotics has yet to be thoroughly assessed. This study
explores three different input devices by integrating them into an
established XR framework for assistive robotics, evaluating them
and providing empirical insights through a preliminary study for
future developments.
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•Computer systems organization→Robotic control; •Human-
centered computing→ Visualization techniques; Virtual reality.
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1 INTRODUCTION
The progress in the development of (semi-)autonomous technolo-
gies compelled their incorporation into numerous sectors, reshap-
ing how we live and work. This integration includes scenarios of
close collaboration with robotic devices, ranging from industrial

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0323-2/24/03.
https://doi.org/10.1145/3610978.3640626

assembly lines [4] to personal mobility aids [7]. Among these collab-
orative technologies, assistive robotic arms emerge as a particularly
valuable and versatile subset, finding applications across various
domains (e.g., [3, 26]).

Assistive robotic arms can enhance the independence of individ-
uals with restricted mobility [15, 21]. These technologies – particu-
larly when integrated with Artificial Intelligence (AI) – empower
individuals to perform Activities of Daily Living (ADLs), which
often entail tasks like gripping and manipulating objects in their
surroundings, without reliance on human assistance [24]. However,
current Human-Robot Interaction (HRI) research underscores a no-
table challenge faced by developers: optimizing the autonomy level
of assistive robots [16]. Striking a balance is crucial, as purely au-
tonomous systems may diminish user interaction and trust, while
manual controls could prove impractical for users with specific
impairments [12, 25, 31]. Shared control – combining manual input
with algorithmic assistance – emerges as such a balanced approach
and a promising research direction.

In this work, we explore three different input devices for con-
trolling an assistive robotic arms in shared control applications:

• Joy-Con: A motion controller with continuous data input,
suited for one-handed operation.

• Head: User control input by head-based movements, using
continuous data.

• Button: A set of assistive buttons to control the robot in an
accessible manner with discrete input data.

2 RELATED WORK
Standard control devices with a high Degree-of-Freedom (DoF), like
gaming joysticks and keyboards, often pose challenges for users
with severe motor impairments. Addressing these issues requires
alternative solutions, such as specialized training or different in-
terfaces [8, 28]. An approach proposed by Herlant et al. addresses
these challenges by reducing the number of DoFs through mode
switches. In their successful implementation, a joystick was used
to control a Kinova Jaco assistive robotic arm [10].

Alternatively, Arévalo-Arboleda et al. introduced a hands-free
multi-modal interaction by combining head movements, using a
head-gaze based cursor to point, and speech commands to execute
specific actions for tele-operating a robotic arm [2]. However, while
speech commands provide enhanced accessibility, challenges like
environmental noise or speech impairments encounter, impacting
their effectiveness [18].

The control of assistive robotic arms involves a wide array of
possible input devices, each targeted to suit the preferences and
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capabilities of the respective user [1]. Despite this diversity, there
remains a gap in the evaluation of these input devices within the
context of AI-enhanced shared control applications for assistive
robots.

In previous research, we introduced the AdaptiX framework, an
open-source XR tool designed for Design and Development (D&D)
operations [22]. AdaptiX consists of a Virtual Reality (VR) simu-
lation environment to prepare and test study settings as well as
a Robot Operating System (ROS) interface to control a physical
robotic arm. The framework also includes a general input adapter,
facilitating the development and evaluation of different input tech-
nologies and devices. Leveraging these capabilities, AdaptiX is used
as the basis for this research project.

Through an algorithmic approach, the robotic arm’s DoFs are
configured to enable precise control with a low-DoF input device.
This adaptive DoF mapping, denoted as Adaptive DoF Mapping
Control (ADMC), aims to present the user with a set of DoF map-
pings, organized based on their effectiveness in executing the pick-
and-place task employed in the experiment (optimal suggestion,
adjusted/orthogonal suggestion, translation-only, rotation-only, and
gripper). The underlying concept of “usefulness” posits that optimiz-
ing the cardinal DoFs of the robot aligned with an input DoF while
advancing towards the next goal represents the most advantageous
approach.

3 DISCRETE AND CONTINUOUS CONTROL
METHODS

Owning toAdaptiX ’s integration of ADMC, users control the robotic
arm forwards or backwards along a defined path based on the DoF
mapping. Consequently, only a single-DoF input device is neces-
sary for the movement. To choose from the different DoF mapping
suggestions of the system, an additional one-dimensional input is
required to perform a mode switch action, providing flexible and
efficient control of the robotic arm.

Expanding upon the functionalities ofAdaptiX, this study focuses
on discrete and continuous control methods serving as assistive
input devices for the ADMC shared control application. The frame-
work’s general input adapter provides a float value (−1.000 – 1.000)
for the Adaptive Axis and a Boolean trigger for Switch Mode.

3.1 Motion Controller
Prior studies [14, 23] used a Meta Quest motion controller to inter-
act with the AdaptiX framework. To add to this, we integrated a
Nintendo Joy-Con [20], which is well suited for one-handed opera-
tion. For the integration, we used UE4-JoyConDriver [6] – a plugin
for Unreal Engine 4.27/5.2. The plugin creates a connection between
Unreal and Nintendo Joy-Con and provides sensor data such as
accelerometer, gyroscope and Inertial Measurement Units (IMUs).

The left controller was selected for its balanced layout, accom-
modating both left- and right-handed users. The thumbstick – pro-
viding continuous data – was tilted up or down to move the robotic
arm forward or backward. The mode switch is performed by press-
ing the Up-button of the controller right beneath the thumbstick.
This design ensures single-handed control of the robot while pre-
venting simultaneous movement and mode switching for enhanced
usability.

3.2 Head-based Control
This control method eliminates the need for extra, specialized input
devices as it utilizes orientation data from a device the user is al-
ready using – the Head-Mounted Display (HMD) [29]. Furthermore,
it offers an accessible approach by allowing users with impaired
hand motor function to operate the robotic arm.

The HMD’s internal sensor technology, specifically the IMUs,
facilitates the measurement of head rotations along three axes (roll,
pitch, and yaw). This coordinate system is anchored to the object,
positioned at the center of the user’s head. Positive and negative
rotations are possible around each axis, facilitating the mapping of
six distinct actions to the corresponding axis rotations.

When the user tilts their head in a positive manner (pitch; ro-
tating the head upwards), the robotic arm is advanced along the
DoF mapped trajectory. Conversely, tilting the head in the opposite
direction causes the arm to move backward along that path. Rolling
the head to the right triggers the mode switch action, selecting the
next ADMC suggestion.

Along each head rotation axis, a 20° resting zone has been set to
prevent unintentional controlling of the robot. In this application,
the user’s head serves as a continuous data source for controlling
the robot, akin to a joystick or the Joy-Con’s thumbstick.

3.3 Assistive Buttons
Integrating the Microsoft Xbox Adaptive Controller [19], emphasiz-
ing flexibility and accessibility, enables the use of assistive buttons
(e.g., Logitech Adaptive Gaming Kit [17]). These can be quickly and
flexibly arranged to ensure comfortable operation by the user.

Similar to a gamepad control for discrete input data, the ele-
mentary actions for moving forward and backwards are mapped
onto the adaptive buttons. The buttons marked Arrow up and Arrow
down are mapped for moving the robotic arm, while a button with
an A-marking was assigned to the mode switch.

4 STUDY
This preliminary study gathered initial user experiences with dif-
ferent modalities and operating modes for AI-enhanced assistive
robotic arms. Through a controlled Mixed Reality (MR) user study
involving 14 participants (6 female, 8 male), we systematically com-
pare the advantages and disadvantages of the selected input meth-
ods. Four participants had prior experience with robotic arms.

4.1 Study Design
We employed a within-participant experimental design, with the
control method as the independent variable, comprising three condi-
tions: (1) Joy-Con, (2) Head, and (3) Button. Each participant under-
went eight trials per condition. To mitigate the potential impacts of
learning and fatigue, the condition order was fully counterbalanced.

4.2 Apparatus
Our study used the AdaptiX [22] framework to integrate and assess
the selected control methods. We operated the framework in its MR
mode, employing the Varjo XR-3 [29] HMD and a Kinova Jaco 2 [13]
assistive robotic arm, as shown in Figure 1. We connected the Varjo
XR-3 and all input devices to a Schenker Media Station computer
to facilitate this setup. Furthermore, we established connections

829



Exploring of Discrete and Continuous Input Control for AI-enhanced Assistive Robotic Arms HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA

between the Schenker Media Station, the ROS server, and the Kinova
Jaco 2 through a wired Local Area Network (LAN).

Figure 1: Overview of the study setup. The participant is
wearing a Varjo XR-3 HMD and controls the Kinova Jaco 2
via head movements. The goal is to grasp the light-colored
rounded block and place it on the large orange square in the
middle of the table. The small orange markings are potential
starting points for the rounded block.

4.3 Procedure
Before starting, participants received a detailed explanation of the
project’s objectives and the tasks involved. Each participant pro-
vided informed consent for their participation, including recording
video, audio, and any other relevant data. A study administrator,
overseeing the experiment on a laptop, provided instructions on
using the hardware and the study environment. Once set up, partici-
pants followed command prompts within the MR environment. For
each of the three conditions, the following steps were performed:

(1) Participants were given a written and standardized explana-
tion of the control method used in the current condition.

(2) Participants conducted eight trials, grasping the object and
placing it on the target surface.

(3) Interview and questionnaires.
After completing all conditions, participants ranked the three

control methods from most to least preferred and explained their
decision. The study concluded with a de-briefing.

4.4 Experimental Task
The experimental procedure builds on prior research that employed
the AdaptiX framework (refer to [23]). The present study expands
the configuration to a real-world environment, replicating a typical
pick-and-place scenario.

To commence each trial, the study administrator positioned an
object on a table. The participant aimed to navigate the robot from
its initial location to grasp the object and deposit it onto a des-
ignated target area on the same table. For each trial, the object’s
starting position varied among eight possible predetermined lo-
cations. These positions were randomized in their sequence. We
employed uniform rounded block shapes as objects to ensure im-
partiality and trial comparability, eliminating bias and allowing for
consistent trial comparisons. Users could adjust the robot’s DoF
mapping by toggling between modes to fulfill the task. Following
a successful execution, the object was removed, and the robot re-
turned to its initial position. The object was then placed in a new

starting position for a subsequent trial to begin. Upon completing
each condition, we assessed workload using the NASA Raw-Task
Load Index (Raw-TLX) questionnaire [9] and measured the five
dimensions of the Questionnaire for the Evaluation of Physical
Assistive Devices (QUEAD) [27]. The task completion time was
recorded from the moment the participant initiated the movement
of the robotic arm until the block was successfully placed.

5 RESULTS
This research focused on collecting subjective feedback from partic-
ipants to improve the future development and integration of control
input methods for shared control applications. The presented study
encompasses a total of 336 (14 participants × 3 control methods ×
8 trials) measured trials.

5.1 Perceived workload
Raw-TLX [9] scores [scale from 1 to 100] for all participants re-
sulted in mean task load values of Button = 35.90 (SD = 12.98),
Joy-Con = 41.17 (SD = 18.66), and Head = 59.65 (SD = 19.64). We
applied a Friedman test which revealed a significant main effect for
perceived task load (𝜒2(2) = 18.00, p ≤ 0.001 ***, N = 14). The post-
hoc pairwise comparisons (Bonferroni corrected) using Wilcoxon
signed-rank tests revealed significant differences between Head
and Button (Z = −3.27, p ≤ 0.001 ***, r = 0.67), Head and Joy-Con
(Z = −3.02, p = 0.002 **, r = 0.62), but not between Button and Joy-
Con (Z = −1.44, p = 0.487, r = 0.29). The resulting task load scores
per individual dimension of the Raw-TLX are presented in Figure 2.
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Figure 2: Comparison of the task load dimensions for the
three different control methods: Joy-Con, Head, and Button

5.2 Evaluation of Physical Assistive Devices
The QUEAD included five individual scales (7-point Likert). Fried-
man tests for individual dimensions revealed significantmain effects
for all dimensions. Post-hoc pairwise comparisons indicate signifi-
cant differences between Head and Button for all five dimensions
as well as between Head and Joy-Con for PU, PEU, E, and C. For
Joy-Con and Button only PU and PEU show significant differences
(refer to Table 1 for detailed scores).
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Table 1: Statistics for individual QUEAD dimensions: Per-
ceived Usefulness (PU), Perceived Ease of Use (PEU), Emo-
tions (E), Attitude (A), and Comfort (C).

PU PEU E A C

Descriptive Statistics: mean value (standard deviation)

Joy-Con 4.84 (1.18) 5.11 (1.55) 5.19 (1.41) 4.46 (2.16) 5.71 (1.87)
Head 2.93 (1.28) 3.37 (1.54) 2.86 (1.67) 2.82 (2.24) 3.57 (1.96)
Button 5.63 (1.44) 6.06 (1.15) 5.90 (1.22) 5.61 (1.84) 5.79 (1.46)

Friedman Tests

𝜒2(2) 20.48 13.00 16.57 9.69 11.78
𝑝 ≤0.001 *** 0.002 ** ≤0.001 *** 0.008 ** 0.003 **
𝑁 14 14 14 14 14

Pairwise Comparisons

Joy-Con vs. Head

|𝑍 | 2.99 2.42 2.58 1.70 2.88
𝑝 0.004 ** 0.040 * 0.023 * 0.282 0.006 **
𝑟 0.56 0.46 0.49 0.32 0.54

Head vs. Button

|𝑍 | 3.27 3.17 3.11 3.02 2.97
𝑝 ≤0.001 *** 0.001 *** 0.002 ** 0.003 ** 0.006 **
𝑟 0.62 0.60 0.59 0.57 0.56

Joy-Con vs. Button

|𝑍 | 2.58 2.39 1.79 1.54 0.16
𝑝 0.023 * 0.044 * 0.227 0.382 ≥0.999
𝑟 0.49 0.45 0.34 0.29 0.03

5.3 Individual Ranking
All participants – except one – ranked conditions from 1 = favorite
to 3 = least favorite. Mean values in ascending order are Button= 1.46
(SD = 0.52); Joy-Con = 1.69 (SD = 0.63); and Head = 2.85 (SD = 0.55).
A Friedman test revealed a significant main effect (𝜒2(2) = 14.31,
p =≤0.001 ***, N = 13). The post-hoc pairwise comparisons indicate
significant differences betweenHead & Button (Z = 3.02, p = 0.005 **,
r = 0.59) and Head & Joy-Con (Z = 2.52, p = 0.026 *, r = 0.49), but
not between Button & Joy-Con (Z = −0.83, p ≥0.999, r = 0.16).

5.4 Subjective Feedback
Participants noted an increased mental workload during the Head-
based interaction. P01 highlighted that the movement execution for
“forward felt opposite to the suggested arrow direction”. Addition-
ally, P01 got quickly distracted by a conversation with the experi-
menter, and P02 required substantial assistance due to difficulties
in perceiving the arrows and mapping them to the head-movement
direction. Participants P01 – P04 suggested introducing an addi-
tional mode switch to display the previous suggestion rather than
presenting the next one. Participants P04, P11, and P12 preferred a
non-continuous control by moving the head (i.e., only stop and go)
to “prevent unintentional robot control when returning their head
to the zero position” (P11).

Similar to the Head-based interactions, participants P01 – P04
mentioned a discrepancy between the suggested arrows by the
system and the control input. In certain situations, the system
suggests movements in the user’s direction. To move the robot
along this trajectory (forwards), the thumbstick of the Joy-Con or
Arrow Up assistive button had to be pressed, which felt “discrepant”.
Participant P04 suggested using the thumbstick of the Joy-Con

Max Pascher, Kevin Zinta, and Jens Gerken

instead of the selected button for mode switching, for example, by
tilting it sidewards.

Additionally, it was observed that specific initial placements of
the object were perceived as disadvantageous compared to others,
as the robot is fixed in place and has to perform – for the novice
users – un-legible movements to reach the target.

6 DISCUSSION
All participants were able to control the robotic armwith each input
device to fulfill the project task. Yet, the study’s findings indicate
that the effectiveness of the Head-based interaction method for
controlling the robotic arm is relatively low compared to both
hand-operated input methods. A notable insight derived from these
results is the potential issue of the Varjo XR-3 HMD being too bulky
and heavy for sustained and precise Head-based control. To address
these concerns, a more lightweight and comfortable solution, such
as utilizing external IMUs for Head-based interaction [11, 30], could
be considered.

Nevertheless, the HMD remains essential for visualizing direc-
tional cues, even with the integration of IMUs. Looking forward,
advancements in technology are expected to yield significantly
more compact and lighter devices, thereby enhancing user comfort
and immersion.

Further, participants pointed out a discrepancy between the
robot’s movement direction and the mapping of user inputs. This
could lead to an unclear mental model, particularly since the robot
is controlled in a first-person view. To counteract this issue, a more
extensive familiarization phase might be beneficial.

7 CONCLUSION
The input methods Joy-Con and Button represent promising ap-
proaches for controlling a robotic arm in a shared control applica-
tion. Notably, both hand-operated input methods – irrespective of
whether they provide discrete or continuous input data – (1) re-
duced perceived user workload and (2) improve Perceived Usefulness,
Perceived Ease of Use, Emotions, and Comfort. These findings hold
valuable implications for HRI researchers involved in the design
of input technologies for assistive robotic arms. Future research
efforts should prioritize the nuanced analysis of both quantitative
and qualitative feedback obtained from focus groups. This com-
prehensive approach aims to refine and develop optimal methods
for robot motion control, with the overarching goal of improving
usability, safety, and end-user acceptance of these technologies.

Still, given the diverse likes and dislikes of the participants, future
development of adaptive input control methods should – in line
with Burkolter et al. – include individualization options to increase
comfort and end-user acceptance [5].
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HUMAN-COMPUTER INTERACTION

People with motor impairments experience reduced mobility, social 
exclusion, and dependence on caregivers. Although assistive 
technologies have the potential to enhance independence and well-
being, their development often overlooks user involvement. This 
oversight -- coupled with designs that limit user autonomy -- leads to 
unmet needs and increased stress for end users.

This thesis addresses current limitations by focusing on user 
integration and improving shared control approaches for assistive 
robotics enhanced by Artificial Intelligence (AI). Key contributions 
include identifying user needs, exploring robot motion intent 
communication, introducing the innovative Adaptive DoF Mapping 
Control (ADMC) shared control approach, and presenting the AdaptiX 
framework for developing and evaluating multi-modal interaction 
designs. 

The effectiveness of ADMC and AdaptiX are demonstrated in real and 
simulated scenarios, emphasising user-centred design, AI-enhanced 
applications, and in-silico testing. This thesis also outlines future 
research opportunities to advance AI-enhanced assistive robotics, 
aiming for the full inclusion of people with physical impairments in 
social and professional spheres. 
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