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Abstract
Imposing nonperiodic boundary conditions for unit cell analyses may be neces-
sary for a number of reasons in applications, for example, for validation purposes
and specific computational setups. The work at hand discusses a strategy for
utilizing the powerful technology behind fast Fourier transform (FFT)-based
computational micromechanics—initially developed with periodic boundary
conditions in mind—for essential boundary conditions in mechanics, as well,
for the case of the discretization on a rotated staggered grid. Introduced by
F. Willot into the community, the rotated staggered grid is presumably the
most popular discretization, and was shown to be equivalent to underinte-
grated trilinear hexahedral elements. We leverage insights from previous work
on the Moulinec–Suquet discretization, exploiting a finite-strain preconditioner
for small-strain problems and utilize specific discrete sine and cosine trans-
forms. We demonstrate the computational performance of the novel scheme by
dedicated numerical experiments and compare displacement-based methods to
implementations on the deformation gradient.
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1 INTRODUCTION

1.1 State of the art

Driven by the need to understand the mechanical behavior of materials with heterogeneous microstructure, computa-
tional techniques based on the fast Fourier transform (FFT) have been established as rather efficient tools for this purpose.
In their seminal work, Moulinec-Suquet1,2 proposed a numerical scheme which operates on regular grids and leverages
the Lippmann-Schwinger equation3–5 pertinent to micromechanics. The original algorithm, called basic scheme, avoided
assembling system matrices—as is usual in most finite-element analysis—could handle nonlinear constitutive behavior
of the constituents naturally and accounted for the periodicity of the displacement fluctuation field that is favorable for
materials with periodic and stochastic microstructure.6–8

Subsequent developments in FFT-based computational micromechanics may be roughly classified in three categories.
The first category describes extensions of the domain of applicability of the scheme, that is, going beyond the initially
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considered quasi-static inelastic setting at small strain. These extensions encompass, for instance, problems at finite
strains,9–11 damage and fracture,12–14 coupled problems,15–17 fluid problems,18–20 or wave propagation.21,22 The second cat-
egory of developments concerns faster solution methods. The original basic scheme converged for materials with finite
material contrast, and, for fixed tolerance, required an iteration count that was proportional to the material contrast, but
turned out to be bounded independently of the mesh spacing. For large material contrast—in particular for nonlinear
and inelastic materials—the basic scheme requires a large number of iterations, which may be inappropriate for some
applications. As a consequence, faster solvers were developed. These come in essentially three flavors. Polarization meth-
ods are based on an ingenious rewriting of the Lippmann–Schwinger equation and were introduced by Eyre–Milton23

and Michel-Moulinec-Suquet.24,25 Over the years, a general class of polarization methods was established26,27 and the
relationships of polarization schemes among each other and to optimization methods was uncovered.28–30 If applicable,
polarization methods turn out to be fast and robust solution methods, in particular for strongly nonlinear problems.31–33

The second flavor of improvements of the basic scheme essentially exploit the interpretation of the basic scheme
as a gradient-descent method34,35 in case the stress operator derives from a stored energy function. Then, acceler-
ated36,37 and conjugate gradient methods38–40 may be developed which significantly outperform the basic scheme in the
high-contrast scenario. The third flavor involves Newton methods34,41 and Quasi-Newton42–44 methods. All three flavors
of improved solvers have their merits, and feature in dedicated and popular FFT-based computational micromechanics
codes.45–48

The third general direction of improvements over Moulinec–Suquet’s initial contribution are concerned with the uti-
lized discretization of the cell problem. The original scheme1,2 naturally emerges as a nonconforming Fourier–Galerkin
method,49 that is, utilizing trigonometric polynomials as the ansatz functions and considering an approximation of the
exact stored energy via quadrature by the trapezoidal rule. This type of discretization comes with three characteristics
which may be considered disadvantageous. For a start, the solution fields show characteristic ringing artifacts, a conse-
quence of Gibbs’ phenomenon for Fourier series approximations. The second disadvantage concerns the violation of the
Galerkin framework implied by the use of quadrature. Last but not least, the discretization was exposed to imply numeri-
cal ill-conditioning in the presence of pores, i.e., leading to a lack of convergence of all solvers for certain microstructures.50

To battle the ringing artifacts, finite-difference,51–53 finite-element,54–56 and finite-volume33,57 discretizations on a regular
grid were shown to be compatible with the Lippmann–Schwinger framework, some of which introduce different arti-
facts. The Galerkin framework could be preserved by using either Fourier–Galerkin58–60 or finite-element methods.61 The
ill-conditioning for infinite contrast could be fixed by using low-order finite difference or finite-element discretizations.62

In parallel to the improvements in discretization, the accuracy of computational approaches on regular grids for appli-
cations to micromechanics were coming under scrutiny. The voxelized representation of the microstructure precludes
resolving the interfaces between different constituent materials, leading to artifacts in the vicinity of the interface for
both the strain and the stress field, essentially independent of the discretization used. Early contributions49,54,63 estab-
lished quantitative convergence under mesh refinement of the Moulinec–Suquet discretization.1,2 The seminal article of
Ye-Chung64 provided a number of insights. For a start, they showed quantitative convergence under mesh refinement
for the discretization on a rotated staggered grid.53,65,66 Moreover, they analyzed trilinear finite elements on a regular
grid, and provided a qualitative convergence result for the strain field in finite-contrast linear elasticity. Additionally, they
showed that the effective stresses converge with twice the rate of the local strain field in this setting, that is, the averag-
ing that is necessary for computing effective properties also improves the convergence rate upon grid refinement.67 This
superconvergence phenomenon was subsequently also shown to hold for a class of nonlinear materials68 and for the orig-
inal Moulinec–Suquet discretization.69 Essentially, it turned out that the Moulinec–Suquet discretization shares the same
convergence rate, for both local and effective stresses, as trilinear finite elements on a regular grid.

For more details on the improvements and a broader view we refer to the available review articles.70–73

Periodic boundary conditions for the displacement are intrinsically linked to FFT-based computational micromechan-
ics. However, there are applications when different boundary conditions, for example, essential boundary conditions or
stress boundary conditions are required. For instance, when reproducing a compression experiment of a microstructured
material, essential boundary conditions need to be enforced on two opposing sides of the specimen, and the remaining
faces of the cell should be stress-free. For thermal homogenization problems, there is a simple way to impose Dirichlet
(zero temperature) or Neumann (zero flux) boundary conditions—by using sine or cosine series, that is, upon discretiza-
tion, dedicated discrete sine and discrete cosine transforms. Such strategies have been known for a long time (sec. 19.7
of Reference 74) for homogeneous problems, and were recently applied to heterogeneous problems.75–78 Unfortunately,
these approaches run into difficulties for small-strain mechanics. In a nutshell, when applying the differential opera-
tor of small-strain elasticity, certain shear terms appear which mix sine and cosine terms, precluding the emergence of
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a corresponding Green’s operator. Only in case of a specific combination of essential and stress boundary conditions, a
Green’s operator may be found.79,80 For this reason, different techniques were exploited. These approaches all share the
insight that a field on a rectangular box which vanishes on the faces of the box is a special case of a periodic field. Thus,
essential boundary conditions may be imposed by considering periodic problems and interpreting the essential boundary
conditions as additional constraints. These constraints may either be imposed via a penalty technique, for example, via a
“stiff layer,”81,82 or in terms of suitable Lagrange multipliers.22,83,84 In any case, these techniques lead to a deterioration of
the numerical performance of the solvers. In case of stiff layers, the material contrast is increased significantly, whereas
the use of Lagrange multipliers leads to indefinite systems of equations which are, in general, less efficient to solve than
symmetric positive definite ones (sec. 5.2 of Reference 85).

1.2 Contributions

Recently, the authors introduced a workaround for imposing essential boundary conditions in FFT-based computational
micromechanics.86 The fundamental idea is to use a finite-strain framework also for problems at small strains. With this
way of solving the problem, the different shear components of the deformation gradient and the Cauchy stress are handled
by different discrete sine and cosine series, avoiding the problems when constructing a small-strain preconditioner. With
this trick, worked out for the original Moulinec-Suquet discretization,1,2 the full arsenal of Lippmann–Schwinger solvers
was unlocked for essential boundary conditions. The price to pay for this advantage was a slightly increased iteration
count (factor 2 for the basic scheme and factor

√
2 for the conjugate gradient method) and a delicate implementation,

requiring suitable discrete sine and cosine transforms as well as weighted quadrature.
The work at hand is concerned with extending the Lippmann–Schwinger framework to the case of a finite difference

discretization with vanishing essential boundary conditions. The general case for nonzero Dirichlet boundary conditions
can be handled by additively decomposing the displacement field into a part which is fixed but satisfies the Dirichlet
datum and a fluctuating part with vanishing displacement on the boundary which needs to be determined. We refer to
Morin-Paux (Eq. (36) of Reference 77) for an application of this idea in the context of thermal conductivity. In the periodic
setting, the introduction of finite-difference and finite-element solvers turned out to be a game changer, as it permit-
ted to solve some problems with infinite material contrast, for example, porous materials or damaging materials, with
Lippmann–Schwinger solvers in a robust manner, also reducing the ringing artifacts pertinent to the Moulinec–Suquet
discretization. In the work at hand, we focus on the discretization on a rotated staggered grid,65,66 introduced into
FFT-based computational micromechanics by Willot53 alongside a suitable Eshelby–Green operator. As of today, the
rotated staggered grid is allegedly the most popular discretization in FFT-based computational micromechanics. It was
shown that the discretization also emerges when considering trilinear finite elements with one-point quadrature in the
center of the voxel.55,87

To develop Lippmann–Schwinger solvers for finite-difference discretizations and essential boundary conditions, a
number of difficulties need to be overcome. For a start, in contrast to the Moulinec–Suquet discretization,1,2 the displace-
ments and the deformation gradient reside on different grids, see Section 2 for details. Even if the idea to use discrete sine
and cosine transforms is clear, it may be nontrivial to select the proper transform among the different possibilities. We
introduce a systematic technique for detecting the appropriate transform to choose. The essential idea is to change coor-
dinates for the discrete displacement field by representing the discrete field as a suitable sine polynomial. With this trick,
the discrete differential operators involved may be written naturally in block diagonal form upon appropriate discrete sine
and cosine transforms, see Section 3.2 for details. We also expose a surprisingly simple formula for the Eshelby–Green
operator. Unexpectedly, the formula requires a special shift operation that is hard to guess unless a systematic approach
is used. In contrast to the Moulinec–Suquet discretization, the discretization on a rotated staggered grid may be imple-
mented on the displacement fluctuation instead of the traditional formulation based on the strain or the deformation
gradient. This insight, put to fruition in the periodic setting,56,61,87 may also be exploited for essential boundary condi-
tions. Interestingly, a displacement-based implementation permits to save two thirds of the memory, as only the three
scalar components of the displacement field need to be stored instead of the nine components required for storing the
deformation gradient. Moreover, applying the Green’s operator for the displacement is conceptually simpler than work-
ing with the Eshelby–Green operator for the deformation gradient. The former applies the same transform (the DST-I)
to all components of the displacement field and in all spatial directions, whereas the Eshelby–Green operator requires
a delicate mix of discrete sine and cosine transforms to be applied to different components of the deformation gradient,
alongside an appropriate shift operator. We refer to Section 3.3 for details.
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Interestingly, the displacement-based approach to imposing Dirichlet boundary conditions turns out to be faster
than the deformation-gradient implementation, but not significantly so. Also, the runtimes are comparable to
displacement-based implementations in the periodic setting. The details comprise Section 4.

We wish to emphasize that our strategy is to reduce the mechanical cell problem to a (vectorized version of the) ther-
mal conductivity problem. For the discretization on a rotated staggered grid, the thermal conductivity case was discussed
by Gélébart78 in a comprehensive way, covering a multitude of applicable boundary conditions. Gélebart uses symme-
try and antisymmetry arguments to uncover the proper transforms and “Fourier” coefficients. In the paper at hand, we
develop a different, but equivalent, strategy to treat Dirichlet boundary conditions for thermal and mechanical homog-
enization problems based on a first-principle approach based on sine series. Unfortunately, applying symmetry ideas to
small-strain mechanics leads to a set of boundary conditions80 different from pure Dirichlet boundary conditions. How-
ever, the strategy78 to devise Green’s operator for other boundary conditions from the periodic Green’s operator may be
investigated in more detail.

2 CELL PROBLEMS WITH ESSENTIAL BOUNDARY CONDITIONS

2.1 The continuous setting

We are concerned with a problem on the unit cell

Y = [0,L1] × [0,L2] × [0,L3], (1)

and we suppose that a (heterogeneous and potentially nonlinear) stress function

 ∶ Y × R
3×3 → R

3×3, (x,F) → (x,F), (2)

is given, which encodes the stress response to an applied deformation F ∈ R3×3 at a particular point x ∈ Y in the
cell (1). We actually work at small strains, but choose the finite-strain formulation (2) with the computational resolu-
tion in mind, compare Risthaus-Schneider86 or Section 3 below for more details. Working at small strains entails the
condition

(x,F) = 0 for all x ∈ Y and any skew-symmetric F ∈ R
3×3. (3)

Moreover, we suppose that the stress function (2) satisfies both a Lipschitz and a strong monotonicity condition on the
symmetric part of the deformation gradient uniformly in the unit cell (sec. 2.1 of Reference 86).

For a prescribed average strain

𝜺 ∈ Sym(3) ≡ {
F ∈ R

3×3 ||| FT = F
}
, (4)

we seek the displacement fluctuation

u ∈ H1
0(Y ;R3) ≡ {

u ∈ H1(Y ;R3) ||| u ≡ 0 on 𝜕Y
}
, (5)

vanishing on the boundary 𝜕Y of the cell (1), which satisfies the equilibrium equation

div (⋅, 𝜺 + ∇u) = 0. (6)

With a finite-element discretization in mind, the latter equation (6) is typically rephrased in weak form

∫Y
⟨∇v,(⋅, 𝜺 + ∇u)⟩ dx = 0 for all v ∈ H1

0(Y ;R3), (7)
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involving the Frobenius inner product

⟨⋅, ⋅⟩ ∶ R
3×3 × R

3×3 → R, ⟨F1,F2⟩ ≡ tr(FT
2 F1). (8)

Under suitable assumptions (sec. 2.1 of Reference 86), existence and uniqueness of solutions to the small-strain problem
(6) without inertial forces may be established (sec. 2.1 of Reference 86). Subsequently, the averaged stress

𝝈 ≡ ⨍Y
(⋅, 𝜺 + ∇u) dx, (9)

is the primary quantity of interest.

2.2 The rotated staggered grid

The discretization on a rotated staggered grid65,66 is a finite-difference discretization on a regular grid. It was introduced to
FFT-based computational micromechanics in the periodic setting by Willot.53 More precisely, he presented an accompany-
ing Lippmann–Schwinger solution framework which preserves the original computational prowess of Moulinec–Suquet’s
“basic scheme,”1,2 but fixes some shortcomings of the original scheme. Subsequently, the discretization found its way
into a multitude of implementations and became one of the most popular frameworks used in FFT-based compu-
tational micromechanics, see also the review articles.70–72 In addition to Willot’s original article,53 the discretization
emerged also as an underintegrated finite-element integration on a regular grid55 and a nonconforming P1-finite element
discretization.88 To keep things simple, we stick with the interpretation as a finite-difference method.

We consider Ni > 0 voxels in each coordinate direction (i = 1, 2, 3) and take a look at the nodal grid

Ynod
N =

{
x ∈ Y ||| xi =

jiLi

Ni
for some ji ∈ {0, 1, … ,Ni} and all i = 1, 2, 3

}
, (10)

with the abbreviation N ≡ (N1,N2,N2) and the quadrature grid

Yqu
N =

{
x ∈ Y ||| xi =

(
ji +

1
2

) Li

Ni
for some ji ∈ {0, 1, … ,Ni − 1} and all i = 1, 2, 3

}
. (11)

The nodal grid (10) concerns degrees of freedom which live on the corners of the voxels and comprises (N1 + 1)(N2 + 1)
(N3 + 1) points, see Figure 1A. In contrast, the quadrature grid (11) is located at the voxel centers, see Figure 1A, and
consists of N1N2N3 points, the same as the number of voxels in the discretized microstructure.

F I G U R E 1 Illustration of the grids and the “derivative” operators for the rotated staggered grid. (A) Illustration of the displacement
grid (10), in black, and the quadrature grid (11), in red, for each voxel. (B) Illustration of the finite difference operators D1, D2, and D3 defined
in Equations (15)–(17).
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We define the discrete boundary of the nodal grid (10)

𝜕Ynod
N =

{
x ∈ Ynod

N
||| xi = 0 or xi = Li for some i = 1, 2, 3

}
. (12)

The discretization on a rotated staggered grid is concerned with discrete displacements in the space

H3
N =

{
u ∶ Ynod

N → R
3 ||| u(x) = 0 for all x ∈ 𝜕Ynod

N

}
, (13)

with vanishing boundary datum, and we consider the space

V3×3
N =

{
T ∶ Yqu

N → R
3×3}, (14)

to contain the deformation gradient and stress fields.
For any nodal field 𝜙 ∶ Ynod

N → R, we define the partial difference operators Di (i = 1, 2, 3) to produce fields on the
quadrature grid (11) via

D1𝜙[j1, j2, j3] =
1

4h1
(𝜙[j1 + 1, j2, j3] − 𝜙[j1, j2, j3]

+ 𝜙[j1 + 1, j2 + 1, j3] − 𝜙[j1, j2 + 1, j3]
+ 𝜙[j1 + 1, j2, j3 + 1] − 𝜙[j1, j2, j3 + 1]
+ 𝜙[j1 + 1, j2 + 1, j3 + 1] − 𝜙[j1, j2 + 1, j3 + 1]),

(15)

as well as

D2𝜙[j1, j2, j3] =
1

4h2
(𝜙[j1, j2 + 1, j3] − 𝜙[j1, j2, j3]

+ 𝜙[j1 + 1, j2 + 1, j3] − 𝜙[j1 + 1, j2, j3]
+ 𝜙[j1, j2 + 1, j3 + 1] − 𝜙[j1, j2, j3 + 1]
+ 𝜙[j1 + 1, j2 + 1, j3 + 1] − 𝜙[j1 + 1, j2, j3 + 1]),

(16)

and

D3𝜙[j1, j2, j3] =
1

4h3
(𝜙[j1, j2, j3 + 1] − 𝜙[j1, j2, j3]

+ 𝜙[j1 + 1, j2, j3 + 1] − 𝜙[j1 + 1, j2, j3]
+ 𝜙[j1, j2 + 1, j3 + 1] − 𝜙[j1, j2 + 1, j3]
+ 𝜙[j1 + 1, j2 + 1, j3 + 1] − 𝜙[j1 + 1, j2 + 1, j3]).

(17)

To keep these formulas reasonably short, we rely on the shorthand notations

Dk𝜙[j1, j2, j3] ≡ Dk𝜙
((

j1 +
1
2

)
h1,

(
j2 +

1
2

)
h2,

(
j3 +

1
2

)
h3

)
, k = 1, 2, 3, (18)

with hk = Lk∕Nk (k = 1, 2, 3) and

𝜙[j1, j2, j3] ≡ 𝜙(j1h1, j2h2, j3h3). (19)

The finite-difference operators (15)–(17) average the corresponding (forward) finite-differences on the edges of the voxel
under consideration and pointing in the direction of differentiation, see Figure 1B.

With the operators (15)–(17) at hand, we define the discrete deformation gradient

D ∶ H3
N → V3×3

N , (20)
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via the usual rule

Du =
⎡⎢⎢⎢⎣
D1u1 D1u2 D1u3

D2u1 D2u2 D2u3

D3u1 D3u2 D3u3

⎤⎥⎥⎥⎦ for a field u =
⎡⎢⎢⎢⎣
u1

u2

u3

⎤⎥⎥⎥⎦. (21)

The discrete equivalent of the equilibrium equation for the discretization on a rotated staggered grid is to find a
displacement-fluctuation field u ∈ H3

N, s.t. the discrete weak form∑
x∈Yqu

N

⟨Dv(x),(x, 𝜺 + Du(x))⟩ = 0, (22)

is satisfied for all v ∈ H3
N. After solving this Equation (22), the discrete average stress is computed by computing the mean

of the stress field on the quadrature grid (11)

𝝈N ≡ 1
N1N2N3

∑
x∈Yqu

N

(x, 𝜺 + Du(x)). (23)

3 SOLVERS OF LIPPMANN–SCHWINGER TYPE

3.1 General framework

Lippmann–Schwinger solvers may be developed for problems of the form (sec. 3.1 of Reference 76)

D∗S(𝜺 + Du) = 0. (24)

Here, we suppose that two Hilbert spaces H and V are given, together with a bounded linear operator

D ∈ L(H,V), (25)

s.t. the bilinear form

H × H → R, (u1,u2) → ⟨Du1,Du2⟩V, (26)

defines an (equivalent) inner product on the Hilbert space H. In the expression (26), the angular brackets ⟨⋅, ⋅⟩V encode
the inner product on the Hilbert space V.

With these data at hand, the “divergence operator” (up to a minus sign) D∗ is defined as the (mixed) adjoint of the
linear operator (25)

D∗ ∈ L(V,H′), D∗𝝉[v] = ⟨𝝉 ,Dv⟩V for 𝝉 ∈ V, v ∈ H, (27)

where H′ denotes the continuous dual space of the Hilbert space H, that is, the space of continuous linear functionals on
H, and the rectangular brackets stand for the evaluation of a linear functional on a vector.

To make sense of Equation (24) we moreover suppose that a (possibly nonlinear) mapping

S ∶ V → V, (28)

is given, together with an element 𝜺 ∈ V with vanishing divergence, that is, which satisfies the condition

D∗𝜺 = 0. (29)
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Notice that the definition (27) of the adjoint operator D∗ enables us to rewrite the original equation in “weak form”

⟨Dv,S(𝜺 + Du)⟩V = 0 for all v ∈ H. (30)

Standard arguments, see Appendix A.1, permit to demonstrate that for any fixed constant 𝛼0 > 0, the original problem
(24) is equivalent to the Lippmann–Schwinger equation

u = −G0D∗(S(𝜺 + Du) − 𝛼0(𝜺 + Du)
)
, (31)

where Green’s operator G0 is the bounded linear operator

G0 ∈ L(H′,H), G0 = 1
𝛼0

(D∗D)−1. (32)

The fixed-point scheme associated to the displacement-based Lippmann–Schwinger equation (31) with an initial guess
u0 ∈ H reads

uk+1 = −G0D∗(S(𝜺 + Duk) − 𝛼0(𝜺 + Duk)
)
, k = 0, 1, … , (33)

where the constant 𝛼0 needs to be chosen properly to ensure convergence. In a concrete implementation, the action of
Green’s operator is evaluated in Fourier space. The operators D and D∗ may also be evaluated in Fourier space, but the
formulation (33) precludes these evaluations to be made in an efficient way, essentially because the action of the operator
S—which acts in real space—interferes with such a procedure. To avoid these difficulties, traditional FFT-based methods
operate on the space V. In fact, introducing the total deformation gradient

F = 𝜺 + Du, (34)

it is readily apparent that the deformation gradient (34) associated to a solution to the Lippmann–Schwinger equation
(31) (or, equivalently, to the equilibrium problem (24)) solves the Lippmann–Schwinger equation

F = 𝜺 − 𝚪0(S(F) − 𝛼0 F), (35)

with the Eshelby–Green operator

𝚪0 = DG0D∗ ≡ 1
𝛼0

D(D∗D)−1D∗. (36)

Conversely, any field F ∈ V solving the equation (35) also gives rise to a solution to the displacement-based
Lippmann–Schwinger equation (31) via the rule

u = −G0D(S(F) − 𝛼0 F). (37)

For the convenience of the reader, the arguments are collected in Appendix A.2.
In view of Equation (36), it is readily apparent that the action of the operators D, G0 and D∗ may be evaluated in a

single run for Equation (35), avoiding the computational overhead involved in evaluating the scheme (33). Based on the
Lippmann-Schwinger equation (35) and for any initial guess F0 ∈ V, the associated fixed point iterative scheme

Fk+1 = 𝜺 − 𝚪0(S(Fk) − 𝛼0 Fk), k = 0, 1, … , (38)

is called basic scheme.1,2 Thus, we have two completely equivalent fixed-point schemes at out disposal, a
displacement-based version (33) and a method involving the deformation gradient (38). Due to their equivalence, the
iterates coincide provided the initial condition and the parameter 𝛼0 are chosen identically. Rather, the implementations
differ only in their computational expense and memory footprint.
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To discuss the choice of the step size 𝛼0, we stick to the deformation-gradient version (38) and suppose that there are
positive constants 𝛼±, s.t. the Lipschitz estimate

||S(F1) − S(F2)||V ≤ 𝛼+ ||F1 − F2||V, F1,F2 ∈ V, (39)

holds and the strong monotonicity condition

⟨S(𝜺 + Du1) − S(𝜺 + Du2),Du1 − Du2⟩V ≥ 𝛼− ||Du1 − Du2||2
V (40)

is satisfied for all u1,u2 ∈ H and 𝜺 ∈ V from above. Then, the equilibrium problem (24) has a unique solution u∗. If we
furthermore assume that the stress operator (28) arises as the differential of a Fréchet differentiable function 𝜓 ∶ H → R,
the basic scheme satisfies the convergence estimate

||Fk+1 − F∗||V ≤ 𝜌(𝛼0) ||Fk − F∗||V, 𝜌(𝛼0) =
max(|𝛼+ − 𝛼0|, |𝛼− − 𝛼0|)

𝛼0
, (41)

for the solution

F∗ = 𝜺 + Du∗, (42)

of the Lippmann–Schwinger equation (35). The bound 𝜌 is minimized for the value

𝛼0 = 𝛼− + 𝛼+
2

, s.t. 𝜌(𝛼0) =
𝛼+ − 𝛼−
𝛼+ + 𝛼−

. (43)

This result follows from standard optimization arguments (Thm. 2.1.15 of Reference 89), exploiting the connection of the
basic scheme to gradient descent,34 see Schneider (sec. 2, Appx. A of Reference 62).

With this framework at hand, the entire zoo of Lippmann–Schwinger solvers becomes available, including fast and
conjugate gradient methods,35,36,38–40 Newton-type methods34,37,41–43 and polarization schemes.23,25,26,29,30 We refer to the
review article72 for more details.

3.2 Solving the reference problem with discrete sine and cosine series

We would like to embed the discretization on a rotated staggered grid, discussed in Section 2.2, into the framework
established in the previous Section 3.1. Therefore, we prescribe the following:

• The Hilbert spaces H and V are given by the finite-dimensional spaces H3
N and V3×3

N defined in the Equations (13)
and (14).

• The bounded linear operator D in Equation (25) is taken to be the finite difference gradient (21).
• The stress operator S of Equation (28) is just the point-wise evaluation of the stress function (2), that is,

S(𝜺)(x) = (x, 𝜺(x)) for 𝜺 ∈ V3×3
N and x ∈ Yqu

N . (44)

• The abstract element 𝜺 ∈ V in Equation (29) is taken to be a strain 𝜺 ∈ Sym(3) (4), considered as a constant field on
the quadrature grid (11).

For these choices, it becomes clear that the general equilibrium equation (24)—in weak form (30)—recovers
the equilibrium equation (22) for the rotated staggered grid discretization. In particular, the Lippmann–Schwinger
framework becomes available under the condition that Green’s operator (32) can be computed readily. Thus, the pur-
pose of this section is to introduce an efficient technique for computing Green’s operator (and the Eshelby–Green
operator (36)).
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The starting point is the use of sine polynomials (sec. 3.1 of Reference 86), that is, functions of the form

u(x) =
∑

k∈N
3
N

û(k) sss(k, x), x ∈ Y , (45)

for the frequencies

N
3
N = {1, 2, … ,N1 − 1} × {1, 2, … ,N2 − 1} × {1, 2, … ,N3 − 1}, (46)

and the shorthand notation

sss(k, x) = sin
(
𝜋

k1x1

L1

)
sin

(
𝜋

k2x2

L2

)
sin

(
𝜋

k3x3

L3

)
for k = (k1, k2, k3) ∈ N

3, x ∈ Y . (47)

We will write SN(Y ;R3) for the space of such sine polynomials (45). The mapping which evaluates a sine polynomial (45)
on the nodal grid (10),

ev ∶ SN(Y ;R3) → H3
N, (ev(u))(x) = u(x), u ∈ SN(Y ;R3), x ∈ Ynod

N , (48)

is well-defined, because any sine polynomial (45) vanishes on the boundary of the cell Y , in particular on the boundary
of the nodal grid (12). Written out explicitly,

u
(

j1L1

N1
,

j2L2

N2
,

j3L3

N3

)
=

∑
k∈N

3
N

û(k) sin
(
𝜋

k1j1

N1

)
sin

(
𝜋

k2j2

N2

)
sin

(
𝜋

k3j3

N3

)
, j ∈ N

3
N, (49)

the mapping (47) turns out to be nothing but the discrete sine transform (DST-I),90 performed along each of the three
coordinate directions. It is well-known90 that the DST-I is invertible, and we obtain the explicit expression for the sine
coefficients

û(k) = 1
8N1N2N3

∑
j∈N

3
N

u
(

j1L1

N1
,

j2L2

N2
,

j3L3

N3

)
sin

(
𝜋

k1j1

N1

)
sin

(
𝜋

k2j2

N2

)
sin

(
𝜋

k3j3

N3

)
, j ∈ N

3
N. (50)

Thus, the mapping (48) provides a one-to-one correspondence between sine polynomials (45) and discrete displacements
(13) on the rotated staggered grid, that is, it manifests as a particular change of coordinates.

We will use this correspondence to express the interesting operators, like the gradient operator D, in terms of the
frequencies {û(k)}k∈N

3
N

. As a preliminary step, we reduce the complexity by considering the one-dimensional case first.
We suppose that the interval [0,L] contains the N ∈ N>0 grid points

xj =
j + 1

2

N
L, j = 0, 1, … ,N − 1, (51)

with mesh spacing h = L∕N and where the points are centered on the grid. Suppose that the one-dimensional sine
polynomial

u(x) =
N−1∑
k=1

ûk sin
(
𝜋

kx
L

)
, x ∈ [0,L], (52)

is given with sine coefficients ûk (k = 1, 2, … ,N − 1). Evaluating the central finite difference 𝛿c on the grid (51) yields

𝛿cu(xj) ≡
u
(

j+1
N

L
)
− u

(
j

N
L
)

h
= 1

h

N−1∑
k=1

ûk

[
sin

(
𝜋
(j + 1)k

N

)
− sin

(
𝜋

jk
N

)]
. (53)
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By using a suitable trigonometric identity, we may write

𝛿cu(xj) =
N−1∑
k=1

2 sin
(

k𝜋
2N

)
h

ûk cos
⎛⎜⎜⎜⎝𝜋

(
j + 1

2

)
k

N

⎞⎟⎟⎟⎠. (54)

The derivations on the trigonometry are collected in Appendix B. The details on the finite differences comprise
Appendix B.1. Formula (54) states that we may express the central difference (53) in terms of a cosine transform
(DCT-III) of suitably weighted sine coefficients (45), that is,

𝛿cu(xj) =
N−1∑
k=1
𝛿cuk cos

⎛⎜⎜⎜⎝𝜋
(

j + 1
2

)
k

N

⎞⎟⎟⎟⎠ with 𝛿cuk =
2 sin

(
k𝜋
2N

)
h

ûk (k = 1, 2, … ,N − 1). (55)

In addition to the central difference (53), we also consider the average Ac of two adjacent values of the sine
polynomial (52)

Acu(xj) ≡
u
(

j+1
N

L
)
+ u

(
j

N
L
)

2
= 1

2

N−1∑
k=1

ûk

[
sin

(
𝜋
(j + 1)k

N

)
+ sin

(
𝜋

jk
N

)]
. (56)

By a similar argument as for the difference case (54), we may write the average (56) in the following form

Acu(xj) =
N−1∑
k=1

cos
(

k𝜋
2N

)
ûk sin

⎛⎜⎜⎜⎝𝜋
(

j + 1
2

)
k

N

⎞⎟⎟⎟⎠, (57)

see Appendix B.2. Thus, the average (56) may be expressed in terms of a suitable sine transform (DST-III) with properly
weighted sine coefficients (52)

Acu(xj) =
N−1∑
k=1

Âcuk sin
⎛⎜⎜⎜⎝𝜋

(
j + 1

2

)
k

N

⎞⎟⎟⎟⎠, where Âcuk = cos
(

k𝜋
2N

)
ûk (k = 1, 2, … ,N − 1). (58)

After these one-dimensional preliminaries, we return our attention to the three-dimensional case. With an eye toward
the finite-difference deformation gradient (21), we are interested in the finite-difference operators Di (i = 1, 2, 3), defined
in Equations (15)–(17). In fact, we may express these operators by applying central differences and averages in suitable
coordinate directions independently

D1 = 𝛿c
1 ⊗ Ac

2 ⊗ Ac
3, D2 = Ac

1 ⊗ 𝛿c
2 ⊗ Ac

3 and D3 = Ac
1 ⊗ Ac

2 ⊗ 𝛿c
3. (59)

Here 𝛿i (i = 1, 2, 3) refers to the forward difference (53) in the ith coordinate direction, that is, using N = Ni and h = hi,
whereas Ac

i (i = 1, 2, 3) stands for averaging (56) in the ith coordinate direction for N = Ni. To make sense of the notation
in Equation (59), we focus on the operator D1. The finite-difference operator (59) may be considered as the composition
of three operations. First, the finite-difference operator (53) is applied in x-direction. Subsequently, the result is averaged
both in y- and in z-direction. The operators D2 and D3 may be evaluated with a similar logic, interchanging the direction
of the applied finite differences appropriately. With these considerations at hand, we are led to the expressions

D1u[j] =
∑

k∈N
3
N

𝜉1(k)û(k) cos
⎛⎜⎜⎜⎝𝜋

(
j1 + 1

2

)
k1

N1

⎞⎟⎟⎟⎠ sin
⎛⎜⎜⎜⎝𝜋

(
j2 + 1

2

)
k2

N2

⎞⎟⎟⎟⎠ sin
⎛⎜⎜⎜⎝𝜋

(
j3 + 1

2

)
k3

N2

⎞⎟⎟⎟⎠, (60)
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D2u[j] =
∑

k∈N
3
N

𝜉2(k)û(k) sin
⎛⎜⎜⎜⎝𝜋

(
j1 + 1

2

)
k1

N1

⎞⎟⎟⎟⎠ cos
⎛⎜⎜⎜⎝𝜋

(
j2 + 1

2

)
k2

N2

⎞⎟⎟⎟⎠ sin
⎛⎜⎜⎜⎝𝜋

(
j3 + 1

2

)
k3

N2

⎞⎟⎟⎟⎠, (61)

D3u[j] =
∑

k∈N
3
N

𝜉3(k)û(k) sin
⎛⎜⎜⎜⎝𝜋

(
j1 + 1

2

)
k1

N1

⎞⎟⎟⎟⎠ sin
⎛⎜⎜⎜⎝𝜋

(
j2 + 1

2

)
k2

N2

⎞⎟⎟⎟⎠ cos
⎛⎜⎜⎜⎝𝜋

(
j3 + 1

2

)
k3

N2

⎞⎟⎟⎟⎠, (62)

for any index j ∈ N
3
N with the vector

𝜉1(k) =
2N1

L1
sin

(
k1𝜋

2N1

)
cos

(
k2𝜋

2N2

)
cos

(
k3𝜋

2N3

)
,

𝜉2(k) =
2N2

L2
cos

(
k1𝜋

2N1

)
sin

(
k2𝜋

2N2

)
cos

(
k3𝜋

2N3

)
,

𝜉3(k) =
2N3

L2
cos

(
k1𝜋

2N1

)
cos

(
k2𝜋

2N2

)
sin

(
k3𝜋

2N3

) (63)

for k ∈ N
3
N and where we used the shorthand notation (18)

Diu[j] ≡ Diu
((

j1 +
1
2

) L1

N1
,
(

j2 +
1
2

) L2

N2
,
(

j3 +
1
2

) L3

N3

)
, i = 1, 2, 3, (64)

on the quadrature grid (11).
The adjoint operator D∗ defined in Equation (27) for the discretization at hand (20) takes fields on the quadrature grid

(11) and produces fields on the nodal grid (10) via suitable central averages. In particular, the arguments established for
the operator D apply to the operator D∗ with minimal modifications. Omitting the fine details, we may thus express the
action of the operator D∗D on an arbitrary displacement-fluctuation field u ∈ H3

N in the compact form

D∗Du
(

j1L1

N1
,

j2L2

N2
,

j3L3

N3

)
=

∑
k∈N

3
N

||𝝃(k)||2û(k) sin
(
𝜋

k1j1

N1

)
sin

(
𝜋

k2j2

N2

)
sin

(
𝜋

k3j3

N3

)
, (65)

for a fixed index j ∈ N
3
N. Thus, the operator D∗D acts by multiplying the sine coefficients of the displacement field u with

the squared norm of the vector field (63) in sine-frequency space. As the vector 𝝃(k) does not vanish for k ∈ N
3
N, we may

thus express the action of Green’s operator (32) in sine space

G0f
(

j1L1

N1
,

j2L2

N2
,

j3L3

N3

)
=

∑
k∈N

3
N

f̂(k)
𝛼0 ||𝝃(k)||2 sin

(
𝜋

k1j1

N1

)
sin

(
𝜋

k2j2

N2

)
sin

(
𝜋

k3j3

N3

)
, (66)

for any body-force field

f
(

j1L1

N1
,

j2L2

N2
,

j3L3

N3

)
=

∑
k∈N

3
N

f̂(k) sin
(
𝜋

k1j1

N1

)
sin

(
𝜋

k2j2

N2

)
sin

(
𝜋

k3j3

N3

)
, j ∈ N

3
N, (67)

and all indices j ∈ N
3
N. We thus have all the tools at hand to establish Lippmann–Schwinger solvers—either in dis-

placement form (31) making use of the explicit expression of Green’s operator (66) and sine transforms (DST-I in all
directions) or in deformation-gradient form (35), utilizing the formulas for the gradient (60)–(62) and Green’s operator
(66) to represent the Eshelby–Green operator (36) with suitable discrete sine and cosine transforms (DST-II/DST-III
and DCT-II/DCT-III for various directions). For the latter strategy, the implementation details comprise the next
Section 3.3.
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3.3 Implementation

This section comprises details on the implementation of the two solution schemes for the rotated staggered grid dis-
cretization with essential boundary conditions. We commence with the displacement-based basic scheme (33), which—by
working on the displacement field—reduces the memory consumption but typically leads to less performing solvers for
periodic boundary conditions.87 The displacement-based strategy is summarized in Algorithm 1 for the case of Dirichlet
boundary conditions. A computational overhead is inferred by the action of the operators D and D∗ in lines (5) and (7)
of Algorithm 1, respectively, which may be computed in real space by in-place stencil computations. Additionally, by
working with the FFTW library,91 we infer an additional overhead caused by the doubled memory use of the DST-I
implementation. The computational overhead can be avoided by working with the deformation gradient in the first place.

Algorithm 1. The u-based basic scheme with prescribed strain 𝜺 and Dirichlet boundary conditions

1: u ← 0
2: g ← 0
3: res ← tol + 1
4: while res > tol do
5: 𝝈 ← S (⋅, 𝜀̄ + Du) ⊳ Stencil-based gradient in real space (21)
6: 𝝈̄ ← mean(𝝈)
7: f ← D∗𝝈 ⊳ Stencil-based divergence in real space
8: f̂ ← RDFT(f ) ⊳ Forward transform to Fourier space

9: ĝ(k) ←

{
0, k1k2k3 = 0

f̂ (k)‖𝝃‖2 , otherwise ⊳ Apply the Green operator (66)

10: res ← f̂ ⋅ ĝ∕‖𝝈̄‖
11: g ← RDFT−1(ĝ) ⊳ Backward transform to real space
12: u ← u − 𝛼0g
13: end while
14: return Du, 𝝈̄
⊳ RDFT(g)

1: gi ← DST-I⊗ DST-I⊗ DST-I(gi) i = 1, 2, 3
2: return g
⊳ RDFT−1(g)

1: gi ← DST-I⊗ DST-I⊗ DST-I(gi) i = 1, 2, 3
2: g ← g∕(8N1N2N3)
3: return g

This alternative approach amounts to the (deformation-gradient-based) basic scheme (38) where a stencil-based com-
putation of the derivatives is circumvented by evaluating the action of these very operators in Fourier space at the expense
of an increased memory footprint. To compute the derivatives in Fourier space with Dirichlet boundary conditions by the
use of sine and cosine series, some extra work is required: Generally, in a deformation-gradient-based implementation,
the displacement and the body-force fields—both living on the nodal grid (10)—are never evaluated in real space (49).
Rather, they only enter via their sine coefficients û(k) and f̂(k), respectively. In fact, the primary quantity of interest is the
deformation gradient field (21) in view of the representation (59). To understand it better, it is instructive to consider the
one-dimensional case first.

Let us return to the representation formula (55) for the central difference operator (53)

𝛿cu(xj) =
N−1∑
k=1
𝛿cuk cos

⎛⎜⎜⎜⎝𝜋
(

j + 1
2

)
k

N

⎞⎟⎟⎟⎠ with 𝛿cuk =
2 sin

(
k𝜋
2

)
h

ûk (k = 1, 2, … ,N − 1). (68)
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For a sequence (y0, y1, … , yN−1) ∈ RN , the DCT-III is computed via

Yj = y0 + 2
N−1∑
k=1

yk cos
⎛⎜⎜⎜⎝𝜋

(
j + 1

2

)
k

N

⎞⎟⎟⎟⎠. (69)

In particular, by setting

y0 = 0, y1 = 1
2
𝛿cu1, … , yN−1 = 1

2
𝛿cuN−1, (70)

we may compute the action of the central difference operator (53)

𝛿cu(xj) ≡ Yj, (71)

via the DCT-III (69). Taking a look at the action of the average operator (58)

Acu(xj) =
N−1∑
k=1

Âcuk sin
⎛⎜⎜⎜⎝𝜋

(
j + 1

2

)
k

N

⎞⎟⎟⎟⎠ with Âcuk = cos
(

k𝜋
2

)
ûk (k = 1, 2, … ,N − 1), (72)

we may profit from the DST-III which is defined as

Yj = (−1)jyN−1 + 2
N−2∑
k=0

yk sin
⎛⎜⎜⎜⎝𝜋

(
j + 1

2

)
(k + 1)

N

⎞⎟⎟⎟⎠, (73)

for a given input signal (y0, y1, … , yN−1) ∈ RN . Thus, we may set

y0 = 1
2

Âcu1, y1 = 1
2

Âcu2, … yN−2 = 1
2

ÂcuN−1, yN−1 = 0, (74)

and compute the values (72) by the DST-III (73) with

Acu(xj) ≡ Yj. (75)

Similar to the difference case (70), one of the coefficients of the input signal needs to be set to zero. However, a shift of the
coefficients is necessary, as well. To account for this shift, we introduce the shift operator S−, which acts via

S−(y0, y1, … , yN−1) = (y1, … , yN−1, y0). (76)

With this operator at hand, we may thus rewrite Equation (74) in the form

Acu = 1
2
DCT-III◦S−

(
0, Âcu1, Âcu2, … , ÂcuN−1

)
, (77)

where the concatenation of operations is denoted by the symbol ◦.
With these operations at hand, it is immediately clear how to produce an implementation of the

deformation-gradient-based basic scheme, summarized in Algorithm 2. The actions of the discrete divergence, Green’s
operator (66) and the gradient (60)–(62) are condensed in line 8 of Algorithm 2. We account for the fact that the zero sine
frequencies vanish per definition (45) by setting these frequencies to zero. To understand the computation of the gradient
(60)–(62), line 1 in the RDFT−1(F) subroutine reveals the action of the differences (70) and (71) and the averages (77),
applied to each direction individually. As the DST-II and the DCT-II are inverses of the DST-III and the DCT-III,
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Algorithm 2. The F-based basic scheme with prescribed strain 𝜺 and Dirichlet boundary conditions

1: F ← 𝜺̄

2: res ← tol + 1
3: while res > tol do
4: Fold ← F
5: 𝝉 ← S(⋅,F) − 𝛼0 F ⊳ Compute material law and polarization
6: 𝝈̄ ← mean(𝝉) + 𝛼0 𝜺̄ ⊳ Calculate mean stress (23)
7: 𝝉̂ ← RDFT(𝝉) ⊳ Forward transform to Fourier space

8: F̂(k) =
{ 0, k1k2k3 = 0
− 𝝃⊗𝝃𝝉̂(k)

𝛼0 ‖𝝃‖2 , otherwise ⊳ Apply the Eshelby–Green operator (66)

9: F ← RDFT−1(F̂) ⊳ Backward transform to real space
10: F ← 𝜺̄ + F ⊳ Adjust average strain
11: res ← ‖F − Fold‖∕‖𝝈̄‖ ⊳ Use standard 𝓁2-norm
12: end while
13: return F, 𝝈̄
⊳ RDFT(F)

1: F1i ← DCT-II⊗ (S+ ◦DST-II)⊗ (S+ ◦DST-II)(F1i), i = 1, 2, 3
2: F2i ← (S+ ◦DST-II)⊗ DCT-II⊗ (S+ ◦DST-II)(F2i), i = 1, 2, 3
3: F3i ← (S+ ◦DST-II)⊗ (S+ ◦DST-II)⊗ DCT-II(F3i), i = 1, 2, 3
4: return F
⊳ RDFT−1(F)

1: F1i ← DCT-III⊗ (DST-III ◦ S−)⊗ (DST-III ◦ S−)(F1i), i = 1, 2, 3
2: F2i ← (DST-III ◦ S−)⊗ DCT-III⊗ (DST-III ◦ S−)(F2i), i = 1, 2, 3
3: F3i ← (DST-III ◦ S−)⊗ (DST-III ◦ S−)⊗ DCT-III(F3i), i = 1, 2, 3
4: F ← F∕(8N1N2N3)
5: return F

respectively, up to a factor of 2N, and the forward shift operator S+ acting via

S+(y0, y1, … , yN−1) = (yN−1, y0, y1, … , yN−2), (78)

negates the action of the backward shift (76), the forward operation RDFT(F) becomes clear as well.
We close with the following remarks.

1. More powerful solvers may be developed improving the basic scheme (38). We refer to the review article72 for further
details.

2. As discussed in Risthaus–Schneider,86 working with a finite-strain preconditioner for a small-strain problem increases
the required iterations roughly by a factor of two compared to the case of a small-strain preconditioner. Unfortunately,
it is not clear whether a small-strain preconditioner may be represented efficiently by using sine/cosine series. The
underlying problem appears to be the mixing of sine and cosine terms in the shear components.

4 COMPUTATIONAL INVESTIGATIONS

4.1 Setup

We examine the numerical performance of applying essential boundary conditions in combination with a finite difference
discretization. We implemented the rotated staggered grid discretization with Dirichlet boundary conditions as an exten-
sion to our in-house FFT solvers72,87 for the displacement-based solver (u-Q1R) and for the deformation-gradient-based
solver (Q1R). Building on the prior changes to the deformation-gradient-based solver,86 further updates to employ the
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rotated staggered grid discretization involved an adaptation of the preconditioner and making the DCT-II/DST-II and
DCT-III/DST-III routines of the FFTW library91 available to the solver routines. Similarly, the displacement-based
solver utilizes the DST-I routines of the same library. As the boundary conditions are handled via the preconditioners,
most of the available solvers may be used directly in our homogenization framework. The conjugate gradient (CG) solver
turned out to perform best with Dirichlet boundary conditions.86 For this reason, for all following evaluations, we rely
on the CG solver. Additionally, we validate our results against underintegrated-Q1 finite-element results obtained by the
FEniCSx92 library and the PETsc solver. Runtimes were recorded on a 2 × 48-core AMD EPYC CPU with 1024GB of RAM.

4.2 Computational performance

As shown in the authors’ previous publication,86 it is possible to extend FFT-based homogenization schemes to include
Dirichlet boundary conditions without a critical loss in computational performance. In the following, we will investi-
gate the performance of the Q1R discretization with Dirichlet (or essential) boundary conditions (Q1R-D, Equation 66)
and compare it to its periodic counterpart (Q1R-P, Willot53), as well as to the Moulinec–Suquet discretization with peri-
odic boundary conditions (MS-P,1) and with Dirichlet boundary conditions (MS-D, Moulinec-Suquet86). We assess the
performance of these discretizations in a deformation-gradient-based setting, summarized in Algorithm 2. For compar-
ison, we additionally evaluate the discretization in a displacement-based setting as laid out in Algorithm 1. We denote
this combination by the shorthand u-Q1R-D for Dirichlet boundary conditions and by u-Q1R-P for periodic boundary
conditions.

We consider a simple heterogeneous but periodic microstructure, that is, a single spherical inclusion centered in the
volume element of interest with a radius of 5∕16L, fixed relative to the volume element size. In our experiments, we
use the isotropic elastic material constants of E-glass for the spherical inclusion, that is, a Young’s modulus of 72 GPa
and a Poisson’s ratio of 0.2. Accordingly, we set the Young’s modulus of the polymer matrix material to 3.0 GPa with a
Poisson’s ratio of 0.35. We apply a uniaxial mean strain of 5%. The residual versus the number of iterations in the (lin-
ear) CG solver for the single spherical inclusion on a 2563 grid is shown in Figure 2A for the considered schemes. We
observe that for this finite material contrast, both schemes with periodic boundary conditions (Q1R-P and MS-P) reach
a residual below the tolerance of 10−5 in fewer iterations than for Dirichlet boundary conditions. This is due to the

F I G U R E 2 Residuals and iteration count for the single spherical inclusion using the conjugate gradient solver and a tolerance of 10−5.
(A) Residual versus iteration count on a 2563 grid. (B) Iteration counts for various resolutions.
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large-strain preconditioner we introduced to apply Dirichlet boundary conditions. To be more precise, the number of iter-
ations for linear CG scales as the square root of the condition number of the linear system. We observe that for periodic
boundary conditions, both discretization types require about ten fewer iterations than their counterparts with Dirichlet
boundary conditions. Unfortunately, since the large-strain preconditioner doubles the condition number of the system,
an increase in the number of iterations is to be expected regardless of the discretization used. Nevertheless, the Q1R-D
discretization allows a noticeable reduction in the number of iterations compared to the MS-D discretization (by about
10%). This advantage becomes even more apparent in Figure 2B, where the iteration counts for different resolutions of
the single spherical inclusion are plotted. In particular, the Q1R-D discretization reduces the number of iterations by up
to 10% compared to the MS-D discretization for the same resolution. This effect mirrors the reduction in the number
of iterations that we observe when comparing the Q1R-P and MS-P discretizations. At higher resolutions, all discretiza-
tion types show a reduction in the number of iterations, which is caused by the decrease in the number of interface
voxels.93

In addition, the MS-D discretization shows the same number of iterations for all resolutions except for the
lowest-resolution (N = 32). For both the periodic (u-Q1R-P) and the Dirichlet (u-Q1R-D) case, the displacement-based
implementations show a convergence behavior that is indistinguishable from their respective deformation-gradient-based
(Q1R) counterparts as they compute the same iterates but in a different manner. Another important aspect of the com-
putational performance is the actual runtime of the solver. As the large-strain preconditioner for Dirichlet boundary
conditions involves nine instead of six entries for the gradient field, we expect an increase in solver runtime for Dirichlet
boundary conditions. To evaluate this effect, in Figure 3A the total solver runtime is plotted for various resolutions of the
single spherical inclusion. In general, we notice that for all discretizations the runtimes are of the order of the voxel count
(N3). The increase in runtimes for Dirichlet boundary conditions is rooted in the increase of iterations and the increase
in operations per voxel. The Dirichlet boundary conditions scale to larger volume elements the same way as periodic
boundary conditions do. The runtime for the Q1R discretization is rather close to the MS discretization for both periodic
and Dirichlet boundary conditions. The displacement-based u-Q1R schemes show a different behavior. Even though the
periodic u-Q1R-P scheme is considerably slower than the Q1R-P scheme for all sizes, the displacement-based scheme
with Dirichlet boundary conditions (u-Q1R-D) does not show a similar increase in runtime over the Q1R-D scheme.
In fact, the u-Q1R-D scheme is slightly faster than the Q1R-D scheme for all investigated domain sizes larger than a
low size N = 64.

F I G U R E 3 Solver runtime and apparent mean stress for the single spherical inclusion and various resolutions N3 with the conjugate
gradient solver. (A) Solver runtimes. (B) Mean stress 𝜎xx for various resolutions N3.



18 of 31 RISTHAUS and SCHNEIDER

As we saw in Figure 2B, this difference is not rooted in the convergence properties of the scheme (as both schemes
have exactly the same number of iterations), but in the runtime of a single iteration. Here, the u-Q1R-D scheme avoids
some of the added overhead of the slower DCT and DST transforms by computing only three instead of nine transforms
per iteration. Therefore, the runtime of the u-Q1R-D scheme is rather close to the runtime of the u-Q1R-P scheme. Nev-
ertheless, like for the u-Q1R-P scheme, we need to compute the stencil-based gradient for the u-Q1R-D scheme. For this
reason, both schemes are slower than the Q1R-P scheme. All discretizations retain a linear scaling of the runtime in
relation to the number of voxels.

To conclude the discussion on this first example, we will take a look at the apparent mean stress 𝜎xx for a mean strain of
5% in x-direction as shown in Figure 3B. As asserted by Hill,94 we generally observe a higher apparent stress for Dirichlet
boundary conditions than for periodic boundary conditions. As in the periodic case, the apparent mean stresses converge
for higher resolutions for the Q1R-D discretization. Here, the MS-D discretization with Dirichlet boundary conditions
presents an outlier. The MS-D discretization implicitly sets the outermost voxel of the domain to zero, virtually increasing
the volume fraction of the inclusion in the domain. Therefore, especially for small resolutions, this discretization scheme
returns higher apparent stresses than the Q1R-D discretization. The effective stresses computed for both the u-Q1R-D
and u-Q1R-P implementations coincide with their deformation-gradient-based counterparts Q1R-D and Q1R-P up to
numerical precision, respectively. We computed validation results for hexahedral elements with reduced integration and
Dirichlet boundary conditions (Q1R-D) using the FEniCSx FE-library. The apparent mean stresses are listed in Table 1.
For the low resolutions N = 32 and N = 64, the validation computations provide extremely close results to our Q1R-D and
u-Q1R-D solution schemes. Alas, the direct FE validation solver does not converge for larger resolutions including N =
128 and higher. This divergent behavior is caused by spurious hourglassing modes.95,96 Consequently, we also computed
validation results with hourglass control (HGC) enabled, which led to convergence but provided slightly higher apparent
stresses for the FE results. These studies demonstrate that there is an excellent agreement of both our solution schemes
with Dirichlet boundary conditions with the results of established solvers. Furthermore, our solvers allow for noticably
finer resolutions compared to the FE approach, as shown in Figure 3B.

4.3 Dirichlet boundary conditions on periodic microstructures

After discussing the computational performance of the Q1R-D discretization, we take another look at the influence of the
selected boundary conditions on the apparent properties and the local stress fields. For computational homogenization,
the choice of boundary conditions is strongly linked to the periodicity of the microstructure. For instance, employing sta-
tistically similar but periodized microstructures provides faster convergence of the computed apparent properties toward
the actual effective properties.6-8 To this end, we use a slightly smaller single spherical inclusion with a radius of L∕4
inside a cube [0,L]3 and shift it in direction of the x-axis by a varying extent xsh and apply a uniaxial strain in direction of
the x-axis. The resulting periodic microstructures are shown in Figure 4. In Figure 5, the local stress fields 𝜎xx are shown
for an inclusion centered on a domain surface, that is, the one shown in Figure 4A. In this case we observe a signifi-
cant increase of the local stresses inside the spherical inclusion for all solution fields with Dirichlet boundary conditions.
Comparing the Q1R-D discretization (Figure 5A) with the MS-D discretization (Figure 5C), we notice a strong decrease
of the ringing artifacts introduced by the trigonometric approximation implied by the discrete Fourier transforms.53

This phenomenon mirrors the reduction in ringing artifacts observed for the conventional, periodic Q1R-P discretization
(Figure 5B). The local stress fields for the spherical inclusion shifted by xsh = 3L∕16—so that it only partially intersects

T A B L E 1 Apparent mean stress 𝜎xx in MPa for the single spherical inclusion and various resolutions N3 for different methods of
computation.

Q1R-D u-Q1R-D Q1R-D (FE)

N (ours) (ours) no HGC 1% HGC

32 302.63321 302.63321 302.63321 302.89896

64 301.24000 301.24000 301.24003 301.31681

128 300.56354 300.56354 — 300.60452

Abbreviations: HGC, hourglass control; Q1R-D, Q1R discretization with Dirichlet (or essential) boundary.
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F I G U R E 4 Spherical inclusion in a cubic cell [0,L]3 with shift xsh in x-direction. (A) xsh = 0. (B) xsh = 3L∕16. (C) xsh = 3L∕8. (D)
xsh = L∕2.

F I G U R E 5 Local stress field 𝜎xx in MPa on a slice of a 1283 solution field of the shifted spherical inclusion for a shift xsh = 0. (A) Q1R
discretization with Dirichlet (or essential) boundary (Q1R-D). (B) Q1R-periodic boundary (Q1R-P). (C) Moulinec–Suquet Dirichlet boundary
(MS-D). (D) Moulinec–Suquet periodic boundary (MS-P).

the domain boundaries—are shown in Figure 6. The stress fields for periodic boundary conditions (Figure 6B,D) are not
affected by the shift of the inclusion. On the other hand, applying Dirichlet boundary conditions leads to significantly
different solution fields. For example, Figure 6A shows an increased local stress inside the spherical inclusion as well
as areas of low stress above and below the inclusion. This higher stress gradient at the inclusion-matrix interface leads
to ringing artifacts. For this example, the benefits of using the Q1R-D discretization become clear, as significantly fewer
ringing artifacts are visible in Figure 6A.

Figure 7 shows the apparent stresses 𝜎xx for different shift magnitudes of the spherical inclusion with respect to the
volume element. The periodic boundary conditions show no variation in the apparent stress. In contrast, using Dirichlet
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F I G U R E 6 Local stress field 𝜎xx in MPa on a slice of a 1283 solution field of the shifted spherical inclusion for a shift xsh = 3L∕16 (A)
(A) Q1R discretization with Dirichlet (or essential) boundary (Q1R-D). (B) Q1R-periodic boundary (Q1R-P). (C) Moulinec–Suquet Dirichlet
boundary (MS-D). (D) Moulinec–Suquet periodic boundary (MS-P).

F I G U R E 7 Mean stress 𝜎xx for various shift distances xsh of a single spherical inclusion with a resolution of 1283.
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boundary conditions leads to influence of the shifting distance. All three considered discretization schemes with Dirichlet
boundary conditions show a similar behavior: In cases where the sphere intersects the domain boundary, the apparent
stress is significantly increased compared to the periodic boundary conditions. Shifting the spherical inclusion by xsh =
3L∕16 leads to the highest apparent stresses. In this case, the inclusion is only partially constrained by the boundary
condition. Increasing the shift beyond xsh = 3L∕16 leads to a strong decrease of the apparent stresses. For larger shifts,
the difference between the MS-D and Q1R-D discretizations becomes apparent. The MS-D discretization yields a higher
apparent stress. When the inclusion is shifted to the center of the volume element (xsh∕L = 1∕2), the difference in apparent
stress becomes less noticeable. In this case, the apparent stress of the Q1R-D discretization is closer to the stress of the
Q1R-P discretization than to the stress of the MS-D discretization.

4.4 Application to open cell foams

As an interesting application of Dirichlet boundary conditions to heterogeneous microstructures of industrial relevance
we consider open cell foams, which are used in various applications due to their advantageous mechanical properties
despite their light weight.97,98

Such foams represent a class of materials with a random microstructure, whose analysis by digital images leads to
nonperiodic microstructures, in general. In particular, computational homogenization strategies using periodic boundary
conditions, as typically assumed by FFT-based computational homogenization techniques, run into problems. In fact, for
a high porosity, it might happen that the microstructure is no longer mechanically stable, and computational approaches
presuming periodicity produce nonsense.

A possible work-around is based on generating (statistically equivalent) periodic microstructure models. However,
such a strategy has to account for the additional error inferred by the microstructure-generation process and may not
exploit the wealth of information present in real-world microstructure data.

Alternatively, one may directly apply Dirichlet boundary conditions to handle nonperiodic geometries. As an addi-
tional challenge, the presence of pores leads to an infinite material contrast, which is known to cause problems for solution
methods using the Moulinec–Suquet discretization.50,62

To assess the influence of periodicity, we consider two generated volume elements of the open cell foams, a periodic
and a nonperiodic one, consisting of a network of trusses with a porosity of 80%, that is, an aluminum volume fraction
of 20%, see Figure 8. Both the periodic (Figure 8A) and the nonperiodic (Figure 8B) microstructure are generated from
random Laguerre tessellations99–101 where the trusses representing the foam are obtained by thickening the edges of the
Laguerre cells. We computed the effective properties for a uniaxial strain loading in direction of the x-axis for an aluminum

F I G U R E 8 Open cell foam microstructures with a porosity of 80%. (A) Periodic open cell foam. (B) Nonperiodic open cell foam.
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open cell foam with a Young’s modulus of 72 GPa and a Poisson’s ratio of 0.22. The voids in the open cell foam have zero
stiffness, leading to an infinite material contrast. For both microstructures shown in Figure 8, we computed the local
stress fields for both the Q1R-P and Q1R-D discretizations.

Figure 9 comprises three-dimensional views of the local stress fields 𝜎xx in the foam material for different boundary
conditions. Figure 9A shows the local stress field for Dirichlet boundary conditions on the periodic microstructure. The
Dirichlet boundary conditions lead to increased stresses at the domain boundary compared to periodic boundary condi-
tions on the same microstructure in Figure 9C. Nevertheless, on interior trusses of the foam, the local stresses are on a
similar level. In contrast, for the nonperiodic microstructure, we observe a strong difference between Dirichlet (Figure 9B)
and periodic (Figure 9D) boundary conditions. Table 2 shows the apparent mean stresses 𝜎xx for the load case at hand.

Notably, the mean stress for periodic boundary conditions on the nonperiodic microstructure which is the lowest.
This outlier is caused by the missing connection between trusses across the domain boundary for periodic boundary
conditions. With Dirichlet boundary conditions and for the same microstructure, we do not observe this strong reduction
in mean stress. Of course, there are still differences between the different models used. However, these differences are
expected to diminish when considering larger cells.

F I G U R E 9 Local stress fields 𝜎xx in MPa on the on aluminum open cell foam with a porosity of 80% for 5% uniaxial extension. Only
voxels with positive stress values are shown. (A) Dirichlet boundary conditions on the periodic microstructure. (B) Dirichlet boundary
conditions on the nonperiodic microstructure. (C) Periodic boundary conditions on the periodic microstructure. (D) Periodic boundary
conditions on the nonperiodic microstructure.
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T A B L E 2 Mean stress 𝜎xx in MPa for the open cell foam for a mean strain of 5%.

Q1R-P Q1R-D

Periodic microstructure (Figure 8A) 117.6 171.4

Nonperiodic microstructure (Figure 8B) 43.6 133.6

Abbreviations: Q1R-D, Q1R discretization with Dirichlet (or essential) boundary; Q1R-P, Q1R discretization with periodic (or essential) boundary.

F I G U R E 10 Residuals versus iteration count for the foam microstructures and the conjugate gradient solver. (A) Periodic
microstructure. (B) Nonperiodic microstructure.

Finally, we take a look at the convergence behavior of the numerical solvers for the different microstructures. Gener-
ally speaking, FFT-based homogenization methods using ansatz functions with global support, like the Moulinec-Suquet
discretization, run into convergence problems for materials with infinite material contrast.72 For the problem at hand,
Figure 10 shows the residual versus iteration count for various discretization schemes applied to both the periodic open
foam microstructure (Figure 10A) and the nonperiodic microstructure (Figure 10B). For both the microstructure types,
the Q1R-P reaches a residual below the tolerance in a similar amount of iterations. Using the Q1R-D discretization scheme
and therefore Dirichlet boundary conditions, convergence is reached but necessitates more iterations, which is again
rooted in the inferior conditioning associated to the preconditioner for Dirichlet boundary conditions. For the nonpe-
riodic boundary conditions, the Q1R-D discretizations shows faster convergence at firstbut is overtaken by the Q1R-P
discretization at around 1000 iterations.

The Moulinec–Suquet-based discretizations (MS-P and MS-D) reach convergence in neither case. Interestingly, for the
periodic microstructure both discretization types show a similar decrease of the residual, although a residual below the
tolerance is not reached in under 2500 iterations. In contrast, with the nonperiodic microstructure, the MS-P discretization
stagnates at an even higher residual than the MS-D discretization with Dirichlet boundary conditions. This phenomenon
is caused by the missing connection between trusses across the boundary with periodic boundary conditions.

5 CONCLUSIONS

This work was devoted to developing Lippmann–Schwinger solvers for micromechanical problems at small strains with
essential boundary conditions and the discretization on a rotated staggered grid. In a nutshell, we used formulations on
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the displacement as well as on the deformation gradient and employed dedicated discrete sine and cosine transforms to tap
into the power of FFT-based computational micromechanics available for periodic boundary conditions. In retrospect, the
deformation-gradient-based implementation of the developed scheme is actually simpler than for the Moulinec–Suquet
discretization considered in Risthaus-Schneider86 because no weighted quadrature needs to be used. However, for the
deformation-gradient-based version, the use of the DCTs and DSTs is a bit more involved for the rotated staggered grid
than for the Moulinec–Suquet discretization, essentially for two reasons. For a start, different DCTs/DSTs need to be used
for the inverse transform than for the forward transform. Moreover, shift operations (76) and (78) are necessary to apply
Green’s operator properly. Nevertheless, once these hurdles are overcome, the established scheme may be integrated into
existing FFT-based computational micromechanics codes with little effort, taking advantage of the implemented solvers
and macroscopic loadings102,103 with ease. Additionally, we showed that the displacement-based u-Q1R-D implementa-
tion provides benefits regarding the evaluation time, while providing the exact same convergence properties and apparent
properties. Despite this, the deformation-gradient-based Q1R-D scheme provides similar performance while maintaining
compatibility with our large solver framework.

Let us briefly comment on possible extensions and directions of further research. Other authors have been trying
to impose essential boundary conditions for their own reasons, for example, to mimic an experimental setup,82,83 for
physical reasons22,80 or as a prerequisite for a multilevel scheme.84 These applications may be pursued with the developed
technology.

On a related note, it might be of interest to combine essential boundary conditions for the displacement-fluctuation
field in one direction with periodic or stress boundary conditions in other directions, extending the work of Gélébart78 to
solid mechanics. Working out a flexible framework for doing so might be of immediate interest. Also, opening up these
more general boundary conditions for the displacement fluctuation to other popular discretizations in computational
micromechanics, like the staggered grid,50 could prove useful.
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APPENDIX A. DETAILS ON THE LIPPMANN–SCHWINGER EQUATION(S)

A.1 Derivation
The goal of this appendix is to show that the equilibrium equation (24)

D∗S(𝜺 + Du) = 0, (A1)

and the Lippmann–Schwinger equation (31)

u = −G0D∗(S(𝜺 + Du) − 𝛼0(𝜺 + Du)
)
, (A2)

are equivalent. We rewrite the Equation (A1) in the form

𝛼0 D∗(𝜺 + Du) = −D∗(S(𝜺 + Du) − 𝛼0 (𝜺 + Du)
)
, (A3)

where we used that D∗ is a linear operator. Due to the assumption of vanishing divergence (29), we deduce the equation

𝛼0 D∗Du = −D∗(S(𝜺 + Du) − 𝛼0 (𝜺 + Du)
)
. (A4)

Inverting the operator D∗D, made possible by Riesz’ representation theorem and the assumed nondegeneracy of the inner
product (26), we arrive at the equation

u = −G0D∗(S(𝜺 + Du) − 𝛼0(𝜺 + Du)
)
. (A5)

As every single operation we performed was an equivalence transformation, the desired equivalence of the Equations
(A1) and (A2) is complete.

A.2 Equivalence of formulations
This section comprises the details on the equivalence of the Lippmann–Schwinger equation (31)

u = −G0D∗(S(𝜺 + Du) − 𝛼0(𝜺 + Du)
)
, (A6)

and the Lippmann–Schwinger equation (35)

F = 𝜺 − 𝚪0(S(F) − 𝛼0 F). (A7)

We start from Equation (A6), apply the operator D and add the average strain 𝜺

𝜺 + Du = 𝜺 − DG0D∗(S(𝜺 + Du) − 𝛼0(𝜺 + Du)
)
. (A8)

Introducing the abbreviation (34) for the deformation gradient F, we showed that a solution to the displacement-based
equation (A6) gives rise to a solution of the deformation-gradient-based equation (A7).

Let us turn to the converse, that is, we suppose that a solution F ∈ V of the Equation (A7) is given. We define the
displacement fluctuation

u = −G0D(S(F) − 𝛼0 F). (A9)

Then, Equation (A7) may be transformed as follows

F = 𝜺 − 𝚪0(S(F) − 𝛼0 F) = 𝜺 + D
[
−G0D∗(S(F) − 𝛼0 F)

]
= 𝜺 + Du. (A10)

Thus, every solution F is actually kinematically compatible, that is, satisfies the Equation (34). To check the validity of the
equilibrium equation (24) (which is by Appendix A.1 equivalent to the Lippmann–Schwinger equation (A6)), we compute
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𝚪0F = 1
𝛼0

D(D∗D)−1D∗(𝜺 + Du) = 1
𝛼0

D(D∗D)−1D∗Du = 1
𝛼0

Du = 1
𝛼0

(F − 𝜺), (A11)

where we used the divergence constraint (29). Inserting this insight into Equation (A7) yields

F = 𝜺 − 𝚪0(S(F) − 𝛼0 F)
= 𝜺 − 𝚪0S(F) + 𝛼0 𝚪0F
= 𝜺 − 𝚪0S(F) + F − 𝜺

0 = −𝚪0S(F).

(A12)

Decoding the obtained equation

0 = 1
𝛼0

D(D∗D)−1D∗S(F), (A13)

and applying the operator D shows that the condition

D∗S(𝜺 + Du) = 0, (A14)

is satisfied, that is, the equilibrium equation (24) holds.

APPENDIX B. ELEMENTARY TRIGONOMETRY

B.1 Forward differences in terms of sine polynomials
We wish to show the formula (54)

𝛿cu(xj) =
N−1∑
k=1

2 sin
(

k𝜋
2N

)
h

ûk cos
⎛⎜⎜⎜⎝𝜋

(
j + 1

2

)
k

N

⎞⎟⎟⎟⎠, (B1)

for the central difference (53)

𝛿cu(xj) =
u
(

j+1
N

L
)
− u

(
j

N
L
)

h
, (B2)

in terms of the sine-polynomial expression (52)

u(x) =
N−1∑
k=1

ûk sin
(

k𝜋 x
L

)
, x ∈ [0,L], (B3)

with sine coefficients ûk (k = 1, 2, … ,N − 1).
In a first step, we insert the expression (B3) into the definition (B2) of the central difference and obtain the formula

𝛿cu(xj) =
1
h

N−1∑
k=1

ûk

[
sin

(
𝜋
(j + 1)k

N

)
− sin

(
𝜋

jk
N

)]
. (B4)

Let us take a look at the angle addition and subtraction theorems

sin(𝜑1 + 𝜑2) = cos𝜑1 sin𝜑2 + sin𝜑1 cos𝜑2, (B5)

sin(𝜑1 − 𝜑2) = − cos𝜑1 sin𝜑2 + sin𝜑1 cos𝜑2, (B6)
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for the sine function and angles 𝜑1, 𝜑2 ∈ R. Subtracting these formulas leads to the expression

sin(𝜑1 + 𝜑2) − sin(𝜑1 − 𝜑2) = 2 cos𝜑1 sin𝜑2 for 𝜑1, 𝜑2 ∈ R. (B7)

With an eye toward Equation (B4), we set

𝜑1 = 𝜋

(
j + 1

2

)
k

N
and 𝜑2 = k𝜋

2N
, k = 1, 2, … ,N − 1, (B8)

to obtain the identity

sin
(
𝜋
(j + 1)k

N

)
− sin

(
𝜋

jk
N

)
= 2 cos

⎛⎜⎜⎜⎝𝜋
(

j + 1
2

)
k

N

⎞⎟⎟⎟⎠ sin
(

k𝜋
2N

)
, k = 1, 2, … ,N − 1. (B9)

Inserting these findings into the formula (B4), we obtain the identity

𝛿cu(xj) =
2
h

N−1∑
k=1

ûk cos
⎛⎜⎜⎜⎝𝜋

(
j + 1

2

)
k

N

⎞⎟⎟⎟⎠ sin
(

k𝜋
2N

)
, (B10)

that is, the desired expression (B1).

B.2 Averages in terms of sine polynomials
We want to establish the formula (57)

Acu(xj) =
N−1∑
k=1

cos
(

k𝜋
2N

)
ûk sin

⎛⎜⎜⎜⎝𝜋
(

j + 1
2

)
k

N

⎞⎟⎟⎟⎠, (B11)

for the average (56)

Acu(xj) =
u
(

j+1
N

L
)
+ u

(
j

N
L
)

2
, (B12)

exploiting the representation (52)

u(x) =
N−1∑
k=1

ûk sin
(

k𝜋 x
L

)
, x ∈ [0,L], (B13)

as a sine polynomial with sine coefficients ûk (k = 1, 2, … ,N − 1).
Inserting the expression (B13) into the definition (B12) leads to the identity

Acu(xj) =
1
2

N−1∑
k=1

ûk

[
sin

(
𝜋
(j + 1)k

N

)
+ sin

(
𝜋

jk
N

)]
. (B14)

Adding the angle addition and subtraction theorems (B5) for the sine function leads to the equation

sin(𝜑1 + 𝜑2) + sin(𝜑1 − 𝜑2) = 2 sin𝜑1 cos𝜑2. (B15)
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Keeping the Equation (B14) in mind, we set

𝜑1 = 𝜋

(
j + 1

2

)
k

N
and 𝜑2 = k𝜋

2N
, k = 1, 2, … ,N − 1, (B16)

to obtain the formula

sin
(
(j + 1)k

N

)
+ sin

(
jk
N

)
= 2 sin

⎛⎜⎜⎜⎝𝜋
(

j + 1
2

)
k

N

⎞⎟⎟⎟⎠ cos
(

k𝜋
2N

)
, k = 1, 2, … ,N − 1. (B17)

Inserting this insight into Equation (B14), we are led to the formula

Acu(xj) =
N−1∑
k=1

ûk sin
⎛⎜⎜⎜⎝𝜋

(
j + 1

2

)
k

N

⎞⎟⎟⎟⎠ cos
(

k𝜋
2N

)
, (B18)

that was to be shown (B11).
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