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Abstract
Wediscuss howDirichlet boundary conditions can be directly imposed for theMoulinec–Suquet discretization on the boundary
of rectangular domains in iterative schemes based on the fast Fourier transform (FFT) and computational homogenization prob-
lems inmechanics. Classically, computational homogenizationmethods based on the fast Fourier transformworkwith periodic
boundary conditions. There are applications, however, when Dirichlet (or Neumann) boundary conditions are required. For
thermal homogenization problems, it is straightforward to impose such boundary conditions by using discrete sine (and cosine)
transforms instead of the FFT. This approach, however, is not readily extended to mechanical problems due to the appearance
of mixed derivatives in the Lamé operator of elasticity. Thus, Dirichlet boundary conditions are typically imposed either by
using Lagrange multipliers or a “buffer zone” with a high stiffness. Both strategies lead to formulations which do not share the
computational advantages of the original FFT-based schemes. The work at hand introduces a technique for imposing Dirichlet
boundary conditions directly without the need for indefinite systems. We use a formulation on the deformation gradient—also
at small strains—and employ the Green’s operator associated to the vector Laplacian. Then, we develop the Moulinec–Suquet
discretization for Dirichlet boundary conditions—requiring carefully selected weights at boundary points—and discuss the
seamless integration into existing FFT-based computational homogenization codes based on dedicated discrete sine/cosine
transforms. The article culminates with a series of well-chosen numerical examples demonstrating the capabilities of the
introduced technology.

Keywords FFT-based computational micromechanics · Dirichlet boundary conditions · Discrete sine transform · Discrete
cosine transform · Computational homogenization

1 Introduction

State of the art

Computational homogenization methods are widely-used
to determine the material behavior of materials with het-
erogeneous microstructure [1, 55]. A particularly efficient
approach to computational micromechanics is based on
the fast Fourier transform (FFT) and was introduced by
Moulinec–Suquet in their seminal articles [65, 66]. Their
strategy was focused on small-strain nonlinear and inelastic
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constitutive laws and used a Lippmann–Schwinger formu-
lation [44, 67, 103] for periodic homogenization without
inertial effects and body forces. The strategy rested upon
a discretization on a regular grid, ensuring compatibility to
microstructure images obtained by micro-computed tomog-
raphy (μ-CT, [11, 18]), was formulated on the strain field in
the first place and made heavy use of the fast Fourier trans-
form, leveraging the capabilities of well-implemented FFT
software packages.

The apparent computational power of this FFT-based
approach to computational micromechanics led to a num-
ber of subsequent developments which tried to preserve the
efficiencyof the originalmethodwhile fixing a few shortcom-
ings of the originalmethod. Someof the earliest contributions
realized that the solution method introduced in the origi-
nal articles [65, 66] and called basic scheme by the authors,
requires an iteration count proportional to the material con-
trast. In particular, for high material contrast, the required
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iteration count could be massive. As a remedy, several
enhanced solution strategies were introduced. Based on an
ingenious reformulation of the Lippmann–Schwinger equa-
tion, Eyre–Milton [21, 92] and Michel–Moulinec–Suquet
[56, 57] introduced solution schemes operating on the polar-
ization stress instead of the strain. For elastic materials with
finite contrast, these methods were found to converge with
the square root of the material contrast for proper choice
of numerical parameters, offering a significant upgrade to
the original basic scheme. Later on, the polarization meth-
ods were revisited, unified and thoroughly analyzed [59, 60,
64], in particular for the case of nonlinear materials [80, 86].
Unfortunately, their range of applicability is limited, yet these
methods will shine more often than not if applicable [19,
100].

A second line of solver extensions made use of Newton’s
method [46] in this framework, which received a signifi-
cant boost [12, 28, 38] when combined with Krylov solvers
[7, 104]. More recent contributions analyzed the impact of
dedicated Quasi-Newton methods [9, 96, 97], which remove
the user both from the necessity to implement the material
tangent and the arduous task of selecting the solver specifi-
cations appropriately.

The third line of solver extensions is based on a re-
interpretation of Moulinec–Suquet’s basic scheme as a
gradient-descent method [38, 78]. This unexpected con-
nection to the world of optimization permitted to import
battle-tested optimization methods into FFT-based compu-
tational micromechanics like accelerated gradient [20, 74]
as well as conjugate gradient methods [77, 104] or the cele-
brated Barzilai-Borwein scheme [2, 75].

Usually, the advent of solvers went hand-in-hand with
extensions of the applicability ofFFT-based solution schemes.
For instance, extensions to finite elasticity [29, 46, 54], crys-
tal plasticity [17, 47, 91], damage and fracture mechanics
[10, 50, 62] and many others were reported. We refer to the
dedicated review articles [48, 79, 88] for a glimpse at the
numerous applications of FFT-based schemes.

In a complementary direction, different discretization
schemes were investigated by the community. This inter-
est was mainly driven by trying to remove the spurious
oscillations visible in the solution fields of the original
Moulinec–Suquet discretization [65, 66]. However, F. Willot
[99] was probably the first to realize that using certain finite-
difference discretizations permitted to apply FFT-based solu-
tion schemes to mechanically stable porous microstructures,
i.e., to materials with infinite material contrast. This obser-
vation was later analyzed from a mathematical point of view
[78].

There is quite a number of discretization schemes in
FFT-based computational micromechanics which fit into the
Lippmann–Schwinger framework and operate on a regular
grid: Fourier-Galerkin discretizations [6, 58, 93], the dis-

cretization with voxel-wise constant strains [7, 8, 76] and
various finite-difference [84, 99, 101] and finite-element [45,
49, 85] discretizations, see also Zeman et al. [105]. Again,
we refer to the dedicated review articles [48, 79, 88] for more
background and a historical discussion.

The use of the fast Fourier transformmeant that the natural
boundary conditions for the displacement-fluctuationfield on
themicro-scale are periodic boundary conditions. These con-
ditions are a perfect fit for cellular materials [13, 53], but turn
out to be advantageous formaterialswith randommicrostruc-
ture [16, 35, 87], as well. In contrast to FFT-based methods,
displacement (Dirichlet) or normal-stress (Neumann) bound-
ary conditions are more frequently used in the finite element
(FE) method, and imposing periodic boundary conditions
requires a special treatment [89].

There are certain applications, however, where using such
non-periodic boundary conditionswould be favorable or even
required by the application at hand. As an example, Bödecker
et al. [3, 4] consider a compression test of a composite plate
where Dirichlet boundary conditions are essential to match
the experimental setup. Actually, there appears to be a more
straightforward solution to the problem. FFT-based com-
putational homogenization methods critically rely upon (a
discretized version of) Green’s operator for the underlying
physical problem. In small-strain mechanics, it is necessary
to solve the mechanical problem

2μ0�u + (μ0 + λ0)∇div u = f (1)

for the displacement field u, where the body-force field f
and the Lame parameters μ0 and λ0 are fixed. If periodic
boundary conditions for the field u are considered, we may
use a representation by Fourier series

u(x) =
∑

ξ∈Zd

û(ξ) ei ξ ·x,

f (x) =
∑

ξ∈Zd

f̂ (ξ) ei ξ ·x, x ∈ Y , (2)

with suitable Fourier coefficients û(ξ) and f̂ (ξ) and where
we consider the cell Y = [0, 2π ]d in d = 2, 3 dimensions.
Then, the action of the Lamé operator (1) on the field u leads
to the expression

μ0�u + (μ0 + λ0)∇div u(x)

= −
∑

ξ∈Zd

(
2μ0‖ξ‖2û(ξ)

+(μ0 + λ0)(ξ · û(ξ))ξ
)
ei ξ ·x,

x ∈ Y . (3)
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Equating Fourier coefficients of the left-hand and the right-
hand side of the equation (1) permits to identify the Fourier
coefficients of the displacement-field u from those of the
body-force field f .

If displacement-boundary conditions are considered for
the displacement-fluctuation field u in equation (1), it is nat-
ural to represent the fields by sine series

u(x) =
∑

k∈N2

û(k) sin(k1x1) sin(k2x2), (4)

f (x) =
∑

k∈N2

f̂ (k) sin(k1x1) sin(k2x2), x ∈ [0, π ]2, (5)

and where we restrict to d = 2 dimensions for exposition.
Following the same strategy as in the periodic case runs into
difficulties, however. Inspecting the (μ0+λ0)-term inLamé’s
operator, we observe

∇div u(x)

= −
∑

k∈N2

[
k21 û1(k)

k22 û2(k)

]
sin(k1x1) sin(k2x2)

+
∑

k∈N2

k1k2

[
û2(k)

û1(k)

]
cos(k1x1) cos(k2x2) (6)

for x ∈ [0, π ]2, i.e., the appearance of cosine terms is not
accounted for in the right-hand side f . For the 3D case, sim-
ilar (but more complicated) issues arise.

Only in case of a specific mixture of Dirichlet and Neu-
mannboundary conditions [69, 98],more precisely vanishing
normal displacement and prescribed tangential components
of the normal stress, FFT-based solvers may be developed
[32].

As Dirichlet boundary conditions are sometimes required
by the application at hand, a suitable workaround needed to
be found. Based on the realization that a field with vanishing
boundary data on a rectangular cell is periodic for triv-
ial reasons, Dirichlet boundary conditions may be enforced
via suitable constraints on a periodic displacement-field.
Thus, suitable forces need to be determined which ensure
the clamping at the boundary. These forces correspond to
Lagrange multipliers in an optimization setting.

A simple way to enforce constraints in optimization is
via the penalty method. Translated to the setting at hand, an
extremely stiff material may be prescribed to the boundary
voxels [3, 4]. Alternatively, the sought forces may be consid-
ered as unknown and solved for by suitable solution schemes.
Searching for the periodic displacement and the boundary
forces jointly, however, leads to an indefinite system of equa-
tions, which may either be solved in a staggered fashion
[30] or by a Krylov subspace method [72]. Preconditioning
indefinite systems, however, is non-trivial, and typically less

efficient for indefinite systems than for definite systems [95,
§5.2]. A possible work-around consists of eliminating the
displacement degrees of freedom and solving for the bound-
ary forces only, see To et al. [90]. This approach, however,
appears restricted to linear elastic problems.

Contributions

The starting point for the work at hand are recent advances
[27, 61, 63, 70], which concern computational homogeniza-
tion problems for thermal conductivity and introduced a
unified framework for treating periodic, Dirichlet and Neu-
mannboundary conditions in this setting. In fact, no problems
occur when constructing Green’s function for the Lapla-
cian using either sine or cosine series, as differentiating
the (co)sine function twice gives a multiple of the (co)sine
function one started out with [15, 22, 26]. As mechanical
problems are of immediate interest, we turned our attention
to this matter.

The underlying idea for the article at hand goes back to
the work of Kabel et al. [38], who considered FFT-based
solution schemes for finite-strain problems. In this context,
the authors [38] noticed that a finite-strain hyperelastic prob-
lem could be written in terms of a Lippmann–Schwinger
equation which involved either Green’s operator for small
strains (1) or Green’s operator for the vector Laplacian �.
Both strategies turned out to be produce viable and efficient
Lippmann–Schwinger solvers.

In the work at hand, we turn this idea upside down: We
use Green’s operator for the vector Laplacian, which may be
considered as being associated to finite-strains, for problems
at small strains. In this way, we circumvent the issue with
Green’s operator for small strains and Dirichlet boundary
conditions (6).

The price to pay for this idea is a slightly increased
iteration count for the Lippmann–Schwinger solvers as a
consequence of the misfit in Green’s operator. Moreover, if
implemented on the deformation gradient, nine instead of six
components need to be treated (both in real and in Fourier
space), leading to a certain computational overhead. Yet, the
approach, worked out in detail in section 2, avoids Lagrange
multipliers and remains in a primal setting. In particular, the
entire bouquet of Lippmann–Schwinger technology [48, 79,
88] is readily applicable.

In general, there are two different strategies to develop
FFT-based schemes, depending on whether one discretizes
first and derives the Lippmann–Schwinger equation after-
wards or applies a discretization scheme to the Lippmann–
Schwinger equation in a continuous setting [7, 8]. We follow
the first route, and revisit the original Moulinec–Suquet dis-
cretization [65, 66], which may be interpreted [73, 94] as a
non-conforming discretization based on trigonometric poly-
nomials. More precisely, the non-conformity arises from
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using the trapezoidal rule to approximate the weak form of
the balance of linear momentum [81–83]. In section 3, we
develop theMoulinec–Suquet discretization in this setting. In
fact, we start with truncated sine series and employ the trape-
zoidal rule for quadrature. In contrast to the periodic case,
the boundary points of the cell need to be treated differently
in terms of the quadrature for Dirichlet boundary condi-
tions. We develop the corresponding Lippmann–Schwinger
equation, operating on the displacement-gradient field, and
discuss details of the implementation.

We investigate the computational performance of the
novel scheme in section 4 for simple problems and more
sophisticated examples, both in terms of the microstructure
and the considered constitutive laws.

As a final word of warning, we wish to stress that when
referring to “boundary conditions”, we mean the boundary
conditions imposed on the displacement fluctuation on the
domain edges only. In FFT-based computational microme-
chanics, it is customary to label the imposed macroscopic
strain or stress as a “boundary condition” [5, 40, 51], as well.

2 Homogenization with Dirichlet boundary
conditions

2.1 The homogenization problem and its variational
formulation

We consider a cubic1 box Y = [0, L]3, and suppose that a
heterogeneous stress operator

S : Y × R3×3 → R3×3, (x, F) �→ S(x, F), (7)

is given, which computes the Cauchy stress response of a
deformation gradient F at the microscopic point x ∈ Y and
encodes the microstructure under consideration.

Actually, we work at small strains, but choose to work
on the deformation gradient F due to certain computational
requirements which will become clear later. To render our
investigations mathematically well-defined, we suppose that
the stress operator (7) satisfies a number of salient properties.

1. We suppose that the stress S(x, F) is symmetric for
(almost) all x ∈ Y and F ∈ R3×3, encoding the bal-
ance of angular momentum.

2. We assume that the operator S is uniformly strongly
monotone in the sense that there is a positive constant
α−, s.t. the inequality

1 The extension to general rectangular boxes Y = [0, L1] × [0, L2] ×
[0, L3] is straightforward, but comes at the expense of more involved
notation.

〈S(x, F1) − S(x, F2), F1 − F2〉
≥ α−‖ε1 − ε2‖2 (8)

holds for all F1, F2 ∈ R3×3 and (almost) every x ∈ Y .
Here, the brackets encode the Frobenius inner product

〈A, B〉 := tr(BT A), A, B ∈ R3×3, (9)

on 3× 3-matrices, ‖A‖ = √〈A, A〉 refers to the associ-
ated norm and the strains

εi = 1

2

(
Fi + FT

i

)
, i = 1, 2, (10)

correspond to the symmetric part of the deformation gra-
dient.

3. Moreover, we suppose that the operator S is uniformly
Lipschitz continuous in the sense that there is a positive
constant α+, s.t. the inequality

‖ S(x, F1) − S(x, F2)‖ ≤ α+‖ε1 − ε2‖ (11)

holds for all F1, F2 ∈ R3×3 and (almost) every x ∈ Y .
The strains εi are defined as in Eq. (10).

The quantity κ = α+/α− is called material contrast and
determines how hard it is to solve the equilibrium equation
we will be considering shortly from a numerical point of
view.

We enforce Dirichlet boundary conditions, i.e., for a pre-
scribed macroscopic strain

ε̄ ∈ Sym(3) :=
{
F ∈ R3×3

∣∣∣ FT = F
}

, (12)

we seek a displacement-fluctuation field

u ∈ H1
0 (Y ;R3)

=
{
u ∈ H1(Y ;R3)

∣∣∣ u(x) = 0 on ∂Y
}

(13)

solving the balance of linear momentum (at small strains
without inertia and microscopic body forces)

div S(·, ε̄ + ∇u) = 0, (14)

where ∇ stands for the gradient operator and the divergence
operator is the negative of the formal adjoint of the gradient
operator, i.e., implicitly characterized by

f = div σ (15)

precisely if

∫

Y
f · v dx = −

∫

Y
〈σ ,∇v〉 dx (16)
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for all

v ∈ H1
0 (Y ;R3) (17)

for an arbitrary stress field σ ∈ L2(Y ;R3×3). It is not diffi-
cult to show that the problem (14) admits a unique solution
u ∈ H1

0 (Y ;R3) under the conditions (11) and (8), see, e.g.,
Schneider [78, §2]. Then, the apparent stress is defined via
averaging

Sapp(ε̄) = 〈S(·, ε̄ + ∇u)〉Y , (18)

where the notation 〈q〉Y computes the mean value of the field
q over the considered cell

〈q〉Y = 1

L3

∫

Y
q(x) dx. (19)

Here, the term apparent is used in Eq. (18) because typically
the microstructure arises as a snapshot of a random mate-
rial [42, 87], and the Dirichlet boundary conditions lead to
apparent properties which require a proper infinite-volume
limit of the cell to converge to the effective properties under
consideration.

Bydefinition of the divergence (15), the displacement field
u ∈ H1

0 (Y ;R3) satisfies the equilibrium equation (14) if and
only if

∫

Y
〈∇v, S(·, ε̄ + ∇u)〉 dx = 0 (20)

holds for all

v ∈ H1
0 (Y ;R3). (21)

Typically, the latter formulation (20) is called the weak for-
mulation of the problem (14).

2.2 Reformulation via sine series and Green’s
operator

With the numerical resolution of the equilibrium problem
(20) in mind, we consider a representation of the sought dis-
placement field u ∈ H1

0 (Y ;R3) via a sine series

u(x) =
∑

k∈N3

û(k)sss(k, x), x ∈ Y , (22)

where the convergence is considered in the Sobolev space
H1
0 to preserve the Dirichlet boundary conditions. Here,N3

denotes triples of natural numbers (N = {1, 2, 3, . . .}), û(k)

refers to the vector-valued sine coefficient of the field u at

the frequency k,

û(k) = 8

L3

∫

Y
u(x)sss(k, x) dx, k ∈ N3, (23)

and we use the shorthand notation

sss(k, x)

= sin

(
k1πx1
L

)
sin

(
k2πx2
L

)
sin

(
k3πx3
L

)
(24)

for

k = (k1, k2, k3) ∈ N3, x ∈ Y . (25)

The deformation gradient of the field (22) computes as

∇u(x) = π

L

∑

k∈N3

⎡

⎣
k1css(k, x) k1css(k, x) k1css(k, x)

k2scs(k, x) k2scs(k, x) k2scs(k, x)

k3ssc(k, x) k3ssc(k, x) k3ssc(k, x)

⎤

⎦

⎡

⎣
û1(k)

û2(k)

û3(k)

⎤

⎦ ,

x ∈ Y , (26)

where û j refers to the sine coefficients of the j-th component
of the displacement field u. We suppose that a “reference
material” C0 is given which acts via

C0 : F = α0F (27)

on a deformation gradient

F ∈ R3×3. (28)

Notice that such a material is non-physical, but is chosen
for numerical purposes. We refer to Kabel et al. [38] for
a related study in the finite-strain setting. For a reference
material of the type (27), we wish to determine Green’s oper-
ator G0 ∈ L(H−1

0 (Y ;R3), H1
0 (Y ;R3)), where H−1

0 (Y ;R3)

denotes the continuous dual space of the Banach space
H1
0 (Y ;R3). Green’s operator G0 is implicitly characterized

by the condition

u = G0 f if and only if div C0 : ∇u = f (29)

for all f ∈ H−1
0 (Y ;R3) and u ∈ H1

0 (Y ;R3). By definition
of the divergence operator (15), the latter condition may also
be re-written in weak form
∫

Y
〈∇v,C0 : ∇u〉 dx

= −
∫

Y
v · f dx for all v ∈ H1

0 (Y ;R3). (30)
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To evaluate the condition (30) explicitly, we expand the fields
f and v in sine series (22),

f (x) =
∑

k∈N3

f̂ (k)sss(k, x) (31)

and

v(x) =
∑

l∈N3

v̂(l)sss(l, x) (32)

for x ∈ Y , respectively, with corresponding sine coefficients.
Then, the right-hand side of the condition (30) becomes

−
∫

Y
v · f dx = − L3

8

∑

k∈N3

v̂(k) · f̂ (k), (33)

where we used the first of the (elementary) integral identities

∫ L

0
sin

(
kπx

L

)
sin

(
�πx

L

)
dx = L

2
δk�,

∫ L

0
cos

(
kπx

L

)
cos

(
�πx

L

)
dx = L

2
δk�,

(34)

valid for k, � ∈ N, for each individual coordinate.
With the help of the representation (26) for the field v and

the integral identities (34), we obtain

∫

Y
〈∇v,C0 : ∇u〉 dx

= α0π2L

8

∑

k∈N3

‖k‖2 v̂(k) · û(k). (35)

Comparing coefficients with the left-hand side (33) yields
the formula

f̂ (k) = Ĝ
0
(k) û(k), k ∈ N3 (36)

with the 3 × 3 matrix

Ĝ
0
(k) = − L2

α0π2‖k‖2 I (37)

for Green’s operator in the sine-series representation (22).
With Green’s operator at hand, the Lippmann–Schwinger
equation

F + 
0 : (S(·, F) − C0 : F) = ε̄, 
0 = ∇G0div (38)

for the displacement-gradient field F ∈ L2(Y ;R3×3) asso-
ciated to the equation (14) is readily derived and shown to be
equivalent to the original formulation by the standard proce-
dure, see, e.g., Kabel et al. [38].
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Fig. 1 Two-dimensional sketch of a 6×6-pixel grid with displacement
values ui j for i, j = 0, 1, . . . , 5. Dirichlet boundary conditions are
enforced at the pixels in brackets

3 TheMoulinec–Suquet discretization with
Dirichlet boundary conditions

3.1 Ansatz space and equilibrium equation

As our discretization, we work with a truncation of the sine
series (22), i.e., we consider an ansatz for the displacement-
fluctuation field in terms of a sine polynomial

u(x) =
∑

k∈N3
N

û(k)sss(k, x), x ∈ Y , (39)

forNN = {1, 2, . . . , N − 2} where N ≥ 3 is an integer that
will serve as the voxel count per axis in the succeeding. We
will write SN (Y ;R3) for the space of such sine polynomials.
By construction, the space SN (Y ;R3) of sine polynomials
is a proper subset of the Sobolev space H1

0 (Y ;R3).
We define the discrete grid - interpreted as the voxel grid

later on -

YN

{
xj =

(
L j1
N − 1

,
L j2
N − 1

,
L j3
N − 1

)
∈ Y

∣∣∣ j = ( j1, j2, j3) ∈ {0, 1, . . . , N − 1}3
}

(40)

which serves two purposes. For a start, the values at the grid
points (40), illustrated in Fig. 1, comprise the real counterpart
of the field (39) and its gradient
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∇u(x) = π

L

∑

k∈N3
N⎡

⎣
k1css(k, x) k1css(k, x) k1css(k, x)

k2scs(k, x) k2scs(k, x) k2scs(k, x)

k3ssc(k, x) k3ssc(k, x) k3ssc(k, x)

⎤

⎦

⎡

⎣
û1(k)

û2(k)

û3(k)

⎤

⎦ ,

x ∈ Y , (41)

The translation between the representation (39) in “Fourier”
space and on the grid (40) in real space is handled via discrete
sine/cosine transforms, see section 3.4.

The second purpose of the grid (40) is to provide N 3 inte-
gration points which are used to approximate the weak form
(20) of the equilibrium equation. We use a quadrature rule
which permits to integrate the terms appearing in the gradient
(26) of the truncated field (39) exactly. More precisely, for
the weights

w j =
{

1
2(N−1) , j ∈ {0, N − 1},

1
N−1 , j = 1, 2, . . . , N − 2,

(42)

the identity

1

L

∫ L

0
φ(x)ψ(x) dx

=
N−1∑

j=0

w j φ

(
L j

N − 1

)
ψ

(
L j

N − 1

)
(43)

holds for the sine polynomials

φ(x) =
N−2∑

k=1

φ̂k sin
(π

L
kx

)

and

ψ(x) =
N−2∑

�=1

ψ̂� sin
(π

L
�x

)
(44)

with sine coefficients φ̂k and ψ̂�. Moreover, the identity (43)
is also valid for the cosine polynomials

φ(x) =
N−2∑

k=1

φ̂k cos
(π

L
kx

)

and

ψ(x) =
N−2∑

�=1

ψ̂� cos
(π

L
�x

)
(45)

with cosine coefficients φ̂k and ψ̂�. The latter also satisfy the
following identity

N−1∑

j=0

w j φ

(
L j

N − 1

)
= 0, (46)

which ensures that the mean value of the cosine polynomial
(45) (which is zero) is properly computed by the trapezoidal
rule (42). Notice that the considered cosine polynomials (45)
correspond to those functions which arise as derivatives of
the sine polynomials (44) - in particular, no constant term
appears.

For the cosine polynomials (45), the two boundary points
need to be considered with half the weight of the interior
points in the quadrature rule (43). The sine polynomials (44)
vanish at these boundary points, anyway, so the quadrature
weights at the boundary do no influence the accuracy of the
rule in this case. Rather, the rule (43) is chosen to cover both
considered cases simultaneously.

With the one-dimensional quadrature rules (43) and (46)
at hand, the specific form of the grid (40) and the gradient
field (41) implies the formulas

1

L3

∫

Y
〈∇u,∇v〉 dx =

∑

xj∈YN
wj 〈∇u(xj),∇v(xj)〉 (47)

and

∑

xj∈YN
wj ∇u(xj) = 0 (48)

with weights wj = w j1w j2w j3 , valid for all fields u, v ∈
SN (Y ;R3). The identity (47) provides an exact quadrature
formula for bilinear expressions in gradients of sine polyno-
mials (39). With this identity at hand, we proceed to define a
natural discrete equivalent of the equilibrium equation (14)
(in weak form (20)). For a given non-linear stress operator S
and prescribedmacroscopic strain ε̄, we seek a displacement-
fluctuation field u ∈ SN (Y ;R3), s.t. the equation

∑

xj∈YN
wj 〈∇v(xj), S(xj, ε̄ + ∇u(xj))〉 = 0 (49)

holds for all

v ∈ SN (Y ;R3). (50)

With the quadrature formula (47) at hand, existence and
uniqueness of solutions to the discrete problem (49) are read-
ily established, see, e.g., Schneider [73, 82] for the techniques
to be used.
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3.2 Lippmann–Schwinger reformulation

To arrive at a discrete equivalent of theLippmann–Schwinger
equation (38)

F + 
0 : (S(·, F) − C0 : F) = ε̄, 
0 = ∇G0div , (51)

we introduce the (finite-dimensional) vector space

L2(YN ;R3×3) =
{
τ : YN → R3×3

}
(52)

of discrete tensor fields on the discrete grid (40). Endowed
with the inner product

〈τ 1, τ 2〉L2 :=
∑

xj∈YN
wj 〈τ 1(xj), τ 2(xj)〉,

τ 1, τ 2 ∈ L2(YN ;R3×3), (53)

the space L2(YN ;R3×3) becomes a (finite-dimensional)
Hilbert space. With this notation at hand, we introduce the
discrete gradient operator

∇N : SN (Y ;R3) → L2(YN ;R3×3), (54)

acting on sine polynomials (39) via point evaluation, i.e.,

(∇Nu) (xj) = ∇u(xj). (55)

Due to the representation (39)

u(x) =
∑

k∈N3
N

û(k)sss(k, x), x ∈ Y , (56)

and the formula (41)

∇u(x) = π

L

∑

k∈N3
N⎡

⎣
k1css(k, x) k1css(k, x) k1css(k, x)

k2scs(k, x) k2scs(k, x) k2scs(k, x)

k3ssc(k, x) k3ssc(k, x) k3ssc(k, x)

⎤

⎦

⎡

⎣
û1(k)

û2(k)

û3(k)

⎤

⎦ ,

x ∈ Y , (57)

we obtain

∇Nu(xj) = π

L

∑

k∈N3
N⎡

⎣
k1css(k, xj) k1css(k, xj) k1css(k, xj)
k2scs(k, xj) k2scs(k, xj) k2scs(k, xj)
k3ssc(k, xj) k3ssc(k, xj) k3ssc(k, xj)

⎤

⎦

⎡

⎣
û1(k)

û2(k)

û3(k)

⎤

⎦ .

(58)

Inspecting the terms via the shorthand notation (24), e.g.,

css(k, xj)

= cos

(
πk1 j1
N − 1

)
sin

(
πk2 j2
N − 1

)
sin

(
πk3 j3
N − 1

)
, (59)

we realize that the sums appearing in equation (58) actually
correspond to discrete sine and cosine transforms, a fact that
we will further look into in section 3.4.

In addition to the discrete version of the gradient operator
(54), we will also consider a discrete version of the diver-
gence operator (15)

divN : L2(YN ;R3×3) → SN (Y ;R3) (60)

as the negative of the adjoint operator to the discrete gradient
operator (54). More precisely, for τ ∈ L2(YN ;R3×3) we
postulate

1

L3

∫

Y
divN τ · v dx = −〈τ ,∇Nv〉L2 (61)

to hold for all

v ∈ SN (Y ;R3). (62)

To determine an explicit formula for the divergence divN, we
fix τ ∈ L2(YN ;R3×3) and write

divN τ ≡ f ∈ SN (Y ;R3), (63)

i.e.,

f (x) =
∑

k∈N3
N

f̂ (k)sss(k, x) (64)

for suitable coefficients f̂ (k). Expanding the test field

v(x) =
∑

k∈N3
N

v̂(k)sss(k, x) (65)

in the definition (61), using the first of the integral identities
(34) and accounting for the definition (53), we arrive at the
formula

1

8

∑

k∈N3
N

f̂ (k) · v̂(k) = −
∑

xj∈YN
wj τ (xj) : ∇v(xj), (66)

or, in component notation

3∑

b=1

∑

k∈N3
N

f̂b(k)v̂b(k)
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= −8
3∑

b=1

∑

xj∈YN
wj

3∑

a=1

τab(xj)∂avb(xj). (67)

Differentiating the explicit formula, exploiting the shorthand
notation (24),

vb(x) =
∑

k∈N3
N

v̂b(k)sss(k, x)

≡
∑

k∈N3
N

v̂b(k) sin

(
k1πx1
L

)

· sin
(
k2πx2
L

)
sin

(
k3πx3
L

)
, (68)

we arrive at the formula

∂1vb(x) ≡
∑

k∈N3
N

k1π

L
v̂b(k) cos

(
k1πx1
L

)

· sin
(
k2πx2
L

)
sin

(
k3πx3
L

)

=
∑

k∈N3
N

k1π

L
v̂b(k)css(k, x)

as well as

∂2vb(x) =
∑

k∈N3
N

k2π

L
v̂b(k)scs(k, x),

∂3vb(x) =
∑

k∈N3
N

k3π

L
v̂b(k)ssc(k, x).

(69)

Thus, for b = 1, 2, 3, we obtain

∑

xj∈YN
wj

3∑

a=1

τab(xj)∂avb(xj)

=
∑

xj∈YN
wj

[
τ1b(xj)∂1vb(xj)

+τ2b(xj)∂2vb(xj) + τ3b(xj)∂3vb(xj)
]

=
∑

k∈N3
N

v̂b(k)
π

L

∑

xj∈YN
wj

[
k1τ1b(xj)css(k, xj)

+k2τ2b(xj)scs(k, xj) + k3τ3b(xj)ssc(k, xj)
]
.

As the coefficients v̂b(k) can be chosen arbitrarily and we
deduce, by definition (63), the expression

f̂b(k) = ( ̂divN τ )b(k), (70)

the equation (67) implies the explicit formula

( ̂divN τ )b(k)

= − π

8L

∑

xj∈YN
wj

[
k1τ1b(xj)css(k, xj)

+ k2τ2b(xj)scs(k, xj)

+k3τ3b(xj)ssc(k, xj)
]

(71)

for every component b = 1, 2, 3 of the sine coefficients
of the discrete divergence operator applied to the field τ ∈
L2(YN ;R3×3). The formula (71) may also be written in the
form

( ̂divN τ )b(k) = −k1π

8L

∑

xj∈YN
wj τ1b(xj)css(k, xj)

− k2π

8L

∑

xj∈YN
wj τ2b(xj)scs(k, xj)

− k3π

8L

∑

xj∈YN
wj τ3b(xj)ssc(k, xj),

(72)

highlighting the individual discrete sine/cosine transforma-
tions that need tobe applied, see section (3.4) formoredetails.

With the definitions (55) and (61) of the discrete derivative
operators at hand, we observe that a displacement-fluctuation
field u ∈ SN (Y ;R3) solves the equilibrium equation (49),
i.e.,

∑

xj∈YN
wj 〈∇v(xj), S(xj, ε̄ + ∇u(xj))〉 = 0 (73)

for all

v ∈ SN (Y ;R3), (74)

if and only if it solves the operator-type equilibrium equation

divN S(·, ε̄ + ∇Nu) = 0. (75)

Introducing a reference material C0, the latter equation may
be equivalently rewritten in the form

divN C0 : (ε̄ + ∇Nu) = − divN [S(·, ε̄ + ∇Nu)

−C0 : (ε̄ + ∇Nu)
]
. (76)

Notice that the identity

divN C0 : ε̄ = 0 (77)
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holds. In fact, by definition (61)

−〈divN C0 : ε̄,∇v〉L2 =
∑

xj∈YN
wj 〈C0 : ε̄,∇v(xj)〉

=
〈
C0 : ε̄,

∑

xj∈YN
wj ∇v(xj)

〉

= 0 (78)

holds for all v ∈ SN (Y ;R3). Here, the second quadrature
identity (46) is crucial. Thus, we arrive at the equation

divN C0 : ∇Nu

= −divN
[
S(·, ε̄ + ∇Nu) − C0 : (ε̄ + ∇Nu)

]
. (79)

By construction of the discrete divergence and the first
quadrature identity (43), we may use Green’s operator (29)
for the left-hand side to write

u = −G0divN [S(·, ε̄ + ∇Nu)

−C0 : (ε̄ + ∇Nu))
]
. (80)

Differentiating and adding the macroscopic strain ε̄, we
finally arrive at the Lippmann–Schwinger equation

F = ε̄ − 
0
N :

[
S(·, F) − C0 : F

]
,


0
N = ∇NG0divN (81)

for the field F = ε̄ + ∇Nu ∈ L2(YN ;R3×3). By standard
arguments [73, 82], it can be shown that solutions to the equi-
libriumequation (75) and theLippmann–Schwinger equation
(81) are strictly equivalent.

3.3 Computing averages and residuals

Suppose that we arrived at a solution to the discretized equi-
librium equation (75),

divN S(·, ε̄ + ∇Nu) = 0, (82)

or, equivalently, to the Lippmann–Schwinger equation (81).
The quantity of interest for computational homogenization
techniques is to compute the apparent stress (18)

Sapp(ε̄) = 〈S(·, ε̄ + ∇u)〉Y , (83)

or, to be more precise, an approximation thereof. The naive
approach would be to consider the solution u ∈ SN (Y ;R3)

to the discrete equilibrium problem (82), evaluate the stress

σ N (xj) = S(xj, ε̄ + ∇u(xj)), xj ∈ YN , (84)

at the point of the discrete grid (40), and to compute themean.
However, this strategy is not recommended for two reasons,
to be explained shortly. Rather, for an arbitrary element τ ∈
L2(Y ;R3×3), we define the consistent discrete average

〈τ 〉YN =
∑

xj∈YN
wjτ (xj)

/ ∑

xj∈YN
wj , (85)

which accounts for the weights (47) and makes sure that the
mean preserves constants. As a direct consequence of the
definition, we obtain the property

〈ε̄ + ∇u〉YN = 〈ε̄〉YN + 〈∇u〉YN = ε̄ (86)

for any ε̄ ∈ Sym(3) and u ∈ SN (Y ;R3). Here, we used, on
the one hand, the definition (85)

〈ε̄〉YN =
∑

xj∈YN
wjε̄

/ ∑

xj∈YN
wj = ε̄, (87)

and, on the other hand, that the second term vanishes

〈∇u〉YN =
∑

xj∈YN
wj∇u(xj)

/ ∑

xj∈YN
wj = 0, (88)

due to the exact-quadrature property (48).
The second advantage of the definition (85) is the validity

of the Hill-Mandel formula

〈〈σ N , F̄ + ∇v〉〉YN = 〈〈σ N 〉YN : F̄〉
(89)

for the stress (84) associated to an equilibrium solution (82)
and arbitrary F̄ ∈ R3×3 as well as v ∈ SN (Y ;R3). The
identity (89) follows from

〈〈σ N , F̄ + ∇v〉〉YN = 〈
σ N , F̄

〉
YN

+ 〈〈σ N ,∇v〉〉YN (90)

and the definition (61) of the discrete divergence which
implies that the second term vanishes in view of the equi-
librium condition (82).

Wemay also benefit from the identity (86) when assessing
convergence of the basic scheme [65, 66]

Fk+1 = ε̄ − 
0
N :

[
S(·, Fk) − C0 : Fk

]
, (91)

associated to the Lippmann–Schwinger equation (81). Here,
Fk denotes a deformation-gradient fieldwhich arises as the k-
th iterate of the basic scheme. By the choice (86), the formula

〈
‖Fk+1 − Fk‖2

〉

YN

=
〈
‖Fk+1‖2

〉

YN
−

〈
‖Fk‖2

〉

YN
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+ 2

(〈
〈S(·, Fk), Fk〉

〉

YN

−
〈〈
S(·, Fk)

〉

YN
,
〈
Fk

〉

Y

〉)
(92)

holds [20, eq. (3.6)], which permits to exactly evaluate the
residual of the basic scheme with only a single field in mem-
ory.

Wewish to remark that with the consistent definition (86),
the entire package of Lippmann–Schwinger technology [79],
including mixed boundary conditions [40, 51] and advanced
solvers like the conjugate-gradient method [7, 104] becomes
available.

3.4 Implementation

Our implementation makes use of the discrete cosine trans-
form (DCT) and the discrete sine transform (DST) as
implemented in the dedicated FFT library FFTW [25], i.e.,
we rely on the DCT-I in the form

X j = x0 + (−1) j xM−1

+ 2
M−2∑

k=1

xk cos

(
π

jk

M − 1

)
,

j = 0, 1, . . . , M − 1, (93)

as well as the DST-I

X j = 2
M−1∑

k=0

xk sin

(
π

( j + 1)(k + 1)

M + 1

)
,

j = 0, 1, . . . , M − 1, (94)

both for input signals

x = (x0, x1, . . . , xN−1) (95)

of length M . The prefactors 1 and 2 in the DCT (93) and the
DST (94) naturally ensure that boundary points are handled
properly, i.e., incorporating the weights (42).
We apply the DCT and the DST to a one-dimensional input
signal x = (x0, x1, . . . , xN−1) of length N as follows:

1. We apply the DCT (93) to the entire input signal x for
M = N and call the operation DCT.

2. We apply the DST (94) to the shortened input signal x ′ =
(x1, x2, . . . , xN−2) for M = N − 2, leaving the entries
x0 as well as xN−1 untouched and call the operation DST.

A pseudo-code for the simplest basic scheme is given in
Algorithm 1.

Compared to a standard basic scheme in FFT-based compu-
tational homogenization [65, 66], the following differences
are apparent:

1. The implementation operates on the displacement gradi-
ent instead of the strain.

2. Discrete cosine and sine transforms are used instead of
the FFT of real-valued data.

3. Weighted averages are considered.
4. Averages are not obtained via certain Fourier coefficients,

and the mean strain is not imposed via manipulating a
Fourier coefficient.

5. A whole number of frequencies are automatically set to
zero (all those on the boundary of the box), reflecting the
nature of the sine polynomial (39).

Apart from these changes, the implementation is straight-
forward. In particular, Dirichlet boundary conditions may be
integrated into a working FFT-based computational homoge-
nization code with relative ease. Also, most well-established
extensions continue to work for this modification.

We conclude this section with a few remarks

1. For a linear elastic material S ≡ C satisfying the condi-
tions

α−‖ε‖2 ≤ ε : C(x) : ε ≤ α+‖ε‖2 (96)

for all

x ∈ Y and ε ∈ R3×3
sym

with positive constants α±, the reference constant (27)
should be chosen as follows:

α0 = α+ + α−/2

2
. (97)

The factor 1/2 accompanying α− is a consequence of
Korn’s inequality [23]

1

2

∫

Y
‖∇u‖2 d x

≤
∫

Y
‖∇su‖2 d x

≤
∫

Y
‖∇u‖2 d x, (98)

valid for all u ∈ H1
0 (Y ;R3). Similar considerations

apply to more general non-linear constitutive laws [78].
The factor 1/2 in the estimate (98) implies that the
condition number of the preconditioned linear system
will be increased by a factor of two. In particular, we
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Algorithm 1 The basic scheme with prescribed strain ε̄

1: F ← ε̄

2: res ← tol + 1
3: while res > tol do
4: Fold ← F
5: τ ← S(·, F) − C0 : F � Compute material law and polarization
6: σ̄ ← mean(τ ) + C0 : ε̄ � Calculate weighted mean stress (85)
7: τ̂ ← RDFT(τ ) � Forward transform to "Fourier" space

8: F̂(k) =
{− 1

α0 ‖k‖2 k ⊗ k τ̂ (k), 0 < ki < N − 1 for all i = 1, 2, 3

0, otherwise,
� Apply Green’s operator

9: F ← RDFT(F̂)/(8(N − 1)3) � Backward transform to "real" space
10: F ← ε̄ + F � Adjust average strain
11: res ← ‖F − Fold‖/‖σ̄‖ � Use weighted norm (92)
12: end while
13: return F, σ̄

� RDFT(F)
1: F1i ← DCT ⊗ DST ⊗ DST(F1i ), i = 1, 2, 3 � Apply DCT along first axis, DST along the other axes
2: F2i ← DST ⊗ DCT ⊗ DST(F2i ), i = 1, 2, 3 � Apply DCT along second axis, DST along the other axes
3: F3i ← DST ⊗ DST ⊗ DCT(F3i ), i = 1, 2, 3 � Apply DCT along third axis, DST along the other axes
4: return F

expect implications on the performance of the developed
schemes, see Sec. 4.2 below.

2. It is possible to use implementations on the displacement
in the sense of Kabel et al. [38], further refined inGrimm-
Strele & Kabel [32]. In this way, the additional storage
required for the displacement gradient is less severe. For
the conjugate gradient method, 3 + 3 = 6 displacement
gradients need to be stored instead of 4 ·3 = 12, reducing
the memory footprint by 50%.

3. Mixed boundary conditions [40, 51] are integrated in a
straightforwardway. Similarly, advanced solvers like fast
[74, 77], conjugate-gradientmethods [7, 104] orNewton-
type methods [28, 96] are readily integrated.

4. Polarization methods in the sense of Monchiet-Bonnet
[59, 60] may be explored, as well. However, there are
two caveats. For a start, the simplified inversion formula
in line 9 of Algorithm 1 no longer applies, and a refined
formula needs to be used. Moreover, damping [80, 86]
is required for the polarization schemes. Put differently,
the Eyre–Milton scheme [21] does not converge, but
the schemes by Michel–Moulinec–Suquet [56, 57] and
Monchiet-Bonnet [59, 60] do.

-

4 Computational investigations

4.1 Setup

In this section, we investigate the numerical performance of
applying Dirichlet boundary conditions using the approach
harnessing the discrete sine and cosine transforms and com-
pare the performance to the conventional approach with

periodic boundary conditions.We implemented the Dirichlet
boundary conditions into an in-house FFT-based homoge-
nization code [79] written in Python with Cython extensions
for performance-critical sections of code. The additional
implementation effort consists of:

1. Replacing FFTs by appropriate DSTs/DCTs,
2. Adaptations to the preconditioner in the manner shown

for the simple basic scheme in Algorithm 1,
3. Extraction/setting the mean of a field requires more work

than accessing/manipulating a single Fourier frequency,
4. Accounting for appropriate weights (85) when comput-

ing mean values.

Consistent with the preexisting code base, we employ the
FFTW [24] library to compute the (discrete) Fourier trans-
forms, retaining comparability with the periodic case and
enabling straightforward thread-parallel evaluation of the
transforms.

Runtimes were recorded on a 2 × 48-core AMD EPYC
CPU with 1024GB of RAM. The computations were per-
formed using the material parameters listed in Table 1

The E-glass and the UPPH resin are modeled as isotropic
linear elastic, whereas the mechanical behavior of the
polyamide matrix is governed by J2-plasticity with isotropic
exponential-linear hardening

σ0(p) = σY + k1 p + k2(1 − exp(−mp)). (99)

4.2 Computational performance

Maybe the most striking advantage of the proposed novel
treatment of Dirichlet boundary conditions in FFT-based
computational micromechanics consists of retaining the full
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Table 1 Material parameters of
materials used in the numerical
studies and corresponding
reference

Name E in GPa ν k1 in GPa k2 in GPa m References

E-glass 72.0 0.22 – – – [14]

UPPH resin 3.4 0.385 – – – [43]

Polyamide 2.1 0.3 129 32.7 319.4 [14]

Fig. 2 Residual versus iteration count for a single E-glass sphere in an UPPH matrix on a 2563 grid

compatibility with the entire bouquet of previously estab-
lishedLippmann–Schwinger technology. For instance, all the
previously developed solvers become available.

To demonstrate this advantage, we consider a single E-
glass sphere in an UPPH matrix, shown in Fig. 5d, and plot
the residual versus iterations for different solvers in Fig. 2a
for Dirichlet boundary conditions and a 2563 grid.

The basic scheme converges, and requires 321 iterations
to achieve the prescribed tolerance of 10−5.With a total of 54
iterations, the Barzilai-Borwein (BB) [75] method requires
only a fraction of the iterations of the basic scheme. How-
ever, we observe a non-monotonic decrease of the residual,
a property which is well-known for the BB scheme [75].
Among the considered solution schemes, the lowest itera-
tion count is achieved by the nonlinear conjugate gradient
(CG) method where only 40 iterations are necessary to reach
the desired tolerance with the added benefit of the steadily
decreasing residual. Here, we show the plots for two differ-
ent methods of selecting the momentum parameter in the
nonlinear CG scheme, which are the Dai-Yuan (CG-DY)
and Fletcher-Reeves (CG-FR) method [77]. For this linear
problem setting with finite material contrast, both methods

achieve convergence within the same number of iterations.
Polarization methods [59, 64, 80] may also be used and show
their well-known remarkable performance. Here, we show
the Eyre–Milton method [21, 86] and theMichel–Moulinec–
Suquet scheme [56, 57].

The trick for handling Dirichlet boundary conditions that
was introduced in the work at hand comes at a price - using
a vector Laplacian preconditioner on a small-strain problem
increases the condition number of the system matrix by a
factor of two.This fact is also reflected in the choice of the ref-
erence constant in the basic scheme compared to the periodic
case, see Eq. 97. Therefore, we expect the iteration count to
be higher for the Dirichlet case compared to periodic bound-
ary conditions. To investigate the implications, we consider
the same single spherical inclusion and consider both Dirich-
let and periodic boundary conditions and the CG solver. In
fact, the linear conjugate gradient method judiciously selects
the involved algorithmic parameters in an optimal fashion
and thus grants us an insight into whether our Korn esti-
mate (98) is actually too pessimistic or not. We observe in
Fig. 2b that the iteration count for Dirichlet boundary con-
ditions requires 40 iterations compared to the 29 iterations
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needed in the periodic case to achieve the tolerance of 10−5.
Thus, about 38% more iterations are required for Dirichlet
boundary conditions.

On the theoretical side, the classical worst-case bound
for the iteration count of the linear CG for fixed tolerance
involves the square root of the condition number of the (pos-
itive definite and symmetric) linear operator [68, eq. (5.35)].
Korn’s inequality (98) predicts that the condition number for
our Laplace-preconditioned small-strain problem is at most
twice as high as if we used a small-strain preconditioner
(which appears to be unavailable by Fourier methods, how-
ever). As the considered bounds for Dirichlet and periodic
boundary conditions actually only involve material param-
eters, they may be compared. Due to the additional factor
two in the condition number estimate for Dirichlet boundary
conditions compared to periodic boundary conditions, and
the appearance of square root in the iteration-count estimate
for CG, we expect an increase by a factor

√
2 ≈ 1.44 in the

iteration count of CGwhen comparingDirichlet and periodic
boundary conditions. The observed 38%-increase is actually
rather close to this theoretical prediction.

We take a closer look at the iteration counts and the run-
times for this setting, also in case of solvers with non-optimal
parameter choices.

ForDirichlet boundary conditions, the basic scheme needs
328 iterations, wheras only 159 iterations are required for
periodic boundary conditions, see Fig. 3a. Thus, the iteration
count roughly doubles, as expected from the Korn estimate
(98). For the Barzilai-Borwein scheme, 61 iterations are
needed for Dirichlet boundary conditions compared to 44
iterations for periodic boundary conditions. The increase by
39% also appears plausible accounting for Korn’s inequality
(98). Last but not least, the linear conjugate gradient method
requires 40 iterations for Dirichlet boundary conditions com-
pared to 30 iterations for periodic boundary conditions,
implying a 1/3-increase in iteration count.

With these observations at hand, we take a look at the
total runtimes shown in Fig. 3b. The linear CG method takes
around 51 s for the Dirichlet case compared to 11 s for the
periodic case. The absolute difference in runtime is even
more prominent for the basic scheme, where the runtime
of 37 s with periodic boundary conditions is contrasted by
the runtime of 297 s for the Dirichlet case. There is a num-
ber of factors which are responsible for this increase. For
a start, more iterations are required for the Dirichlet case.
Secondly, larger arrays need to be traversed both for apply-
ing the constitutive law, see line 5 in Algorithm 1, and for
taking care of the action of the Eshelby-Green operator, see
line 8 in Algorithm 1. A third issue arises when computing
the trigonometric transforms. Recall that periodic bound-
ary conditions are naturally used when applying FFTs in
all directions, leveraging the vectorization capabilities of the
FFTW. In contrast, imposing Dirichlet boundary conditions

requires applying discrete sine and cosine transforms in dif-
ferent directions of the deformation gradient/stress. In this
context, implementations of the DST-I and DCT-I trans-
formsoperate on amirrored signal [24, 33], leading to another
source of slowdown. In addition, the DST is only applied to
a subset of the considered field, which compromises proper
memory alignment. A fourth source of slowdown arises from
the need to compute averages over the field in the case of
Dirichlet boundary conditions, rather than being able to read
off the average from the zeroth frequency in the periodic
case. Dually, imposing a macroscopic strain also requires
more work in the Dirichlet case. Last but not least, the use of
weighted quadrature slows down the implementation even
more. This is particularly noticeable for the basic scheme,
where we use the memory-efficient convergence criterion
[20, eq. (3.6)] which requires computing a Hill-Type “work”
term 〈σ : F〉Y using the proper weights.

To sum up, we observe an increase in runtime, and the rea-
sons for this increase are rather clear. We are confident that
subsequent work may introduce ideas to reduce the compu-
tational overhead.

We close this section by resolution studies.
We revisit the single spherical inclusion under uniaxial

extension in x-direction with 5% strain. The cubic domain is
resolved by N 3 voxels for varying voxel count N . First, we
monitor the mean normal stress in x-direction, see Fig. 4a.
For both Dirichlet and periodic boundary conditions, the
computedmean stress decreases with increasing voxel count.
However, Dirichlet boundary conditions lead to consistently
highermean stresses than periodic boundary conditions. This
situation is expected for the continuous setting, as variational
arguments imply such an outcome [34, 36]. In fact, similar
arguments could be applied to the Moulinec–Suquet dis-
cretization despite the quadrature-induced non-consistency.

Figure 4b shows the total number of iterations up to con-
vergence with an error tolerance of 10−5 for two solvers,
the Barzilai-Borwein (BB) method as well as the Conjugate
Gradient (CG-DY) scheme. For the BB solver, we observe
a fluctuation in the iteration count for both types of bound-
ary conditions. As discussed previously, the iteration count
for the Dirichlet case is consistently higher than for the peri-
odic case. Nevertheless, the iteration count does not increase
with increasing resolution. Despite the strongly fluctuating
residual for the BB solver, see Fig. 2a, the highs and lows of
the iteration count for varying resolution match for the two
considered boundary conditions.

For the CG solver, we observe a slight yet steady decrease
in iteration count for both types of boundary conditions. As
for BB, imposingDirichlet boundary conditions leads to con-
sistently higher iteration counts.

To sumup,we confirm the theoretical expectations that the
novel Lippmann–Schwinger solvers for Dirichlet boundary
conditions in mechanics lead to an iteration count which is
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Fig. 3 Iteration count and run times for a single E-glass sphere in an UPPH matrix on a 1283 grid and a prescribed tolerance of 10−5

Fig. 4 Resolution studies for the single spherical E-glass inclusion in an UPPH matrix under 5% uniaxial extension in x-direction

bounded independently of the resolution, but depends only
on the material contrast.

4.3 Influence of the boundary conditions

To make the influence of the Dirichlet boundary condi-
tions on the local fields more tangible, we consider the
following simple numerical experiment involving a single
spherical E-glass inclusion. For periodic boundary condi-
tions, the effective properties are invariant towards shifting
the position of the spherical inclusion, as long as that shift

is an integer number of voxels. In particular, having the
ball intersect the domain boundary does not influence the
results. For the Dirichlet case, this invariance does not hold,
as the microstructure is “clamped” on the domain bound-
aries. Accordingly, we compute the apparent properties and
local fields using both periodic and Dirichlet boundary con-
ditions on a cubic domain with edge length L , via the FFT
and DCT/DST transforms, respectively. A single spherical
inclusion of radius L/4 is shifted in x-direction by a cer-
tain amount from its initial position where the center of the
sphere is at xsh = 0, i.e., centered on the domain boundary.
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Fig. 5 Spherical inclusion in a cubic cell [0, L]3 with shift xsh in x-direction

Four spherical inclusions shifted by different amounts are
shown in Fig. 5. Note that the microstructure itself is still
periodic even in cases where the spherical inclusion overlays
the domain boundary.

We consider the shifted spherical inclusions to be embed-
ded a polyamide matrix governed by J2-plasticity, see
Table 1. The specimen is loaded by uniaxial extension up
to a maximum of 5% in x-direction, and we consider ten
equidistant (monotonic) load step steps. Fig 6 shows a slice
of the 3D local strain fields at the final load for different shifts
of the sphere and the two considered boundary conditions for
the displacement field.

We observe that for the periodic boundary conditions,
the local strain fields do not change when shifting of the
sphere, as expected. As a characteristic of the Moulinec–
Suquet discretization, significant ringing artifacts occur, also
in the periodic case, especially in the softer matrix material
around the edges of the sphere. These artifacts, however, do
not interfere with the accuracy of the discretization - both the
local field and the effective stresses converge with the same
rate [82] as when considering finite elements or a regular grid
[102].

In contrast, imposing Dirichlet boundary conditions for
the displacement fluctuation leads to significantly higher
strains in case the spherical inclusion is cut by the domain
boundary, see the bottom row in Fig. 6. Let us take a closer
look at the different local fields.

In Fig. 6e, the sphere is clamped by the boundary. As the
sphere is stiffer than the matrix material, the local solutions
fields do not differ significantly compared to the respective
strains for periodic boundary conditions in Fig. 6a. In fact,
the maximum local strain in the middle of the domain is
lower for the Dirichlet case than for the periodic case. Shift-
ing the spherical inclusion to the right by 3L/16, see Fig. 6f,
leads to completely different effects. In this case, the sphere
is only partially clamped by the Dirichlet boundary condition
and therefore a stronger increase in local strains is observ-
able close to the sphere-matrix interface in the center of the
domain. Additionally, a region of rather low local strains
emerges in the matrix above and below the sphere on the left
hand side, caused by the transverse contraction of the left

half of the sphere as it is subjected to a loading in positive
x-direction.

For the next scenario, the spherical inclusion is moved
so far into the volume element that is does not intersect the
boundary anymore, i.e., the sphere is not clamped directly,
see Fig. 6g. We observe an increase of the local strains in
the matrix material close to the boundary on the left hand
side of the field. In contrast, on the right hand side of the
local field, i.e., where no inclusion is present, the strains are
noticeably lower than at the same location of the field with
periodic boundary conditions shown in Fig. 6c.

By placing the sphere in the center of the domain, we see
another change in the local strain field in Fig. 6d. In fact, the
stress field is again perfectly symmetric, but differs notice-
ably from the field with periodic boundary conditions shown
in Fig. 6d. The local strains at the boundary on the volume
element are visibly decreased compared to the periodic case
which is caused by the clamping of the displacement on the
boundary in the Dirichlet case.

Concerning the aforementioned ringing artifacts, we
notice a slight increase of these artifacts for the Dirichlet
case, which are presumably caused by the increased levels
of local strain. This amplification is especially noticeable
when comparing Fig. 6c, g, where areas of high local strains
lead to significantly more ringing in the Dirichlet case.

In addition to the local solution fields, we also investigate
the mean stresses for the shifted-sphere microstructures, dis-
cretized by 1283 voxels.

We consider two scenarios for the matrix material: an
elastic UPPH matrix, shown in Fig. 7a, and an elastoplas-
tic polyamide matrix, shown in Fig. 7b.

Not surprisingly, the invariance under shifting for the peri-
odic boundary conditions that we observed for the local
solution fields is also reflected in the computedmean stresses.
As expected, the computed mean stresses do not change for
all considered shifts.

In contrast, for the Dirichlet case and the elastic matrix
material, see Fig. 7a, the mean stresses are significantly
higher than in the periodic case in case the center of the spher-
ical inclusion is not shifted, i.e., the sphere is located right
on the domain boundary. Interestingly, shifting the sphere in
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Fig. 6 Slice of the local strain field εxx for the shifted spherical inclusion on a 1283 grid and 5% uniaxial extension in x-direction

Fig. 7 Mean stress under uniaxial loading for a single shifted E-glass-sphere

x-direction leads to an increase in mean stresses. Only when
the spherical inclusion itself is not clamped by the domain
boundary anymore, i.e. starting from an x-shift of 5L/8 for
a sphere of radius L/4, the mean stress gradually decreases.
Nevertheless, the boundary condition influences the mean
stresses even when the inclusion is perfectly centered in the

domain for an x-shift of L/2 where the mean stress is still
higher than themean stress for the periodic case. Even though
the sphere itself is not clamped anymore, the matrix material
still is.

For the matrix material with isotropic hardening, we
observe a different behavior in Fig. 7b. In contrast to the
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elastic case, no increase in mean stress is visible when mov-
ing the sphere in x-direction. The relative increase in mean
stress between a sphere shift of 0 and a sphere shift L/2 is
more significant for the matrix material with isotropic hard-
ening. This is rooted in the matrix material’s ability to reduce
local stress peaks by yielding. For the centered sphere in the
case of the elastoplastic matrix model, the difference inmean
stress between Dirichlet and periodic boundary conditions is
less significant compared to the elastic case.

Another strategy to emulateDirichlet boundary conditions
is to add a rather stiff outer layer to the domain boundaries
[3, 30]. Figure 8 shows a slice of the local stress fields for
the solution fields of a shifted ball with Dirichlet boundary
conditions (Fig. 8a, c) as well a solution field with periodic
boundary conditions but a rigid outer layer with a rather high
(1 · 107 GPa) Young’s modulus (Fig. 8b, d). We observe that
for the rigid outer layer, the general solution field on the
interior of the domain is quite similar to the solution field
with Dirichlet boundary conditions. Nevertheless, for the
rigid outer layer strong ringing artifacts appear in the cor-
ner of the solution field caused by the significant material
contrast. For the domain under consideration, our approach
to imposing Dirichlet boundary conditions converges in 49
CG iterations, whereas the boundary-layer strategy requires
464CG iterations to converge. This difference is rooted in the
highmaterial contrast for the almost rigid outer layer, leading
to an increased condition number which is even more unfa-
vorable than the increase inflicted by theDST/DST approach.

4.4 Applications tomaterials with random
microstructure

When considering material with random microstructures,
modern image-based characterization techniques like micro-
computed tomography (μ-CT) permit to gain in-depth
knowledge of the underlying arrangement of the con-
stituent phases on the microstructural scale. The obtained
images may be complemented by a stochastic model of the
microstructure to increase the fidelity in the subsequently
computed effective material response. There are different
ways to generate statistically similar microstructure, hope-
fully in such a way that the characteristic features of the real
material are matched [71].

In the section at hand, we investigate the interplay of
imposing Dirichlet boundary conditions and different ways
to generate microstructures. To this end, we synthesized
microstructure ensembles of three types. All three of them
comprise E-glass fibers with an aspect ratio of ten embedded
in an elastic UPPH matrix. The first type of microstructures
ensemble we consider is periodic microstructures, i.e., those
microstructures where the microstructure is perfectly peri-
odic on the considered unit cell. A top view of an exemplary
microstructure is shown in Fig. 9a.

As the second type of microstructure ensemble we con-
sider microstructures with a hard-wall boundary condition,
shown in Fig. 9b. For this microstructure type, the fibers
are placed in such a way that no fiber is allowed to pro-
trude the domain. Therefore, on the domain boundary,mostly
matrix material is found. This emulates real samples molded
to exactly the size of the sample, for instance.

The lastmicrostructure typewe investigate is the extracted
type shown inFig. 9c. In this case, the synthesizedmicrostruc-
ture is extracted from a larger domain, emulating a (non-
periodic) sample cut from a real microstructure.

We computed the apparent stiffnesses on a 1283 grid.
To get an insight into the local stresss fields, we com-
pare periodic and Dirichlet boundary conditions for the
displacement-fluctuation field on a single realization of the
three considered microstructure ensembles, see Fig. 10. For
periodic boundary conditions and a periodic microstructure,
shown in Fig. 10a, we observe no effects at the domain
edges. However, the ringing artifacts representative for the
Moulinec–Suquet discretization,i.e, the discretization via
trigonometric polynomicals, become apparent.

In contrast, Dirichlet boundary conditions applied for the
periodic microstructure, Fig. 10d, leads to increased local
stresses in the fibers intersecting the domain boundary. These
local stresses are significantly higher than for periodic bound-
ary conditions.

For the microstructure with hard walls, where no fibers
protrude into the domain boundary, we observe that the peri-
odic and Dirichlet boundary conditions, see Fig. 10b, e,
respectively, behave rather similarly. In fact, only slightly
higher stresses emerge for Dirichlet boundary condition.
Ringing is equally present for both types of boundary condi-
tion.

Last but not least, we consider the case of extracted ensem-
bles. Figure 10c shows that periodic boundary conditions lead
to lower local stresses on the domain boundary. In contrast,
as shown in Fig. 10f, Dirichlet boundary conditions imply
local stress peaks, especially at the top and on the right hand
side of the domain where parts of the fiber barely protrude
into the domain from above.

In addition to monitoring the local solution fields, we take
a closer look at the apparent properties obtained for different
types of microstructure ensemble in combination with the
two different types of boundary conditions.

In total, we computed 20 samples for each combination of
boundary condition and microstructure ensemble on a 1283

domain. For each sample, we computed the apparent stiffness
matrix via six independent applied mean strains, i.e., three
normal loadings in the respective coordinate directions as
well as the three shear-load scenarios in all three coordinate
plane. Subsequently, we extracted the apparent engineering
constants such as the isotropic Young’s modulus and Pois-
son’s ratio.
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Fig. 8 Upper left quadrant of a slice of the local strain field εxx for the shifted spherical inclusion and 5% uniaxial extension in x-direction with
Dirichlet boundary conditions as well as periodic boundary conditions in combination with a rigid outer layer

Fig. 9 Examples for different types of fiber microstructures on a 1283 grid

In Fig. 11, the computed apparent Young’s modulus is
shown for different types of microstructure ensembles for
a glass fiber microstructure. We observe that the apparent
stiffness and therefore the approximated Young’s modulus
is higher for the Dirichlet boundary condition. This stan-
dard deviation, marked by the error bars in the plot is only
noticeable for the extracted microstructure type. In that case,
the volume fraction of the sample fluctuates more strongly,
whereas the volume fraction is fixed for both the hard wall
and the periodic microstructures.

We observe that the difference in apparent Young’s mod-
ulus is the largest for the extracted microstructure, where
the value is higher for the Dirichlet boundary condition. For
the hard-wall microstructure on the other hand, the differ-
ence is the smallest. This effect is a direct consequence of no
fibers interpenetrating the domain boundary. Therefore, the
Dirichlet boundary condition only influences the soft matrix
material, reducing the impact of the boundary condition.

Finally, we see that the periodic microstructure yields
the highest apparent Young’s modulus for both the Dirich-
let and periodic boundary conditions. Like for the extracted
microstructure, fibers can intersect the domain boundaries,
therefore the Young’s modulus is influenced by the Dirich-

let boundary condition. The same effect is visible for the
approximated Poisson’s ratio in Fig. 11b, where the Dirichlet
boundary conditions throughout yield lower apparent ratios
than the periodic boundary condition. This is caused by the
fixed boundaries in the Dirichlet case limiting the transverse
contraction of the microstructure.

5 Conclusions

In this work, we introduced a framework for applyingDirich-
let boundary conditions for Lippmann–Schwinger solvers
and computational micromechanics at small strains.

To this end, we started with the continuous setting, used
a representation of the displacement-flucation field via a
sine series and showed that apparent difficulties with the
shear strain components can be circumvented by using a
finite-strain Lippmann–Schwinger equation, i.e., employing
Green’s function for the vector Laplacian instead of Green’s
function for linear elasticity.

We worked out the details of this idea to obtain a compu-
tational scheme for the Moulinec–Suquet discretization, i.e.,
a discretization by trigonometric polynomials and where the

123



Computational Mechanics

Fig. 10 Local stress field σxx in MPa under uniaxial extension in x-direction—boundary condition versus microstructure type, see Fig. 9

trapezoid rule is used for quadrature. This top-downapproach
permitted us to naturally find the proper discrete sine and
cosine transforms to use, and alsomadeus aware of the proper
weights to account for when computing averages.

Themost striking advantage of the proposed piece of tech-
nology is its straightforward integrability into an existing
FFT-based micromechanics solver ecosystem for inelastic
and nonlinear materials. Essentially all existing features,
including solvers, advanced macroscopic loadings [37, 40,
51] or composite voxels [31, 39, 41] can be used without
much hassle.

The focus of the work at hand lay on the consistent deriva-
tion of the scheme from first principles, hopefully enabling
researchers to build upon the introduced ideas in their own
way and for their own applications. As a consequence of this
focus, we did not put significant emphasis on optimizing the
performance of the schemes. In fact, there is a certain over-

head due to Korn’s inequality (98), and nine instead of six
components of the fields need to be processed (e.g., for the
transforms). Still, there is space for various optimizations,
e.g., via dedicated displacement-based implementations [32,
52] or other tricks that we did not (yet) think of. In any case,
we could show preliminary results which demonstrate the
capabilities of the novel scheme.

The work at hand focused on Dirichlet boundary con-
ditions for the Moulinec–Suquet discretization. However,
enforcing Neumann boundary conditions, i.e., imposing
normal stresses, via a similar approach seems plausible.
Moreover, extending our ideas to different discretizations
could be a promising direction of further study.

Last but not least, let us remark that our approach of
enforcing boundary conditions is only viable on the exte-
rior of a rectangular domain. Oftentimes this is the boundary
of interest, but in some cases prescribing values on interior
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Fig. 11 Apparent effective isotropic moduli of the volume element computed by isotropic approximation of the apparent stiffness for different
types of microstructure ensembles

nodes is desirable, where Lagragian-type approaches like
those introduced or Gélébart [30] or by To et al. [90] appear
unavoidable.

A Exact quadrature of real trigonometric
polynomials

The purpose of this appendix is to shed some light on the
quadrature rules (43) and (46) on the interval [0, 2π ]. The
transition tomore general intervals [0, L] follows by a change
of variables.

As usual, working with complex numbers helps to under-
stand the matters more clearly. We consider trigonometric
polynomials of order M = 2P

T (x) =
P∑

ξ=−P+1

T̂ (ξ) exp(2π i xξ), x ∈ [0, 2π ], (100)

with a non-negative integer P ∈ N. For trigonometric poly-
nomials T1 and T2, Parseval’s Theorem [82, eq. (2.13)] holds
in the form

1

2π

∫ 2π

0
T1(x)T2(x) dx

= 1

M

M−1∑

k=0

T1

(
2π

k

M

)
T2

(
2π

k

M

)
(101)

of an exact quadrature rule and where the bar indicates com-
plex conjugation.

A sine polynomial

φ(x) =
N−2∑

k=1

φ̂k sin (π kx) (102)

is a trigonometric polynomials of order M = 2N − 2, i.e.,
with P = N − 1. As the sine is an odd function, and the
products of odd functions is even, we obtain, on the one
hand

1

2π

∫ 2π

0
φ1(x)φ2(x) dx = 1

π

∫ π

0
φ1(x)φ2(x) dx (103)

for sine polynomials φ1 and φ2 of the form (102), where we
also used that the sine function is real-valued. Inspecting the
right-hand side of Eq. (101), we notice

1

M

M−1∑

k=0

T1

(
2π

k

M

)
T2

(
2π

k

M

)

= 1

N − 1

N−2∑

k=1

φ1

(
k π

N − 1

)
φ2

(
k π

N − 1

)
, (104)

where we used, again, that the product of odd functions is
even, and that the sine vanishes for k = 0 and k = N − 1.
Thus, we arrived at the statement

1

π

∫ π

0
φ1(x)φ2(x) dx
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= 1

N − 1

N−2∑

k=1

φ1

(
k π

N − 1

)
φ2

(
k π

N − 1

)
, (105)

which we wanted to establish (43) for the sine case.
In addition to the sine case (102), we also investigate

cosine polynomials

ψ(x) =
N−2∑

k=0

ψ̂k cos (π kx) . (106)

These functions comprise trigonometric polynomials of
order M = 2N − 2, as well. For two cosine polynomials
ψ1 andψ2 of the form (106), being real and even leads to the
identity

1

2π

∫ 2π

0
ψ1(x)ψ2(x) dx = 1

π

∫ π

0
ψ1(x)ψ2(x) dx . (107)

Taking a closer look at the right-hand side of equation (101),
we observe

1

M

M−1∑

k=0

T1

(
2π

k

M

)
T2

(
2π

k

M

)
.

= 1

2(N − 1)

2N−3∑

k=0

ψ1

(
π

k

N − 1

)
ψ2

(
π

k

N − 1

)
.

= 1

2(N − 1)

[
ψ1(0)ψ2(0) + 2

N−2∑

k=1

ψ1

(
π

k

N − 1

)

·ψ2

(
π

k

N − 1

)
+ ψ1(π)ψ2(π)

]
.

= 1

N − 1

[
ψ1(0)ψ2(0)

2
+

N−2∑

k=1

ψ1

(
π

k

N − 1

)

·ψ2

(
π

k

N − 1

)
+ ψ1(π)ψ2(π)

2

]
. (108)

Thus, we are led to the identity

1

π

∫ π

0
ψ1(x)ψ2(x) dx = 1

N − 1

[
ψ1(0)ψ2(0)

2

+
N−2∑

k=1

ψ1

(
π

k

N − 1

)
ψ2

(
π

k

N − 1

)

+ψ1(π)ψ2(π)

2

]
, (109)

which implies the desired equation (43) directly for the cosine
case (k = 0 excluded)

ψ(x) =
N−2∑

k=1

ψ̂k cos (π kx) (110)

and the result (via (46))

ψ1(0)ψ2(0)

2
+

N−2∑

k=1

ψ1

(
π

k

N − 1

)
ψ2

(
π

k

N − 1

)

+ ψ1(π)ψ2(π)

2
= 0 (111)

by setting ψ1 ≡ ψ for the setup (110) and ψ2 ≡ 1 in Eq.
(109).
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