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Abstract
Moulinec and Suquet introduced a method for computational homogenization
based on the fast Fourier transform which turned out to be rather computationally
efficient. The underlying discretization scheme was subsequently identified as an
approach based on trigonometric polynomials, coupled to the trapezoidal rule to
substitute full integration. For problems with smooth solutions, the power of spec-
tral methods is well-known. However, for heterogeneous microstructures, there are
jumps in the coefficients, and the solution fields are not smooth enough due to dis-
continuities across material interfaces. Previous convergence results only provided
convergence of the discretization per se, that is, without explicit rates, and could
not explain the effectiveness of the discretization observed in practice. In this work,
we provide such explicit convergence rates for the local strain as well as the stress
field and the effective stresses based on more refined techniques. More precisely,
we consider a class of industrially relevant, discontinuous elastic moduli separated
by sufficiently smooth interfaces and show rates which are known to be sharp from
numerical experiments. The applied techniques are of independent interest, that is,
we employ a local smoothing strategy, utilize Féjer means as well as Bernstein esti-
mates and rely upon recently established superconvergence results for the effective
elastic energy in the Galerkin setting. The presented results shed theoretical light
on the effectiveness of the Moulinec–Suquet discretization in practice. Indeed, the
obtained convergence rates coincide with those obtained for voxel finite element
methods, which typically require higher computational effort.
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1 INTRODUCTION

1.1 State of the art

Computational homogenization methods1 may be used to reduce the experimental effort required to characterize
heterogeneous materials. To ensure compatibility with modern image-processing tools,2,3 numerical methods on regular
grids were established as the de-facto standard tool in computational micromechanics. Moulinec and Suquet4,5 introduced
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a computational method to solve the cell problem of homogenization which is based on the fast Fourier transform
(FFT) as an efficient alternative to more classical numerical approaches, for example, based on a finite element
discretization.

In its original form, FFT-based computational micromechanics involved essentially three ingredients—a class of
models to be treated, a discretization and a solver. The original Moulinec–Suquet method was designed to handle
quasistatic mechanical problems at small strains. In particular, inelastic problems were in the focus right from the
beginning. In a continuous effort, researchers extended the domain of applicability, for example, towards problems at
finite strains6-8 or coupled problems.9-11 We refer to the review articles12-14 for a glimpse at the numerous applications of
this class of numerical methods.

These developments were complemented by extensions of the original solution scheme of Moulinec–Suquet which
they termed the basic scheme. The latter was based on the weak-contrast expansion well-known in micromechanics15,16

which itself derives from series representations17,18 of effective properties in the material contrast established with the
help of the Lippmann–Schwinger equation.19-21 A key advantage of the basic scheme is its low memory demand—there
are implementations which require only a single strain field in memory.22,23 Over the years, faster solution methods were
introduced, usually at the cost of a higher memory footprint. Eyre and Milton24 introduced a numerical method similar
to the basic scheme but with higher convergence rate. To be more precise, the method has a link to the strong-contrast
expansion25,26 and may be written as a series expansion in the square root of the contrast, which is responsible for the
faster convergence behavior. The original method was restricted to linear problems. Subsequently, modifications of the
Eyre–Milton method were introduced27-29 which applied to inelastic materials in a hardening regime30,31 or problems of
fracture mechanics.32-34

The caveat of these so-called polarization methods is the need to evaluate the constitutive law in a nonstandard way,
and only for specific cases tricks are known to reduce the inherent effort considerably.35,36 For this reason, also more tra-
ditional computational techniques were made available in the context of FFT-based methods, like Newton’s method,6,7,37

the (linear and nonlinear) conjugate gradient method38,39 and a list of Quasi-Newton methods.40-42 In particular, users of
FFT-based methods may select a solver appropriate to their task at hand depending on the available resources and their
performance demands, see the review article14 for background and recommendations.

The extensions of applicability and solver technology were complemented by developments in discretization meth-
ods. To be more precise, there were essentially two lines of thought which were followed. On the one hand, the original
Moulinec–Suquet method led to stress and strain fields which showed characteristic ringing artifacts in the vicinity of
material interfaces. This so-called Gibbs phenomenon43 is well-known in Fourier methods and reflects the limited abil-
ity of classical Fourier series to represent discontinuous functions. To remove these oscillations, different discretization
methods were exploited, for example, finite difference,44-46 finite element,47-49 and finite volume50,51 methods. The under-
lying key observation is that translation-invariant stencils of finite difference operators may be block-diagonalized in
Fourier space, thus giving rise to a simple preconditioning strategy reminiscent of the original Moulinec–Suquet method.
In particular, the developed solver technology could be transferred to this extended setting essentially without change.
As an added benefit, it was observed that problems involving pores52-54 or rigid inclusions55,56 could be handled by dedi-
cated discretization schemes which was difficult for the original Fourier-type discretization due to an intrinsic numerical
instability related to the global support of the ansatz functions.57

The second line of thought on discretization methods involved understanding the discretization underlying the
original Moulinec–Suquet method. This was motivated, on the one hand, by the idea that understanding is key to improve-
ment, and, on the other hand, by the desire to create methods which provide upper and lower bounds on the effective
properties. To obtain bounds, the classical strategy to minimize the average strain energy over compatible strain fields
leads to the Fourier-Galerkin method58-61 when using trigonometric polynomials as the ansatz space. A similar strategy
may be applied to minimize the complementary energy over self-equilibrated stress fields,62 leading to computable lower
bounds59,61 of the effective elastic energy. Alternatively, the variational principle of Hashin and Shtrikman63-65 may be
used to compute upper and lower bounds to the effective elastic properties. Brisard and Dormieux22,66 pioneered such an
approach based on voxel-wise constant strains, later extended to B-spline ansatz functions.67 Both variational principles
were used as the point of departure for interpreting the original Moulinec–Suquet discretization. Brisard and Dormieux
regarded the original scheme as a nonconforming version of their Galerkin method of Hashin–Shtrikman type and
gave the first convergence proof66 for the former. Their proof relied upon voxel-wise homogeneous stiffnesses that were
obtained by a specific averaging method that inspired the composite voxel technology.68-70 Vondřejc et al.71 introduced
another interpretation of the Moulinec–Suquet discretization as an underintegrated Fourier-Galerkin method where the
underintegration arises from applying the trapezoidal rule. They also provided a convergence proof which—in contrast
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to Brisard and Dormieux66—required the coefficients of elasticity to be sufficiently smooth. These rather restrictive
assumptions were subsequently removed. More precisely, convergence was established for merely Riemann integrable,
that is, measurable and bounded, coefficients of elasticity. Moreover, a class of nonlinear elastic constitutive laws72 was
possible to be treated, all without the need for any averaging close to the interface.

Several years after these results, Ye and Chung73 provided a fresh perspective on the convergence analysis of FFT-based
computational micromechanics. They established convergence of the Moulinec–Suquet discretization, the discretization
on a rotated staggered grid46 and for trilinear finite elements.47,48 Their analysis of the Moulinec–Suquet discretization
involved an appropriate smoothing operator, allowing them to incorporate essentially arbitrary composite-voxel meth-
ods.68-70 In the same paper, they provided a convergence proof for the discretization on a rotated staggered grid pioneered
by Willot46 based on an ingenious coordinate transformation in Fourier space which emphasizes the connections to the
non-conforming P1-quadrilateral elements introduced by Park and Sheen.74 In addition to the mentioned qualitative con-
vergence statements, Ye and Chung73 also provided quantitative estimates for the convergence rate of a finite element
discretization on a regular grid. More precisely, they showed that the strain field converges as N−1∕2 in L2 where N denotes
the number of voxels per edge. A similar convergence rate is known when approximating outer boundaries with Cartesian
finite elements,75 so that the rate N−1∕2 did not come as a surprise for methods which approximate inner boundaries on
regular grids. However, Ye and Chung73 also provided the insight that the effective stresses converge as 1∕N, that is, with
the quadratic rate of the local fields.

Based on Ye–Chung’s observation, it was shown that this phenomenon of higher order convergence of effective stresses
also holds for inelastic problems and Galerkin discretizations.76 Moreover, it was shown that a clever averaging procedure
may increase the accuracy of the computed effective stresses significantly77 by using the insights of Ye and Chung73

appropriately.

1.2 Contributions

The starting point of this article was the Ye–Chung superconvergence result73 for the effective stress and its
inelastic generalization.76 In its simplest form, the higher-order rate for the effective stresses follows directly from
Galerkin orthogonality. It was empirically observed by many authors that non-conforming discretizations, in particular
based on underintegration, typically outperform Galerkin discretizations. However, their analysis is more involved, as
the effect of inexact integration needs to be accounted for, see, for example, Ciarlet’s monograph78(§4.1).

As already discussed, the Moulinec–Suquet discretization4,5 arises quite naturally as a Fourier-Galerkin method with
trapezoidal integration.71 The quadrature error of the trapezoidal rule is closely linked to the error arising from trigono-
metric interpolation.79 Even simpler than trigonometric interpolation is trigonometric approximation, that is, the best
approximation of a given function or field by trigonometric polynomials of a given degree in an appropriate norm.80

Therefore, it seems reasonable to understand the approximation of the solution to the cell problems first.
The difficulty is the following. Spectral methods, in particular involving trigonometric polynomials, are extremely

effective for problems with smooth solutions, as trigonometric polynomials approximate such functions rapidly.81 Much
less is known for problems with discontinuous solutions like the strain field solving the cell problem with discontinuous
coefficients of elasticity.

We will briefly describe the idea to leverage the theory developed for the smooth setting in the following. The impatient
reader may skip these details.

Suppose we wish to estimate the following quantity ||𝜺 − PN𝜺||L2 , that is, the difference of the strain field and the
trigonometric best approximation, encoded by the trigonometric projector PN . Suppose the strain field is sufficiently
smooth in the different phases of the considered multi-phase material. Moreover, assume that the strain field 𝜺 is bounded
and satisfies an H1 bound in each phase, that is, the strain gradient is square integrable. Introduce a suitable smooth cutoff
function 𝜙N (see Section 2.2 for details) which is zero close to the interface and equal to unity away from the interface.
Then, we may decompose the approximation error

||𝜺 − PN𝜺||L2 ≤ 2||(1 − 𝜙N)𝜺||L2 + ||𝜙N𝜺 − PN(𝜙N𝜺)||L2 . (1)

For the first term, which measures the cut-off error, we observe

||(1 − 𝜙N)𝜺||L2 ≤ ||(1 − 𝜙N)||L2 ||𝜺||L∞ ≤ C N−1∕2||𝜺||L∞ (2)



3194 SCHNEIDER

with a generic constant C. For the second term, by classical convergence rates for trigonometric approxima-
tion81(Lemma 8.5.1), we deduce

||𝜙N𝜺 − PN(𝜙N𝜺)||L2 ≤ C 1
N

||∇(𝜙N𝜺)||L2

≤ C 1
N
(||∇𝜙N ||L2 ||𝜺||L∞ + ||𝜙N ∇𝜺||L2)

≤ C N−1∕2
(

||𝜺||L∞ + ||𝜺||H1
±

)

(3)

with a generic constant C that may change from line to line. Here, we used the product rule and that the term ||∇𝜙N ||L2

grows as N1∕2. Moreover, H1
± stands for the “broken” norm over all phases.

With the sketched argument, we showed that the strain in the Fourier-Galerkin discretization converges as N−1∕2

provided the assumed regularity assumptions on the solution of the cell problem hold (see Section 3.1 below). By the
Ye–Chung argument,73 valid for a Galerkin discretization, we thus obtain an 1∕N-convergence rate for the effective
stiffness.

Even this argument for the convergence behavior of the Fourier-Galerkin discretization is not published to the best
of our knowledge. However, the article at hand is more ambitious: we show an N−1∕2 convergence rate for both the local
strain and stress fields in L2 and a 1∕N convergence rate for the effective stiffness and the Moulinec–Suquet discretization
under practical assumptions on the discontinuous stiffness distribution.

Let us give a brief overview of the challenges and the strategies to overcome them. Classical convergence
estimates for trigonometric interpolation81 require sufficiently high Sobolev regularity. Indeed, these assumptions
ensure Sobolev embedding into a Hölder class, 𝜺 ∈ Hk for k > d∕2, where d denotes the spatial dimension, and
evaluating the Fourier series pointwise makes sense. Unfortunately, the classical regularity estimates are not suffi-
cient in the physically relevant dimensions 2 and 3, as they only provide 𝜺 ∈ H1 in the phases. There are more
sophisticated convergence estimates for trigonometric interpolation which apply to general Riemann integrable
functions.82,83 These estimates are formulated in terms of so-called averaged moduli of smoothness.79 Translated
back into the scale of Sobolev spaces, we would be led to Lebesgue norms of higher mixed derivatives (up to
order d in d spatial dimensions), which are known to be sharp. Thus, the basic problems remains also for these
finer tools.

To overcome the problem with higher derivatives, we use Bernstein estimates which relate the Lp-norm of the gradient
of a trigonometric polynomial to the Lp-norm of the polynomial for 1 ≤ p ≤ ∞ at the expense of a prefactor that depends
on the order of the trigonometric polynomial, see Nikol’skii84(§2.5) for an exposition. By a careful analysis, we are able to
discard higher-order derivatives as necessary and retain only the derivatives where bounds are available in the continuous
setting. Based on this strategy, we provide the desired convergence-rate estimate for the local strain and stress fields in
Sections 3.3 and 3.4, respectively. Due to the interpolatory nature of the Moulinec–Suquet discretization, the convergence
rate for the stresses does not immediately follow from the corresponding result of the strains, and an extra argument is
required.

To provide a sharp convergence analysis of the effective stiffness, in addition to the Ye–Chung argument,73 we must
control the quadrature error. However, when inspecting the error of the trapezoidal rule, we run into essentially the same
problem as for trigonometric interpolation: elementary estimates, see Section 2.3, show that mixed derivatives of high
order 𝜕𝛼𝜺 for 𝛼 ∈ Nd with ||𝛼||𝓁∞ = 1 must be integrable. Using Bernstein estimates allows us to handle this case as well,
see Section 3.5.

We close this section by brief remarks on organization, notation and other simplifications. Section 3 represents the core
of this article, as it contains the arguments for the announced convergence rates. To increase readability, the necessary
mathematical tools were out-sourced into Section 2, where characteristics of trigonometric polynomials, the delicate
construction of the cut-off function and an elementary error estimate for the trapezoidal rule are collected. The sharpness
of the developed theory is demonstrated via computational experiments, see Section 4.

Concerning notation, we use the ≲-symbol to replace the expression ≤ C with an implicit constant C to increase
readability of the article. The constant depends on the spatial dimension, the lower and upper bounds (55) of
the stiffness and the interface. Sometimes, we will also make the dependence on norms of the solution field
𝜺 implicit.

Last but not least, let us discuss simplifications made for the sake of exposition. We will restrict to a two-phase decom-
position of the microstructure, although any finite number of phases may be treated. Also, we assume the stiffness to be
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phase-wise constant, although a sufficiently smooth variation could be handled, as well. We will not take into account
composite voxel methods, although they do not deteriorate the convergence rate as long as they respect the bounds on
the stiffness. We will only consider cubic cells and suppose that the number of voxels N in each direction is identical.
Cuboidal cells and different boxel sizes85 in different directions can be handled at the expense of simplicity of notation
and exposition.

Last but not least let us remark that we restrict to odd voxel numbers N to avoid discussing issues with the Nyquist
frequency. This is actually only critical when bounds are desired in the Fourier-Galerkin method.59 In practice, one may
either set the Nyqvist frequency of the strain or the stress field to zero. Again, to declutter the presentation, we will omit
these details.

2 MATHEMATICAL TOOLS

2.1 Fourier series and trigonometric polynomials

We are concerned with the cubic cell

Yd = [0, 2𝜋]d (4)

in d spatial dimensions. In this manuscript N will always refer to an odd natural number, which controls the level of
discretization. The “discrete” version of the cell (4) will be denoted as

Yd
N =

{

xI ∈ Yd |
|
|

I ∈ Z
d
, 0 ≤ Ij < N, j = 1, 2, … , d

}

, (5)

where the typical element xI has the form

xI = (2𝜋I1∕N, 2𝜋I2∕N, … , 2𝜋Id∕N) , I ≡ (I1, I2, … , Id) ∈ Z
d
. (6)

By a trigonometric polynomial of order N on the cell Yd we denote a function fN ∶ Yd → R on the cell Yd of the form

fN(x) =
∑

𝜉∈Z
d
N

̂f N(𝜉) eix⋅𝜉 (7)

with suitable coefficients ̂f (𝜉) that satisfy the relations

̂f N(−𝜉) = ̂f N(𝜉), 𝜉 ∈ Z
d
N , (8)

which ensure that the function fN in the representation (7) is real-valued. To keep the notation concise, we introduced
the set

Z
d
N =

{

𝜉 ∈ Z
d |
|
|
|𝜉j| < N∕2, j = 1, 2, … , d

}

(9)

of restricted Fourier frequencies.
We denote the (finite-dimensional) vector space of trigonometric polynomials (7) by N(Yd). In addition to

scalar-valued trigonometric polynomials (7), we will frequently need vector- and tensor-valued trigonometric polynomi-
als, as well. The statements in this section extend to trigonometric polynomials valued in a finite-dimensional Euclidean
space V in a straightforward way. We denote the latter space by N(Yd;V), and will consider V = Rd and V = Sym(d), the
space of symmetric d × d-tensors, in this work.

Parseval’s identity86(§7) asserts that the equality

−
∫Yd

|fN(x)|2 dx =
∑

𝜉∈Z
d
N

|̂f N(𝜉)|2 (10)
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holds for any trigonometric polynomial fN ∈ N(Yd), where −∫ denotes the mean integral, that is, the integral multiplied
by the inverse of the d-volume of the set. By polarization, the identity (10) also holds for the product of two trigonometric
polynomials fN , gN ∈ N(Yd)

−
∫Yd

fN(x)gN(x) dx =
∑

𝜉∈Z
d
N

̂f N(𝜉)ĝN(𝜉), (11)

that is, the L2 inner product between two trigonometric polynomials may either be computed by integrating in real space
or by summing in Fourier space. Notice that we will always scale Lebesgue norms in such a way that mean integrals are
used.

Last but not least it is also possible to describe trigonometric polynomials via interpolation. Suppose discrete values

{

fI
|
|
|

I ∈ Z
d
, 0 ≤ Ij < N

}

(12)

are given. Then, there is a unique polynomial fN ∈ N(Yd) interpolating these values, that is, the condition

fI = fN(xI), xI ∈ Yd
N , (13)

holds for all indices I and where the points xI are defined in Equation (5). The solution to the problem (13) is constructive
and given by the discrete Fourier transform

̂f N(𝜉) =
1

Nd

∑

xI∈Yd
N

fI eixI ⋅𝜉
. (14)

As a direct consequence, a discrete version of the product formula (11)

1
Nd

∑

xI∈Yd
N

fN(xI)gN(xI) =
∑

𝜉∈Z
d
N

̂f N(𝜉)ĝN(𝜉), fN , gN ∈ N(Yd) (15)

follows immediately. Combining the two formulas (11) and (15) yields the statement

−
∫Yd

fN(x)gN(x) dx = 1
Nd

∑

xI∈Yd
N

fN(xI)gN(xI), fN , gN ∈ N(Yd), (16)

which asserts that products of trigonometric polynomials of order N may be integrated exactly by the trapezoidal rule,
see Section 2.3 below.

In the article at hand, we are interested in the approximation quality of trigonometric polynomials. Any
square-integrable function f ∈ L2(Y ) admits a Fourier-series expansion87(§4.2.4)

f (x) =
∑

𝜉∈Zd

̂f (𝜉) eix⋅𝜉 (17)

to be understood in the L2-sense. Let us denote by PN f the trigonometric polynomial

PN f (x) =
∑

𝜉∈Z
d
N

̂f (𝜉) eix⋅𝜉 (18)

which arises from truncating the Fourier coefficients. The trigonometric polynomial PN f represents the unique L2-best
approximation of the function f by elements of the space N(Yd) of trigonometric polynomials. The association f → PN f
gives rise to a bounded linear operator PN on the space L2(Yd)which satisfies the projector identity PN PN = PN . A classical
result of Fourier theory87(§4.2.4) ensures that any function f may be approximated by the trigonometric polynomial PN f in
L2, that is, the condition

‖f − PN f‖L2(Yd) → 0 holds as N →∞. (19)
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The rate of convergence may be quantified provided the function f satisfies additional regularity assumptions. More
precisely, the estimate81(Thm. 8.2.1)

‖f − PN f‖L2(Yd) ≲
1

Nk
‖
‖
‖
∇kf‖‖

‖L2(Yd)
holds as N →∞ (20)

for any k ≥ 1 with a constant depending only on the cell Yd, the dimension d and on the order k, provided the right-hand
side is finite.

Although the trigonometric projection PN f of a given function f ∈ L2(Yd) is rather natural in the L2-scale of functions,
its use with other norms is rather limited. For instance, the projection PN f does not converge to the function f in the
L1-norm, in general. Also, the truncations PN f are not bounded uniformly in N for an essentially bounded function f . For
this reason it is convenient to consider the Féjer approximation FN f ∈ N(Yd) of a given function f ∈ L2(Yd), defined via
the expression

FN f (x) =
∑

𝜉∈Z
d
N

(

1 − |𝜉1|

M

)(

1 − |𝜉2|

M

)

· · ·
(

1 − |𝜉d|

M

)

̂f (𝜉) ei x⋅𝜉
, N = 2M + 3, (21)

see Weisz88(§12). The formula (21) may be rewritten in real space in the form of a periodic convolution

FN f (x) =
∫Yd

f (x − y)KN(y) dy, x ∈ Yd
, (22)

with the non-negative and integrable kernel

KN(y) =
1

Md

(
sin My1∕2

y1∕2
sin My2∕2

y2∕2
· · ·

sin Myd∕2
yd∕2

)2

(23)

Then, it is immediate to see that FN f converges to f in any Lp norm for 1 ≤ p < ∞ provided f ∈ Lp(Yd).
For the manuscript at hand, we will need two properties of the Féjer means. For a start, the convolution representation

(22) and Young’s convolution inequality89 imply the estimate

‖FN f‖L∞(Yd) ≤ ‖KN‖L1(Yd) ‖f‖L∞(Yd). (24)

As the integral of the Féjer kernel KN is bounded independently of N, for example, readily observed from its Fourier
representation, we thus obtain that the Féjer mean FN f of a bounded function f ∈ L∞(Yd) is also bounded uniformly in
N, that is,

‖FN f‖L∞(Yd) ≲ ‖f‖L∞(Yd) (25)

holds independently of N. Moreover we take a look at the approximation quality of the Féjer means. As mentioned pre-
viously, the trigonometric projection PN f represents the L2-best approximation to a given function f . Fortunately, the
additional error introduced by using Féjer means is not too large. More precisely, the estimate

‖f − FN f‖L2(Yd) ≲
1
N

‖∇f‖L2(Yd) holds as N → ∞. (26)

This can be seen as follows. By the triangle inequality,

‖f − FN f‖L2(Yd) ≤ ‖f − PN f‖L2(Yd) + ‖PN f − FN f‖L2(Yd), (27)

and the estimate (20) for k = 1, it suffices to show

‖PN f − FN f‖L2(Yd) ≲
1
N

‖∇f‖L2(Yd). (28)
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By Parseval’s identity (10) and the definition (21) of the Féjer means, we observe

‖PN f − FN f‖2
L2(Yd) =

∑

𝜉∈Z
d
N

((

1 − |𝜉1|

M

)(

1 − |𝜉2|

M

)

· · ·
(

1 − |𝜉d|

M

)

− 1
)2

|
|
|
̂f (𝜉)||

|

2
(29)

The term in squares is given as a sum of products of the form |𝜉𝛼|∕M|𝛼| for multi-indices 𝛼 ∈ Nd whose components are
not all equal to zero. Using the estimate |𝜉i| ≤ M implied by the definition of the set Z

d
N , see Equation (9), we are led to

the bound

‖PN f − FN f‖2
L2(Yd) ≲

∑

𝜉∈Z
d
N

(
|𝜉1|

M
+ |𝜉2|

M
+ … + |𝜉d|

M

)2
|
|
|
̂f (𝜉)||

|

2
(30)

with a constant depending only on the dimension d, which readily implies the statement (28), whose validity implies the
convergence rate assertion (26).

We will conclude this section with two further results about trigonometric polynomials. The first concerns conver-
gence rates of trigonometric interpolation. For a given bounded function f , denote by QN[f ] ∈ N(Yd) the unique trigono-
metric polynomial fN which satisfies the interpolation conditions (13) for fI ≡ f (xI), xI ∈ Yd

N . Trigonometric interpolation
is more subtle than trigonometric approximation as the former is not well-defined on Lebesgue spaces. Indeed, for interpo-
lation to be reasonable, the function values to be interpolated need to be finite. Moreover, Fourier series need not converge
pointwise, and arguments based on Fourier series may not be applicable. These problems may be overcome provided the
function to be interpolated is sufficiently smooth. Indeed, Hölder continuity is a sufficient condition for a Fourier series
to converge pointwise, and Hölder continuity is in turn implied by Sobolev embedding provided the sufficiently high
derivatives of the function under consideration belong to suitable Lebesgue spaces. Then, the following result

‖f − QN[f ]‖L2(Yd) ≲
1

Nk
‖
‖
‖
∇kf‖‖

‖L2(Yd)
holds as N → ∞ (31)

may be shown, see, for example, Vondřejc et al.71(Lemma 4), where the index k satisfies the condition k > d∕2 required for
the Sobolev embedding theorem90(Ch.V, Thm. 2(iii)) to hold. Thus, the convergence rate of trigonometric interpolation (31)
coincides with the rate of trigonometric approximation (20), at least for sufficiently regular functions.

Unfortunately, the regularity of the solutions to the micromechanical problems considered in this article is not suf-
ficient to ensure the interpolation estimate (31) to hold. Therefore, it is convenient to use inverse estimates to trade
(higher-order) derivatives for powers of the discretization parameter N. Of course, such a strategy is only feasible on a
suitable finite-dimensional space of functions like the space of trigonometric polynomials. The prototypical result which
we need is the following Bernstein estimate

‖𝜕𝛼fN‖L∞(Yd) ≲ N |𝛼| ||fN ||L∞(Yd), (32)

valid for any fN ∈ N(Yd) and multi-index 𝛼 ∈ Nd. In particular, for any trigonometric polynomial fN ∈ N(Yd), the
derivative 𝜕jfN does not exceed N||fN ||L∞(Yd) up to a constant depending only on the dimension d and the cell Yd.

The classical Bernstein estimate

||f ′N ||L∞([0,2𝜋]) ≲ N ||fN ||L∞([0,2𝜋]) (33)

concerns one-dimensional trigonometric polynomials fN ∈ 1([0, 2𝜋]), see Nikol’skii84(§2.5) for a proof. Applying this
estimate to a single coordinate j ∈ {1, 2, … , d} and noticing that the function xj → fN(x1, … , xj−1, xj, xj+1, … , xd) is a
one-dimensional trigonometric polynomial of order N leads to the estimate

‖
‖𝜕jfN‖‖L∞(Yd) ≲ N ||fN ||L∞(Yd), (34)

which implies the general assertion (32) by treating a single derivative at a time.
We will also need the L2-version of the Bernstein estimate (32) in L∞

‖𝜕𝛼fN‖L2(Yd) ≲ N |𝛼| ||fN ||L2(Yd), (35)
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valid for any fN ∈ N(Yd) and multi-index 𝛼 ∈ Nd. The estimate (35) follows from the formula

̂

𝜕

𝛼f (𝜉) = i|𝛼|𝜉𝛼 ̂f (𝜉) (36)

for the Fourier coefficients of derivatives, Parseval’s identity (11) and the fact that the nonzero frequencies of a
trigonometric polynomial (7) are concentrated in the set Z

d
N , see Equation (9), s.t., |𝜉j| ≤ N∕2 holds.

2.2 Cutting off smoothly at the interface

We are interested in composite materials, that is, those whose microstructure consists of a number of distinct materials,
for example, a matrix-inclusion composite. Due to the different material behavior in the phases, the mechanical fields are
not smooth across the interfaces. Rather, the solutions to the governing equations are only contained in broken Sobolev
spaces. To make this precise, we suppose that the microstructure Yd admits the non-overlapping decomposition

Yd = Yd
+ ∪ Yd

−, Yd
+ ∩ Yd

− = ∅, (37)

into two open subsets Yd
± whose boundary 𝜕Yd

±, considered as a Yd-periodic object, is sufficiently smooth. More precisely,
the interface should be in the Hölder class C1,𝛼 for positive 𝛼 for the Li–Nirenberg estimates91 to hold.

For the subsequent discussion, let

𝛿 ∶ Yd → R≥0 (38)

denote the periodic distance to the interface 𝜕Yd
±. The distance function (38) is continuous. Moreover, due to the smooth-

ness of the interface, the distance function 𝛿 is also smooth in the vicinity of the interface, that is, there is a natural number
N0, s.t. the function 𝛿 is sufficiently smooth at all points x ∈ Yd which are 1∕(2N0)-close to the interface, that is, which
satisfy 𝛿(x) ≤ 1∕(2N0). We will tacitly assume the condition N ≥ N0 to hold in the subsequent manuscript.

For the following construction we fix a smooth, that is, infinitely often continuously differentiable, function 𝜂 ∶ R≥0 →
[0, 1], s.t. the conditions

𝜂(x) = 0, x ≤ 1, and 𝜂(x) = 1, x ≥ 2 (39)

hold. Such a function is easily constructed, for example, by mollifying a piece-wise linear function. We fix once and for
all such a function 𝜂, satisfying the conditions (39). Properties of the function, in particular upper bounds on the partial
derivatives, will enter our estimates as universal constants.

With the function 𝜂 at hand, we define the cutoff function

𝜙N ∶ Yd → R≥0 by 𝜙N(x) = 𝜂
(
𝛿(x)
N

)

, (40)

where N is a positive integer. For sufficiently large parameter N, the function 𝜙N is smooth and permits to patch together
a function f ∶ Yd → R whose restrictions f± ∶ Yd

± → R are smooth to a smooth function on the entire cell. More precisely,
the function𝜙N f coincides with the original function f for points x whose distance to the interface exceeds 2∕N. 1∕N-close
to the interface, the function 𝜙N f vanishes identically.

In the remainder of the section, we quantify the error introduced by this smoothing procedure in Sobolev norms. By
construction (39) of the function 𝜂, the function 𝜙N satisfies the bound

||𝜙N ||L∞ ≤ 1, N ∈ N. (41)

Moreover, the function 𝜙N satisfies the condition

∇𝜙N(x) = 0 for 𝛿(x) ≤ 1
N

as well as 𝛿(x) ≥ 2
N

(42)

and the estimate
‖
‖
‖
∇k
𝜙N(x)

‖
‖
‖
≲ Nk for 1

N
< 𝛿(x) < 2

N
(43)
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with a constant that depends on the interface, the dimension and the function 𝜂. In particular, for any multi-index 𝛼 ∈
Nd ⧵ {0} and every exponent p ∈ [1,∞), we obtain the estimate

||𝜕𝛼𝜙N ||
p
Lp(Yd)

= −
∫Yd

||𝜕𝛼𝜙N(x)||p dx

≲

∫1<N𝛿(x)<2
N |𝛼|p dx

≲ N |𝛼|p−1
,

(44)

which implies the bound

||𝜕𝛼𝜙N ||Lp(Yd) ≲ N |𝛼|−1∕p
. (45)

Notable special cases include

||∇𝜙N ||L1(Yd) ≲ 1 and ||∇𝜙N ||L2(Yd) ≲ N1∕2
. (46)

We will also need the elementary estimate

||1 − 𝜙N ||Lp(Yd) ≲ N− 1
p
. (47)

2.3 The trapezoidal rule for rough functions

The Moulinec–Suquet discretization4,5 was identified as a Fourier-Galerkin discretization with numerical integration by
Vondřejc et al.71 More precisely, the trapezoidal rule (apparently in use since more than 2000 years92) was used as the
quadrature rule in question.

The trapezoidal rule is rather simple, but turns out to be quite powerful for smooth periodic functions.93 In one
spatial dimension, the classical analysis of the trapezoidal rule shows that using N integration points leads to an error
which decays as N−2 with a constant that involves the maximum of the second derivative of the function to be inte-
grated94(eq.(5.1.7)). For the manuscript at hand, the L∞-norm is not suitable, see Section 2.2, and estimates in Lebesgue
norms are required. Our subsequent discussion is based on the following one-dimensional result, which may be used to
analyze the convergence behavior of the trapezoidal rule of rather rough functions, see Cruz-Uribe and Neugebauer.95

For any positive integer N ∈ N there is a function wN ∶ [0, 2𝜋]→ R, bounded uniformly in N, s.t., for any continuous
and periodic function f ∶ [0, 2𝜋] → R with integrable weak derivative f ′ the representation

1
N

N∑

j=1
f
(

2𝜋 j
N

)

= −
∫

2𝜋

0
f (x) dx + 1

N
−
∫

2𝜋

0
f ′(x) wN(x) dx (48)

holds, where −∫ refers to the mean integral.
The result in well known. For the reader’s convenience, a derivation is included in Appendix A.
In one dimension, equation (48) can be used to bound the error decay for the trapezoidal rule

|
|
|
|
|
|

−
∫

2𝜋

0
f (x) dx − 1

N

N∑

j=1
f
(

2𝜋 j
N

)|
|
|
|
|
|

≲

1
N

||f ′||L1 (49)

with a constant independent of the function f and the parameter N.
Applying the representation formula (48) for each dimension individually, we arrive at an estimate for the error of the

trapezoidal rule in d dimensions.
For any dimension d ∈ N, there is a constant C, s.t. for any continuous periodic function f ∶ [0, 2𝜋]d → R whose

derivatives are integrable up to order d, the estimate

|
|
|
|
|
|
|

−
∫Yd

f (x) dx − 1
Nd

∑

xI∈Yd
N

f (xI)
|
|
|
|
|
|
|

≲

∑

||𝛼||∞=1

1
N |𝛼|

‖𝜕𝛼f‖L1(Yd) (50)
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holds, where 𝛼 = (𝛼1, … , 𝛼d) ∈ Nd is a multi-index with

𝜕

𝛼f ≡
𝜕

|𝛼|f
𝜕

𝛼1
1 · · · 𝜕𝛼d

d

and |𝛼| ≡ ||𝛼||1. (51)

Indeed, applying the identity (48) for each dimension individually we arrive at the representation

1
Nd

∑

xI∈Yd
N

f (xI) = −
∫[0,2𝜋]d

f (x) dx +
∑

||𝛼||∞=1

1
N |𝛼|

−
∫[0,2𝜋]d

𝜕

𝛼f (x)w𝛼

N(x) dx, (52)

see Verlinden et al.96(§5), with the short-hand notation

w𝛼

N(x) = wN(x1)𝛼1 · · ·wN(xd)𝛼d
. (53)

Due to the boundedness of the weight function wN , uniformly in N, the estimate (50) follows from a repeated application
of the triangle inequality and Hölder’s inequality in view of the N-independent bound on the functions wN .

Apart from the gradient of the function f , the estimate (50) involves mixed derivatives up to the order of the dimension,
for example, the quantity 𝜕1𝜕2𝜕3f in dimension d = 3.

3 CONVERGENCE OF THE MOULINEC–SUQUET DISCRETIZATION

3.1 The homogenization problem

Suppose that the microstructure Yd is decomposed according to equation (37) with a sufficiently smooth interface s.t. the
constructions of Section 2.2 are valid. Let stiffness tensors C± be given, that is, linear operators on the space Sym(d) of
symmetric d × d-tensors, which are symmetric in the sense that

𝜺1 ∶ C± ∶ 𝜺2 = 𝜺2 ∶ C± ∶ 𝜺1 holds for 𝜺j ∈ Sym(d), j = 1, 2, (54)

with the double-contraction operator defined by 𝜺1 ∶ 𝜺2 = tr(𝜺1𝜺2), and positive definite. Denote by 𝛼 and 𝛼 positive
constants, s.t. the estimates

𝛼 ||𝜺||2 ≤ 𝜺 ∶ C± ∶ 𝜺 ≤ 𝛼 ||𝜺||2, 𝜺 ∈ Sym(d), (55)

hold for both C+ and C− in terms of the norm ||𝜺|| = (𝜺 ∶ 𝜺)1∕2. Define the heterogeneous stiffness field C ∶ Yd →
L(Sym(d)) via

C(x) =

{
C−, x ∈ Yd

−,

C+, x ∈ Yd
+.

(56)

For prescribed macroscopic strain 𝜺 ∈ Sym(d), we seek the periodic displacement field u ∈ H1
#(Y

d;Rd), the closure of
smooth periodic and mean-free fields on the periodic cell Yd w.r.t. the H1-norm, solving the equation

⟨
∇sv ∶ C ∶ (𝜺 + ∇su)

⟩

Y = 0 for all v ∈ H1
#(Y

d;Rd), (57)

where∇s refers to the symmetrized gradient and the operator ⟨⋅⟩Y is a short-hand notation for the mean integral over the
unit cell Yd.

Based on the inequalities of Korn and Poincaré, the Riesz representation theorem is readily applied to show existence
and uniqueness of solutions to the problem (57).

Li and Nirenberg91 showed that the solution u to the problem (57) has a uniformly bounded strain, that is, the estimate

||𝜺||L∞(Yd) ≲ 1 holds for 𝜺 = 𝜺 + ∇su (58)
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and the restriction of the displacement fluctuation field u to the sets Yd
± lies in the Sobolev space H2, that is, the inequalities

||𝜺||H1(Yd
±)
≲ 1 are valid for 𝜺 = 𝜺 + ∇su (59)

on the decomposing domains Yd
±. The two higher regularity estimates (58) and (59) will be used to derive convergence

estimates for the Moulinec–Suquet discretization. We are not aware of similar results beyond the linear (thermo-)elastic
setting, which is why we restrict to this setting. Indeed, a-priori estimates and convergence results (without explicit rates)
are available for the more general setting of strongly monotone and Lipschitz continuous stress operators.57 Higher regu-
larity results are lacking, compare for instance Neff and Knees97 for work in this direction (treating boundary regularity
instead of interface regularity).

Let us emphasize the dependence of the solution u on the macroscopic strain 𝜺 by a subindex, that is, we write u
𝜺
.

Then, the effective stiffness Ceff ∈ L(Sym(d)) of the microscopic stiffness distribution C is defined by

C
eff ∶ 𝜺 =

⟨
C ∶

(
𝜺 + ∇su

𝜺

)⟩

Y . (60)

Showing that this construction is well-defined and gives rise to a symmetric stiffness respecting the bounds (55) is
standard, see, for example, the arguments in Schneider72(Corollary 2.2). For our purposes, we need the representation formula

𝜺1 ∶ C
eff ∶ 𝜺2 =

⟨(
𝜺1 + ∇su

𝜺1

)
∶ C ∶

(
𝜺2 + ∇su

𝜺2

)⟩

Y , 𝜺1, 𝜺2 ∈ Sym(d), (61)

which is a direct consequence of the validity of the cell problem (57) and the definition (60).

3.2 The a-priori estimate

For any odd positive integer N, the Moulinec–Suquet discretization4,5 seeks a displacement field uN ∈ N(Yd;Rd), s.t. the
equation

1
Nd

∑

xI∈Yd
N

∇svN(xI) ∶ C(xI) ∶ (𝜺 + ∇suN(xN)) = 0 (62)

is satisfied for all test fields vN ∈ N(Yd;Rd). As observed by Vondřjec et al.,71 the Moulinec–Suquet discretization pro-
ceeds by restricting the space of ansatz and test fields to trigonometric polynomials and replaces the integrals appearing
in the cell problem (57) by the trapezoidal rule.

For the analysis, it is convenient to recast the Equation (62) in terms of the trigonometric interpolation operator
QN .71,72 Indeed, due to Parseval’s identity (11), Equation (62) may be rewritten in the form

⟨
∇svN ∶ QN

[
C ∶ (𝜺 + ∇suN)

]⟩

Y = 0 for all vN ∈ N(Yd;Rd). (63)

Introducing the stress field 𝝈N ≡ QN
[
C ∶ (𝜺 + ∇suN)

]
∈ N(Yd; Sym(d)), the equation (63) is, in turn, equivalent to the

strong form

div 𝜎N = 0 (64)

of the quasi-static balance of linear momentum. This property contrasts with traditional finite element discretizations,
where both the compatibility and the material law are evaluated exactly, but the equilibrium equation (64) is approxi-
mated. Indeed, the Moulinec–Suquet discretization works with a compatible strain field 𝜺N = 𝜺 + ∇suN ∈ N(Yd; Sym(d))
and a self-equilibrated stress field 𝝈N ∈ N(Yd; Sym(d)), but the constitutive law

𝝈N(xI) = C(xI) ∶ 𝜺N(xI), xI ∈ Yd
N (65)

is valid only in the collocation (or quadrature) points.
Under the hypothesis (55), the equation (62) admits a unique solution uN among the trigonometric polynomials

N(Yd;Rd) with vanishing mean. This can be seen as follows.71 Writing the problem (62) in the suggestive form
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1
Nd

∑

xI∈Yd
N

∇svN(xI) ∶ C(xI) ∶ ∇suN(xN) = −
1

Nd

∑

xI∈Yd
N

∇svN(xI) ∶ C(xI) ∶ 𝜺, (66)

existence and uniqueness follows from the Riesz representation theorem87(Thm.4.17). Indeed, the right-hand side is appar-
ently linear in the test field, whereas the left-hand side represents a symmetric bilinear form in the fields uN and vN ,
respectively. Due to the bound (55), we may estimate

1
Nd

∑

xI∈Yd
N

∇suN(xI) ∶ C(xI) ∶ ∇suN(xN) ≥ 𝛼
1

Nd

∑

xI∈Yd
N

‖∇suN(xI)‖2

= 𝛼
⟨

‖∇suN‖
2
⟩

Y

≳ 𝛼

⟨
‖∇uN‖

2⟩

Y

≳ 𝛼

⟨
‖
‖uN − ⟨uN⟩Y

‖
‖

2
⟩

Y

(67)

where we used Parseval’s identity, Korn’s inequality98 and Poincaré’s inequality99(§5.8.1) on the flat torus.
After recalling the argument71 for existence and uniqueness of solutions to the discretized cell problem (62), we pro-

vide a stream-lined argument for a-priori estimate71(Proof of Prop.8) which is essential for the analysis in Section 3.3. Denote
by 𝜺N = 𝜺 + ∇suN the strain associated to the solution uN of the cell problem (62) in response to the imposed strain
𝜺 ∈ Sym(d). We denote by

�̃�N = 𝜺 + ∇swN , wN ∈ N(Yd;Rd), (68)

any compatible competition strain. Then, the difference between these two strains admits the representation

𝜺N − �̃�N = ∇svN with vN ≡ uN −wN ∈ N(Yd;Rd). (69)

In particular, we observe

𝛼 ||𝜺N − �̃�N ||
2
L2(Yd)

≤
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ (𝜺N − �̃�N)

]⟩

Y

=
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ 𝜺N

]⟩

Y −
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ �̃�N

]⟩

Y

=
⟨
∇svN ∶ QN

[
C ∶ 𝜺N

]⟩

Y −
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ �̃�N

]⟩

Y

= −
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ �̃�N

]⟩

Y

(70)

in view of the discretized cell problem (63). Arguing in a reverse order but using the continuous cell problem (57) yields
the chain of arguments

𝛼||𝜺N − �̃�N ||
2
L2(Yd)

≤ −
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ �̃�N

]⟩

Y

= ⟨∇svN ∶ C ∶ 𝜺⟩Y −
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ �̃�N

]⟩

Y

= ⟨(𝜺N − �̃�N) ∶ C ∶ 𝜺⟩Y −
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ �̃�N

]⟩

Y

=
⟨
(𝜺N − �̃�N) ∶

(
C ∶ 𝜺 − QN

[
C ∶ �̃�N

])⟩

Y .

(71)

Applying the Cauchy-Schwarz inequality yields the desired a-priori estimate

||𝜺N − �̃�N ||L2(Yd) ≤
1
𝛼

‖
‖
‖
C ∶ 𝜺 − QN

[
C ∶ �̃�N

]‖
‖
‖L2(Yd)

. (72)

This inequality served as the basis of previous convergence proofs71-73 which either required higher regularity of the
solution field u or led to convergence results without explicit rates. The mentioned strategies selected

�̃�N = PN𝜺 with 𝜺 = 𝜺 + ∇su, that is, �̃�N = 𝜺 + ∇sPN u (73)

in terms of the trigonometric approximation operator (18).
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3.3 Convergence rate for the strain field

The goal of this section is to show the convergence-rate estimate

||𝜺 − 𝜺N ||L2(Yd) ≲ N− 1
2 (74)

for the strain field in the Moulinec–Suquet discretization, where the constant depends on the dimension, the interface,
the ellipticity ratio, the L∞-bound on the strain field 𝜺 and the H1-bounds on the strain field 𝜺 on the subdomains Yd

±.
To analyze the convergence behavior of the strain field, our strategy utilizes Féjer means (21) instead of the

trigonometric projection (18). More precisely, instead of equation (73), we set

�̃�N = FN𝜺 with 𝜺 = 𝜺 + ∇su, that is, �̃�N = 𝜺 + ∇sFN u. (75)

By the triangle inequality and the a-priori estimate (72), we deduce

||𝜺 − 𝜺N ||L2(Yd) ≤ ||𝜺 − �̃�N ||L2(Yd) + ||𝜺N − �̃�N ||L2(Yd)

≤ ||𝜺 − �̃�N ||L2(Yd) +
1
𝛼

‖
‖
‖
C ∶ 𝜺 − QN

[
C ∶ �̃�N

]‖
‖
‖L2(Yd)

≤

(

1 + 𝛼

𝛼

)

||𝜺 − �̃�N ||L2(Yd) +
1
𝛼

‖
‖
‖
C ∶ �̃�N − QN

[
C ∶ �̃�N

]‖
‖
‖L2(Yd)

.

(76)

Thus, the discretization error is naturally split into an approximation error

||𝜺 − �̃�N ||L2(Yd) ≡ ||𝜺 − FN𝜺||L2(Yd) (77)

and an interpolation error

‖
‖
‖
C ∶ �̃�N − QN

[
C ∶ �̃�N

]‖
‖
‖L2(Yd)

≡
‖
‖
‖
C ∶ FN𝜺 − QN

[
C ∶ FN𝜺

]‖
‖
‖L2(Yd)

. (78)

Thus, to derive convergence rates for the discretization error, we analyze these two contributions individually. For the
approximation error (77), we would like to apply classical convergence rate estimates for trigonometric approximation
(20). However, the strain field 𝜺 lacks the necessary regularity, and we rely upon the smoothing approach introduced in
Section 2.2. We write

||𝜺 − FN𝜺||L2(Yd) ≤ ||(1 − 𝜙N)𝜺||L2(Yd) + ||𝜙N𝜺 − FN[𝜙N𝜺]||L2(Yd) + ||FN [(1 − 𝜙N)𝜺] ||L2(Yd)

≤ 2||(1 − 𝜙N)𝜺||L2(Yd) + ||𝜙N𝜺 − FN[𝜙N𝜺]||L2(Yd),
(79)

where we used that the Féjer-mean operator gives rise to a bounded linear operator on L2 with operator norm 1. For the
first term, we have, by the estimate (47) for p = 2,

||(1 − 𝜙N)𝜺||L2(Yd) ≤ ||(1 − 𝜙N)||L2(Yd)||𝜺||L∞(Yd) ≲ N− 1
2
, (80)

whereas, for the second term, we observe

||𝜙N𝜺 − FN[𝜙N𝜺]||L2(Yd) ≲
1
N
||∇(𝜙N𝜺)||L2(Yd)

≲

1
N

(
||(∇𝜙N)𝜺 + 𝜙N∇𝜺||L2(Yd)

)

≲

1
N

(

||∇𝜙N ||L2(Yd)||𝜺||L∞(Yd) + ||∇𝜺||L2(Yd
±)

)

≲ N− 1
2
,

(81)

where we used the convergence-rate estimate for Féjer approximation (26) and the growth estimate (46) for the gradient
of the cut-off function 𝜙N . Thus, the approximation error (77) decays as N−1∕2.
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Let us turn our attention to the interpolation error (78). We would like to apply the error estimate (31) of trigonometric
interpolation. However, the integrand is not smooth. As for the approximation error, we use the cut-off function 𝜙N to
split the interpolation error (78) into the contributions

‖
‖
‖
C ∶ FN𝜺 − QN

[
C ∶ FN𝜺

]‖
‖
‖L2(Yd)

≤ ‖(1 − 𝜙N)C ∶ FN𝜺‖L2(Yd)

+ ‖
‖
‖
𝜙NC ∶ FN𝜺 − QN

[
𝜙NC ∶ FN𝜺

]‖
‖
‖L2(Yd)

+ ‖
‖
‖

QN
[
(1 − 𝜙N)C ∶ FN𝜺

]‖
‖
‖L2(Yd)

.

(82)

For the first term, we observe

‖(1 − 𝜙N)C ∶ FN𝜺‖L2(Yd) ≤ ‖(1 − 𝜙N)‖L2(Yd) ‖C ∶ FN𝜺‖L∞(Yd)

≤ 𝛼 ‖(1 − 𝜙N)‖L2(Yd) ‖FN𝜺‖L∞(Yd)

≤ 𝛼 ‖(1 − 𝜙N)‖L2(Yd) ‖𝜺‖L∞(Yd)

≲ N− 1
2
,

(83)

where we used the decay estimate (47) for p = 2 and the crucial property (25) of the Féjer means. Notice that this would
not hold for the Fourier projection PN . Using a similar reasoning in view of Parseval’s identity (11) permits to bound the
third term in the estimate (82)

‖
‖
‖

QN
[
(1 − 𝜙N)C ∶ FN𝜺

]‖
‖
‖L2(Yd)

≲ N− 1
2
. (84)

To treat the middle term in the estimate (82), we invoke the error estimate (31) for trigonometric interpolation

‖
‖
‖
𝜙NC ∶ FN𝜺 − QN

[
𝜙NC ∶ FN𝜺

]‖
‖
‖L2(Yd)

≲

1
Nk

‖
‖
‖
∇k (𝜙NC ∶ FN𝜺)

‖
‖
‖L2(Yd)

, where k = ⌈d∕2⌉. (85)

We notice that higher-order derivatives appear on the right-hand side, that is, second derivatives in the physically relevant
dimensions d = 2 and d = 3. However, we may only work with a uniform bound (58) on the strain and the H1-bounds
(59) for the phase strains. To deal with this situation, we utilize the Bernstein estimates (32) and (35). Then, the estimate

‖
‖
‖
∇k (𝜙NC ∶ FN𝜺)

‖
‖
‖L2(Yd)

≲ Nk− 1
2 (86)

can be shown, see Appendix B for details, which in turn implies

‖
‖
‖
𝜙NC ∶ FN𝜺 − QN

[
𝜙NC ∶ FN𝜺

]‖
‖
‖L2(Yd)

≲ N− 1
2
. (87)

Together with the estimates (83) and (84), we are thus led to the following bound on the interpolation error (82)

‖
‖
‖
C ∶ FN𝜺 − QN

[
C ∶ FN𝜺

]‖
‖
‖L2(Yd)

≲ N− 1
2
. (88)

In combination with the bound (81) on the approximation error, we are, in view of the decomposition (76), finally led to
the estimate (74).

3.4 Convergence rate for the stress field

The goal of this section is to show the convergence-rate estimate

||𝝈 − 𝝈N ||L2(Yd) ≲ N− 1
2 (89)

for the stress field

𝝈N = QN[C ∶ 𝜺N] ∈ N(Yd; Sym(d)) (90)
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when approximating the continuous stress field 𝝈 = C ∶ 𝜺. Due to the special nature of the Moulinec–Suquet discretiza-
tion, the convergence estimate (89) does not immediately follow from the established convergence rate (74) for the strain
field, as the discretized stress field (90) involves an additional trigonometric interpolation step (13). However, to estab-
lish the estimate (89) we may heavily re-use the machinery developed in the previous section. Indeed, recasting the stress
error in the form

||𝝈 − 𝝈N ||L2(Yd) = ||C ∶ 𝜺 − QN
[
C ∶ 𝜺N

]
||L2(Yd)

≤ ||C ∶ (𝜺 − FN𝜺)||L2(Yd) + ||C ∶ FN𝜺 − QN
[
C ∶ FN𝜺

]
||L2(Yd)

+ ||QN
[
C ∶ (FN𝜺 − 𝜺N)

]
||L2(Yd)

≲ ||𝜺 − FN𝜺||L2(Yd) + ||C ∶ FN𝜺 − QN
[
C ∶ FN𝜺

]
||L2(Yd) + ||𝜺 − 𝜺N ||L2(Yd),

(91)

where we used Parseval’s identity (11) and the bound (55) on the stiffness, we recognize the approximation error (77),
the interpolation error (78) and the total error (76). For each of these terms, the convergence rate N−1∕2 was established
in the previous section. This shows the validity of the statement (89).

3.5 Convergence rate for the elastic energy

In this section, we wish to establish a convergence estimate of the form

‖
‖C

eff −C
eff
N

‖
‖ ≲

1
N
, (92)

that is, the effective stiffness

C
eff
N ∶ 𝜺 =

⟨
QN

[
C ∶

(
𝜺 + ∇su

𝜺N

)]⟩

Y (93)

of the Moulinec–Suquet discretization converges to the continuous effective stiffness (60) with twice the rate of the strains
(74). In the Galerkin setting, the estimate (92) follows from the estimate for the strain (74) by Galerkin orthogonality, see Ye
and Chung73(Thm. 5) or Schneider and Wicht76(§2.2). The Moulinec–Suquet discretization4,5 requires additional arguments
to treat the underintegration.

To proceed, we fix a macroscopic strain 𝜺 ∈ Sym(d) and recall the representation (61)

𝜺 ∶ C
eff ∶ 𝜺 = ⟨𝜺 ∶ C ∶ 𝜺⟩Y , where 𝜺 = 𝜺 + ∇su (94)

solves the cell problem (57). For any competition field

�̃� = 𝜺 + ∇sũ with ũ ∈ H1
#(Y

d;Rd), (95)

we expand the square

⟨(𝜺 − �̃�) ∶ C ∶ (𝜺 − �̃�)⟩Y = ⟨𝜺 ∶ C ∶ (𝜺 − �̃�)⟩Y − ⟨�̃� ∶ C ∶ (𝜺 − �̃�)⟩Y

= − ⟨�̃� ∶ C ∶ (𝜺 − �̃�)⟩Y

= ⟨�̃� ∶ C ∶ �̃�⟩Y − 𝜺 ∶ C
eff ∶ 𝜺,

(96)

where we used that the difference 𝜺 − �̃� = ∇s(u − ũ) is a symmetrized gradient and that the field 𝜺 satisfies the equilibrium
equation (57). We may rewrite this identity in the form

⟨�̃� ∶ C ∶ �̃�⟩Y = 𝜺 ∶ C
eff ∶ 𝜺 + ⟨(𝜺 − �̃�) ∶ C ∶ (𝜺 − �̃�)⟩Y . (97)

Completely analogous arguments may be applied to the discretized setting for a competition field

�̃�N = 𝜺 + ∇sũN with ũN ∈ N(Yd;Rd), (98)
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based on the discrete equivalent of Equation (61)

𝜺 ∶ C
eff
N ∶ 𝜺 =

⟨
𝜺N ∶ QN

[
C ∶ 𝜺N

]⟩

Y , (99)

to yield

⟨
�̃�N ∶ QN

[
C ∶ �̃�N

]⟩

Y = 𝜺 ∶ C
eff
N ∶ 𝜺 +

⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ (𝜺N − �̃�N

]
)
⟩

Y . (100)

Subtracting the identity (97) with �̃� = �̃�N from the previous line (100) provides the exact expression

𝜺 ∶
(
C
eff −C

eff
N

)
∶ 𝜺 = ⟨�̃�N ∶ C ∶ �̃�N⟩Y −

⟨
�̃�N ∶ QN

[
C ∶ �̃�N

]⟩

Y

+
⟨
(𝜺N − �̃�N) ∶ QN

[
C ∶ (𝜺N − �̃�N

]
)
⟩

Y − ⟨(𝜺 − �̃�N) ∶ C ∶ (𝜺 − �̃�N)⟩Y .
(101)

Taking norms thus leads us to the estimate

‖
‖
‖
𝜺 ∶

(
C
eff −C

eff
N

)
∶ 𝜺‖‖

‖
≲

|
|
|
⟨�̃�N ∶ C ∶ �̃�N⟩Y −

⟨
�̃�N ∶ QN

[
C ∶ �̃�N

]⟩

Y
|
|
|

+ ‖𝜺N − �̃�N‖
2
L2(Yd)

+ ‖𝜺 − �̃�N‖
2
L2(Yd)

,

(102)

where we used Parseval’s identity (11) and the upper bound (55) on the stiffness. Taking Féjer means

�̃�N = FN𝜺, (103)

the results of the previous section, that is, the estimate (74), permit us to conclude that the estimate

‖𝜺N − �̃�N‖
2
L2(Yd) + ‖𝜺 − �̃�N‖

2
L2(Yd) ≲

1
N

(104)

holds. Therefore, in view of the goal (92), it is necessary to study the quadrature error

⟨�̃�N ∶ C ∶ �̃�N⟩Y −
⟨
�̃�N ∶ QN

[
C ∶ �̃�N

]⟩

Y = ⟨�̃�N ∶ C ∶ �̃�N⟩Y −
1

Nd

∑

xI∈Yd
N

�̃�N(xI) ∶ C(xI) ∶ �̃�N(xI) (105)

in the estimate (102), where we used the fact (take Equation (11) with gN ≡ 1) that trigonometric polynomials of degree
N are integrated exactly by the trapezoidal rule of order N.

To proceed, let us introduce the field

̃EN = �̃�N ⊗ �̃�N ∈ 2N(Yd; Sym(d)⊗ Sym(d)), (106)

which is a trigonometric polynomial of order 2N with values in fourth-order tensors, and rewrite the quadrature error
(105) in the slightly shorter form

⟨�̃�N ∶ C ∶ �̃�N⟩Y −
1

Nd

∑

xI∈Yd
N

�̃�N(xI) ∶ C(xI) ∶ �̃�N(xI) =
⟨
C ∶∶ ̃EN

⟩

Y −
1

Nd

∑

xI∈Yd
N

C(xI) ∶∶ ̃EN(xI). (107)

We wish to apply the quadrature estimate (50). However, the integrand C ∶∶ ̃EN is discontinuous due to the discontinuous
stiffness C. Therefore, we invoke the splitting

⟨
C ∶∶ ̃EN

⟩

Y −
1

Nd

∑

xI∈Yd
N

C(xI) ∶∶ ̃EN(xI) =
⟨
(1 − 𝜙N)C ∶∶ ̃EN

⟩

Y

+
⟨
𝜙NC ∶∶ ̃EN

⟩

Y −
1

Nd

∑

xI∈Yd
N

𝜙N(xI)C(xI) ∶∶ ̃EN(xI)

+ 1
Nd

∑

xI∈Yd
N

(1 − 𝜙N(xI))C(xI) ∶∶ ̃EN(xI)

(108)
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in terms of the cut-off function 𝜙N , introduced in Equation (40). For the first term, we observe

⟨
(1 − 𝜙N)C ∶∶ ̃EN

⟩

Y ≤ 𝛼+||1 − 𝜙N ||L1(Yd)||𝜺||
2
L∞(Yd)

≲

1
N
, (109)

where we used Hölder’s inequality, the bound on the stiffness (55), the definition (106) of the field ̃EN , the property (25)
of Féjer means and the inequality (47) for p = 1. With a completely analogous argument, the estimate

1
Nd

∑

xI∈Yd
N

(1 − 𝜙N(xI))C(xI) ∶∶ ̃EN(xI) ≲
1
N
, (110)

is readily seen to hold. To treat the quadrature error in the middle of the right hand side of equation (108), we make use
of the quadrature estimate (50)

|
|
|
|
|
|
|

⟨
𝜙NC ∶∶ ̃EN

⟩

Y −
1

Nd

∑

xI∈Yd
N

𝜙N(xI)C(xI) ∶∶ ̃EN(xI)
|
|
|
|
|
|
|

≲

∑

||𝛼||∞=1

1
N |𝛼|

‖
‖
‖
𝜕

𝛼

(
𝜙NC ∶∶ ̃EN

)‖
‖
‖L1(Yd)

. (111)

To get an idea how to handle the terms on the right-hand side, we compute the first (j = 1, 2, … , d)

𝜕j
(
𝜙NC ∶∶ ̃EN

)
= 𝜕j𝜙NC ∶∶ ̃EN + 2𝜙NC ∶∶ �̃�N ⊗ 𝜕j�̃�N (112)

and the second derivative (j, k = 1, 2, … , d)

𝜕k𝜕j
(
𝜙NC ∶∶ ̃EN

)
= 𝜕k𝜕j𝜙NC ∶∶ ̃EN

+ 2𝜕j𝜙NC ∶∶ �̃�N ⊗ 𝜕k�̃�N

+ 2𝜕k𝜙NC ∶∶ �̃�N ⊗ 𝜕j�̃�N

+ 2𝜙NC ∶∶ 𝜕k�̃�N ⊗ 𝜕j�̃�N

+ 2𝜙NC ∶∶ �̃�N ⊗ 𝜕k𝜕j�̃�N

(113)

explicitly. From the expression (112), we estimate

‖
‖
‖
𝜕j
(
𝜙NC ∶∶ ̃EN

)‖
‖
‖L2(Yd)

≲ ||∇𝜙N ||L1(Yd)||𝜺||
2
L∞(Yd)

+ ||𝜺||L∞(Yd)||𝜺||H1(Yd
±)
≲ 1, (114)

where the critical ingredient is the L1-bound (46). The first term on the right hand side of Equation (113) may be handled
as follows

‖
‖
‖
𝜕k𝜕j𝜙NC ∶∶ ̃EN

‖
‖
‖L1(Yd)

≲ N ||𝜺||2L∞ (115)

by the estimate (45) for p = 1 and |𝛼| = 2. To treat the second term in the identity (113), we notice

‖
‖𝜕j𝜙NC ∶∶ �̃�N ⊗ 𝜕k�̃�N‖‖L1(Yd) ≲

‖
‖𝜕j𝜙N‖‖L1(Yd) ‖𝜺‖L∞(Yd) ‖𝜕k�̃�N‖L∞(Yd)

≲ N ‖𝜺‖L∞(Yd) ‖�̃�N‖L∞(Yd)

≲ N ‖𝜺‖2
L∞(Yd),

(116)

where, apart from the uniform L1-bound (46) the Bernstein estimate (32) is crucial to remove the derivative from the
L∞-estimate for the trigonometric polynomial �̃�N . The other terms in Equation (113) can be estimated with similar ideas
to obtain the bound

‖
‖
‖
𝜕k𝜕j

(
𝜙NC ∶∶ ̃EN

)‖
‖
‖L1(Yd)

≲ N. (117)

Actually, completely analogous arguments may be used to derive the estimate

‖
‖
‖
𝜕

𝛼

(
𝜙NC ∶∶ ̃EN

)‖
‖
‖L1(Yd)

≲ N |𝛼|−1 (118)
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for higher derivatives, as well. Thus, in view of the bound (111), we are led to the estimate

|
|
|
|
|
|
|

⟨
𝜙NC ∶∶ ̃EN

⟩

Y −
1

Nd

∑

xI∈Yd
N

𝜙N(xI)C(xI) ∶∶ ̃EN(xI)
|
|
|
|
|
|
|

≲

1
N
. (119)

Together with the estimates (109) and (110), the bound

|
|
|
⟨�̃�N ∶ C ∶ �̃�N⟩Y −

⟨
�̃�N ∶ QN

[
C ∶ �̃�N

]⟩

Y
|
|
|
≲

1
N

(120)

on the quadrature error (105) emerges. Combined with the quadratic estimates (104), the derivation of the desired
statement (92) is complete.

4 COMPUTATIONAL INVESTIGATIONS

The goal of this section is to provide computational results showing that the obtained convergence rates for the local strain
and stress fields as well as for the effective stiffness are actually attained upon grid refinement. Indeed, our considerations
could be suboptimal, requiring more elaborate mathematical techniques to derive optimal rates.

We relied upon an in-house FFT-based computational homogenization code,41 run on a workstation with two AMD
EPYC 7642 with 48 physical cores each. To handle discretizations with an even number of voxels in certain coordinate
directions, the values of the strain field are set to zero at the Nyquist frequencies. For every considered mesh size, the
equilibrium equation (64) was solved to an accuracy of 10−5 w.r.t. the “natural” convergence criterion14(§3.6). Then, the
effective stresses were computed by volume averaging.

We consider a microstructure with a single spherical inclusion placed at the center of the microstructure, see
Figure 1A, with a volume fraction of 6.54%. The isotropic linear elastic material parameters are listed in Table 1, corre-
sponding to a polyamide matrix and an E-glass filler. The considered microstructure satisfies the conditions presented in
Section 2.2, in particular the smoothness of the interface, required for the Li-Nirenberg estimates to hold, see Section 3.1.
Thus, the theory developed in this article applies. We load the structure via a shear in the x-y-plane.

The highest considered resolution, 5123 voxels, is taken as the reference. Then, the relative errors of the strain and
stress field, both measured in L2(Yd), and the effective stress are shown in Figure 1B. We observe that the local solution
fields, that is, the strain and the stress fields, show an N−1∕2 convergence rate, as predicted by the theory, see estimates

(A) (B)

F I G U R E 1 The single spherical inclusion. (A) Microstructure, (B) Convergence rates.

T A B L E 1 Material parameters considered for the computational experiments.100

Inclusion(s) E = 72 GPa 𝜈 = 0.22

Matrix E = 2.1 GPa 𝜈 = 0.3
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(74) and (89). The effective stress, on the other hand, converges much faster, and shows roughly an N−1-rate, as predicted
by our derivations, see the estimate (92).

The previous example was admittedly simple in order to enable going to fine resolutions and satisfying all the
requirements of the theory.

We retain the material models and parameters of the previous example, but investigate a more complex short-fiber
reinforced microstructure. More precisely, we take a look at a material reinforced by 20% E-glass fibers with an aspect
ratio of ten and a second-order fiber-orientation tensor101,102

A = diag(0.45, 0.45, 0.1), (121)

which describes a small deviation from a planar isotropic fiber-orientation state. As the fibers are described by cylinders,
the interface between matrix and inclusions does not satisfy the C1,𝛼-condition required for the Li–Nirenberg estimates,91

and the theory developed in this article does not apply.
The microstructure has dimensions 256 × 256 × 64 𝜇m3, shown in Figure 2A and contains 106 fibers. It was generated

by the SAM103 algorithm, employing the exact closure approximation.104

We consider resolutions N × N × N∕4 with discretization parameters N in the set {64,128, 256, … , 1024}. A
non-cubical microstructure is used to permit considering a larger resolution in the principal fiber directions. Indeed, due
to the anisotropic reinforcements, higher stresses are expected in-plane compared to out-of-plane. We apply a shear strain
in the 1-2-plane, that is, in the fiber plane. The computation with N = 1024 serves as our reference.

The relative errors of the stress and the strain field (in L2) as well as the convergence of the effective stress is shown
in Figure 2B. We observe that the local fields converge as N−1∕2 in the L2-norm. Moreover, the errors in the effective
stresses decay as 1∕N. In particular, the convergence asymptotics match the simpler spherical case which we considered
previously.

We conclude this section by investigating a microstructure where an analytic solution for the local solution fields
is available, at least for a specific macroscopic loading. More precisely, we consider the neutral inclusion introduced by
Hashin.105

The microstructure consists of three phases, a spherical core

Ω1 =
{

x ∈ Yd |
|
|
||x − xc|| < r1

}

, (122)

an annular region

Ω2 =
{

x ∈ Yd |
|
|

r1 < ||x − xc|| < r2

}

(123)

and the remaining “matrix”

Ω3 =
{

x ∈ Yd |
|
|
||x − xc|| > r2

}

(124)

(A) (B)

F I G U R E 2 The almost planar fiber-reinforced composite. (A) Microstructure, (B) Convergence rates.
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with the geometric center xc = (𝜋, 𝜋, 𝜋) of the microstructure and two radii r1 < r2 < 2𝜋. Each of these three phases is
occupied by an isotropic elastic medium. Hashin105 showed that under macroscopic compression it is possible to select
the elastic moduli of the phases Ω1 and Ω2 in such a way that the effective compression modulus of the microstruc-
ture coincides with the compression modulus of the matrix phase. The shear moduli 𝜇1 and 𝜇3 of the core and the
matrix are actually irrelevant for the consideration. Typically, we fix the compression modulus K3 ≡ Keff of the matrix
and the ratio K2∕𝜇2 of the intermediate region. There is a relationship105 between the compression moduli K1 and
K2, that is,

K1 = K2 +
Keff − K2

𝜙1 − 𝜙2
Keff−K2

K2+
4
3
𝜇2

, (125)

where 𝜙1 = (r1∕r2)3 and 𝜙2 = 1 − 𝜙1. For our investigation at hand, there are two cases to consider. For the first
case, which we term “porous”, the compression modulus K1 is less than K3 ≡ Keff. It follows that the compression
modulus K2 of the intermediate region exceeds K3 ≡ Keff. With decreasing K1, K2 increases. However, as K1 goes
the zero, K2 remains bounded. Thus, we approach the case of a single pore with a special coating embedded in
the matrix.

In the second case, which we call “rigid”, the compression modulus K1 exceeds K3 ≡ Keff, whereas K2 is smaller than
K3 ≡ Keff. For increasing K1, K2 decreases. As K1 →∞, K2 remains bounded away from zero. Thus, in the limit K1 →∞,
we are faced with a rigid inclusion with special coating inside the matrix.

These two scenarios permit us to consider different material contrasts

𝜅 =
maxi=1,2,3 Ki

mini=1,2,3 Ki
(126)

in the compression modulus.
For the study at hand, We use the radii

r1 =
200

1024
𝜋e and r2 =

300
1024

𝜋

2
, (127)

where e =
∑∞

k=0
1
k!

is Euler’s number. We set Keff = 1∕3 and fix 𝜇i = Ki (i = 1, 2, 4), that is, we set Poisson’s ratio
to 𝜈i = 1∕8 (i = 1, 2, 3). We compare the relative error in the effective compression modulus and the L2-error of
the local strain and stress fields, see Figure 3. Inspecting the error in the effective properties for the “porous”
case, see Figure 3A, we observe that the two coarsest discretizations, N = 16 and N = 32, do not conform to the
expected scaling 1∕N. This contrasts with the geometries previously considered in this section, and is caused by
the comparatively coarse resolution of the regions Ω1 and Ω2. For the finer discretizations the theoretically pre-
dicted 1∕N-convergence rate is confirmed. We observe that the error increases with the contrast, with no clear limit
as 𝜅 → ∞.

For the “rigid” case, see Figure 3B, the behavior is similar, and more or less the same conclusions may be drawn.
However, the errors are slightly larger than for the “porous” case. Please note that resolving the latter is computationally
much more expensive than dealing with the “porous” case due to the primal formulation. A remedy consists in working
with the dual formulation.62,106

Taking a look at the local L2-strain error of the “porous” case, see Figure 3C, we also observe no clear trend in
the convergence behavior for low resolution due to the geometric error induced by the coarse voxelation. Only for the
highest resolutions, the theoretically predicted N−1∕2 convergence behavior is clearly seen. We observe that the strain
error increases with the contrast, even strongly so. Keeping in mind that the axes are scaled logarithmically, a diver-
gence of the strain error is evident. This behavior is a well-known and understood characteristic of the Moulinec–Suquet
discretization.47,50,57

Taking a look at the stress error for the “porous” case, see Figure 3E, we observe a completely different behavior. As the
contrast 𝜅 increases to infinity, there is a clear saturation behavior of the stress error, following the predicted N−1∕2-rate.

For the “rigid” case, see Figure 3E,F, the roles of stress and strain are reversed—as expected—but the conclusions to
be drawn remain the same.
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 3 Convergence behavior of the effective compression modulus as well as the local strain and stress fields for Hashin’s sphere
for different contrasts 𝜅, see Equation (126). The “porous” case is shown on the left, and the “rigid” case on the right. (A)
|Keff

N − Keff|∕Keff
,K1 < Keff, (B) |Keff

N − Keff|∕Keff
,K1 > Keff, (C) ||𝜀N − 𝜀||L2∕||𝜀||L2 ,K1 < Keff, (D) ||𝜀N − 𝜀||L2∕||𝜀||L2 ,K1 > Keff, (E)

||𝜎N − 𝜎||L2∕||𝜎||L2 ,K1 < Keff, (D) ||𝜎N − 𝜎||L2∕||𝜎||L2 ,K1 > Keff.

5 CONCLUSION

The goal of this article was to provide a sharp error analysis for the Moulinec–Suquet discretization,4,5 providing the
theoretical basis for its practical success in computational micromechanics. Previous works were mostly restricted
to qualitative convergence results.66,72,73 The only quantitative results that we are aware of either require higher
smoothness of the coefficients,71 are restricted to specific microstructures, that is, laminates,107 or deal with the
Galerkin setup.108
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The principal difficulty involved was the low regularity characterizing the solution of the micromechanical problem
and composite materials. Indeed, both the stress and the strain fields are, in general, discontinuous across material
interfaces, a situation that is inherently linked to the physics of the problem.

We employed a strategy based on smoothing and elementary energy estimates to deal with the problem, losing half
of the optimal 1∕N-rate in the process due to balancing the smoothing and the approximation error. Moreover, we could
handle the higher derivatives appearing in the interpolation estimates by using Bernstein estimates for the gradient of the
trigonometric polynomial. Usually it is better to work out estimates in terms of the non-discretized, that is, continuous,
solution field. In our case, the opposite strategy turned out to be vital. Another key ingredient of the approach is the use
of Féjer means to be able to preserve the L∞-bound upon trigonometric approximation. It would be interesting to see
whether this theoretical tool is also useful for practical matters.

In addition to providing rates for the strain and the stress fields in L2, we also investigated the error of the effective
stiffness (or the effective stresses). For this purpose, we took a close look at the error induced by trigonometric interpo-
lation. On top of the Ye–Chung superconvergence argument,73 a similar reasoning as for the strain/stress estimates was
necessary, replacing the L2- by L1-estimates.

Let us take a critical look at the assumptions and possibilities for future work. This work was restricted to linear elas-
ticity and smooth material interfaces as we relied critically on the Li–Nirenberg estimates91 which were formulated in this
setting. Suitable a-priori estimates72 and a Ye–Chung type argument76 are available for more general stress operators of
strongly monotone type. Thus, generalizations of the Li–Nirenberg estimates to this kind of nonlinearity would probably
enable extending the work at hand to this more general case, as well. Actually, computational experiments76 suggest that
the reported rates also hold for relevant classes of nonlinear composites and interesting classes of non-smooth material
interfaces. To treat the latter analytically, finer tools are required, for example, based on weighted function spaces.109,110

Another intriguing question concerns whether it is possible to design computational methods on Cartesian grids
which converge at a higher rate than the Moulinec–Suquet discretization (and its relatives), but comes with a similar
computational efficiency, for example, by using the fast Fourier transform.
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APPENDIX A. DERIVATION OF THE REPRESENTATION OF THE QUADRATURE ERROR
IN ONE SPATIAL DIMENSION

The purpose of this appendix is to show the validity of equation (48), that is, for any natural number N ∈ N there is a
function wN ∶ [0, 2𝜋] → R, bounded uniformly in N, s.t., for any continuous and periodic function f ∶ [0, 2𝜋]→ R with
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integrable weak derivative f ′ the representation

1
N

N∑

j=1
f
(

2𝜋 j
N

)

= −
∫

2𝜋

0
f (x) dx + 1

N
−
∫

2𝜋

0
f ′(x) wN(x) dx (A1)

holds, where −∫ refers to the mean integral.
For 0 ≤ a < b ≤ 2𝜋 one observes, by the fundamental theorem of calculus,

∫

b

a

d
dx

(

f (x)1
2

2x − a − b
b − a

)

dx = 1
2
(f (a) + f (b)) . (A2)

On the other hand, the product rule gives

∫

b

a

d
dx

(

f (x)1
2

2x − a − b
b − a

)

dx =
∫

b

a
f ′(x)1

2
2x − a − b

b − a
dx + 1

b − a∫

b

a
f (x) dx, (A3)

that is, the compact formula

b − a
2

(f (a) + f (b)) =
∫

b

a
f (x) dx +

∫

b

a
f ′(x)2x − a − b

2
dx. (A4)

For a = 2𝜋j∕N and b = 2𝜋(j + 1)∕N (j = 0, … ,N − 1), this formula becomes

2𝜋
2N

(

f
(

2𝜋j
N

)

+ f
(

2𝜋(j + 1)
N

))

=
∫

2𝜋(j+1)∕N

2𝜋j∕N
f (x) dx +

∫

2𝜋(j+1)∕N

2𝜋j∕N
f ′(x)

Nx − 𝜋(2j + 1)
N

dx. (A5)

Summing up from j = 0 to j = N − 1 gives equation (48) with the piece-wise defined function

wN(x) = Nx − 𝜋(2j + 1), 2𝜋j∕N ≤ x ≤ 2𝜋(j + 1)∕N. (A6)

The function wN is piecewise linear and satisfies the N-independent bound

|wN(x)| ≤ 𝜋, x ∈ [0, 2𝜋]. (A7)

APPENDIX B. DERIVATION OF THE HIGHER GRADIENT BOUNDS IN THE
INTERPOLATION ESTIMATE

The goal of this appendix is to show the estimate (86)

‖
‖
‖
∇k (𝜙NC ∶ FN𝜺)

‖
‖
‖L2(Yd)

≲ Nk− 1
2 (B1)

required in Section 3.3. The product rule implies

‖
‖
‖
∇k (𝜙NC ∶ FN𝜺)

‖
‖
‖L2(Yd)

≲

‖
‖
‖
𝜙N∇k(FN𝜺)

‖
‖
‖L2(Yd)

+
∑k
𝓁=1

‖
‖
‖
∇𝓁 (𝜙NC)‖‖

‖L2(Yd)
‖
‖
‖
∇k−𝓁 (FN𝜺)

‖
‖
‖L∞(Yd)

. (B2)

For the first term, we observe

‖
‖
‖
𝜙N∇k(FN𝜺)

‖
‖
‖L2(Yd)

≤
‖
‖
‖
∇k(FN𝜺)

‖
‖
‖L2(Yd)

≲ Nk−1 ‖∇(FN𝜺)‖L2(Yd) (B3)

by the L2-Bernstein estimate (35). We split the term

‖∇(FN𝜺)‖L2(Yd) ≤ ‖∇FN[(1 − 𝜙N)𝜺]‖L2(Yd) + ‖∇FN[𝜙N𝜺]‖L2(Yd) . (B4)
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For the first contribution, we utilize the Bernstein estimate (35), the boundedness of the Féjer means and the
convergence-rate estimate (46)

‖∇FN[(1 − 𝜙N)𝜺]‖L2(Yd) ≲ N ‖FN[(1 − 𝜙N)𝜺]‖L2(Yd)

≤ N ‖(1 − 𝜙N)𝜺‖L2(Yd)

≤ N ‖(1 − 𝜙N)‖L2(Yd) ‖𝜺‖L∞(Yd)

≲ N
1
2
.

(B5)

To treat the second term, we notice that taking the gradient commutes with Féjer approximation,

‖∇FN[𝜙N𝜺]‖L2(Yd) = ‖FN [∇(𝜙N𝜺)]‖L2(Yd) ≤ ‖∇(𝜙N𝜺)‖L2(Yd) ≲ N
1
2
, (B6)

where the last estimate is obtained as a part of argument (81). Thus, we are let to the bound

‖∇(FN𝜺)‖L2(Yd) ≲ N
1
2
, (B7)

which, in turn, leads to the expression

‖
‖
‖
𝜙N∇k(FN𝜺)

‖
‖
‖L2(Yd)

≲ Nk− 1
2
. (B8)

For the second term in the estimate (B2), we observe

‖
‖
‖
∇𝓁 (𝜙NC)‖‖

‖L2(Yd)
≲ N𝓁− 1

2 (B9)

as a consequence of estimate (45) for k = |𝛼| as well as p = 2, and

‖
‖
‖
∇k−𝓁 (FN𝜺)

‖
‖
‖L∞(Yd)

≲ Nk−𝓁 ‖FN𝜺‖L∞(Yd) ≤ Nk−𝓁 ‖𝜺‖L∞(Yd) (B10)

using the Bernstein estimate (32) and the conservation of boundedness offered by the Féjer means (25). The latter two
estimates combine to the bound

‖
‖
‖
∇𝓁 (𝜙NC)‖‖

‖L2(Yd)
‖
‖
‖
∇k−𝓁 (FN𝜺)

‖
‖
‖L∞(Yd)

≲ Nk− 1
2
. (B11)

Thus, in view of the contributions (B8) and (B11), the estimate (B2) implies the statement (B1), which was to be shown.
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