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Abstract
This work deals with the composite voxel method, which—in its original
form—furnishes voxels containing more than one material with a surrogate
material law accounting for the heterogeneity in the voxel. We show that
the laminate composite voxel technique naturally arises as an assumed strain
method, that is, the general framework introduced by Simo-Rifai, for a specific
choice of enhanced strain field. As a consequence, laminate composite voxels
may be regarded as a kinematic assumption within a discretization scheme rather
than a part of material modeling, as suggested originally. We discuss how to
seamlessly integrate composite voxels into the framework of a level-set descrip-
tion of the microstructure, in particular the accurate and efficient computation
of normals and cut-volume fractions. In contrast to more traditional strate-
gies based on subvoxelizations, the introduced method avoids systematic errors
when computing composite voxel properties. We demonstrate the applicability
of the developed technology for a number of relevant computational examples.

K E Y W O R D S

assumed strain method, composite voxel method, computational homogenization, FFT-based
computational micromechanics, Mirtich formulas

1 INTRODUCTION

1.1 State of the art

The goal of computational micromechanics1,2 is to gain deeper insight into the mechanical behavior of microheteroge-
neous materials. These often come with complex anisotropic material behavior that is typically the consequence of a
complex manufacturing process. Moreover, a purely experimental characterization comes with a significant expense in
terms of effort, resources, and time. Micromechanical techniques recognize that the microstructure of the material serves
as the construction plan of the composite in such a way that that effective behavior of the material may be determined
from the configuration of the individual phases within the microstructure and appropriate constitutive laws of the con-
stituting phases. Actually, depending on the context, micromechanics may either be used to homogenize the constitutive
laws in the microscale, for example, in case the effective material behavior is sought, or to localize the material behavior,
for example, whenever emergent defects on the microscale have relevance for macroscopic issues, for example, in case of
assessing safety of a component subjected to long-term loading.3–5
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The advent of high-fidelity digital images of microstructures, for example, serial sectioning,6,7 optical microscopy,8,9

FIB-SEM,10–12 electron back-scatter diffraction,13–15 x-ray diffraction microscopy,16,17 and micro-computed tomogra-
phy,18,19 has changed the field completely, offering new possibilities and posing corresponding challenges. For instance,
digital images are given on voxels (volume pixels), typically at a high resolution. In particular, a high number
of such image points need to be processed. Moreover, the rectangular nature of voxels does not permit to deter-
mine the interfaces between the materials in a natural way. Rather, the classical segmentation process leads to a
jagged interface. This circumstance is made worse by the inherent complexity of industrial-scale microstructured
materials. In particular, when it comes to computationally resolving such microstructure models, it turns out to
be rather challenging to create interface-conforming meshes with high quality. A possible route to overcome these
problems is using finite elements on polyhedral grids, for example, the virtual finite element method20–22 or the
scaled boundary finite element method.23–25 An efficient alternative operates on the regular grid provided by the
voxel mesh directly.26,27 Due to the regularity of the mesh, it is possible to refrain from storing the mesh topol-
ogy or even the finite element stiffness matrix.28–30 Particularly well-performing are approaches based on the fast
Fourier transform (FFT), which were introduced by Moulinec–Suquet31,32 in the 1990s. Originally, their approach
was motivated by the Lippmann–Schwinger integral equation for the strain field33–35 and exploited a truncated set
of Fourier frequencies to represent the sought periodic strain field. Designed to account for inelastic constitutive
behavior from the beginning,31,32 the available efficient implementations of the FFT36 led to an ever-growing commu-
nity of adherents exploiting the computational advantages of the approach, see the recent review articles37–39 for an
overview.

In its original form, Moulinec and Suquet presented their scheme in an integrated fashion, not distinguishing dis-
cretization scheme and solution method. In the succeeding years, the original solution method, the basic scheme,31,32 was
replaced by other solution methods with a superior convergence behavior. These improvements come in two flavors. The
first category of solvers produces kinematically compatible strain fields in each iteration and comprises fast gradient40,41

and conjugate gradient solvers42–44 as well as solvers of quasi-Newton type.45–47 For the second category, the kinematic
compatibility is only satisfied upon convergence. These so-called polarization schemes48–50 are actually all closely related
and stem from the Douglas-Rachford51,52 family of schemes, whose members are equivalent to variations of the alter-
nating direction method of multipliers (ADMM).53–55 Of course, it is also possible to swap kinematic compatibility with
equilibrium and work with dual schemes.56,57

At the beginning of the 21st century, there was a debate within the community whether FFT-based methods converge
for problems with infinite contrast, most prominently porous materials. Due to the regular grid structure and the use of
FFT, also these void voxels needed to be included into the evaluation of the constitutive law, that is, the classical strategy
of simply eliminating such regions from the grid is not feasible. Originally, this problem was thought of as being the
concern of the solution scheme and appropriate improvements were sought. However, depending on the microstructure,
constitutive law and convergence criterion, contradictory results were reported. Subsequently, it turned out that the root
of the problem lies in the discretization scheme based on trigonometric polynomials whose global support may lead to
an ill-conditioned micromechanical problem in the presence of pores. This defect was demonstrated by a computational
experiment of a high-porosity foam58(§4.2) where the predicted effective Young’s modulus converges to zero eventually
with increasing iteration count, contradicting physical intuition, that is, that the foam structure has a finite stiffness. As
a remedy, different discretization schemes were exploited, building upon earlier work of Willot et al.59,60 Indeed, it was
recognized that on a regular grid, Lippmann–Schwinger type equations and solvers could be designed and used, as long
as the discretization scheme respects the regular grid structure and the periodic boundary conditions. Such alternative
discretization schemes include Fourier–Galerkin methods,61–63 piece-wise constant strains,64,65 finite differences,58,60,66–69

finite elements,70–72 finite volumes,73,74 splines,75 and wavelets.76

Despite the computational prowess of FFT-based methods, performance improvements are still valuable, in particular
in case of expensive constitutive laws77–79 or whenever a multitude of microstructures80–82 or load scenarios83–85 needs to
be considered. A key technology for accelerating FFT-based methods is the composite voxel technique, originally intro-
duced by two groups86,87 independently at the same time. Interestingly, similar ideas were introduced for phase-field
problems.88,89 The key insight is that in case the microstructure is given either analytically or in terms of a high-fidelity
subvoxel image, there are voxels which comprise more than a single phase. To account for this heterogeneity within the
voxel, it appears natural to furnish the voxel with an appropriately chosen composite constitutive law. Different possibili-
ties were tested and for finitely contrasted materials it turned out to be favorable to equip the voxel with the constitutive law
of a laminate90(§9) with the proper volume fractions and a lamination direction which is close to the normal between the
phases within the voxel. Interestingly, such a strategy does also work at finite strains91 and for inelastic constitutive laws
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with internal variables.92 Subsequent works also exploited thin interphases93,94 and composite boxels95 on non-equi-axed
elements.

1.2 Contributions

This work revisits the composite voxel method, mainly for the following two reasons. For a start, there appears to be
no thorough explanation for the unreasonable effectiveness of laminate composite voxels. Indeed, in its original form,87

the composite voxel methodology operates on the level of the constitutive law, touching neither kinematic compatibility
nor the balance equation. In particular, pretty much any other “mixing rule” would be admissible. Originally, different
such rules were tested, but not deemed performing. Subsequent works91,92,94 highlighted the advantages of the laminate
strategies also for general inelastic and possibly finite strain mechanics, leading to the impression that there may be a
deeper reason for the prowess of the composite voxel technology.

The second motivation was a more practical one. Originally, composite voxels were coupled with a subvoxel descrip-
tion and an analytic description of the interfaces given via computer-aided design (CAD) data. For both strategies, accurate
interface data is either not available at all or requires serious processing. An alternative which is naturally integrated with
voxel data is the level-set method,96–98 and we wanted to study how to design efficient composite voxel methods in this
setting.

More to the point, it is necessary to obtain both the volume fractions within a composite voxel and an accurate interface
normal. When testing our proposed techniques, see Section 3 for details, we uncovered that the original subvoxel-based
normal-estimation technique introduced by Merkert et al.99 is not multi-grid convergent. As this fact is of independent
interest, we will discuss it in this central and prominent part of the manuscript. The strategy introduced by Merkert
et al.99 proceeds as follows. Suppose there is a (possibly non-normalized) level-set function Le ∶ [0, 1]3 → R on the voxel
in question which is sampled on a subvoxel grid with m3 voxels, that is, the signs of the values

Le
i1,i2,i3

= Le
(

i1 + 1∕2
m

,

i2 + 1∕2
m

,

i3 + 1∕2
m

)
for ia ∈ {0, 1, … ,m − 1}, a = 1, 2, 3, (1)

are essential. Then, based on the centroids

x±c =
∑

x∈Y±
e,h

x∕
∑

x∈Y±
e,h

1 (2)

of the discretized phases

Y±
e,h =

{(
i1 + 1∕2

m
,

i2 + 1∕2
m

,

i3 + 1∕2
m

) ||| ± Le
i1,i2,i3

> 0, ia ∈ {0, 1, … ,m − 1}, a = 1, 2, 3
}
, (3)

and the centroid xc = (1∕2, 1∕2, 1∕2) of the voxel, the estimated normal is computed in either of the equivalent forms95

nm
e =

xc − x−c‖‖xc − x−c ‖‖ or nm
e =

x+c − xc‖‖x+c − xc‖‖ . (4)

Restricting to a two-dimensional setting, an example with a linear interface is shown in Figure 1. The strategy (4) provides
the correct normal ne ≡ (1, 2)∕

√
5 for an interface which cuts the left upper corner in Figure 1A. However, when shifting

the interface to the right, the center of mass of the blue sublevel set shifts, as well. At the same time, the interface normal
remains the same. In this way, a difference between the correct and the estimated normal is introduced, see Figure 1B. For
the shown scenario with n∞e ≡ (11, 4)∕

√
137, the difference between the two normals is approximately 6.58◦. Of course,

using a finite number m3 of integration points does not help, either, and the discussed scenario prevails as m → ∞.
Returning to the principal scientific contributions of the article, we provide a derivation of laminate composite voxels

from first principles. More precisely, we derive the latter within the framework of assumed strain methods, see Section 2.
To provide some background, consider, as an example, a finite element model of a beam-like component under bending.
Then, linear elements have serious trouble representing the linearly varying strain field as the chosen shape functions lead
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(A) (B)

F I G U R E 1 Explicit example for a systematic error when computing the normal ne with center of mass method (4). (A) Example 1. (B)
Example 2 (Figure 1A normal in red).

to piece-wise constant strain fields only. Clearly, utilizing higher-order ansatz functions would mitigate the problem. Yet,
such higher-order shape functions are characterized by a higher implementation and computational effort. Therefore,
different strategies were exploited100–107 which enrich the first-order shape functions by appropriate modes that permit
to represent a linearly varying strain. These additional degrees of freedom were typically chosen in such a way that they
are local to each element, that is, independent of the degrees of freedom associated to nearby elements. In particular, it
was possible to eliminate these additional degrees of freedom in preprocessing, leading to a modified strain-displacement
matrix per element. The resulting approaches share the same number of degrees of freedom as conforming first-order
methods but are able to approximate bending-dominated loadings much more accurately. These methods go under dif-
ferent names, for example, the method of incompatible modes,100–102 as the element-local additional shape functions
lead to a violation of displacement continuity if interpreted as a displacement enrichment. Alternative denominations
include B-bar methods103,104 due to the altered strain-displacement matrix which arises from the static condensation
or enhanced strain methods105–107 which consider the additional degrees of freedom as augmenting the strain approxi-
mation. Another name is assumed strain methods, where the focus is laid on the additive splitting of the strain into a
kinematically compatible and an enhanced strain part.

Irrespective of the denomination, Simo-Rifai108 provided a unified description and analysis of such methods in a
conforming three-field variational framework. They provided three simple conditions which ensure well-posedness of the
finite-element problem and convergence under grid refinement. A particular consequence is that the enhanced part of
the strain must have a vanishing mean on each element. Moreover, assumed strain methods typically do not improve the
convergence rate of the finite element discretization under grid refinement. However, the improvement of the constant
in front of the convergence rate is significant and—in combination with the comparatively low inherent computational
effort—responsible for the success of such methods.

In the manuscript at hand, we interpret the laminate composite voxels as such an assumed strain method. Instead
of bending of homogeneous components, which the assumed strain methods were originally designed for, we are inter-
ested in homogenization or localization problems on heterogeneous microstructures. In case the regular mesh does not
conform to the interfaces between the constituents, elements cut by the interfaces are unable to provide the appro-
priate mechanical response at the interface. Using appropriate enhanced strains in these voxels appears to be the
natural way to proceed. More precisely, within the composite voxels, the difference in normal strains across the inter-
face cannot be accounted for by first-order elements that do not resolve the interface. Thus, it is natural to provide
such additional degrees of freedom for the composite voxel. Accounting for the vanishing mean constraint required by
Simo-Rai’s analysis108 directly leads to laminate composite voxels, see Section 2.3. In particular, we interpret the com-
posite voxel method as an augmentation of kinematic compatibility, more precisely the approximation thereof in a finite
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element context, independent of the constitutive modeling, which appears to be much more natural than the previous
interpretation.

We provide a self-contained derivation and analysis of assumed strain methods in Sections 2.1 and 2.2, culminating
in sharp convergence estimates for the method.

Our second contribution concerns the seamless integration of level-set methods and the composite voxel technology.
We propose a number of strategies to estimate the normal and volume fractions in composite voxels, see Section 3. Here,
the problem is the ambiguity of the normal in case the interface is not flat. We introduce ideas based on averaging, regres-
sion planes for the roots of the level-set function and a combinatorial strategy that was reported in literature.109 After
finding a suitable linear interface intersecting the composite voxel, the corresponding volume fractions may be computed
by calculating the volume of the emerging polyhedra. We discuss the efficient and numerically robust algorithmic resolu-
tion proposed by Mirtich110 which is based on a repeated application of integral theorems to reduce the dimension of the
domain to be integrated to the edges of the polyhedron where Gaussian quadrature is known to be optimal, see Hughes111

and the references therein.
The article at hand concludes with a number of computational experiments discussed in Section 4, where the perfor-

mance of the introduced strategies is assessed based on a number of microstructures with analytically available reference
values or based on a high-fidelity computed reference.

2 COMPUTATIONAL HOMOGENIZATION WITH COMPOSITE VOXELS

2.1 The homogenization problem

We are concerned with a rectangular cell

Y = [0,L1] × [0,L2] × · · · × [0,Ld], (5)

in d spatial dimensions (d = 2, 3) and suppose a heterogeneous strain-energy function

w ∶ Y × Sym(d) → R, (x, 𝜺) → w(x, 𝜺), (6)

to be given, where Sym(d) refers to the space of symmetric second-order tensors in d dimensions. We assume that the
function w is differentiable in the second argument and denote the associated stress mapping as follows:

𝝈 ∶ Y × Sym(d) → Sym(d), (x, 𝜺) → 𝜕w
𝜕𝜺

(x, 𝜺). (7)

A convenient framework for nonlinear solid mechanics at small strains without softening involves strongly monotone
and Lipschitz-continuous stress operators,39 that is, there are positive constants 𝛼±, s.t. the strong monotonicity

(𝝈(x, 𝜺1) − 𝝈(x, 𝜺2)) ∶ (𝜺1 − 𝜺2) ≥ 𝛼− ||𝜺1 − 𝜺2||2, x ∈ Y , 𝜺1, 𝜺2 ∈ Sym(d), (8)

and the Lipschitz continuity condition

‖𝝈(x, 𝜺1) − 𝝈(x, 𝜺2)‖ ≤ 𝛼+ ||𝜺1 − 𝜺2||, x ∈ Y , 𝜺1, 𝜺2 ∈ Sym(d), (9)

are satisfied. Here, the norm of strains and stresses is measured in the Frobenius norm, that is,

||𝜺|| ≡√
𝜺 ∶ 𝜺, 𝜺 ∈ Sym(d). (10)

Moreover, it is assumed that the unstrained stress state has finite elastic energy, that is, the condition

⨍Y
||𝝈(x, 0)||2 dx < ∞ (11)



6 of 34 LENDVAI and SCHNEIDER

holds. The symbol ⨍ refers to the mean integral, that is, the integral weighted in such a way that integrating the
constant function 1 yields unity. Under the conditions (8), (9), and (11), it can be shown that the stress operator 𝝈 gives
rise to a well-defined (nonlinear) operator on the space of square-integrable Sym(d)-valued fields which is furthermore
𝛼−-strongly monotone and 𝛼+-Lipschitz continuous, see Schneider112(§2.1) for details. For a given prescribed macroscopic
strain 𝜺 ∈ Sym(d), we seek an associated periodic displacement fluctuation field u ∈ H1

#(Y ;R
d)with vanishing mean, s.t.

the quasistatic balance of linear momentum

div 𝝈(⋅, 𝜺 + ∇su) = 0 (12)

is satisfied. Under the strong monotonicity and Lipschitz condition on the stress operator, the cell problem (12) is
well-posed, and the corresponding effective stress arises via volume averaging

𝝈
eff(𝜺) =

⟨
𝝈(⋅, 𝜺 + ∇su)

⟩
Y ≡

⨍Y
𝝈(x, 𝜺 + ∇su(x)) dx. (13)

Traditionally, the problem (12) is interpreted as the Euler–Lagrange equation of the variational problem

⨍Y
w(⋅, 𝜺 + ∇su) dx → min

u∈H1
# (Y ;Rd)

. (14)

This variational problem is the typical starting point for numerical discretizations in micromechanics.58,60,70,71,113,114

Simo-Rifai108 discuss an alternative mixed variational principle which we adapt to the micromechanics framework.
Assumed strain methods consider a decomposition of the local strain field

𝜺 = 𝜺 + ∇su + 𝜺̃ (15)

into a kinematically compatible part 𝜺 + ∇su and an additional, enhanced strain 𝜺̃. At the continuum scale, kinematic
compatibility forces this latter part to vanish—yet it may be non-trivial and useful after discretization. Retaining the
continuous setting, the variational problem

⨍Y
w(⋅, 𝜺 + ∇su + 𝜺̃) dx → min

u∈ , 𝜺̃∈̃ , 𝜺̃=0
(16)

with the spaces

 = H1
#(Y ;R

d) and ̃ = L2(Y ; Sym(d)) (17)

is obviously equivalent to the original variational problem (14). Indeed, the constraint 𝜺̃ = 0 enforces the enhanced strain
to vanish and we are left with the problem (14).

The constrained optimization problem (17) may be transformed into a saddle point problem

⨍Y
w(⋅, 𝜺 + ∇su + 𝜺̃) − 𝝀 ∶ 𝜺̃ dx → min

u∈ , 𝜺̃∈̃
max
𝝀∈

(18)

by introducing a suitable Lagrangian multiplier 𝝀 in the space

 = L2(Y ; Sym(d)). (19)

Here, the minus sign is a convention, s.t. the KKT conditions associated to the saddle-point problem attain the form

div 𝝈(⋅, 𝜺 + ∇su + 𝜺̃) = 0,
𝝈(⋅, 𝜺 + ∇su + 𝜺̃) − 𝝀 = 0,

𝜺̃ = 0,
(20)

and the Lagrange multiplier 𝝀 equals the local stress field.
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2.2 Assumed strain methods in micromechanics

Following Simo-Rifai,108 the starting point of assumed strain methods is the three-field variational principle (18)

⨍Y
w(⋅, 𝜺 + ∇su + 𝜺̃) − 𝝀 ∶ 𝜺̃ dx → min

u∈ , 𝜺̃∈̃
max
𝝀∈

, (21)

for the triple

(u, 𝜺̃,𝝀) ∈  × ̃ ×  , (22)

and the spaces

 = H1
#(Y ;R

d), ̃ = L2(Y ; Sym(d)) as well as  = L2(Y ; Sym(d)). (23)

Assumed strain methods are obtained by choosing suitable finite-dimensional subspaces

h ⊆  , ̃h ⊆ ̃ as well as h ⊆  , (24)

corresponding to a discretization of the domain Y into finite-elements {Ye}
nelm
e=1 . More precisely, Simo-Rifai108 seek a triple

(uh, 𝜺̃h, 𝜆h) ∈ h × ̃h × h which is a saddle point of the problem

⨍Y
w(⋅, 𝜺 + ∇suh + 𝜺̃h) − 𝝀h ∶ 𝜺̃h dx → min

uh∈h, 𝜺̃h∈̃h

max
𝝀h∈h

. (25)

In their analysis of assumed strain methods, Simo-Rifai108 proposed three conditions which cover a variety of previously
defined assumed strain, enhanced strain and B-bar methods, yet still admit a unified discussion.

Condition (i) The spacesh and ̃h have trivial intersection in the sense

∇s
h ∩ ̃h = {0}. (26)

Condition (ii) The spaces ̃h and h are L2-orthogonal, that is, the condition

⨍Y
𝜺̃h ∶ 𝝈h dx = 0 holds for all 𝜺̃h ∈ ̃h and 𝝈h ∈ h. (27)

Condition (iii) The space h contains element-wise homogeneous stresses, that is, the inclusion

nelm∑
e=1
𝝈e 𝜒e ∈ h, (28)

holds for arbitrary 𝝈e ∈ Sym(d) and the characteristic function 𝜒e of the e-th element

𝜒e(x) =

{
1, x ∈ Ye,

0, otherwise.
(29)

The first condition (26) encodes the intuitive fact that the enhanced strains 𝜺̃h ∈ ̃h have vanishing compatible part,
that is, the equation

∇suh = 𝜺̃h for uh ∈ h and 𝜺̃h ∈ ̃h, (30)

implies uh = 0 and 𝜺̃h = 0.
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Combined with the third condition (28), the second condition (27) ensures that the enhanced strains have vanishing
mean on each finite element Ye,

⨍Ye

𝜺̃h dx = 0, 𝜺̃h ∈ ̃h, e = 1, … ,nelm. (31)

This is readily seen by choosing a stress field (28) which is non-zero only in a single element when evaluating the condition
(27). Thus, as the discretization parameter h goes to zero, the Equation (31) encodes, in a sense, that the enhanced strain
𝜺̃h goes to zero, as well.

Due to the second condition (27), the three-field saddle-point problem (25) simplifies to a two-field variational problem

⨍Y
w(⋅, 𝜺 + ∇suh + 𝜺̃h) dx → min

uh∈h, 𝜺̃h∈̃h

. (32)

The corresponding Euler–Lagrange equation reads

⨍Y
𝝈(⋅, 𝜺 + ∇suh + 𝜺̃h) ∶ (∇swh + 𝜸̃h) dx = 0 for all (wh, 𝜸h) ∈ h × ̃h. (33)

Under the conditions (i)–(iii) and the assumptions (8) and (9) on the constitutive behavior, existence, and uniqueness of
solutions to the problem (33) can be shown. Moreover, the convergence estimate

||∇su − ∇suh − 𝜺̃h||L2 ≤ C
(

inf
𝜺h∈Wh

||∇su − 𝜺h||L2 + ||𝝀 − 𝝀h||L2

)
(34)

holds for a constant C which depends only on the material constants 𝛼±. Here, we introduced the stress field 𝝀 = 𝝈(⋅, 𝜺 +
∇suh + 𝜺̃h) and its element-wise average

𝝀h ≡

nelm∑
e=1
𝝀e 𝜒e with 𝝀e =

⨍Ye

𝝀 dx. (35)

For details on deriving the inequality (34), we refer to Appendix B.
Suppose the subspace h ⊆  = H1

#(Y ;R
d) has the approximation property, that is, for every u ∈  there is a

sequence (uh) of elements inh, s.t., the convergence

||u − uh||H1 → 0 holds as h → 0. (36)

Then, the first term of the right-hand side of the Strang estimate (34) becomes infinitesimal. The second term goes
to zero, as well. This is a direct consequence of Lebesgue’s dominated convergence theorem provided the stress 𝝀 is
square-integrable (which is true by construction of the stress operator 𝝈). Thus, qualitative convergence of assumed strain
methods in micromechanics is established.

To provide quantitative converge results, we follow the discussion in the literature114,115 and assume conditions on
the microstructure and the material behavior, s.t. natural higher regularity results hold for the displacement field u.
More precisely, let us assume that the cell Y is decomposed into a finite number of non-overlapping subdomains Ωa
(a = 1, … ,K), s.t. the stress operator 𝝈 is homogeneous as well as sufficiently smooth on each domain and the interface
I is sufficiently regular. Then, we assume that the solution u ∈ H1

#(Y ;R
d) has additional regularity in the sense that the

associated strain field ∇su is essentially bounded, that is, the finiteness of norm condition

||∇u||L∞(Y ) < ∞ (37)

holds true, and that the restriction of the displacement field u to each of the homogeneous domains Ωa has
square-integrable second-order (weak) derivatives,
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||u||2H2(Ωa)
≡ ||u||2L2(Ωa)

+ ||∇u||2L2(Ωa)
+ ||∇2u||2L2(Ωa)

< ∞, a = 1, … ,K. (38)

The higher regularity conditions (37) and (38) hold for heterogeneous linear elastic solids with sufficiently smooth inter-
faces,116 see Schneider114 for a discussion. For nonlinear solids, we are not aware of a suitable generalization, and we will
treat the conditions (37) and (38) as assumptions.

Suppose that the finite-element spaceh has the first-order approximation property, that is, there is a constant C s.t.
for every w ∈ H2(Y ;Rd), the estimate

inf
vh∈h

||∇sw − ∇svh||L2(Y ) ≤ C h||w||H2(Y ) (39)

holds. Then, the estimate

inf
vh∈h

||∇su − ∇svh||L2(Y ) ≤ C
√

h
(
||u||W1,∞(Y ) +

K
max
a=1

||u||H2(Ωa)

)
(40)

holds for any field u ∈ H1
#(Y ;R

d) satisfying the additional regularity assumptions (37) and (38) for a generic constant C.
This is readily seen by a smoothing argument involving a function 𝜙h which is zero on an h-neighborhood of the
interface I, see Schneider114 for details.

With this discussion at hand, we conclude for the first term in the estimate (34)

inf
𝜺h∈Wh

||∇su − 𝜺h|| ≤ C
√

h, (41)

for a generic constant C independent of h.
To handle the second term, we distinguish two cases. If the finite element Ye is fully contained in a homogeneous

domain Ωa, the Poincaré inequality implies

∫Ye

||𝝀 − 𝝀h||2 dx ≡
∫Ye

‖‖‖‖‖𝝀 − ⨍Ye

𝝀 dx
‖‖‖‖‖

2

dx ≤ C h2
∫Ye

||∇𝝀||2 dx (42)

with a constant independent of h in case of a quasi-uniform triangulation. Otherwise, the (trivial) estimate

∫Ye

||𝝀 − 𝝀h||2 dx ≤ C ||𝝀||2L∞hd
, (43)

applies. Thus, we obtain the estimate

||𝝀 − 𝝀h||2L2(Y ) =
nelm∑
e=1

||𝝀 − 𝝀h||2L2(Ye)

≤ C

( ∑
Ye∩I=∅

h2||∇𝝀||2L2(Ye)
+

∑
Ye∩I≠∅

hd||𝝀||2L∞
)
.

(44)

As the interface I is a codimension one surface in the cell Y , we have the count estimate

#
{

e = 1, … ,nelm(h)
||| Ye ∩ I ≠ ∅

}
≤ C h1−d

, (45)

which implies the bound

||𝝀 − 𝝀h||2L2(Y ) ≤ C h

( K∑
a=1

||∇𝝀||2L2(Ωa)
+ ||𝝀||2L∞

)
. (46)

All in all, we are led to the convergence behavior

||∇su − ∇suh − 𝜺̃h||L2 = O(
√

h). (47)
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Thus, the assumed strain discretization (25) converges with the same rate as the traditional Galerkin discretization70,71,115

with first-order accurate ansatz functions or the Moulinec–Suquet discretization.31,32,114

Fast convergence for the effective properties

‖‖‖𝜎eff(𝜺) − 𝜎eff
h (𝜺)

‖‖‖ = O(h) (48)

may be established as usual114,117,118 and under the assumptions stated in these works, where

𝜎

eff
h (𝜺) =

⨍Y
𝝈(x, 𝜺 + ∇su + 𝜺̃h) dx (49)

holds for the solution (u, 𝜺̃h) to the problem (33).

2.3 Laminate composite voxels as an assumed strain method

Up to this point, general assumed strain methods in computational micromechanics were analyzed. This section is
devoted to establishing the connection to the composite voxel method,86,87,92 more precisely laminate composite voxels.
Laminate materials90(§9) are special microstructures which are layered in a direction n, a unit vector in Rd. Due to the
translation invariance of such a laminate in directions orthogonal to the lamination direction n, both the kinematic com-
patibility and the equilibrium condition, which constitute partial differential equations, in general, reduce to ordinary
differential equations. This is the underlying reason why, for linear problems, analytic formulas for the effective properties
of laminates may be derived.90(§9) Also, for nonlinear and inelastic constitutive laws, the effective properties of laminate
materials may be computed with relative ease,91,92 again due to the intrinsic single dimensionality.

This fact has been used by Kabel and co-workers to study laminate composite voxels in the context of voxel-based
micromechanics. As illustrated in Figure 2 for a two-phase microstructure, whenever the analytic description of the
microstructure phases is available, there are non-homogeneous voxel elements, that is, elements which contain more
than a single phase of the microstructure. Kabel et al.87 proposed to furnish these composite voxels with the effective
properties of an equivalent laminate, that is, a microstructure layered in a direction which approximates the normal to
the interface between the materials and the appropriate cut volume fractions.

In its original form,87 the composite voxel methodology is part of material modeling, as the discrete versions of both
the kinematic compatibility and the equilibrium equation remain untouched. Rather, the constitutive law of composite
voxels is altered compared to a homogeneous voxel on either side of the interface. However, there is no inherent reason
for selecting the effective properties of an appropriate laminate as the surrogate material model for the composite voxel.
Indeed, there is no layering or periodicity of the “microstructure” within the voxel.

F I G U R E 2 Illustration of a two-phase material with smooth interface I on a background regular grid and magnification of a single
element.
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In this section, we discuss an alternative point of view leading to “laminate composite voxels.” Let Ye be a composite
voxel, as illustrated on the right hand side of Figure 2. Denote by

𝜙

± = vol
(

Y±
e
)
∕ vol(Ye) for Y±

e ≡ Ω± ∩ Ye, (50)

the volume fractions of the composite domains Ω± ∩ Ye ⊆ Ye and let ne ∈ Sd−1 be a unit vector representing an approxi-
mation of normal to the interface between the phases Ω± inside the voxel Ye. Denote by Ge the tensor fields

Ge ∶ Y → Sym(d)⊗R
d
, (51)

defined by

Ge(x) ⋅ a =
⎧⎪⎨⎪⎩

𝜙

−
e ne ⊗s a, x ∈ Ω+ ∩ Ye,

−𝜙+e ne ⊗s a, x ∈ Ω− ∩ Ye,

0, otherwise,

for x ∈ Y and a ∈ R
d
, (52)

where ⊗s denotes the symmetrized dyadic product. Before discussing the inherent properties let us mention that the
fields Ge are to be used as enhanced strains

𝜺̃h =
nelm∑
e=1

Ge ⋅ ae for arbitrary ae ∈ R
d (e = 1, … ,nelm), (53)

in the assumed strain method (33), together with element-wise constant Lagrange parameters

𝝀h =
nelm∑
e=1
𝝀e 𝜒e, (54)

see Equation (25). Please notice that we will tacitly assume Ge ≡ 0 and ae = 0 in homogeneous, that is, non-composite,
voxels.

The tensor field Ge(x) defined in Equation (52) is concentrated in the element Ye, that is, vanishes outside of this voxel.
Moreover, for a non-vanishing vector ae, the strain field Ge(x) ⋅ a is discontinuous across the interface I, mimicking the
strain discontinuity across a material discontinuity of the continuous solution to the field Equation (12). This discontinu-
ity also shows that Simo-Rifai’s first condition (26) is satisfied as long as a conforming, in particular continuous, ansatz
for the displacement field u is used. Indeed, the Equation (30)

∇suh = 𝜺̃h for uh ∈ h and 𝜺̃h ∈ ̃h, (55)

can only be satisfied in the trivial case, as restricted to the element Ye, the Equation (55) involves a continuous field on
the left-hand side and a discontinuous field on the right-hand side, unless ae = 0.

Simo-Rifai’s third condition (28) is satisfied by construction (54), whereas the second condition (27) is implied by the
voxel-wise vanishing mean value of the fields Ge, that is, as a consequence of the identity

⨍Ye

Ge ⋅ ae dx = 1
vol(Ye) ∫Y+

e

𝜙

−
e ne ⊗s ae dx − 1

vol(Ye) ∫Y−
e

𝜙

+
e ne ⊗s ae dx

= 𝜙+e 𝜙−e ne ⊗s ae − 𝜙−e 𝜙+e ne ⊗s ae

= 0.

(56)

The latter argument also reveals the reason for choosing the prefactors 𝜙±e with opposite signs in the definition (52).
After defining the enhanced strain space (53), we evaluate the equation governing the mechanical behavior of the

assumed strain method. The equilibrium Equation (33)

⨍Y
𝝈(⋅, 𝜺 + ∇suh + 𝜺̃h) ∶ (∇swh + 𝜸̃h) dx = 0 for all (wh, 𝜸h) ∈ h × ̃h, (57)
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specializes for the case (53) at hand with wh = 0 as well as 𝜸̃h = Ge ⋅ be for arbitrary be ∈ Rd to the condition

∫Ye

𝝈(⋅, 𝜺 + ∇suh + Ge ⋅ ae) ∶ Ge ⋅ be dx = 0, (58)

where we used that the field Ge is supported on the element Ye. Decomposing the latter equation into the Ω±-parts, we
obtain the equation

0 =
∫Ye

𝝈(⋅, 𝜺 + ∇suh + Ge ⋅ ae) ∶ Ge ⋅ be dx

=
∫Y+

e

𝝈
+(𝜺 + ∇suh + 𝜙−e ne ⊗s ae) ∶ 𝜙−e ne ⊗s be dx

−
∫Y−

e

𝝈
−(𝜺 + ∇suh − 𝜙+e ne ⊗s ae) ∶ 𝜙+e ne ⊗s be dx

=
[
𝜙

−
e ne ⋅

∫Y+
e

𝝈
+(𝜺 + ∇suh + 𝜙−e ne ⊗s ae) dx

− 𝜙

+
e ne ⋅

∫Y−
e

𝝈
−(𝜺 + ∇suh − 𝜙+e ne ⊗s ae)dx

]
⋅ be.

(59)

As the vector be ∈ Rd is arbitrary, we are led to the condition

𝜙

−
e 𝜙

+
e ne ⋅ 𝝈+e = 𝜙+e 𝜙−e ne ⋅ 𝝈−e (60)

for the phase-wise averaged element stresses

𝝈
+
e ≡
⨍Y+

e

𝝈
+(𝜺 + ∇suh + 𝜙−e ne ⊗s ae) dx and 𝝈

−
e ≡
⨍Y−

e

𝝈
−(𝜺 + ∇suh − 𝜙+e ne ⊗s ae) dx. (61)

Eliminating the common prefactor we are thus led to the condition

ne ⋅ 𝝈+e = ne ⋅ 𝝈−e , (62)

equivalent to the assumed part of the equilibrium equation (33) and which encodes the continuity of the (averaged)
normal stresses inside the voxel Ye. Thus, the kinematic assumption (53) of a strain-field jump along the normal direction
ne, accounting for the zero-average condition (31), directly leads to the laminate-type problem (62).

A convenient computational resolution of the problem (33) proceeds via a Schur complement approach, as suggested
by Simo-Rifai.108 First, the Equation (62) is solved for the vector ae in each element, treating the compatible strain ∇suh
as a parameter. Subsequently, the identified vector ae is regarded as a function of the compatible strain∇suh and inserted
into the original problem (33), leading to a statically condensed problem for the displacement field uh ∈ h. The latter is
then solved by standard means, in our context by FFT-based solvers.39(§3)

3 COMPUTATIONAL AND IMPLEMENTATION ASPECTS

3.1 Use of level-set and signed distance functions

Classically, the composite voxel method86,87 uses a much finer voxel background mesh to compute the quantities required
for the method, that is, the cut volume fractions and the normal. The original works87,99 also considered the option where
the geometry is given by computer-aided design (CAD) data and established an appropriate workflow. However, the CAD
strategy turned out to be unfavorable. Indeed, the subvoxel-based strategy has a natural link with microstructures given
as (high-fidelity) voxel data, for example, as a result of micro-computed tomography scans,18,19 where extracting explicit
CAD interfaces is non-trivial. However, we saw in Section 1.2 that the strategy introduced by Merkert et al.99 to estimate
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the interface normal based on connecting the center of mass of one of the phases within the voxel and the center of the
voxel does not converge upon mesh refinement. Put differently, this method comes with a systematic error that is not
easily eliminated, compare Keshav et al.95

The work at hand exploits an alternative approach to extract the data necessary for the composite voxel method which,
at the same time, yields accurate volume fraction as well as normal data and is naturally compatible to digital images. We
consider the case that the microstructure Y is decomposed into two phases Y±. More phases can be handled similarly, and
we restrict to two-phase media essentially for the purpose of exposition. We suppose that a (sufficiently regular) level-set
function96

L ∶ Y → R, x → L(x), (63)

is given, s.t. the two phases Y− and Y+ arise as the sub- and superlevel of the level-set function L at level zero

Y− = {x ∈ Y ||| L(x) < 0} and Y+ = {x ∈ Y ||| L(x) > 0}, (64)

whereas the interface I between the phases is encoded as the zero iso-contour of the level-set function L

I = {x ∈ Y | L(x) = 0}. (65)

Many interesting properties of the phases Y± and the interface I can be readily computed from the level-set function (63).
However, the description (64) is highly non-unique and the computational treatment may suffer from an inauspicious
choice of the level-set function L. Therefore, it is convenient to assume that the level-set function is actually normalized
appropriately. More precisely, we consider level-set functions which arise as signed distance functions of the interface96

L(x) =

⎧⎪⎪⎨⎪⎪⎩

min
y∈I

distY (x, y), x ∈ Y+
,

−min
y∈I

distY (x, y), x ∈ Y−
,

0, otherwise,

x ∈ Y , (66)

where distY denotes the periodic distance between two points on the rectangular cell Y (5).
If the interface I is piecewise smooth, the signed distance function is differentiable almost everywhere, and its gradient

satisfies the eikonal equation

||∇L(x)|| = 1 for almost every x ∈ Y . (67)

If the interface is twice continuously differentiable, the distance function distY is continuously differentiable close to the
interface I119(Lemma 14.16) and satisfies the equation

∇L(x) = −n(x) on the interface x ∈ I, (68)

where n ∶ I → Rd denotes the out-ward pointing unit normal. In particular, the signed distance function (66) may be
regarded as a function whose gradient is normalized and serves as a differentiable extension of the unit-normal vector
field on the interface.

With using the assumed strain method discussed in Sections 2.2 and 2.3 in mind, we are actually interested in an
approximation of the continuous level-set function (66) in terms of Lagrangian finite-element trilinear shape functions
{NA}

ne
nodes

A=1 which are also used to represent the displacement field uh, that is, a level-set function of the form

Lh(x) =
ne

nodes∑
A=1

NA(x) LA. (69)

Such a function is completely determined by the values {LA} at the nodes {xA}. Therefore, in case the interface I in
Equation (65) is known analytically, one may define the discretized level-set function (69) by point-wise evaluation
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LA ≡ L(xA). (70)

As these values need to be computed only once in preprocessing, the cost of evaluating the level-set function (66) is less
important. For the microstructures studied in this article, see Section 4, the interpolation procedure (70) is feasible. More
precisely, we consider rotated laminates and inclusion-matrix composites with spherical and cylindrical inclusions. In
these cases, the signed distance to the interfaces may be computed readily.

In case a non-normalized level-set function (63) is given on a grid (69), for example, based on filtered intensity val-
ues of a 𝜇-CT scan, or only the interface is given, an approximate signed-distance function (66) may be computed via
redistancing, where fast algorithms are available.120–122

Last but not least let us discuss how to store composite voxel data. There is a simple method to detect a compos-
ite voxel Ye based on the eight level-set values LA at the eight adjacent nodes. Indeed, in case the signs of these eight
values are either all positive or all negative, the voxel belongs entirely to phase Y+ or Y−, respectively. Otherwise,
the voxel is a composite voxel (where we include the tautological cases where one level-set value is identically zero,
as well). As the composite voxel method (62) enhances composite voxels only, data associated to pure voxels can be
discarded.

There are two practical ways to proceed. Either the eight level-set values of the adjacent nodes are stored for each
composite voxel, for example, in an array, or the appropriate processed data like the volume fraction and the normal is
stored for each voxel. Both strategies have their merits and shortcomings, whereas the latter is less memory-demanding,
it is also less flexible, as only derived quantities are stored.

The remainder of this section is devoted to describing techniques for extracting a normal vector ne and the volume
fractions of the cut volumes Y±

e for each composite voxel Ye.

3.2 Extracting normal data and the best-approximating linear interface

In this section, we report several numerical strategies to calculate a unit normal for a fixed composite voxel to be used
in the composite voxel method (62). These strategies come with different computational efforts, and their merits and
limitations will be closer investigated in Section 4.

Averaging

The first and most simple strategy uses the fact that the gradient of the signed distance function L is normalized to unity

||∇L(x)|| = 1 for almost every x ∈ Y , (71)

see Equation (67), and extends the inward-pointing unit normal

∇L(x) = −n(x) on the interface x ∈ I, (72)

see Equation (68), provided the interface I is sufficiently smooth. As the discrete level-set function (69)

Lh(x) =
ne

nodes∑
A=1

NA(x) LA, (73)

serves as an approximation to the actual signed-distance function L, a simple approximation reads

ne ≡
ge||ge|| with the average ge =

⨍Ye

∇Lh(x) dx. (74)

As we deal with regular voxel grids and trilinear shape functions, the average gradient ge may also be computed by
evaluating the gradient ∇Lh at the center xe

c of the voxel Ye.
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Regression

Suppose that, for a fixed composite voxel, the level-set description Lh is given in terms of trilinear ansatz functions and the
eight nodal values {LA} of the adjacent nodes. Then, the interface I within the voxel is nonlinear, in general. In particular,
there is no unique and “natural” normal vector associated to the interface. Despite the nonlinearity, when restricted to
the 12 edges of the voxel, the level-set function Lh is linear. In particular, computing the roots of the level-set function Lh
on the 12 edges is performed with ease.

Excluding pathological cases, there can be between three and six intersection points x1, x2, … , xn, in general, see
Figure 3 for an illustration. Three intersection points determine the values of the linear level-set function

Llin(x) = n ⋅ (x − x0) (75)

with x0 ∈ Ye and a unit normal n uniquely. For more intersection points, we wish to determine the best-fitting linear
level-set function (75) by regression, that is, by minimizing the quadratic least-squares fit objective function

F(x0,n) =
1
2

n∑
i=1

|Llin(xi)|2 ≡ 1
2

n∑
i=1

|n ⋅ (x − x0)|2. (76)

Differentiating the function F w.r.t. x0 ∈ Rd yields

0
!
= 𝜕F
𝜕x0
≡ −n ⊗ n

( n∑
i=1

xi − n x0

)
, (77)

that is, we may choose the centroid

x = 1
n

n∑
i=1

xi (78)

of the point cloud {xi} as the point x0. With this insight at hand, we are led to minimizing the objective function (76)

Frestr(n) =
1
2

n∑
i=1

|n ⋅ (xi − x)|2, (79)

to be minimized over the set of vectors n with unit norm. Rewriting the function (79) in tensorial form

Frestr(n) =
1
2

n ⋅M ⋅ n (80)

with the covariance matrix

M =
n∑

i=1
(xi − x)⊗ (xi − x) (81)

(A) (B) (C) (D) (E)

F I G U R E 3 Possible cases of a linear interface intersection a cube up to rotation and reflection. (A) Case 1. (B) Case 2. (C) Case 3. (D)
Case 4. (E) Case 5.
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enables us to solve the problem (79) with ease. Indeed, by the expression (80), the minimizing direction n corresponds to
the smallest eigenvalue of the symmetric and positive (semi-)definite second-order tensor M.

To sum up, to identify the coefficients of the linear level-set function (75), we first compute the intersection points
of the given trilinear level-set function Lh on the edges, calculate the centroid (78) as well as the covariance matrix (81),
then compute an eigenvalue decomposition

M = U𝚲UT (82)

of the latter. The unit-normal vector ne of the composite voxel then arises as the direction ui corresponding to the smallest
eigenvalue 𝜆i. It might be necessary to change the sign of the normal to keep the sub- and super-levelsets of the function
Llin consistent with the trilinear function Lh.

Minimax

The previous method was based on the identified intersection points x1, x2, … , xn with the voxel edges and used a plane
regression for identifying an appropriate linear interface. For general intersection points, none of these intersection points
will actually lie exactly on the identified plane. In particular, denoting the intersection points of the linear interface with
the edges by {xlin

i }, the sets

{x1, x2, … , xn} and xlin
1 , x

lin
2 , … , xlin

nlin , (83)

are disjoint, in general. In their analysis of an immersed finite element method, Guo and Lin109 faced a similar problem
and introduced a different strategy. More precisely, they noticed that three points in general position determine a plane
uniquely. Thus, they considered selecting three of the intersection points {x1, x2, … , xn}, and choosing the corresponding
linear interface Ilin

e . Based on the three chosen points, a linear signed-distance function with appropriate unit-normal ne
is readily identified.

Guo and Lin109 were interested in mathematical analysis and sought to select the three intersection points judi-
ciously to avoid mesh intersections with bad interior angles. Following ideas by Chen,123 they selected those three
intersection points whose maximum internal angle in the determined triangle is the smallest. We call this strategy
minimax.

The differences and similarities of the introduced strategies are illustrated for a cylindrical inclusion oriented along
the space diagonal (1, 1, 1)∕

√
3 in Figure 4. Notice that both regression and minimax are able to retain the planar inter-

face at the faces of the cylinder, in contrast to averaging. Both averaging and regression lead to more or less symmetric
configurations w.r.t. the symmetry axes. In contrast, the results of minimax look more like “scales” which protrude from
the surface.

(A) (B) (C)

F I G U R E 4 Illustration of the normal-estimation methods introduced in Section 3.2 for a cylinder. (A) Averaging. (B) Regression. (C)
Minimax.



LENDVAI and SCHNEIDER 17 of 34

3.3 Computing cut volume fractions

For the composite voxel method (62) to work it is necessary to compute the cut volume fractions (50)

𝜙

±
e = vol

(
Y±

e
)
∕ vol(Ye) for Y±

e ≡ Ω± ∩ Ye. (84)

Restricting to spatial dimension d = 3 we assume the composite voxel to coincide with the unit cube

Ye ≡ [0, 1]3, (85)

s.t. we need not worry about the prefactor in their definition (84). As we assume that the voxel Ye is fully occupied by the
materials Y±

e , that is, the identity

𝜙

+
e + 𝜙−e = 1 (86)

holds, it actually suffices to compute either 𝜙+e or 𝜙−e . For a given level-set function Lh, it is possible to approximate the
volume fraction

𝜙

−
e = vol

({
x ∈ Ye

||| Le(x) < 0
})

(87)

via quadrature on a subvoxel grid m ×m ×m

𝜙

−
e ≈

1
m3 #

({
x =

(
i1 + 1∕2

m
,

i2 + 1∕2
m

,

i3 + 1∕2
m

) ||| Le(x) < 0, ia ∈ {0, 1, … ,m − 1}
})

(88)

via the counting of elements symbol #, see Merkert et al.99 The strategy (88) is straightforward to implement and robust.
Moreover, it converges to the correct volume fraction with the rate 1∕M. In particular, reaching high fidelity in the cal-
culated volume fractions is not computationally feasible with this approach. Indeed, to reach an accuracy of 10−5, on the
order of 1015 operations need to be carried out.

We consider an alternative based on the linear approximation of the interface introduced in the previous Section 3.2.
In this case, the cut volumes Y±

e form convex polyhedra, that is, the finite intersection of half-spaces, see Figure 5A.
As the volume fractions 𝜙±e sum to unity, it suffices to compute the volume of one of the two polyhedra Y±

e . We choose
the one with fewer corners, see Figure 5A, where the selected polyhedron is framed in red.

There is a number of algorithms for computing the volume of general polyhedra, which is generally considered to be
a hard problem.124 However, for the problem at hand, the number of possible polyhedron topologies is rather limited,
see Figure 3, and an efficient treatment is possible. Of special concern is keeping numerical errors small.125,126 For this
purpose, we use the numerically accurate and efficient strategy introduced by Mirtich110 which concerns the integration
of arbitrary polynomials over general polyhedra. The basic idea is to reduce volume integrals to surface integrals by the
divergence theorem. Subsequently, each surface integral may be reduced to a series of line integrals by Stokes’ theorem.
Evaluating the resulting line integrals with polynomial integrands is performed analytically.

To add a little more detail, we consider the polygon ΩP inside the unit cube and introduce the vector field

F ≡ (x, 0, 0) (89)

in the standard Euclidean frame with coordinates (x, y, z) which enables us to invoke the divergence theorem to write

∫ΩP

dx =
∫ΩP

div F dx =
∫
𝜕ΩP

F ⋅ n dA ≡
∫
𝜕ΩP

nx x dA, (90)

where n denotes the outward-pointing unit normal on the polyhedron boundary 𝜕ΩP. The latter boundary is decomposed
of planar faces  with constant normals n, that is, we have the identity

∫


nx x dA = nx
∫


x dA. (91)
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The outlined strategy reduces the task of computing the volume of the polyhedron to calculating the integral of the
x-coordinate over the polygons  constituting the boundary of the polyhedron ΩP.

Mirtich proposed to actually use the dimension-reduction strategy once again. To do so, one first needs to rewrite the
surface integral as a two-dimensional integral in parameterized form

∫


x dA =
∫Π
𝜓1(u, v) ‖𝜕u𝝍 × 𝜕u𝝍‖ dudv, (92)

on a suitable parametric domainΠ and a parametrization𝝍 ∶ Π→ R3. In case the projection along the z-axis has positive
area, one may choose the projection

Π =
{
(x, y) ∈ [0, 1]2 | there is some z ∈ R with (x, y, z) ∈ 

}
(93)

for the linear interface described by the equation

x ⋅ n ≡ x nx + y ny + z nz = w with a suitable level w ∈ R, (94)

and the parametrization

𝝍 ∶ Π→  , (u, v) →
(

u, v,
w − nx u − ny v

nz

)
, (95)

see Figure 5B. In this case, the surface integral (92) becomes

∫


x dA = 1
|nz| ∫Π u dudv, (96)

where we used the transformation

‖𝜕u𝝍 × 𝜕u𝝍‖2 =
(

nx

nz

)2

+
(ny

nz

)2

+ 1 =
n2

x + n2
y + n2

z

n2
z

= 1
n2

z
, (97)

(A) (B)

F I G U R E 5 Geometrical considerations for Mirtich’s formulae.110 (A) Schematic of the polyhedron whose volume is to be determined.
(B) Illustration of the projection process required to represent the interface as a graph.
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a consequence of the unit length of the face normal-vector. Mirtich proposed to rewrite the integral (96) by Green’s
theorem

∫


x dA = 1
|nz| ∮𝜕Π

u2

2
dv, (98)

which may be further decomposed into individual linear segments.
Some care has to be taken when using the representation (96) for numerical computations, as the z-component of the

normal vector may become arbitrarily small. In these cases, Mirtich110 suggested to use projections along either the y- or
the z-axis to retain numerical stability, leading to corresponding equivalents of the formula (98). More precisely, the axis
to project onto is selected based on the norm of the normal component which is largest, see Figure 5B.

4 NUMERICAL INVESTIGATIONS

4.1 Setup

We implemented the level-set based approach to composite voxel methods, as discussed in Section 3, into an existing
in-house FFT-based micromechanics solver. The solver was written in Python with Cython extensions and an OpenMP
parallelization. Cython is used for performance reasons.127

We used Willot’s discretization,60 which corresponds to trilinear finite elements with one-point quadrature,70 and the
linear conjugate gradient method42 to resolve the balance of linear momentum to a tolerance of 10−5 with the natural
convergence criterion discussed in Schneider.39 We implemented a Newton method to determine the optimal level-set
cutoff value to reach to analytically known targeted volume fractions of each phase to an accuracy of 10−5. The simula-
tions were performed on a desktop computer with 64 GB RAM and 20 cores with 3.6 GHz each except for the reference
fiber computation where a workstation featuring two AMD EPYC 7642 with 48 physical cores each was put to use. The
employed isotropic and linear elastic material parameters are listed in Table 1.

4.2 Laminate structure

To study the influence of the different strategies introduced in Sections 3.2 and 3.3 for computing the normals and the
volume fractions in composite voxels we examine a laminate material.90(§9) More precisely, we consider a laminate mate-
rial which is exactly represented on a periodic cell Y but whose lamination direction does not coincide with the axes of
periodicity of the cell Y .

We use the lamination direction n ≡ (1∕
√

10,−3∕
√

10, 0) and a period 16
√

10𝜇m. Then, any such laminate may be
exactly represented on a cubic volume Y = [0, 16]3 (𝜇m)3. For the study at hand, we chose equal volume fractions.

As the level-set function of a laminate is linear in each voxel, all the three strategies presented in Section 3.2 recover
the laminate interface exactly, as shown in Figure 6A. Also, the volume fractions are computed exactly by the Mirtich
formulae presented in Section 3.3, up to numerical precision.

We start by investigating the quality of the normal estimated by the subvoxel-based formula (4), that is, where the
normal nm

e is given by the direction connecting the centroid of one phase with the centroid of the voxel. For each composite
voxel Ye, we consider the following error measure

errm
e = ‖ne ⊗ ne − nm

e ⊗ nm
e ‖, (99)

which quantifies the deviation between the exact normal vector ne and the subvoxel approximation nm
e with m3 subvoxels.

T A B L E 1 Material parameters considered for the computational experiments.128

Fibers E = 72 GPa 𝜈 = 0.22

Matrix E = 2.1 GPa 𝜈 = 0.3
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(A) (B) (C) (D)

F I G U R E 6 Two-phase laminate with normal n ≡ (1∕
√

10,−3∕
√

10, 0), period 16
√

10 𝜇m and equal volume fractions 𝜙1 = 𝜙2 = 50%,
cut to a periodic volume with (16 𝜇m)3 and 163 voxels. (A) Exact geometry. (B) 23 subvoxels. (C) 43 subvoxels. (D) 83 subvoxels.

The quantity (99) measures the Frobenius norm of the difference of the orthogonal projectors onto the
one-dimensional spaces defined by the respective normal vectors. Elementary algebraic transformations lead to the
identity

errm
e =

√
2 | sin 𝜃m| (100)

in terms of the angle 𝜃m between the unit vectors ne and nm
e , implicitly defined via

cos 𝜃m = ne ⋅ nm
e . (101)

Recent work95 introduced an improved subvoxel technique. More precisely, to reduce the inaccuracies inherent to the
original formulation (4), Keshav et al.95 introduced a weighted least-squares regression at a subvoxel scale. In detail, they
compute the Laplacian of the discrete subvoxel image to determine the interface subvoxels. Then, for each interface sub-
voxel center, a difference vector is computed to the voxel center, similar to the subvoxel-based formula (4). The normal of
the voxel is then obtained by a least-squares regression of these interface subvoxels with the absolute values of the Lapla-
cian as weights. We implemented their approach129 and refer to this strategy as composite boxels (ComBo) throughout
this subsection.

For a resolution with 163 voxels, the distribution of the error is shown in Figure 7A. For 43 subvoxels, the normals
are systematically false with a relative error around 40%. This inaccuracy is also reflected when inspecting the linear
interfaces in each composite voxel, see Figure 6B for an illustration. To create the images, we set up a linear level-set
function in each composite voxel whose gradient matches the calculated normal nm

e and whose cut volume fractions equal
the quadrature-based estimates (88). Notice that such a voxel-based level-set function may lead to discontinuities of the
interface.

Increasing the subvoxel count to 83 reduces the error to slightly more than 30% on average and decreases the standard
deviation significantly. This improvement is also reflected in the geometry, see Figure 6B. Higher subvoxel counts further
decrease the error. However, the error does not go to zero as the number of subvoxels goes to infinity. In view of the
example discussed in Section 1.2, this observation does not come as a surprise. For ComBo, a similar behavior is observed.
The mean absolute error of the estimated normals and ComBo is approximately 15% lower for all considered subvoxel
counts. The standard deviation remains at a similar level to that of the subvoxel approach. On the visual side, there is not
much difference between 43 and 83 subvoxels, see Figure 6C,D, respectively. Notice, however that the lack of convergence
of the estimated normals is also reflected in the visualizations, that is, via the lack of continuity of the interface.

The statistics of the estimated normals is only computed based on the composite voxels, that is, the plain voxels do
not enter into the consideration. Moreover, the fraction of composite voxels among all voxels gets smaller upon grid
refinement, that is, their influence on the computed effective properties decreases, as well. Therefore, we would like to
assess the influence of these inaccurate normals. For this purpose, we consider the effective elastic properties to be a
reasonable quantity of interest. More precisely, we furnish the two phases of the laminate with the material parameters
of glass and polyamide, see Table 1, and record the error in the normal stress in x-direction in response to a strain loading
𝜺 = ex ⊗ ex in Figure 7B. Here, the analytic solution90(§9) serves as the reference.

We notice that the effective stress converges linearly for all considered scenarios, supporting the result (48). Using no
composite voxels at all—referred to as none in the legend—leads to an error above 2% even in the highest resolution. For
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(A) (B)

F I G U R E 7 Error in the normal vector and the normal stress in x-direction for the laminate shown in Figure 6A. (A) Statistics of the
error (99) in the estimated normal versus number of subvoxels for 163 voxels. (B) Relative error in effective normal stress in x-direction versus
resolution.

exact normal and volume-fraction data, shown in red, the relative error is slightly larger than 2% for N = 16 voxels per
edge. Less than 1% error is reached for N = 64 voxels. The subvoxel-based composite voxels lead to a consistently larger
relative error. For 43 subvoxels, the relative error is about 9% on the coarsest resolution and below 0.6% on the finest
resolution. Increasing the subvoxel count consistently leads to a more accurate solution. However, the difference between
83 and 163 subvoxels is rather small. Notice that an error below 1% is reached for N = 128 voxels per edge. An increase
in the subvoxel count to 323 doesn’t lead to a significantly better solution. For this study, the composite voxels based on
exact normal data are about as accurate as subvoxel-based composite voxels on the double resolution per edge, that is, on
the eightfold total voxel count. The relative error of the ComBo approach is generally in between the subvoxel method
and the exact normal method. For coarser resolutions, the improvement to the subvoxel method is rather small. However,
ComBo achieves the same level of accuracy as the exact normal method for finer resolution. At the highest resolution,
the relative errors are indistinguishable. A smaller improvement is also noticed for increasing subvoxel count compared
to using the subvoxel method.

4.3 Hashin’s coated sphere

We continue our investigations on the performance of the approximation techniques for both the normal vector and the
volume fractions within composite voxels introduced in Section 3. We again consider a scenario with an available analytic
solution for the effective properties. However, in case of Hashin’s neutral inclusion,130 the interfaces are non-planar.
Hashin’s coated sphere consists of three phases, a spherical core

Ω1 = {x ∈ Y | distY (x, xc) < r1}, (102)

an annular region

Ω2 = {x ∈ Y | r1 < distY (x, xc) < r2}, (103)
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and the remaining “matrix”

Ω3 = {x ∈ Y | distY (x, xc) > r2} (104)

with the geometric center xc of the microstructure Y = [0,L]3 and two radii r1 < r2 < L. Here, distY denotes the periodic
distance on the cell Y . The microstructure is illustrated in Figure 8.

Endowing each of these three phases with isotropic elastic properties, Hashin130 demonstrated that under macroscopic
compression it is possible to select the elastic parameters of the core Ω1 and the shell Ω2 in such a way that the effective
compression modulus of the microstructure coincides with the compression modulus of the matrix phase Ω3. The shear
moduli 𝜇1 and 𝜇3 of both the core and the matrix do not enter into these considerations. For the investigation at hand,
we fix the compression modulus K3 ≡ Keff of the matrix and the ratio 𝜇2 = 3 K2∕5 of the intermediate region. There is
an interconnection130 between the compression moduli K1 and K2, that is,

K1 = K2 +
Keff − K2

𝜙1 − 𝜙2
Keff−K2

K2+
4
3
𝜇2

, (105)

where 𝜙1 = (r1∕r2)3 and 𝜙2 = 1 − 𝜙1.
We subsequently assume that the compression modulus K1 exceeds K3 ≡ Keff. Then, the parameter K2 is smaller than

K3 ≡ Keff. For increasing K1, K2 decreases. As K1 →∞, K2 remains bounded away from zero. Thus, in the limit K1 →∞,
we are faced with a rigid inclusion with special coating inside the matrix. Then, we may consider different material
contrasts

𝜅 = K1

K2
, (106)

in the compression modulus.
For the study at hand, We use the radii

r1 =
𝜋 L
16

and r2 =
7 e L

64
, (107)

where e =
∑∞

k=0
1
k!

is Euler’s number. The resulting volume fractions 𝜙1 and 𝜙2 are irrational, for example, 𝜙1 =
(4 𝜋∕(7 e))3, avoiding pathological scenarios where the interfaces intersect the nodes frequently.

F I G U R E 8 Schematic cut of Hashin’ coated sphere.
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We investigated the performance of different precomputing techniques, as introduced in Section 3, for the composite
voxel method for Hashin’s coated sphere.

The results for varying resolution and material contrast (106) are recorded in Figure 9. For a comparatively small
material contrast 𝜅 = 10, shown in Figure 9A, we observe that using no composite voxels at all—referred to as none in the
legend—leads to a linear convergence of the effective compression modulus. Moreover, even for the coarsest resolution,
the relative error is well below 1%. Having established this setup devoid of composite voxels as our point of reference,
we move on to discuss the different preprocessing techniques available for composite voxels. We start with the classical
subvoxel-based strategy for estimating the normal (4) and the volume fraction (88). We use m = 4 subvoxels in each
of the three coordinate directions as it represents a convenient trade-off between accuracy and computational speed in
preprocessing. We notice that using this type of composite voxels consistently improves upon using no composite voxels
at all. For the finer resolutions starting at 643, the gain in accuracy is between a quarter and half an order of accuracy
compared to using no composite voxels at all.

Taking a look at the three strategies introduced in Section 3.2, we observe that they all lead to a comparable perfor-
mance, except for the coarsest resolution 163 considered. At this coarsest resolution, the averaging strategy (74) performs
worst, that is, the resulting error exceeds its subvoxel-based pendant. The two other strategies regression (79) and mini-
max, see Figure 4C, lead to a slightly lower error on the coarsest resolution. For higher resolution, using each of the three
strategies averaging, regression or minimax consistently improves upon the subvoxel-based composite voxels. For some
resolutions, like 643 voxels, the improvement is small, but for others, like 1283 voxels, half an order of magnitude can be
gained in terms of accuracy. All in all, compared to using no composite voxels at all, these composite voxel strategies lead
to an improvement between a half and a full order of magnitude. Thus, the novel composite voxel strategies are able to
improve upon the subvoxel-based composite voxels. Indeed, the latter strategy may lead to a seemingly unreasonable lack
of improvement for some resolutions, like at 323 voxels, which are probably caused by inaccurately computed interface
normals.

Taking a look at the higher contrast 𝜅 = 100, shown in Figure 9B, these observations are essentially confirmed. How-
ever, there are small differences. For a start the total error level is about half an order of magnitude larger than for a
contrast of 10. Moreover, at the coarsest resolution, we observe that using no composite voxels at all (none) is better than
using subvoxel-based composite voxels. Using the regression and minimax strategies turns out to be favorable and the
biggest improvement is provided by the averaging strategy.

Perhaps more interesting is the case with a contrast of 1000, shown in Figure 9C. We observe that using the
subvoxel-based estimates for the volume fractions and the normal within the composite voxels does not lead to an
improvement of the error compared to using no composite voxels at all. Similar observations were reported previously.87

In these works, the lack of performance of laminate-based composite voxels were attributed to the possible degeneracy
of laminates for infinite material contrast.

(A) (B) (C)

F I G U R E 9 Relative error of the computed effective bulk modulus for Hashin’s coated sphere and different contrasts (106).
(A) Contrast 10. (B) Contrast 100. (C) Contrast 1000.
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In the work at hand, we observe that the failure to improve upon using only plain voxels is more likely rooted in the
use of incorrect normal data. Indeed, any of the three introduced and more advanced normal-estimation techniques, see
Section 3, leads to an improvement in the relative compression modulus compared to using no composite voxels.

To sum up, the investigations on Hashin’s coated sphere, see Figure 8, revealed that using laminate-based composite
voxels with either of the novel normal-estimation techniques provided in Section 3 improves the quality of the computed
effective properties throughout the entire considered range of contrasts and resolutions. Moreover, some unreasonable
performance lows of the subvoxel-based composite voxels could be removed which hints at the influence of incorrectly
estimated normal data.

4.4 Fiber reinforced composite

Our final computational example is concerned with a short-fiber reinforced composite microstructure. More precisely,
we consider fibers with a diameter of 10𝜇m and a fiber length of 200𝜇m, that is, an aspect ratio of 20, reinforcing a matrix
at 20% volume fraction. We generated a periodic fiber microstructure with the SAM algorithm131 in a cubic unit cell with
256𝜇m edge length and a fiber orientation described by the second-order fiber-orientation tensor

A = diag(0.6, 0.2, 0.2) (108)

w.r.t. the coordinate system of the unit cell, employing the exact closure.132,133 Thus, the fiber orientation is transversely
isotropic w.r.t. the e1-axis, and the majority of the reinforcing fibers is pointing in this direction. We set the minimum
inter-fiber distance to 4.5 𝜇m to avoid triple composite voxels, that is, more than two fibers intersecting a voxel, on the
coarsest considered resolution of 643 voxels. The generated microstructure comprises 213 fibers and is shown in Figure 10
in all three coordinate planes. The polyamide matrix and the E-glass fibers were furnished with the material parameters
listed in Table 1.

The results of the different composite voxel strategies are shown in Figure 11 and compared to using only plain, that
is, no composite, voxels. As no analytical solution for the effective properties is available for this microstructure, we use
a high-fidelity computation on 10243 voxels with regressed composite voxels as our reference when computing relative
errors. Taking a look at the relative errors for the full stiffness tensor, see Figure 11A, where we use the Frobenius norm
of the Mandel representation, we observe that all considered discretizations converge linearly, that is, support the result
(48). There is a clear ordering between the composite voxel strategies. Averaging performs worst, and the subvoxel strat-
egy (with 43 subvoxels) is only slightly better. The two other strategies for estimating the normal, regression and minimax,
are close to each other and turn out to be consistently better than their competitors. The difference is largest at the coars-
est resolution, 643, at about half an order of magnitude, and shrinks to about a quarter order of magnitude for the finest
considered discretization at 5123. Interestingly, the averaging and subvoxel strategies perform worse than the strategy

(A) (B) (C)

F I G U R E 10 Different views on the generated short-fiber microstructure resolved by 5123 voxels. (A) x-direction. (B) y-direction.
(C) z-direction.
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(A) (B) (C)

F I G U R E 11 Relative errors of computed stress tensor and stresses in principal fiber direction and transverse to it for the short-fiber
microstructure shown in Figure 10. (A) Effective stiffness tensor. (B) Stress in fiber direction. (C) Stress in transverse direction.

avoiding composite voxels at all for the two coarsest discretizations considered. Supposedly, this is a consequence of the
coarse resolution of the fibers. Still, the question arises why averaging and subvoxel suffer from such a bad performance
for the coarse resolution in this scenario, whereas the other two strategies, regression and minimax, appear to work well,
that is, they consistently outperform using no composite voxels even for a coarse resolution. In contrast to the microstruc-
tures considered in this computational examples section, the discontinuous fibers considered for the example at hand
are cylindrical and naturally come with a signed distance function which has a kink at the rims of the cylinders’ ends.
In particular, the signed distance function is not continuously differentiable, and the interpolated level-set function may
not serve as an appropriate surrogate for the continuous level set function when quadrature-based estimates for the nor-
mal vector (4) are employed. The strategies regression and minimax, on the other hand, are based on linear interpolation
along the voxel edges of exact values of the signed distance function evaluated on the voxel corners and appear not to
suffer from the same handicaps.

These differences mostly manifest for the two coarsest considered discretizations. At 2563 voxels, all considered dis-
cretization scenarios match closely. Such a resolution is also required to ensure a relative error below 1%. For the 5123

example, all composite voxel strategies outperform using no composite voxels.
We investigated the full stiffness matrix first because it serves as the primary quantity of interest to engineering practice

when considering the effective elastic properties of such short-fiber composites. However, as the stiffness in different
directions may differ strongly, such a combined measure does not permit to distinguish the approximation quality in the
various directions. For instance, one expects the stiffness in the e1-direction to be higher than in the transverse directions.
Depending on the context, it may be of interest to assess the quality of the approximation in these transverse directions,
as well.

We start by investigating the relative error in the e1-direction, see Figure 11B, where the majority of fibers is
oriented. We measure the error of the entire effective stress tensor, again in the Euclidean norm of the Mandel repre-
sentation. The performance of averaging remains suboptimal. More precisely, the errors for both averaging and none
almost exactly match the full-stiffness case in Figure 11A, except for an outlier of none at the 5123 resolution, where
an unusually small relative error is encountered. This apparent advantage of the subvoxel strategies probably comes
from the increased importance of the volume fractions for these scenarios. Indeed, for a unidirectional continuous fiber
composite, the Voigt average134 of the Young’s moduli of fiber and matrix serves as a good estimate for the Young’s
modulus in this direction. The subvoxel-based estimate for the volume fraction, on the other hand, is actually a rather
accurate one.

For this scenario, the minimax strategy turns out to be both highly accurate and reliable. Even for the
coarsest considered resolution, a relative error of 1% is reached. The regression strategy performs similarly, but
comes with a higher variance, for example, a larger error for 643 voxels and a much smaller error at 1283

voxels.
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The results for the transverse direction, shown in Figure 11C, actually match the full-stiffness case in Figure 11A rather
well, and the same conclusions apply, at least for the different composite voxel strategies. Using no composite voxels turns
out to be a bit better for this case and a coarse resolution, where it turned out to be a little worse in fiber direction. This
effect may be caused by the higher stresses encountered when loading in fiber directions.

To sum up the findings in this example, the averaging strategy is not recommended for composites with non-smooth
interfaces, whereas both regression and minimax lead to a consistent and reliable improvement over using no com-
posite voxels. The advantage is about half an order of magnitude for the coarse resolution which roughly amounts
to using only one eighth of the resolution required for a specific accuracy and avoiding the use of composite
voxels.

5 CONCLUSION

The work at hand was devoted to understanding the origins of the laminate-type composite voxel strategy108

which helps to conceptually understand composite voxels. Indeed, in the same way that first-order finite ele-
ments fail to represent a gradient in the strain accurately, interface-nonconforming discretizations have difficul-
ties providing accurate fields in the vicinity of the interface. In this analogy, laminate composite voxels play
the same role in enhancing accuracy in micromechanics as linear assumed strain fields for bending-dominated
problems.

We provided a straightforward and thorough analysis of the assumed strain method for the heterogeneous case, pro-
viding optimal convergence estimates for a rather large class of assumed strain methods. In fact, it might be possible
to design more powerful assumed strain methods which enhance the bulk accuracy in micromechanical finite-element
models in addition to providing accuracy close to the interface as supplemented by composite voxels. Moreover, it would
be desirable to account for constitutive laws at the interface in the framework of composite voxels, complementing the
available approaches.135,136

We provided a number of strategies for computing approximations to both the cut volume fractions and the normals
to the interfaces inside a composite voxel. As these calculations are performed in preprocessing and in an independent
fashion for each composite voxel, ensuring numerical stability of the algorithms is actually more important than pure
performance. Indeed, due to the complete decoupling of the calculations, it is possible to parallelize them in a more or less
perfect manner. We identified Mirtich’s approach to computing polyhedral volume as a suitable candidate for satisfying
this criterion.

Our numerical findings revealed the limitations of subvoxel-based composite voxels. Of course, there are scenarios
where only a subvoxel grid is available, and there is no alternative. However, for analytically given interfaces, level-set
based composite voxel represent an alternative with superior accuracy properties. For instance, we saw that there are
cases where subvoxel-based composite voxels do not improve upon using no composite voxels at all, in contrast to some
level-set based composite voxels. This circumstance also supports the importance of accurate normal data when using
composite voxels.

We found that the averaging scheme did not work that well for cylindrical inclusions, and we recommend either the
regression or the minimax strategy. Interestingly, using these level-set based composite voxels did turn out to improve the
quality of the computed effective properties consistently, and its use is thus firmly recommended.
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APPENDIX A. STRANG’S SECOND LEMMA FOR MONOTONE OPERATORS

Strang’s second lemma137(Theorem 4.2.2) forms a central element in the analysis of non-conforming finite-element methods.
In its original form, it is restricted to linear problems. For the purpose of this manuscript, we record a version suitable for
nonlinear problems, more precisely strongly monotone and Lipschitz continuous operators.

Suppose a Banach space W is given, together with closed linear subspaces W0 and Wh, where h stands for the positive
mesh parameter and W0 encodes the space for the continuous problem. Suppose that operators

gh ∶ W → W ′ and g ∶ W0 → W ′
0, (A1)

are given where the prime indicates the continuous dual space. We assume that the operators gh and g are uniformly
strongly monotone and Lipschitz continuous, that is, there are positive constants 𝛼±, s.t. the monotonicity conditions

(g(u) − g(v))[u − v] ≥ 𝛼− ||u − v||2W0
, u, v ∈ W0, (A2)

as well as

(gh(u) − gh(v))[u − v] ≥ 𝛼− ||u − v||2W , u, v ∈ W , (A3)

hold, together with the Lipschitz continuity conditions

||g(u) − g(v)||W ′
0
≤ 𝛼+ ||u − v||W0 , u, v ∈ W0, (A4)

and

‖gh(u) − gh(v)‖W ′ ≤ 𝛼+ ||u − v||W , u, v ∈ W . (A5)

Under the strong monotonicity (A2) and Lipschitz condition (A4), there is a unique solution u ∈ W0 of the problem

g(u)[w] = 0 for all w ∈ W0, (A6)

see Showalter.138 Similarly, for all mesh parameters h, there is a unique solution uh ∈ Wh of the problem

gh(uh)[wh] = 0 for all wh ∈ Wh. (A7)

The version of Strang’s lemma established below provides sufficient conditions for the convergence of the discretized
solutions uh towards the continuous solution u. More precisely, the following estimate

||u − uh|| ≤
(

1 + 𝛼+

𝛼−

)
inf

vh∈Wh
||u − vh|| + 1

𝛼−
||𝜄∗hgh(u)||W ′

h
, (A8)
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holds, where the mapping 𝜄∗h ∈ L(W ′
,W ′

h) is the adjoint of the canonical inclusion 𝜄h ∶ Wh → W , that is, we have

(𝜄∗h𝜙)[wh] = 𝜙[wh] for 𝜙 ∈ W ′ and wh ∈ Wh. (A9)

Thus, the last term in the estimate (A8) may also be written in the form

||𝜄∗hgh(u)||W ′
h
= sup

wh∈Wh, ||wh||Wh
≤1

gh(u)[wh], (A10)

which is typically preferred when stating the linear version of Strang’s second lemma.137(Theorem 4.2.2)

The interpretation of Strang’s estimate (A8) is the following. The first term

inf
vh∈Wh

||u − vh||, (A11)

quantifies the approximation error of the solution u with elements of the space Wh. The second term

||𝜄∗hgh(u)||W ′
h
, (A12)

measures the consistency error both of the space Wh and the operator gh. Indeed, the element u solves the equation

𝜄

∗
0g(u) = 0, (A13)

which is different from 𝜄

∗
hgh(u), unless a conforming Galerkin framework is used.

Let us proceed with deriving the estimate (A8). For any element vh ∈ Wh and the solution uh ∈ Wh of the Equation
(A7), we notice

(gh(uh) − gh(vh))[uh − vh] = gh(uh)[uh − vh] − gh(vh)[uh − vh] = −gh(vh)[uh − vh], (A14)

where we used the condition (A7) for wh = uh − vh. Thus, adding a zero, we obtain the identity

(gh(uh) − gh(vh))[uh − vh] = (gh(u) − gh(vh))[uh − vh] − gh(u)[uh − vh]. (A15)

By definition of the inclusion mapping (A9), we observe

gh(u)[uh − vh] = gh(u)[𝜄h(uh − vh)] = 𝜄∗hgh(u)[uh − vh], (A16)

that is, the identity

(gh(uh) − gh(vh))[uh − vh] = (gh(u) − gh(vh))[uh − vh] − 𝜄∗hgh(u)[uh − vh]. (A17)

holds. In view of the monotonicity condition, the triangle inequality leads to the estimate

𝛼− ||uh − vh||2 ≤ (gh(uh) − gh(vh))[uh − vh] ≤ ‖gh(u) − gh(vh)‖‖uh − vh‖ + ‖‖‖𝜄∗hgh(u)
‖‖‖‖uh − vh‖. (A18)

Dispensing with the term ||uh − vh|| common to both sides implies the inequality

𝛼− ||uh − vh|| ≤ ‖gh(u) − gh(vh)‖ + ‖‖‖𝜄∗hgh(u)
‖‖‖

≤ 𝛼+ ‖u − vh‖ + ‖‖‖𝜄∗hgh(u)
‖‖‖,

(A19)

where we used the Lipschitz condition (A5) in the second line. The triangle inequality applied to the additive splitting

u − uh = u − vh + vh − uh, vh ∈ Wh, (A20)
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implies the estimate

‖u − uh‖ ≤ ‖u − vh‖ + ‖vh − uh‖
≤ ‖u − vh‖ + 𝛼+

𝛼−
‖u − vh‖ + 1

𝛼−

‖‖‖𝜄∗hgh(u)
‖‖‖

=
(

1 + 𝛼+

𝛼−

)
‖u − vh‖ + 1

𝛼−

‖‖‖𝜄∗hgh(u)
‖‖‖,

(A21)

where we made use of the previous result (A19). As the element vh is arbitrary, minimizing over the right hand side of
the estimate (A21) yields the desired inequality (A8).

APPENDIX B. ANALYSIS OF ASSUMED STRAIN METHODS FOR HETEROGENEOUS
MATERIALS

The purpose of this appendix is to show the estimate (34)

||∇su − ∇suh − 𝜺̃h||L2 ≤ C
(

inf
𝜺h∈Wh

||∇su − 𝜺h||L2 + ||𝝀 − 𝝀h||L2

)
(B1)

for the solution (uh, 𝜺̃h) ∈ h × ̃h of the Equation (33)

⨍Y
𝝈(⋅, 𝜺 + ∇suh + 𝜺̃h) ∶ (∇swh + 𝜸̃h) dx = 0 for all (wh, 𝜸h) ∈ h × ̃h (B2)

and the stresses

𝝀 = 𝝈(𝜺 + ∇su) as well as 𝝀h =
nelm∑
e=1
𝝀e 𝜒e with 𝝀e =

⨍Ye

𝝀 dx (B3)

associated to the continuum solution u ∈ H1
#(Y ;R

d) of the micromechanical balance Equation (12). To do so, we will
re-write the problem (B2) in the language of Appendix A, which contains a version of Strang’s second lemma137(Theorem 4.2.2)

suitable for monotone operators. We are concerned with the space

W = L2(Y ; Sym(d)), (B4)

and the subspaces

W0 = ∇sH1
#(Y ;R

d) as well as Wh = ∇s
h ⊕ ̃h, (B5)

together with the operator

g ∶ W → W ′
, g(𝜺)[𝜸] =

⨍Y
𝝈(𝜺 + 𝜺) ∶ 𝜸 dx, 𝜺, 𝜸 ∈ W . (B6)

This operator is well-defined thanks to the conditions (9) and (11). Moreover, it is 𝛼−-strongly monotone and 𝛼+-Lipschitz
continuous as a consequence of the conditions (8) and (9).

Then, the problem

find 𝜺 ∈ W0, s.t. g(𝜺)[𝜸] = 0 for all 𝜸 ∈ W0 (B7)

has a unique solution 𝜺, which is furthermore of the form 𝜺 = ∇su for the unique displacement solution u of the original
variational problem (14).
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Similarly, we may encode the problem (B2) in the form

find 𝜺h ∈ Wh, s.t. g(𝜺h)[𝜸h] = 0 for all 𝜸h ∈ Wh (B8)

with the connection 𝜺h = ∇suh + 𝜺̃h for uh ∈ h and 𝜺̃h ∈ ̃h. Due to the strong monotonicity and Lipschitz continuity,
existence and uniqueness of solutions to the problem (B8) follow directly.

Moreover, we are in the position to apply the theory developed in Appendix A with g = gh to get an estimate for the
discretization error. More precisely, the inequality (A8) implies the estimate

||∇su − ∇suh − 𝜺̃h||L2 ≤

(
1 + 𝛼+

𝛼−

)
inf
𝜺h∈Wh

||∇su − 𝜺h||
+ 1
𝛼−

sup
{⟨
𝝈(𝜺 + ∇su) ∶ 𝜸h

⟩
L2
||| 𝜸h ∈ Wh, ||𝜸h||L2 ≤ 1

}
.

(B9)

To treat the second term in the inequality (B9), we first notice the identity

sup
{⟨
𝝈(𝜺 + ∇su) ∶ 𝜸h

⟩
L2
||| 𝜸h ∈ Wh, ||𝜸h||L2 ≤ 1

}

= sup
{⟨
𝝈(𝜺 + ∇su) ∶ 𝜸̃h

⟩
L2
||| 𝜸̃h ∈ ̃h, ||𝜸̃h||L2 ≤ 1

} (B10)

due to the decomposition

Wh ∋ 𝝀h = ∇suh + ̃𝝀h ∈ ∇s
h ⊕ ̃h, (B11)

and the validity of the momentum balance (12). Furthermore, the element-wise averaged stress field 𝝀h defined in
Equation (B3) is an element of the space h by condition (iii), see the inclusion (28). Then, we have the identity

⨍Y
𝝀 ∶ 𝜸̃h dx =

⨍Y
(𝝀 − 𝝀h) ∶ 𝜸̃h dx, 𝝀h ∈ ̃h, (B12)

which implies the estimate

sup
{⟨
𝝈(𝜺 + ∇su) ∶ 𝜸h

⟩
L2
||| 𝜸h ∈ Wh, ||𝜸h||L2 ≤ 1

}
≤ ||𝝀 − 𝝀h||L2 (B13)

of the second term in the Strang inequality (B9). In particular, the desired estimate (B1) emerges.
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