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Abstract
The computational efficiency of FFT-based computational micromechanics is
deeply rooted in the underlying regular, that is, Cartesian, discretization. The
bottleneck for most industrial applications is evaluating the typically rather
expensive constitutive law on the regular grid. In the work at hand, we exploit
coarsening strategies to evaluate the material law with the intention of speeding
up the overall computation time while retaining the level of achieved accu-
racy. Inspired by wavelet-compression techniques, we form aggregates of voxels
where the local strain tensors are close, and compute the stresses on these
coarsened elements. If done naively, such a strategy will lead to intrinsic insta-
bilities whose origin is apparent from a mathematical perspective. As a remedy,
we introduce a stabilization technique which is inspired by hourglass control
well-known for underintegrated finite elements. We introduce octree as well as
sandwich coarsening, discuss the handling of internal variables, report on the
efficient implementation of the concepts and demonstrate the effectiveness of
the developed technology on simple as well as industrial examples.
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1 INTRODUCTION

1.1 State of the art

The approach to computational micromechanics based on the fast Fourier transform (FFT), initially proposed by
Moulinec–Suquet1,2 and further developed by a vivid community, is widely regarded as one of the most efficient numerical
strategy for this purpose. Almost all variants of FFT-based homogenization have in common that they operate on a reg-
ular grid and utilize the fast Fourier transform to evaluate Green’s operator within a Lippmann–Schwinger type solution
framework. The success of the strategy rests, on the one hand, on the rather efficient FFT implementations available,3,4

and, on the other hand, on the intrinsic fusion of discretization and numerical solution strategy, for instance incorpo-
rating an intrinsic preconditioning strategy which renders the iteration count essentially independent of the resolution.
Another key factor for the efficiency of these methods is their use of simple data structures. In fact, all data is stored in
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arrays, and all operations (except for the FFT) involve simple loops over this data. As the already optimized FFT libraries
are none of the user’s concern, little extra computational overhead is created except for evaluating Green’s operator, a
linear operation, and computing the material law.

Over time, different flavors of FFT-based methods were developed. It was realized that rather general discretiza-
tion schemes5(section 2) can be employed, as long as they operate on a regular grid, and used in conjunction with
Lippmann–Schwinger type solvers5(section 3).

It appears difficult to extend FFT-based methods beyond the regular-grid setting, preserving the computational advan-
tages of the schemes in the process. Eyre-Milton6 were probably the first to exploit multiple grid levels in this context.
Their approach, however, used hierarchical grids to speed up the solution process on the finest (still regular) grid by what
might be called a cascadic multigrid method.7

Nkoumbou Kaptchouang and Gélébart8 studied an FFT-based computational method with a rectangular local
refinement which they solve with the local-defect correction method.

Only recently, Kaiser et al.9 showed that FFT-based computational homogenization methods can also be used in an
adaptive manner, removing the constraint of working with a regular grid a little bit. To be more precise, Kaiser et al.9
employ interpolating wavelets10 in two ways. For a start, they consider the Deslauriers-Dubuc wavelets11 on a regular
grid and derive the associated Eshelby–Green operator. In a second step, they show that they may also dispense with
small wavelet coefficients when evaluating the constitutive law, potentially speeding up the computations significantly.
Kaiser et al.9 do not completely leave the terrain of regular-grid-solvers, as there is still a fine-scale regular grid in the
background, where the FFT is computed on and which is used to apply the Eshelby–Green operator.

Please note the difference between the approaches of Nkoumbou Kaptchouang and Gélébart8 and Kaiser et al.9
Nkoumbou Kaptchouang and Gélébart8 use a regular grid as the coarse grid and refine the grid, whereas Kaiser et al.9
use the regular grid as the fine grid and consider coarsening. The difference in these approaches manifests when apply-
ing the FFT. For the LDC approach,8 the FFT is applied on the coarse scale, and some extra strategy needs to be
used to solve the fine scale. In contrast, the wavelet technique9 uses FFT on the fine grid and seeks to avoid extra-
neous material evaluations due to the coarse grid, considering those as predominantly contributing to the overall
runtime.

1.2 Contributions

Inspired by the work of Kaiser et al.,9 we study strategies to reduce the effort when computing the material law in
FFT-based computational homogenization methods. However, we do not use wavelets for discretization, but retain
traditional discretization schemes, reserving the compression for evaluating the constitutive law only.

Actually, due to the discontinuities in the strain fields and the complexity of industrial-scale microstrostructures, we
wanted to rely on simple yet robust wavelets like the Haar wavelet.12,13 However, we realized that using (tensor-product)
Haar wavelets is equivalent to working with octrees.14 Thus, we slowly moved away from wavelets altogether, and started
to study general coarsening strategies for evaluating the constitutive law, see Section 2.1. Interestingly, there are close links
to the transformation field analysis of Dvorak and co-workers,15,16 but also to working with underintegrated elements
in the context of the finite-element method.17,18 We noticed that it is necessary to introduce a suitable stabilization term
to avoid a pathological degeneration of the resulting nonlinear system of equations, very much like the introduction of
hourglass stabilization17,18 for underintegrated finite elements, see Section 2.2. It turns out that an elastic stabilization
with the material tangent leads to the highest accuracy. Unfortunately, using the current material tangent is incompatible
with retaining favorable numerical properties like monotonicity and symmetric material tangents, so that we use the
material tangent of the previous load step. Working with inelastic material models involving internal variables imposes
further restrictions, discussed in Section 2.3: in a nutshell, only refinement (and no coarsening) is allowed when going
from one time step to the next.

We introduce flexible coarsening strategies based on octrees in Section 3.1, also working out a straightfor-
ward enhancement which we call sandwich coarsening. The integration into an existing FFT-based computational
micromechanics code is discussed in Section 3.2. Based on the data structure of a linear octree,19 the implemen-
tation is essentially array-based and we may preserve the original computational speed of regular-grid methods.
Last but not least, we study the introduced techniques for a number of challenging micromechanical problems in
Section 4.
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2 COARSENING IN COMPUTATIONAL HOMOGENIZATION

2.1 The homogenization problem

Suppose a rectangular cell Y ⊆ Rd in d = 2, 3 dimensions is given. A periodic first-order homogenization problem at small
strains seeks a periodic displacement-fluctuation field u ∈ H1

#(Y ;R
d), a local strain field 𝜺 ∈ L2(Y ; Sym(d)) and a local

stress field 𝝈 ∈ L2(Y ; Sym(d)), s.t. kinematic compatibility

𝜺 = 𝜺 + ∇su, (1)

involving a prescribed macroscopic strain 𝜺 as well as the symmetrized gradient operator ∇s, and the quasi-static stress
equilibrium

div 𝝈 = 0 (2)

are satisfied, where the divergence operator div arises as the (negative of the) adjoint of the symmetrized gradient operator,
that is, the identity

⟨div 𝝈 ⋅ v⟩Y = −⟨𝝈 ∶ ∇sv⟩Y holds for all 𝝈 ∈ L2(Y ; Sym(d)) and v ∈ H1
#(Y ;R

d). (3)

Here, Sym(d) refers to the vector space of symmetric d × d-tensors and by ⟨q⟩Y we denote the average of any integrable
field q on the cell Y , that is,

⟨q⟩Y ≡
⨍Y

q(x) dx ≡
∫Y

q(x) dx
/

∫Y
dx . (4)

The Equations (1) and (2) are complemented by a constitutive law. To illustrate our ideas, for the section at hand, we
assume the material behavior to be governed by a function

s ∶ Y × Sym(d) → Sym(d), (5)

s.t. strain and stress are related by the equation

𝝈 = s(⋅, 𝜺), (6)

which is a shorthand notation for

𝝈(x) = s(x, 𝜺(x)) for almost every x ∈ Y . (7)

Practical stress functions satisfy a number of salient properties. These include the following.

1. The stress function s is measurable in the first variable x.
2. The stress corresponding to the unloaded state is square integrable

⟨
||s(⋅, 0)||2

⟩

Y <∞. (8)

3. The stress function is uniformly Lipschitz continuous in the strain, that is, there is a constant 𝛼+, s.t. the inequality

||s(x, 𝜺1) − s(x, 𝜺2)|| ≤ 𝛼+||𝜺1 − 𝜺2|| (9)

holds for almost every x ∈ Y and all 𝜺1, 𝜺2 ∈ Sym(d) where we use the Frobenius norm

||𝜺|| =
√
𝜺 ∶ 𝜺, 𝜺 ∈ Sym(d). (10)
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These properties ensure that the stress function s gives rise to a well-defined Nemytskii operator on the Lebesgue
space L2, that is, the association

L2(Y ; Sym(d)) ∋ 𝜺 → (Y ∋ x → s(x, 𝜺(x)) ∈ Sym(d)) ∈ L2(Y ; Sym(d)) (11)

is reasonable20(section 2.1). We will suppress the x-dependence in the operator s for simplicity of notation.
In addition to these properties, we assume that the stress operator satisfies a monotonicity condition, that is, there is

a non-negative constant 𝛼−, s.t. the inequality

(s(x, 𝜺1) − s(x, 𝜺2)) ∶ (𝜺1 − 𝜺2) ≥ 𝛼− ||𝜺1 − 𝜺2||
2 (12)

holds for all 𝜺1, 𝜺2 ∈ Sym(d) and almost every x ∈ Y . If the inequality (12) holds for a positive constant 𝛼−, we call the
stress functions s strongly monotone. In case of vanishing 𝛼−, we speak of a monotone stress operator. Monotone stress
operators arise, for instance, when discretizing strain-hardening materials in time.

If the stress operator is strongly monotone and Lipschitz continuous, the homogenization problem

div s(𝜺 + ∇su) = 0, (13)

comprising the equations (1), (2), and (6), will be well-posed, that is, there exists a solution which is furthermore unique.
In practice, we frequently encounter stress operators which are not monotone. Yet, it is helpful to investigate whether
monotonicity properties are preserved by the constructions which we will undertake in the work at hand. In fact, such
preservation properties are helpful when designing stable numerical algorithms.

Once the displacement-fluctuation field u solving the micromechanics problem (13) is found, the effective stress

𝝈 =
⟨
s(𝜺 + ∇su)

⟩

Y (14)

may be computed in post-processing.

2.2 Stabilized coarsening

We would like to decompose the strain field 𝜺 ∈ L2(Y ; Sym(d)) into fine- and coarse-scale features. This decomposition
will be achieved through a suitable orthogonal projector P, that is, a bounded linear operator P ∈ L(L2(Y ; Sym(d)))which
is idempotent, that is, the condition

P ∶ P ∶ 𝜺 = P ∶ 𝜺 (15)

is satisfied for each strain field 𝜺 ∈ L2(Y ; Sym(d)), and the Pythagorean Theorem

||𝜺||2L2 = ||P ∶ 𝜺||2L2 + ||Q ∶ 𝜺||2L2 (16)

holds for each strain field 𝜺 ∈ L2(Y ; Sym(d)), expressed in terms of the complementary projector Q = Id − P. We use the
normalized L2-norm

||𝜺||L2 = ⟨𝜺 ∶ 𝜺⟩
1
2
Y (17)

in Equation (16).
The projectors we consider will always have a specific form. We suppose that a finite number Y𝛼 of open, mutually

disjoint and nonempty subsets of the cell Y are given, s.t. the union of their closures cover the original cell Y . Writing 𝜒𝛼
for the associated characteristic function, that is, the function 𝜒𝛼 ∶ Y → {0, 1} which equals unity inside the domain Y𝛼
and vanishes otherwise, we may construct a projection operator

P ∶ 𝜺 =
∑

𝛼

⟨𝜒𝛼𝜺⟩Y∕⟨𝜒𝛼⟩Y 𝜒𝛼. (18)

It is readily established that idempotency (15) and the Pythagorean Theorem (16) hold.
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We call the set Y𝛼 clusters or cells, where the latter name will turn out to be more appropriate for the chosen cluster
shape, see Section 3.1.

With the projector P at hand, we may decompose any strain field 𝜺 ∈ L2(Y ; Sym(d))

𝜺 = P ∶ 𝜺 +Q ∶ 𝜺, Q = Id − P, (19)

into coarse-scale features P ∶ 𝜺 and fine-scale features Q ∶ 𝜺. With this decomposition of fields into coarse- and fine-scale
features, it appears natural to define a coarsened stress operator

s̃naive ∶ L2(Y ; Sym(d)) → L2(Y ; Sym(d)), 𝜺 → s(P ∶ 𝜺), (20)

which extracts the coarse-scale feature of the strain field and computes the corresponding stress field. This naive approach,
however, does not lead to a numerically stable strategy. In fact, any strain field with vanishing fine parts, that is, whenever
the condition P ∶ 𝜺 = 0 holds, does not infer a stress, that is, gives rise to a zero-stress mode. In a sense, this situation
is rather similar to hourglass modes emerging from using too few integration points for the ansatz functions of finite
elements. To effectively suppress hourglass modes, hourglass stabilization techniques were established,17,18 which add an
additional hourglass stiffness to render the kernel of the finite-element stiffness matrix trivial.

We follow a similar strategy to stabilize the naively coarsened stress operator (20). We suppose that stabilization
stiffnesses Cstab are given, that is, a (measurable) mapping

C
stab ∶ Y → L(Sym(d)), (21)

s.t. Cstab is a linear elastic stiffness tensor for every x ∈ Y which furthermore satisfies the inequalities

𝛼− ||𝜺||2 ≤ 𝜺 ∶ C
stab(x) ∶ 𝜺 ≤ 𝛼+||𝜺||2 (22)

for every strain 𝜺 ∈ Sym(d) and every point x ∈ Y with the constants 𝛼± from the conditions (9) and (12). In fact, inspired
by hourglass control, we want the elastic response of the coarsened stress operator to equal the elastic response of the
fine stress operator (11), which requires the stiffness (21) to be heterogeneous. The inequalities (22) ensure that the
conditioning of the resulting system of equations does not deteriorate.

With these preliminaries at hand, we define the stabilized coarsened stress operator

s̃ ∶ L2(Y ; Sym(d)) → L2(Y ; Sym(d)), 𝜺 → s(P ∶ 𝜺) +C
stab ∶ Q ∶ 𝜺, (23)

which evaluates the original stress operator s on the coarsened strain features only and adds back the fine-scale features
via the stabilization stiffness Cstab. The construction (23) will turn out to decrease computational effort provided eval-
uating the stress operator s is significantly more expensive than computing the linear elastic stress-strain relationship.
Please notice that if the operator s has a symmetric material tangent, so will the operator s̃.

For the stress operator (23) to have further salient properties it is necessary that the projector P respects both the
heterogeneity of the original stress operator and of the stabilization stiffness Cstab, that is, the identities

s(P ∶ 𝜺) = P ∶ s(P ∶ 𝜺) (24)

and

C
stab ∶ Q ∶ 𝜺 = Q ∶ C

stab ∶ Q ∶ 𝜺 (25)

hold for all fields 𝜺 ∈ L2(Y ; Sym(d)). To get an intuition, the first condition (24) ensures that the stress field of a coarse-scale
strain is purely coarse-scale, that is, has no fine-scale contributions. The complementary, the second condition (25)
ensures that the stabilized stress of a fine-scale contribution is solely fine-scale.

For the special setup (18), the condition (24) entails that the decomposition {Y𝛼} conforms to the heterogeneity of the
stress operator s, that is, each cluster Y𝛼 contains only a single material. For this case, the condition (25) is satisfied for
all strain fields 𝜺 if and only if the stabilization stiffnesses Cstab is constant on each cluster Y𝛼 .
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With these properties at hand, we may show the following characteristics:

1. The operator s̃ is 𝛼+-Lipschitz continuous.
2. The operator s̃ is (strongly) monotone with constant 𝛼+ provided the operator s has this property.
3. For any strain field 𝜺 ∈ L2(Y ; Sym(d)), the exact error expression

s(𝜺) − s̃(𝜺) =
∫

1

0

[
𝜕s
𝜕𝜺
(P ∶ 𝜺 + s Q ∶ 𝜺) − C

stab
]
∶ Q ∶ 𝜺 ds (26)

holds provided the right-hand side makes sense. In particular, we obtain the error estimate

‖s(𝜺) − s̃(𝜺)‖L2 ≤ 2𝛼+‖Q ∶ 𝜺‖L2 . (27)

Loosely speaking, the first attribute quantifies the continuity properties of the operator s̃, the second characteristic
ensures that the coarsening preserves the monotonicity of the original stress operator, whereas the last feature guarantees
that the error we make when evaluating s̃ instead of s is small provided the small-scale features Q ∶ 𝜺 are small to begin
with.

To preserve the flow of the reader, the validity of properties 1–3. is shown in the Appendix. We close this subsection
with a small discussion of these properties. Before we start let us emphasize that the constitutive law

𝝈 = s̃(𝜺) (28)

encoded by the coarsened stress operator (23) is nonlocal, in general, in contrast to the previous constitutive law (6). In
fact, the projection operation, compare Equation (18), may involve averaging.

For the second property to hold, including the stabilization stiffness Cstab is essential. In fact, the decomposition (19)
has some similarities to the splitting of a strain field on a hexahedron into its mean and the remaining hourglass modes. In
this context, neglecting the hourglass modes will also turn out to be detrimental, and stabilization in terms of appropriate
hourglass control is imperative.17,18,21

The last property will also give us a hint how to select the stabilization stiffness Cstab. The error representation (26)
suggests selecting

C
stab = 𝜕s

𝜕𝜺
(P ∶ 𝜺) (29)

due to the Taylor expansion

s(𝜺) = s(P ∶ 𝜺) + 𝜕s
𝜕𝜺
(P ∶ 𝜺) ∶ Q ∶ 𝜺 + O

(
||Q ∶ 𝜺||2L2

)
, (30)

provided the second derivative of s is uniformly bounded. However, the prescription (29) is not feasible, as we defined the
stabilizing stiffness Cstab to be independent of the current strain 𝜺. The reason for the latter condition is that a dependence
on the strain interferes with the monotonicity condition, that is, property 2. This mathematical caution was backed up by
computational experiments where using the current material tangent for stabilization did, in fact, not turn out to be stable.
Instead, with inelasticity and several loading steps in mind, we suggest to choose the material tangent of the previous load
step 𝜺n, that is,

C
stab = 𝜕sn

𝜕𝜺
(Pn ∶ 𝜺n), (31)

where the superindex n indicates to the previous load step. For typical problems of small-strain inelasticity, the inequalities
𝛼

n
+ ≤ 𝛼+ and 𝛼n

− ≥ 𝛼− hold, that is, the Lipschitz constant may only increase, whereas the monotonicity constant typically
decreases upon increased loading.

2.3 Handling internal variables

Typically, the stress function s defined in Equation (5) arises by an implicit time discretization of an inelastic evolution
in practice. The previous considerations did not make the handling of internal variables explicit. We chose this path
deliberately to focus on the relevant ideas.
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The purpose of the section at hand is to fill this gap and discuss how to handle internal variables in case of changing
coarsening. In fact, it will turn out that we may only refine the coarsening in order to retain a consistent evolution of the
internal variables.

We consider a heterogeneous generalized standard material (GSM)22,23 to govern the mechanical behavior of the mate-
rial, given in the form of a Banach space Z of internal variables, a (continuously differentiable in 𝜺) free energy density

w ∶ Y × Sym(d) × Z → R≥0, (x, 𝜺, z) → w(x, 𝜺, z), (32)

and a dissipation potential

𝜙 ∶ Y × Z → R≥0 ∪ {+∞}, (x, ż) → 𝜙(x, ż), (33)

For every x ∈ Y , the extended-valued function𝜙(x, ⋅) is assumed to be a proper and lower semicontinuous convex function
with 𝜙(x, 0) = 0.

The Cauchy stress corresponding to a GSM is given by the relation

𝝈(x) = 𝜕w
𝜕𝜺
(x, 𝜺(x), z(x)), (34)

whereas the evolution of the internal variables z ∶ Y → Z is governed by Biot’s equation

−𝜕w
𝜕z
(x, 𝜺(x), z(x)) ∈ 𝜕𝜙(x, ż(x)). (35)

In case the dissipation potential is finite-valued and differentiable, the latter subdifferential inclusion becomes an ordinary
differential equation

𝜕w
𝜕z
(x, 𝜺(x), z(x)) + 𝜕𝜙

𝜕ż
(x, ż(x)) = 0. (36)

In practice, it is often more convenient to re-write Biot’s equation (35) to involve the rate of the internal variables explicitly.
This may be accomplished in the form

ż(x) ∈ 𝜕𝜙∗
(

x,−𝜕w
𝜕z
(𝜺(x), z(x))

)

, (37)

utilizing the driving-force potential defined via Legendre-Fenchel duality

𝜙
∗(x, y) ≡ sup

z
⟨y, z⟩ − 𝜙(x, z), y ∈ Z∗. (38)

If Biot’s equation (37) is replaced by an implicit Euler discretization in time with time step △t,

z(x) − zn(x)

△t
∈ 𝜕𝜙∗

(

x,−𝜕w
𝜕z
(x, 𝜺(x), z(x))

)

, (39)

where we use the superscript n for the previous time step and consider variables without superscript belonging to the
current time step, it was realized24,25 that the time-discretized primal Biot’s equation

−𝜕w
𝜕z
(x, 𝜺(x), z(x)) ∈ 𝜕𝜙

𝜕ż

(

x,
z(x) − zn(x)

△t

)

(40)
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may be written as the Euler–Lagrange equation of the variational principle

∫Y
w(x, 𝜺, z) +△t 𝜙

(

x,
z − zn

△t

)

dx → min
z∶Y→Z

. (41)

In particular, the associated stress operator s derives from the condensed potential w∗

s(𝜺) = 𝜕w∗

𝜕𝜺
(𝜺) with w∗(𝜺) = inf

z∶Y→Z ∫Y
w(x, 𝜺, z) +△t 𝜙

(

x,
z − zn

△t

)

dx. (42)

Suppose we are in the setup (18)

P ∶ 𝜺 =
∑

𝛼

⟨𝜒𝛼𝜺⟩Y∕⟨𝜒𝛼⟩Y 𝜒𝛼. (43)

Let us define the associated projector

P ∈ L(L1(Y ;Z)), z →
∑

𝛼

⟨
𝜒𝛼z

⟩

Y∕⟨𝜒𝛼⟩Y 𝜒𝛼. (44)

The operator P is a projector, but it is not orthogonal because the latter notion does not make sense on a Banach space. With
the projector at hand, and using the projector (18) as well as the stabilization stiffness (21), we consider the condensed
potential

w̃∗(𝜺) = inf
z∶Y→Z, Pz=z a.e.∫Y

w(x,P ∶ 𝜺, z) + 1
2
𝜺 ∶ Q ∶ C

stab ∶ Q ∶ 𝜺 +△t 𝜙
(

x,
z(x) − zn(x)

△t

)

dx (45)

and the associated stress operator

s̃(𝜺) ≡ 𝜕w̃∗

𝜕𝜺
(𝜺). (46)

More explicitly, we obtain the representation

s̃(𝜺) = 𝜕w
𝜕𝜺
(⋅,P ∶ 𝜺, z) +C

stab ∶ Q ∶ 𝜺, (47)

where the internal-variable field z ∶ Y → Z solves the following variant of Biot’s equation

−𝜕w
𝜕z
(⋅,P ∶ 𝜺, z) ∈ 𝜕𝜙

𝜕ż

(

⋅,
z − zn

△t

)

(48)

with P z(x) = z(x) almost everywhere. In the previous derivations, we implicitly used the assumption that the free energy
density w and the dissipation potential 𝜙 are homogeneous on each cluster 𝜒𝛼 .

Usually the dual version of Biot’s equation (37)

z − zn

△t
∈ 𝜕𝜙∗

𝜕ż

(

⋅,−𝜕w
𝜕z
(⋅,P ∶ 𝜺, z)

)

(49)

is computationally more convenient. These developments may be stated informally as follows: the internal variables are
assumed to be homogeneous on each cluster 𝜒𝛼 . Their evolution is driven by the cluster-wise average of the strains. The
resulting stresses (47) involve the stresses associated to the GSM on this cluster plus the elastic stresses associated to the
stabilization stiffness and the strain fluctuations of the cluster. From this perspective, the proposed technology generalizes
Dvorak’s transformation-field analysis (TFA).15,16,26 The latter describes the evolution of cluster-wise averages of internal
variables, but does not account for stabilization terms. Moreover, we do not restrict to Hooke-type constitutive laws which
is typical for TFA.
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Last but not least let us remark that the presented framework naturally allows for a refinement of the clusters, that is,
the condition

P Pn = P (50)

must hold, but does not naturally support coarsening, as heterogeneous internal variables within a cluster also necessitate
heterogeneous driving forces. In fact, when refining a cluster, the previous value of the internal variable is copied to all
subclusters.

As a very last remark, let us stress that the refinement-only strategy (50) in the setup (18) together with the sta-
bilization choice (31) implies that the stabilization stiffness Cstab has no influence on the average stress, that is,
the identity

⟨s̃(𝜺)⟩Y = ⟨s(P ∶ 𝜺)⟩Y (51)

holds. This simple observation may be used to save a few computations.

3 OCTREE-SANDWICH COARSENING AND COMPUTATIONAL ASPECTS

3.1 Octree coarsening with sandwich extension

To construct the supercells required in the coarsening strategy described in Section 2.2, we rely on octrees.14 An octree
is a tree structure where each internal node has exactly eight children. As usual in computer graphics, we consider each
node of the octree to correspond to a (possibly large) voxel and its children to represent a nonoverlapping decomposition
of the large voxel into eight congruent smaller voxels. In case the octree is not a fully populated tree, considerable savings
in memory occupancy can be achieved when storing binary voxel data.

For the application at hand, we consider an octree representation of the microstructure geometry. This representation
can change from one load step to the next. Following the principles established in Section 2.3, however, the octree repre-
sentation is only allowed to be refined in this process. In fact, coarsening an octree would require to coarsen the internal
variables, as well, and such a procedure may cause some mayhem.

The construction of our octree follows three simple principles:

1. The octree should resolve the material heterogeneity.
2. Linear elastic phases are always fully resolved.
3. The octree resolves the heterogeneity of the strain field.

The first principle means that a necessary condition for combining eight voxels into a supercell is that all eight voxels
have the same material behavior. To ensure that principle 3 is satisfied, we investigate the local strain field and determine
whether the heterogeneity of the strain field is resolved by the current octree. For this purpose, we fix a tolerance level
tol ∈ (0, 1) and investigate each nodal octree cell C in the octree  . Such a cell needs to be refined if there is a subvoxel
V, s.t. some strain component 𝜀ij(V) differs from the ij-component of the nodal-cell average ⟨𝜺⟩C by more than a relative
tolerance tol, that is, if the inequality

|
|𝜀ij(V) − ⟨𝜀ij⟩C|| > tol ||⟨𝜺⟩C||𝓁∞ (52)

holds with the maximum norm

||⟨𝜺⟩C||𝓁∞ =
3

max
k,l=1

|⟨𝜀kl⟩C|. (53)

This rule implies, in particular, that composite voxels27 cannot be coarsened. In fact, composite voxels are typically
implemented as a separate material law, involving volume fraction and normal data per voxel.

At the beginning of the simulation, we construct a coarsened octree representation of the microstructure based on
these geometric considerations alone. The results are illustrated in Figure 1, which shows a cross section of a single
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F I G U R E 1 Setup of the initial octree for a single circular inclusion with and without composite voxels. The composite voxels were
obtained by downsampling from a higher resolution.

spherical inclusion (compare Section 4.2 below). Without composite voxels, there are two phases, a blue and a white phase.
The nonlinear matrix phase (in blue) is coarsened, the elastic inclusion (gray) remains fully resolved as a consequence of
principle 2 above. In fact, principle 2 is actually a consequence of performance considerations, as the elastic stabilization
procedure (23) would only infer computational overhead for coarsened cells in the elastic phase.

Figure 1 also shows the resulting octree in case composite voxels are used. In this case, there is a third phase (in red),
corresponding to the composite voxels. In this case, there is less potential for coarsening due to the additional constraints
imposed by the presence of the composite voxels. In Section 4, however, it will become clear that activating composite
voxels may still be a good idea, as they typically lead to more accurate solution fields which moreover turn out to be
smoother, permitting to retain a coarser octree due to principle 3 above.

To get an idea about the workings of the procedure, we take a look at Figure 2, which shows the evolution of the
octree in the center column. For the details of the simulation, we refer to Section 4.2. After convergence of the solution
algorithm and before moving to the next time step, the octree is refined iteratively until a desired accuracy is achieved.
Some tinkering revealed that tol = 10% is a reasonable tolerance for the refinement criterion (52), and we will use this
value for the entire manuscript.

Figure 2 shows that the octree is significantly refined after the first load step. Please note that the figure shows
the cell averages on the octree cells only. Of course, due to the elastic stabilization term (23), the strain field is also
heterogeneous within such an octree cell. However, for the sake of visualization, we subtracted these fluctuations. In par-
ticular, if the first step is elastic, the octree coarsening does not infer an error compared to a computation at full voxel
resolution.

At least visually, we see little difference between the fully resolved strain field and the octree-coarsened version, build-
ing some confidence in the presented octree-coarsening strategy. In addition to these qualitative considerations, precise
quantitative evaluations are available, and we refer to Section 4 for details.

Before discussing the implementation, we will discuss a simple modification of octree coarsening that turns out to be
critical for industrial applications. For a given cell with eight subvoxels, an octree gives you only two options: either the
subvoxels are merged or the full count of eight subvoxels is considered. In practical applications, such a harsh strategy
cannot exploit situations where some (but not all) subvoxels share a similar value. Such an event occurs quite frequently
at a material interface, where not only the heterogeneity decomposes into two categories, but also the strain values are
similar at the two sides of the interface. This observation motivated Linden et al.28 to introduce left-intermediate-right
(LIR) trees, which consider a whole variety of possible decompositions of a cubic agglomeration of eight voxels. To avoid
some of the technicalities, we consider a specific subset of such an LIR tree. We investigate the case that the cell is cut in
half along one of the coordinate axes. We call this strategy sandwich coarsening due to the apparent resemblance with
the food.

We integrate sandwich coarsening as an elementary add-on to sandwich coarsening by augmenting the coarsening
check (52) by similar queries along each of the coordinate axes.

Such sandwich-coarsened cells are shown in Figure 2 in the right column. Due to the spherical geometry, no difference
to the octree case is evident for the initial tree. However, after the first time step, the differences become quite appar-
ent. Interestingly, this simple trick permits to save a factor of four in the number of cells (and, thus, nonlinear material
evaluations) in case it is applicable.
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F I G U R E 2 Mises norm of the local strain field for original voxel mesh (left) with octree (middle) and sandwich coarsening (right)
when using laminate composite voxels.

3.2 Implementation

Of central importance to the software implementation is the employed data structure. Classical FFT-based computa-
tional micromechanics software is based on voxel grids which are stored as (three-dimensional) arrays. Most solution
algorithms5(sections 3.2–3.4) are extensions of the basic scheme

𝝉
k = s(𝜺k) −C

0 ∶ 𝜺k
, (54)

𝜺
k+1 = 𝜺 − Γ0 ∶ 𝝉k

, (55)

introduced by Moulinec–Suquet.1,2 The two essential operations are the computation of the stress polarization (54) and
the application (55) of the Eshelby–Green operator Γ0 = ∇s(div C0∇s)†div for a given reference material C0. Both opera-
tions are based on loops over arrays, whereas the fast Fourier transform and its inverse are used to convert from real to
Fourier space and back, exploiting the locality of the action of the Eshelby–Green operator in real space. In fact, the line
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(54) involves a loop over all voxels in real space, and in the line (55), a loop over the relevant frequencies in Fourier space
(which can also be brought into the form of a rectangular array) is executed.

The basic data structure which we use for the implementation of the octree/sandwich coarsening is a linear octree.19

Instead of storing a tree structure, linear octrees only store a unique identifier of each leaf in the tree in an array. Then,
storing data in the octree is as simple as storing data in an array, and the unique identifier is used to connect the data in
the array to the spatial location the data belongs to. For the implementation at hand, we rely upon Morton encoding.29

The underlying idea is the following. The eight subcells of an octree node can be encoded by three bits. Thus, the path
from the root to the leaf of an octree may be encoded by a sequence of such bits in a unique fashion. Queries for parent
and children nodes admit efficient implementation based on proper bit-wise manipulations,30 available in programming
languages like C++.

So, after generating the initial octree, we store its topology in a C++-vector containing the corresponding Morton
codes. In case the octree needs to be refined, we change the Morton code of the parent cell to the corresponding code of its
first child, and append the remaining seven children to the end of the vector. In addition, we store the material color for
each octree leaf and allocate memory for the internal variables in the process. In case of refinement, the corresponding
C++-vector is reshaped, copying the old values of the internal variables to all eight children.

We deal with sandwich coarsening by adding a further flag indicating the direction of splitting, so that voxels and the
upper/lower parts of the sandwich may be distinguished. The handling of this extension is straightforward.

Alg. 1 provides a pseudo-code for the implementation of the coarsened basic scheme. The basic scheme is only mod-
ified when computing the polarization (54). For every leaf of the octree or sandwich cell, the cell-wise average strain is
computed first. Then, the stress response is calculated for this cell, updating the internal variables if needed. Subsequently,
the calculated stress is prolongated to all subvoxels, adding the coarsening stabilization (23) in the process. Please note
that we compute the tangent of the previous load step on the fly, as we store the previous strain field as part of the internal
variables. In particular, no extra storage is needed for this procedure.

Applying the Eshelby–Green operator (55) is not modified.

Algorithm 1. Basic scheme for coarsened discretization (multiple load steps)

1:  ← BuildOctree[VoxelGeometry] ⊳ Build octree coarsening of voxel mesh in nonlinear phases
2: 𝜺← 0 ⊳ Initialization of 𝜺
3: for n ∈ {1,… ,nmax} do ⊳ Load-step control
4: repeat
5: 𝜺← MSiterate[𝜺, C0

n, 𝜺n,  ] ⊳ Reference material C0 may be adjusted
6: until Convergence
7: for c ∈ {1,… , cmax} do
8:  ← RefineOctree[ , 𝜺]
9: end for

10: end for
11: return 𝜺
MSiterate[𝜺, C0, 𝜺,  ]

1: for C ∈  do ⊳ Loop over cells
2: 𝜺C ← ⟨𝜺⟩C ⊳ Computing average strain 𝜺C on the cell C
3: 𝝈C ← s(𝜺C) −C0 ∶ 𝜺C ⊳ Computing the cell-wise stress 𝝈C and update of internal variables
4: for V ∈ C do ⊳ Loop over subvoxels
5: 𝜺(V) ← 𝝈C +Cstab ∶ (𝜺(V) − 𝜺C) −C0 ∶ 𝜺(V) ⊳ Prolongation and polarization computation
6: end for
7: end for
8: 𝜺 ← FFT(𝜺) ⊳ Fast Fourier transform
9: 𝜺(𝝃)← −Γ̂0(𝜉) ∶ 𝜺(𝝃), 𝝃 ≠ 0 ⊳ Application of Γ0 in Fourier space

10: 𝜺(0) ← 𝜺 ⊳ Setting the mean strain in Fourier space
11: 𝜺 ← FFT−1(𝜺) ⊳ Inverse Fast Fourier transform
12: return 𝜺
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When dealing with multiple load steps, we proceed as follows. An initial octree/sandwich structure is set up in pre-
processing based on geometric considerations. For each load step, the solution algorithm is used to find the solution of
the cell problem (13) on a fixed tree. After convergence, the refinement criterion (52) is checked, triggering a tree refine-
ment if necessary. Then sandwich cells are split into their four subvoxels and octree cells are split into two sandwich cells.
Here the sandwich direction is chosen in such a way that the error reduction is maximal. As it may happen that the tree
needs to be refined by adding more than one level, we actually repeat the refinement check a couple of times, up to the
specified maximum coarsening depth cmax. Keep in mind that this refinement procedure is typically negligible in runtime
compared to the application of the solution algorithms.

We discuss the integration of the proposed coarsening strategy into the basic scheme only, as the extension to solvers
which augment the basic scheme like fast gradient methods31-33 and (Quasi-)Newton-type schemes34-36 is straightforward.
For the article at hand, we rely upon the nonlinear conjugate gradient method37 where we limit the factor 𝛽 in line 15 of
Alg. 1 in Schneider37 by one to increase robustness of the algorithm.

4 COMPUTATIONAL INVESTIGATIONS

4.1 Used materials, models and parameters

For our computational investigations, we simulate creep and tensile tests on volume elements comprising a polypropylene
(PP) matrix reinforced with E-glass inclusions. For both cases, the E-glass inclusions are assumed to show an isotropic
linear elastic material response which is specified by the material parameters shown in Table 1. For the tensile tests, the
polypropylene matrix is treated as an elasto-viscoplastic material. The considered GSM involves the viscoplastic strain
tensor 𝜺vp and an isotropic hardening variable 𝛼 as the internal variables, the Helmholtz free energy density

w(𝜺, 𝜺vp, 𝛼) =
1
2
(
𝜺 − 𝜺vp

)
∶ C

e ∶
(
𝜺 − 𝜺vp

)
+
∫

𝛼

0
(q) dq (56)

with an isotropic linear elastic stiffness tensor Ce and the force potential

𝜙
∗(Avp,A𝛼) =

𝜎d 𝜀̇0

m + 1

⟨
‖
‖devAvp‖‖eq + A𝛼

𝜎d

⟩m+1

+

, (57)

where dev denotes the deviatoric part of a tensor, ‖⋅‖eq refers to the Mises norm, ⟨⋅⟩+ stands for the Mcauley bracket. The
viscous effects are described by the drag stress 𝜎d, the rate-sensitivity m exponent and the reference strain rate 𝜀̇0. The
stress tensor and the driving forces compute as

𝝈 = C
e ∶

(
𝜺 − 𝜺vp

)
, Avp = 𝝈 and A𝛼 = −(𝛼). (58)

We consider a linear-exponential hardening function

(𝛼) = 𝜎Y + a1(1 − exp(−a2𝛼)). (59)

For the studied example, the nonlinear parameters of the PP matrix are taken from Grimm-Strele et al.38 and are
reproduced in Table 2.

For the creep tests, the PP matrix is modeled as a linear viscoelastic solid, more precisely a generalized Maxwell model,
which may be formulated as a GSM.39 The corresponding linear viscoelastic material parameters of the Polypropylene

T A B L E 1 Isotropic linear elastic material parameters of E-glass.

Parameter Unit Value

Young’s modulus (E) GPa 72

Poissons’ ratio (𝜈) - 0.22
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T A B L E 2 Material parameters for the viscoplastic material model of PP.38

Behavior Parameters

Elastic E = 1.058 GPa, 𝜈 = 0.45

Hardening 𝜎Y = 3.982 MPa, a1 = 14.01 MPa, a2 = 220.578

Viscoplastic 𝜀̇0=1/s, 𝜎d = 9.682 MPa, m = 5.835

T A B L E 3 Viscoelastic material parameters42 for polypropylene (PP): Relaxed Young’s modulus Er = 320MPa, Poisson’s ratio
𝜈 = 0.44 as well as normalized relaxation coefficients 𝛾j and relaxation times 𝜏j for each Maxwell element.

# 1 2 3 4 5 6

𝛾j 0.190 0.100 0.168 0.167 0.205 0.245

𝜏j in s 0.116 × 10−8 0.574 × 10−8 0.285 × 10−7 0.141 × 10−6 0.702 × 10−6 0.348 × 10−5

# 7 8 9 10 11 12

𝛾j 0.492 0.587 0.725 0.885 0.485 0.726

𝜏j in s 0.173 × 10−4 0.857 × 10−4 0.425 × 10−3 0.211 × 10−2 0.105 × 10−1 0.520 × 10−1

# 13 14 15 16 17 18

𝛾j 0.414 0.468 0.370 0.316 0.255 0.207

𝜏j in s 0.258 × 100 0.128 × 101 0.635 × 101 0.315 × 102 0.156 × 103 0.775 × 103

# 19 20 21 22 23 24

𝛾j 0.159 0.133 0.087 0.112 0.004 0.168

𝜏j in s 0.385 × 104 0.191 × 105 0.947 × 105 0.470 × 106 0.233 × 107 0.116 × 108

were obtained by approximating a measured master curve40 with 24 Maxwell elements by using the Levenberg–Marquardt
algorithm. The resulting parameters are summarized in Table 3.

We use the direct implementation of Kaliske et al.41 instead of the automatic-differentiation technique of Blühdorn
et al.43 as the latter leads to a higher computational effort on CPUs.

The algorithms described in this article were integrated into the software FeelMath and run in a modified version of
the software GeoDict2023.44 The plan of our studies is the following. We consider two creep and one tensile experiment.
The first creep test is performed on a PP reinforced by a single spherical E-glass inclusion to investigate an essentially opti-
mal scenario for our coarsening approach—with 6.5%, the volume fraction of the inclusion is chosen to be comparatively
small, and significant coarsening is possible. Subsequently, we will consider a creep test for a cross-ply microstructure,
which features a significantly higher filler fraction with 30%. For the final tensile test, we will investigate the microstruc-
ture of a short-fiber reinforced PP at an industrial volume fraction. This microstructure leads to strain peaks at the
fiber ends and appears to represent a challenge for the introduced coarsening strategy. All these simulations are per-
formed using the Willot’s rotated staggered grid,45 since it has symmetric solution fields in contrast to the staggered grid
discretization.46

4.2 A single spherical inclusion

Similar to the work of Kaiser et al.,9 we start our computational investigations on a microstructure with a single spherical
inclusion. For a creep test subjected to 1% tensile loading with 50 load steps equidistantly spaced on a logarithmic scale,
we investigate the accuracy and computational performance of the sandwich coarsening presented in Section 3. To be
more precise, we compare six different scenarios in the Figures 4 as well as 5 and the remainder of this section.

The first and simplest case considers a voxelization (V) of the analytically described spherical inclusion (solid lines)
and serves as the reference. This approach is state-of-the-art for many FFT-based solvers. The results for a resolu-
tion of 2563 voxels serve as the reference, and four coarser resolutions, 163, 323, 643, and 1283 voxels, are considered,
see Figure 3.
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F I G U R E 3 Microstructure of the spherical inclusion at different resolutions.

The second approach involves the proposed sandwich-coarsening strategy applied to the voxelized structures
(V-Sandwich) at different resolutions (dashed lines). Depending on the evolution of the local strain field, the number of
cells increases, possibly up to a fully resolved voxel microstructure.

Our third variant concerns using laminate composite voxels (CV)27 (dotted lines) in interface elements. This strategy
represents the current state-of-the-art of FFT-based solvers provided a subvoxel-scale representation of the material inter-
face is available. To estimate the volume fractions and the normals for the laminate composite voxels, we rely on highest
considered resolution, 2563 voxels, and utilize the algorithm described in Kabel et al.47 with downsampling factors 16, 8,
4, and 2.

In addition, we combine the laminate composite voxels with the sandwich coarsening (CV-Sandwich) as our fourth
variant (dash-dotted lines). In this case, the potential decrease in the number of cells is slightly lower than for the pure
sandwich coarsening because the laminate composite voxels at the material interface cannot be coarsened into sandwich
cells. In fact, the interface voxels constitute a third material, and coarsening is only allowed to take place in homogeneous
regions.

Finally, for the fifth variant, we use composite boxels (CB)48 (densely dotted lines) and combine it with the sandwich
coarsening (CB-Sandwich) (densely dash-dotted lines), giving rise to the sixth variant considered. Composite boxels were
introduced to extend the composite-voxel method to regular meshes with general cuboid elements (“boxels”). In fact, the
composite-voxel method employing laminate mixing requires the volume fractions of the constituens within the element,
together with an estimate for the normal to the interphase separating the material. Whereas calculating volume fractions
on a regular mesh is straightforward, finding a suitable approximation to the normal is not that trivial. The original work47

proposed to consider the direction of the vector connecting the centroid of the dominating phase of the element to the
centroid of the element. This strategy, however, did not work well for boxels with significant anisotropy. Therefore, Keshav
et al.48 proposed to smooth the characteristic function of the dominant phase and to compute the normal by averaging the
finite-difference gradient of this smoothed characteristic function. This technique of image processing type also turned
out to be beneficial for cube-shaped elements compared to the traditional normal-estimation technique.47 This is the
reason for including the technique in this work.

The effect of sandwich coarsening for this example is shown in Figure 2.
Before investigating the potential gain in computational speed and reduction the memory footprint, we first assess

the additional error inferred by working on a coarser resolution and by employing both composite voxels/boxels and
sandwich coarsening. The computation on the full resolution of 2563 voxels serves as our reference.

For the considered scenarios, the computed effective stress in loading direction is shown in Figure 4. We observe that
the initial stress relaxes over time, reaching an eventual steady state at slightly less than 5 MPa. As the different approaches
turn out to be rather close and inspecting their difference for the absolute stress value appears difficult, we investigate the
relative error in the axial stress over time, also shown in Figure 4.

As a general trend, we observe that the error in the effective stress roughly reduces by a factor of two when doubling
the resolution of a single axis of the cell, conforming to the theoretical predictions.49,50 Even at the coarsest considered
resolution, the relative stress error does not exceed 3%.

Let us take a look at the coarsest resolution with 163 voxels in more detail. We observe that using composite vox-
els/boxels decreases the stress error by about a factor three in the initial stage and by about 25% in the later stages of the
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F I G U R E 4 Stress-strain curves and relative error for the spherical inclusion. The considered coarsening approaches are voxelization
(V) at lower resolution, sandwich-coarsening applied to the voxelized structures (V-Sandwich), voxelization at lower resolution with
laminate composite voxels (CV) at the material interface, combination of the laminate composite voxels with sandwich coarsening
(CV-Sandwich), voxelization at lower resolution with composite boxels (CB) at the material interface and a combination of composite boxels
with sandwich coarsening (CB-Sandwich).

loading. For single spherical inclusion, there is actually little difference between composite voxels and boxels, as the esti-
mation of the interface normals profits from the comparatively high resolution. Activating sandwich coarsening increases
the stress error only mildly, both without and with composite voxels/boxels. In fact, there is little deviation observed in
the initial and final stages of the loading due to the choice of elastic stabilization term (31). The smallness of the inferred
error implies that, for the case at hand, the benefits of using sandwich coarsening may be exploited without compromising
the accuracy.

The observations made for the coarsest resolution and using composite voxels/boxels as well as sandwich coarsening
carry over to the two next highest resolutions with little change. The only difference is that the overall error level is lower.
However, at the finest considered resolution of 1283 voxels, the positive influence of using composite voxels/boxels is less
palpable. The reason is found in the inaccurate normal and volume-fraction data. In fact, a resolution of 2563 is used to
estimate these critical quantities for the composite voxels and only eight subvoxels are available for 1283 voxels, limiting
the realized volume fractions and normals considerably.47

The potential gain with respect to memory usage and runtime will be investigated in the following.
Figure 5 shows the number of cells and the used memory as a function of time for the considered creep loading of

the single spherical matrix inside the viscoelastic matrix. Let us first take a look at the number of cells for the coarsest
resolution. When using sandwich coarsening, the number of cells increases quickly in the initial state of the loading,
but stabilizes eventually. Compared to the regular grid, using the sandwich coarsening reduces the number of cells by
about 15%. If sandwich coarsening is applied to geometries with composite voxels/boxels, the number of cells will be
reduced compared to a sandwich-coarsened pure-voxel microstructure. This result appears counter-intuitive at first, as
the composite voxels at the interface preclude a coarsening at these sites. However, the additional factor at play is the
increased smoothness of the local strain field resulting from the laminate composite voxels. In fact, avoiding to use com-
posite voxels results in a stronger heterogeneity of the strain field, in particular at material interfaces. This increased
heterogeneity precludes a coarsening from taking place. Please note that using composite voxels without coarsening
requires the same cell count as a fully resolved voxel grid, that is, the corresponding curves are overlaid in the plot
at hand.

For the next highest resolution, 323 voxels, the observations are qualitatively similar. However, the number of cells
is reduced by slightly more than 50% when activating the sandwich coarsening. For both 643 and 1283 voxels, the cell
count may be reduced by about 90% when using sandwich coarsening. In particular, we observe a tremendous potential
to reduce the cell count for these fine resolutions.
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F I G U R E 5 Memory usage and number of cells for spherical inclusion. The considered coarsening approaches are voxelization (V) at
lower resolution, sandwich-coarsening applied to the voxelized structures (V-Sandwich), voxelization at lower resolution with laminate
composite voxels (CV) at the material interface, combination of the laminate composite voxels with sandwich coarsening (CV-Sandwich),
voxelization at lower resolution with composite boxels (CB) at the material interface and a combination of composite boxels with sandwich
coarsening (CB-Sandwich).

Aside from considering the cell count, we also take a look at the consumed memory, see Figure 5. Using composite
voxels/boxels increases the required storage. On the one hand, geometrical information, that is, the volume fraction and
the estimated normal, need to be stored for each composite voxel. Moreover, it is computationally convenient to store
the laminate-jump vector (a in equation (2.13) of Kabel et al.27) in each composite voxel, that is, an additional vector
internal variable needs to be stored. For the material model at hand, a generalized Maxwell model with 24 elements, the
increase in memory consumption induced by using composite voxels is negligible, however. Thus, it is hard to discern
two curved corresponding to using composite voxels or not in the corresponding plot. This is seen, for instance at the
coarsest resolution. Sandwich coarsening leads to a reduction of the consumed memory by 75% for this resolution.

Higher resolutions provide similar results with the exception that combining composite boxels with sandwich coars-
ening reduces the memory consumption compared to the combined composite-voxels & sandwich coarsening strategy.
The reason appears to be hidden in the improved-accuracy calculation of the normal enabled by composite boxels. More
than 75% of memory can be saved when using sandwich coarsening, and the best results are realized in combination with
composite boxels.

In addition to the memory consumption, we also investigate the convergence speed and the elapsed runtime of the
different approaches. In fact, in FFT-computational micromechanics, it is not uncommon that a faster solver may be
designed at the expense of additional memory only. We investigate the iteration count per load step in Figure 6 for non-
linear CG37 with 𝛽-limitation. We observe a peak at the first iteration, and a reduced iteration count at about twenty for
the subsequent time steps which is a result of the extrapolated initial guess for the subsequent time step. For longer times,
the iteration counts increase slightly, reaching a peak close to the end of the loading. Close to the end of the considered
time window, the iteration counts drop significantly.

First and foremost, we observe that the iteration counts remain moderate for the entire considered time window. In
fact, no more than eighty iterations are required at any time step. This feature is a consequence of the employed stabi-
lization term (23). Of course, there are differences in the individual iteration counts, both caused by different resolutions,
whether composite voxels/boxels are used or not and on the activation status of the sandwich coarsening. Clearly, using
a fully voxelized structure tends to lead to lower iteration counts, in general. However, the sandwich coarsening strategy
does not increase the iteration count beyond what is observed for enriching interfaces with composite voxels. The rea-
son for this phenomenon is the following. Apart from the convergence rate of the solver, the number of iterations is also
influenced by the starting point of the iteration, more precisely by the distance of the starting point of the iteration to the
solution. It is well-known from computational practice that using composite voxels/boxels typically infers higher iteration
counts than just using a regular mesh without interface voxels. Using composite voxels/boxels or sandwich coarsening
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F I G U R E 6 Number of iterations for convergence and accumulated runtime for the spherical inclusion. The considered coarsening
approaches are voxelization (V) at lower resolution, sandwich-coarsening applied to the voxelized structures (V-Sandwich), voxelization at
lower resolution with laminate composite voxels (CV) at the material interface, combination of the laminate composite voxels with sandwich
coarsening (CV-Sandwich), voxelization at lower resolution with composite boxels (CB) at the material interface and a combination of
composite boxels with sandwich coarsening (CB-Sandwich).

leads to a solution with a higher degree of complexity (due to the presence of the interface voxels), and we surmise that
the starting point of the iteration is typically further away from such a solution than from the solution without interface
voxels.

Taking a look at the accumulated runtime in Figure 6, we observe that using composite voxels increases the run-
time due to the more complex material evaluation required in the composite voxels. As the number of interface voxels
is not too large, the increase of using composite voxels/boxels is not too strong. In contrast, the runtime is significantly
reduced, by about a factor of four, whenever the sandwich coarsening is activated. Interestingly, there is little influence of
whether composite voxels/boxels are used. Apparently, the additional effort in evaluating the material law in the compos-
ite voxels/boxels is counterbalanced by the fewer cells required by the coarsening as the result of the smoother solution
fields.

Our findings are neatly summarized in Figure 7.
For the highly resolved microstructure with a single spherical inclusion, the sandwich approach allows to reduce the

number of material law evaluation by one order of magnitude. For the studied linear viscoelastic material law, this allows
memory wise to either double the resolution for computations with similar memory footprint or to alternatively run the
simulation in 25% of the runtime needed without sandwich coarsening. In particular, Figure 7 shows that 1% accuracy
can be achieved for the relaxation test with only 2‰of the voxels when using laminate composite voxels/boxels and with
0.3%0when using additionally sandwich coarsening compared to the full 2563 voxel resolution.

4.3 A cross-ply

The next example we consider is a cross-ply, that is, two continuously reinforced fiber layers which are stacked atop each
other and which are characterized by an angle of 90◦ relative to each other. In fact, continuously reinforced materials
often show a strongly anisotropic material behavior. Using several layers with incrementally shifted fiber angle serves as
a clever way to reduce the anisotropy of the mechanical properties, at least transverse to the stacking direction.

We consider a fiber-volume fraction of 30% which is typical for industrial applications. A resolution of 5123 voxels
serves as our reference, and we study four coarser discretization levels, as shown in Figure 8. We apply a creep loading
in essentially the same way as we did for the single spherical inclusion, except that we apply the load to the cross ply in
45◦ direction,51,52 that is, the weakest direction of the composite at hand, to generate maximum inelastic deformation. We
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F I G U R E 7 Accuracy versus cell-number reduction for the creep test of the spherical inclusion. The considered coarsening approaches
are voxelization (Voxels) at lower resolution, sandwich-coarsening applied to the voxelized structures (Voxels+Sandwich), voxelization at
lower resolution with laminate composite voxels (Composite Voxels) at the material interface, combination of the laminate composite voxels
with sandwich coarsening (Composite Voxels + Sandwich), voxelization at lower resolution with composite boxels (Composite Boxels) at the
material interface and a combination of composite boxels with sandwich coarsening (Composite Boxels + Sandwich).

F I G U R E 8 Microstructure of the cross ply at different resolutions.

investigate the same six coarsening approaches as for the single spherical inclusion at the four resolutions 323, 643, 1283,
and 2563.

A diagram plotting the number of considered cells versus the achieved error relative to the full 5123 resolution is shown
in Figure 9. The observed results are completely different from the single spherical inclusion. For the coarsest resolution
of 323 voxels, using composite voxels/boxels actually has a negative effect on the overall accuracy, irrespective of whether
sandwich coarsening is used or not. The reason is found in the microstructure, for instance shown in Figure 10. Due to
the high filler content, the matrix between the fibers is resolved only with a few voxels. More precisely, for the resolution
with 2563 voxels shown in Figure 10, there are fibers where only four voxels resolve the inter-fiber distance. Thus, only
half a voxel resolves the diameter of this region on the 323 voxel-image. In particular, the composite voxel/boxel would
be required to resolve essentially three phases—the two fibers which are close as well as the intermediate matrix region.
Due to the inherently linear approximation of the interface within a composite voxel and the subsequent homogeneous
approximation of the strain fields in the phases, laminate composite voxels/boxels cannot resolve the strain peak shown
in Figure 10, which is responsible for the lower accuracy observed in Figure 9 at the coarsest considered resolution.
Activating sandwich coarsening has little effect for this discretization level. Apparently, due to the high volume fraction
and the associated close packing of the fibers there is simply no potential for coarsening. In turn, there is no reduction in
the cell count, and, consequently, no change in accuracy.

The situation changes for the next higher resolution of 643 voxels. Composite boxels lead to a significant increase in
accuracy, reducing the (maximum) relative error by almost a factor of two. Interestingly, the considered composite voxels
do not lead to such an improvement, enhancing the accuracy of the plain-voxel approach only insignificantly. Recall that



20 of 29 KABEL and SCHNEIDER

F I G U R E 9 Accuracy versus cell-number reduction for the creep test of the cross ply. The considered coarsening approaches are
voxelization (Voxels) at lower resolution, sandwich-coarsening applied to the voxelized structures (Voxels+Sandwich), voxelization at lower
resolution with laminate composite voxels (Composite Voxels) at the material interface, combination of the laminate composite voxels with
sandwich coarsening (Composite Voxels + Sandwich), voxelization at lower resolution with composite boxels (Composite Boxels) at the
material interface and a combination of composite boxels with sandwich coarsening (Composite Boxels + Sandwich).

the critical difference of composite voxels and composite boxels for the article at hand is the way the interface normal is
estimated. For composite voxels, this estimation is performed by connecting the centroid of a phase (e.g., of the matrix
phase) to the centroid of the voxel, and normalizing the vector to unity.53 Unfortunately, this procedure is not convergent
under grid refinement.54 The alternative strategy of Keshav et al.48(section 5.2) is based on Laplacian smoothing, and was
shown to be more accurate. This gain in accuracy manifests for the study at hand, as well. Activating sandwich coarsening
reduces the cell count by less than ten percent and does not lead to a significantly increased error, irrespective of whether
composite voxels/boxels are used or not.

For the 1283 voxel resolution, using composite voxels actually reduces the accuracy (but only slightly) compared to
using no composite voxels at all. The composite boxels lead to a slight increase in accuracy compared to a regular voxel
grid. The gain in accuracy, however, is less significant for this discretization level. This phenomenon is caused by the
finer discretization, where the number of voxels at the interface, the thus the influence of the composite voxels/boxels, is
decreased. The inferior accuracy of the composite voxels is caused by the lack of convergence under grid refinement of
the normal-estimation technique.54 Activating sandwich coarsening reduces the cell count while more or less preserving
the level of accuracy. At 1283 voxels, about 25% savings in the cell count is possible for sandwich coarsening.

For the highest considered resolution with 2563 voxels, the accuracy of composite boxels and a fully resolved voxel grid
coincide, essentially due to the poorly estimated volume fractions and normals. In fact, only eight subvoxels are available
for downsampling. The normal-estimation approach for composite voxels is not successful, at all, whereas the composite
voxels cannot profit from accurate volume fractions. For all considered scenarios, activating sandwich coarsening permits
to save 50% of the cells, also preserving the accuracy levels.

To sum up, we observe different “regimes” for the effectivity of the considered approaches. In case the discretization
is too coarse, there is no hope to obtain accurate results. If the inter-fiber distance is resolved by at least a single voxel,
composite voxel techniques will turn out to be useful. More precisely, accurately estimated normals, for instance via the
technique described in Keshav et al.48(section 5.2), are critical for these methods. In this regime, sandwich coarsening is
not effective, essentially due to the close fiber packing and the induced strong heterogeneity in the strain field. In fact,
there is not much potential for coarsening. In the next regime, the discretization is fine enough to permit coarsening
and producing an accurate solution, but where the influence of composite voxels is less severe, essentially due to the low
interface-voxel count.

Last but not least, let us take a further look at Figure 9. We observe that 1% accuracy is obtained by composite boxels
with 2% of the voxels of the comparison solution or with 8%0 sandwich cells.

The local shear strains for a resolution of 2563 voxels are shown in Figure 10. We consider a view from the front and
compare the influence of using sandwich coarsening coupled to the composite-boxel technology. We chose this setup
because it led to the most accurate solutions. In fact, we compare the solution fields and the meshes for three time steps:
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F I G U R E 10 Front view of local shear strain ||dev𝜺|| in x-direction for the cross ply: full resolution (left) versus sandwich coarsening
with composite boxels (right).



22 of 29 KABEL and SCHNEIDER

F I G U R E 11 Microstructure of the fiber reinforced plastic at different resolutions.

the initial time step, the second time step and the final, 50th, time step. On the right-hand side, the local solution field
associated to the sandwich-coarsened mesh is shown. Please note that we only show the average strain in the sandwich
cells to emphasize the cell structure. The correct local strain field is actually heterogeneous in the cell due to the elastic
stabilization term (23).

We observe a rather close agreement of the solution fields for the different time steps, illuminating the results we
discussed earlier which were focused on the quality of the effective quantities. Concerning the sandwich coarsening, we
start by looking at the first time step shown in Figure 10A. The fibers remain fully resolved as their behavior is linear
elastic and the proposed coarsening strategy does not lead to a reduced memory consumption and runtime in this case.
Due to the close fiber packing resulting from the industrial filler fraction, there is little potential to coarsen. In fact, due
to the cylindrical geometry of the fibers, large (coarsened) boxes simply do not have enough space between the fibers.

The second time step shown in Figure 10B permits to assess the additional refinement required to accurately resolve
the local strain field, in addition to the geometric constraints governing the first time step. Refinement is dominant for
inter-fiber regions, essentially due to the comparatively large shear strains occurring in the vicinity of the fibers resulting
from the deformation of the rather stiff individual fibers relative to each other, inducing a significant inter-fiber stresses
inside the PP matrix.

At this point it also becomes apparent why it makes sense to consider sandwich coarsening instead of the simpler
octree-coarsening strategy. When dealing with strongly anisotropic objects like fibers, more often than not the mechani-
cal deformations essentially follow the fiber direction. Thus, there is a particular direction where the strains are close and
sandwich coarsening applies. If sandwich coarsening is possible, only two instead of eight subcells emerge when decom-
posing a coarse voxel. Previous studies indicated that there is little gain in octree coarsening for fiber microstructures at
industrial volume fractions, rendering the presented sandwich-coarsening strategy critical for reducing the cell count.

4.4 Fiber structure

Our last example concerns a short-fiber reinforced composite microstructure. More precisely, we consider a commercially
available polypropylene matrix with 30 weight percent glass-fiber reinforcements, which corresponds to a filler-volume
fraction of 13%. We use short fibers with an aspect ratio, that is, the length-to-diameter ratio, of four. These compara-
tively short fibers are used to permit some degree of coarsening at all. The microstructure was generated with the SAM
algorithm55 and a prescribed second-order fiber-orientation tensor

A = diag(0.7, 0.2, 0.1), (60)

employing the exact closure approximation.56,57

Aside from the fully resolved microstructure with 5123 voxels, we consider four coarser discretization levels, compris-
ing 323, 643, 1283, and 2563 voxels, see Figure 11. This time we are interested in the viscoplastic response of the composite,
relying upon the viscoplastic model described in Section 4.1 which supplements the isotropic and linearly elastic E-glass
fibers. Please notice that the parameters of the material model were fitted to the experimental data of a commercially used
polypropylene matrix, see Grimm-Strele et al.38 for details. In fact, the material model serves as a true challenge for the
considered composite/voxel methods and coarsening strategies.
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F I G U R E 12 Stress-strain curves and relative error for the short-fiber reinforced plastic. The considered coarsening approaches are
voxelization (V) at lower resolution, sandwich-coarsening applied to the voxelized structures (V-Sandwich), voxelization at lower resolution
with laminate composite voxels (CV) at the material interface, combination of the laminate composite voxels with sandwich coarsening
(CV-Sandwich), voxelization at lower resolution with composite boxels (CB) at the material interface and a combination of composite boxels
with sandwich coarsening (CB-Sandwich).

F I G U R E 13 Accuracy versus cell-number reduction for the tensile test of the fiber reinforced plastic. The considered coarsening
approaches are voxelization (Voxels) at lower resolution, sandwich-coarsening applied to the voxelized structures (Voxels+Sandwich),
voxelization at lower resolution with laminate composite voxels (Composite Voxels) at the material interface, combination of the laminate
composite voxels with sandwich coarsening (Composite Voxels + Sandwich), voxelization at lower resolution with composite boxels
(Composite Boxels) at the material interface and a combination of composite boxels with sandwich coarsening (Composite Boxels +
Sandwich).

Figure 12 shows the computed stress response up to 2.5% uniaxial strain loading, distributed over ten equidistant load
steps with a strain rate of 1.7 × 10−4s−1. We observe that the different scenarios show a high degree of similarity for the
first one or two time steps only, that is, in the elastic regime up to about 0.5% macroscopic strain. For a higher degree of
loading, strong deviations of the stress predictions at coarse resolutions emerge compared to the reference curve. These
discrepancies become more apparent when studying the relative errors in the axial stress, shown in the right part of
Figure 12.

For the coarsest resolution considered, 323 voxels, all strategies produce a stress response that exceeds a relative error
of 5% except for the initial elastic steps and an outlier at 0.5% loading. Taking a closer look at the fully resolved voxel
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F I G U R E 14 Local Mises strain for FRP: voxel mesh versus sandwich coarsening.
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model, we observe an increase of the relative error up to 1.25% strain, together with a subsequent decrease of the error.
It appears as if the resolution is simply too coarse to provide a mechanical response with reasonable accuracy. Using
either composite voxels or composite boxels leads to a consistently higher error than the plain-voxel model. In contrast to
the latter, the error increases steadily for higher loading and composite voxels/boxels—with the exception of a slight dip
towards the end of the loading window. Apparently, the benefits of composite voxels/boxels cannot be exploited for such
a coarse resolution. The influence of activating sandwich coarsening on the results is not easily discerned.

For a resolution with 643 voxels, the plain-voxel model provides a relative error below 4%, whereas composite vox-
els/boxels come with an increased error level at around 6%. It appears that the composite voxels have trouble resolving the
emerging strongly plastified regions irrespective of the utilized normal-estimation technique. Concerning an additional
sandwich coarsening, its activating preserves the error level.

Rather similar conclusions may be drawn for the higher resolutions, although the emerging error levels are different
for the various considered scenarios and combinations. Remarkably, we do not observe different regimes as we did for
the cross-ply. This fact may hint at a lack of mesh convergence at 5123 voxels.

To weigh accuracy against cell count, we study Figure 13 more closely. A maximum relative error of 2% can be obtained
using only 5%0 of the cells corresponding to the full 5123 resolution when using sandwich coarsening is active. Without
the coarsening, 1.5% of the voxels of the reference mesh are required to reach a similar accuracy. Thus, we can save a
factor of three in this regard when using sandwich coarsening.

Last but not least, the local solution fields on the 2563 voxel resolution are shown in Figure 14, together with the
cells of the sandwich coarsened mesh. Notice that we did not activate composite voxels/boxels as they did not lead to an
improved accuracy.

When inspecting the initial step, shown in Figure 14A, the purely geometric preprocessing is unable to coarsen the
matrix significantly. This appears a bit odd when inspecting the meshes on the surfaces of the volume only. However,
due to the presence of the short fibers, placing larger volumes is actually prohibited. In this sense, short-fiber geometries
turn out to be rather difficult for such coarsening strategies. In fact, more sophisticated numerical strategies, for example,
adaptive finite elements, would run into essentially the same problem: the strong anisotropy and the high filler fraction
of the fibers limits the effectiveness of classical adaptive meshing strategies. In fact, relying upon the simpler octree coars-
ening would lead to little reduction of the cell count, and the considered sandwich coarsening turns out to be a critical
advantage.

After the first time step, see Figure 14B, a strong refinement is necessary in regions where fibers get close. In fact,
the strong nonlinearity of the viscoplastic material makes this degree of refinement necessary. The final time step, see
Figure 14C, does not appear to increase the cell count significantly, as probably expected from a loading scenario without
a change of loading direction.

All in all, the (cell-wise averages of the) strain field are captured accurately on the coarsened grid, increasing
confidence in the selected parameters for the refinement criterion (52).

5 SUMMARY AND CONCLUSION

For typical industrial-scale computational micromechanics simulations, most time is spent on evaluating the nonlinear
constitutive laws. Recently, Kaiser et al.9 showed that interpolating wavelets can be integrated into the framework of
FFT-based computational micromechanics, enabling spatial adaptivity to be exploited in this context.

The work at hand aimed at simplifying and, at the same time, extending the range of applicability of this adaptive
technology. More precisely, we abstracted the concept of stress coarsening and demonstrated that such a strategy needs
to be stabilized by a suitable term in a similar fashion as for hourglass control. Also, we identified the material tangent to
be a suitable elasticity tensor for the stabilization, coming with an implied accuracy guarantee as an essential bonus.

We showed that octrees give rise to a powerful coarsening strategy which is moreover readily integrated into existing
FFT-based computational homogenization codes. Moreover, we demonstrated that using sandwich coarsening can be
quite useful to reduce the number of cells further. The computational experiments revealed the potential of the introduced
piece of technology for reducing both runtime and memory footprint, in particular for highly resolved microstructures
where high accuracy is sought. A convenient feature of the discussed strategies is that they are not only intrinsically
compatible with composite voxel/boxel techniques, but may even profit from them, because their use leads to smoother
solution fields which warrant a lower degree of refinement is necessary. However, we also noticed that there is a limitation
on the possible coarsening for industrial microstrostructures with an inherently high complexity. In fact, it does not come
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as a surprise that coarsening cannot be effective in the presence of high complexity—unless the complexity is introduced
artificially, for example, by resolving a single inclusion on an excessively fine grid.

Future works could further study the refinement criterion (52), improve upon the initial tree setup or introduce
different coarsening options.
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APPENDIX . ARGUMENTS FOR THE PROPERTIES OF THE COARSENED STRESS

The purpose of this appendix is to show that the stress operator (23)

s̃ ∶ L2(Y ; Sym(d)) → L2(Y ; Sym(d)), 𝜺 → s(P ∶ 𝜺) +C
stab ∶ Q ∶ 𝜺, (A1)

defined in Section 2.2 inherits a number of salient properties from the original stress operator s provided the eigenvalues
bounds (22)

𝛼− ||𝜺||2 ≤ 𝜺 ∶ C
stab(x) ∶ 𝜺 ≤ 𝛼+||𝜺||2 (A2)

are satisfied and the the compatibility conditions (24)

s(P ∶ 𝜺) = P ∶ s(P ∶ 𝜺) (A3)

and (25)

C
stab ∶ Q ∶ 𝜺 = Q ∶ C

stab ∶ Q ∶ 𝜺 (A4)

hold. For a start, we assume that the stress operator s is 𝛼+-Lipschitz continuous, that is, the estimate

||s(𝜺1) − s(𝜺2)||L2 ≤ 𝛼+||𝜺1 − 𝜺2||L2 , 𝜺1, 𝜺2 ∈ L2(Y ; Sym(d)) (A5)

is valid. We want to show that this inequality holds for the modified stress operator s̃ defined in Equation (23), as well.
For this purpose, we write

s̃(𝜺i) = s(P ∶ 𝜺i) +C
stab ∶ Q ∶ 𝜺i = P ∶ s(P ∶ 𝜺i) +Q ∶ C

stab ∶ Q ∶ 𝜺i, i = 1, 2, (A6)

where we used the compatibility conditions (A3) and (A4). Consequently, we may express the difference in the form

s̃(𝜺1) − s̃(𝜺2) = P ∶
[
s(P ∶ 𝜺1) − s(P ∶ 𝜺2)

]
+Q ∶ C

stab ∶ Q ∶ [𝜺1 − 𝜺2]. (A7)

Taking squared L2-norms on both hands of the equation and using the Pythagorean Theorem (16), a consequence of the
fact that P and Q are complementary orthogonal projectors, yields the equation

‖s̃(𝜺1) − s̃(𝜺2)‖2
L2 =

‖
‖
‖
P ∶

[
s(P ∶ 𝜺1) − s(P ∶ 𝜺2)

]‖
‖
‖

2

L2
+ ‖
‖Q ∶ C

stab ∶ Q ∶ [𝜺1 − 𝜺2]‖‖
2
L2 . (A8)

In view of the compatibility conditions (A3) and (A4), we may get rid of the P- and Q-prefactors, respectively, to arrive at
the identity

‖s̃(𝜺1) − s̃(𝜺2)‖2
L2 = ‖s(P ∶ 𝜺1) − s(P ∶ 𝜺2)‖2

L2 + ‖
‖C

stab ∶ Q ∶ [𝜺1 − 𝜺2]‖‖
2
L2 . (A9)
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Due to the estimates (A5) and (A2), we obtain the inequality

‖s̃(𝜺1) − s̃(𝜺2)‖2
L2 ≤ 𝛼

2
+
(
‖P ∶ 𝜺1 − P ∶ 𝜺2‖

2
L2 + ‖Q ∶ [𝜺1 − 𝜺2]‖2

L2

)
. (A10)

By the Pythagorean Theorem (16), we are thus led to the inequality

‖s̃(𝜺1) − s̃(𝜺2)‖2
L2 ≤ 𝛼

2
+‖𝜺1 − 𝜺2‖

2
L2 , (A11)

which, after taking the square root, just encodes the 𝛼+-Lipschitz continuity of the stress operator s̃.
After establishing the continuity, we move towards the monotonicity properties. We assume 𝛼−-strong monotonicity

of the stress operator s, that is, the inequality

⟨(s(𝜺1) − s(𝜺2)) ∶ (𝜺1 − 𝜺2)⟩Y ≥ 𝛼− ||𝜺1 − 𝜺2||
2
L2 , 𝜺1, 𝜺2 ∈ L2(Y ; Sym(d)). (A12)

Multiplying the expression (A7) by the difference 𝜺1 − 𝜺2, we are led to the identity

⟨(s̃(𝜺1) − s̃(𝜺2)) ∶ (𝜺1 − 𝜺2)⟩Y =
⟨
(𝜺1 − 𝜺2) ∶ P ∶

[
s(P ∶ 𝜺1) − s(P ∶ 𝜺2)

]⟩

Y

+
⟨
[𝜺1 − 𝜺2] ∶ Q ∶ C

stab ∶ Q ∶ [𝜺1 − 𝜺2]
⟩

Y , (A13)

valid for all 𝜺1, 𝜺2 ∈ L2(Y ; Sym(d)). In view of the estimates from below (22) and (A12), we derive the inequality

⟨(s̃(𝜺1) − s̃(𝜺2)) ∶ (𝜺1 − 𝜺2)⟩Y ≥ 𝛼−
(
||P ∶ (𝜺1 − 𝜺2)||2L2 + ||Q ∶ (𝜺1 − 𝜺2)||2L2

)
. (A14)

The Pythagorean Theorem (16) finally implies the desired monotonicity inequality

⟨(s̃(𝜺1) − s̃(𝜺2)) ∶ (𝜺1 − 𝜺2)⟩Y ≥ 𝛼− ||𝜺1 − 𝜺2||
2
L2 , (A15)

establishing property 2. in Section 2.2.
We conclude this appendix by establishing the integral representation (26)

s(𝜺) − s̃(𝜺) =
∫

1

0

[
𝜕s
𝜕𝜺
(P ∶ 𝜺 + s Q ∶ 𝜺) −C

stab
]
∶ Q ∶ 𝜺 ds (A16)

of the difference between the actions of the two considered stress operators s and s̃. If the stress operator s is continuously
differentiable, the Fundamental Theorem of Calculus implies the representation

s(𝜺1) = s(𝜺2) +
∫

1

0

𝜕s
𝜕𝜺
(𝜺2 + s(𝜺1 − 𝜺2)) ∶ (𝜺1 − 𝜺2) ds, 𝜺1, 𝜺2 ∈ L2(Y ; Sym(d)). (A17)

For a given strain field 𝜺 ∈ L2(Y ; Sym(d)), we set

𝜺1 = 𝜺 and 𝜺2 = P ∶ 𝜺, that is, 𝜺1 − 𝜺2 = Q ∶ 𝜺, (A18)

and obtain the representation

s(𝜺) − s(P ∶ 𝜺) =
∫

1

0

𝜕s
𝜕𝜺
(P ∶ 𝜺 + s Q ∶ 𝜺) ∶ Q ∶ 𝜺 ds, 𝜺 ∈ L2(Y ; Sym(d)), (A19)

that is, after subtracting the term Cstab ∶ Q ∶ 𝜺, we conclude the validity of the error representation (A16). The estimate
(27) follows directly by applying the triangle inequality to the error representation (A16) and using the upper bounds (A2)
and (A5).
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