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Zusammenfassung

Auf der Nanoskala können Ladungsträger vielfältige zeitabhängige Transporteffekte
zeigen. Diese Transporteffekte sind das Ergebnis von Nichtgleichgewichtssituationen.
Die Art des Nichtgleichgewichts sowie das spezifische System beeinflussen den Trans-
port der Ladungsträger. In dieser Arbeit untersuchen wir einerseits die Dynamik der
Paaramplitude in einem Supraleiter-Quantenpunkt-Hybrid und andererseits den Trans-
port sowie die Relaxation photoangeregter Elektronen in einer Fe/Au-Heterostruktur,
welche als konkrete Beispiele für zeitabhängigen Transport im Nanobereich dienen.
Die Paaramplitudendynamik wird in einem Ein-Niveau-Quantenpunkt untersucht,

welcher stark an zwei Supraleiter sowie schwach an einen Normalleiter gekoppelt ist.
Aufgrund der Kopplung mit den Supraleitern werden im Quantenpunkt supraleiten-
de Korrelationen induziert, die durch eine Paaramplitude charakterisiert sind. Zur
Beschreibung der Paaramplitudendynamik verwenden wir eine Diagrammatik, bei der
alle nicht wechselwirkenden Freiheitsgrade der Reservoire ausintegriert werden. Die
diagrammatische Methode führt zu einer Mastergleichung, welche die zeitliche Ent-
wicklung des Quantenpunkts durch seine reduzierten Dichtematrix beschreibt.
Wir untersuchen zwei verschiedene Nichtgleichgewichtsszenarien. Im ersten Szena-

rio wird das System einem Quench unterzogen, der eine vielfältige Paaramplituden-
dynamik auslöst. Die Dynamik besteht aus einer Oszillation, bedingt durch resonant
tunnelnde Cooper-Paare, und einem exponentiellen Zerfall, welcher durch dissipati-
ve Tunnelereignisse zwischen dem Quantenpunkt und dem Normalleiter entsteht. Im
zweiten Szenario wird das System von außen angetrieben, um die Relaxation zu über-
winden. Wir analysieren die Paaramplitude im adiabatischen und schnellen Limes.
Für beide Szenarien können wir Oszillationen mit einer großen Amplitude anregen.
Um die Ausbreitung und Relaxation photoangeregter Ladungsträger in einer Fe/Au-

Heterostruktur zu untersuchen, haben wir die Trajektorien von Elektronen simuliert.
Mit einer Monte-Carlo-Simulation werden die Anzahl der Streuereignisse, die Energie
und die Propagationszeit bestimmt. Unser Modell ist durch kürzlich durchgeführte
Experimente motiviert. In den Experimenten werden die Elektronen mit einem La-
ser in der Eisenschicht angeregt. Die Elektronen bewegen sich durch die Grenzschicht
und erreichen schließlich die Goldoberfläche, an der sie mit einem weiteren Laser ge-
messen werden. Durch die Pump-Probe-Methode erhält man Zugang zur ultraschnel-
len Zeitentwicklung der Elektronenverteilung. Die Ergebnisse aus unserer Simulation
stimmen qualitativ mit denen aus dem Experiment überein. Mithilfe der Simulati-
on interpretieren wir die Dickenabhängigkeit der Elektronverteilung. Indem wir die
Anzahl der Streuereignisse gemäß der Simulation mit der experimentell bestimmten
Elektronenenergie verknüpfen, identifizieren wir das Transportregime der Elektronen,
das entweder ballistisch oder superdiffus ist.
Darüber hinaus berechnen wir die Dynamik der Elektronenverteilung in derselben

Probe mit Hilfe der Boltzmann-Gleichung in Kombination mit diffusem Transport.
Durch den diffusiven Transport ändert sich die Dickenabhängigkeit der Elektronenver-
teilung signifikant. Daher sind schichtdickenabhängige Messungen in der Lage, zwi-
schen den verschiedenen Transportregimen im Experiment zu unterscheiden. Durch
die Simulation und die diffusive Berechnung erhalten wir ein vollständiges Bild der
Transporteffekte im ballistischen, superdiffusiven und diffusiven Regime.
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Summary

At the nanoscale, multifaceted time-dependent transport effects of charge carriers can
occur. In general, these transport effects are the result of nonequilibrium conditions
which tend towards the equilibrium state. The nature of the nonequilibrium condi-
tions as well as the underlying system affect the transport of the charge carriers. In
this thesis, we study the pair-amplitude dynamics in a superconductor-quantum dot
hybrid and the propagation and relaxation of photoexcited electrons in a Fe/Au het-
erostructure as specific examples of nanoscale time-dependent transport.
The pair-amplitude dynamics is studied in a single-level quantum dot which is cou-

pled strongly to two superconducting leads. In addition, the dot is tunnel coupled to
a normal conductor. The coupling to the superconductors induces superconducting
correlations in form of a pair amplitude on the quantum dot. We describe the pair-
amplitude dynamics with a real-time diagrammatics approach where all noninteracting
degrees of freedom of the leads are integrated out. The diagrammatic method yields a
master equation that describes the time evolution of the quantum dot in terms of its
reduced density matrix.
We consider two different nonequilibrium scenarios. First, a quench which starts rich

pair-amplitude dynamics consisting of an oscillation arising from resonantly tunneling
Cooper pairs and an exponential decay due to dissipative tunneling events between
the dot and the normal conducting lead. Second, the system is externally driven to
overcome the relaxation. We discuss the response of the pair amplitude in the adiabatic
and in the the fast-driving limit. For both scenarios, we can excite oscillations of the
pair amplitude with a large amplitude.
To study the propagation and relaxation of photoexcited charge carriers in a Fe/Au

heterostructure, we compute numerically the trajectories of electrons propagating from
the Fe/Au interface to the Au surface. More precisely, the final energy and propagation
time is determined within the framework of a Monte-Carlo simulation. Our work is
motivated by recent experiments on a Fe/Au heterostructure. Here, the electrons are
excited with a back-pump laser in the Fe layer, injected into the Au layer and finally
measured by a probe laser on the Au surface. Due to the pump-probe method access to
the ultrafast time evolution of the hot electron distribution is gained. Our results match
with the experimental results on a qualitative level. With the detailed information
about the relaxation and propagation dynamics in the simulation, it is then further
possible to interpret the thickness dependence of the electron distribution. With our
simulation, we are able to identify the transport regime of the electrons which is either
ballistic or superdiffusive.
In addition, we calculate the dynamics of the electron distribution in the same sample

using the Boltzmann equation combined with diffusive transport. Due to the diffusive
regime, the thickness dependence of the electron distribution changes significantly.
Hence, thickness-dependent measurements are able to distinguish between the differ-
ent transport regimes in the experiment. With both the simulation and the diffusive
calculation, we get a full picture of the transport effects in the ballistic, superdiffusive
and diffusive regime.
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1. Introduction

The discovery of electricity changed human life centuries ago. A key technology for
society are artificial light sources. The first kind of such light sources is the light bulb.
The current flow of charged particles through a wire heats it up due to Joule heating.
The hot wire starts glowing according to Planck’s radiation law and emits photons in
the visible spectrum. Today, the light bulb disappears due to its small energy efficiency.
It is substituted by the more efficient light emitting diode (LED). Nevertheless, there
are still applications using Joule heating like the kitchen stove.

Hans Christian Ørsted discovered in 1820 that an electric current generates a mag-
netic field [1]. A simple application for this phenomenon is a wire that is arranged in a
coil. The coil serves as a powerful electromagnet whose field strength can be tuned by
the strength of the charge current [2]. Faraday discovered that the opposite process by
which a time-dependent magnetic flux induces an electric voltage is possible as well [3].
This leads to the development of electric generators and electric motors. The latter
are a key technology for several large scale applications in industry and small scale
in robotics. Electric motors play a crucial role in initiating a shift in the transporta-
tion sector away from fossil fuels toward sustainable, eco-friendly alternatives to face
today’s biggest global challenge: climate change.

The transfer of electric energy to magnetic energy and vice versa can be analyzed
in LC circuits. In such circuits, a coil is combined with a capacitor. The energy inside
the circuit is either stored electrostatically in the capacitor or in the magnetic field of
the current-carrying coil. The periodic transfer of energy between capacitor and coil
results in an alternating current flowing through the LC circuit. Due to the continuous
acceleration of charged particles, electro-magnetic waves are emitted from the device.
This principle is the basis for today’s telecommunication devices. Beginning with
the telegraph, the development leads towards every-day applications like the radio,
television and mobile internet [2].

Turning back to the transport of charged particles in circuits, the demand for manip-
ulating the current flow in circuits arise. Transport in semiconductors is dramatically
different from that in metallic conductors. Manipulating the transport properties of
semiconductors by doping leads to the development of diodes and transistors. Diodes
block transport in one direction while allowing the charge current to flow in the opposite
direction. Transistors are three-terminal devices which allow a current flow between
two terminals (emitter and collector) if a certain voltage is applied at the third ter-
minal (base). These characteristics make it possible to build logic circuits and gates.
Therefore, the transistor is the most important component for microelectronic devices
like computers.

It seems to be impossible to substitute the computer and other microelectronic de-
vices from today’s society. Computers support tasks of different kinds e.g. administra-
tive tasks, media design, controlling of machines, calculations/simulations and many
more. Thereby, the demand for the computation power and time rises continuously in
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Chapter 1. Introduction

each of its task fields. Besides designing supercomputers which demands for a lot of
physical space, there are different approaches to increase the power of computers. One
possibility is the downscaling of the components to achieve more calculation power on
the same area. The computer’s central processing unit is an example of such a devel-
opment. The number of transistors on a single processing unit is rising exponentially.
In other computer components, new technologies are developed to increase power and
capacity. The hard drive disc is a current example where a new technology is in de-
velopment. So far, the digital data is stored in discrete areas of the hard drive [4].
Since the capacity growth of hard drive discs is slowing down it is currently discussed
to store the data in magnetic domain walls which further downscale the required space
and speeds up the data processing [5].

Another demand on electronic devices is the energy efficiency. Facing the current
challenges regarding the sustainable usage of resources and the environment, it is nec-
essary to search for alternative materials and concepts to design electronic components.
Understanding the underlying transport properties of the energy-carrying particles is
of key importance for the right choice of material and design.

A charged particle can be transported either ballistically, superdiffusively or diffu-
sively. Ballistic transport is characterized by propagation at a constant velocity without
scattering. Such a transport behavior seems to be odd in a metallic conductor since the
electrons interact with each other and the crystal lattice due to Coulomb interactions.
The interactions happen on a certain timescale and if a shorter time is considered, the
electron has not yet interact and propagates therefore ballistically. However, such a
point of view is only meaningful when the process of interest, e.g. the transport through
a material section, happens also on timescale which is much smaller than the interac-
tion timescale. A prominent example of ballistic transport in a mesoscopic system is
the quantum Hall effect [6]. If a strong magnetic field is applied on a two-dimensional
electron gas, this leads to the formation of unidirectional chiral edge channels [7]. As
a result, backscattering processes are prohibited and the Hall resistance becomes a
quantized property.

The diffusive transport regime is characterized by multiple collisions of the particle
with other particles and phonons in the material. A basic example of a diffusive charge
transport is a DC current through a metallic conductor. The DC current is generated
by an applied bias voltage to the conductor. Thus, there is an electric field inside the
conductor which accelerates the electrons which gain kinetic energy. The charge carriers
collide multiple times with other electrons, phonons and impurities in the conductor
and exchange energy. Since energy is exchanged with the crystal lattice, it heats up.
This so called Joule heating is the basic principle of a light bulb, see above. Another
type of diffusive transport is heat transfer. If a metallic plate has a hot left side and
a cold right side the temperature will equalize over time due the diffusive transport of
phonons.

Regarding the energy efficiency, it is of course favorable to design electronic devices
where only ballistic transport occurs. In a diffusive transport regime, a share of the
energy is transferred, e.g., to the crystal lattice and, hence, is no longer usable for
the device. In addition, the devices might need a cooling system which decreases the
energy efficiency further. A deeper understanding of the different transport regimes is
required here.

An intriguing question is how a transition from the ballistic to diffusive regime can
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be defined and identified. On a microscopic level, ballistic transport is the motion
of a particle without any collisions. Diffusive transport, in contrast, is governed by
multiple collisions. The transport of a single particle under diffusive conditions can be
described by a random walk. If a bias is applied to the system, the full ensemble of
particles would shift according to the nonequilibrium driving force. However, a particle
trajectory with only a few collisions would be classified as neither ballistic nor diffusive.
In literature, this intermediate transport regime is called superdiffusive. However, there
is no exact definition of the transition points to the ballistic and diffusive regime on
the microscopic level. In addition, it is challenging to identify the different regimes in
an experiment since there it is not possible to select single electrons from the ensemble.

Charge transport arises from nonequilibrium conditions in the system. Besides ap-
plying a voltage or temperature bias to the conductor there are also other possibilities
to bring a system out of equilibrium. Inducing a nonequilibrium particle density distri-
bution is another option to induce transport processes. Pumping a metal with a laser
is an excellent way to introduce a nonequilibrium distribution of hot electrons in the
system. In so called pump-probe experiments, a pump laser is followed subsequentially
by a laser pulse which probes the hot electrons. The photoemitted electrons can be de-
tected afterwards. The time delay between the pump and probe pulse can be arranged
in the setup giving access the time evolution of the density distribution. The time
resolution is determined by the accuracy of the delay stage in the experimental setup
as well as the pulse width of the pump and probe laser pulses. In the last decades, laser
setups generating fs laser pulses have been developed. At these ultrashort timescales,
it is possible to investigate the relaxation of hot electrons into equilibrium.

If the pump and probe pulses are spatially separated, access to the transport prop-
erties is gained. An interesting sample in which transport and relaxation dynamics
can be analyzed by pump-probe experiments are heterostructures, e.g., an iron-gold
(Fe/Au) layered material where a single-crystalline gold layer is grown on an iron sin-
gle crystal by molecular beam epitaxy. If the system is pumped on the iron side of
the sample the pump pulse is absorbed almost completely by the electronic system in
the iron layer [8]. When there is a perfectly single-crystalline interface most of the
electrons are transmitted into the gold layer. Thus, in this heterostructure an electron
distribution is rapidly injected into a homogeneous gold layer giving a nonequilibrium
distribution of charge carriers whose transport mechanisms can be studied by probing
the system from the gold side. Additionally, the Fe/Au interface is only transparent
to electrons with an energy in a certain range [9]. This gives the opportunity to inject
the electrons within a certain energy window and study relaxation and transport dy-
namics accordingly. The analysis of the electron dynamics in the Fe/Au model system
provides new insights to the transport regimes.

Turning back to the development of computers, one needs also to discuss a new
generation of computers which is currently in development - the quantum computers.
The key advantage of quantum computers over classical computers would be the us-
age of quantum states which can be explained by considering the following example.
A classical computer can represent any number between 0 and 255 using eight bits.
In contrast, a quantum computer would be able to represent the same numbers si-
multaneously using eight quantum bits. With a few hundred entangled quantum bits
more numbers than there are atoms in the universe can be represented [10]. Hence,
the calculation power of quantum computers is in general higher compared to classical
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Chapter 1. Introduction

computers depending on the specific field of application.

The main idea of a quantum bit is to use the superposition of quantum states.
Thus, different from the classic bit not only the state 0 and 1 are possible but also any
superposition of them. The design of a quantum bit is a challenging endeavor since a
detailed knowledge about the underlying quantum effects is necessary. Superconductors
hosts many interesting quantum phenomena that are promising for the construction of
quantum bits on a macroscopic system size. One example is the formation of Cooper
pairs. The Cooper pairs interact with normal conductors and insulators via Andreev
reflections and the Josephson effect which we will explain in more detail later on.
During an Andreev reflection a Cooper pair is either formed or split. In the latter
case the superconductor act as a source for spin-entangled electrons which can be
spatially separated via a crossed Andreev reflection [11]. Due to the Josephson effect
interesting phenomena occur at the interface between two superconductors. Such a
setup is also called Josephson junction. Here, the Josephson current can be controlled
by the superconducting phases.

Further interesting transport effects occur by the combination of superconductivity
with a sort of interaction, e.g. Coulomb interaction. In quantum dots, strong Coulomb
interactions can occur. In addition, quantum dots can be coupled to superconductors
forming a Josephson junction. Due to the coupling, superconducting correlations are
induced on the quantum dot. This allows, on the one hand, to study transport effects
and, on the other hand, bring additional degrees of freedom like the level position of
the dot into play. The superconducting correlations on the dot can be studied by the
pair amplitude which is related to the collective motion of the Cooper pairs in the
superconducting condensate.

In this thesis, we will study both the nonequilibrium transport and relaxation dy-
namics of hot electrons in a Fe/Au heterostructure and the pair-amplitude dynamics
in strongly-coupled superconductor-quantum dot hybrids. The thesis is structured as
follows. In Chapter 2, we will introduce the components of our two models. For the
superconductor-quantum dot hybrid, we will start with an introduction of supercon-
ductivity and basic transport phenomena in quantum dots. Afterwards, the transport
phenomena present in hybrid structures are discussed. Experiments studying trans-
port and relaxation in Fe/Au and other similar heterostructures are introduced. Sub-
sequentially, theoretical approaches to model the transport and relaxation dynamics
are reviewed. A special focus relies on the Boltzmann transport equation. We give
a detailed introduction into an analytic calculation of the relaxation of hot electrons
via electron-electron scattering published in Ref. [12]. Chapter 2 is closed by a brief
introduction of possible transport regimes of electrons in metals.

In Chapter 3, the superconductor-quantum dot hybrid used to study the pair-
amplitude dynamics is introduced. We begin with an explanation of the basic sys-
tem Hamiltonian in the effective representation of the superconductor-quantum dot
hybridization. Hereby, we use the infinite-gap limit which is a convenient descrip-
tion of subgap physics in strongly-coupled devices. The transport dynamics of the
devices is calculated by a master equation. The derivation of the master equation
with a real-time diagrammatic approach is shown in detail for our specific system.
For a physically more intuitive picture, the master equation is transformed into the
pseudospin representation. The relation between the pseudospin components and the
Josephson and Andreev current is explained. The currents give experimental access to
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the pair-amplitude dynamics in such systems.
The results are presented subsequentially. We investigate two types of pair-amplitude

dynamics in the system. The first type is the relaxation of the pair amplitude from
a quenched state into the nonequilibrium stationary state. Here, we first calculate
the time evolution as a function of the initial quench from the master equation and,
afterwards, analyze the resulting dynamics in the framework of the pseudospin. The
second type of pair-amplitude dynamics is the periodic driving of the system by an
external variation of the parameters. The two limits which are driving the system
adiabatically and fast are considered. In the adiabatic limit, the evolution of the pair-
amplitude is approximated by the stationary master equation. In the fast driving
limit, the master equation is decomposed into its Fourier components with respect to
the driving force. For both driving schemes, we find pronounced oscillations of the pair
amplitude. In the limit of adiabatic driving, we are able to link the pair-amplitude
oscillation directly to the Higgs mode in bulk superconductors. In the fast driving
limit, we find that the quantum dot is able to follow the fast external driving up to
high frequencies. In the end of the chapter, the results are summarized and a conclusion
is drawn.
In Chapter 4, we discuss the transport dynamics in the Fe/Au model system. In

the beginning, we set up a trajectory-based Monte-Carlo simulation that follows the
path of single electrons through a sample. We extract the energy and time-dependent
intensity spectra which are compared qualitatively to the experimental results. Sub-
sequentially, the effective electron velocity and its insights into the transport regimes
of the electrons is discussed. Afterwards, we introduce the electron passage velocity
and discuss the corresponding results. We explain the apparently higher effective ve-
locity of scattered electrons in thicker Au sample by analyzing the shift of the injection
angle with increasing sample thickness. Beyond ballistic and superdiffusive transport,
we introduce a diffusive transport model based on the Boltzmann equation to show
the similarities and differences of the energy- and time-dependent intensity spectra
and the effective velocity. Finally, we discuss the transition between the diffusive and
superdiffusive transport regime.
We close this thesis with a conclusion and short outlook on future data analysis with

the methods presented here.
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2. Nonequilibrium transport dynamics
at the nanoscale

Here, we introduce the systems and their properties which we analyze in Chapter 3
and 4. We focus on the transport features of the corresponding systems. In this
thesis, we study on the one hand the pair-amplitude dynamics of superconductor-
quantum dot hybrids. Therefore, we begin with an introduction of superconductivity
in this chapter. Fundamental for the description of superconductivity is the microscopic
theory by Bardeen, Cooper and Schrieffer (BCS) which was awarded by a Nobel prize.
We introduce the phenomenological description by the Ginzburg and Landau too since
it allows us to interpret collective excitations of the superconducting condensate in
terms of the Higgs and Nambu-Goldstone mode. Quantum dots which are coupled
to superconductors exhibit interesting transport phenomena. In order to understand
the origin of the transport phenomena, we introduce the basic transport properties
of single-level quantum dots. Consecutively, we discuss special transport features of
superconductor-quantum dot hybrids.
On the other hand, our second research focus is the spatio-temporal electron propa-

gation dynamics in an iron-gold (Fe/Au) heterostructure. In Chapter 2.4 we introduce
the development of Fe/Au heterostructures as a model system to study spintronic prin-
ciples. Afterwards, we discuss pump-probe experiments with Fe/Au samples which lead
to a discussion of the occurring transport features in metals. We introduce theoretical
models to predict and describe the electron dynamics. A special focus relies on the
Boltzmann equation and its solution by Kabanov [12]. We close this chapter with a
brief discussion of the different transport regimes.

2.1. Superconductivity

Superconductivity is a fascinating material property that has been discovered more
than a hundred years ago. After a successful attempt to liquify Helium, Kammerlingh-
Onnes studied the electrical conductance of materials near zero temperature in 1911
[13]. It turns out that the electric resistance of some materials vanishes below a critical
temperature. Moreover, the materials become perfect diamagnets which are able to
shield a magnetic field from penetrating inside up to a critical field strength. The
shielding is called Meisner effect. Due to the new properties, superconducting is a new
phase. Albeit that old, superconductivity is still an intriguing topic for scientists today
[14].
Superconductors are already tested in every day applications, e.g. as conductors

for the power grid, see the pilot project [15]. Here, high-temperature superconductors
cooled with liquified nitrogen substitute a much larger conventional copper conductor.
The superconductor has the advantage that it transports the electricity lossless and
with a higher current density. For the operation, it is important that the critical current
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Chapter 2. Nonequilibrium transport dynamics at the nanoscale

density is not exceeded since the superconductor will be destroyed otherwise. Besides
the reduced required space for the conductor, the project tests if the higher transport
efficiency leads to a higher total efficiency by taking the additional energy demand due
to cooling into account. Another application of superconductivity are superconduct-
ing coils which are powerful electromagnets that have been developed many decades
ago [16] and generate magnetic fields up to 45.5T [17]. Powerful magnets are the
foundation for magnetic resonance imaging in medicine, nuclear magnetic resonance
in pharmacy and particle acceleration e.g. in CERN. In this type of accelerators, the
superconducting magnets are used for multiple applications. On one hand, powerful
magnets are used for accelerating the particle and, on the other hand, the magnetic
fields are used for steering and focusing the beam.
The potential use of superconductors in quantum computers are discussed in numer-

ous papers [18–22]. The key advantage of superconducting quantum bits is the lossless
transport which provides a reduction in the loss of information. On the other side,
superconducting phenomena like the Josephson effect provides the possibility to build
nonlinear inductors. Such a circuit element leads to quantum-mechanical energy levels
which can be isolated to get two computational basis states |0⟩ and |1⟩. The transition
energy of these energy levels is in the microwave range. Therefore, it is possible to
control the quantum bit externally [18].
Forty years after the discovery of superconductivity, the first phenomenological the-

ory was proposed by Ginzburg and Landau in 1950 [23]. The Landau theory of the
2nd order phase transition finds an approximate form of the free energy near the phase
transition at Tc. In the absence of electromagnetic fields and gradients, the free energy
is given by

fS − fN = α|ψ|2 + 1

2
β|ψ|4. (2.1)

This is a series expansion of the free energy in powers of the order parameter |ψ|2
which gives the local density of superconducting electrons. The order parameter is
zero on the high-temperature side of the phase transition and different from zero on
the low-temperature side. If the order parameter is zero, there are no superconducting
effects on the free energy. For a superconducting condensate with a nonzero num-
ber of superconducting electrons the minimum of the free energy occurs at finite ψ.
Therefore, the parameter α needs to be smaller than zero and β needs to be positive.
Only then, the formation of a superconducting condensate is stable. To describe super-
conductivity, Ginzburg and Landau use a phenomenological ansatz. They introduce
the order parameter as a complex number ∆eiφ, where ∆ is the absolute value of the
order parameter and φ the superconducting phase. The Ginzburg-Landau theory de-
scribes superconductor properties close to their critical temperature well since it is an
approximation close to the phase transition.
Even though the Ginzburg-Landau theory explains many experiments, it is a phe-

nomenological approach that lacks of an underlying microscopic description until the
BCS theory by Bardeen, Cooper and Schrieffer was established in 1957 [24]. The BCS
theory is a microscopic theory that is still the foundation of today’s understanding
of superconductivity. This theory provides results that agree excellently with results
from experiments and was honored in 1972 with the Nobel prize. The theory is very
powerful in describing superconducting phenomena like the temperature dependence
of the gap, ultrasonic attenuation and nuclear relaxation.
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2.1. Superconductivity

The basis of the BCS theory is the effective attraction between two electrons me-
diated by electron-phonon coupling. Fröhlich proposed in 1950 the importance of the
electron-phonon coupling for superconductivity [25]. Intuitively, one expects the elec-
trons to repel each other due to the Coulomb force. To understand the attraction with
a simple model, we consider an electron propagating through a crystal lattice. Due
to the Coulomb force, the electron attracts the positively charged ions of the crystal
lattice leading to a local higher density of the positively charged ions. This positively
charged localization of the crystal lattice attracts a second electron. In total, there
is a net attraction between the two electron mediated by the crystal lattice. Cooper
showed that the Fermi sea is unstable with respect to pair formation in presence of ar-
bitrarily weak attractive interactions. The electrons condense into Cooper pairs where
the electrons have opposite momenta and form a spin-singlet state in a second-order
phase transition. The size of the Cooper pair is given by the coherence length of the
superconducting material ξ = ℏvF/∆ where ℏ is the reduced Planck constant, vF the
Fermi velocity and ∆ the absolute value of the order parameter. The size of a Cooper
pair in aluminum at T = 0 is 1.6µm [26].
To describe superconductivity, the coupling between electrons and phonons needs

to be taken into account. In the BCS theory, the influence of phonons is integrated
out which results in an effective electron-electron coupling, the Cooper pairing. The
kinetic energy of the electrons as well as the pairing potential which forms the Cooper
pairs are used to describe a superconductor. The pairing Hamiltonian is given by

H =
∑
kσ

ξkc
†
kσckσ +

∑
kl

Vklc
†
k↑c

†
−k↓c−l↓cl↑. (2.2)

Here, ξk denotes the particle energy above the Fermi energy, c† and c are the creation
and annihilation operators. Vkl gives the scattering of electrons from state l to k.
For simplification, a mean-field approximation is made by a canonical transformation
which we summarize below according to Ref. [23]. For that, we use that the operators
c−l↓cl↑ have a nonzero expectation value bk. Thus, the product of the operators can be
written as

c−l↓cl↑ = bk + (c−l↓cl↑ − bk), (2.3)

where the bracket gives fluctuations from the mean value. Inserting this into the pairing
Hamiltonian and neglecting second order fluctuations gives the mean-field Hamiltonian

H =
∑
kσ

ξkc
†
kσckσ +

∑
kl

Vkl

(
c†k↑c

†
−k↓bl + b†kc−l↓cl↑ − b†kbl

)
. (2.4)

Hereby, the bk are determined in a self-consistent calculation, such that

bk = ⟨c−k↓ck↑⟩ . (2.5)

The energy gap is defined as

∆k = −
∑
l

Vklbl, (2.6)

which gives the nondiagonal Hamiltonian in the mean-field approximation

Hmf =
∑
kσ

ξkc
†
kσckσ −

∑
k

(
∆kc

†
k↑c

†
−k↓ +∆†

kc−k↓ck↑ −∆kb
†
k

)
. (2.7)
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Chapter 2. Nonequilibrium transport dynamics at the nanoscale

As shown independently by Bogoliubov [27] and by Valatin [28], this Hamiltonian can
be diagonalized by a linear transformation given by

ck↑ = u†kγk↑ + vkγ
†
k↓, (2.8)

c†−k↓ = −v†kγk↑ + ukγ
†
k↓. (2.9)

Here, γk are defined as new Fermi operators for the linear transformation. The numeri-
cal coefficients uk and vk fulfill the normalization condition |uk|2+|vk|2 = 1. The Fermi
operator γk↑ aims to the decrease the system momentum by k and reduce the system
spin Sz by ℏ/2 by creating and annihilating the corresponding electrons. The operator
γk↓ aims for the opposite, thus increasing the system momentum by k and the spin Sz

by ℏ/2. By inserting the new operators into the nondiagonal mean-field Hamiltonian
and choosing the coefficients uk and vk such that the nondiagonal elements vanish, we
finally obtain the diagonal mean-field Hamiltonian which is given by

Hmf =
∑
k

(
ξk − Ek +∆kb

†
k

)
+
∑
k

Ek

(
γ†k↑γk↑ + γ†k↓γk↓

)
. (2.10)

The first sum denotes the condensation energy of Cooper pairs. If the condensation
energy is less than zero, Cooper pair formation is favored. ξk is the particle energy above
the Fermi energy. The eigenstates of a superconductor, see second sum, described by
γk are so called Bogoliubons which are quasiparticle excitations. The excitation energy
of quasiparticles is given by

Ek =
(
ξ2k + |∆k|2

)1/2
. (2.11)

Hence, 2 |∆k| is an energy gap centered at the Fermi energy. The gap gives the re-
quired energy to excite quasiparticles in the superconductor. The quasiparticles are
a superposition of the electron and hole wave function in the superconductor. The
superposition becomes strongest for ϵ = ∆ and vanishes for ϵ≫ ∆. The quasiparticles
are either of an electron-like or hole-like nature depending on the dominating wave
function. Since there are no free single-particle states inside the gap, the only way for
electrons to enter the gap is by forming a Cooper pair at the Fermi energy.
The Cooper pairs are described by a macroscopic wave function ∆eiφ. This de-

scription is analogue to the earlier introduced Ginzburg-Landau theory. The order
parameter is a dynamic quantity which can exhibit collective oscillations such as the
Nambu-Goldstone mode and the Higgs mode. The free energy of the Ginzburg-Landau
theory, see Eq. (2.1), is the best way to understand these oscillations. Plotting the free
energy as a function of the order parameter in a complex space gives a Sombrero po-
tential, see Figure 2.1. The Nambu-Goldstone mode is a gapless excitation of the
superconducting phase φ in the minimum of the sombrero potential while the Higgs
mode is a gapped excitation which oscillates around the minimum of the free energy. In
bulk superconductors, the Nambu-Goldstone mode is shifted to the plasma frequency
due to the Anderson-Higgs mechanism [29–31]. Pekker and Varma give an intuitive pic-
ture in their review [32] which takes into account the sombrero potential, see Fig. 2.1.
Since the phase mode is energy invariant, there exists a zero energy or massless mode
of fluctuations of the density current in the long wavelength limit. As pointed out
by Anderson [29], such density fluctuations occur in superconductors at the plasmon

10



2.1. Superconductivity

Re(∆)
Im(∆)

F

Higgs mode

Nambu-Goldstone
mode

Figure 2.1.: Sombrero potential: Free energy as a function of the order parameter in a com-
plex parameter space. The blue arrow indicates the gapless Nambu-Goldstone
mode and the red arrow shows the gapped excitation of the Higgs mode.

energy due to the large interaction range of the Coulomb force. Hence, the Higgs mode
is the only remaining collective, low-energy excitation in bulk superconductors. Since
the Higgs mode coincides with the energy of the superconducting gap, the frequency
of the Higgs mode is

ℏωH = 2∆, (2.12)

for zero crystal momentum. Since this energy marks the lower boundary of the quasi-
particle excitations, the decay into single-quasiparticle excitations is suppressed. For
a nonzero momentum, the Higgs mode can decay into quasiparticle excitation [33].
The experimental detection of the Higgs mode is a challenging endeavor. The Higgs

mode is charge neutral and couples only quadratically to external electromagnetic fields.
Therefore, large field strengths are required to excite the Higgs mode. In addition, the
excitation energy in typical BCS superconductors lies in the THz range. Suitable laser
sources and the corresponding detectors have been developed only recently after a
long time of development in other fields of terahertz physics [34]. The Higgs mode
excitation energy is the same as for quasiparticles. Thus, the Higgs mode is masked
by quasiparticles if the excitation of the latter is not suppressed. The first indirect
detection of the Higgs mode has been reported in superconductors that host charge
density waves [35, 36]. Here, the Higgs mode becomes Raman active due to electron-
phonon coupling. In a Raman spectrum, the coupling appears as an additional peak
close to the energy of the superconducting gap.
With powerful THz lasers, it is possible to detect the Higgs mode directly with

pump-probe experiments [37]. The experimentally observed oscillation of the elec-
tromagnetic probe signal is explained theoretically in terms of Anderson pseudospin
dynamics in the x-y plane in a BCS model [38] and by gauge-invariant kinetic equation
of superconductivity [39]. The Higgs mode has also been probed by its third-order
nonlinear optical response which provides a clear distinction between the Higgs mode
and quasiparticle excitations [40, 41]. Recently, the Higgs mode has also been detected
in strongly-interacting fermionic superfluids [42]. Further theoretical studies focus on
the Higgs mode in unconventional d-wave superconductors [43, 44], and on the cou-
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Chapter 2. Nonequilibrium transport dynamics at the nanoscale

pling of the Higgs and Leggett modes in two-gap superconductors [45]. The Leggett
phase mode corresponds to fluctuations of the interband phase difference. Recently,
the Higgs mode has been used to amplify incident light pulses [46]. For current reviews
on the Higgs mode in superconductors see Refs. [32, 33].

2.2. Quantum dots

Quantum dots are zero-dimensional objects that interact with their environment. Dif-
ferent types of quantum dots are realizable. For example, nanoparticles which can
be synthesized with an arbitrary size, acts as quantum dots. The discovery and the
synthesis of quantum dots was awarded with a Nobel prize in 2023. Another type of
quantum dots are solid state quantum dots. These quantum dots are small islands
of a different material than the surrounding environment. Quantum dots have many
interesting electronic, optoelectronic and other phenomena due their zero-dimensional
nature. The confinement leads to a limited number of electrons that are able to occupy
the quantum dot. Therefore, the quantum dot has discrete energy states and a discrete
density of states. The level position of quantum dots is determined by its size. This
can be understood by imaging that an electron wave needs to fit into the quantum dot.
The smaller the quantum dot the less space has the electron wave and the higher is
the energy the electron absorbs and emits. Consequently, quantum dots can be used
as a light source that emits photons of any wavelength. [47–51]. This characteristic
has already been used to produce every-day applications like QLED TVs [52]. Other
applications based on quantum dots as light source are quantum dot lasers [53]. Quan-
tum dot lasers have several advantages over bulk semiconductor lasers. At first, the
wavelength is almost arbitrarily tuneable by the spatial extent of the used quantum
dots. The size quantization leads to an increase in the density of states near the band
edges. Consequently, the lasing threshold current density is decreased from 1050A/nm
in bulk lasers to 45A/nm in quantum dot lasers. In addition, the zero-dimensional na-
ture of quantum dots leads to a strong overlap of the electron and hole wave function
and, thus, to a high recombination rate. Finally, the emitted wavelength of quantum
dots are stable up to room temperature if the quantum dot is suitably small that the
first energy level above the ground state is not thermally reachable [54].
The opposite physical process where the quantum dot absorbs photons to create an

electron-hole pair is exploited to produce solar cells based on quantum dots [55]. Key
advantage for quantum dot solar cells is again the size-tuneable wavelength. Exploiting
this property, it is possible to design a solar cells which is able to absorb the full
spectrum of sunlight without using a bunch of different materials. See Ref. [47] for a
review on quantum dot solar cells.
Besides these multiphoton applications quantum dots can also act as single-photon

emitters [56–60], which are key for quantum information technologies [61]. Moreover,
quantum dots play an important role in the development of quantum computing [62–
64]. Various devices constructed with quantum dots like single-electron emitters which
provide single electrons on demand [65] and spintronic devices [63, 66] provide the
foundation to study quantum effects which can be exploited to possibly construct a
quantum computer.
Before we focus on transport effects of quantum dots, we consider the properties of

an isolated quantum dot. Due the small extent of the quantum dot, it has discrete
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Figure 2.2.: a) Schematic sketch of a quantum dot coupled to a source and drain electrode.
A voltage bias VSD is applied on the electrodes. The current I flows through
the dot. The level position of the quantum dot can be tuned with the gate
voltage VG. b) Energy diagram of the quantum dot coupled to source and
drain electrode with a voltage bias of VSD.

energy levels. Each energy level can be occupied by two electrons due to the Pauli
exclusion principle. An electron that occupies the energy level of a previously empty
quantum dot needs to have an energy ϵ that matches to the energy level of the quantum
dot. In strongly-interacting quantum dots the second electron needs an energy

E = ϵ+ U, (2.13)

to occupy the same energy level. The extra amount of energy U is required to overcome
the on-site Coulomb repulsion.
In the following, we want to focus on the transport features of quantum dots which

are relevant for the model we discuss in Chapter 3.1. For a general insight into the
basic transport phenomena of a quantum dot, we consider a system in which a single-
level quantum dot is coupled to a source and a drain electrode. The energy levels of
the quantum dot can be tuned with a gate voltage. The system is sketched in Fig. 2.2
panel a). The voltage VSD between the source and drain electrode yields a difference
in the electrochemical potentials. There are three configurations of the level position
of the dot. If the energy level of the quantum dot is energetically between the Fermi
energy of source and drain electrode, see Fig. 2.2 panel b), an electron can tunnel
from the source electrode onto the quantum dot. From here the electron can proceed
tunneling to the drain electrode. In this case, a net current I can be measured between
the source and drain electrode. If the dot level is tuned above the electrochemical
potential of the source electrode µS it is not possible for the electron to tunnel onto
the dot. In this case, the current flow between source and drain is blocked. Another
configuration is when the energy level of the dot is tuned below the electrochemical
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Chapter 2. Nonequilibrium transport dynamics at the nanoscale

potential of the drain electrode µD. Here, an electron can tunnel either from the source
or the drain electrode onto the quantum dot. It is also possible that a second electron
tunnel onto the quantum dot if it has enough energy to overcome the Coulomb force.
Due to the Pauli exclusion principle the single-level quantum dot is with two electrons
fully occupied and further current flow is blocked in this configuration.
When we consider the system in a low temperature regime there exist also another

type of tunneling which is called cotunneling. Hereby, the energy level of the quantum
dot is tuned below the electrochemical potentials of both source and drain electrode.
As a starting point, we assume the dot to be single occupied. In a cotunneling process
an electron from the electrodes tunnels onto the quantum dot and simultaneously the
dot electron uses this energy to tunnel into one of the electrodes. Before recognizing
that cotunneling is of another type of tunneling it was viewed as a limitation in the
resolution of sequential tunneling which we have discussed above [67]. In addition,
it also possible to find a transition from an empty to a doubly occupied quantum
dot by a cotunneling event where two electrons tunnel coherently onto the dot. The
opposite process is also possible when energy is introduced into the system such that
the electrons can tunnel coherently from the dot to the electrodes.

2.3. Transport phenomena in hybrid structures

In this section, we discuss transport phenomena in more complex systems where normal
conductors and superconductors are connected to a quantum dot. To go step-by-step,
we start with simple junctions to introduce two important transport phenomena, the
Andreev reflection and the Josephson current. For the Andreev reflection, we consider
a normal conductor coupled to a superconductor with an order parameter ∆. We
assume a transparent interface in between the conductors, see Fig. 2.3. Panel a) shows
the incident of an electron with energy EF+ ϵ at the normal conductor-superconductor
interface. Here, ϵ denotes the energy of the electron above the Fermi energy EF. The
energy of the electron is inside the gap of the superconductor 2∆. Since there are no free
single-particle states available in the superconducting gap the electron forms a Cooper
pair with another electron from the normal conductor. Due to charge and particle
conservation the second electron leaves a hole in the normal conductor. The hole has
an opposite momentum compared to the incident electron. The resulting process is an
incident electron which is Andreev reflected as a hole by forming a Cooper pair in the
superconductor.
The opposite process is marked in panel b) of Fig. 2.3. Here, the incident hole is

Andreev reflected as an electron by destroying a Cooper pair in the superconductor.
When the incident particle energy lies outside the superconducting gap, an additional
transport process comes into play. The electron can be either reflected or transmitted
at the interface to the superconductor. At first, we assume a barrier free junction
between normal conductor and superconductor. The process is best understood by
considering the dispersion relation of the free electrons in the normal conductor and
the dispersion relation of the quasiparticles in the superconductor which is [23]

ϵ(k) =

√[
ℏ2
2m

(k2 − k2F)

]2
+∆2. (2.14)
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Figure 2.3.: Normal conductor-superconductor junction with a perfectly transparent inter-
face. The extend in horizontal direction indicates the energy E of the particles.
The dashed line shows the Fermi energy EF. Here, Andreev processes below
the gap of the superconductor 2∆ are considered. In a) an electron with en-
ergy ϵ above EF is Andreev reflected as a hole with energy ϵ below EF at the
interface to the superconductor. In the superconductor the electrons form a
Cooper pair. Panel b) shows the opposite process where an incident hole is
Andreev reflected as an electron under destroying a Cooper pair.

The Fermi wave vector kF denotes the wave vector where the transition from electron-
like to hole-like quasiparticles occur.
The dispersion relations are given in Fig. 2.4. Here, blue line sections indicate elec-

trons (electron-like quasiparticles) and red line sections holes (hole-like quasiparticles).
The blue arrow in panel a) denotes an incident electron in the normal conductor. The
electron can either be reflected as a hole or transmitted into the superconductor where
it becomes an electron-like quasiparticle. In both cases, the direction of momentum
cannot change since we assume a perfectly transparent interface. For a reflection, the
electron needs to change the direction of the group velocity. Therefore, it can only be
Andreev reflected as a hole (red arrow in panel a)) as already explained for the case
when the electron energy is inside the gap. For a transmission both the direction of
momentum and group velocity need to remain unchanged. Therefore the electron can
only be transmitted as an electron-like quasiparticle into the superconductor, see blue
arrow in panel b). When we introduce a finite barrier at the interface, more processes
are possible. The barrier introduces the possibility of changing the direction of the mo-
mentum of the particle. In the example, sketched in Fig. 2.4, this allows the electron
to be reflected as an electron as well as to be transmitted into a hole-like quasiparticle
state.
The second transport phenomena has been proposed by Josephson in 1962 [68]. A

good model system to visualize the Josephson effect is the superconductor - normal
conductor - superconductor (SNS) junction, see Fig. 2.5. According to Josephson, a
particle current I between the superconductors has three contributions

I = Iqp(V ) + IAR(V ) cos(φ) + IJos sin(φ). (2.15)

The first contribution to Eq. (2.15) is a dissipative current due to quasiparticles with
an energy higher than the gap. These quasiparticles do not interact with the su-
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Figure 2.4.: Dispersion relation of a normal conductor (N) in panel a) and a superconductor
(S) in b). The blue sections of the dispersion relation represents electrons in a)
and electron-like quasiparticles in b). The red sections represents holes in a) and
hole-like quasiparticles in b). The blue arrow in a) marks the incident electron
which is either Andreev reflected as a hole (red arrow in a)) or transmitted into
an electron-like quasiparticle state (blue arrow in b)). The dashed line marks
the superconducting gap ∆ in panel b).
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Figure 2.5.: Schematic sketch of a superconductor - normal conductor - superconductor
(SNS) junction. Both superconductors have the same gap energy 2∆. The
phase difference between the superconductors is φ = φL − φR. The principle
of the subgap Josephson current is illustrated: a Cooper pair from the left
superconductor is transported through the normal conductor to the right su-
perconductor via Andreev reflections.
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perconducting condensate. Therefore, the quasiparticle current is independent of the
superconducting phases. The second contribution IAR(V ) cos(φ) is a quasiparticle cur-
rent interacting with the superconducting condensate via Andreev reflections. Due
to this interaction, the contribution depends on the cosine of the phase between the
superconductors φ = φL − φR. Both the first and the second contribution require
an applied voltage bias. The voltage bias between the superconductors results in a
time-dependent phase difference

φ̇ =
2e

ℏ
V. (2.16)

Consequently, the contributions of IAR and IJos oscillate with frequency 2e
ℏ V . High

GHz frequencies are already obtained if the applied voltage is in the microvolt range.
As a result, both contributions are averaged out and the time-averaged current I is
not a function of the phase difference. The third predicted contribution is only driven
by the phase difference between the superconductors. The origin of this current is a
supercurrent of Cooper pairs which are sensitive to phase differences. All of Josephson’s
proposed transposed phenomena have been verified in experiments [69].

Figure 2.5 illustrates the supercurrent that is the origin of the Josephson current
IJos. Here, Cooper pairs are transported from the left superconductor to the right
superconductor via a normal conducting layer in between. When a hole is Andreev
reflected at the left superconductor, a Cooper pair is split and an electron propagates
towards the left superconductor in the normal conductor. At the interface to the right
superconductor, the electron is Andreev reflected and forms a Cooper pair here. The
probability for both Andreev reflections can be controlled via the superconducting
phases but the strength of the supercurrent is only determined by the phase difference
of the superconducting phases.

Similar transport phenomena as proposed by Josephson for SNS junctions occur in
hybrid systems where the normal conductor is substituted by a single-level quantum
dot [70, 71]. The coupling strength Γ between superconductors and quantum dot
determines the possible tunnel processes and the transport properties of the device.
In the following, we discuss the weak, intermediate and strong coupling regime. We
consider a single-level quantum dot coupled to two identical superconductors with a
superconducting gap of 2∆. The tunnel processes in the different coupling regimes
are illustrated in Fig. 2.6. The energy level of the quantum dot is aligned with the
Fermi energy of the superconductors. In the case of weak coupling, see panel a),
only tunneling processes of single particles are allowed. Since there are no single-
particle states in the superconducting gap, particle transport is not possible for zero or
small voltage bias. Only if the voltage bias between the superconductors exceed 2∆/e
occupied quasiparticle states in the source superconductor are aligned with the free
quasiparticle states in the drain superconductor. In a first-order tunneling process, a
quasiparticle can tunnel onto the quantum dot and afterwards in another first-order
tunneling process into the drain superconductor.

In an intermediate coupling regime, see panel b), cotunneling of particles plays an
important role. Besides the single-quasiparticle tunneling introduced above, it possible
that a Josephson current flows through the quantum dot depending on the phase
difference and the level position of the quantum dot. To give one example of a tunneling
process, we consider a doubly occupied quantum dot and a Cooper pair in the left
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E E E
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Figure 2.6.: Illustration of the dominant tunneling processes in the a) weak coupling, b)
intermediate coupling and c) strong coupling regime. a) In the weak coupling
regime, there is only first-order sequential tunneling possible. Thus, there is
no tunneling possible when the energy level of the quantum dot is aligned
with the Fermi energy of both superconductors. Only if a voltage is applied
that aligns the filled quasiparticle states with the empty quasiparticle states
of the superconductors over the quantum dot sequential tunneling of single
particles is possible as illustrated. b) In the intermediate coupling regime, a
supercurrent of Cooper pairs across the quantum dot is possible due to second-
order cotunneling. Hereby, a Cooper pair tunnels first onto the quantum dot via
an intermediate virtual state (not shown). Afterwards, the two electrons form
a Cooper pair in the other superconductor via another virtual tunnel state. c)
In the strong coupling limit, Cooper pairs can tunnel resonantly through the
quantum dot allowing for arbitrary high orders of tunnel processes.

superconductor. One electron from quantum dot tunnels into the right superconductor
and one electron from the left superconductor tunnels into the quantum dot. Since
neither the electron from the quantum dot can enter the energy gap nor the remaining
electron in left superconductor can stay in the gap, a virtual tunnel state is created
where both of these electrons are shifted to quasiparticle states. To reach the final
state of this cotunneling event the electron from the left superconductor tunnels onto
the quantum dot and one electron tunnels coherently into the right superconductor
where it forms with the first electron a Cooper pair. This is only one possibility for
cotunneling of Cooper pairs. For more examples and details, see Ref. [71].

By increasing the coupling strength further, we reach the strong coupling regime.
Here, the coupling strength is much larger than the Coulomb blockade. Therefore, it
is equally probable that the quantum dot is empty, single or double occupied. Con-
sequently, resonant tunneling of particles even Cooper pairs is possible, see panel c).
Cooper pairs can tunnel from the source superconductor directly to the quantum dot.
From there the Cooper pair can continue to the drain superconductor. The resulting
supercurrent has the same properties as proposed by Josephson so the phase difference
between the superconductors can be used as a driving force for the current.

In this thesis, we additionally couple a normal conducting lead to the quantum
dot. The normal conductor introduces a dissipative type of dynamics into the system.
Electrons in the normal conductor interact with the superconducting condensate via
Andreev reflections. Due to this interaction, an Andreev current flows between the
superconductors and the normal conductor through the quantum dot. Furthermore,
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the normal conductor gives the opportunity to control the occupation of the quantum
dot. By tuning the chemical potential of the normal conductor far below the energy
level of the quantum dot, it is empty with a probability close to one. Increasing the
chemical potential far above the dot’s energy level will lead to a doubly occupied dot.
Using this, it is possible to prepare the quantum dot in the desired initial state which
is needed to study the specific transport effect.

Such three-terminal devices has been used to study the proximity effect induced on
quantum dots [72–74]. The proximity effect gives the quantum dot characteristics that
are related to superconductivity such as an Andreev bound state spectrum [75–77].
Recently, the proximity-induced pair amplitude has been studied in weakly supercon-
ductor quantum dot hybrids [78]. Here, the dot’s pair amplitude exhibit an oscillatory
dynamics which is analogue to the Higgs mode known from bulk superconductors. The
transient dynamics has also been extensively studied in systems with noninteracting
or weakly correlated systems [79, 80]. In these works, the pair-amplitude dynamics
has been interpreted in the framework of Rabi oscillations within the two-level system
consisting of empty and doubly occupied quantum dot. Besides studying the pair-
amplitude dynamics such three-terminal devices provide also a playground for other
transport phenomena. Similar setups act as Cooper pair splitters which are a source of
spin-entangled electrons [11]. The nonlocality of Cooper-pair splitting is a promising
quantum effect which might be used for quantum computing. In this thesis, we focus
on a three-terminal system consisting of two superconductors and a normal conductor
coupled to a strongly interacting quantum dot. The exact system and its modeling is
introduced in Chapter 3.

2.4. Transport and relaxation of hot electrons in Fe/Au
heterostructures

In the late 80s, researchers studied the magnetic properties of layered materials. Special
interest has been given to the stacking of ferromagnetic and antiferromagnetic films
after theoretical studies proposed a broad spectrum of magnetic phases [81]. Promising
candidates for high quality samples are Fe, Au and Cr due to negligible lattice mismatch
of these materials. In addition, the continuous development of molecular beam epitaxy
opens the door to produce single crystalline multilayer samples with these materials
[82–84]. In 1986, Grünberg et al. published their experiment on Fe-Cr-Fe multilayer
sample which shows the existence of antiferromagnetic interlayer exchange coupling
[85]. Due to this coupling the spin orientation in the Fe layers are antiparallel to each
other. Further studies on this system reveal the giant magnetoresistance [86] which was
awarded by a Nobel prize in 2007 [87]. Due to the giant magnetoresistance, the electric
resistance in system with antiferromagnetic coupling is stronger than in systems with
ferromagnetic coupling. Grünberg et al. explain this phenomena in terms of spin-flip
scattering of the conduction electrons.

The giant magnetoresistance is only one aspect in the research field of spintronics.
Other phenomena that have been studied extensively in Fe/Au heterostructures and
other layered systems are electron channeling [88] where minority and majority elec-
trons have different reflection and transmission probabilities at the interface according
to their spin. Additionally, the generation of ultrafast spin current pulses due to the
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Figure 2.7.: Schematic sketch of the time-resolved two-photon photoelectron emission spec-
troscopy on Au/Fe/MgO(001). The pump pulse with a photon energy of
hν = 2 eV excites electrons in Fe at the back of the sample. The electrons scat-
ter during propagation through Au and are photoemitted at the Au surface by
2hν = 4 eV photons from the probe laser. The electron energy is determined by
a spectrometer (not shown). The black dots represent the excited electrons and
the arrows possible relaxation and transport processes. Adapted from Ref. [9]
under Creative Common Attribution 4.0 International license.

thermal and nonthermal spin-dependent Seebeck effect has been studied [89]. The spin-
dependent Seebeck effect explains the generation of spin currents due to a temperature
gradient over a bulk ferromagnet [90] or an interface to a normal metal [91]. Another
spintronic phenomenon which has been studied in layered materials is the ultrafast
demagnetization due to spin-dependent electron-electron scattering after an excitation
by a laser pulse [92, 93]. Spin currents have been also investigated theoretically. Here,
the Fe/Au heterostructure is often considered as model system [94–96].

Experimental access to such ultrafast phenomena is gained by time-resolved pump-
probe experiments. Pump-probe experiments are established to study e.g. the elec-
tronic heating [97], electron-phonon relaxation [98] or the electron lifetimes [99]. The
first pump-probe experiments in gold have studied the nonequilibrium electron-heating
dynamics in gold [100]. Recently, theoretical approaches tackle the effect of the iron
layer on spin transport [101, 102]. In the last decade, the transport dynamics in Fe/Au
structures [8, 9, 89, 103–106] as well as in other material systems [93, 107] have been
extensively studied.

Next, we present the experimental results that are modeled in Chapter 4. We begin
with an introduction of the sample that has been analyzed by time-resolved pump-
probe measurements. Afterwards, we discuss the results of these measurements, see
Refs. [8, 105, 106]. Finally, we discuss the experimental results of our publication [9]
which shows thickness-dependent transport features.

The sample consists of an MgO(001) substrate on which a layer of Fe and a layer
of Au is grown epitaxially, see Fig. 2.7 for illustration. For the sample, two major
measurements have been used. First, a front-pump front-probe measurement where
the sample is pumped and probed on the Au side is used to study the local relaxation
dynamics. The second measurement type is the back-pump front-probe measurement
where the Fe side is pumped and the Au side is probed. Since the MgO(001) substrate
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Figure 2.8.: Normalized 2PPE intensity as a function of time for the depicted energies.
The data is taken in a back-pump front-probe scenario at a sample with a 7 nm
Fe layer and 25 nm Au layer. Time zero denotes the time when the maximum
intensity of the 2.2 eV signal is detected. Thanks to Florian Kühne for providing
and explaining the data.

is transparent to the pump laser pulse, the pump pulse excites the electron in the Fe
layer from below the Fermi edge to an energy above the Fermi edge. The delayed
probe pulse excites the electrons further such that they are emitted out of the sample.
With a time-of-flight measurement the kinetic energy and therefore the electron energy
before the probe pulse is determined. Due to the spatial separation of the pump and
probe laser pulse the electron distribution contains information about the relaxation
and the propagation [108]. For the same reason, it is not possible to determine the
exact passage time of the electrons since time zero is determined by the overlap of
the pump and probe pulses. Therefore, all times are taken relative to the arrival time
of the highest-energy electrons at E − EF = 2.2 eV. The 2PPE signal decays as a
function of delay time (t∗), see Fig. 2.8. The 2PPE signal increases in intensity in the
beginning and decays exponentially after reaching the maximum intensity. The higher
the energy, the faster the maximum is reached and the faster the signal decays. The
lower the electron energy the later the maximum of the 2PPE signal occurs. This is
due to transport effects and on the other hand due to the faster relaxation of the high
energy electrons.

In our collaborative publication [9], the 2PPE signal as a function of energy and
time has been analyzed, see Fig. 2.9. Two features appear in the signal. At 1.7 eV
there is a spectral signature occurring at t∗ = 0. The physical origin of this feature
is an interface state that allows for injection of the excited electrons from the Fe side
into Au at this energy. The high energy feature decays as function of time due to
scattering with electrons from below the Fermi edge. The feature is stronger with thin
Au thicknesses since it becomes more likely that the electrons scatter with increasing
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Figure 2.9.: Time-dependent 2PPE intensity as a function of energy with respect to EF

for different Au layer thicknesses, as indicated. The Fe layer thickness is kept
constant at 7 nm. The data has been taken in the backside-pumping geometry.
Adapted from Ref. [9] under Creative Common Attribution 4.0 International
license. Thanks to Florian Kühne for providing and explaining the data.

Au thickness. Hence, the number of electrons that reach the Au surface with their
original injection energy decreases and consequently also the 2PPE signal.

The second spectral signature is at E −EF = 0.6 eV. This feature occurs systemat-
ically at a later time t∗ the larger dAu is. Electrons contributing to this feature have
scattered at least one time because they are not injected at this energy. Therefore,
the intensity rather increases with increasing Au thickness because scattering events
become more likely. At very large thicknesses, the feature decreases again in intensity
because the electrons exchange too much energy to be measured in the configuration.
The observed increasing delay in the low energy feature is a result of the scattering.
Since the electrons scatter after a distance which is on average the mean free path,
the electrons need to take a path which is longer than the Au thickness. Thus, the
electrons which are measured at the low energy feature need on average a longer time
to cross the sample.

A plot of the time delay as a function of Au thickness reveals that the time delay t∗

increases sublinearly with the gold layer thickness (dAu) in the investigated range from
5 to 105 nm, see Fig. 2.10. As a consequence, the effective velocity veff which is the
ratio of dAu and t∗ increases approximately linearly with dAu. This behavior can be
understood by a simple model. Assuming an isotropic injection and scattering in Au
[9] which is a reasonable assumption as transport in Au is dominated by sp states in
the relevant energy range, the electrons have an equal probability to propagate along
the mean free path in all directions. Assuming that the electrons propagate always
with Fermi velocity vF = λ/τ , the mean free path λ can be connected to the electron
lifetime τ . Since the electrons are injected at 1.7 eV, they must undergo at least one
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Figure 2.10.: Time delay t∗ between maximum at 0.6 eV and 2.2 eV as a function of gold
layer thickness dAu. Thanks to Florian Kühne for providing and explaining
the data.

inelastic scattering event which requires on average the time τ . Hence, electrons need
to propagate over a distance λ, to reach an energy of 0.6 eV. The distance can be
connected to the gold layer thickness by

dAu = λ cos θmin, (2.17)

with θmin as the minimum angle to ensure one inelastic collision. The polar angle θ is
defined as the angle between the surface normal and the propagation direction. With
the definition of the effective velocity, the electron lifetime can be connected to the
mean free path by

veff =
dAu

t∗
=

dAu

t1 − t0
= vF

dAu

λ− dAu

, (2.18)

where we assume that time t0 is set by ballistic electrons propagating with θ = 0
through the sample. The time t1 is the time electrons with 0.6 eV need to reach the
sample surface. A series expansion for small gold layer thicknesses, dAu ≪ λ, gives the
observed linear dependence of veff ,

veff ≈ vF
dAu

λ
=
dAu

τ
. (2.19)

A linear fit of veff of the experimental data from Ref. [9] yields an electron lifetime which
is in good agreement with literature data for inelastic hot electron lifetimes obtained
with time-resolved two-photon photoelectron emission spectroscopy [99].
It is unlikely that the electrons experience only a single scattering event for all θ(dAu).

Therefore, an extended theoretical modeling is needed at this point to conclude on the
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Figure 2.11.: Illustration of a two-particle interaction where momentum is transferred. Two
cases are considered. a) shows the process where momentum p is gained. In
b), momentum p is lost via a collision with a second particle.

transport processes responsible for the features in the experimental data. In the next
part, we introduce theoretical concepts to model transport and relaxation processes.
Our own theoretical models and results are discussed in Chapter 4.

2.5. Theoretical modeling of relaxation and transport
dynamics

Besides the experimental insights into the relaxation and transport dynamics, multiple
theoretical descriptions of the underlying physics have been established. In this part
of the thesis, we will introduce the Boltzmann equation which serves as a model to
calculate the relaxation dynamics of many-body distributions. We focus on the local
energy relaxation at first. We show also analytic approaches to solve the energy relax-
ation. We close this section with a discussion about the transport regimes and their
characteristics.

2.5.1. Boltzmann Equation

A well established approximation for the irreversible relaxation of a nonequilibrium
distribution into equilibrium is the Boltzmann equation [109]. Boltzmann assumed
that the many-body distribution function of N particles can be written as N times the
single-particle distribution function if correlations between the particles are neglected.
To avoid the problem that a noninteracting gas cannot reach an equilibrium, Boltzmann
introduced a collision term

∂f

∂t
= Γgain − Γloss. (2.20)

The processes behind the gain and loss rates Γgain and Γloss are illustrated in Fig 2.11
a) and b), respectively. To gain particles with momentum p, two particles with mo-
mentum p3 and p1 collide, exchange momentum and have the momenta p and p2

afterwards. If the scattering process is turned around, particles with momentum p and
p2 scatter and have the momenta p1 and p3 after the collision. Hence, the distribution
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looses particles with momentum p, cf. Fig. 2.11 b). If higher order scattering processes
are neglected, the Boltzmann collision term is given by

∂f

∂t
=

∫
d3p1

∫
d3p2

∫
d3p3W (p,p2;p1,p3)

[f(r,p1, t)f(r,p3, t)− f(r,p, t)f(r,p2, t)]. (2.21)

Here, the transition probability W (p,p2;p1,p3) is given by

W (p,p2;p1,p3) =
|p− p2|

m
σ(p,p2;p1,p3)δ(p+ p2 − p1 − p3)

δ(Ekin + Ekin,2 − Ekin,1 − Ekin,3), (2.22)

with scattering cross section σ(p,p2;p1,p3) and particle mass m. The delta functions
ensure momentum and energy conservation, respectively. When the Boltzmann equa-
tion is used to describe the relaxation of electrons, the Pauli exclusion principle needs
to be taken into account. Hence, the electrons can only scatter into free states. Thus,
the collision term is given by

∂f

∂t
=

∫
d3p1

∫
d3p2

∫
d3p3W (p,p2;p1,p3)F , (2.23)

with

F =f(r,p1, t)f(r,p3, t)(1− f(r,p, t))(1− f(r,p2, t))

− f(r,p, t)f(r,p2, t)(1− f(r,p1, t))(1− f(r,p3, t)). (2.24)

Here, the Fermi function f describes the occupied states and 1−f gives the free states
the electrons can scatter in. The first term corresponds to the scattering process in
panel a) of Fig. 2.11. The second term is the mathematical expression for the process
in panel b), accordingly.
The population dynamics of bosons and fermions have been described with the Boltz-

mann equation [110, 111]. The Boltzmann equation is also used to describe the evolu-
tion of hot electrons after the electronic system has been excited by an initial ultrashort
laser pulse [112, 113]. In these papers, the authors perform a (particle-in-cell) simula-
tion to tackle also the material specific density of states that has a strong influence on
the transmission probability W . Besides the mentioned numeric approaches, there is
also an analytic approach [12] which is explained in detail in the next part.

2.5.2. Analytic solution of the Boltzmann collision term

Before following the argumentation of Ref. [12], we simplify the Boltzmann equation
(2.23) by assuming isotropic scattering. In addition, we reduce the number of indepen-
dent integrals by using the momentum conservation explicitly

∆p = p1 − p = p2 − p3. (2.25)

Assuming isotropic scattering, the distributions fi are only a function of the absolute
value of the momentum p. Hence, the angles can be integrated out [110, 111]. Using
the proportionality between the momentum p and the wave vector k, it is possible to
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substitute the integrals over momentum space by an integration over energy [112]. The
resulting Boltzmann equation describes the redistribution of the energy in the electron
system due to electron-electron scattering

ḟξ =

∫
dξ′

∫
dϵ

∫
dϵ′K(ξ, ξ′, ϵ, ϵ′)δ(ξ + ϵ− ξ′ − ϵ′)

[fξ′fϵ′(1− fξ)(1− fϵ)− fξfϵ(1− fξ′)(1− fϵ′)]. (2.26)

In Ref. [12], the kernel K(ξ, ξ′, ϵ, ϵ′) is a function of the density of states and the
electron-electron scattering matrix element. The energies are given with respect to
the Fermi energy. Following the argumentation in Ref. [12], only the relaxation of
nonequilibrium electron-hole pairs with energies much smaller than the equilibrium
Fermi energy EF is considered. In this case, the kernel K(ξ, ξ′, ϵ, ϵ′) has only small
variations on the scale of the Fermi energy and one can approximate the kernel by a
constant K. Assuming that the laser excites only a small number of electrons from the
Fermi sea, one can linearize Eq. 2.26 by introducing a small nonequilibrium correction
ϕ(ξ, t) ≪ 1 to the equilibrium distribution nξ = (exp[ξ/kBT ] + 1)−1

fξ = nξ + ϕ(ξ, t). (2.27)

If only terms up to linear order in ϕ are considered, one obtains

ϕ̇(ξ, t) = K(kBT )
2

∫
dξ′

∫
dϵ

∫
dϵ′δ(ξ + ϵ− ξ′ − ϵ′)

[−ϕ(ξ, t)(nϵn−ξ′n−ϵ′ + nξ′nϵ′n−ϵ) + ϕ(ξ′, t)(nϵ′n−ξn−ϵ + nξnϵn−ϵ′)

− ϕ(ϵ, t)(nξ′nϵ′n−ξ + nξn−ξ′n−ϵ′) + ϕ(ϵ′, t)(nξ′n−ξ′n−ϵ + nξnϵn−ξ′)]. (2.28)

We would like to remark that the corresponding equation in Ref. [12] omits terms in
the bracket. The energies are given in units of kBT and the identity n−x = 1 − nx is
used. Terms which are independent from ϕ yield exactly zero after the integration. The
other four terms can be simplified by integrating them separately. For the first term
which depends on ϕ(ξ, t) all integrals can be solved analytically. For the other three
terms, there are always two integrals that can be solved analytically and one remaining
integral. The remaining integral is always an integration over the energy on which ϕ
depends, respectively. The remaining sum can be simplified by a transformation of
variables which finally gives

ϕ̇(ξ, t) = − 1

τ(ξ)
ϕ(ξ, t) +

K(kBT )
2

cosh(ξ/2)∫ ∞

−∞
dξ′ϕ(ξ′, t) cosh(ξ′/2)

[
ξ − ξ′

sinh((ξ − ξ′)/2)
− ξ + ξ′

2 sinh((ξ + ξ′)/2)

]
, (2.29)

for arbitrary initial perturbations ϕ(ξ, 0). The first term on the right side of Eq. (2.29)
describes the relaxation of the hot electron into equilibrium with an energy-dependent
relaxation time

τ(ξ) =
τ0

1 + ξ2

π2

, (2.30)

with τ0 = 2/(π2K(kBT )
2). The energy-dependent lifetime is in agreement with the life-

time of electron-hole excitations from Fermi-liquid theory. The second term describes
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the energy redistribution due to electron-electron scattering. At all times t, the energy
and the number of particles is conserved. Assuming that the initial perturbation is
antisymmetric in energy, the equation can be simplified further. If the system is, e.g.,
excited by a laser, electrons are excited symmetrically from below the Fermi energy to
an excited state by forming electron-hole pairs. In this case, the Boltzmann equation
can be simplified using the identity χ(ξ, t) = ϕ(ξ, t) cosh(ξ/2)

χ̇(ξ, t)

K(kBT )2
= −π

2 + ξ2

2
χ(ξ, t) +

3

2

∫ ∞

−∞
dξ′χ(ξ′, t)

ξ − ξ′

sinh((ξ − ξ′)/2)
. (2.31)

Both Eq. (2.29) and Eq. (2.31) can be solved numerically with a given initial pertur-
bation. So far, the solution to the collision term provides only a description of the
relaxation process but not of the transport processes. In Chapter 4, we discuss the
energy relaxation as a function of time for different initial distribution functions first.
Afterwards, we introduce a diffusive transport extension to apply the Boltzmann equa-
tion to the Fe/Au heterostructure discussed above assuming that there is only diffusive
transport possible in the sample.

2.5.3. Transport regimes in metallic structures

The simulations in Ref. [113] are based on the Boltzmann transport equation and,
therefore, already include the transport of particles in their algorithms. In addition,
they use material-specific scattering probabilities by taking the density of states of the
corresponding materials into account. The particle-in-cell approach has been applied
to find classic equation of motions for so-called superparticles that represents the full
hot-carrier distribution in a statistical fashion. The Fe/Au heterostructure serves in
Ref. [113] as a model system. This method is capable to describe the local relaxation
process as a function of time and, hence, this model agrees with the discussed energy
redistribution in Fig. 2.9. The transport regime changes from ballistic to diffusive with
increasing time the hot electrons spend in the sample. The transition does not change
rapidly which indicates that there is an intermediate transport regime which is called
superdiffusive.
For a better understanding, we introduce the transport regimes microscopically. For

diffusion, we consider a stochastic process like the Brownian motion [109]. During a
Brownian motion apparently random forces act on the observed particles. Averaging
over time, the total force is zero. However, there is a nonzero mean square displacement
in one dimension given by 〈

x2(t)
〉
= 2Dt, (2.32)

with diffusion constantD. This equation is used to define the diffusion coefficient which
is the exponent of t. A diffusion coefficient of one is a clear sign of diffusive transport.
On contrast, ballistic transport is the undisturbed uniform motion of a particle. Thus,
the particle does not scatter with any other (quasi)particles. Such a transport would
be indicated by a diffusion coefficient of two.
Scattering occurs on average after propagating the mean free path λ which is con-

nected to the electron lifetime τ by the Fermi velocity of electrons. If the observed
transport is on a scale much smaller than the mean free path it is unlikely that the
electrons have already scattered. Hence, the solution of Ref. [113] that the ballistic
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transport regime is visible for short times is reasonable. On the other side, if the
observation occurs over longer time such that the electrons propagate over distances
which are much larger than the mean free path multiple scattering events dominate
the trajectory of the electrons. Therefore, the transport is also on the diffusive side in
line with the model of Ref. [113].
The transition via the superdiffusive transport regime occurs when the path length

of the electrons is in the magnitude of the mean free path. Then, the electrons cross
the sample with a limited number of scattering events. Thus, the transport is neither
ballistic nor diffusive. The only sign of the transition is an anomalous generalized
diffusion coefficient between one and two. It is important to note that the timescale of
the observation has a strong influence on the transport regime as stated by Ref. [113].
So far, the discussion of the transport regime has been applied to the whole ensemble of
electrons. It is possible that all transport regimes coexist in one ensemble of electrons
e.g. at different energies. Additional research is required at this point.
Apart from the Boltzmann transport equation, there are also other models that

investigate the transport regimes of excited electrons in similar systems [93, 114]. Here,
the flux of an electron density based on the trajectory of the particles is derived.
Subsequentially, higher generations of electrons to include the electron cascade into
the density are considered. The result is in line with Ref. [113] regarding the transition
from ballistic to diffusive transport over time. However, the information on the energy
is not considered as well.
Finally, we introduce a scheme to derive an equation of motion for a particle in

a diffusive transport regime, cf. Ref. [109]. Diffusive transport can occur in several
different systems. The underlying mechanism is the flow of (quasi)particles from a
region with a high concentration to a region with a low concentration. In solids, Fick’s
law defines the diffusion current as

J = −D∂ρ

∂x
, (2.33)

with diffusion coefficient D and particle density ρ. This law is valid for systems with
a constant flow of particles. If we consider a closed system, the diffusion current will
decrease as a function of time due to equilibrating particle concentration. The time-
dependent diffusion can be described by Fick’s second law

∂ρ

∂t
= D

∂2ρ

∂x2
, (2.34)

which is deduced from the first law under consideration of the continuity equation
for the particle density. To solve the diffusion equation, there are multiple numeric
[115, 116] and analytic [117, 118] approaches. Mathematically, the diffusion equation
is equivalent to the heat equation that describes the heat flow in a system from the
hot to the cold side reaching an equilibrium state. A known one-dimensional solution
of the heat equation is the fundamental solution which is given by

ρ(x, t) =
1√
4πDt

∫ ∞

−∞
dx0 exp

[
−(x− x0)

2

4Dt

]
ρ0(x0), (2.35)

with initial distribution ρ0 at time t = 0. The fundamental solution folds the initial
distribution with a time-dependent Gaussian distribution. The standard deviation of
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the Gaussian distribution increases with
√
t. Thus, the distribution spatially broadens

over time. The equation of motion and the fundamental solution is used to expand the
solution of the collision term of Ref. [12] by diffusive transport, see Chapter 4.7.
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3. Pair-amplitude dynamics in
strongly-coupled
superconductor-quantum dot
hybrids

In this chapter, we investigate the pair-amplitude dynamics of strongly-coupled super-
conductor-quantum dot hybrids. In the first part of this chapter, we present the Hamil-
tonian used to model the system. Due to the strong coupling between the supercon-
ductors and the quantum dot, we use the hybridized system of both as basis for the
mathematical description of the transport with real-time diagrammatics. The trans-
port is described by a master equation which we write in a pseudospin basis that
visualizes the effects of the superconducting correlations induced on the quantum dot
by the superconductors. The pseudospin gives in intuitive picture to understand the
dynamics of the pair amplitude. The Andreev and Josephson current which are a
function of the pseudospin components as we discuss in Chapter 3.4 are measurable
quantities that can be used to analyze the pair-amplitude dynamics experimentally. In
the results, we show first the response of the pair amplitude after quenching the system
into a nonequilibrium state. Finally, we discuss the resulting dynamics if the system
is periodically driven by an external force. Here, we discuss the limit of adiabatic and
fast driving. The model and results have previously been published in Ref. [119].

3.1. Model

We consider a three-terminal setup consisting of a quantum dot which is symmetri-
cally coupled to two conventional BCS superconductors. The strong coupling induces
superconducting correlations on the quantum dot via the proximity effect. In addition,
the quantum dot is weakly coupled to a normal conductor. With the weak coupling,
only single-electron tunneling is allowed. The normal conductor serves as a dissipative
channel in the system. Similar systems have been discussed in Ref. [72, 74, 120]. The
system is sketched in Fig. 3.1. The total Hamiltonian

H =
∑
η

Hη +Hdot +Htun, (3.1)

describes the setup. The first term describes the three leads η ∈ [SL, SR,N] coupled to
the quantum dot. In a mean-field approximation the BCS Hamiltonian is given by

Hη =
∑
kσ

ϵηka
†
ηkσaηkσ +

∑
k

(
∆ηe

iφηaηk↑aη−k↓ +H.c.
)
. (3.2)
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Figure 3.1.: Schematic sketch of the three-terminal system. A single-level quantum dot
is strongly coupled to two grounded superconductors with superconducting
phases ±φ/2 by tunnel coupling strengths ΓSL = ΓSR = ΓS. Furthermore, the
quantum dot is weakly coupled to a normal conductor with electrochemical
potential µN. The proximity effect induces superconducting correlations on
the quantum dot which are characterized by the pseudospin I. Reprinted with
permission from Ref. [119]. Copyright 2024 by the American Physical Society.

The first term of Eq. (3.2) is the kinetic energy of the electrons in the lead η with spin σ
and momentum k. The second term is only nonzero for the superconducting leads since
it describes the superconducting pairing. The absolute value of the order parameter ∆
is assumed to be equal for both superconductors and zero for the normal conductor.
The phases of the order parameters are symmetrically chosen φSL = −φSR = φ/2 with-
out loss of generality. The critical temperature for both superconductors is assumed to
be equal and both superconductors are grounded µS = 0. The chemical potential µN

of the normal conductor can be used to control the occupation of the quantum dot.
The single-level, spin-degenerate quantum dot with level position ϵ is described by

the dot Hamiltonian

Hdot =
∑
σ

ϵc†σcσ + Uc†↑c↑c
†
↓c↓, (3.3)

where the second term denotes the on-site Coulomb repulsion U . The level position
can be tuned by a gate voltage. The tunneling between the dot and the reservoirs is
described by the Hamiltonian

Htun =
∑
ηkσ

tηa
†
ηkσcσ +H.c., (3.4)

with tunnel-matrix element tη which we assume to be spin and momentum independent.
The tunnel-matrix element is connected to the coupling strength via

Γη = 2π|tη|2ρNη , (3.5)
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with the density of states in the normal state ρN. Due to the symmetric coupling
between quantum dot and superconductors, we have ΓSL = ΓSR = ΓS.
In this thesis, we analyze the dynamics of the proximity-induced superconducting

pair amplitude. As it describes the dynamics of Cooper pairs which resonantly tun-
nel between superconductors and quantum dot, our focus lies on the subgap physics.
Therefore, it is a reasonable approximation to consider our setup in the infinite-gap
limit. In this limit, the superconducting gap is the largest energy scale in the whole
system. Hence, we can model the coupling between quantum dot and superconductors
exactly since even- and odd-parity dot states decouple and the system can be mapped
onto a noninteracting one with renormalized level positions [121].
The exact resummation results in an effective Hamiltonian

Heff = Hdot −Hp, (3.6)

for the hybridized system consisting of quantum dot and superconductors. The new
full system Hamiltonian is given by

H = Heff +HN +Htun +Hp, (3.7)

where for symmetric coupling to the superconductors the pairing Hamiltonian is given
by

Hp = ΓS cos
(φ
2

)(
c↓c↑ + c†↑c

†
↓

)
, (3.8)

see also Ref. [120]. Due to the infinite-gap limit, the superconducting properties are
restricted to the subgap physics. Therefore, we do not need to consider quasiparticle
excitations, see Eq. (3.2). We remark that the tunnel Hamiltonian, now, only accounts
for the tunneling between the normal conductor and the hybrid system.
The eigenbasis of Heff is given by |↑⟩, |↓⟩ which describe the single-occupied quantum

dot with a spin-up or spin-down electron, respectively, and

|±⟩ = 1√
2

[
∓
√

1∓ δ

2ϵA
|0⟩+

√
1± δ

2ϵA
|d⟩

]
. (3.9)

The |±⟩ dot states describe a coherent superposition of empty- and doubly-occupied
dot states |0⟩, |d⟩ with

ϵA =

√(
δ

2

)2

+ Γ2
S cos

2
(φ
2

)
, (3.10)

and the level detuning

δ = 2ϵ+ U, (3.11)

which characterizes deviations from the particle-hole symmetric point at δ = 0. The
eigenenergies are given by [74, 121]

Eσ = ϵ, (3.12)

E± =
δ

2
± ϵA. (3.13)
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Figure 3.2.: Andreev bound state energies as a function of level detuning in units of the
Coulomb potential U . The plot parameters are ΓS = 0.3U , ΓN = 5 × 10−3 U ,
kBT = 10−2 U and φ = 0.

The excitation energies of the quantum dot are given by the differences of the eigenen-
ergies

±(E± − Eσ), (3.14)

and can be identified as the Andreev bound state energies in the infinite-gap limit

EA,γ′,γ = γ′
U

2
+ γϵA, γ′, γ ∈ {±1}. (3.15)

The Andreev bound state energies are plotted as a function of the level detuning in
Fig. 3.2. The highest excitation energies, i.e. Andreev bound state energies, are at large
detunings while the smallest excitation energies are at the particle-hole symmetric point
for the chosen parameters. Therefore, the superposition of the zero-occupied |0⟩ and
doubly occupied dot |d⟩ becomes largest at the particle-hole symmetric point δ = 0. For
large detunings, the superposition vanishes and we find the quantum dot approximately
in the empty or doubly occupied state.
So far, we have characterized our three-terminal system. In the next section, we

introduce the real-time diagrammatics which is used to model the dynamics on the dot
in a time-dependent fashion.

3.2. Real-time diagrammatics

The theoretical description of nonlinear, nonequilibrium quantum transport is of key
importance for the understanding of phenomena in nanoscale systems. Numerous theo-
retical descriptions for the transport phenomena in quantum dots have been developed
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[122, 123]. Each of these methods is optimized for their parameter regimes which allows
for different insights into the nonequilibrium dynamics of the nanoscale structure.
Scattering matrix theory is an early analytic method to calculate transport in meso-

scopic systems. Landauer describes the conductance as a transmission through a scat-
tering center in the 50s. In the 80s, Büttiker generalized it for multiterminal systems
[124–126]. Stationary as well as nonstationary quantum transport can be described by
the scattering matrix theory as long as there are only weak interactions which can be
treated on a mean-field level.
One example of the various numerical methods is the scattering state numerical

renormalization group (NRG) which establishes an accurate solution for steady-state
currents. The scattering-state NRG method is a nonequilibrium extension of the NRG
method developed in the 70s. The scattering state NRG method provides a powerful
tool to analyze nonequilibrium transport in quantum-dot nanostructures for arbitrary
Coulomb interactions, temperatures, magnetic fields, and bias voltages. Per contra,
such numerical methods are typically computational demanding [127–132].
Perturbative methods are a more efficient analytic way to study transport effects.

The downside is that such analytic methods are restricted to a limited number of
applicable cases. In this thesis, we use a systematic perturbation theory in the coupling
strength to the normal conductor. With a diagrammatic technique, the method is able
to consider in real time arbitrary interactions on the quantum dot and can describe
sequential tunneling, inelastic cotunneling and resonant tunneling [133–135].
In the following, we discuss the real-time diagrammatic transport theory according to

Ref. [136, 137]. Hereby, we acknowledge the dissertations [138–140] that have explained
the derivation of the real-time diagrammatics. Different from the above works, we will
formulate the real-time diagrammatic directly in the eigenbasis of the effective dot, see
Chapter 3.1. This will lead to minor modification in the derivation below.
The expectation value of an operator A at a time t is given by

⟨A(t)⟩ = tr[ρ0A(t)H ], (3.16)

where A(t)H is the operator in the Heisenberg picture and ρ0 = ρ(t0) is the initial den-
sity matrix of the system at initial time t0. The system consists of a normal conducting
reservoir and the effective superconductor-quantum dot hybrid system. The density
matrix is assumed to factorize at time t0 such that it can be written as

ρ0 = ρeff(t0)ρN(t0). (3.17)

The equilibrium density matrix for the reservoir can be expressed with a grand canon-
ical ensemble

ρN(t0) = Z−1 exp (−β(HN − µNNN)) . (3.18)

Here and in the following, we assume the reservoir to have the inverse temperature
β = 1/kBT , µN is the chemical potential of the normal conductor andNN =

∑
kσ a

†
kσakσ

is the number operator of the electrons in the normal conducting reservoir. The nor-
malization Z is chosen such that the density matrix fulfills tr [ρN(t0) = 1].
The effective hybrid part of the initial density matrix is not assumed to be in an

equilibrium state. We assume that the initial distribution is diagonal in the basis
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|χ⟩ ∈ {|↑⟩ , |↓⟩ , |+⟩ , |−⟩}

ρeff(t0) =
∑
χ

Pχ |χ⟩ ⟨χ| , (3.19)

with normalized probabilities Pχ. At this point, it is convenient to change to the
interaction picture with

A(t)I = T̃ exp

(
i

∫ t

t0

dt′Htun(t
′)I

)
A(t)HT exp

(
−i

∫ t

t0

dt′Htun(t
′)I

)
, (3.20)

where the time ordering and the anti-time ordering operator is given by T and T̃ ,
respectively. Here, we write the integrals as a contour integral over the Keldysh contour.
The Keldysh contour is visualized by two horizontal lines. The upper line runs forward
from t0 to t and continues on the lower line running backward from t to t0.
The quantum statistical expectation value of an operator A in the Heisenberg picture

using the Keldysh contour is given by

⟨A(t)⟩ = tr

[
TK exp

(
−i

∫
K

dt′Htun(t
′)I

)
A(t)Iρ0

]
. (3.21)

Here, we have introduced the time ordering operator TK which orders all following
operators along the Keldysh contour considering the Keldysh time.
To access the time evolution of the hybrid states, we introduce the propagator as-

suming the operator A is a projection operator of the form |χ2⟩ ⟨χ1|. Here, χ1 and χ2

represents two hybrid states. As a result, the full propagator of the reduced system is
given by

Π(t, t0) = trN

[
TK exp

(
−i

∫
K

dt′Htun(t
′)I

)
ρN(t0)

]
. (3.22)

This is a rank four tensor acting on the reduced density matrix ρeff . The time evolution

of an initial dot state P
χ′
1

χ′
2
(t0) = ⟨χ1| ρeff(t0) |χ2⟩ to a state at any time P χ1

χ2
(t) can be

computed with the help of Π

P χ1
χ2
(t) =

∑
χ′
1χ

′
2

Π
χ1χ′

1

χ2χ′
2
(t, t0)P

χ′
1

χ′
2
(t0). (3.23)

The diagrammatic approach allows to visualize the tunneling processes responsible for
the rate on the Keldysh contour. To do so, the exponential from Eq. (3.21) is expanded

TK exp

(
−i

∫
K

dt′Htun(t
′)I

)
=

∞∑
n=0

(−i)n
∫
K

dt1...

∫
K

dtnTK [Htun(t1)I ...Htun(tn)I ] ,

(3.24)

with t1 ≤ ... ≤ tn to account for the time ordering. In the next step, the lead and hybrid
operators are disentangled by taking into account a minus sign whenever hybrid and
lead operator are interchanged. With Wick’s theorem [141] it is possible to contract
pairs of lead operators using〈

a†ηkσaη′k′σ′

〉
= δηη′δkk′δσσ′eiϵηkσ(t−t′)f+(ϵηkσ), (3.25)〈

aηkσa
†
η′k′σ′

〉
= δηη′δkk′δσσ′eiϵηkσ(t−t′)f−(ϵηkσ), (3.26)
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A(t)ρ(t0)

↑ − −

↑ ↓

↓

+ +
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Figure 3.3.: Visualization of the time evolution of the reduced density matrix along the
Keldysh contour. The example evolution starts at time t0 on the upper branch
of the contour. The reduced systems evolves along the contour until the time
t is reached where the operator A is measured. Afterwards the time path is
closed with the lower branch of the Keldysh contour. The tunnel Hamiltonians
from the expansion in Eq. (3.24) gives rise to a vertex at which the hybrid state
is changed. Each vertex is connected to another vertex by a direct tunneling
line.

with the Fermi distribution f+(ω) = 1/(1+exp(β(ω − µN)) which is the probability to
find a state with energy ω in the normal conductor occupied. The probability to find
an unoccupied state under similar conditions is f−(ω) = 1 − f+(ω). We remark that
the equations above are written in a general form with an arbitrary number of leads
with index η. For our system, η accounts only for the normal conducting lead. Hence,
we use in the following ϵηkσ = ϵ.
Figure 3.3 visualizes the time evolution of the reduced system on the Keldysh contour

by combining Eqs. (3.20) and (3.24). The evolution starts at time t0 and follows the
upper branch of the Keldysh contour until the final time t is reached. At time t the
operator A which is shown in the diagram as a black dot is measured. Afterwards the
system evolves on the lower branch back to the initial time t0. The expansion from
equation (3.24) gives rise to a vertex for each tunnel Hamiltonian. Vertices are marked
by black dots on the contour. The dashed lines between two vertices denotes pairwise
contractions of the reservoir operators. The dashed lines have an orientation. At the
vertex where the dashed line starts, an electron is annihilated and in the other vertex
an electron is created, i.e. tunneling from the hybrid system to the quantum dot and
vice versa, respectively.
The Keldysh contour in Fig. 3.3 consists of two types of blocks. First, the irreducible

self-energies W
χ1χ′

1

χ2χ′
2
(t, t′) describing the transition from a dot state P

χ′
1

χ′
2
at time t′ to the

state P χ1
χ2

at time t. These blocks can be identified by taking vertical cuts through the
diagram (yellow blocks in Fig. 3.3). If the vertical cut crosses at least one tunneling
line the corresponding block is irreducible. In the case that no tunneling line is crossed,

we find the second type of block which we denote as Π
(0)χ1χ′

1

χ2χ′
2
(t, t′). This type of block

separates two irreducible blocks. In this part of the diagram, the time evolution of
the reduced quantum system is a free propagation. Taking into account the energy of
the upper and lower branch of the Keldysh contour ϵχ1 and ϵχ2 , respectively, the free
propagator is given by

Π
(0)χ1χ′

1

χ2χ′
2
(t, t′) = δχ1χ′

1
δχ2χ′

2
e−i(ϵχ1−ϵχ2 )(t−t′). (3.27)

Taking the sum over all alternating irreducible self energies and free propagators in
the form of a Dyson equation, the full propagator of the reduced quantum system is
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obtained

Π(t, t0) = Π(0)(t, t0) +

∫ t

t0

dt2

∫ t2

t0

dt1Π
(0)(t, t2)W (t2, t1)Π(t1, t0). (3.28)

Multiplying the free propagator with ρeff(t0) by means of Eq. (3.23) and taking the time
derivative with respect to t gives the formally exact master equation that describes the
time evolution of the reduced density matrix for arbitrary initial states

Ṗ χ1
χ2
(t) = −i(ϵχ1 − ϵχ2)P

χ1
χ2
(t) +

∫ t

t0

dt′
∑
χ′
1χ

′
2

W
χ1χ′

1

χ2χ′
2
(t, t′)P

χ′
1

χ′
2
. (3.29)

The first term on the right side of the master equation describes the coherent evolution
of the hybrid system. The second term accounts for the dissipative coupling to the

normal conductor. To calculate the matrix elements W
χ1χ′

1

χ2χ′
2
for our specific system, see

Chapter 3.1, the following rules need to be applied [142]:

1. Draw all topological different first-order diagrams with fixed ordering of the ver-
tices with respect to time. The vertices represents the tunneling of particles. The
vertices are connected in pairs by tunneling lines carrying energy ω. All tunneling
lines are normal.

2. For each vertical cut between two vertices assign a factor 1/(∆E+i0+), where ∆E
is the difference between the left- an right-going energies, including the energy of
the tunneling particle ω.

3. For each tunneling line assign a factor ΓN/(2π)f
±(ω) with Fermi function f+(ω) =

{1 + exp[(ω − µN)/kBT ]}−1 and f−(ω) = 1 − f+(ω). The index + (−) applies
for tunneling lines going backward (forward) in time with respect to the Keldysh
contour.

4. Each vertex connects a hybrid state |α⟩ with α ∈ {+,−} to another hybrid state
|σ⟩ with σ ∈ {↑, ↓} by a tunneling line describing the tunneling of an electron

with spin σ′ ∈ {↑, ↓}. For each bullet vertex assign a factor
√

1− SαSσSσ′
δ

2ϵA
/
√
2

with Sα=+ = Sσ=↑ = Sσ′=↑ = 1 and Sα=− = Sσ=↓ = Sσ′=↓ = −1

5. Assign a global prefactor −i. Furthermore, assign a factor −1 for each bullet on
the lower propagator and each outgoing (incoming) vertex ending (starting) in
the state |+⟩ or |↑⟩.

6. Integrate over the energy ω and sum over all diagrams belonging to one rate.

For representative calculations of the diagrams and the rate matrix for the density
matrix elements P ∈ {P+

+ , P
−
− , P

↑
↑ , P

↓
↓ , P

−
+ .P

+
− }, see Appendix A.

After calculating the rates from the diagrams, we obtain the master equation that
describes the time evolution of an initial state in the hybridized basis. For a more
intuitive picture, we transform the master equation into the pseudospin basis in the
next part.
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3.3. Pseudospin basis

The master equation can be transformed into a physically more intuitive form by intro-
ducing a pseudospin degree of freedom [74, 142]. Besides the pseudospin components,
we take into account the real occupation of the quantum dot which is either even or
odd. The new density matrix elements are given by

Pe = P+
+ + P−

− , (3.30)

Po = P ↑
↑ + P ↓

↓ , (3.31)

Ix =
ΓS

2ϵA
cos

φ

2

(
−P+

+ + P−
−
)
+

δ

4ϵA

(
P−
+ + P+

−
)
, (3.32)

Iy = − i

2

(
P−
+ + P+

−
)
, (3.33)

Iz =
δ

4ϵA

(
P+
+ − P−

−
)
+

ΓS

2ϵA
cos

φ

2

(
P−
+ + P+

−
)
. (3.34)

With a base transformation, see Appendix B for details, we can calculate the matrix

elements W
χ1χ′

1

χ2χ′
2
in the pseudospin base. In the infinite-gap limit, the dynamics of the

pseudospin decouples from the dot occupations. The time evolution of the pseudospin
is governed by a Bloch type equation [119]

ℏ
dI

dt
= A−R · I−B× I. (3.35)

Here, A denotes the accumulation vector which describes the accumulation of pseu-
dospin on the quantum dot due to tunneling of electrons. It is given by

A = −ΓN

4


ΓS

ϵA
cos φ

2

∑
γγ′=± γf(EA,γ′,γ)

ΓS

πϵA
cos φ

2

∑
γγ′=± γφ(EA,γ′,γ)∑

γγ′=±

(
1 + γ δ

2ϵA

) [
1
2
− f(EA,γ′,γ)

]
 , (3.36)

where

f(x) =
1

1 + e
x−µN
kBT

, (3.37)

denotes the Fermi function and

φ(x) = Re

[
ψ

(
1

2
+ i

x− µN

2πkBT

)]
, (3.38)

with the Digamma function ψ(x).

The second term in Eq. (3.35) accounts for the anisotropic relaxation of the pseu-
dospin in terms of the relaxation tensor R. The relaxation tensor describes the deco-
herence in the system which arises from tunneling of single electrons between quantum
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dot and normal conductor. The nonzero elements of the relaxation tensor are

Rxx = Ryy =
ΓN

2

∑
γγ′=±

(
1− γ

δ

2ϵA

)(
1

2
− γ′f(EA,γ′,γ)

)
, (3.39)

Rzz =
ΓN

2

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
1

2
− γ′f(EA,γ′,γ)

)
, (3.40)

Rxz = Rzx =
ΓNΓS

2ϵA
cos

φ

2

∑
γγ′=±

γγ′f(EA,γ′,γ). (3.41)

The last contribution to the pseudospin dynamics describes the precession of the pseu-
dospin in an effective exchange field

B = B0 +B1. (3.42)

The exchange field has two contributions. The first one

B0 =

 2ΓS cos
φ
2

0
−δ

 , (3.43)

is due to the coupling to the superconductors and the level detuning of the quantum
dot. The second contribution,

B1 = −ΓN

2π


ΓS

ϵA
cos φ

2

∑
γγ′=± γγ

′φ(EA,γ′,γ)

0∑
γγ′=±

(
1− γ δ

2ϵA

)
γ′φ(EA,γ′,γ)

 , (3.44)

is due to the renormalization of the dot level positions which arises from virtual tun-
neling processes between the dot and the normal lead. The level renormalization is
an interaction-driven effect that vanishes in the limit of a noninteracting quantum
dot. Similar effects are known from quantum-dot spin valves and weakly coupled
superconductor-quantum dot hybrids [143, 144]. Since B1 is of first order in the tunnel
coupling ΓN, it is in general much smaller than B0.
The proximity effect induces a superconducting pair amplitude on the quantum dot.

In general, both an even-frequency spin-singlet as well as an odd-frequency spin-triplet
pair amplitude can by induced. The latter require a broken spin-rotation symmetry
[145] and, therefore, do not occur in our model. The spin-singlet pair amplitude given
by

F = ⟨c↓c↑⟩ , (3.45)

is closely linked to the pseudospin. In particular, the absolute value of the pair ampli-
tude is given by the length of the projection of I into the x-y plane,

|F| =
√
I2x + I2y . (3.46)

We remark that the absolute value of the pair amplitude is a dimensionless number
that can take values in the range

0 ≤ |F| ≤ 1/2. (3.47)
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3.4. Currents

Experimental access to the pair amplitude can be gained via the currents in the system.
The currents in the superconductors can be related to the Green’s function of the
quantum dot using the approach of Ref. [146]. In the infinite gap limit [142, 147], the
currents are given by

Jη =
2e

ℏ
Γη|F| sin (Ψ− φη) , (3.48)

where Ψ is the phase of the pair amplitude and the index η ∈ {SL, SR,N} accounts for
the left and right superconductor and the normal conductor, respectively. As discussed
in Chapter 2.3, the Josephson current flows between the superconductors

JJos =
1

2
(JSL − JSR) . (3.49)

The Andreev current in the normal lead is given by

JAnd = − (JSL + JSR) . (3.50)

The currents in the superconducting leads can be written as [142]

JSL,SR =
2e

ℏ
ΓS

(
Iy cos

φ

2
∓ Ix sin

φ

2

)
. (3.51)

Inserting this in the equations above yields

JJos =
2e

ℏ
ΓSIx sin

φ

2
, (3.52)

JAnd = −4e

ℏ
ΓSIy cos

φ

2
. (3.53)

Therefore, the currents are proportional to the isospin components Ix and Iy. Thus,
measuring both currents simultaneously gives direct access to the dot’s pair-amplitude
dynamics.

3.5. Results

Now, we turn to the analysis of the pair-amplitude dynamics induced on the quantum
dot by the superconducting proximity effect. First, we investigate the pair-amplitude
dynamics after quenching the system. Afterwards, we turn to a periodically driven
system in the adiabatic and fast driving limit.

3.5.1. Quench dynamics

In this part of the section, we analyze the relaxation of the pair amplitude on the
quantum dot into the stationary nonequilibrium state after it has been quenched in
an initial state at time t0 = 0. In an analytic approach, we use that the accumulation
vector A the relaxation tensor R and the exchange field B are time independent. We
rewrite the Bloch equation, cf. Eq. 3.35, in the form

ℏ
dI

dt
= A+M · I. (3.54)
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Here, the matrix Mij = −Rij −
∑

k ϵijkBj describes the evolution of the pseudospin
due to relaxation and rotation around the exchange field. We can formally solve the
equation with the following ansatz

I(t) = exp

(
M

ℏ
t

)
f(t). (3.55)

The time-dependent function f(t) is calculated as follows. First, we need to derive an
expression for exp

(
M
ℏ t

)
. Using the left and right eigensystem of the matrix M [148],

we get

M · rj = λjrj, (3.56)

lj ·M = λjlj, (3.57)

with unnormalized left and right eigenvectors

lj =

 Bz(Bx +Ryz) + (By −Rxz)(Rxx + λj)
Bz(By −Rxz)− (Bx +Ryz)(Rxx + λj)

B2
z + (Rxx + λj)

2

 , (3.58)

rj =

 Bz(Bx −Ryz)− (By +Rxz)(Rxx + λj)
Bz(By +Rxz) + (Bx −Ryz)(Rxx + λj)

B2
z + (Rxx + λj)

2

 , (3.59)

respectively. For the calculation below, the eigenvectors need to be normalized which
gives a nontrivial function. The corresponding eigenvalues λj are given by the zeros of
the characteristic polynomial

0 =− 2BxBzRxz −B2
x(Rxx + λ)−B2

z (Rzz + λ)

− (Rxx + λ)(−R2
xz + (Rxx + λ)(Rzz + λ)). (3.60)

For strong coupling, ΓS ≪ ΓN, one of the eigenvalues is real and the other two are
complex-conjugates of each other. Using the normalized eigenvectors, the normaliza-
tion condition

1 =
3∑

j=1

rj (lj)
T , (3.61)

is fulfilled. With the help of the left and right eigenvectors, the expression exp
(
M
ℏ t

)
can be written as

exp

(
M

ℏ
t

)
=

3∑
j=1

exp

(
λj
ℏ
t

)
rjl

T
j . (3.62)

With this expression, we can derive f(t). The first derivative of Eq. (3.55) is given by

İ(t) = exp

(
M

ℏ
t

)(
M

ℏ
· f(t) + ḟ(t)

)
. (3.63)
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Inserting this into Eq. (3.54) and using that M commutes with exp{±M}, we get a
differential equation for f(t) which can be integrated with respect to time

ḟ(t) = exp

(
−M

ℏ
t

)
A. (3.64)

The solution for f(t) is given by

f(t) = −ℏM−1 exp

(
−M

ℏ
t

)
A+C, (3.65)

with integration constant C. By inserting the result for f(t) into Eq. (3.55), we obtain
an expression for the pseudospin

I(t) =
3∑

j=1

exp

(
λj
ℏ
t

)
rjl

T
j ·C−M−1 ·A. (3.66)

Here, we have used the condition from Eq. (3.62). The integration constant can be
expressed in terms of the initial quenched state of the pseudospin I(0),

C = I(0) +M−1 ·A. (3.67)

Finally, we get the following analytic expression for the dynamics of the pseudospin
after an initial quench

I(t) =
3∑

j=1

e
λj
ℏ trj(lj)

T ·
(
I(0) −M−1 ·A

)
+M−1 ·A. (3.68)

Equation (3.68) shows that the pseudospin relaxes towards the stationary nonequi-
librium state M−1 · A which is a nontrivial function of the accumulation term, the
relaxation tensor and the exchange field. The pseudospin dynamics is driven by the
difference between the initial value I(0) and the stationary state. The dynamics shows
in principle two different types of time dependence. On the one hand, the pseudospin
relaxes exponentially towards the stationary state with a time constant ℏ/ΓN. Further-
more, there is an oscillatory time dependence which physically arises from a precession
of the pseudospin around the exchange field. The precession frequency is given by the
absolute value of the exchange field |B|. For strong coupling, the frequency is given by

f0 =
√
δ2 + 4Γ2

S cos
2 φ/2, (3.69)

if we neglect contributions first order in ΓN. This result is in agreement with a previous
work on noninteracting superconductor-quantum dot hybrids which found an oscillation
frequency of 2ΓS cosφ/2 [79]. For a given ΓS in our system, the precession frequency can
be manipulated by the superconducting phase difference φ and by the level detuning
of the quantum dot δ. If the superconducting leads are ring shaped their phase can be
controlled by the magnetic flux that passes through the ring [149]. The level detuning
of the quantum dot can be manipulated by an external gate voltage. We remark
that for a detuning much larger than the coupling ΓS the superconducting proximity
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Figure 3.4.: a) Pseudospin in the x-y plane as a function of time after a quench from δ =
−10U to δ = U/2. The pseudospin dynamics starts close to the origin and
ends after t = 2.5ΓN/ℏ. The pseudospin rotates counter-clockwise around the
exchange field. b) Pair amplitude |F| as a function of time. For both plots, we
choose the parameters ΓS = U/10, ΓN = 5× 10−3 U , µN = U/2, kBT = U/100
and φ = π/4. Reprinted with permission from Ref. [119]. Copyright 2024 by
the American Physical Society.

effect becomes suppressed which limits the possible precession frequency of the pair
amplitude.

In the following, we analyze the quench dynamics for a situation where the quantum
dot is prepared in an initial state with a large detuning δ = −10U . In consequence, the
dot is with a probability close to one doubly occupied which is represented by an initial
pseudospin of I(0) ≈ (0, 0, 1/2)T . To start the dynamics, the detuning is subsequently
changed to δ = U/2. The time evolution of the pseudospin is calculated with Eq. (3.68).
Figure 3.4 a) shows the projection of the pseudospin in the x-y plane. The projected
dynamics starts close to the origin and precesses counterclockwise around the exchange
field. The relaxation process resulting from single-tunneling events between the normal
conductor and the quantum dot is clearly visible by the decreasing spiral movement.
With the chosen parameters, the pseudospin follows an almost circular trajectory. A
stronger coupling to the superconductors lead to a more elliptical trajectory since
the x-component of the exchange field is proportional to the coupling strength to
the superconductors. The y-component of the exchange field is zero if we neglect
contributions first order in ΓN. Now, we turn to the dynamics of the superconducting
pair amplitude plotted in Fig. 3.4 b). The absolute value of the pair amplitude is given
by the length of the pseudospin projection in the x-y plane. At the initial quench,
|F| is small but quickly rises to its maximal value on a timescale ℏ/ΓS due to coherent
tunneling of Cooper pairs between superconductors and quantum dot. Subsequentially,
the coherent Cooper-pair tunneling gives rise to pronounced oscillations of the pair
amplitude on the quantum dot on a timescale ℏ/ΓS. In addition, there is an exponential
decay of both the oscillatory amplitude and the average of the absolute value of the
dot’s pair amplitude. The relaxation results from single-electron tunneling between
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Figure 3.5.: Fourier spectrum of the pair-amplitude dynamics from Fig. 3.4.

normal conductor and quantum dot on a timescale of ℏ/ΓN. With increasing time,
there is an interference of oscillations with different frequencies visible. A Fourier
analysis, cf. Fig. 3.5, shows that the dominant frequency is given by f0, see Eq. (3.69).
Additionally, there are other frequencies visible in the Fourier spectrum that can be
approximated by multiples of f0. The deviation between the observed frequency and
the corresponding multiple of f0 increases with increasing frequency in a nontrivial
manner because f0 includes only the precession due to B0 and neglects corrections first
order in ΓN.

Experimental access to the pair-amplitude dynamics is gained by measuring the
Josephson and Andreev current. According to Eqs. (3.52) and (3.53) the currents are
proportional to the x- and y-components of the pseudospin. Figure 3.6 shows the
dynamics of both currents as a function of time. The dynamics of the currents are
similar to the pair-amplitude dynamics as expected. Both currents show an interplay
of an oscillation on a timescale ℏ/ΓS and an exponential decay on a timescale ℏ/ΓN.
For a coupling strength of ΓS/ℏ ≈ 1GHz, the currents are expected to be in the sub-nA
regime.

The advantage of the strong coupling over weak coupling between superconductors
and quantum dot is the decoupling of the oscillation and relaxation timescales. Since
both timescales are independently tuneable, it is possible to choose the oscillatory
timescale smaller than the decay timescale which allows to explore rich pair-amplitude
dynamics. Another previous work [78] investigates the Higgs-like pair amplitude dy-
namics in a similar system in the weak coupling limit. Here, a finite gap is considered
and thus quasiparticle excitations are possible. The quasiparticle states provides a
decay channel for the pair amplitude with a decay rate that is one order of magnitude
faster than the precession frequency. Therefore, the decay of the pair amplitude dom-
inates the dynamics after quenching the system and, thus, pair-amplitude oscillations
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Figure 3.6.: Josephson and Andreev current as a function of time after a quench. The
plot parameters can be taken from Fig. 3.4. Reprinted with permission from
Ref. [119]. Copyright 2024 by the American Physical Society.

cannot be observed. To observe the dynamics of the pair amplitude also in the weak
coupling limit, it is necessary to drive the system externally. The response of the pair
amplitude in the strong coupling limit under external driving is discussed in the next
part.

3.5.2. Adiabatic and fast driving

The damping of the pair amplitude can be overcome by driving the system externally
which provides a continuous energy intake. In the following, we discuss two different
approaches of driving the system which have the potential to give rise of interesting
pair-amplitude dynamics. The first approach is driving the system in the adiabatic
limit. The second one is driving the system fast. Possible driving parameters for the
system are the phase difference between the superconductors and the level detuning of
the quantum dot.
First, we discuss the response of the pair amplitude when the system is driven adi-

abatically. In this regime, the parameters of the system are changed on a timescale
much smaller than the timescales of the dynamics in the system. In this case, the dot’s
pair amplitude can at any time t be approximated by the stationary solution of the
master equation with the parameters given at time t. Hence, the driving frequency
must satisfy ℏω ≪ Γ. In addition, the amplitude of the driving parameters needs
to fulfill ℏωδ1 ≪ (kBT )

2 or ℏωΓS ≪ (kBT )
2 in the case of driving the level detuning

with an amplitude δ1 or the superconducting phase difference, respectively [150]. Since
non-Markovian memory effects can be neglected in the adiabatic regime, the system
is effectively in an instantaneous stationary state at any time which implies that the
dynamic properties in the adiabatic regime can be deduced from the static properties
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Figure 3.7.: Pair-amplitude as a function of a) chemical potential µN and detuning δ and b)
detuning δ and phase difference φ in the adiabatic limit. The white contours
mark the Andreev bound state energies. The parameters for the plots are
ΓS = 0.3U , ΓN = 5 × 10−3 U , kBT = 10−2 U and a) φ = 0 and b) µN = U .
Reprinted with permission from Ref. [119]. Copyright 2024 by the American
Physical Society.

of our setup. As seen in the analysis of the pair-amplitude dynamics after a quench,
the stationary solution of the pseudospin is a nontrivial function of the accumulation
vector, relaxation tensor and the exchange field, see also Eq. (3.35). In Fig. 3.7 the
dot’s pair amplitude is shown as a function of a) detuning and chemical potential and
b) detuning and phase difference between the superconducting leads. In Fig. 3.7 a), we
find parameter regimes where the pair amplitude of the dot vanishes exactly. For neg-
ative detuning this happens between the Andreev bound state energies, cf. Eq. (3.15),
EA,+,− and EA,−,− and for positive detuning between EA,+,+ and EA,−,+, cf. Fig. 3.2.
By calculating the real dot occupation for these parameters, we find the quantum dot
to be preferably single occupied in this region. Consequently, coherent tunneling of
Cooper pairs between the superconductors and the quantum dot is suppressed.

In general, the pair amplitude takes finite values for other parameters. The strongest
pair amplitude with up to |F| ≈ 0.25 is close to the particle-hole symmetric point δ = 0
where the proximity effect is strongest. Investigating Fig. 3.7 a), we find different
ways of driving the system to get pronounced oscillation of the pair amplitude. For
example, one can fix the chemical potential µN = ±U/2 and drive the detuning by
δ/U = cosωt to get a smoothly changing pair amplitude. The resulting signal of the
pair amplitude in the adiabatic limit is shown in Fig. 3.8 a) as a dashed line. For
comparison, show the influence of a finite driving frequency by solving the master
equation numerically with an initial pseudospin I = 0. The results are taken after one
period to allow the pseudospin to adjust to the external driving. As expected, the lower
the driving frequency, the better is the agreement with the adiabatic solution. The
deviation between the adiabatic and numeric solution is particularly large around the
δ = U turning point of the detuning level driving. This behavior can be understood by
assuming that the pseudospin has an inertia. At the δ = −U turning point, the smaller
pair amplitude leads to a smaller deviation due to a lower inertia of the pseudospin.

Another possibility to drive the pair amplitude is by fixing the level detuning at e.g.
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δ = ±U/2 and drive the pair amplitude by the chemical potential µN. In general, the
pair amplitude is approximately constant as a function of chemical potential. However,
if the chemical potential crosses an Andreev bound state energy there is a jump in the
pair amplitude as clearly visible in Fig. 3.7 a).
To discuss the phase driving, we turn to Fig. 3.7 b) which results from a) for µN = U

and plotting it as a function of detuning δ and phase difference φ. As discussed above
the pair amplitude |F| vanishes for detuning EA,−,+ < δ < EA,+,+. Similarly, the dot’s
pair amplitude vanishes for φ = π. Then, both the accumulation vector A and the
exchange field B point exactly in z-direction. Thus, there is no x- or y-component
generated for the pseudospin. For a sufficiently small level detuning |δ| ≲ U , we also
find for phase detuning a considerable pair-amplitude gradient. A possible driving
scheme is a linearly increasing phase difference φ = ωt for a fixed detuning δ = ±U/2.
The resulting pair amplitude is plotted in Fig. 3.8 b) for δ = −U/2. Similar to the
driving of the level detuning, we compare our analytic solution in the adiabatic limit
to the numeric solution of a driven system with frequency ω. As before, the deviation
is strongest at the turning point of the driving where the pair amplitude is large. At
the other turning point the pair amplitude is zero and there are no deviations visible.
As mentioned above, the pair amplitude is experimentally accessible by the time-

dependent charge currents in the system. Interestingly, the Andreev current is in the
adiabatic limit much smaller than the Josephson current. This results from the fact
that the pseudospin accumulation generates only a small time-dependent y-component
of the pseudospin, which is about three orders of magnitude smaller than the x- and
z- components of the pseudospin. According Eqs. (3.52) and (3.53), this immedi-
ately implies that the Andreev current is always orders of magnitude smaller than the
Josephson current. Therefore, it is possible to determine the pair-amplitude dynamics
by taking only the Josephson current into account. In addition, this implies that the
pair-amplitude dynamics under adiabatic driving is dominated by an oscillation of the
absolute value of the pair amplitude while its phase is nearly constant. Thus, the pair
amplitude mimics the Higgs mode in bulk superconductors. We remark that this result
differs from Ref. [78], Here, it is shown that for weak coupling to the superconductors,
the adiabatic driving excites the dynamics of both, the absolute value and the phase
of the pair amplitude, unless specific driving schemes are applied.
We turn now to the discussion of the opposite limit when the system is driven with a

frequency much greater than the coupling strength to the superconductors. Due to the
AC Josephson effect discussed in Chapter 2.3, it is simple to achieve a fast oscillation
of the phase difference. Therefore, we will discuss only the case of phase driving in the
adiabatic limit. Nevertheless, the deviation for a driving of the detuning is analogue
to the calculation below.
We tackle the problem in the limit of a large bias voltage applied to the normal

conductor for three reasons. First, this minimizes the relaxation rate in the system such
that we can expect a large pair amplitude. Second, if the chemical potential is much
larger than the Andreev bound state energies, we can neglect level renormalizations
which simplifies our analysis [74]. Finally, transport becomes unidirectional in the large
bias limit which further simplifies the master equation to

İ =

 0
0

−ΓN/2

− ΓNI−

 2 ΓS cosφ/2
0
−δ

× I. (3.70)
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Figure 3.8.: Numerical result of driving the system with a) level detuning δ = δ1 cosωt
with δ1 = U and b) superconducting phase difference φ = ωt for different
driving frequencies ω. The dynamics is initiated with a pseudospin I = 0. The
results shown here are taken after one full period to allow the system to reach
the dynamic equilibrium. The dashed line shows the analytic result in the
adiabatic limit. The plot parameters are the same as in Fig. 3.7 and we choose
in a) µN = U/2 and in b) δ = −U/2
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In the fast driving limit, it is convenient to solve the master equation with a Fourier
ansatz for the pseudospin [78]

I =
∑
n

In exp(inωt), (3.71)

with n ∈ Z. For a better readability, we double the frequency of the phase driving
φ = 2ωt. Only the exchange field B is a function of the phase difference. Therefore,
it is decomposed into its Fourier components

B = B0 +B+ exp(iωt) +B− exp(−iωt), (3.72)

with B0 = (0, 0,−δ)T and B+ = B− = (ΓS, 0, 0)
T for phase driving. By inserting the

Fourier ansatz into the master equation, we get∑
n

inωIne
inωt =

∑
n

[
A− ΓNIne

inωt −
(
B0 +B+e

iωt +B+e
−iωt

)
× Ine

inωt
]
. (3.73)

After a comparison of coefficients, we obtain an infinite hierarchy of equations for the
Fourier components of I,

GnIn +B+,×(In−1 + In+1) = δ0nA, (3.74)

with

Gn = (ΓN + inω)1+B0,×. (3.75)

Here, we have used that the linear mapping of the cross product can be written as a
skew-symmetric matrix [151]

B× I = B×I. (3.76)

The type of Eq. (3.74) occurs generically in the Floquet analysis of driven quantum
systems and can be solved by the method of matrix-continued fractions [152]. To this
end, we introduce ladder operators for lowering and raising

LnIn = In−1, (3.77)

RnIn = In+1, (3.78)

the Fourier index n, respectively. The ladder operators can be calculated from Eq. (3.74)
for the case n ̸= 0. The result of the ladder operators are continued fractions

Rn−1 = −(Gn +B+,×Rn)
−1B+,×, (3.79)

Ln+1 = −(Gn +B+,×Ln)
−1B+,×. (3.80)

With the ladder operators, it is possible to determine I0 from Eq. (3.74) for n = 0

I0 = [G0 +B+,×(R0 + L0)]
−1A. (3.81)

The required ladder operators R0 and L0 can be calculated from Eqs. (3.79) and
(3.80) without violating the ansatz n ̸= 0. With the raising and lowering operators
and I0, we get a full analytic expression for the pseudospin dynamics for fast driving
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Figure 3.9.: Oscillation amplitude of the pair-amplitude dynamics as a function of the ex-
ternal driving frequency in the fast-driving limit for three different coupling
strengths to the superconductors. The dashed lines mark the solution of our an-
alytic approximation and the filled areas the solution of a numeric calculation.
For each driving frequency, the plot marks the upper and lower bound of the
pair amplitude. The plot parameters are ΓN = 5× 10−3 U, δ = U, µN = −10U
and kBT = U/100. Reprinted with permission from Ref. [119]. Copyright 2024
by the American Physical Society.

in the infinite bias limit. Formally, the continued-fraction method is a systematic
expansion in ΓS/(ℏω). In the fast driving limit, it is sufficient to take only the ladder
operatorsR0 and L0 into account. Since we stop evaluating afterR0 and L0, we neglect
the generation of higher harmonics. As discussed in Ref. [78] for the pair-amplitude
dynamics of a quantum dot weakly coupled to superconductors with a finite gap, the
amplitude of higher harmonics is suppressed as the quantum dot cannot follow the
external driving at extremely high frequencies. Therefore, the pseudospin dynamics is
suitably described by the Fourier components I0 and I±.

In Figure 3.9, we show the amplitude of possible pair-amplitude dynamics as a
function of driving frequency ω. For sufficiently large driving frequencies, our analytic
approach (dashed lines) and the numeric solution (filled area) almost coincide. The
smaller the coupling strength between superconductor and quantum dot the earlier
we see an agreement between the simulation and our analytic result. Interestingly,
the agreement does not improve when we take additional ladder operators and Fourier
components into account. The system is able to follow the external driving up to
high frequencies that are larger than the coupling to the superconductors. For fast
driving, the average pair amplitude scales with (ΓS/ω)

2. This in strong contrast to
the system with weakly coupled superconductor-quantum dot hybrids [78] where the
pair-amplitude dynamics is strongly suppressed under fast-driving conditions.
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3.6. Summary

In this chapter, we have discussed the transient pair-amplitude dynamics of a three-
terminal system consisting of two superconductors strongly coupled to a quantum dot
which is weakly coupled to a normal conductor. The focus of our investigation has
been the nonequilibrium dynamics after quenching the system and under driving the
system externally in the adiabatic and fast driving limit.
We have focused on the subgap physics of the system. Therefore, we have considered

the system in the infinite-gap limit. Hereby, we have gotten an effective Hamiltonian
describing the hybrid system of superconductors and quantum dot. With a real-time
diagrammatic approach, we derived a master equation for the reduced density matrix
of the hybrid system. With the transformation to the pseudospin basis, we have gotten
an intuitive picture to interpret the pair-amplitude dynamics.
To describe the dynamics after a quench, we have derived a compact analytic solu-

tion of the Bloch type master equation for the pseudospin. It shows that the relaxation
is a result of the tunneling of single electrons between dot and superconductor and the
oscillation is due to the coherent tunneling of Cooper pairs between dot and supercon-
ductors. The solution gives us deep insights into the dynamics and makes it possible
to design the pair-amplitude oscillations by its frequency and shape. In the framework
of the pseudospin, the oscillation is nothing but a precession of the pseudospin around
the exchange field determined by the level detuning and the phase difference between
the superconductors. Both are well controllable parameters in an experiment.
In the limit of adiabatically driving the system, we have found a strong influence of

the Andreev bound states. At the Andreev bound states, the pair amplitude shows a
discontinuity due to Coulomb blocking of the pair amplitude when the dot becomes
preferably singly occupied. The analysis of the pseudospin has revealed that the phase
of the pair amplitude is constant under adiabatic driving. Therefore, the dynamics
excited by the adiabatic driving shows a Higgs-like behavior.
The fast driven superconductor-quantum dot hybrid can be described within the

infinite-bias limit by considering the Fourier components of the pair amplitude. In
principle, the Fourier solution is exact if all Fourier components are taken into account.
It is possible to derive any Fourier component from the zeroth Fourier component I0
which can be expressed in a compact form. However, for the calculation it is necessary
to take only a limited number of Fourier components into account. We have found
that it is sufficient to describe the pseudospin dynamics by I0 and I±. The analysis
has revealed that the strongly-coupled system is able to follow the external driving up
to frequencies significantly larger than the coupling strength to the superconductors.
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4. Relaxation and transport dynamics
of photoexcited electrons

In this chapter, we set up a model to describe the relaxation and transport dynamics
of photoexcited electrons in metals. First, we introduce a trajectory-based simulation
which follows the path of the electrons from the back side to the front side of the
sample. Along the path, the electrons scatter with other electrons and exchange energy.
The simulation is used to describe the transport phenomena measured in pump-probe
experiments in Fe/Au heterostructures, see Refs. [8, 105, 106]. In the experiment,
the pump and probe pulses are spatially separated on opposite sides of the sample.
With this measurement scheme, it is possible to reveal the transport features of the
electrons in the sample. A material-specific real-time time-dependent density functional
theory provides insights into the spin-dependent excitation and injection pattern at
the Au/Fe interface [9]. Our simulation is a complementary theory which analyzes the
transport and relaxation dynamics of the excited electrons from the Fe/Au interface
to the Au surface where the electrons are probed. In the following, we set up the
model for the simulation. Afterwards, we discuss the results of the simulation and
how they compare to the experimental results. With further investigation, we reveal
the underlying transport mechanisms which can be used to identify the ballistic and
superdiffusive transport regime. These results have already been published in Ref. [9].
Afterwards, we complete the possible transport regimes by an analysis of the transport
effects in a diffusive regime. Here, we model the relaxation dynamics based on the
Boltzmann transport equation which is extended by a diffusive propagation of the
particles. Finally, we discuss a hopping model to estimate the number of necessary
collisions to identify diffusive transport in the trajectory-based simulation.

4.1. Trajectory-based model

We simulate classical, quasiballistic electron trajectories which are injected into a sam-
ple of length d at z = 0. The sample is assumed to have an infinite lateral extent in
the x- and y-direction which is a valid assumption if the sample width is much larger
than the mean free path of the electrons. Initially the electron starts the trajectory
with an energy E which is chosen randomly from a Gaussian distribution,

P (E) =
1√

2π(∆E)2
e
− (E−Ē)2

2(∆E)2 , (4.1)

with mean value Ē = 1.7 eV and standard deviation ∆E = 0.1 eV. The variables
of the distribution are chosen such that they are in agreement with the experimental
observation and the calculation from the real-time time-dependent density functional
theory. Besides the energy and place, the electrons get an initial direction and prop-
agation length. At injection, the direction is chosen randomly with uniform angular
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distribution on a half sphere in order to ensure propagation in the forward (positive
z-) direction. The propagation length l is also a random quantity which depends on
the energy-dependent mean free path λ. We assume that each electron propagates
ballistically over a distance l which is randomly chosen from the distribution

P (l) =
1

λ
e−l/λ. (4.2)

The mean free path can be related to the electron lifetime τ

λ = τvF, (4.3)

via the Fermi velocity vF [113, 153]. In the considered energy range, the Fermi velocity
is with a good approximation constant and energy independent with vF = 1.4 nm/fs
in bulk gold [154–156]. To get an analytic and realistic energy-dependent lifetime, we
parameterize the experimentally determined electron lifetime in gold [99, 105, 106] by

τ =
τ0

1 +
(

E−EF

E0

)2 . (4.4)

Here, τ0 = 170 fs and E0 = 1 eV provides the best fit to the data. The choice of
E0 differs from standard Fermi liquid theory where the energy unit is kBT [12]. Due
to the anomaly of the electron lifetime in gold at ∼ 1.5 eV, Fermi liquid theory does
not describe the electron lifetime in our considered energy range well, see Ref. [99]
for a comparison of various lifetime models. When we insert Eqs. (4.3) and (4.4) into
Eq. (4.2), we obtain an energy-dependent distribution function for the propagation
length which is customized for our specific system.
After the initial parameters are set, the electron propagates with Fermi velocity

over the distance l. If the electron does not reach the surface, it collides with an-
other electron which has two consequences. First, the electron transfers a random
amount of energy ∆E which is uniformly distributed in the interval [0, E − EF] to a
secondary electron. The secondary electron is excited to a random energy in the in-
terval [EF, EF +∆E] depending on the previous energy state below the Fermi energy.
Using the current position as starting point, the trajectory of the secondary electron
is included in the simulation sweep. Second, the electron gets a new random direction
chosen from an isotropic distribution on a full sphere and a new propagation length
according to the distribution in Eq. (4.2). The secondary electron ensures energy and
momentum conservation during the scattering process. We neglect energy redistribu-
tion between excited electrons due their small share compared to the total number of
electrons in the sample.
The trajectories are simulated until the electrons reach the sample surface at z =

d. We also need to define criteria where the simulation sweep is aborted to avoid
unnecessary calculation costs. The first stop criterion monitors the electron energy.
When the energy drops below a threshold value of 0.5 eV above the Fermi energy the
corresponding electron is discarded from the simulation. The threshold value is chosen
according to the detectable energy in the experiment [9]. The work function at the
measuring spots is approximately 4.5 eV. Therefore, it is not possible to measure below
0.5 eV with the 4 eV probe laser. A positive side effect is that the threshold limits the
number of electron trajectories in a single sweep. Electrons are also discarded when
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4.2. Energy- and time-dependent intensity spectra
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Figure 4.1.: Normalized electron intensity as a function of energy and time for a sample
thickness of a) 0.3λ0 and b) 0.6λ0 with λ0 = vFτ0. For a better comparison,
we choose a thickness-dependent time zero which is determined by the propaga-
tion time of ballistic electrons. Adapted from Ref. [9] under Creative Common
Attribution 4.0 International license.

their z-position becomes negative. In terms of our considered systems, a negative
z-component means that the electrons are injected back to the iron layer. Since the
relaxation time in iron is much smaller than in gold [105], it is unlikely that the electrons
are injected again to the gold layer and reach the surface with an energy above the
threshold energy. For a detailed simulation algorithm, see Appendix C. To generate the
results discussed below, we record in each simulation sweep the total path length, which
is directly linked to the propagation time, the final energy, the number of collisions
along the trajectory and the initial propagation direction. In total, we simulate 2 · 107
sweeps following the trajectory of the initial and associated electrons across the sample
for each sample thickness.

4.2. Energy- and time-dependent intensity spectra

In the following, we discuss the results generated by the simulation. We start with
a comparison of the result of the simulation with the experiment [9] on a qualitative
level. In the evaluation process for the electron intensity which is the probability to
measure an electron with an energy E−EF after the time t, the trajectories are sorted
according to their final energy and propagation time. For the energy, we consider the
interval (E − EF) ∈ [0.5 eV, 2 eV] with a bin width of 25meV. The considered time
interval is set by t ∈ [d/vF, d/vF + 2 τ0] with a bin width of 2 · 10−2 τ0. Here, the lower
time limit d/vF is set by ballistic electrons crossing the sample fastest as discussed in
Chapter 2.4.
The simulation results are shown in Fig. 4.1. We want to highlight the qualitative

agreement between the simulated electron intensities and the measured two-photon
photoelectron emission spectroscopy in Fig. 2.9 [9, 106].
For both thicknesses, a significant amount of electrons reaches the sample surface

with their original injection energy around 1.7 eV at time t = d/vF. This shows essen-
tially that these electrons propagate ballistically, i.e. without any scattering through
the sample in a direction parallel to the z-axis. For both thicknesses, the intensity of
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Figure 4.2.: Time evolution of the electron intensity for depicted energies from the spectra
in Fig. 4.1 normalized to the maximum intensity of each energy. Adapted from
Ref. [9] under Creative Common Attribution 4.0 International license.

the feature at 1.7 eV decays exponentially as a function of time as depicted in Fig. 4.2.
In thin samples, cf. Fig. 4.1 a), there is a minor feature in the energy range [1.5 eV-
0.5 eV]. Since electrons are not injected at this energy the electrons must have collided
at least once in order to transfer energy to a secondary electron. When the mean free
path is much larger than the sample thickness, a scattering event is unlikely. Therefore,
in the thicker sample, cf. Fig. 4.1 b), this feature is more pronounced. Here, inelastic
scattering events have a higher probability to occur during propagation because the
average path length is much larger. The intensity at lower energies show a different
behavior as a function of time compared to energies originally injected. As it is clearly
visible in Fig 4.2, the intensity builds up, reaches a maximum and finally decays expo-
nentially with time. In the experiment, cf. Ref. [105], there is no distinguishable shape
of the high and low energy feature due to the finite laser pulse widths. The maxima
are the most likely transit time of the electrons with a certain final energy. The ex-
act position of the maxima are a function of energy and sample thickness. Therefore,
the transport characteristics can be accessed via the relative shift of the maxima as a
function of sample thickness which is part of the next section.

So far, we have discussed the agreement between our simulation and the experiment
on a qualitative level. On a quantitative level, there is a deviation in the sample thick-
nesses between simulation and experiment. With λ0 = 240 nm, the given thicknesses
correspond to a) 72 nm and b) 144 nm. In the experiment, a qualitatively equivalent
result to Fig. 4.1 b) can be found e.g. at a gold layer thickness of 25 nm or 60 nm
which is almost six or three times smaller than expected by the simulation. The major
impact could come from neglecting reinjection and reflection at the surfaces at z = 0
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and z = d. The resulting longer trajectories could bias the correct share of scattered
and unscattered electrons with increasing time.
Two processes come into mind when including interface processes. The first one is

the backscattering into the iron layer and reinjection into the gold layer afterwards. In
the iron layer, the electron could transfer a lot of energy in a short time due to the much
smaller lifetimes and mean free paths. We assume that this process does not effect the
result much since the small lifetimes push the electron energy fast below the threshold.
Another process could be reflections at the interfaces Fe/Au and Au/vacuum. This
process is related to the question what happens in the experiment after the electron
hits the surface. In the simulation, electrons are absorbed after reaching the surface.
In the experiment, there is no possibility to escape the sample before the probe laser
pulse emits the electrons. Thus, an electron that contributed first to the high energy
feature could at a later time contribute to the low energy feature. This process could
lead to a more pronounced intensity of the low energy feature and, therefore, leading
to a better agreement between simulation and experiment on the quantitative level.
Another impact might be the assumption of the distribution of the initial energy.

We have assumed that the electrons are injected with a random energy that is normally
distributed with an average energy of 1.7 eV. According to previous experiments and
DFT calculations, the electrons are excited mainly in the iron layer in a broad energy
spectrum. In addition, the lifetimes in iron are much smaller than in gold. Therefore,
the electrons have already been in a relaxation process before reaching the interface to
the gold layer. Thus, it is possible that electrons are injected at a lower energy into
the gold layer. However, in the experimental result the energy feature at low energies
show a clear time delay which indicates that the low energies are populated from higher
energy electrons. Hence, the majority of electrons is injected at 1.7 eV which we used
in our model [9, 106].

4.3. Insights of the effective electron velocity on the
transport regime

In this part, we make use of the detailed information of the simulation to extract
possible transport characteristics from the thickness-dependent behavior of the electron
energies. Similar to the experiment [9], we define an effective electron velocity given
by

veff =
d

t− t0
, (4.5)

with maximum position t and position of the reference maximum t0. In line with the
experiment, we choose the highest energy maximum as reference which corresponds to
the time in which ballistic electrons propagate through the sample, see Chapter 2.4
For the evaluation of the effective electron velocity, we estimate the peak position

of the energies depicted in Fig. 4.2 for sample thicknesses equally distributed in the
range d/λ0 ∈ [0.05, 0.7] with a spacing of ∆d = 0.05λ0. Below d = 0.05λ0, we choose a
higher resolution with a spacing of ∆d = 0.01λ0 because the time delay changes faster
in the beginning. Motivated by the experiment, we subtract the maximum position
of the ballistic electrons t0 for each energy and sample thickness. Per definition, the

57



Chapter 4. Relaxation and transport dynamics of photoexcited electrons

0.0 0.2 0.4 0.6

d/λ0

0.0

0.1

0.2

0.3

0.4

0.5

(t
−

t 0
)/
τ 0

# collisions

1

2

3

4

E − EF (eV)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

Figure 4.3.: Comparison of the simulated time delay (t − t0) for different energies as a
function of d and the simulated time delay of trajectories with a fixed number
of inelastic scattering events.

time delay is zero at d = 0. Figure 4.3 shows the simulated time delay (t − t0) for
different energies as a function of sample thickness as data points. For comparison, we
sort the simulated trajectories not by energy but by the number of collisions along the
trajectory. The resulting time evolution of the intensity is similar to Fig. 4.2. Analogue
to the energy groups, we estimate the maximum position for each collision group and
calculate the time delay compared to the zero collision group which corresponds to
ballistic electrons. In Fig. 4.3, we see that the high energies above 1.5 eV consists
of electrons that propagate ballistically through the sample. Electrons at the lower
boundary of the initial energy range at 1.5 eV collide on average also less than one
time. We conclude that the majority of these electrons propagate ballistically through
the sample. All energies below 1.5 eV collide on average at least one time. The lower
the energy of the electrons the larger is the time delay. Consequently, the average
number of collisions is higher when the final energy of the electrons is lower. The
relationship between the number of collisions and the energy fulfills our expectations
since with every inelastic scattering event the initial energy decreases. The time delay
of the electrons with a fixed number of collisions rises linearly for small thicknesses. The
shape changes to a sublinear dependence over a crossover range. For the one collision
group, the crossover range already starts from the beginning. The higher the number
of collisions in a group the later the crossover initiates. The sublinear dependence is
a clear sign of superdiffusive transport since for diffusive transport it is expected that
the time delay increases quadratically, cf. Eq. (2.32).

At first glance, it is surprising to find that the ballistic electrons are detected at the
highest energies. According to the relaxation times, cf. Eq. (4.4), a higher energy has
a lower relaxation time and consequently a shorter mean free path. Due to the Fe/Au
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Figure 4.4.: Comparison of the experimentally measured time delay t∗ for different E −
EF as function of dAu and the simulated trajectories with a fixed number of
collisions. The simulated results are scaled to the SI unit system assuming a
ballistic velocity vF = 1.4 nm/fs and τ0 = 170 fs. For a better visibility, only
representative error bars are given for each group. Adapted from Ref. [9] under
Creative Common Attribution 4.0 International license.

interface, the electrons injected to the gold layer have a restricted energy around 1.7 eV.
Consequently, electrons with a final energy below 1.5 eV must have been part of at least
one scattering event. Thus, electrons with an energy below 1.5 eV cannot propagate
ballistically. On the other side, it is possible that high-energy electrons transfer only a
small amount of energy to a secondary electron and stay inside the high-energy range
above 1.5 eV. However, the share of high energy electrons with one or more collisions
is so small that the time delay to ballistic electrons is zero. Only electrons with a final
energy of 1.5 eV show a time delay greater than zero at thicknesses d ≥ 0.3λ0. This
energy marks the transition from the ballistic to the superdiffusive transport regime
for our chosen parameters.
In the next step, we compare the experimentally obtained time delays with our col-

lision analysis, cf. Fig. 4.4. The energy data points are grouped into lower (black),
intermediate (red), and higher energy (blue). These groups have an average number
of inelastic collisions in the range three to four, one to three and less than one, re-
spectively. In the latter group, we primarily find electrons with their original injection
energy which is a clear signature of ballistic transport. The electrons at all the lower
energies experience up to four scattering events. Since a sublinear increase is clearly
visible, the electrons propagate in the superdiffusive transport regime. The experimen-
tal technique is not able to detect electrons that propagate diffusively because at all
measured energies the electrons cross the sample either ballistically or superdiffusively.
We expect from our analysis to find diffusive electron transport at energies close to the
Fermi edge. This expectation is in agreement with a similar experiment [8]. In this
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work, the electron dynamics close to the Fermi edge is studied in a back-pump front-
probe geometry on a similar sample. The result is compared with a two-temperature
model that assumes diffusive transport through the sample. For sufficiently large dAu

the experimental result and the theoretical model matches quantitatively which indi-
cates diffusive transport.
A comparison between Fig. 4.3 and 4.4 reveals that in the simulation the average

number of collisions is much smaller than in the experiment for energies below 1.5 eV.
One possible explanation is our assumption on the relaxation process. We assume that
the electrons transfer a random, uniformly distributed amount of energy to a secondary
electron which could deviate from reality. The assumed energy loss is on average half
the initial energy which means that most probably most electrons scatter up to one time
since the sample thickness is smaller than the mean free path. If, as discussed above, we
take reflections at the interface into account, we do not expect that the result changes
much because it is still the case that the electron energy drops below the threshold
after two collisions on average. A possible solution to this problem could be a different
relaxation behavior in combination with reflection at the interfaces. If the electrons
transfer on average only up to a quarter of their initial energy to a secondary electron
the number of average collisions rises for the lower energies. In addition, reflections at
the interfaces would guarantee that a total propagation length of four times the mean
free path is possible. Changing the energy relaxation scheme is possible but since
we have only determined the average amount of energy transferred, such a relaxation
scheme lacks of an underlying microscopic picture. Thus, the distribution which is
crucial for a better representation of the relaxation process is missing.
Up to now, we have not considered the possibility of elastic scattering events. With

elastic scattering events, it is possible to reach longer path lengths and more collisions
without changing the energy of the electron. Assuming an energy-independent elastic
scattering time which is comparable to the inelastic lifetime of the 2.0 eV hot electrons
[113], the measured acceleration cf. Fig. 4.4 would change drastically. While at 2.0 eV
the ratio of elastic scattering events would be 1:1, the ratio changes continuously to
4:1 at 0.5 eV. Hence, the total number of scattering events would be much larger than
four for the low energy electrons if elastic scattering was present. For such a scenario,
the time delay t∗ of the low energy electrons would increase linearly in the considered
range in Fig. 4.4. Since the data points are far below this limit, the experimental results
indicate that the elastic scattering lifetime is much larger than the inelastic lifetime.
Consequently, the elastic contributions are negligible in our analysis of the sample.
Recalling the single crystalline sample quality, this conclusion is in good agreement with
the available sample characterization by a scanning transmission electron microscopy
[103, 104] for similar samples.

4.4. Calculation of the electron passage velocity

It is possible to derive the electron passage velocity vp from Eq. (4.5) using the identity

vF = d/t0, (4.6)

where we assume that ballistic electrons propagate predominately orthogonal to the
interface and, thus, need the time t0 to cross a sample of thickness d when propagating
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with the Fermi velocity vF. We define the passage velocity as

vp = d/t. (4.7)

Thus, we assume that passage velocity is given by the ratio of the layer thickness d
and the passage time t. The passage velocity reads

vp =
veffvF
veff + vF

. (4.8)

Here, we insert Eq. (4.6) and Eq. (4.7) in the definition of the effective velocity veff =
d/t∗ where t∗ = t − t0 is the time delay between the considered electrons and the
ballistic electrons. Since veff is proportional to 1/t∗, it is in the range [0,∞[ which
might be counter intuitive because the velocity can exceed the Fermi velocity which
is the highest possible velocity of the electrons according to our model. The passage
velocity is more intuitive since it is in the range [0, vF]. In the limit veff ≫ vF, the
passage velocity is given by

vp = veff − v2eff
vF

+O[v3eff ]. (4.9)

This limit is of particular importance for the low energy group of Fig. 4.4 because here
are the most collisions needed and, therefore, we find here the highest time delay. Due
to the definition of the passage velocity, it is clear that ballistic electrons live in the
limit veff ≪ vF. From Eq. (4.8), we can calculate the first correction term to the Fermi
velocity

vp = vF − v2F
veff

+O[v−2
eff ]. (4.10)

The first order correction shows that the group velocity approaches the ballistic velocity
with an −1/veff dependence. Figure 4.5 shows the passage velocity as a function of the
effective velocity. The effective electron velocity is a quantity which is experimentally
easily accessible. However, it is only an intuitive quantity if it is small. That is,
if the corresponding electrons have scattered many times. When describing ballistic
or almost ballistic electrons that have scattered up to one time, the effective velocity
diverges or becomes much larger than the Fermi velocity. The passage velocity provides
a more intuitive velocity because it has the Fermi velocity as an upper limit. Figure 4.6
shows the passage velocities for the experimental data from Fig. 4.4 calculated with
Eq. (4.8) along with the passage velocities of the simulated trajectories. The simulated
passage velocities increase approximately linearly with dAu. The intermediate (red) and
low (blue) energies from the experimental data increase analogue. The high energies
(blue) show a different behavior. Their passage velocity increases faster for small dAu

and saturate at the Fermi velocity. Since the electrons with a high energy collide on
average less than one time, the deviation to the simulated one collision passage velocity
is reasonable.
We remark that the passage velocity depends on the definition of the ballistic velocity,

cf. Eq. (4.6). Therefore, it is not possible to derive time zero from the experimental
data with the passage velocity. In addition, the passage velocity is only as correct as
the assumption of the ballistic passage time. In the next section, we will support the
assumption by investigating the injection angles of the ballistic and scattered electrons.
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International license.

4.5. Angular analysis of the electron injection

From the analysis in Chapter 4.3 and 4.4, we identify superdiffusive electron transport
at a final energy below 1.5 eV. Thus, the electrons need to propagate over a distance
given by their mean free path. We expect that ballistic and scattered electrons are
injected with different angles into the gold layer. For verification, we use again the
detailed information given by the simulation. We group the electron trajectories into
scattered (superdiffusive) and not scattered (ballistic). In Fig. 4.7, we show the distri-
bution of injection angles θ for ballistic and scattered electrons for four different gold
thicknesses d in panel a) and b), respectively. Ballistic electrons propagate always in
a narrow cone which is centered around the z-axis. The thicker the sample, the more
narrow the cone becomes. In contrast, the scattered electrons need to ensure a path
length comparable to the mean free path. Consequently, the electrons need an injection
angle almost parallel to the surface normal in very thin samples. With increasing sam-
ple thickness the most probable injection angle approaches the z-axis which is reached
in Fig. 4.7 b) for the sample thickness d = 0.7λ0. This behavior explains the observed
apparent acceleration of the electrons in both experiment and simulation. Since the
scattered electrons have an injection angle parallel to the surface plane, their path is
much longer than the ballistic electrons path. Consequently, their effective velocity is
much smaller. With increasing gold layer thickness, the absolute value of the injection
angle becomes on average smaller resulting in a shorter path. Accordingly, the effective
velocity increases as seen in both the experiment [9] and the simulation, see Fig. 4.3.
We can extrapolate this analysis to understand the different curvatures in Fig. 4.3 and
4.4. It is simply the case that n scattering events require on average a path length
which is equal to n times the mean free path of the electrons. Regarding the passage
time this means that the more scattering events occur on the trajectory the longer the
electrons need to stay inside the probe. Thus, more collisions are associated with a
higher time delay.

For the scattering, we assumed an isotropic distribution of scattering angles which
might not be entirely valid in the experiment. The angular dependence, however,
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is not affected by applying different scattering schemes. In a thought experiment,
we assume a completely different scattering scheme with only forward and backward
scattering. We expect that the distribution of initial angles for the ballistic electrons
remains unchanged since they are not affected by the new scattering scheme. The
scattered electrons, on the other side, still need on average a path length comparable
to the mean free path. Therefore, we still expect a similar angular dependence of the
scattered electrons. The angular behavior suggests to apply momentum-dependent
scattering at buried interfaces for energy selection in electron (or hole) injection across
interfaces. A potential design implies electron transmission of high energy electrons
along the interface normal and (total) reflection of electrons at larger angles θ.

4.6. Boltzmann equation approach for diffusive
electron transport

With our Monte-Carlo simulation, we are able to identify the ballistic and superdiffusive
transport regime in the considered energy range by the average number of collisions.
However, we are not able to show the transition to the diffusive transport regime. For
multiple collisions along the trajectory, the time delay increases linearly. We expect
that this trend continuous up to a high gold thickness or rather increases quadratically
at a certain point as described by the mean square displacement in a diffusive transport
regime, cf. Eq.(2.32). In the following, we discuss a model that combines hot-electron
relaxation with diffusive transport. The relaxation is based on the analytic solution
of the Boltzmann collision integral by Ref. [12], see Chapter 2.5.2. We expand the
relaxation ansatz with diffusive transport by assuming that the distribution function is
space dependent. We assume that the total time derivative of the particle distribution
f [109] describes a propagation in the diffusive transport regime

ḟξ =

(
∂

∂t
−D

∂2

∂x2

)
fξ. (4.11)

Using this ansatz for Eq. (2.26) does not change the derivation of the relaxation term
until Eq. (2.31). With the diffusive ansatz Eq. (2.31) reads

τ0

(
∂

∂t
−D

∂2

∂x2

)
χ(ξ, x, t) =−

(
1 +

ξ2

π2

)
χ(ξ, x, t)

+
3

π2

∫ ∞

−∞
dξ′χ(ξ′, x, t)

ξ − ξ′

sinh
(
ξ−ξ′

2

) , (4.12)

which is a multidimensional integro-differential equation that cannot be solved directly.
To solve the equation, we use a separation ansatz

χ(ξ, x, t) = χξ(ξ, t)χD(x, t). (4.13)

Inserting the ansatz into Eq. (4.12) we find that the differential equation for χξ is given
by Eq. (2.31), i.e. the energy relaxation only, when(

∂

∂t
−D

∂2

∂x2

)
χD(x, t) = 0. (4.14)
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Thus the separation ansatz splits the equation into a homogeneous diffusion equation
and the equation of the energy relaxation derived by Ref. [12].

The homogeneous diffusion equation is solved by the fundamental solution, cf. Eq.
(2.35)

χD(x, t) =
1√
4πDt

∫ ∞

−∞
dx0 exp

[
−(x− x0)

2

4Dt

]
χD(x0, 0). (4.15)

The fundamental solution convolutes an arbitrary initial distribution χD(x0, 0) with a
time-dependent Gaussian distribution. The standard deviation increases in a square-
root fashion over time. The diffusion constantD specifies the strength of the slope. The
fundamental solution describes the free evolution of a distribution function. To apply
the fundamental solution to the Fe/Au heterostructure, we need to apply boundary
conditions. We assume an initial distribution that is symmetric around x = 0. To
apply the fundamental solution on a boundary at x = 0, we mirror the negative half
space to the positive half space. Hereby, we assume a total reflection at the Fe/Au
interface. The easiest way to implement the mirroring is to multiply the fundamental
solution with a factor of two. In principle, it is necessary to mirror the fundamental
solution also at x = d where d is the thickness of the sample. Subsequentially, the
solution needs to be mirrored again at x = 0. Thus, an infinite sum of mirroring
processes needs to be applied. Since we focus in the model on ultrafast processes, we
can approximate the solution by taking only the first mirroring process at x = 0 into
account. Thereby, we assume that the hot electrons have reached the stationary state
before the second mirroring process comes into play.

4.7. Diffusive transport model

Here, we apply the Boltzmann transport model to a homogeneous one-dimensional
sample with thickness d. First, we analyze the time evolution of the collision term
neglecting transport effects for different initial excitation schemes. In the next step,
we switch on the propagation of electrons and calculate the electron intensity as a
function of energy and time. The resulting spectra are compared to the experimental
results. Thickness-dependent transport characteristics are analyzed in the last part of
this section.

We use Eq. (2.31) to describe the time evolution of the energy relaxation. To solve
the equation, we discretize the distribution function χ(ξ, t) in time and energy. Here,
it is important to choose an energy discretization according to the total energy in
the system which is determined by the initial distribution. The higher the total energy
introduced by the initial excitation, the higher the resolution of the discretization needs
to be. The most challenging part of the relaxation calculation is the integration that
can only be solved numerically. In principle, it is necessary to sum over the full energy
space but it is possible to limit the range ξ ∈ [−ξmax, ξmax]. Within the reduced energy
range the distribution χ(ξ, t) must drop to zero for all times t. Otherwise, energy
conservation is violated and the calculation becomes unstable. For each time step, the
sum has to be evaluated for each energy grid point. Therefore, it has the biggest share
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in the calculation costs. The calculation algorithm for the collision term is given by

χi,j+1(ξi, tj+1) = χij(ξi, tj) + ∆t

[
−
(
1 +

ξ2i
π2

)
χij(ξi, tj)

+
3

π2
∆ξ

ξmax∑
ξk=−ξmax

χij(ξk.tj)
ξi − ξk

sinh((ξi − ξk)/2)

]
, (4.16)

where the times t and ∆t are chosen in units of τ0 =
2

π2K(kBT )2
.

In the following, we discuss the time evolution of three different excitations or initial
distributions. The first distribution is an antisymmetric excitation with an energy 2 ξ0.
In this case, electrons are excited from an energy −ξ0 below the Fermi edge to ξ0.
Such an initial distribution is suitable to describe the excitation scheme of a front-
pump front-probe measurement where the electrons are excited and probed on the
same side of the sample (gold layer). The second distribution describes an continuous
excitation where electrons are taken from below the Fermi edge down to an energy
−ξ0 and are excited to an energy up to ξ0. This initial distribution is relevant to
describe a measurement scheme where the electrons are pumped and probed on the
iron side of the sample, cf. [9, 106]. In the last initial distribution, excited electrons
at an energy around +ξ0 are considered. Different from the first scenario there is no
counter part below the Fermi edge. The latter scenario is not antisymmetric thus we
cannot use Eq. (2.31) as basis for our calculation since we have made the assumption
that the distribution χ is antisymmetric. To describe the relaxation process of the
injection case properly, we need to go one step back and use Eq. (2.29). The numeric
discretization scheme is analogue to Eq. (4.16). The last distribution can be applied
to the back-pump front-probe measurement. Here, the electrons are injected into the
gold layer in an energy window around 1.7 eV.
Figure 4.8 shows the relaxation process of the above described excitation schemes.

The upper right panel shows the initial distribution as a function of energy. At time
t = 0.01 τe, one sees that the high-energy side of the initial peak decays faster than the
low energy side in line with Fermi-liquid theory. The energy is transferred to electrons
with a lower energy by electron-electron scattering. With increasing time, the electron
distribution approaches an excited Fermi sea which is almost reached at t = 0.9 τe.
There are two major differences in the relaxation process of the iron and gold side
pumping. Due to the continuous distribution, there are electrons with an energy close
to the Fermi energy. Over time, these low-energy electrons scatter with higher energy
electrons and gain energy. After the dynamic equilibrium is reached, the two excitation
schemes do not differ qualitatively. The final distribution is independent of the initial
one and can be approximated by [12]

f(t→ ∞, ξ) ∼ ξe−ξ2 . (4.17)

The peak position is approximately at kBT and the height of the peak is proportional
to the total energy introduced via the excitation. The total electron energy of the
initial distribution describing a continuous excitation is higher than for the initial
distribution where the electrons are excited to a single energy. Therefore, the peak and
the temperature of the dynamic equilibrium are higher as indicated by the little shift
towards a higher energy in the peak position of the final distribution. The electron
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panel. Starting at time t = 0 in the upper left panel, the electron distributions
relax towards an excited Fermi sea which is almost reach at time t = 0.9 τ0 in
the lower right panel. For simplicity the distribution function of the injection
scheme has been renamed to χ.

energy of the excitation to a single energy and the injection of electrons at a certain
energy is in both cases the same. Thus, both schemes have an equal temperature after
the relaxation process. Due to particle number conservation, the number of electrons
above the Fermi edge is in the injection case higher. Therefore, the peak above the
Fermi edge is larger than the peak below Fermi energy for the initial distribution
describing the injection scenario.

In the next step, we use the diffusive Boltzmann transport equation (4.12) to cal-
culate electron transport in a diffusive regime. For a more realistic model, we use
instead of a box function a normal distribution with mean value Ē = 1.7 eV and stan-
dard deviation ∆E = 0.1 eV. Since the energy unit in Eq. (4.12) is kBT , we assume
that the sample has room temperature to convert the energy units. In this case, 1 eV
corresponds to approximately 38.67 kBT .

Figure 4.9 shows the relaxation dynamics after a front pump a) and a back pump b)
and c) for two different gold layer thicknesses, respectively. According to Ref. [157] the
diffusion coefficient of randomly moving charge carriers in gold is D = 156 cm2s. The
relaxation time constant is given by τ0 = 1.2 ps at room temperature under realistic
assumptions [12]. Finally, we find that

√
Dτ0 ≈ 135 nm which means that the con-

sidered sample thicknesses are comparable the samples used in the experiment. The
relaxation itself happens on a slightly faster timescale compared to the experimental
result, cf. Fig. 2.9.

The density plots show the normalized electron intensity as a function of energy and
time in a diffusive transport regime. The result of front-pump calculation is comparable
to the experiment [106] on a qualitative level. There is a prominent feature arising
from the initially excited electrons around 1.7 eV. The feature decays exponentially
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Figure 4.9.: Normalized intensity spectrum after a) a front pump, b) a back pump with
sample thickness d = 0.25

√
Dτ0 and c) a back pump with d = 0.5

√
Dτ0 as a

function of energy and time.

as function of time according to their energy-dependent lifetime, see Eq. (2.30). The
second feature is visible below 1 eV. Since it is unlikely that electrons are excited to
this energy, the electron intensity rises in the beginning via electron-electron scattering,
reaches a maximum and decays afterwards exponentially.

Figure 4.10 shows the electron intensity as a function of time for the depicted energies
from Fig. 4.9. The upper panel shows the front-pump case. Here, one can clearly see
the difference between both features. The high-energy feature is dominated by an
exponential decay while the feature below 1.5 eV shows first a rise in intensity and
afterwards an exponential decay. The maxima of the low-energy feature appear the
later the lower the energy of the corresponding electrons is. This result clarifies that
a shift of the maximum position as a function of energy is not sufficient to prove that
transport effects occur in the investigated system.

The calculation of the back-pump case with the thinner gold layer, cf. Fig. 4.9 b),
shows only a small intensity at the high-energy feature around 1.7 eV which almost
vanishes in the thicker sample cf. Fig. 4.9 c). Different from the front pump scenario,
this feature is zero in the beginning and builds up as a function of time. From Fig. 4.10
b) one can see that the electron intensity rises with a smooth shape at all energies,
reaches a maximum and decays afterwards. This is in clear contrast to the ballistic
simulation, cf. Fig. 4.2, where the ballistic electrons jump to maximum intensity at
time t = d/vF. The low-energy feature in Fig. 4.9 b) is comparable to the result from
the simulation, cf. Fig. 4.1. As mentioned before, Fig. 4.10 reveals the rise and decay
of the intensity for the different energies. In comparison to panel a), the maximum
positions have a bigger spacing in between. The spacing becomes even larger when the
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gold layer thickness is increased, cf. Fig. 4.10 c). Here, we also see that the position
of the highest energy peak appears at later time compared to the thinner sample.
Both, the spacing and the delayed appearance of the high-energy peak are part of the
transport features we analyze next.

In the back-pump front-probe measurement, the experiment is only sensitive to the
time delay between the maximum position. Therefore, we will analyze only this trans-
port effect in the following. In principle, we expect for both that the time delay follows
the relation from the mean square displacement, cf. Eq. (2.32). In Figure 4.11, the time
delay as a function of sample thickness for the depicted energies is shown. In contrast
to Fig. 4.3, the time delay increases faster than linear in the diffusive transport regime
as expected. For the evaluation of Fig. 4.3 and Fig. 4.4, we use that all energies and
collisions pass through the point (0,0). In the diffusive case, this seems not to be true.
The time delay of electrons with an energy below 1.5 eV saturates clearly at a time
delay ∆t > 0. For the high-energy electrons, we find zero time delay for small dAu in
agreement with the front pump excitation scheme, cf. Fig. 4.10 a). Since the energies
below 1.5 eV need to be populated via electron-electron scattering first, there is always
a time delay present. In the simulation, this is different since there is always a finite
probability to have n scattering events when the gold layer thickness goes to zero.

The diffusive transport calculation supports our assumption of ballistic and superdif-
fusive electron transport for the experiment. While the analysis of intensity spectra at
a fixed gold layer thickness shows comparable results to the experiment, the increasing
time delay as a function of gold layer thickness shows a clearly different curvature. As
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Figure 4.11.: Time delay between the peak position of the 2.0 eV and the indicated energy
as a function of sample thickness.

expected, we found the quadratically increasing time delay for the diffusive calculation
while in the experiment the time delay appears to be in a sublinear fashion. From the
simulation results, we expected that the linear trend found for small dAu will continue
over the considered range. This is also supported by our diffusive calculation since the
quadratic dependence is only distinguishable from a linear one when sample thicknesses
which are twice as large as used in the experiment are taken into account.

4.8. Transition to diffusive transport

In the experiment, we find electrons that are detected with the original injection energy
have propagate in a ballistic transport regime. Lower energies need to be populated
first which requires a certain amount of electron-electron scattering events. The aver-
age number of electron-electron scattering events is for all energies considered in the
experiment below the diffusive limit. Nevertheless, there must be a transition from the
superdiffusive to the diffusive regime when the number of scattering events increases.
When we extrapolate the time delay as a function of gold layer thickness for trajec-
tories with more than four collisions in Fig. 4.4, we get a linear function for small
thicknesses. We expect that at a certain number of collisions the shape of the function
changes from sublinear to superlinear which refers to a change from the superdiffusive
to the diffusive transport regime.
To determine an approximate number of collisions that sets the transition between

the diffusive Boltzmann model and the trajectory based simulation, we set up a toy
model. As a start, we consider that an electron propagates always over a constant
distance λ before it collides. In the next step, we consider a one-dimensional slab of
length L = (n− 1)λ with n ∈ N>1. The slab has an injection point at z = 0 where the
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1 2 3 4 5 n-1 n

Figure 4.12.: Sketch of the one-dimensional toy model to determine the number of collisions
necessary to identify diffusive transport. The slab ranges over all black spots.
At position 1 the electrons are injected into the sample and at position n the
electrons are extracted. At each collision point in between, the electrons can
either propagate forward of backward with equal probability as indicated by
the arrows.

electron always moves to the right and an extraction point at z = (n−1)λ which serves
as an absorbing state and n − 2 collision points in between. At each collision point,
the electron can move in both direction with equal probability. Thus, the electron
randomly walks across the sample. The system is sketched in Fig. 4.12. The transport
in such a model is per definition diffusive. For n = 2 the transport regime cannot be
distinguished from a ballistic transport. The question is how long the slab needs to be
and how many collisions are necessary to identify a diffusive behavior. Therefore, we
need an algorithm to calculate the probability of the electron to reach the extraction
point at position n after t jumps or, equivalently, t − 1 collisions. To describe the
hopping between the sites, we define the transition matrix M with the size n×n where
the only nonzero elements are on the subdiagonal and superdiagonal. All entries are
1/2 except for the element m12 = 1 and mn−1,n = 0 for the injection and absorbing
state, respectively. The matrix is given by

M =



0 1 0 · · · · · · 0

1/2 0 1/2
. . . . . .

...

0 1/2
. . . . . . . . .

...
...

. . . . . . . . . 1/2 0
...

. . . . . . 1/2 0 1/2
0 · · · · · · 0 0 0


. (4.18)

We are interested in the probability to reach the absorption point n after t jumps which
is calculated by the iteration

Pt+1 = M ·Pt. (4.19)

Here, Pt is the probability vector of length n after t jumps where each element gives
the probability to find the electron at the corresponding site. The iteration is started
with the injection vector

P0 = (1, 0, 0, 0, ...)T , (4.20)

which has a one in the first entry and zeros in all other entries.
Figure 4.13 shows the normalized electron intensity as a function of jumps t. One can

clearly see how a maximum builds up and decays afterwards. Similar to the analysis
above, it is possible to determine the relative distance between the fastest electrons and
the maximum position for different system sizes. The result is depicted in Fig. 4.14.
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Figure 4.13.: Normalized electron intensity at the absorption site as a function of jumps t
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number of jumps as a function of system size n. The diffusive characteristic
of the transport is clearly visible in the quadratic shape of the function. The
small offsets between an even and odd system size is an artifact of the dis-
cretization.
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4.9. Summary

The curve shows the expected quadratic dependence for diffusive transport. We can use
Fig. 4.14 to give a rough estimation of the required system size and number of collisions
that is required to identify diffusive transport in the trajectory-based simulation. First,
we need to decide at which system size it is possible to distinguish between a linear
function and a parabola. We assume from the figure that this point is approximately
at a system size of ten which corresponds to a sample length of L = 9λ. At such a size,
the most probable number of jumps is approximately 30 jumps since at least 9 jumps
are required by the fastest electrons. To conclude, there are also approximately 30
collisions necessary to distinguish diffusive and superdiffusive transport clearly.
In three dimension, the necessary sample thickness might be smaller. Nevertheless,

we expect that the number of collisions is in the correct order of magnitude. Both
results from experiment and simulation are far below our estimate of diffusive transport.
Therefore, we do not find any signature of diffusive transport with the simulation in
the current set up. Possibly, an analysis at energies close to the Fermi energy may
reveal a diffusive transport regime in both experiment and simulation. However, the
calculation costs for the trajectory-based model increases when we consider a threshold
energy closer to the Fermi energy since more electron paths need to be followed. The
Boltzmann calculation is suited best for transport with electrons close to the Fermi
edge and show clearly the diffusive behavior that has been verified by the estimation
above.

4.9. Summary

In this chapter, we have introduced two relaxation and transport models for photo-
excited electrons that are capable of analyzing possible ballistic, superdiffusive and
diffusive transport features. Both models have been used to interpret the results from
Refs. [9, 105, 106]. The Monte-Carlo simulation combines a random-walk transport
with a uniformly distributed energy exchange between electrons. In the simulation,
the trajectories of the electrons are tracked and information about the number of
scattering events, the injection angle, the total path length as well as the final electron
energy are extracted. The energy window in which the electrons are injected into the
gold layer has been chosen as indicated by the experimental results as well as by a
complementary DFT study of the heterostructure. The electronic lifetimes have been
chosen such that they match with the experimentally determined lifetimes in bulk gold
in the considered energy range. A comparison of our simulated electron intensity and
the experimentally determined two-photon photoelectron emission intensity shows a
qualitative agreement.
For both, the simulation and the experiment, the effective velocity has been analyzed

as a function of gold layer thickness. The effective velocity is given by the ratio of gold
layer thickness and the time delay between ballistic and scattered electrons. In both
cases, we have found a sublinearly increasing effective electron velocity. Using the
detailed information from the simulation, it has been possible to link this behavior
to the average number of collisions on the trajectories. With the analysis, it has
been possible to identify high-energy electrons as ballistic and low-energy electrons
as superdiffusive. In addition to the effective velocity, the passage velocity has been
introduced as the ratio of the gold layer thickness and the real propagation time of the
electrons. The passage velocity provides a more intuitive velocity that appears in the
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system. It is linearly increasing for the low-energy electrons while it saturates for the
high-energy electrons at the Fermi velocity indicating their ballistic nature.
An angular analysis of the injection pattern has been used to explain the apparent

acceleration of the electrons with increasing sample thickness. Here, the injection angles
of the simulated trajectories have been analyzed for scattered and ballistic electrons.
The ballistic electrons are injected predominantly orthogonally to the interface in a
narrow cone. The opening angle of the cone decreases with increasing sample thickness.
In contrast, the scattered electrons are injected almost parallely to the interface for thin
sample. With increasing sample thickness, the predominant injection angle becomes
smaller and electrons that scatter are also injected orthogonally to the interface for the
largest sample thickness.
The second model describes diffusive electron transport with an energy relaxation

according the Boltzmann equation. Here, we have expanded the analytic solution by
Ref. [12] with a diffusive transport model. First, the relaxation for the initial scenarios
which are excitation from one energy below to one energy above, continuous excitation
and injection in a certain energy window has been discussed. Afterwards, the influence
of the diffusive transport has been analyzed. The diffusive nature of the transport
changes the dependence of the time delay between scattered and ballistic electrons as
a function of gold layer thickness. For diffusive transport, we have found a quadratic
dependence of the time delay as expected.
Finally, we have shown how many collisions on the trajectory are necessary to distin-

guish the superdiffusive and the diffusive transport regime in the thickness-dependent
analysis of the trajectory-based simulation. For that, we have set up a one-dimensional
random-walk toy model where an electron distribution is inserted at the one side and
measured at the end of the chain. The results reveal that the number of scattering
events to distinguish both regimes is around 30. In the considered energy range of the
Monte-Carlo simulation, the number of collisions is far below this limit. Hence, there is
no diffusive transport in this range. Closer to the Fermi edge, the number of collisions
could be in the right order of magnitude to identify diffusive transport.
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5. Conclusions

In nanoscale conductors, several transport phenomena can be studied. The charge
carrier dynamics are the result of a nonequilibrium condition induced, for example, by
a strong nonlinear excitation leading to a charge carrier distribution far away from the
ground state Fermi distribution. The specific relaxation of the system is influenced
by the various physical effects present in the system. Possible effects include Coulomb
and spin interactions as well as quantization and superconducting correlations. Rich
transport and relaxation dynamics occurs in systems where different physical effects
interplay.

In this thesis, we have studied two particular examples of nonequilibrium nanoscale
transport in the time domain. The first example is the pair-amplitude dynamics in
a strongly-coupled superconductor-quantum dot hybrid. The pair amplitude is con-
nected to the Cooper pairs. Hence, we have focused on the subgap physics and have,
therefore, chosen to describe the dynamics in the infinite-gap limit. In this limit, we
have been able to describe the tunneling between the superconductors and the quan-
tum dot exactly by introducing an effective Hamiltonian that hybridizes quantum dot
and superconductors in the strong-coupling regime. In addition, the system is coupled
weakly to a normal conductor. With a real-time diagrammatic approach, we have set
up a master equation to calculate the dynamics of the quantum dot. Due to the weak
coupling to the normal conductor, we have had to consider only first-order diagrams
in the coupling to the normal conductor. We have formulated the master equation in
the pseudospin basis to get a physically intuitive form to interpret the dynamics of the
quantum dot system. In this basis, the length of the pseudospin in the x-y plane gives
the absolute value of the pair amplitude. In addition, the pseudospin components Ix
and Iy are experimentally accessible by measuring the Josephson and Andreev currents
in the hybrid structure.

The focus of our investigation of the superconductor-quantum dot hybrid has relied
on the nonequilibrium pair-amplitude dynamics. First, we have considered the quan-
tum dot in a quenched state by applying a gate voltage. We have derived an analytic
solution for the Bloch-type master equation to calculate the dynamics exactly at any
time. When setting the gate voltage close to the particle-hole symmetric point, rich
oscillation and exponential relaxation dynamics develop as a function of time. With
the help of the pseudospin, we have interpreted the oscillation of the pair amplitude
as a rotation of the pseudospin in the exchange field. The exchange field can be ma-
nipulated by the phase difference of the superconductors and the gate voltage applied
on the quantum dot. Hence, it is possible to control the pair-amplitude oscillation
experimentally. The relaxation of the pair amplitude arises from the dissipative cou-
pling to the normal conductor and is therefore determined by the coupling strength
to the normal conductor only. The advantage of this setup is that the relaxation and
oscillation of the pair amplitude occur on different timescales. Therefore, it is possible
to probe rich dynamics in such a system.
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This result is in strong contrast to a previous work [78]. Here, the superconductors
are weakly coupled to the quantum dot. In this case, it is not possible to take only
the subgap physics into account. Here, the quasiparticles with an energy above the
superconducting gap play an important role for the dynamics. The quasiparticles
provide an additional dissipative channel for the pair amplitude. The dissipation rate
of the pair amplitude in the weak coupling limit is an order of magnitude higher than
the oscillation frequency. Therefore, the oscillation has not been visible by quenching
the system. The only possibility to find Higgs-like pair-amplitude dynamics is to apply
specific driving schemes to the system.

Furthermore, we have discussed two driving schemes to continuously excite pair-
amplitude dynamics on the quantum dot. In the adiabatic limit, the dynamics of the
pair amplitude has been derived from the stationary solution of the master equation.
When the Fermi energy of the normal conductor crosses an Andreev bound state energy,
a rapid change of the pair amplitude is possible. Here, the dot occupation changes from
a superposition which allows pair-amplitude dynamics to an odd occupation where the
pair amplitude is suppressed. By exploiting these rapid transition, an oscillation of
the pair amplitude can be excited when driving the Fermi energy across the Andreev
bound state energy. Further promising driving parameters are close to the particle-
hole symmetric points which give rise to pronounced pair-amplitude dynamics under
driving either the phase difference or the level detuning.

In the fast driving limit, we have approximated the dynamics analytically by a
Fourier ansatz. We have found that the zeroth and its neighboring Fourier components
are sufficient to describe the resulting pair-amplitude dynamics. For strong coupling
between the superconductors and the quantum dot the pair amplitude is able to fol-
low the fast external driving up to high frequencies. The ratio between the coupling
strength to the superconductors and the level detuning determines the scaling of the
pair amplitude with increasing frequency. For a larger ratio, we have found a larger
amplitude with increasing frequency.

Our second example of nonequilibrium nanoscale transport is motivated by recent
experiments on a Fe/Au heterostructure which have revealed an intriguing transport
effect. It seems that the electrons cross the sample the faster the thicker the gold
layer is. To understand this apparent acceleration, we have modeled the transport and
relaxation dynamics in the Fe/Au heterostructure by a trajectory-based Monte-Carlo
simulation. Here, we have substituted the excitation in the Fe layer by the pump laser
and the subsequent injection of charge carriers across the Fe/Au interface by assuming
that electrons start at a certain energy above the Fermi energy in the Au layer. Hence,
we have focused on the dynamics inside the Au layer only. We have assumed that the
electrons are injected and scattered isotropically. Between the scattering events, the
electrons propagate quasiballistically with Fermi velocity. When the electrons reach
the sample surface, they are absorbed. Regarding the energy, we have assumed that
an electron transfers a uniformly distributed random amount of energy to a secondary
electron. The secondary electron has been included to the simulation as well. The
analysis of the energy and time dependence has required the detailed information of
the simulation regarding the injection angle, the number of collision and the total path
length i.e. the passage time.

In a first step, we have compared the electron intensity as a function of energy and
time to the experimentally determined analogue. Like in the experiment, we have found
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two distinct features in the intensity. First, there is a high-energy feature of electrons
with their original injection energy that cross the sample ballistically. Ballistic electrons
move through the sample on a path which is predominantly parallel to the interface
normal. Assuming that all electrons move with the same velocity, the Fermi velocity,
the ballistic electrons are the first electrons that are detected at the front side of the
sample. Therefore, ballistic electrons have been used as reference to calculate the time
delay in the experiment since it has not been possible to determine the time when the
pump pulse excited the electrons in the system. The high-energy feature looses intensity
with increasing Au thickness due to a higher scattering probability with increasing path
length. The second feature arises from scattered electrons below the injection energy.
Electrons have not been injected at this energy. Thus, these electrons must have
undergone at least one inelastic scattering event on their path to be detected at this
energy. There is a time delay between the maximum intensity of the ballistic electron
feature and the maximum of the scattered electrons because a finite time is required in
which the energy is populated due to electron-electron scattering. There is an excellent
qualitative agreement between the simulated data and the experiment.

Since the absolute time the electrons need to propagate through the sample is not
experimentally accessible, the transport regimes cannot be identified in the experimen-
tal data directly. During this thesis, we have discussed another scheme to determine
the transport regime. As it has already been found in the experiment, the time delay
of the low-energy feature increases sublinear as a function of Au thickness. Thus, the
effective velocity of the scattered electron crossing the sample increases with increasing
sample thickness. By analyzing the simulated data, we have connected the apparent
acceleration to the number of scattering events. The acceleration is due to the fact
that scattered electrons need on average a path which is comparable to the mean free
path to ensure scattering. If the Au layer is much smaller than this path length the
passage time of the scattered electrons is increased compared to the ballistic electrons.
With decreasing difference between the minimum path length and the Au thickness,
the time delay rises slower resulting in an apparent acceleration.

We have found that the more collisions occur on a trajectory, the longer the trajectory
needs to be. Furthermore, assuming that the number of collisions to reach a certain
energy is the larger the lower the energy, we have concluded that the lower the electron
energy the larger is the time delay. Since the number of collisions to reach a certain
energy is approximately independent of the gold layer thickness, the time delay as a
function of thickness increases faster the lower the electron energy. A comparison of the
measured energies with the simulated trajectories for a certain number of collisions has
revealed the different transport regimes. Electrons with energies close to the injection
energy scatter on average less than one time and propagate therefore ballistically.
Electrons with an energy below the injection energy scatter at least one time and cross
the sample in a superdiffusive transport regime. With the simulation, we have been
able to reveal the single scattering events in the Fe/Au heterostructure.

We have verified our assumption on the increased path of scattered electrons by ana-
lyzing the injection angle of the electrons. An injection parallel to the surface normal is
the most probable injection angle for ballistic electrons. With increasing sample thick-
ness, the injection cone of the ballistic electrons becomes more narrow. For a small
Au thickness, the injection pattern of the scattered electrons is different from ballistic
electrons. The maximum intensity occurs at an injection almost parallel to the sur-
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face normal. With increasing sample thickness, the maximum intensity shifts towards
an injection parallel to the surface normal. This supports our interpretation that the
apparent acceleration is due to more direct trajectories of the scattered electrons with
increasing Au thickness.

With the simulation, it has been possible to show the transport features of ballistic
and superdiffusive transport. To complete our understanding of photoexcited electron
transport in Fe/Au, we have addressed the diffusive transport regime by a Boltzmann
transport model. Hereby, we have extended a previous work [12] where the relaxation
dynamics of an electronic system via electron-electron scattering with the Boltzmann
equation has been calculated analytically. With a separation ansatz, we have solved
the time evolution of an excited electron pulse as a function of space and energy.
The solution of the diffusive propagation is given by the fundamental solution of the
diffusion equation.

In analogy to the simulation, we have calculated the electron intensity as a function
of energy and time. The dependence of the time delay as a function of the Au thickness
shows a significantly different behavior in comparison with the result obtained by the
simulation. For an underlying diffusive transport, the time delay increases faster than
linear. Since the experimental data showed a sublinearly increasing time delay the
diffusive calculation has underlined that the transport regime in the experiment is
superdiffusive or ballistic.

According to our simulation, the number of scattering events on a trajectory deter-
mines the transport regime. There is a transition from the ballistic transport regime
with less then one collision over superdiffusive with a few collisions to diffusive with
multiple collisions. With the trajectory-based simulation we have been able to de-
termine the transition from the ballistic to the superdiffusive transport regime. The
simulation results show also a hint how the transition to the diffusive regime can be
determined. There is a linearly increasing time delay as a function of gold layer thick-
ness. The more collisions occur, the thicker the gold layer needs to be to identify the
superdiffusive regime. With more scattering events, the diffusive regime would appear
as a linearly increasing time delay that changes to a quadratic function with increasing
gold layer thickness.

To determine the necessary number of scattering events we have set up a simple one-
dimensional hopping model. We have found that the necessary number of scattering
events to identify the diffusive regime is a few dozen. Hence, for the considered energy
range in our simulation, there has been no diffusion visible. From the analysis, we
have concluded that the diffusive transport regime occurs for electrons close to the
Fermi energy. It is challenging to simulate the transport close to the Fermi energy
with our trajectory-based model since the calculation costs increases rapidly when the
threshold energy where electrons are discarded decreases. To simulate the transport
near the Fermi level and to find the diffusive transport, a new random walk model
optimized for the transport near the Fermi level is required.

Both analyzed nonequilibrium transport models pave the way for further analysis.
The superconductor-quantum dot hybrid promises a multifaceted playground to study
quantum transport effects that are connected to the collective excitation in bulk su-
perconductors. Since the pair-amplitude dynamics is accessible via the Andreev and
Josephson current, it possible to measure the dynamics with modern experimental se-
tups. The analysis of ultrafast transport and relaxation processes opens new insights
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to the occurring dynamics. It is a promising tool to support experimental results with
a theoretical method to determine the transport regimes. Most certainly, the method
can be extended to other systems with appropriate modifications. A two-dimensional
metal film could be a good candidate for further testing our model. Another promis-
ing sample could be a multilayer system that consists of many gold and iron layers.
The simulation could be used to model the transport within each layer. Together
with a hopping model that covers the transition between the layers a full theoretical
description for the transport in the system could be obtained.
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Appendix A.

Calculation of real-time diagrams

Here, we show the calculation of four diagrams, see Fig. A.1 that represents all basic
example calculations of the diagrams. The rules to derive the rates are given in Chap-
ter 3.2. We remark that one diagram does not represent a complete rate from the rate
matrix but only one contribution to the corresponding rate.
During the calculation we will find integrals of the form∫ ∞

−∞
dω

f±(ω)

x− ω + i0+(−1)j
, (A.1)

with j ∈ {0, 1}. We can split the integral into a real and imaginary part∫ ∞

−∞
dω

f±(ω)

x− ω + i0+(−1)j
= −ϕ±(x)− iπf±(x)(−1)j, (A.2)

with

ϕ±(x) = P

∫
dω
f±(ω)

ω − x
= ∓ ln

(
EC

2πkBT

)
± Re

[
ψ

(
1

2
+ i

x− µ

2πkBT

)]
. (A.3)

Here, we used the Cauchy principal value integral which can be solved by introducing
a Lorentzian cutoff with cutoff energy EC, see Ref. [158] for details. When summing
up all diagrams for one rate the first term of Eq. (A.3) cancels for our system. In the
diagrams we calculate below, the first term is part of the result.

W ↑+
↑+

The diagram is one of four diagrams that contribute to the rate W ↑+
↑+ . In the given

diagram, the dot starts in the + state. One ↓-electron tunnels from the upper Keldysh
branch to the lower. It is also possible that the ↓-electron tunnels from the lower to

+

+ ↑

↑ +

−↑

↑ −

+

+

+

−

+

−

+

a) b) c) d)

Figure A.1.: Examples of first order diagrams from the Keldysh contour contributing to the
rates a) W ↑+

↑+ , b) W+↑
−↑ , c) W

+−
++ and d) W−−

++ .
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Appendix A. Calculation of real-time diagrams

the upper branch or that a ↑-electron tunnels from the lower to upper branch or vice
versa. In the case of an ↑-electron tunnel event, the tunnel line goes from the lower
left corner to the upper right corner. These are all diagrams that need to be drawn
according to the first rule.
For the second rule, we need to identify the left- and right-going energies. The only

left going energy is E+ on the lower branch. The tunneling line and the upper branch is
right-going. Here, we need to account for the energies ω and ϵ, respectively. According
to the second rule, we find

1

E+ − ϵ− ω + i0+
. (A.4)

The tunneling line goes forward with respect to the time on the Keldysh contour.
Therefore, we need to assign a factor 1

2π
ΓNf

−(ω). Thus, we find according to the third
rule

1

2π
ΓNf

−(ω)
1

E+ − ϵ− ω + i0+
. (A.5)

For the fourth rule, we focus on the vertices on the Keldysh contour. The vertex on
the upper branch connects the state |+⟩ with |↑⟩ by tunneling of an ↓ electron. We

assign for this vertex the factor
√

1 + δ
2ϵA
/
√
2. The same factor needs to be accounted

for the other vertex which describes the same on the lower branch. Hence, according
the fourth rule we find

1

4π
ΓN

(
1 +

δ

2ϵA

)
f−(ω)

1

E+ − ϵ− ω + i0+
. (A.6)

According to rule five, we assign a prefactor −i and −1 for the vertex on the lower
propagator. Furthermore, the upper bullet has an outgoing tunnel line and ends in the
state |↑⟩ and the lower bullet has an incoming tunnel line starting and starts in the
state |↑⟩. Hence, we need to assign −1 two more times

i

4π
ΓN

(
1 +

δ

2ϵA

)
f−(ω)

1

E+ − ϵ− ω + i0+
. (A.7)

In the final step, we need to integrate over ω the diagram results to

i

4π
ΓN

(
1 +

δ

2ϵA

)∫ ∞

−∞
dωf−(ω)

1

E+ − ϵ− ω + i0+
. (A.8)

After solving the integral, we find

iΓN

4π

(
1 +

δ

2ϵA

)[
−ϕ−(E+ − ϵ)− iπf−(E+ − ϵ)

]
. (A.9)

W+↑
−↑

The diagram is one of four diagrams that contribute to the rate W+↑
−↑ . In the given

diagram, the dot starts in a spin-up state and switch to a superposition of a + and −
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state by a tunneling of a spin-down electron from the lower to the upper branch of the
Keldysh contour. The other diagrams that contribute to the rate are drawn analogue
to the description above. A new aspect compared to the diagram before is that the
tunneling line goes backward in time.
As a start, we identify the left- and right-going energies. Only the energy E− on the

lower branch is left going. The tunnel energy ω and the energy on the upper branch ϵ
is right going. Thus, we have

1

E− − ϵ− ω + i0+
. (A.10)

Different from above, the tunneling line goes backward with respect to the time. There-
fore we assign

1

2π
ΓNf

+(ω)
1

E− − ϵ− ω + i0+
, (A.11)

according to the third rule. The upper vertex connects the states |↑⟩ with |+⟩ by the

tunneling of a spin-down electron. Here, we assign a factor
√

1 + δ
2ϵA
/
√
2. The lower

bullet connects the states |−⟩ with |↑⟩ under tunneling of the same electron. Thus we

assign
√
1− δ

2ϵA
/
√
2. Thus, with the fourth rule we find

1

4π
ΓN

√
1− δ2

4ϵ2A
f+(ω)

1

E− − ϵ− ω + i0+
. (A.12)

The next step is assigning the global prefactor −i and a −1 for the bullet on the lower
propagator. The upper vertex starts in the state |↑⟩ with an incoming tunnel line and
the lower vertex ends in the state |↑⟩. Hence, we assign for each vertex a −1. After
integration over all energies, we find for the diagram

i

4π
ΓN

√
1− δ2

4ϵ2A

∫ ∞

−∞
dω

f+(ω)

E− − ϵ− ω + i0+
, (A.13)

which yields

i

4π
ΓN

√
1− δ2

4ϵ2A

[
−ϕ+(E− − ϵ)− iπf+(E− − ϵ)

]
. (A.14)

W+−
++

The diagram is one of two diagrams contributing to the rate W+−
++ . In the other

diagram, the tunneling line goes in the opposite direction. In both diagrams, the
dot starts in a superposition state which is described by the density matrix element
ρ−+. By the tunneling of an electron, the dot changes to the |+⟩ state. The new aspect
compared to the diagrams above is that the diagram represents two equivalent diagrams
since either a spin-up or spin-down electron can tunnel. Nevertheless, for both spin
directions the calculation is the same. Thus, we account for two spins by an additional
factor of two.
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Appendix A. Calculation of real-time diagrams

In the given diagram, there is one left-going energy E+ and two right-going ϵ and ω.
According to the second rule, we start with

2

E+ − ϵ− ω + i0+
. (A.15)

The tunneling line goes in forward direction. Hence, we find

1

π
ΓNf

−(ω)
1

E+ − ϵ− ω + i0+
. (A.16)

The left vertex connects the state |−⟩ with the state |σ⟩ by tunneling of an electron
with σ′. Here, σ′ means that the tunneling electron has opposite spin to the dot
electron state |σ⟩. Independent of the actual spin, we assign for this vertex the factor√

1− δ
2ϵA
/
√
2. The right vertex connects the state |σ⟩ to |+⟩ by tunneling of an electron

with spin σ′. The resulting factor that needs to be assigned is
√

1 + δ
2ϵA
/
√
2. Thus,

with the fourth rule we find

1

2π
ΓN

√
1− δ2

4ϵ2A
f−(ω)

1

E+ − ϵ− ω + i0+
. (A.17)

For the fifth rule, we assign a global prefactor of −i. There is no bullet on the lower
propagator, thus, we only need to consider the tunneling processes. In the case of a
tunneling spin-up electron, we do not need to assign a −1. In the case of a tunneling
spin-down electron we need to assign a −1 for both vertices. Hence, also for the fifth
rule, the result is independent of the electron spin. Applying also the integration, we
find

− i

2π
ΓN

√
1− δ2

4ϵ2A

∫ ∞

−∞
dω

f−(ω)

E+ − ϵ− ω + i0+
, (A.18)

which yields

− i

2π
ΓN

√
1− δ2

4ϵ2A

[
−ϕ−(E+ − ϵ)− iπf−(E+ − ϵ)

]
. (A.19)

W−−
++

The diagram is one of four different diagrams that contribute to the rate W−−
++ . Even

though the dot state does not change in consequence to the tunneling, we need to con-
sider the rate for our master equation. As above, the diagram allows for the tunneling
of a spin-up and a spin-down electron at the same time but the result for each spin
is the same. This holds also for the other diagrams contributing to the rate. The
other possible diagrams are with a tunneling line going in the opposite direction and
a tunneling line on the lower propagator that is either left or right going. The new
aspect here is that the tunneling line is left going which is important for the Cauchy
integral, see Eq. (A.2).

84



In the given diagram, there are two left-going energies E+ and ω and one right-going
energy ϵ. With the factor of two to account for the spins, we find

2

E+ − ϵ+ ω + i0+
. (A.20)

The tunneling line goes backward in time, so we assign

1

π
ΓNf

+(ω)
1

E+ − ϵ+ ω + i0+
. (A.21)

The left vertex connects the state |−⟩ with the state |σ⟩ by a tunneling of an electron
with spin σ′ = σ because the electron tunnels in at this vertex and continuous on the
Keldysh contour. At the other vertex, the same happens with exchange dot states.
Thus, we find

1

2π
ΓN

(
1 +

δ

2ϵA

)
f+(ω)

1

E+ − ϵ+ ω + i0+
. (A.22)

With the global prefactor of −i and either no assigned −1 for a tunneling spin-down
electron or twice assigned −1 for a tunneling spin-up electron, we get for the integration

− i

2π
ΓN

(
1 +

δ

2ϵA

)∫ ∞

−∞
dω

f+(ω)

E+ − ϵ+ ω + i0+
. (A.23)

Before performing the integration, we need to bring the denominator to a form of
x− ω + i0+(−1)j

i

2π
ΓN

(
1 +

δ

2ϵA

)∫ ∞

−∞
dω

f+(ω)

ϵ− E+ − ω − i0+
. (A.24)

The solution of this integral is

i

2π
ΓN

(
1 +

δ

2ϵA

)[
−ϕ+(ϵ− E+) + iπf+(ϵ− E+)

]
. (A.25)
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Appendix B.

Basis transformation of the pseudospin

The time evolution of the reduced density matrix is given by

Ṗ+
+

Ṗ−
−
Ṗ ↑
↑
Ṗ ↓
↓

Ṗ−
+

Ṗ+
−


=



W++
++ 0 W+↑

+↑ W+↓
+↓ W+−

++ W++
+−

0 W−−
−− W−↑

−↑ W−↓
−↓ W−−

−+ W−+
−−

W ↑+
↑+ W ↑−

↑− W ↑↑
↑↑ 0 W ↑−

↑+ W ↑+
↑−

W ↓+
↓+ W ↓−

↓− 0 W ↓↓
↓↓ W ↓−

↓+ W ↓+
↓−

W−+
++ W−−

+− W−↑
+↑ W−↓

+↓ W−−
++ 0

W+
−+ W+−

−− W+↑
−↑ W+↓

−↓ 0 W++
−−





P+
+

P−
−
P ↑
↑
P ↓
↓

P−
+

P+
−

 . (B.1)

Here, the coherent evolution of the dot state according to Eq. (3.23) is already included
into the rates. This is relevant for the rates W−−

++ and W++
−− . The rates of the matrix

are given by

W++
++ =− ΓN

∑
γ=±(1)

(
1 + γ

δ

2ϵA

)(
1 + γ

2
− γf(EA,γ,γ)

)
, (B.2)

W+σ
+σ =

ΓN

2

∑
γ=±(1)

(
1 + γ

δ

2ϵA

)(
1− γ

2
+ γf(EA,γ,γ)

)
, (B.3)

W+−
++ =

ΓNΓS cos
φ
2

2ϵA

∑
γ=±

(
f(EA,γ,γ)− γ

i

π
ϕ(EA,γ,γ)−

1

2

)
, (B.4)

W++
+− =

ΓNΓS cos
φ
2

2ϵA

∑
γ=±

(
f(EA,γ,γ) + γ

i

π
ϕ(EA,γ,γ)−

1

2

)
, (B.5)

W−−
−− =− ΓN

∑
γ=±(1)

(
1 + γ

δ

2ϵA

)(
1− γ

2
+ γf(EA,−γ,γ)

)
, (B.6)

W−σ
−σ =

ΓN

2

∑
γ=±(1)

(
1 + γ

δ

2ϵA

)(
1 + γ

2
− γf(EA,−γ,γ)

)
, (B.7)

W−−
−+ =

ΓNΓS cos
φ
2

2ϵA

∑
γ=±

(
f(EA,−γ,γ)− γ

i

π
ϕ(EA,−γ,γ)−

1

2

)
, (B.8)

W−+
−− =

ΓNΓS cos
φ
2

2ϵA

∑
γ=±

(
f(EA,−γ,γ) + γ

i

π
ϕ(EA,−γ,γ)−

1

2

)
, (B.9)

W σ+
σ+ =

ΓN

2

∑
γ=±(1)

(
1 + γ

δ

2ϵA

)(
1 + γ

2
− γf(EA,γ,γ)

)
, (B.10)
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Appendix B. Basis transformation of the pseudospin

W σ−
σ− =

ΓN

2

∑
γ=±(1)

(
1 + γ

δ

2ϵA

)(
1− γ

2
+ γf(EA,−γ,γ)

)
, (B.11)

W σσ
σσ =− ΓN

2

∑
γγ′=±(1)

(
1 + γ

δ

2ϵA

)(
1− γ′

2
+ γ′f(EA,γ′,γ)

)
, (B.12)

W σ−
σ+ =

ΓNΓS cos
φ
2

4ϵA

∑
γγ′=±

(
1

2
− f(EA,γ′,γ) + γ

i

π
ϕ(EA,γ′,γ)

)
, (B.13)

W σ+
σ− =

ΓNΓS cos
φ
2

4ϵA

∑
γγ′=±

(
1

2
− f(EA,γ′,γ)− γ

i

π
ϕ(EA,γ′,γ)

)
, (B.14)

W−+
++ =

ΓNΓS cos
φ
2

2ϵA

∑
γ=±

(
f(EA,γ,γ)− γ

i

π
ϕ(EA,γ,γ)−

1

2

)
, (B.15)

W−−
+− =

ΓNΓS cos
φ
2

2ϵA

∑
γ=±

(
f(EA,−γ,γ)− γ

i

π
ϕ(EA,−γ,γ)−

1

2

)
, (B.16)

W−σ
+σ =

ΓNΓS cos
φ
2

4ϵA

∑
γγ′=±

(
f(EA,γ′,γ)− γ

i

π
ϕ(EA,γ′,γ)−

1

2

)
, (B.17)

W−−
++ =2iϵA

− ΓN

2

∑
γγ′=±(1)

(
1− γ

δ

2ϵA

)(
1 + γ′

2
− γ′f(EA,γ′,γ) + γγ′

i

π
ϕ(EA,γ′,γ)

)
, (B.18)

W++
−+ =

ΓNΓS cos
φ
2

2ϵA

∑
γ=±

(
f(EA,γ,γ) + γ

i

π
ϕ(EA,γ,γ)−

1

2

)
, (B.19)

W+−
−− =

ΓNΓS cos
φ
2

2ϵA

∑
γ=±

(
f(EA,−γ,γ) + γ

i

π
ϕ(EA,−γ,γ)−

1

2

)
, (B.20)

W+σ
−σ =

ΓNΓS cos
φ
2

4ϵA

∑
γγ′=±

(
f(EA,γ′,γ) + γ

i

π
ϕ(EA,γ′,γ)−

1

2

)
, (B.21)

W++
−− =− 2iϵA

− ΓN

2

∑
γγ′=±(1)

(
1− γ

δ

2ϵA

)(
1 + γ′

2
− γ′f(EA,γ′,γ)− γγ′

i

π
ϕ(EA,γ′,γ)

)
. (B.22)

Here, we used the definition of the Andreev bound state energies

EA,γ′,γ =


E+ − ϵ γ′ = +, γ = +
ϵ− E+ γ′ = −, γ = −
E− − ϵ γ′ = +, γ = −
ϵ− E− γ′ = −, γ = +

, (B.23)

and from Eq. (3.10)

4ϵ2A = δ2 + 4Γ2
S cos

2 φ

2
. (B.24)

A physically more intuitive form is the representation of the master equation in the
pseudospin base. The pseudospin base is given by Eqs. (3.30)-(3.34). We write this
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into a transformation matrix U
Pe

Po

Ix
Iy
Iz

 =


1 1 0 0 0 0
0 0 1 1 0 0

−ΓS cos φ
2

2ϵA

ΓS cos φ
2

2ϵA
0 0 δ

4ϵA

δ
4ϵA

0 0 0 0 − i
2

i
2

δ
4ϵA

− δ
4ϵA

0 0
ΓS cos φ

2

2ϵA

ΓS cos φ
2

2ϵA





P+
+

P−
−
P ↑
↑
P ↓
↓

P−
+

P+
−

 . (B.25)

To change the basis of the master equation, we insert U and its inverse U−1

ρ̇± = W±ρ±, (B.26)

⇔ ρ̇± = W±U
−1Uρ±, (B.27)

⇔ Uρ̇± = UW±U
−1Uρ±, (B.28)

⇔ ρ̇I = WIρI. (B.29)

Here, the index ± denotes that the density matrix elements of ρ and the rate matrix
W are in the ± basis and the index I that they are in the pseudospin base. The rates
in the pseudospin base are given by

Wee =
ΓN

2

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
γ′f(EA,γ′,γ)−

1

2

)
, (B.30)

Weo =
ΓN

2

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
γ′f(EA,γ′,γ) +

1

2

)
, (B.31)

WeIx = −
ΓNΓS cos

φ
2

ϵA

∑
γγ′=±

γf(EA,γ′,γ), (B.32)

WeIy =
ΓNΓS cos

φ
2

πϵA

∑
γγ′=±

γϕ(EA,γ′,γ), (B.33)

WeIz = ΓN

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
f(EA,γ′,γ)−

1

2

)
, (B.34)

Woe = −ΓN

2

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
γ′f(EA,γ′,γ)−

1

2

)
, (B.35)

Woo = −ΓN

2

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
γ′f(EA,γ′,γ) +

1

2

)
, (B.36)

WoIx =
ΓNΓS cos

φ
2

ϵA

∑
γγ′=±

γf(EA,γ′,γ), (B.37)

WoIy = −
ΓNΓS cos

φ
2

πϵA

∑
γγ′=±

γϕ(EA,γ′,γ), (B.38)

WoIz = −ΓN

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
f(EA,γ′,γ)−

1

2

)
, (B.39)

WIxe = −
ΓNΓS cos

φ
2

4ϵA

∑
γγ′=±

γf(EA,γ′,γ), (B.40)
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WIxo = −
ΓNΓS cos

φ
2

4ϵA

∑
γγ′=±

γf(EA,γ′,γ), (B.41)

WIxIx =
ΓN

2

∑
γγ′=±

(
1− γ

δ

2ϵA

)(
γ′f(EA,γ′,γ)−

1

2

)
, (B.42)

WIxIy = −δ − ΓN

2π

∑
γγ′=±

(
1− γ

δ

2ϵA

)
γ′ϕ(EA,γ′γ), (B.43)

WIxIz = −
ΓNΓS cos

φ
2

2ϵA

∑
γγ′=±

γγ′f(EA,γ′,γ), (B.44)

WIye = −
ΓNΓS cos

φ
2

4πϵA

∑
γγ′=±

γϕ(EA,γ′,γ), (B.45)

WIyo = −
ΓNΓS cos

φ
2

4πϵA

∑
γγ′=±

γϕ(EA,γ′,γ), (B.46)

WIyIx = δ +
ΓN

2π

∑
γγ′=±

(
1− γ

δ

2ϵA

)
γ′ϕ(EA,γ′γ), (B.47)

WIyIy =
ΓN

2

∑
γγ′=±

(
1− γ

δ

2ϵA

)(
γ′f(EA,γ′,γ)−

1

2

)
, (B.48)

WIyIz = 2ΓS cos
φ

2
−

ΓNΓS cos
φ
2

2πϵA

∑
γγ′=±

γγ′ϕ(EA,γ′,γ), (B.49)

WIze =
ΓN

4

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
f(EA,γ′,γ)−

1

2

)
, (B.50)

WIzo =
ΓN

4

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
f(EA,γ′,γ)−

1

2

)
, (B.51)

WIzIx = −
ΓNΓS cos

φ
2

2ϵA

∑
γγ′=±

γγ′f(EA,γ′,γ), (B.52)

WIzIy = −2ΓS cos
φ

2
+

ΓNΓS cos
φ
2

2πϵA

∑
γγ′=±

γγ′ϕ(EA,γ′,γ), (B.53)

WIzIz =
ΓN

2

∑
γγ′=±

(
1 + γ

δ

2ϵA

)(
γ′f(EA,γ′,γ)−

1

2

)
. (B.54)

Using that Pe + Po = 1, we write the time evolution of the pseudospin in a Bloch-type
equation

İ =

 WIxe

WIye

WIze

+

 WIxIx WIxIy WIxIz

WIyIx WIyIy WIyIz

WIzIx WIzIy WIzIz

 I, (B.55)

where the first vector is the accumulation vector and the matrix is a composition of
the relaxation matrix and the exchange field from Eq. (3.54).

90



Appendix C.

Algorithm for the trajectory-based
Monte-Carlo simulation

Here, we explain in more detail the main body of the trajectory-based simulation. The
algorithm for a single sweep is sketched in Fig. C.1. The ellipses represent the start and
the end of the sweep. In the rectangles, the calculations and orders are shown. The
rotated squares are decisions which asks for a condition which is either true or false.
Finally, there is one rhomboid which is the output of the simulation sweep. The sweep
starts by defining the sample by its thickness dAu. Then, an electron is initialized by
defining its place which is {x, y, z} = 0 and energy E. For the injection, a polar θinit
and azimuth angle φinit is isotropically set by a random number generator. The initial
electron is the first entry in the list of electrons. Secondary electrons that are excited
due to electron-electron scattering are added in the list consecutively. The entries for
each electron in the list are its current place and energy, the initial angles, the angles
for the current direction, the total path length and the number of collisions. This list
is updated every time when one of its entries is changed during the sweep.

After the initialization, the first decision asks if all electrons in the list have been
simulated. If true, the sweep ends and, if false, the electron trajectory starts. In
the following rectangle, a path length is determined by a random number generator
according to the distribution function in Eq. (4.2) which is subsequentially added to
the total path length. After calculating the new position of the electron, the next
conditions are queried.

At first, we ask if the z-component greater than dAu which means that the electron
has reached the surface of the sample. In this case, the total path length is corrected
and the final energy, the corrected total path length, the initial angle and the number
of collisions is exported. If there is another electron in the list, the next electron
is simulated. If the z-component is smaller than the gold thickness, we look if the
electron has been reinjected into the Fe layer. If true, the electron is discarded from
the simulation sweep and we continue with the next electron if possible. If the electron
is still inside the sample, a scattering event is initialized.

Here, we take care of the energy transfer. We calculate the new energy by multiplying
the old energy with a random number X between zero and one. Afterwards, we take
the energy difference and add one collision for the electron. Next, we initialize the
secondary electron which gets an energy in the range [0,∆E] set by another random
number X. In the next step, it is proofed if the secondary electron is included to the
list of electrons. This is the case when the energy of the secondary electron is larger
than the cutoff energy Ecut. The list entries are given by the current entries of the
parent electron except for the energy and the angles for the direction which are chosen
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Appendix C. Algorithm for the trajectory-based Monte-Carlo simulation

Start

E,Ltot, φinit, θinit, coll

Set parameters for initial electrons

Set up list of electrons

i = 1 for first electron (e−)
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Ltot+ = l(
xy
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)
=

(
xy
z

)
+ l

(
sin θ cosφ
sin θ sinφ

cos θ

)

z ≥ dAu

z < 0

E ′ = X E
∆E = E − E ′

coll + =1
Esec = X ∆E

Esec > EcutE > Ecut

E = E ′

i+=1 i > #e−

Stop

Add secondary electron in list of electron
Use parameters of parent generation

Set random φ and θ

new random φ and θ

But use current place and energy of secondary electron

Ltot− = (z − dAu)/Cos[θ]

True

True

True

True
False

False

False

False

False

True

Figure C.1.: Program flow chart for one simulation sweep. See text for details.
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randomly.
Afterwards or if the secondary electron is discarded, we continue with the parent

electron. For this electron, we also need to check if the energy has dropped below the
threshold. If this is the case, the electron is discarded and we continue with the next
electron if possible. In the other case, when the electron energy is still above Ecut,
the electron gets new random angles and the sweep continues with a new path length
determined by a random number generator, see above.
In the best case, at least one electron reaches the sample surface and we get the

corresponding export. However, if the cutoff energy is high or the sample thickness
large, it becomes more likely that all electrons in the sweep are discarded. In this case,
the sweep is restarted to ensure that the demanded number of electrons contribute to
the statistics.
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