
Securing Embedded Devices
with Remote Attestation

Dissertation
zur Erlangung des Doktorgrades

„Dr. rer. nat.“

der Fakultät für Wirtschaftswissenschaften
der Universität Duisburg-Essen

vorgelegt von

Sebastian Erasmus Raphael Josef Surminski
aus

Aachen, Deutschland

Betreuer: Prof. Dr.-Ing. Lucas Vincenzo Davi
Lehrstuhl für Systemsicherheit

Essen, Juni 2024

1. Gutachter:
Prof. Dr.-Ing. Lucas Vincenzo Davi
Universität Duisburg-Essen

2. Gutachter:
Prof. Dr. Ahmad-Reza Sadeghi
Technische Universität Darmstadt

Tag der mündlichen Prüfung: 14. März 2024

Securing Embedded Devices with Remote Attestation
Sebastian Erasmus Raphael Josef Surminski
sebastian@surminski.org
https://www.surminski.org/

https://www.surminski.org/

Abstract
Embedded devices are ubiquitous in modern society. They are critical components
in smart factories, vehicles, critical infrastructures, and medical devices. Recent
studies and reports have revealed that many of these devices suffer from crucial
vulnerabilities that can be exploited with fatal consequences. Despite their safety-
and security-critical roles, these devices often do not feature state-of-the-art security
mechanisms. Moreover, the machines equipped with these devices have a long
lifetime, and changing hardware components to integrate hardware-based security
solutions is often not possible as these embedded devices are deeply integrated
into other systems. Systems operating under real-time constraints are especially
critical. Real-time systems have strict timing requirements, and integrating new
security mechanisms is not a viable option as they often influence the device’s runtime
behavior. One solution is to offload security enhancements to a remote instance,
for example using remote attestation. Remote attestation is a powerful security
service for validating the trustworthiness of a remote device. However, implementing
remote attestation in existing legacy devices is a challenging task: How to obtain a
trustworthy self-measurement of a device, even if the system is fully compromised?

This dissertation presents different remote attestation solutions for specific classes
of embedded devices. RealSWATT is the first software-based remote-attestation
scheme for embedded systems with real-time constraints. With SCAtt-man, this
dissertation introduces an attestation solution for consumer IoT devices, that allows
user-observable attestation, and thereby also solves the problem of missing device
authentication in software-based attestation. Furthermore, this dissertation presents
an external attestation device called DMA’n’Play that leverages direct memory
access (DMA) to monitor the memory content of the attested device. As DMA is
independent of the main processor, this solution is also applicable to devices with
real-time constraints.

However, remote attestation does not prevent the compromise of the attested
system. Therefore, it is eventually necessary to patch vulnerabilities. However,
patching embedded devices typically influences the operation of the patched device.
Often, even a reboot is required. For many critical embedded devices, especially such
with real-time constraints, rebooting is mostly not possible, preventing the timely
application of patches. To tackle this problem, this dissertation introduces HERA, a
framework for patching devices without interfering with normal operation, even on
systems with real-time tasks.

iii

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/82079
URN: urn:nbn:de:hbz:465-20240619-112310-6

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/82079
https://nbn-resolving.org/urn:nbn:de:hbz:465-20240619-112310-6

Zusammenfassung
Eingebettete Geräte sind in der modernen Gesellschaft allgegenwärtig. Sie sind
wichtige Komponenten in Fabriken, Fahrzeugen, kritischer Infrastruktur und medi-
zinischen Geräten. Jüngste Studien und Berichte haben gezeigt, dass viele dieser
Geräte Schwachstellen aufweisen, die mit fatalen Folgen ausgenutzt werden kön-
nen. Trotz ihrer Sicherheitsrelevanz verfügen diese Geräte oft nicht über moderne
Sicherheitsmechanismen, die eine Ausnutzung verhindern würden. Ein Austausch
der Geräte ist zumeist nicht praktikabel, da diese oftmals tief in andere Systeme
integriert sind. Besonders kritisch sind Echtzeitsysteme, die strenge Zeitvorgaben
bei der Ausführung ihrer Aufgaben haben. Neue Sicherheitsmechanismen beein-
flussen jedoch oft das Laufzeitverhalten des Geräts. Eine Lösung besteht darin,
diese Sicherheitsverbesserungen auf eine entfernte Instanz auszulagern, zum Beispiel
durch Remote Attestation. Remote Attestation ist ein Verfahren, das es erlaubt die
Vertrauenswürdigkeit eines entfernten Geräts zu überprüfen. Allerdings ist die Imple-
mentierung eines solchen Verfahrens in bestehende Altgeräte eine komplexe Aufgabe:
Wie erhält man eine vertrauenswürdige Messung eines nicht vertrauenswürdigen und
potentiell kompromittierten Gerätes?

Diese Dissertation stellt neue Sicherheitslösungen für verschiedene Arten von einge-
betteten Geräte vor. RealSWATT ist das erste Verfahren für softwarebasierte Re-
mote Attestation für eingebettete Systeme mit Echtzeitanforderungen. Mit SCAtt-
man wird eine Lösung für Remote Attestation von IoT-Geräten für Endkunden
entwickelt, die eine vom Benutzer beobachtbare Attestation ermöglicht. Darüber
hinaus stellt diese Dissertation ein externes Gerät zur Unterstützung der Attestation
namens DMA’n’Play vor, das Direct Memory Access (DMA) nutzt, um den Speicher-
inhalt des attestierten Geräts zu überwachen. Da DMA unabhängig vom Prozessor
erfolgt, ist diese Lösung auch für Geräte mit Echtzeitanforderungen geeignet. Remote
Attestation verhindert jedoch nicht die Kompromittierung des attestierten Systems.
Daher ist es letztendlich notwendig, Sicherheitslücken zu schließen. Das Patchen hat
jedoch in der Regel Auswirkungen auf den Betrieb des gepatchten Geräts, oft ist
sogar ein Neustart erforderlich. Für viele kritische eingebettete Geräte ist dies jedoch
meist nicht möglich, was die zeitnahe Anwendung von Patches verhindert. Um dieses
Problem zu lösen, wurde im Rahmen dieser Dissertation das Framework HERA
entwickelt, das ein Patchen von eingebetteten Systemen mit Echtzeitanforderungen
während des Betriebs erlaubt, ohne dabei Einfluss auf das Laufzeitverhalten zu
nehmen.

v

Acknowledgements
First, I would like to thank my advisor Lucas Davi for giving me the opportunity to
pursue a PhD, showing me how to convert my ideas into actual research, and bringing
this research in a form that people actually understand. Over the years, I had the
pleasure of collaborating with various people. I want to thank Ferdinand Brasser,
Tobias Cloosters, Kilian Demuth, Christian Niesler, Sebastian Linsner, David Paaßen,
Christian Reuter, Michael Rodler, and Ahmad-Reza Sadeghi for their contribution
and input to various research topics we pursued. In particular, I want to thank
Ahmad-Reza Sadeghi for being the second referee of my dissertation.

In addition, I would like to thank my colleagues, Michael, Tobias, Jens-Rene, David,
Oussama, Shahid, Hagen, Shivam, and Christian, for not only inspiring but also
fun discussions during coffee and lunch breaks. I want to especially thank Michael
Rodler, who always had an open ear and honest feedback when it came to tricky
questions. It was a pleasure working with all of you!

Finally, I want to thank my wife, Sarah Wedrich, my friends, and my family.
Thank you, Sarah, for supporting me with everything I do and tolerating that I often
invested far too many hours into my work, but also showed me how to manage my
time and projects successfully.

vii

Contents

1 Introduction 1
1.1 Goal and Scope of this Dissertation 4
1.2 Contributions and Outline . 5
1.3 Additional Publications . 7

2 Background 9
2.1 Embedded Systems . 9

2.1.1 Classification of Embedded Systems 10
2.1.2 Typical Vulnerabilities in Embedded Systems 11

2.2 Real-Time Systems . 13
2.2.1 Classification of Real-Time Systems 14
2.2.2 Scheduling and Real-Time Operating Systems 15

2.3 Overview on Remote Attestation . 16
2.4 Threat Model of Remote Attestation 17
2.5 Challenges in Remote Attestation . 18
2.6 Attestation Types . 21

2.6.1 Static Attestation . 21
2.6.2 Control Flow Attestation . 21
2.6.3 Data Flow Attestation . 22
2.6.4 Other Properties . 23

2.7 Attestation Architectures . 24
2.7.1 Hardware-Based Attestation 24
2.7.2 Software-Based Attestation 25
2.7.3 Hybrid Attestation . 27

2.8 Comparison of Attestation Schemes 28

3 Attestation for Real-Time Applications 29
3.1 Background: Software-Based Attestation 32
3.2 Challenges . 33
3.3 Assumptions and Threat Model . 35

3.3.1 Assumptions . 35
3.3.2 Threat Model . 36

3.4 Concept of RealSWATT . 37
3.4.1 Design Considerations . 39

ix

Contents

3.4.2 Attestation Scheme . 42
3.4.3 IoT Network Architecture . 44

3.5 Implementation . 44
3.5.1 Prover . 45
3.5.2 Verifier . 46
3.5.3 Test Bed . 47
3.5.4 Integration Guidelines . 48

3.6 Evaluation . 48
3.6.1 Timing Behavior of the Attestation Function 48
3.6.2 Power Consumption . 52
3.6.3 Communication Overhead . 53
3.6.4 Race Conditions . 54
3.6.5 Implementation on Real-World Devices 54
3.6.6 End-to-End Case Study . 56
3.6.7 Summary . 57

3.7 Security Discussion . 57
3.7.1 Hardware Restrictions . 59
3.7.2 Common Attack Scenarios . 60
3.7.3 Attacks on Attestation Protocol 61
3.7.4 Network-based Attacks . 62

3.8 Related Work: Attestation for Real-Time Systems 63
3.9 Summary and Conclusions . 65

4 User-Understandable Remote Attestation 67
4.1 Background: Smart Speakers . 70
4.2 Challenges . 71
4.3 Assumptions and Threat Model . 73

4.3.1 Assumptions . 73
4.3.2 Threat Model . 74

4.4 Concept of SCAtt-man . 74
4.4.1 Audio Protocol . 76
4.4.2 Attestation Function . 77
4.4.3 Limitation of the Internet Access 78
4.4.4 Attestation without Human Interaction 80

4.5 Implementation . 80
4.5.1 Smart Speaker . 81
4.5.2 Attestation Process . 82
4.5.3 Data-Over-Sound . 83
4.5.4 Design of the Attestation App 87
4.5.5 Usage Process of SCAtt-man Attestation 87
4.5.6 Integration Guidelines . 88

x

Contents

4.6 Evaluation . 89
4.6.1 Runtime of Attestation Function 89
4.6.2 Designing a Reliable Audio Protocol 90
4.6.3 Further Audio Optimizations 92
4.6.4 End-to-End Case Study . 93
4.6.5 User Study . 94
4.6.6 Summary . 97

4.7 Security Discussion . 97
4.8 Related Work: Context-Based Authentication 100
4.9 Summary and Conclusions . 101

5 DMA-Based Remote Attestation 103
5.1 Background: U(S)ART, SPI, and DMA 107

5.1.1 U(S)ART and SPI . 107
5.1.2 Direct Memory Access (DMA) 108

5.2 Challenges . 109
5.3 Assumptions and Threat Model . 110

5.3.1 Assumptions . 110
5.3.2 Threat Model . 112

5.4 Concept of DMA’n’Play . 112
5.4.1 Using DMA for Attestation 113
5.4.2 DMA’n’Play Attestation . 113
5.4.3 Conception of the DMA’n’Play Verifier 115
5.4.4 Locking of DMA Controllers 116
5.4.5 Hardware Requirements & Target Platforms 118
5.4.6 Devices Without Source Code 118

5.5 Implementation . 119
5.5.1 Attested Device . 119
5.5.2 Verifier . 122
5.5.3 DMA’n’Play To-Go . 123
5.5.4 Integration Guidelines . 124

5.6 Evaluation . 125
5.6.1 End-to-End Case Study . 125
5.6.2 Real-Time Capabilities . 127
5.6.3 System Performance View . 128
5.6.4 Feasibility of Full Memory Attestation 128
5.6.5 Power Consumption . 129
5.6.6 Summary . 130

5.7 Security Discussion . 130
5.8 Related Work: DMA Security . 133
5.9 Summary and Conclusions . 134

xi

Contents

6 Hotpatching of Real-Time Applications 137
6.1 Background: Hotpatching Strategies 140

6.1.1 Relocatable Executables . 141
6.1.2 Instrumentation . 141
6.1.3 A/B Hotpatching . 142

6.2 Challenges . 143
6.3 Assumptions and Threat Model . 145

6.3.1 Assumptions . 145
6.3.2 Threat Model . 146

6.4 Concept of HERA . 146
6.4.1 Hardware Debugging Units 147
6.4.2 Patching Process . 148
6.4.3 Limitations . 154

6.5 Implementation . 154
6.5.1 HERA Library . 155
6.5.2 HERA Patch Development 156
6.5.3 Patch Development Guidelines 157
6.5.4 Patch Application . 160

6.6 Integration Guidelines . 161
6.7 Evaluation . 161

6.7.1 Implementation on Real-World Devices 162
6.7.2 Measurements of the Overhead 166
6.7.3 Further Measurements . 169
6.7.4 Summary . 171

6.8 Security Discussion . 171
6.9 Related Work: Hotpatching . 173
6.10 Summary and Conclusions . 175

7 Summary and Conclusions 177
7.1 Dissertation Summary . 177
7.2 Comparing Remote Attestation with Other Security Enhancements . 179
7.3 Future Research Directions . 180

Bibliography 183

Eidesstattliche Erklärung 215

xii

List of Figures
2.1 Remote attestation protocol. 16
2.2 Generic threat model for remote attestation. 17
2.3 Protocol for software-based attestation. 26

3.1 Network architecture of the real-time attestation approach. 35
3.2 Threat model of RealSWATT. 37
3.3 Usage of multiple cores for attestation and real-time tasks. 38
3.4 Merkle–Damgård construction of hash values. 40
3.5 Protocol of the attestation process. 41
3.6 Photo of the NodeMCU ESP32 developer board. 47
3.7 Runtime of the attestation process with different repetition numbers. 50
3.8 Response time of the prover with a different number of repetitions. . 51
3.9 Attack scenario of RealSWATT. 59

4.1 Threat model of SCAtt-man. 73
4.2 Concept of SCAtt-man attestation. 75
4.3 Limiting Internet access in SCAtt-man. 79
4.4 Implementation of a smart speaker with SCAtt-man attestation. . 81
4.5 The M5Stack ATOM Echo. 82
4.6 Example of a data-over-sound transmission. 85
4.7 The usage of SCAtt-man. 86
4.8 Evaluation of the base- and separation frequency. 91
4.9 Evaluation of base- and separation frequency and block length. . . . 91
4.10 Modifications of the ATOM Echo. 92
4.11 Results of the UEQ-S questionnaire. 97

5.1 Architecture without DMA support. 108
5.2 Architecture with DMA support. 108
5.3 Threat model of DMA’n’Play. 110
5.4 Threat model of DMA’n’Play with DMA’n’Play To-Go. 111
5.5 The DMA controller sends all relevant memory sections to the verifier.112
5.6 Concept of the verifier in DMA’n’Play. 115
5.7 The ARMv7 architecture features two DMA controllers 120
5.8 Usage of the attestation header to identify position in data stream. . 121
5.9 Photo of the DMA’n’Play To-Go prototype. 124

xiii

5.10 Photo of the Bitcraze Crazyflie 2.1 drone. 126
5.11 Power consumption of DMA’n’Play in the case study. 129
5.12 Trade-off between bus speed, attested data, and transmission time. . 130

6.1 Architecture of the ARM Cortex-M3/M4. 147
6.2 Concept of HERA hotpatching. 149
6.3 Sequence view of the patching process. 150
6.4 Trampoline insertion using the FPB unit. 151
6.5 The process flow of the trampoline insertion using the dispatcher. . . 152
6.6 Photo of the implemented setup. 162
6.7 Duration of the patching with different numbers of breakpoints. . . . 169
6.8 Measurements of the full end-to-end experiment on the syringe pump. 170

List of Tables
2.1 Classification of embedded systems according to RFC-7228. 11

3.1 Runtime of the attestation with and without Wi-Fi communication. 49
3.2 Definition of times for security analysis. 58

4.1 Runtime of attestation function with a different number of repetitions. 89
4.2 Transmission success rate. 92
4.3 Results of end-to-end case study. 94
4.4 Full results of the questionnaire. 95
4.5 Responses to the questionnaire on SCAtt-man. 96

6.1 Measurement of the atomic switch time. 167
6.2 Time to abort instructions and switch to the jump-section. 167
6.3 Time required to abort different instructions. 168

Listings

3.1 Default ESP32 partition layout without without over-the-air updates 55
3.2 Internal configuration of the syringe pump 55
3.3 Medical configuration of the syringe pump 56

5.1 Example configuration file for verifier 123
5.2 Example for valid ranges of variables for verifier 123

6.1 Source code of the patch for CVE-2018-16601 159
6.2 Assembly code of the patch for CVE-2018-16601 159
6.3 Instruction replacement on breakpoint hit 161
6.4 Dispatcher for hotpatching FreeRTOS 161

xv

Acronyms

API Application Programming Interface
ASLR Address Space Layout Randomization
ATI Affinity for Technology Interaction
BL Branch-and-Link
CFI Control Flow Integrity
CoAP Constrained Application Protocol
COTS Commercial off-the-Shelf
CPU Central Processing Unit
CVSS Common Vulnerability Scoring System
DDoS Distributed Denial-of-Service
DMA Direct Memory Access
DoS Denial-of-Service
ELF Executable and Linkable Format
FDA Food and Drug Administration
FFT Fast Fourier Transform
FPB Flash Patch and Breakpoint
GPIO General-Purpose Input/Output
HTTP Hypertext Transfer Protocol
I/O Input/Output
ICS Industrial Control System
IEEE Institute of Electrical and Electronics Engineers
IIoT Industrial Internet of Things
IOMMU Input/Output Memory Management Unit
IoT Internet of Things
IP Internet Protocol
ISA Instruction Set Architecture
IT Information Technology
ITU International Telecommunication Union
LED Light-Emitting Diode
LR Link Register
MISO Master Input, Slave Output
MitM Man-in-the-Middle
MMU Memory Management Unit
MOSI Master Out, Slave In

xvii

MPU Memory Protection Unit
NIST National Institute of Standards and Technology
NOP No Operation
LLC Last Level Cache
OTA Over-the-Air
OS Operating System
OWASP Open Worldwide Application Security Project
PCI Peripheral Component Interconnect
PLC Programmable Logic Controller
PUF Physically Unclonable Function
PoC Proof-of-Concept
RAM Random Access Memory
RA Remote Attestation
REST Representational State Transfer
RGB Red, Green, Blue
ROM Read-Only Memory
ROP Return-Oriented Programming
RTOS Real-Time Operating System
RX Reception
SGX Software Guard Extensions
SHA Secure Hash Algorithm
SoC System-on-Chip
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
SS Slave Select
STT Speech-to-Text
SVC Super Visor Call
SWATT Software-Based Attestation
TCP Transmission Control Protocol
TEE Trusted Execution Environment
TLS Transport Layer Security
TOCTOU Time-of-Check/Time-of-Use
TPM Trusted Platform Module
TTS Text-to-Speech
TX Transmission
UART Universal Asynchronous Receiver-Transmitter
UDP User Datagram Protocol
UEQ User Experience Questionnaire
USART Universal Synchronous and Asynchronous Receiver-Transmitter
UX User Experience

xviii

CHAPTER 1

Introduction

In today’s world, embedded systems are everywhere, so to say, ubiquitous. They
are crucial parts in many devices, measuring, controlling, and connecting various
actuators, sensors, and other components, enabling a wide range of functionality.
Embedded devices serve manifold safety-critical tasks in smart factories, cars, medical
devices, and critical infrastructure. Integrated into cyber-physical systems, embedded
devices often operate under strict real-time constraints, as these systems interact with
the physical world, for example, in vehicles or industrial robots [161, 218]. Embedded
devices are also widely used to enhance previously unconnected devices with Internet
access, connecting consumer devices to the so-called Internet of Things (IoT). In
addition, industrial machines and components are also connected via the Internet,
resulting in the Industrial Internet of Things (IIoT).

Despite their criticality, embedded devices suffer from various security vulnerabili-
ties [12, 74, 76, 208], including industrial robots [218], vehicles [161], and drones [13].
Typical IoT devices are black-box systems to the user with a limited understanding
of threats to security and privacy [299]. In a recent study, 48% of companies reported
that they are unable to detect whether an IoT device on their network suffers from a
breach, and, for example, is part of a botnet [119]. IoT & Edge Developer Survey by
the Eclipse Foundation finds that security is the top concern of developers. 46% of
IoT & Edge developers report security concerns, more than connectivity (38%), and
deployment (31%) [88].

Numerous examples show that a compromise or malfunction of such devices can
have severe implications and even cause physical damage in the real world. The
consequences are manifold and reach from the targeted compromise of specific devices
to broad large-scale cyberattacks, as several prominent incidents in recent years
illustrate. Stuxnet [106] is a well-known example of an attack on industrial control
systems targeted at a uranium enrichment plant. Eventually, this attack not only
physically damaged centrifuges in a long-term process by altering the power supply
of the centrifuges [107], but also caused about 100,000 infections worldwide [169].
Another example is the attack on the control systems of a German steel mill that
caused the blast furnace to not shut down properly, leading to severe physical

1

Chapter 1 Introduction

damage [302]. But also, systems outside of the industry are vulnerable. Miller and
Valasek remotely controlled an unaltered Jeep Cherokee by exploiting a vulnerability
in the head unit [185]. These examples illustrate how dangerous attacks against
embedded devices can be.

In contrast to these targeted attacks, embedded devices can also be used for
large-scale attacks. The Mirai botnet [21] specifically targeted consumer IoT devices,
compromising and controlling millions of IoT devices. This botnet was used for
multiple large-scale distributed denial-of-service attacks. It has even been accounted
to have performed some of the largest denial-of-service attacks to date, targeting
the OVH hoster and many popular websites. These attacks with a bandwidth up to
1.1 Tbit/s involved more than 300,000 devices [125]. This problem is further amplified
as embedded devices often lack basic security mechanisms that are common in most
other types of systems [12]. For example, more than 80% of the embedded devices do
not feature standard security mitigations such as address space layout randomization
(ASLR), non-executable memory, and stack canaries [284].

Integrating new security mechanisms into such embedded devices is a challenging
task: Legacy real-time embedded devices lack hardware security features, for example,
secure boot or trusted execution environments (TEEs). Moreover, they are commonly
integrated into other devices, such as machines, control units, and custom circuit
boards, and run customized software. Hence, they cannot be simply replaced or
upgraded. In contrast to commodity computer systems, in embedded devices, both
hardware and software are specifically tailored to their use case, making adjustments
difficult. Furthermore, these devices often have a long lifetime. Therefore, there are
many legacy devices. For instance, industrial robots have a lifetime of ten years [8,
37], cars in the US are on average 12.1 years old [53], and airplanes have a design
lifetime of more than 30 years [7].

In addition, many of these devices also perform real-time or safety-critical tasks.
During development, the correctness of functionality and timing behavior has been
ensured [79, 277]. However, incorporating protection mechanisms in software such
as control flow integrity (CFI) [1] always impacts the execution times of tasks [79,
277]. This is highly critical in the real-time realm since they must adhere to strict
timing behavior and hence go through an extensive development and profiling phase.
Any changes in execution, even through instrumentation, for example, to integrate
control flow integrity [79, 277], or abnormality monitoring [246], affect the runtime
behavior of the device, and hence require repeating these extensive testing routines.
These circumstances hinder the integration of new security mechanisms into existing
legacy devices.

Nevertheless, as eluded before, these embedded devices often have vulnerabilities
that can be exploited in practice. This requires security solutions that can be
integrated into such legacy devices. A solution is to move security checks to another
entity so that the integration of new security mechanisms, such as the detection

2

of malware injection and data manipulation, does not require any changes to the
original device.

One way to do so is remote attestation, as it allows an external entity to monitor
and attest the internal behavior and state of a remote device [71]. Remote attestation
enables a device, the so-called verifier, to check the integrity of another device, the
prover. So, the verifier can monitor the operation of the attested device, thereby not
only detecting compromises but also enhancing trust in the attested device. This
feature is particularly relevant for embedded devices, which often operate in untrusted
environments. Remote attestation does not only allow the implementation of further
security checks but by design also enables monitoring of attested devices. Monitoring
is complementary to further security checks: While additional security checks enhance
the security of a device, they do not allow the inspection of a device’s state. New
security features such as control flow integrity (CFI) can still be circumvented,
allowing the compromise of a device. Without monitoring, this manipulation will
remain undetected. Remote attestation, in contrast, allows one to determine the
state of a system and to detect a compromise even though the compromise is based
on a novel attack technique, a zero-day vulnerability, or a backdoor. So remote
attestation is not only a worthwhile solution to enhance the security of individual
devices but is especially suitable for centrally managed devices that are already
monitored, for instance in companies and factories.

The main challenge in remote attestation is to perform a trustworthy self-
measurement of an untrusted device: even on a fully compromised system, an
attacker may not be able to alter the attestation self-measurement. Many different
remote attestation schemes have been proposed to tackle this problem [3, 4, 49,
57, 201, 241]. These approaches nevertheless have different complex demands that
hinder their practical usage: Hardware-based approaches require trusted computing
modules such as ARM TrustZone to perform secure measurements of the attested
device [3, 4], often unavailable on small and embedded devices. Software-based
approaches are based on precise measurements of execution time and therefore
have strict requirements towards their implementation and communication, limiting
their practical applicability [57, 241]. Hybrid approaches need custom hardware
extensions that are expensive for initial implementation and are not available on
legacy devices [49, 201].

In summary, remote attestation is a possibility to outsource security checks to
external devices, thereby enhancing the security of legacy devices whose hardware
cannot be changed. This leverages the need for remote attestation solutions that
neither require additional hardware nor trusted computing components on the device
itself and work on a large variety of embedded devices, including those with real-time
capabilities. In this thesis, we develop such attestation schemes and other security
enhancements for different types of embedded devices, focusing on the particular
requirements of legacy devices, systems with real-time constraints, and IoT devices.

3

Chapter 1 Introduction

1.1 Goal and Scope of this Dissertation

The main research question in this thesis is ‘How can we secure embedded legacy
devices?’. Considering the large number of embedded devices already deployed, secu-
rity enhancements for these legacy devices are an important issue. Targeted attacks
on industrial control systems and vehicles illustrated the criticality of embedded
devices. However, a broad compromise of individually uncritical IoT devices can
also have severe consequences, as the Mirai botnet showed. It used large numbers of
compromised IoT devices for distributed denial-of-service attacks, causing some of the
largest denial-of-service attacks to date. In contrast to commodity computer systems,
embedded systems have specific characteristics that hinder changes and updates
to their software: Legacy embedded devices are specifically designed for their use
case and have strict hardware limitations. This results in a large variety of different
devices with different hardware architectures. The software on embedded devices
is often interwoven with the hardware. In contrast to this, commodity computer
systems typically use standard hardware with general-purpose operating systems
and have significantly more computing power. And although these devices have a
large number of different hardware configurations, they feature many abstraction
layers and standard interfaces, allowing the replacement of individual components of
commodity computer systems.

Furthermore, on embedded devices, there are many existing legacy applications of
which the source code often is unavailable, especially considering the long lifetimes
of these devices. Embedded devices regularly interact with the physical world and
have requirements towards their timing behavior, so-called real-time constraints.

The main goal of this dissertation is to introduce novel security enhancements
for existing legacy embedded devices, with a special focus on remote attestation
approaches. Remote attestation allows offloading security checks to external entities.
When developing new security solutions for legacy devices, it is important to solely
use existing hardware and not require any new hardware extensions or changes to the
device. Instead, we focus on using existing hardware features to implement security
enhancements. We particularly consider the requirements mentioned earlier as well as
the characteristics of embedded devices and show how to address these. The diversity
of devices and their particular properties require unique solutions for different device
types. We specifically focus on legacy embedded devices with real-time constraints.
These devices do not have specific hardware security features that can be leveraged
for remote attestation. Real-time systems have specific requirements towards their
response times. During development, an extensive profiling phase ensures that the
device can perform all critical tasks within the required timing constraints and
therefore does not miss any deadlines. Hence, any new security enhancements for
this type of device may not impact their runtime behavior.

4

1.2 Contributions and Outline

1.2 Contributions and Outline
This thesis consists of five major parts. In the following, we give an overview of these
parts, together with their contributions and related publications.

In Chapter 2 we provide a comprehensive background on embedded systems,
particularly real-time systems, and remote attestation, with a special focus on
software-based approaches. This background gives the necessary information for the
following chapters.

Software-Based Attestation for Real-Time Systems. Smart factories, critical
infrastructures, and medical devices largely rely on embedded systems that need
to satisfy real-time constraints to complete crucial tasks. In Chapter 3, we present
RealSWATT, the first software-based remote attestation system for real-time
embedded devices. Software-based remote attestation works under the assumption
that the attested device has a specific response time to an attestation request. The
security of this attestation scheme relies on precise timing measurements of the
attestation requests. This is in conflict with real-time constraints: Devices with
real-time constraints need to operate under strict timing requirements. Any delay can
have severe consequences. In contrast to previous remote attestation approaches for
real-time systems, RealSWATT requires neither custom hardware extensions nor
trusted computing components. It is designed to work within real-world IoT networks,
connected through Wi-Fi. RealSWATT leverages a dedicated processor core for
remote attestation and provides the required timing guarantees without hardware
extensions. We implemented RealSWATT on the popular ESP32 microcontroller
and evaluated it on a real-world medical device with real-time constraints. To
demonstrate its applicability, we integrated RealSWATT into a framework for
off-the-shelf IoT devices. Using this framework, we applied RealSWATT to a smart
plug, a smoke detector, and a smart light bulb.

This chapter is based on the following publication:
Sebastian Surminski, Christian Niesler, Ferdinand Brasser, Lucas Davi, and Ahmad-
Reza Sadeghi. “RealSWATT: Remote Software-based Attestation for Embedded
Devices Under Real-Time Constraints”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM, 2021.

User-Understandable Remote Attestation. In software-based attestation, there is
the inherent problem of authenticity. The attested device cannot store secret keys to
enable the verifier to identify the attested device reliably: If the attested device is
compromised, the attacker has full access to the device’s memory and may obtain any
information, including all cryptographic keys. So, the attacker can replace the device
with another device or even a simulation without being detected. To solve this issue,
we developed SCAtt-man, which we present in Chapter 4. This remote attestation

5

Chapter 1 Introduction

solution allows the user to identify the attested device with user-observable side-
channels, thereby allowing a user-understandable attestation, increasing the user’s
trust in IoT devices and solving the device identification problem in software-based
attestation. We designed SCAtt-man specifically with the user in mind. SCAtt-
man deploys software-based attestation to check the integrity of remote devices,
allowing users to verify the integrity of IoT devices with their smartphones. We
implemented SCAtt-man into a smart speaker using a data-over-sound protocol.
Our evaluation demonstrated the effectiveness of SCAtt-man against various attacks
and its usability based on a comprehensive user study with 20 participants.

This chapter is based on the following publication:
Sebastian Surminski, Christian Niesler, Sebastian Linsner, Lucas Davi, Christian
Reuter. “SCAtt-man: Side-Channel-Based Remote Attestation for Embedded Devices
that Users Understand”. In: Proceedings of the 13th ACM Conference on Data and
Application Security and Privacy (CODASPY). ACM, 2023.

DMA-Based Remote Attestation. In traditional approaches, remote attestation
uses a challenge-response protocol. In the simplest implementation, this is a hash of
the attested memory regions. This hash is then sent to the verifier, which matches it
to a list of well-known benign states. This simple process minimizes communication
and can be adapted, for example, to cover additional security properties. However,
the verification requires prior state space exploration. In Chapter 5, we propose
DMA’n’Play, a new approach that directly connects the verifier to the attested
device, thereby allowing the verifier to directly monitor the memory content of the
attested device. We use the standard DMA feature to connect the verifier to the
prover. We allow the developer to directly define correct states in a configuration file
format. This approach is in contrast to other remote attestation schemes, where the
verifier needs a complete list of all benign states. The verifier uses this configuration
file and the compiled binary file of the attested device to identify regions in the
memory of the attested devices. This technique makes the development of these
configuration files a straightforward process. Furthermore, we introduce a small,
low-cost external verifier device that can take over the role of the verifier, thereby
allowing the verifier to be integrated into any embedded device. Due to the design of
DMA’n’Play, the attested device cannot determine whether a verifier is connected
or not, effectively solving the time-of-check/time-of-use problem.

This chapter is based on the following publication:
Sebastian Surminski, Christian Niesler, Lucas Davi, and Ahmad-Reza Sadeghi.
“DMA’n’Play: Practical Remote Attestation Based on Direct Memory Access”. In:
Proceedings of the 21st International Conference on Applied Cryptography and Net-
work Security (ACNS). Springer, 2023.

6

1.3 Additional Publications

Hotpatching of Embedded Real-Time Systems. The main limitation of any remote
attestation scheme is that it cannot actually prevent a compromise. By design, remote
attestation can only detect a compromise. Typically, the reaction to a detected
compromise is either a full stop of the system or entirely out of scope of the remote
attestation scheme. A stop of the attested system is an adequate solution if the
devices cannot be replaced or the integrity cannot be restored, but often inadequate in
practice. In particular, remote attestation cannot solve the reason for the compromise.
Hence, even when a benign state has been restored, the system can be compromised
again. So in order to solve the root cause of the compromise, the device or application
must be patched to remove the vulnerability that leads to the compromise. Patching
is widespread in any computer system, including IoT and embedded devices. In
many companies and institutions, patching is even mandatory. However, patching
often induces side effects like interruptions, for example, by requiring restarts. These
interruptions are often not an option in the case of highly critical real-time devices.
Therefore, we developed HERA, a hotpatching framework for embedded real-time
applications. It is able to apply patches in the background and then uses a standard
hardware debugging feature on the popular ARMv7 microcontroller to activate
patches without any timing delay. This approach makes HERA even suitable for the
most critical real-time devices, which have hard real-time requirements and require
exact predictability of their behavior.

This chapter is based on the following publication:
Christian Niesler, Sebastian Surminski, and Lucas Davi. “HERA: Hotpatching
of Embedded Real-time Applications”. In: Proceedings of the 28th Annual Net-
work and Distributed System Security Symposium (NDSS). The Internet Society, 2021.

In Chapter 7 we sum up our findings. Additionally, we compare remote attestation
with traditional security enhancements. We conclude this dissertation by showing
worthwhile future research directions and open questions.

1.3 Additional Publications

Apart from the main publications which this dissertation is based on, the author
was involved in several research projects, resulting in the following peer-reviewed
publications:

• Moldovan, Christian, Florian Metzger, Sebastian Surminski, Tobias Hoßfeld,
and Valentin Burger. “Viability of Wi-Fi caches in an era of HTTPS prevalence”.
In: Proceedings of the 2017 IEEE International Conference on Communications
Workshops (ICC Workshops). IEEE, 2017.

7

Chapter 1 Introduction

• Surminski, Sebastian, Christian Moldovan, and Tobias Hoßfeld. “Saving band-
width by limiting the buffer size in HTTP adaptive streaming”. In: Krieger,
Udo R.; Schmidt, Thomas C.; Timm-Giel, Andreas (Ed.): MMBnet 2017 –
Proceedings of the 9th GI/ITG Workshop „Leistungs-, Verlässlichkeits- und Zu-
verlässigkeitsbewertung von Kommunikationsnetzen und Verteilten Systemen“.
University of Bamberg Press, 2017. doi: 10.20378/irbo-49762.
Awarded with the best paper award.

• Surminski, Sebastian, Christian Moldovan, and Tobias Hoßfeld. “Practical QoE
Evaluation of Adaptive Video Streaming”. In: Proceedings of the International
Conference on Measurement, Modelling and Evaluation of Computing Systems
(MMB). Springer, 2018. doi: 10.1007/978-3-319-74947-1.

• Surminski, Sebastian, Michael Rodler, and Lucas Davi. “Poster: Automated
Evaluation of Fuzzers”. In: Proceedings of the 26th Annual Network and
Distributed System Security Symposium (NDSS). The Internet Society, 2019.
Awarded with the best technical poster award.

• David Paaßen, Sebastian Surminski, Michael Rodler, and Lucas Davi. “My
Fuzzer Beats Them All! Developing a Framework for Fair Evaluation and
Comparison of Fuzzers”. In: Proceedings of the 26th European Symposium
on Research in Computer Security (ESORICS). Lecture Notes in Computer
Science. Springer, 2021. doi: 10.1007/978-3-030-88418-5_9.

• Tobias Cloosters, Sebastian Surminski, Gerrit Sangel, and Lucas Davi.
“SALSA: SGX Attestation for Live Streaming Applications”. In: Proceedings of
the 7th IEEE Secure Development Conference (SecDev). IEEE, 2022. doi:
10.1109/SecDev53368.2022.00019.

• Sebastian Linsner, Kilian Demuth, Sebastian Surminski, Christian Reuter, and
Lucas Davi. “Building Trust in Remote Attestation through Transparency”.
Under submission.

8

CHAPTER 2

Background

Remote attestation is a security service that allows the verification of the integrity
of a remote, untrusted system. Remote attestation is widely used in practice, for
instance, to verify the integrity of SGX enclaves on Intel processors [61, 75] or
the validity of Google services on Android devices using SafetyNet [127] or the
Google Play Integrity API [126]. Samsung Knox allows remote integrity checks of a
smartphone and determining if it is rooted or running unofficial firmware [232] as
well as periodical checks of the Linux kernel, loadable kernel modules, and specific
data structures in the kernel to prevent corruption of the device during runtime [232].
However, remote attestation is particularly popular for embedded systems that have
limited computing resources and lack security features [3, 49, 84, 201] and sensor
networks [254].

In this chapter, we provide the necessary background for this dissertation. First,
we give the technical background on the specifics of embedded systems, particu-
larly embedded devices with real-time tasks, the most critical class of such devices.
Furthermore, we explain the typical vulnerabilities of these devices. This provides
the necessary understanding of the systems on which we implement attestation
schemes. Then, we give a broad overview of approaches to remote attestation and
related threats, and describe the main challenges when developing remote attestation
schemes. Finally, we provide a review of different remote attestation schemes for
embedded devices, comparing both the attested properties and their implementation
architecture.

2.1 Embedded Systems
Embedded systems are information processing systems embedded into enclosing
products [178]. They are often deeply integrated into other devices. This results in
an interwoven architecture of the hardware and software. Typically, these devices have
a long lifetime as part of their enclosing device. As part of cyber-physical systems,
embedded systems often operate in safety-critical environments. There, a malfunction
or compromise can have devastating consequences. In addition to their interaction

9

Chapter 2 Background

with the real world, embedded systems often even have real-time constraints. This
means their correct operation also depends on the correct timing behavior of the
device. Integrated into IoT devices, embedded devices are constantly connected to
the Internet, making them a worthwhile target, for example for botnets [22].

2.1.1 Classification of Embedded Systems
In contrast to commodity computer systems, which have a predominantly homoge-
neous architecture, embedded systems frequently feature a compact and heterogeneous
one [178]. There exist multiple classifications for embedded systems, depending on
different system properties. For example, RFC-7228 categorizes embedded systems
into three classes by memory size, while others focus on the software architecture.
Muench et al. define three classes of embedded devices, depending on their software
architecture and their operating system (OS) [188].

Type 1: Devices with General-Purpose OS. General-purpose operating systems
are a popular choice for embedded devices due to their extensive functionality,
interoperability, and long support times. Because of resource constraints often
special lightweight versions of these general-purpose OS are used. There exists a
wide variety of general-purpose OS for embedded devices, ranging from specialized
Linux distributions such as OpenWrt1, Ubuntu Core2, customized Linux versions,
created for example using Yocto3 or Buildroot4, to special Windows versions such as
Windows IoT5.

Type 2: Custom-Built OS. Type 2 devices feature a custom-built operating system,
for example, a real-time operating system (RTOS). Real-time operating systems
ensure the correct operation of real-time critical tasks by scheduling them accordingly.
Despite the fact that sophisticated processor functions like a Memory Management
Unit (MMU) may not be available in these systems, such operating systems still
provide a logical separation between kernel and application code. Custom operating
systems are particularly ideal for devices with low power consumption and little
computing capability. Such operating systems can typically be found in specialized
consumer electronics such as IP cameras or DVD players and include operating
systems such as µClinux6, Zephyr7, or VxWorks8 to name a few [188].

1https://openwrt.org/
2https://ubuntu.com/core
3https://www.yoctoproject.org/
4https://buildroot.org/
5https://azure.microsoft.com/en-us/products/windows-iot/
6http://www.uclinux.org/
7https://www.zephyrproject.org/
8http://www.windriver.com/products/vxworks/

10

https://openwrt.org/
https://ubuntu.com/core
https://www.yoctoproject.org/
https://buildroot.org/
https://azure.microsoft.com/en-us/products/windows-iot/
http://www.uclinux.org/
https://www.zephyrproject.org/
http://www.windriver.com/products/vxworks/

2.1 Embedded Systems

Name Data Size (e.g., RAM) Code Size (e.g., Flash)
Class 0, C0 ≪ 10 kbyte ≪ 100 kbyte
Class 1, C1 ∼ 10 kbyte ∼ 100 kbyte
Class 2, C2 ∼ 50 kbyte ∼ 250 kbyte

Table 2.1: Classification of embedded systems according to RFC-7228 [47].

Type 3: Embedded Devices with Monolithic Software. This class of devices uses
a monolithic software architecture. In such systems, system and application code are
compiled together. Often, the system even solely bases on a single control loop and
interrupts to react to external peripherals. In contrast to types 1 and 2, these systems
typically do not feature a hardware abstraction level. Such an architecture can be
found in many small-scale devices. Often, hardware component controllers such
as Wi-Fi cards, smart cards, or GPS receivers feature such a monolithic firmware [188].

RFC-7228 categorizes embedded systems into three classes by their amount of
memory, as shown in Table 2.1 [47]. The amount of memory directly influences
the amount and complexity of program code on the device. More RAM allows to
store of more temporary data and is necessary to run multiple concurrent threats.
This RFC focuses on the networking capabilities of the devices. While class 2 has
sufficient resources for standard communication protocols, such as IP and HTTP, do
class 0 and 1 devices require special reduced networking techniques such as CoAP
(Constrained Application Protocol) [244].

Remote attestation schemes must also consider these limitations on software
complexity and communication as well as other restrictions of embedded devices
such as architecture, peripherals, and real-time constraints.

2.1.2 Typical Vulnerabilities in Embedded Systems
Now we take a look at typical vulnerabilities of embedded systems. As the goal of
attestation is to detect compromises, it is important to understand the underlying
root causes of the compromise. Furthermore, in order to test attestation schemes with
real-world vulnerabilities, an overview of the most important types of vulnerabilities
is necessary.

Commodity embedded systems often suffer from security vulnerabilities already
known from classical computing, such as typical memory corruption attacks. However,
standard computer systems feature many mitigations to hinder the exploitation of
memory attacks such as ASLR [40], stack canaries [77], and non-executable mem-
ory [188]. On the contrary, embedded systems often do not have such mitigations [284].
Due to the limited hardware capabilities of embedded systems, they frequently lack
standard security features of more sophisticated computer systems, such as memory

11

Chapter 2 Background

management units [2]. Furthermore, the lower complexity of the software running
on embedded systems combined with the lack of protection mechanisms eases the
exploitation of memory corruption bugs.

While on a low level, embedded and IoT systems suffer from the same vulnerabilities,
for example, caused by memory errors. On a high level these systems offer a different
attack surface compared to commodity computer systems. A good overview of the
most common vulnerabilities in IoT devices gives the Open Web Application Security
Project (OWASP)9. OWASP is a non-profit organization with the goal to improve the
security of web applications by providing openly available documents and tools, as
well as organizing local chapters and conferences [209]. OWASP is well-known for its
TOP 10 lists, which provide a consensus of the most severe security risks. It combines
risks, threats, and vulnerabilities into a single concise list to raise awareness for the
most common security problems. The TOP 10 list ranks security risks according to
their severity, the frequency in which they occur, and the size of their potential effects.
These lists are regularly updated and have become an important methodology to
evaluate the security of web applications [210].

OWASP also provides a TOP 10 list of things to avoid when building, deploying,
or managing IoT systems [208]. The first point (TOP 1) covers weak, guessable,
or hard-coded passwords. This includes unchanged default passwords and weak
passwords provided by users, as well as unchangeable credentials, backdoors, and
development accounts included by the vendor, which is a common problem with IoT
devices [273]. Often, network services are insufficiently secured (TOP 2). Especially
when reachable via the Internet, these insecure services can be used to compromise
or control devices, for example, manipulate software and configuration, control the
device, or manipulate or exfiltrate data. Also, insecure ecosystem interfaces (TOP 3)
are a common problem. This includes insecure web interfaces, back-end- or cloud
interfaces, as well as interfaces for mobile apps. When insufficiently secured, these
interfaces can be used to compromise the device. Typical problems are lacking or
weak encryption, missing authentication or authorization, or a lack of input sanitation.
Lack of a secure update functionality is also a common issue on IoT devices (TOP 4).
Devices need an update functionality to fix discovered security issues, for example,
by updating components. In order to apply updates securely, the update’s integrity
must be validated and a rollback must be prevented so that an attacker cannot install
vulnerable outdated software versions. Furthermore, users must be notified about
updates and the updates must be installed regularly. Related to this issue is the next
problem, the usage of insecure or outdated components (TOP 5), which may have
security vulnerabilities. Other points are insufficient privacy protection (TOP 6),
insecure transfer and storage of data (TOP 7), lack of device management (TOP 8),
insecure default settings (TOP 9), and lack of physical hardening (TOP 10).

9https://owasp.org/

12

https://owasp.org/

2.2 Real-Time Systems

Recent research confirms these findings. Alrawi et al. provide an extensive overview
of security analyses of home IoT devices [12]. They identified vulnerable services,
weak authentication, and insecure default configurations as common attack vectors.
Also, cloud interfaces and insecurely configured services were typical problems. Often,
IoT devices also used insecure communication techniques, for example by not using
TLS encryption on the local network, or using vulnerable protocols such as Bluetooth
or ZigBee. Furthermore, Alrawi et al. stated that security is heavily dependent on
the vendors of the IoT devices. In most cases, the vendor had to release patches to fix
these vulnerabilities. However, Alrawi et al. advised that vendors should provide a
way for users to control, inspect, and evaluate their devices [12]. Remote attestation
allows the implementation of such a functionality.

The security problems of embedded and IoT devices are further amplified by the
typical properties of embedded devices. The limited hardware capabilities of these
devices and simple architecture often lack common protection mechanisms known
from commodity computer systems [2]. The interconnection of hardware and software
results in customized software for each device and hardware configuration, hence
is complex to change and update. In commodity computer systems with general-
purpose operating systems, many abstraction layers separate operating systems,
applications, and hardware. This allows the application of updates on individual
components or replacement hardware parts or applications.

Therefore, when a vulnerability is found, the vendor needs to provide a patch
or updated firmware to fix this vulnerability. There are many IoT devices with
unpatched vulnerabilities, due to the lack of support by the vendor [56]. Additionally,
embedded devices typically have a long life span. For example, airplanes have a
design lifetime of more than 30 years [7], cars in the US are on average 12.1 years
old [53], and industrial robots have a lifetime of ten years [8, 37]. This finding
underlines the need for new security solutions that are also applicable to legacy
embedded systems, thus devices that do not receive support by their vendor, for
instance, with regular security updates.

2.2 Real-Time Systems

In contrast to commodity computer systems in which tasks are arbitrarily scheduled
on a best-effort basis, real-time systems have strict requirements for the response
times of tasks. That is, tasks need to be completed within certain deadlines. Often,
real-time systems interact within the physical world, for example, as robot controllers
or vehicle components. In such systems, inadequate response times, as well as
malfunctions, have severe consequences. So, these systems have specific requirements
towards correctness and safety as well as towards response times. During the

13

Chapter 2 Background

development process, these requirements need to be considered, for example by
testing or even formal validation for critical cases.

2.2.1 Classification of Real-Time Systems
Normal computer systems operate on a best-effort basis. In contrast to that, real-time
systems have strict timing boundaries that have to be met for correct operation. There
are different classes of real-time systems distinguished by their strictness, that is, the
consequences of missing deadlines: hard, firm, or soft real-time requirements [247].

Hard Real-Time. In the class of systems with hard real-time requirements, no
deadline may be missed, otherwise, there will be severe consequences, akin to a device
failure. This is the most strict class of devices with real-time constraints. Typical
examples of such systems with real-time constraints are control units for vehicles,
for example, braking or engine control units where missing deadlines have a direct
influence on the physical world. Also, industrial machines, cyber-physical systems,
and medical devices often have hard real-time constraints [247].

Firm Real-Time. Firm real-time systems allow infrequent misses of deadlines.
Missing a deadline does not have fatal consequences, they can be tolerated as long
as they are infrequent and adequately spaced. However, when a deadline is missed,
the result of the task is useless [247]. Examples of such systems are the transmission
of audio or video, for instance in calls or video conferences. Due to the need for a
short latency, delayed results are dropped. Industrial machines, where errors are
compensated by quality control later on, are also examples of firm real-time systems.

Soft Real-Time. Systems that are neither hard nor firm are called soft real-time
systems. In this class of systems, the value of a task starts to degrade after its
deadline. But the system can tolerate even frequent misses of deadlines. However,
missing deadlines reduces the system’s overall performance. A good examples of
soft real-time systems are IoT devices that take measurements and control other
devices. Consider an IoT weather station that monitors the environment and sends
these measurements at regular intervals. Measurements may be late as long as
they are still relevant. A smart heating system is also a soft real-time system. The
system tolerates even frequent deadline misses. However, the value of the delayed
measurements decreases as the delayed measurements make the control loop of the
system less responsive. However, as long as there are sufficient measurements, the
functionality of the system is not impaired. Also, transmission in audio and video
streaming applications can be considered as soft real-time systems. Even frequent
missed deadlines only degrade the overall user experience, because of increased latency.

14

2.2 Real-Time Systems

As real-time devices, especially hard real-time systems, are often safety-critical,
there are specific procedures and regulations to be considered during development. In
the so-called profiling phase, it is ensured that under all circumstances the real-time
deadlines are met. Changes to either hard- or software induce a new validation
process as well as a re-certification in the case of safety-critical devices, for example
in avionics [230]. In real-time systems, an operating system is often used to schedule
tasks so that all deadlines are met.

2.2.2 Scheduling and Real-Time Operating Systems

The described real-time capabilities are often ensured by the use of a real-time
operating system (RTOS). The RTOS manages and schedules tasks so that all
deadlines and constraints are fulfilled. One of the most crucial parts of a real-time
operating system is the scheduler. The scheduler determines which threads are
executed on which processor core. Threads have different states: Runnable threads
can be executed, and blocked when they are waiting, for example, for an event such
as I/O [39]. There are different strategies to manage these threads while maintaining
real-time deadlines. A popular scheduling algorithm is fixed priority scheduling. It
works on a first-in/first-out basis enhanced with priorities. This is how it works:
Each thread has a priority. The processor runs the runnable thread with the highest
priority. When a higher-priority thread becomes runnable, the scheduler preempts
the running thread and executes the thread with higher priority. In order to prevent
starvation of threads, that is, when a task is never executed because there are multiple
threads on the same priority level, this scheme is often combined with a round-robin
scheduling approach. In round-robin scheduling the scheduler switches to another
thread on the same priority level after a certain time [39]. Fixed priority scheduling
has static priorities for threads. In contrast, the earliest deadline first scheduling
algorithm has dynamic thread priorities. Whenever possible, this scheduler runs the
thread with the earliest deadline. While in theory fixed priority scheduling is proven
optimal for single-core systems and allows full CPU usage in all circumstances, in
practice this scheduling algorithm can cause significant overhead due to dynamic
updates of the thread priorities.

Embedded devices have a wide variety in architecture. While some devices are
so-called bare-metal systems, many embedded systems run operating systems (OS).
The AspenCore Embedded Market Study finds that 65% of all projects use an
operating system, real-time operating system, kernel, software executive, or scheduler
of any kind [34]. Popular operating systems for real-time systems are FreeRTOS
and Zephyr. According to the Eclipse Developer Survey, Linux (31%), FreeRTOS
(28%), and Windows (12%) are the most popular operating systems for constrained
devices and edge nodes. Zephyr is in fourth place with 10% [88]. The AspenCore
Embedded market study has similar findings. The most popular operating systems

15

Chapter 2 Background

Prover Verifier

Challenge

Self-measurement

Response

Verification

Start of attestation

Figure 2.1: Remote attestation typically uses a challenge-response protocol. The
verifier initiates an attestation run by sending an attestation request to
the prover. The prover performs a self-measurement which is then sent
back to the verifier.

are embedded Linux, custom operating systems, and FreeRTOS [34]. In this thesis,
we will use FreeRTOS as it is a popular open-source real-time operating system.

2.3 Overview on Remote Attestation

Remote attestation is a security service that allows a system to check the integrity of
a remote device. The main challenge in remote attestation is to obtain a trustworthy
measurement of an untrusted device. Attackers can modify the software and internal
state of the attested device to forge self-measurements. To perform secure self-
measurements, the attested device inherits an attestation function that allows the
attested device to prove its integrity. Therefore, the attested device is also called
the prover. The system that verifies the integrity of the prover is hence called the
verifier.

There are several main requirements towards a secure attestation scheme.

Integrity. The attestation function must reflect the real device’s state so that the
verifier can actually detect deviations of the attested device from benign
states, such as installed malware, altered configurations, or other compromises.
Therefore, the attestation report that the attested device sends to the verifier
must be benign and may not be altered.

Authenticity. The measurement must actually come from the attested device. At-
tackers may not replace the device with another device or a simulation or route
the attestation request to another device.

Freshness. The measurement must be recent, and the attacker may not delay or
replay old responses.

16

2.4 Threat Model of Remote Attestation

ProverVerifier

Attacker

Attestation protocol
trusted untrusted?

Figure 2.2: Attestation allows verifying the integrity of a remote, untrusted device.

Remote attestation is typically implemented using a challenge-response protocol.
Although there also exist complex schemes for sensor networks [254] or autonomous
devices [4, 143, 160], we focus on a classic setting with a single prover and verifier, as
this setting is most common for embedded and IoT devices. Figure 2.1 shows such a
remote attestation protocol. The verifier sends an attestation request ‘challenge’ to
the attested device, the prover. The prover performs a self-measurement using its
integrated attestation function and sends the result ‘response’ back to the verifier.
The verifier then verifies this measurement and thereby can detect whether the
attested device is in a benign state or whether it has been compromised. To prevent
replay attacks, the verifier sends a nonce in the attestation request, which the prover
then integrates into its response. In Section 2.5, we explain all challenges towards
secure remote attestation schemes in detail.

There are two common ways to classify remote attestation schemes.

Attestation Type. The attestation type describes the properties that the attestation
scheme covers. For example, static attestation checks static properties, such as
the integrity of the program code and data. Runtime attestation also covers
dynamic properties such as the control flow and data flow of the attested device
or application.

Architecture. The architecture of the attestation scheme describes how the at-
testation function is implemented. As discussed, performing a secure self-
measurement is a challenging task. Many attestation schemes require special
hardware extensions or trusted computing components, while software-based
solutions do not have specific hardware requirements.

In Section 2.6, we elaborate in detail on the different attestation types. Finally,
we compare different attestation architectures in Section 2.7.

2.4 Threat Model of Remote Attestation
Figure 2.2 shows the typical threat model in remote attestation. Remote attestation
assumes an untrusted remote device called the prover. The attacker can compromise
the attested device, for example, by exploiting software defects such as memory errors,

17

Chapter 2 Background

and install malware, altering configuration data, or performing runtime attacks such
as return-oriented programming [223] or data-only attacks [140, 148]. In line with
previous work, in this thesis, we exclude physical attacks on attested devices [3, 4,
84, 201, 203, 240, 241]. This is a standard assumption in single-prover attestation
protocols [3]. In the case of safety-critical embedded devices, when an attacker
gains physical access to a device, this often anyway has severe consequences. An
attacker with physical access can, for example, destroy devices, unplug cables, or
manipulate external peripherals. By design, remote attestation cannot prevent such
manipulations. In any remote attestation scheme, the verifier is assumed to be trusted.
However, attacks on the prover by a malicious verifier should also be considered. A
malicious verifier—either a compromised verifier, an impersonation, or simple replay
attacks—could maliciously trigger the prover to perform an attestation, for instance,
by sending attestation requests, thereby impairing the performance and behavior of
the attested device. This behavior could also lead to a complete denial of service,
rendering the attested device unusable [50]. In this thesis, we provide a detailed
threat model for each developed attestation technique in the corresponding chapters.

2.5 Challenges in Remote Attestation

Developing remote attestation schemes is a challenging task. Performing a secure self-
measurement of a remote, untrusted device is a complex problem. Remote attestation
schemes assume powerful attackers that can fully compromise the attested device.
So the attested device cannot be trusted, including any software running on it. This
includes manipulating or running any code or changing or exfiltrating any data on
the attested device. Regardless of this, attackers may not be able to prevent an
attestation measurement, falsify the attestation reports, or be able to compromise the
device without being detected. Consequently, implementing secure remote attestation
schemes is a complex task as they offer a large attack surface. For example, attackers
can copy all the data on a compromised device to another instance and thereby
replace the attested system with another device or a simulation. This data includes
all cryptographic keys used for authentication, allowing the attacker to impersonate
the attested device. Another popular attack technique is to remove or hide the traces
of a compromise before the device is being attested. This problem is known as the
time-of-check/time-of-use (TOCTOU) problem. In this type of attack, the device is
compromised in between two attestation runs without being detected. In addition,
attackers could also delay the attestation measurement to increase the time span
between two attestation runs and hide attacks.

Communication is also an important aspect of remote attestation schemes. By
design, remote attestation requires constant communication between the prover
and the verifier. This is fine in scenarios with reliable network connectivity, small

18

2.5 Challenges in Remote Attestation

numbers of attested devices, and unlimited energy supply. However, when scaling
remote attestation to a large number of devices, communication becomes a significant
restriction. All devices require continuous communication with the verifier. But,
especially in wireless settings, communication bandwidth is limited. Continuous
communication is even more challenging due to limited network coverage when
attesting mobile devices such as vehicles, drones, or planes. In addition, depending
on the usage scenario, communication may not be possible during specific times.
Furthermore, communication is also costly in terms of resources. Transmitting data
consumes significant amounts of energy. This is certainly an important aspect, for
example, when attesting battery-powered devices.

In particular, the following general challenges must be considered when developing
new remote attestation schemes.

Challenge 1: Secure Self-Measurement. The attestation function must perform
a secure self-measurement, even under full system compromise. The measurement
must reflect the device’s actual state. Attackers may not be able to alter the result
of the attestation function.

Challenge 2: Authenticity. The attestation scheme must guarantee that the mea-
surement indeed comes from the attested device. Even when fully compromising the
attested device, the attacker may not be able to impersonate the attested device.
This means attackers may not be able to relay attestation requests to other devices
or replace the attested device with another device or a simulation.

Challenge 3: Time-of-Check/Time-of-Use. The time-of-check/time-of-use (TOC-
TOU) problem describes the inherent delay between a check and the actual usage.
When an attacker between two checks can compromise a device and hide the traces
of the attack, attestation will not detect it, thereby rendering the attestation useless.

Challenge 4: Communication. Remote attestation requires communication between
the attested device and the verifier. These aspects must be considered, especially
in scenarios with large fleets of attested devices, wireless communication, unreliable
transmission, as well as limited bandwidth and connectivity.

Challenge 5: Hardware Requirements and Legacy Devices. There are billions
of legacy embedded and IoT devices which cannot be replaced. Security solutions
for these systems must not require additional hardware extensions, extra sensors, or
new communication technologies since deploying new hardware is costly and often
impractical, hindering wide adoption.

19

Chapter 2 Background

Further Challenges. Besides these general challenges, there are different types
of embedded devices that have specific additional demands. When implementing
remote attestation on devices that operate under real-time constraints, these timing
constraints may not be impaired. In particular, the attestation may not interfere
with the real-time operation. So either the attestation task or the real-time operation
must be paused or aborted, or both tasks must be performed completely in parallel
without any side-effect on each other’s operation. At the same time, the TOCTOU
problem described in Challenge 3 must be considered. Attackers may not be able
to hide their traces intentionally by preventing a device from being attested, for
instance, by delaying measurements until the attacker is able to hide all attack traces.

There are also other practical requirements to consider in remote attestation. A
secure remote attestation scheme itself is not sufficient. As described in Challenge 4,
the attested device also needs to communicate reliably with the verifier. When the
verifier does not receive the attestation reports, a compromise cannot be detected,
rendering the remote attestation useless. Furthermore, the complexity of the ver-
ification task is important. Especially when scaling remote attestation on large
installations, such as networks of IoT devices or large fleets of vehicles or drones, the
computational demands of the verification become relevant. A simple verification
with little communication demands allows the deployment of remote attestation on
a large scale.

Also, the response to a detected compromise is essential. First, this covers a reliable
detection with preferably no false positives. Second, how to react to a compromise
must be considered. Remote attestation itself does not prevent any attacks.
Depending on the device type, different reactions are appropriate. For example, in
the case of a compromised medical device, the personnel can be alerted. In the case
of an industrial robot, the machine can be stopped or brought into a fail-safe state. In
the case of consumer IoT devices, users need to be notified and instructed to resolve
the problem. This requires a proper process to restore the device’s integrity and
adequate communication with the user to ensure good usability and user acceptance.
Especially when attestation schemes for IoT devices require user interaction also,
the usability and user’s understanding must be considered. Research shows that
users tend to discard or circumvent mechanisms they do not understand or trust [233].

Summing up, the large variety of embedded devices has different requirements for
secure remote attestation schemes. It is difficult to address all of these requirements
in one remote attestation scheme. There does not exist a one-size-fits-all solution
that covers all needs. In this dissertation, we propose different remote attestation
schemes. For each scheme, we will show how these general challenges are addressed.

20

2.6 Attestation Types

2.6 Attestation Types
There are two approaches to classifying remote attestation schemes. First, based on
the properties that the attestation scheme measures. Second, using the architecture
of the remote attestation scheme. We first focus on the different system properties
that remote attestation schemes can measure.

2.6.1 Static Attestation

The most basic type of attestation is static attestation. In these schemes, the attesta-
tion verifies the integrity of a system or a device by analyzing its firmware, software,
or static configuration. This attestation mechanism is able to detect firmware
modifications, such as persistent malware or altered configurations. Because static
attestation measures data that is subject to little changes, both the measurements
and the verification do not require complex processes or computations. Typically,
the prover hashes the attested memory regions and then sends the resulting hash
value to the verifier. The verifier then compares the received measurement to a list
of benign states. This makes static attestation well-suited for embedded devices with
limited processing power and large fleets of devices, as due to the simple verification
process, a single verifier can attest a large number of devices. Static attestation
is widely used. There are static attestation schemes specifically designed for all
kinds of devices, including IoT devices, devices with real-time constraints, sensor
networks, and industrial control systems. However, static attestation cannot detect
runtime attacks, for example, using return-oriented programming (ROP) [223, 242],
that target the program’s execution instead of the static binary. Runtime attacks
exploit applications by modifying state information during execution while leaving
the program code unchanged. To detect such attacks, this state information needs to
be covered by the attestation. Dynamic attestation schemes such as control flow and
dats flow attestation address the shortcomings of static attestation as they include
runtime properties and involve verifying the state of the device while it is running.

2.6.2 Control Flow Attestation

One type of dynamic attestation is control flow attestation. Static attestation only
attests the integrity of the binary data of the attested application. In contrast, control
flow attestation includes the actual execution of the application in the attestation.
This is achieved by measuring the control flow of the attested application. This
enables the verifier to detect deviations in the control flow that are, for instance,
caused by runtime attacks such as jump-oriented programming [42, 59] or return-
oriented programming [223, 242]. In code-reuse attacks, the attacker reuses existing
code snippets, called gadgets, to manipulate the program’s control flow and execute

21

Chapter 2 Background

the malicious code. Chaining these gadgets allows to perform arbitrary actions.
Research showed that such attacks are Turing-complete [242].

In contrast to static attestation, where attestation can take place at dedicated
times, control flow attestation needs to monitor the execution continuously. This
requires a more sophisticated architecture, as every branch, that is, an alternative in
the control flow, needs to be recorded. The verification of the execution of a program
requires a full graph of the benign control flow. A control flow graph represents the
control flow in a program. Each node consists of a set of assembly instructions, and
the edges represent branch instructions, which influence the program flow. The size
of the control flow graph is dependent on the complexity of the attested application.
For control flow attestation, nodes need to be identified, for example, using unique
labels [3]. A complex application results in a large control flow graph, a so-called
state space explosion [174]. Control flow graphs can become extensive for larger
applications, resulting in a larger effort to verify the prover’s measurements and
limiting the complexity of applications that can be attested. Special challenges in
control flow attestation are loops. Loops lead to a large state space, and applications
may have infinite loops. Especially IoT and embedded devices that perform control
or measurement tasks are often implemented using endless loops. Therefore, loops
have to be handled separately to prevent control flow graphs from exploding.

In the following, we provide an overview of different control flow attestation schemes.
C-FLAT performs control flow attestation using ARM TrustZone [3]. However, in
order to monitor the control flow, C-FLAT requires a full instrumentation of the
attested application. On every branch, a switch to the secure world of TrustZone
was required, resulting in high overhead. ATRIUM can detect control flow deviations
even if the memory is physically changed. This is achieved by including the executed
instructions in the attestation. LO-FAT tackles the limitation of the high overhead
induced by the attestation as it implements the control flow attestation completely in
hardware [85]. However, this requires complex custom hardware extensions. TinyCFA
is a hybrid attestation scheme for control flow attestation that requires minimal
custom hardware and is based on the VRASED framework [205].

2.6.3 Data Flow Attestation

Data-only attacks focus on the manipulation of data without changing the control
flow. As the control flow is not changed, these attacks are not covered by control
flow attestation. To detect this type of attack, the attestation scheme also needs
to cover the application’s data. Developing data flow attestation schemes is highly
challenging as all data of the attested application needs to be included. Furthermore,
small deviations in the data may have severe consequences. For instance, consider
an application that performs permission checks. Changing one bit of data on the
user ID can have a significant impact. When unprivileged users are able to set their

22

2.6 Attestation Types

user ID to 0, they can obtain root privileges [64]. There have been data-only attacks
on both server software [140], such as web servers [148] and FTP servers [64] as well
as client applications, for example, web browsers [224]. Furthermore, there are more
complex data-only attacks. These attacks use so-called data-oriented programming
to run arbitrary code without violating control flow constraints. Research found that
this type of attack is actually Turing-complete [148].

There are different attestation schemes that cover the program’s data during
runtime. For example, OAT introduces the concept of operational integrity for
critical sections in embedded devices [265]. DIAT allows attesting the integrity of the
data of the selected information in autonomous devices during both the processing on
the devices and during the transmission between devices [4]. DIALED is a hybrid data
flow attestation scheme that builds upon the proof of execution of APEX and control
flow attestation of TinyCFA [204]. LiteHAX attests the control flow and the data
flow using a custom processor extension. It introduces instruction tracers for control
flow instructions and load/store instructions. As this approach relies heavily on
hardware, the performance of the attested application is not impaired. Furthermore,
LiteHAX does not require any instrumentation of the attested application [84].

2.6.4 Other Properties
In addition, there exist other remote attestation schemes that measure other prop-
erties. Thereby it is possible to implement more specialized security guarantees
using remote attestation while reducing the complexity of the implementation com-
pared to sophisticated runtime attestation schemes, such as control flow or data flow
attestation.

Proof of Execution. One concept is ‘proof of execution’. This means attesting that
a specific program function has been executed, which also requires measuring the
control flow. However, the proof of execution only covers a small part of the program,
drastically reducing the effort for the attestation measurement and verification. This
is implemented, for instance, in the APEX framework and allows to check that
certain code sections have actually been executed [203]. APEX builds upon the
VRASED framework [201]. Delegated attestation is another attestation scheme for
proof of execution. It allows software-based proof of execution by using a gateway
and attestation proxy to monitor the execution behavior of the attested devices [17].

Proof of Update. Attestation can also be used to verify that an update has been
applied. Such an attestation scheme allows to assure that a vulnerability has been
patched. There are numerous attestation schemes that allow proof of update. For
instance, SCUBA implements a proof of update mechanism for sensor nodes [239].
PoSE is a hybrid attestation scheme for secure update and erasure [215]. Feng

23

Chapter 2 Background

et al. extend PoSE to use physically unclonable functions (PUFs) as root of trust for
the remote attestation [111]. ASSURED combines a secure update mechanism for
embedded devices with remote attestation [33].

Proof of Erasure. This attestation scheme allows one to verify that the data on
a device has been deleted and the device has been reset to a defined state [19].
Another variance of proof of erasure is ‘proof of reset’, which checks whether the
attested system has been reset to a defined state. For instance, Verify&Revive is a
software-based attestation scheme that is able to reset the device upon detection of
a compromise [16]. A combination of proof of update and proof of reset allows to
assure that a device has been updated and reset to a secure state. For instance, Pure
is a hybrid attestation scheme based on the VRASED attestation framework [201]
and allows for a proof of update and proof of reset [202].

These different security properties can be used and combined to assure the required
specific behavior of embedded devices. This way, it is possible to customize remote
attestation to specific needs, thereby considering security requirements and hardware
constraints.

2.7 Attestation Architectures
In general, there are different approaches to implementing remote attestation. They
vary in the hardware required to perform the attestation. Software-based attestation
does not require any special hardware, while hybrid and hardware-based schemes
need special hardware extensions. As mentioned before, the main challenge in remote
attestation is to obtain a trustworthy measurement from an untrusted device despite
the strong attacker model. This applies to all types of attestation. Even under a full
system compromise, in no case the attacker may be able to forge attestation results
or hide attacks from the attestation.

2.7.1 Hardware-Based Attestation

A straightforward approach to remote attestation is to use a secure and trusted
subsystem to take measurements of the device. Such a subsystem can then both
perform the attestation and store a secret key to authenticate itself to the verifier to
prevent impersonation attacks. Without such an authentication, the verifier cannot
reliably identify the attested device.

Such trusted subsystems include trusted platform modules (TPM) and trusted
execution environments (TEE). A TPM is a secure co-system with a dedicated
microprocessor. This module is isolated from the system and specifically designed for

24

2.7 Attestation Architectures

security purposes, such as securely storing cryptographic keys or providing security
functions. For instance, TPMs are used as a root of trust for secure boot, where
the boot process is monitored [274]. While secure boot ensures the initial integrity
of a system during startup, attestation measures the system’s state during runtime.
TPMs are developed and standardized by the Trusted Computing Group10. There
exist many approaches to using TPMs for attestation. For example, property-based
attestation can be implemented using TPMs [229]. TPMs have also been used to
implement remote attestation in sensor networks [141, 267]. ReDAS is a framework
that allows dynamic attestation using TPMs [155].

While TPMs allow secure key storage and boot security, they cannot provide secure
computation outside of the TPM. In contrast, a trusted execution environment (TEE)
can provide secure execution of code even on an untrusted or potentially compromised
system. While a TPM is a dedicated, external hardware module, the TEE is a secure
subsystem within a processor. Examples of platforms with TEEs are Intel SGX [75]
and ARM TrustZone [24]. Trusted computing technology is integrated into many
sophisticated off-the-shelf processors as they are used in servers, personal computers,
or smartphones. In contrast, less powerful processors, as they are used in embedded
and IoT devices, do not feature such TEEs due to cost reasons. TEEs can be used
to reliably monitor the data and execution in the normal world from within the
secure world. Hence, the monitoring cannot be influenced. For example, Abera et al.
proposed C-FLAT, a framework to remotely verify the control flow of applications
running in the normal world using the TrustZone of an ARM processor [3].

However, these trusted computing modules are often not available on legacy
embedded devices due to cost reasons. TrustZone is also used in practice to implement
remote attestation. For instance, Samsung Knox uses TrustZone to verify the integrity
of a smartphone by checking if it is rooted or running unofficial firmware [232].
Furthermore, Samsung Knox periodically checks the Linux kernel, loadable kernel
modules, and selected data structures in the kernel to prevent corruption of the
device [232].

2.7.2 Software-Based Attestation

In contrast to hardware-based attestation, software-based attestation (SWATT)
schemes do not need any trusted computing components. These schemes are purely
implemented in software, thereby eliminating the major limitation of hardware-based
attestation approaches. Therefore, software-based attestation (SWATT) is well-suited
for commodity hardware and legacy devices. Software-based attestation works under
the assumption that the attacker cannot change the target device and its computing
capabilities. The attacker is not able to introduce further computing resources.

10https://www.trustedcomputinggroup.org

25

https://www.trustedcomputinggroup.org

Chapter 2 Background

Prover Verifier

Challenge

Self-measurement

Response

Start of attestation

Verification

t>t
max

?

t

Figure 2.3: In software-based attestation, the verifier measures the time until the
attestation report of the prover is received.

Hence the execution time of specific operations is bound. That is, the attacker
has no physical access to the attested device. This circumstance allows to measure
the response time of the prover: if it takes longer than expected, the system is
likely compromised. The attacker cannot forge these results, as this would require
further operations so that the response cannot be sent in time [241]. Based on these
assumptions, the verifier precisely measures the response times for the attestation
requests. This includes the time it takes for the prover to compute the attestation
report as well as the communication overhead between the prover and the verifier.
If the response times differ from the expected values, the prover device is assumed
to be compromised. This induces many requirements on the implementation of the
attestation logic and communication [32, 241].

Figure 2.3 shows the attestation process in software-based attestation. Similar
to traditional attestation, the verifier sends a challenge to the prover. The prover
then performs a self-measurement using its attestation function and returns the
result. The verifier measures the response time of the prover and uses the result
to determine the prover’s integrity. Given the fact that the attestation function
is optimal, it cannot be accelerated. As the trusted verifier chooses the challenge,
and the prover requires the challenge to start the attestation function, this process
cannot be started earlier. In addition, the challenge ensures freshness and prevents
the pre-computation of the attestation result.

However, as the security of software-based attestation is solely based on the timing
of the attestation function, this poses two general challenges. First, the response
time must be precisely measured. As the verifier measures the response time, this
includes the attestation function on the prover as well as the transmission time
between the prover and verifier. Second, the implementation on the prover must
be optimal and must cover all memory on the attested device. Furthermore, the
attacker may not be able to free up any memory, such as by means of compression.
This can be achieved by filling up all empty memory on the prover. Third, if
the attacker is able to accelerate the attestation function, for instance, by further

26

2.7 Attestation Architectures

optimizations or shortcuts, the attacker can then use the free time to compromise
the device or obfuscate traces of attacks, rendering the attestation useless. In fact,
the correct and secure implementation of software-based attestation is complex and
error-prone [57]. However, when no hardware support for other attestation schemes is
available, software-based attestation is a viable solution. This is why software-based
attestation is, for instance, commonly used in sensor networks [254].

2.7.3 Hybrid Attestation

Hybrid attestation schemes describe a hardware/software co-design that performs
remote attestation in software supported by custom hardware extensions. These
hardware extensions allow to securely store keys or track the execution of commands
on the processor. This gives a root of trust so that the attested device cannot be
emulated or replaced by the adversary. There exist various proposals for attestation
to use customized hardware to provide remote attestation functionality [49, 91,
159, 201]. SMART is the first attestation scheme that builds upon simple, cus-
tomized hardware [91]. While the attestation is performed in software, the secret
key is protected using custom hardware functionality so that it is not leaked during
attestation.

While SMART uses a small extension to protect the keys used for remote at-
testation, it lacks more sophisticated features, such as the ability to update the
attestation code. Furthermore, SMART requires the attestation to run atomically,
which is a major drawback in many application scenarios where the attested device
may not be interrupted by the attestation process, for example, in real-time systems.
On the contrary, TrustLite does not have these limitations, as it allows isolating
different software modules with hardware modifications of the Memory Protection
Unit (MPU) and the exception engine of the processor [159]. TyTan builds upon
TrustLite and extends it so that it is able to run applications with real-time require-
ments [49]. VRASED is a formally verified hardware/software co-design for remote
attestation [201] and allows verification of the state of the device memory. It has
been extended to also verify reset, erasure, and update of devices [202] and also attest
that code has actually been executed [203]. Furthermore, there exists an attestation
scheme that allows data flow attestation based on this architecture [204].

While these hybrid attestation schemes have many advantages, the required
custom hardware extensions are not available on already existing legacy devices.
The creation of customized hardware is complex and adds significant costs to the
manufacturing process, especially in comparison to widely used off-the-shelf hardware.
Such customization is only practical for a large number of devices. Embedded
systems often use off-the-shelf microprocessors with generic hardware modules. For
the implementation of a hybrid attestation scheme, the device itself needs to be
replaced. Thus, hybrid attestation is no viable option for legacy devices.

27

Chapter 2 Background

2.8 Comparison of Attestation Schemes
There exists a large variety of different attestation schemes. They differ in their
architecture as well as their security guarantees. When selecting an attestation
scheme, it is important to consider the particular use case. Static attestation ensures
the integrity of a device’s firmware. The verification is efficient to implement, as
the verifier only needs to check the hash value of the firmware. Attestation can be
performed at arbitrary times, minimizing the impact on the system’s performance
as well as reducing communication between the prover and the verifier. However,
static attestation cannot detect runtime attacks. To cover runtime attacks, dynamic
properties must be considered, such as the control flow or data flow of the application.
Furthermore, there exist attestation schemes that cover special use cases, such as
proof of update or secure reset. These schemes allow for giving specific security
guarantees. For instance, a proof of reset can restore a secure state of a possible
compromised device without implementing more complex attestation schemes such
as a full control flow attestation.

Another important aspect is the attestation architecture. When trusted hardware
components are available, hardware-based attestation is an elegant solution, as the
attestation functionality can be separated from the attested device. However, if
trusted hardware is not available, then hybrid attestation schemes are worthwhile
options. Hybrid schemes require minimal hardware modifications but no complex
trusted hardware. If the necessary hardware modifications are not possible, for
example, when developing attestation for existing legacy devices, the only option are
software-based attestation schemes, despite their complex implementation.

Summing up, there does not exist a one-size-fits-all solution to remote attestation.
Choosing the suitable attestation scheme requires careful analysis of the particular
use case. It is important to consider the device type, the available hardware, and
the implementation complexity of the attestation scheme as well as the security
guarantees the attestation scheme needs to give.

28

CHAPTER 3

Attestation for Real-Time Applications

Commodity real-time embedded systems often suffer from security vulnerabilities
already known from classical computing. However, due to resource constraints,
embedded devices often lack basic security mechanisms that are common in most
other types of systems [12]. At the same time, real-time applications, which are
essential in many safety-critical domains, place highly conservative requirements to
guarantee the strict real-time operation [252]. The need to secure embedded devices
is further amplified by the trend of the Internet of Things (IoT) to connect previously
unconnected and isolated devices to the Internet to enhance features and services.
In particular, any malfunction in real-time devices can have fatal consequences since
they perform highly critical real-world tasks in many safety-critical domains such as
cyber-physical systems, medicine, and transportation. This leads to large vulnerable
ecosystems consisting of millions of devices.

Legacy real-time embedded devices typically lack hardware features, for example,
secure boot or trusted execution environments (TEEs). Moreover, they are commonly
integrated into machines and run customized software and hence, cannot be simply
replaced. As eluded earlier, the integration of software-based security mechanisms
such as control flow integrity (CFI) [1] have a direct influence on the execution times
of tasks [79, 277]. This is a crucial issue since real-time systems must conform to
tight timing behavior and undergo a lengthy development and profiling phase. Any
modifications to the execution, including those made through instrumentation, such
as the integration of control flow integrity [79, 277], or abnormality monitoring [246],
have an impact on the device’s runtime behavior.

Hence, adequate security solutions for real-time applications must have a strictly
limited impact on the real-time operations [252]. Currently, there exist no practical
solutions that can tackle these challenges. Furthermore, the handling of detected
suspicious or malicious behavior is an important question for critical real-time systems.
Solutions like control flow integrity may terminate if an illegal path is executed.

At first glance, a promising solution to tackle these challenges seems to be remote
attestation (RA), as it offloads the verification of the monitored device to an external
trusted party. RA allows a trusted party, called verifier, to gain assurance about

29

Chapter 3 Attestation for Real-Time Applications

the correctness of the state of a remote device, called prover. It has been used for
embedded devices [3, 49, 84, 201] and sensor networks [254].

At second glance, the usage of remote attestation for such devices is a complex
challenge. The main difficulty for attesting real-time devices is, however, to utilize
the attestation independently from the execution of the monitored application.
Moreover, another vital aspect of remote attestation is to get a genuine attestation
report from an untrusted device. An attacker could forge the attestation report,
for example, by using a different device or an emulation of the attested system.
There have been a variety of proposals for attestation schemes to address this
issue: (1) hardware-based using trusted computing [3], (2) hybrid using custom
hardware extensions [49, 84, 91, 159, 201], and (3) software-based [241, 254]. We
give an overview on attestation architectures in Section 2.7. However, none of these
solutions is an option for legacy real-time embedded devices: While hardware-based
and hybrid approaches to attestation require changes to or customization of the
underlying hardware, software-based attestation poses strict timing assumptions on
the response of the prover, and the verifier induces many requirements upon the
implementation of attestation logic and communication [32, 241]. These timing
requirements influence the runtime behavior of the attested device and therefore are
not suited for devices with real-time requirements.

Contributions. In this chapter, we present RealSWATT, the first software-based
remote attestation system for real-time embedded devices. In contrast to previous
remote attestation approaches for real-time systems, RealSWATT does neither
require custom hardware extensions nor trusted computing components. It is designed
to work within real-world IoT networks, for instance, connected through Wi-Fi. Thus,
RealSWATT can secure legacy devices—even those that operate under real-time
constraints—without the need to alter the hardware.

Software-based attestation poses strict timing assumptions on the response of
the prover, and the verifier induces many requirements upon the implementation
of attestation logic and communication to enable a secure self-measurement of the
attested device [32, 241]. These timing assumptions are in an inherent conflict with
real-time constraints, as both systems require immediate reactivity at any time.
RealSWATT is the first remote attestation framework to solve this conflict. We
leverage off-the-shelf hardware and do not require any trust anchor on the attested
device, unlike hardware-based and hybrid attestation approaches that require changes
to or customization of the underlying hardware.

A key aspect of our design is based on the observation that many modern low-
cost embedded systems, such as the ESP32, are built on a multi-core architecture
where the cores are often not fully utilized. Especially in a real-time context,

30

multi-threading is hard because meeting all deadlines under all circumstances is of
utmost importance. So in practice, critical tasks are often not scheduled in parallel.
Moreover, in specific areas, for example, avionics, there are even regulations to limit
the usage of additional cores [60]. As a result, one or more processing cores are
idle. We leverage this circumstance and utilize an idle processor core to develop
a new attestation framework. This allows the attestation and the real-time tasks
to be properly scheduled by the underlying real-time operating system and makes
RealSWATT suitable for legacy embedded devices in the industry, medicine, and
cyber-physical systems.

However, the usage of multi-core processors involves tackling several new chal-
lenges: while the benign execution only uses one processor core, an attacker can
now use all processor cores in order to forge an attestation report. We address
this issue by selecting adequate cryptographic functions that parallelization cannot
accelerate. Furthermore, communication, especially in wireless networks commonly
deployed for IoT devices and cyber-physical system setups, is prone to variation in
transmission times. This also conflicts with the strict assumptions for software-based
attestation [32].

Because of these required strict assumptions and shortcomings like the vulnerability
against compressing attacks [57] software-based attestation has been assumed insecure
and infeasible in practice, receiving only little to no attention. It requires specific
assumptions about the execution speed of the prover logic on the attested device as
well as precise timing measurements, making the implementation challenging [241].
However, software-based attestation is a good fit for legacy devices, where other
attestation schemes are simply unavailable due to the lack of specialized hardware on
the given device. Thus, we have re-evaluated software-based attestation and solved
several challenges, which allow us to deploy a software-based attestation scheme in a
real-world scenario.

We developed a new concept called continuous attestation, where the verifier
sends the next attestation request before receiving the prover’s previous response.
This way, the prover can start the next attestation run directly after completing
the previous one without any waiting time. This procedure omits the transmission
and verification time so that variations in transmission time do not influence the
attestation. Furthermore, our continuous attestation approach induces the strict
requirement that the attacker cannot run two attestation protocols in parallel in
order to get a time span in which no attestation is performed, thus effectively
solving the time-of-check/time-of-use (TOCTOU) problem. Combining these
techniques (using a multi-core architecture and continuous attestation) ensures that
RealSWATT can reliably attest real-time embedded systems in real-world wireless
networks without impairing real-time operation. To show the applicability, we
implemented RealSWATT on the popular ESP32 microcontroller, and we evaluated
it on a real-world medical device with real-time constraints. To demonstrate its

31

Chapter 3 Attestation for Real-Time Applications

practicability, we furthermore integrated RealSWATT into ESPEasy, a framework
for off-the-shelf IoT devices, and applied it to a smart plug, a smoke detector, and a
smart light bulb.

In summary, we provide the following contributions:

• We propose RealSWATT, the first software-based remote attestation frame-
work for critical real-time devices that works on commodity off-the-shelf, low-
cost embedded devices.

• We present the first attestation framework that exploits a separate processor
core for attestation to ensure the correct scheduling and timing of real-time
operations.

• We propose a new scheme called continuous attestation and a network archi-
tecture for the software-based attestation of embedded devices which allows us
to tackle the strict timing constraints and hardware requirements of existing
software-based attestation schemes [32, 241].

• Our framework allows to verify code- and data sections remotely to detect
malware infection and malicious changes in configuration parameters.

• For our proof-of-concept implementation, we used one of the most popular IoT
platforms, the ESP32 microcontroller, and conducted a detailed evaluation on
a medical device, a syringe pump. We performed a full end-to-end example
with an attack that compromises the syringe pump’s configuration, which
RealSWATT detects.

• We implemented RealSWATT into ESPEasy, a framework to use on real-
world off-the-shelf IoT devices, and used it on different devices such as a smart
plug, a smoke detector, and a smart light bulb.

3.1 Background: Software-Based Attestation
First, we briefly recapitulate on software-based remote attestation as a basis for
RealSWATT. More on real-time embedded systems and remote attestation can be
found in Chapter 2. In contrast to hardware-based and hybrid attestation approaches,
software-based attestation schemes do not require special hardware features and
can hence be used on commodity and legacy hardware, including IoT devices. The
security of software-based attestation relies on the execution time of the software on
the prover. Remote attestation is typically based on a challenge-response protocol.
The verifier initiates the attestation by sending a request to the prover. This request
typically includes a nonce to prevent replay attacks. The prover takes this nonce

32

3.2 Challenges

to perform a self-measurement, typically using a hashing function. Thereafter, the
prover sends the result back to the verifier. Note that the verifier does communicate
back to the prover. The prover is not aware of the result of the attestation.

The verifier measures the response time of the prover. If the response time is within
a predefined margin, the measurement is assumed to be benign. A delayed response
indicates that the prover has been compromised. Obviously, this requires precise
measurement of the actual execution time and exact prediction of the expected
execution [241]. Hence, this poses strict requirements for the implementation: the
attestation process may not be able to be accelerated under any circumstance.
Otherwise, the attacker can alter the result of the attestation process without
violating timing constraints [57]. On the one hand, the attacker may not be able
to alter the hardware, increase the processor speed, or extend the memory. On the
other hand, the implementation attestation function must be optimal. Furthermore,
it is important to cover all memory with the attestation, including unused memory:
Any memory not covered by the attestation can be used by the attacker without
detection. As the runtime of the attestation function is measured by the verifier, this
measurement includes the time required for transmission of the attestation request
and report besides the actual runtime of the attestation function. Therefore, it is
necessary that also this transmission time can be precisely predicted to allow secure
software-based attestation. In summary, there are significant challenges that pose
strict requirements towards software-based attestation [32, 241]. Next, we describe
those challenges in detail, followed by Section 3.4, where we explain how we address
these in RealSWATT to enable secure software-based attestation of IoT devices.

3.2 Challenges

Detecting software attacks on devices in a connected system is a highly challenging
task, in particular if the adversary has gained full control over a subset of devices.
Even more so if the connected devices have high requirements with respect to their
timing behavior due to the execution of real-time tasks.

Existing solutions to detect and report attacks in connected systems are either
heuristic [94] or pose assumptions that are unrealistic for many critical real-time
tasks [241]. Monitoring solutions at the network level are heuristic in nature and suffer
from a high false-positive rate [297]. Hardware-assisted security mechanisms [159]
rely on extensions and components, such as a TEE architecture or cryptographic
co-processor (TPM), that are not available in the vast majority of deployed legacy
embedded devices. Software-based attestation approaches target legacy devices that
cannot provide a trust anchor; however, their approach to ensure the integrity of
the measurement function inherently conflicts with the execution timing demands
of real-time applications: Software-based attestation asserts the integrity of the

33

Chapter 3 Attestation for Real-Time Applications

measurement procedure by demanding all system resources to prevent the adversary
from using free resources while precisely measuring its execution time. Besides the
inherent conflicts when applied to real-time systems, software-based attestation is
the only option (to enable heuristic detection of complete software compromise) for
legacy systems. From the general challenges for secure remote attestation that we
described in Chapter 2.5 we derive the requirements for a secure software-based
attestation scheme for real-time embedded systems. Such a scheme poses a number
of specific challenges to the underlying design and implementation:

Challenge 1: Real-Time Operation. A secure attestation scheme—without any
trust anchor—running tasks with real-time execution requirements needs to overcome
the inherent conflict between real-time execution guarantees and integrity guarantees
for the measurement procedure to capture the device state of the prover.

Challenge 2: Parallel Tasks. Allowing the measurement procedure to respect the
real-time demands of the systems’ tasks could be easily misused by an adversary,
for example, to restore a benign state while the measurement is performed [50].
Therefore, the measurement procedure must be able to capture the system state
independent of the execution of real-time tasks.

Challenge 3: Roaming Adversary. Permitting the execution of potential malicious
tasks in parallel to the measurement procedure provides the adversary with the
option to dynamically adapt and move itself between memory areas, always restoring
the currently measured section of memory.

Challenge 4: Network Transmission. Software-based attestation faces the challenge
of accounting for the jitter in network transmission in remote scenarios, which prevents
the verifier from precisely measuring the execution time. This leads to the following
conflict. On the one hand, the verifier has to tolerate considerable time gaps to avoid
false positives. On the other hand, an adversary might exploit these time gaps to
manipulate the measurement and hide traces of an attack on the prover device.

Challenge 5: Time-of-Check/Time-of-Use. Remote attestation schemes, and in
particular software-based attestation, face the time-of-check/time-of-use problem
(TOCTOU) [298]. An attestation report only presents a snapshot of the prover’s
state. So the verifier learns no information whether the prover has been compromised
(and restored) before the attestation or will be immediately after the attestation,
thereby evading detection.

34

3.3 Assumptions and Threat Model

WAN

Configuration manager

IoT gateway

IoT devices

Access point

Figure 3.1: Network architecture of the real-time attestation approach.

RealSWATT overcomes these challenges by executing the measurement procedure
on a dedicated CPU core while allowing the continuous execution of real-time tasks
on another CPU core. Furthermore, our approach deploys novel techniques to tackle
all challenges in order to design and implement a secure attestation solution.

3.3 Assumptions and Threat Model

RealSWATT attestation is designed to work with legacy IoT devices in real-world
network environments. The network architecture is sketched in Figure 3.1. It targets
scenarios with untrusted embedded systems running critical real-time tasks that
should be attested by the remote verifier.

3.3.1 Assumptions

We consider a system of connected low-end embedded devices executing real-time
tasks. We assume an untrusted system running tasks with real-time deadlines, the
so-called prover, which is being attested by the remote verifier. Furthermore, we
assume that the prover runs a real-time operating system (RTOS), ensuring correct
scheduling and proper real-time operation. The RTOS is no mandatory requirement.
However, it simplifies the integration of the RealSWATT framework into legacy
devices. Without an operating system, the attestation logic has to be manually
integrated, and it has to be ensured that the added methods do not influence the
other tasks running on the device.

35

Chapter 3 Attestation for Real-Time Applications

The system features a multi-core processor, of which one core is not utilized and
is not required for correct real-time operation. The attested device is connected to a
remote verifier via a wired or wireless network. There are no strict timing requirements
towards the connection. We elaborate on bandwidth and timing requirements in
Section 3.6.

All devices of the network are known to the verifier device. Therefore, they can
communicate with each other and the verifier directly. However, all communication
with external entities is routed through a gateway. We assume an IoT network
structure consisting of multiple IoT devices that are being attested, a trusted verifier,
and an IoT gateway for external communication, as sketched in Figure 3.1. The IoT
gateway monitors external communication to detect abnormalities to prevent offload-
ing of attestation tasks. Offloading remote attestation tasks to an external party
requires frequent communication to a dedicated remote instance which clearly differs
from the normal behavior of IoT devices. Monitoring traffic by its origin, goal, packet
size, frequency, or content is a common method to secure internal or dedicated IoT
networks. For example, the National Institute of Standards and Technology (NIST)
suggests using such gateways to secure communication of embedded devices [44, 263].
In recommendation ITU-T Y.2060 [149], the International Telecommunication Union
(ITU) also considers such gateways for IoT networks.

The configuration manager, as shown in Figure 3.1, is a common component in
modern IoT architectures. It keeps track of the devices and their applied configuration.
Configuration management software for IoT devices is commercially available [250].
Recent research also considers using such a configuration manager to set and organize
security features on IoT devices on demand [69]. With the help of such a configuration
manager, attestation can be enabled on a large scale without the need to set up
attestation on each device individually. A further benefit is that the configuration
can be easily provided to a verifier and included in the attestation reports.

3.3.2 Threat Model

Figure 3.2 shows the threat model. The adversary can compromise all embedded
devices in the network via software attacks. The adversary knows the benign state
and configuration of every device. It can observe all network communication. The
adversary is able to modify program data as well as configuration data. Furthermore,
the adversary can compromise an embedded device at each point in time as well as
restore a device’s benign state at any point in time.

The verifier and the gateway are assumed to be immune. Thus, the adversary
cannot compromise them. All communication, except between devices and the verifier,
is routed through the gateway. The adversary cannot introduce additional devices
into the network. The hardware of the devices cannot be modified or manipulated

36

3.4 Concept of RealSWATT

WAN

Configuration manager

IoT gateway

IoT devices

Access point

Attacker

Figure 3.2: Attacker model of RealSWATT. The attacker can compromise all
attested devices but can neither modify the configuration manager, which
takes over the role of the verifier, nor the IoT gateway.

by the adversary, for example, by being enhanced by a more powerful device with
more memory or a faster processor.

3.4 Concept of RealSWATT
Our design of RealSWATT introduces two new concepts:

1. Using a separate, idle processor core for attestation to separate the normal
operation and the attestation tasks from each other, and

2. Continuous attestation, that is, attesting the system continuously during
runtime.

Multi-core processors have many advantages in processing speed and energy con-
sumption [118] and are becoming increasingly widespread [81], even if the development
of real-time applications for multi-core processors is challenging [230, 286]. We lever-
age a multi-core processor design, which is nowadays commonly available on popular
IoT platforms, but often only partially utilized.

We observed that in many IoT devices and especially real-time systems with a
multi-core architecture, not all cores are fully utilized. Moreover, in some specific
application areas, such as avionics systems, there are even regulations that limit the

37

Chapter 3 Attestation for Real-Time Applications

Real-time processesSOC

CPU0

CPU1

Attestation

Figure 3.3: A system with multiple processor cores can use one core for real-time
processes and one core to run the attestation in parallel.

use of additional cores for real-time operation [60]. In real-time computing, there
exist several security frameworks that use a separate processor core of a multi-core
system to implement new security features [245, 295]; for instance, Yoon et al. [295]
utilizes it for intrusion detection and other follow-up works leverage it to cover
memory usage [296] and analyze system call traces [294].

Software-based attestation (SWATT) relies on the precise prediction of the response
times of the attested device. The verifier sends a challenge and measures the
response time of the prover, which includes the execution time of the attestation
and the transmission time. Hence, SWATT also relies on direct and undisturbed
communication between the prover and the verifier. That is, if the response to an
attestation request is delayed, the prover cannot distinguish between a false alarm
caused by a transmission delay and an attack. For the latter, the delay is caused by
the attacker covering their traces.

However, the assumption of undisturbed communication is unrealistic in practice.
Nowadays, IoT devices communicate via wired or wireless networks that are shared
with many other devices. As a result, these devices influence each other’s transmis-
sions, especially in wireless networks like Wi-Fi. Wireless networks inherently use
a shared medium that is not only shared between the devices within the network
but also with all other devices using the same frequency band. Hence, traditional
software-based attestation [241] cannot be applied to these communication networks.
We tackle this limitation by developing continuous attestation that eliminates the
transmission time from the timing measurements of the attestation. We leverage
this by continuously running the attestation such that the verifier can safely assume
that, at all times, the prover is running an attestation. To do so, we use a dedicated
processor core for the attestation.

38

3.4 Concept of RealSWATT

Separate Processor Core for Attestation. Figure 3.3 shows the distribution of the
real-time tasks and the attestation on different processor cores. The RealSWATT
framework requires at least two processor cores but supports more cores without
any changes. A single processor core is selected to execute the attestation. Both
the attestation runs, and real-time jobs are time-critical. Missing timing deadlines
for normal operation results in device malfunction as real-time properties are not
met, and timing problems for the attestation make the verification fail, as the verifier
assumes the device to be compromised as it does not respond in time.

Continuous Attestation. As a dedicated processor core can solely be used to
perform the attestation, this allows the introduction of continuous attestation,
where attestation constantly runs in the background. In traditional software-based
attestation, (SWATT) [241], the proof of integrity of the prover code is based on
the response between sending the attestation request and receiving the attestation
report of the prover. Typically, the attestation request contains a nonce to ensure
freshness and prevent replay attacks. Consequently, the transmission time between
the verifier and the prover must be included in the timing assumptions, making
SWATT impractical for all communications with varying transmission times, such as
wireless networks or the Internet.

Our continuous attestation relaxes these timing assumptions as the attestation is
constantly running so that even though the response is delayed, the verifier can safely
assume that the prover has been running the attestation task. In RealSWATT,
the verifier sends a new nonce while the prover is not yet finished calculating the
attestation report for the verifier (Section 3.4.2). So, the prover can continue with the
next attestation request directly after finishing the last one. We call this attestation
method continuous attestation as it removes the gap between attestation runs. In
contrast to the communication delay, the time required for the attestation can be
determined precisely. In Section 3.6, we measure the runtime of attestation processes.

In the following, we describe the challenges that emerge when implementing a
continuous attestation scheme.

3.4.1 Design Considerations

While using a separate processor core for remote attestation seems like a straight-
forward solution, it requires careful design decisions to ensure coverage of various
security aspects. Software-based attestation has many strict requirements that have
to be fulfilled to reliably verify the prover besides the accurate timing of the re-
sponses. Therefore, it is of utmost importance that an attacker cannot accelerate
the attestation run itself. There are multiple ways how an attacker could speed up
the attestation. Each of them has to be addressed accordingly.

39

Chapter 3 Attestation for Real-Time Applications

Block 1 Block 2 ... Block n

IV f f f f finalization <Hash>

Block 3

f

Figure 3.4: Merkle–Damgård construction of hash values. The process cannot be
parallelized for speedup.

Parallelization. An attacker can potentially use all processor cores for attestation
and ignore real-time-critical jobs, while genuine attestation can only use a single
processor core. Suppose the attacker is able to speed up the execution of the
attestation function. In that case, the attacker can circumvent the timing checks
that are based on hardware limitations and potentially evade the remote attestation.

Therefore, the attestation scheme must be designed such that an attacker cannot
benefit from multiple cores. Further, attestation relies on a hashing function. The
hashing method must be designed to not be accelerated by parallelization, for instance,
by using multiple processor cores in parallel. We tackle this challenge by using a
Merkle–Damgård construction [182] as this popular hashing method fulfills this
requirement. The functionality is shown in Figure 3.4: The process starts with an
initialization vector. Then, the hash is calculated by adding block by block, where the
next block is added in each step. In order to add the next block, the previous result
is taken as input. This is a strictly sequential process. Hence, the process cannot
benefit from parallelization or multiple processor cores [9]. Popular hashing methods
using the Merkle–Damgård construction are, for instance, SHA-1 and SHA-2 [192].

Optimality of Hash Function Implementation. As the security of software-based
attestation relies on the computational capability and timing threshold, that is, the
execution speed of the attestation function, it must be ensured that the implementa-
tion of the attestation function is optimal and cannot be significantly accelerated.
Otherwise, if the attacker is able to generate a valid hash, the saved time can be
exploited for malicious activity. RealSWATT addresses this challenge by leveraging
built-in hardware modules if available (as is the case for our target architectures) or
well-studied hash algorithms. RealSWATT is not limited to a certain hash function:
any secure hashing method that fulfills the Merkle-Damgård scheme is suitable for
our attestation approach. For example, the popular SHA-2 hash function fulfills this
requirement, which we also use in our implementation in Section 3.5 and case study
in Section 3.6. For platforms without hardware support, we study their security
regarding attacks against the hash function in detail in Section 3.7.3.

40

3.4 Concept of RealSWATT

Prover Verifier

Nonce #1

Response #1

Nonce #2

Response #2

Nonce #3 Verification

...

Repeated

Hashing

tm2=0, tm1<ts?Repeated

Hashing

Repeated

Hashing

New IV

New IV

New IV

Verification

tm1=0

tm3=0, tm2<ts?

Figure 3.5: Protocol of the attestation process.

Empty Memory. As memory that is not covered by the attestation process could
be used by an attacker, all executable memory has to be included in the attestation.
Furthermore, an attacker could compress the data stored on the device to free up
memory, which can then be used to store malicious code. RealSWATT prevents this
as its continuous attestation constantly monitors all executable memory. As shown
in Section 3.6, continuous attestation induces strict timing requirements. Deviations,
for example, due to the need for decompression, make the attestation fail.

Offloading. An attacker could also offload attestation work to another device. In
our attacker model in Section 3.3, we describe a remote attacker and exclude the
scenario in which a local attacker is able to introduce more computing power into the
attested device. However, the attacker could offload the attestation task to another
powerful device, thereby breaking the attestation scheme. Due to the longer and
varying transmission time, the verifier would not detect this. To tackle this issue, we
introduce an IoT gateway that monitors all traffic from and to the network with the
attested devices. Such security gateways are a common measure in commercial and
industrial networks. But such filters can also be added to routers for small business
and home networks. We elaborate on this network architecture in Section 3.4.3.

In the following, we will explain the attestation scheme and the network architecture
in detail.

41

Chapter 3 Attestation for Real-Time Applications

3.4.2 Attestation Scheme

As mentioned in Section 3.4.1, we needed to consider and evaluate several aspects of
our design to create a practical software-based attestation approach for real-time
embedded devices. Common and more advanced attestation methods like control-
flow attestation [3] are not applicable as they either interfere with the runtime
(instrumentation), which conflicts with real-time constraints or require additional
hardware like TrustZone. Thus, with RealSWATT, we attest code and data
regions of those legacy devices. A device can have multiple partitions containing the
executable code and data, including device configuration. We hash those dedicated
memory areas based on the protocol shown in Figure 3.5: The verifier sends a nonce
to prevent replay attacks to the prover. The prover uses this nonce as an initialization
vector for the hashing algorithm. Hence, the attacker cannot start the attestation
before the nonce is known. Next, the prover calculates the hash of the memory region
that has to be attested, for example, code or data sections. This concept is a common
and reliable method for remote attestation [49, 91, 201, 241]. Finally, we read all
data from the attested partitions and feed it either to the available hardware hashing
module or into the optimized hashing algorithm. Usually, all code and data sections
are combined and hashed. Thus one single hash value represents the code and data
integrity of the device. It is also possible to limit the hashing only to certain memory
sections. This option, however, should be used with care as it limits the appropriate
state representation of the embedded device.

The hash is then repeatedly computed and returned to the verifier. The hash
calculation is chained, and previous hash results are fed into the next repetition.
Finally, the verifier measures the time tm between sending the nonce and receiving the
response. If the measured time is below the expected threshold time ts, thus tm < ts,
the device is assumed genuine. Otherwise, it has potentially been compromised.
This process is continuously repeated to ensure that any compromise or malicious
modification of the device is being detected. Therefore, the hashing function must
have a predictable runtime. If the runtime varies, this allows the attacker to shift
tasks to get computation time. This remains undetected, as the verifier has to assume
the worst-case runtime. Therefore, the determination of an appropriate threshold is
a key feature of software-based attestation. In Section 3.6, we measure the execution
time for the attestation of a real-world device and describe how the threshold time ts

can be determined.
In a simple attestation protocol, there exists a gap between sending the resulting

hash and receiving the next nonce, which consists of the network transmission time
and the time of the verifier to send the next nonce after verification. In order to close
this time gap between two successive attestation requests, in our solution, the verifier
sends a second nonce while the prover is still processing the previous attestation
request, typically by computing a hash. The second nonce is received and temporarily

42

3.4 Concept of RealSWATT

stored in a queue. This allows the prover to continuously process attestation requests
and removes the impact of network delays.

To do so, the verifier has to send the nonces such that even under worst-case
network latency, the next attestation request arrives before the previous attestation
run is finished. Sending two nonces without delay allows an adversary to compute
the hash on other cores simultaneously. Therefore, it is important to send the hash
just in time. Given a time tatt to complete the attestation and a network latency trtt,
the verifier has to send the next nonce tatt − max(trtt) to ensure that the next nonce
arrives on time. Note that it is required tatt ≫ trtt to guarantee correct attestation.

The nonce sent by the verifier serves both as a new initialization vector and as
a synchronization point. In a scenario with a long-running attestation task with a
one-time initialization only, side effects like clock skew between devices would come
into play. We reliably synchronize the verifier and the prover by continuously sending
nonces as new initialization vectors.

The verifier checks the interval in which the results are returned from the prover.
If results are delayed or missing, a compromise can be assumed. The verifier can
react accordingly, for example, by raising an alarm or rebooting the prover to return
to a trustworthy state.

This process, where the prover saves the next nonce in advance, makes our
attestation scheme independent from the transmission time between the prover and
the verifier. Even variances in the transmission time do not pose any problems as
long as the transmission time is significantly shorter than the time required for the
attestation tatt ≫ trtt. It is possible to configure the runtime of the attestation by
repeatedly executing the hashing function: the result of the hashing is used as the
initialization for the next hashing. So, a long non-parallelizable row of executions
is generated. This makes it possible to adapt the attestation’s duration to the
actual transmission time requirements and consider the device’s processing speed.
Because a potential attacker cannot offload the computation to an external device,
and we carefully choose the time intervals for attestation requests (sending the
nonces), intercepting the next nonce does not provide any benefit to an attacker.
In Section 3.6, we elaborate on how the attestation time can be configured using a
real-world example. Suppose the worst-case transmission time is significantly shorter
than the execution time of the attestation. In that case, the next nonce can safely
arrive at the prover before the previous attestation process finishes. Thus, there
are no time gaps between successive attestation requests. We call this approach
continuous attestation, which is also a key aspect in enabling practical software-based
attestation.

Furthermore, our attestation method has several benefits with regard to existing
legacy embedded devices. Our attestation protocol is lightweight with a nonce of
4 byte and an attestation report of 32 byte. Thus, it causes only a slightly increased
network load and is suitable for low-speed IoT networks, as discussed in Section 3.6.3.

43

Chapter 3 Attestation for Real-Time Applications

Another aspect of RealSWATT is its real-time capability and ease of integration,
which we evaluated on real-world devices in Section 3.6.5. As already shown in
Figure 3.3, we exploit the availability of a second core to handle the attestation
process in parallel to real-time operation. While the use of a second core allows
maintaining real-time capability, it comes with its own set of challenges, such as
the parallelization of the hash computation by two cores, which we discussed in
Section 3.4.1 and Section 3.7.

3.4.3 IoT Network Architecture

The usage of a dedicated network architecture allows reliable and secure software-
based attestation with varying transmission times as described in Section 3.3. It
consists of several parts: the attested IoT devices, the central configuration and attes-
tation server, and the IoT gateway. In addition, this common network architecture
allows to prevent offloading attacks, thus moving the attestation task to external
devices.

Like many IoT devices nowadays, the attested devices communicate over wireless
communication (Wi-Fi, IEEE 802.15.4/ZigBee1, Z-Wave2) with the configuration
and device management server. Therefore, there are no strict requirements towards
connection speed, transmission times, or jitter. In the RealSWATT attestation
scheme, the verifier is implemented in a central device and configuration management
server. This configuration and device management server keeps the current config-
uration of all IoT devices and also performs the verification of these IoT devices.
Hence, it is possible to include individual configurations for each device and also
detect modifications in these configurations. The IoT gateway monitors external
communications and prevents a corrupted device from communicating with external
entities to offload the attestation routine and hence break the attestation. If the
attestation request can be sent to an external instance, this so-called offloading
attack might invalidate the result. This can be achieved, for instance, by monitoring
messages and response times. As attestation requests need timely responses, this
leads to suspicious transmission patterns. Both the central device and configuration
management as well as IoT gateways are commonly deployed in real-world networks
as previously discussed in Section 3.3.1.

3.5 Implementation
We implemented RealSWATT on commercial off-the-shelf hardware to show its
general applicability. The prover was integrated into FreeRTOS, which is a popular

1https://zigbeealliance.org/
2https://z-wavealliance.org/

44

https://zigbeealliance.org/
https://z-wavealliance.org/

3.5 Implementation

real-time operating system [116]. The verifier was implemented on a Raspberry Pi
running Linux. The verifier can also be implemented on other devices, such as
commodity X86 computer systems. The only requirement is a connection to the
IoT network and enough computing resources to handle and verify the attestation
requests. We are using raw UDP packets for communication in order to reduce the
side effects of network transmission and minimize communication overhead.

We integrated the prover for RealSWATT into different IoT devices to show
its broad applicability: a syringe pump, a smart plug, a smoke detector, and a
smart light bulb. For the smart plug, smoke detector, and smart light bulb, we have
used a framework called ESPeasy3. It allows the generation of alternative firmware
images for a wide range of off-the-shelf IoT devices powered by the ESP32 and
includes code for peripherals such as the smoke sensor. However, even without this
framework, integration into existing off-the-shelf devices is generic and straightforward
as described in Section 3.5.4.

To evaluate the functionality, we integrated all components into a real-world
test bed consisting of the typical components of an IoT network. We tested the
RealSWATT attestation using a complete end-to-end example consisting of a device
being monitored by the verifier. The attested device is then compromised, which the
verifier instantaneously detects.

In the following, we describe the main components of the implementation. First,
we explain how we implemented the prover and the verifier. Then we present the test
bed we developed to test the real-world applications. Finally, we show the necessary
steps to integrate RealSWATT into new applications.

Please note that this section only gives a general overview of the implementation.
Implementation details like timing thresholds need to be fine-tuned for typical
embedded devices and their networks. We evaluate and provide these details for our
test bed in Section 3.6.

3.5.1 Prover

We use the Espressif ESP32 system-on-chip (SoC), which is a popular component of
typical IoT devices, for example, smart light bulbs and power plugs [96] as it also
integrates Bluetooth and Wi-Fi modules.

We have implemented the RealSWATT remote attestation method using the
popular FreeRTOS real-time operating system. FreeRTOS can manage multiple
processor cores and allows the attachment of processes to a dedicated core. The
scheduler then does not move the attached processes across cores. Instead, we dedicate
one core to the attestation process. We have implemented the RealSWATT remote
attestation method using the popular FreeRTOS real-time operating system on

3https://espeasy.readthedocs.io/en/latest/

45

https://espeasy.readthedocs.io/en/latest/

Chapter 3 Attestation for Real-Time Applications

the ESP32. The ESP32 has two Tensilica Xtensa processor cores [97]. Since the
attestation is scheduled on a dedicated core, the attestation does not interfere with
the real-time operation. Real-time operation, as well as attestation, are handled by
different cores and in parallel.

RealSWATT performs static attestation covering code and data memory of the
prover. This is achieved by including the program and configuration data partition
in the attestation requests. The hashing is performed using the mbedtls4 library,
which also supports hardware-supported hashing on the ESP32. In order to prevent
replay attacks or the usage of pre-computed results, each attestation run is initialized
using the nonce provided by the verifier. Continuous attestation is realized using a
queue. When the prover receives a UDP packet containing a nonce from the verifier,
the nonce is written to a queue of limited size until the prover handles it. This way,
attestation runs are executed seamlessly after each other. The attestation result is
returned as a UDP packet to the verifier.

The attestation is implemented as two separate tasks, one receiving the attestation
requests from the verifier and one task performing the actual attestation. Both
tasks are pinned to the dedicated and previously unused processor core to ensure
no side effects between the attestation and the real-time operation of the attested
device. We verify that the attestation runs continuously without distractions from
the real-time operation. RealSWATT attestation has the possibility to configure
the runtime of the attestation. The runtime needs to balance between delay, that is,
the time until a compromise of the attested device is detected, and communication
overhead. This balancing is achieved by configuring the number of repetitions of
the hashing function. More repetitions invoke a longer runtime. At the end of
each attestation run, the result is sent to the verifier, which then checks its validity.
When integrating RealSWATT attestation into a new device, the runtime of the
attestation function has to be determined, and the number of repetitions has to
be configured. In Section 3.6, we perform a detailed measurement of runtime and
communication overhead on the implementation of RealSWATT.

3.5.2 Verifier

The verifier implements the RealSWATT attestation protocol described in Sec-
tion 3.4.2, sending nonces to the prover and handling incoming attestation reports,
such as checking the timing threshold and verifying the integrity of the measurements.

There are two available implementations for the verifier. First, we used Python,
and later we opted for C++. Since Python is an interpreter-based programming
language, the Python implementation of the verifier can be used without adjustment
across a wide range of devices. The only requirement is that a Python interpreter

4https://tls.mbed.org/

46

https://tls.mbed.org/

3.5 Implementation

Figure 3.6: Photo of the NodeMCU ESP32 developer board.

for the device is available. However, we assumed a worse network response time
than with a native C or C++ implementation. In order to check the influence of the
programming language, we also implemented the verifier as a native C++ application.
Contrary to our expectations, the programming language had little to no impact on
the measured network response times.

As mentioned, the verifier receives the attestation reports and checks their validity.
According to the RealSWATT attestation protocol, the verifier sends two nonces to
the prover. Each nonce triggers an attestation run. It is the verifier’s responsibility
to time the transmission of these and all following nonces. The design of the protocol
is explained in Section 3.4.2. In Section 3.6, we elaborate on how to correctly time
these message intervals and determine the thresholds for the attestation.

3.5.3 Test Bed

To evaluate RealSWATT, we built a test bed of an IoT network as sketched in
Figure 3.1 consisting of IoT devices, a Wi-Fi access point, and a verifier. The IoT
devices were implemented on NodeMCU ESP32 developer boards5. A TP-Link
TL-WDR4300 Wi-Fi router6 running OpenWRT 19.07.7 was used as IoT gateway
and a Raspberry Pi 3+7 with Linux was running the C++ implementation of the
verifier. Figure 3.6 shows a NodeMCU ESP32 developer board. The setup was
located in an office environment during workdays with frequent Wi-Fi usage. The
Wi-Fi access point provided a separate IoT network in a 2.4 GHz range, as the ESP32
is only able to work within this frequency range. The test bed reflects typical usage
in practice, for example, in hospitals or factories with different interfering Wi-Fi
traffic and other wireless devices that influence the communication between the

5https://joy-it.net/en/products/SBC-NodeMCU-ESP32
6https://www.tp-link.com/ch/home-networking/wifi-router/tl-wdr4300/
7https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

47

https://joy-it.net/en/products/SBC-NodeMCU-ESP32
https://www.tp-link.com/ch/home-networking/wifi-router/tl-wdr4300/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

Chapter 3 Attestation for Real-Time Applications

prover and the verifier. The influence of other wireless devices and Wi-Fi traffic and
its implications for the attestation is further analyzed in Section 3.6.

3.5.4 Integration Guidelines

The integration of RealSWATT is straightforward. IoT devices often rely on a
real-time operating system (RTOS) [34], which allows to manage and appropriately
schedule multiple concurrent tasks on multiple cores. The usage of an RTOS gives
standard interfaces and methods to add the attestation service. In order to integrate
RealSWATT, we have created additional tasks. We added a UDP service for
communication and an attestation task on the dedicated core. The usage of an RTOS
is no requirement for RealSWATT. Integrating RealSWATT into devices with
no operating system, so-called bare metal systems, is also possible. However, the
integration will need to be performed much more carefully as one cannot rely on the
abstraction and features provided by a real-time operating system.

In the next section, we evaluate RealSWATT and show its general applicability.
To do so, we perform a case study and integrate RealSWATT into a medical device
and an IoT framework.

3.6 Evaluation

In this section, we show that RealSWATT attestation is well-suited for real-
world IoT setups and can be applied in practice. As described in Section 3.5, the
RealSWATT attestation was deployed on different embedded devices. To show
the general applicability of the RealSWATT attestation concept, we investigate
its runtime and timing constraints. As elaborated in Section 3.4, timing is a crucial
security factor in software-based attestation. We measure the response times in
our exemplary syringe pump example and explain how timing thresholds for the
verification of the attestation can be determined. We further analyze the overhead
induced by the attestation. This covers both additional power consumption caused
by the usage of the second processor core as well as the communication overhead for
attestation requests and responses.

In a full end-to-end example, we show the functionality of the RealSWATT
attestation by performing an attack on a vulnerable device that is detected by the
attestation.

3.6.1 Timing Behavior of the Attestation Function

Timing is a crucial component for the security of software-based attestation. While
in traditional software-based attestation, the response time to the verifier is the

48

3.6 Evaluation

Table 3.1: Measurement of the runtime of the attestation with and without the delay
due to the Wi-Fi communication. All measurements are taken in ms.
Rounds Type Min/Max Mean Std. Dev.

0 Direct 7.979/8.14 7.988 0.032
Network 36.066/226.36 72.207 11.43

1 Direct 9.752/10.265 10.004 0.038
Network 49.502/279.684 225.76 20.84

2 Direct 19.748/20.276 20.006 0.057
Network 69.367/274.108 225.96 18.81

5 Direct 50.005/50.005 50.005 0.0
Network 59.662/276.617 224.61 23.26

10 Direct 100.004/100.004 100.004 0.0
Network 125.149/329.905 228.32 9.952

20 Direct 200.004/200.004 200.004 0.0
Network 217.307/439.912 241.46 46.96

30 Direct 300.004/300.004 300.004 0.0
Network 320.665/469.364 431.11 16.91

50 Direct 500.004/500.004 500.004 0.0
Network 518.593/726.847 637.27 13.01

100 Direct 1000.004/1000.004 1000.004 0.0
Network 1019.64/1218.943 1048.91 13.15

150 Direct 1500.005/1500.005 1500.005 0.0
Network 1517.224/1679.623 1661.35 11.12

200 Direct 2000.004/2000.004 2000.004 0.0
Network 2009.749/2179.673 2072.29 9.24

300 Direct 3000.004/3000.004 3000.004 0.0
Network 3009.71/3190.993 3095.92 8.67

49

Chapter 3 Attestation for Real-Time Applications

0 1 2 5 10 20 30 50 100 150 200 300
repetitions

0

500

1000

1500

2000

2500

3000

At
te

st
at

io
n

ru
nt

im
e

in
 m

s

Figure 3.7: Runtime of the attestation process on the prover with a different number
of repetitions.

relevant part of the security, in continuous attestation, the runtime of the attestation
itself is important, while the transmission time can be neglected.

We performed a measurement study in our IoT test bed to determine the response
times of the prover to the challenge depending on the number of repetitions of the
hashing function and the variance of the transmission in the Wi-Fi network. In order
to perform a reliable attestation, the number of repetitions of the hashing function
has to be chosen such that its runtime dominates the variance of the transmission.
The continuous attestation only works if the verifier receives the response of the
prover before the prover finishes the next attestation request. A too-long attestation
run increases the time span between two attestation reports of the prover. Hence,
the delay between compromise and its detection becomes larger.

Table 3.1 shows the measured runtime of the attestation function, including
and without the overhead due to the wireless network using different numbers of
repetitions. In Figure 3.7, the runtime of the attestation process with respect to the

50

3.6 Evaluation

0 1 2 5 10 20 30 50 100 150 200 300
repetitions

0

500

1000

1500

2000

2500

3000

At
te

st
at

io
n

ru
nt

im
e

in
 m

s

Figure 3.8: Response time of the prover with a different number of repetitions, this
includes both the attestation runtime and the overhead due to the Wi-Fi
communication.

number of hashing repetitions is plotted. In addition, since the hashing needs to
dominate the variance of the transmission, we also plotted the response time with
their respective variances in Figure 3.8 for direct comparison.

We conducted all measurements on the described test bed using the syringe pump
implementation and repeated them to cover for any variations. We repeated the
Wi-Fi measurements 600 times. The measurements without Wi-Fi were repeated
100 times due to their lower variability. The time including the Wi-Fi transmission,
was measured on the Raspberry Pi. The runtime without the Wi-Fi overhead was
measured on the ESP32 with its internal clock.

As expected, the variance of the runtime of the attestation without any communi-
cation is minimal. The highest standard deviation in the experiments was 56.83 µs
in the case of only two repetitions. We measured no deviation in all cases with more
repetitions, that is, more than five. This makes the implementation well-suited for

51

Chapter 3 Attestation for Real-Time Applications

software-based attestation, as strict timing limits can be selected. In comparison,
the measurements which include transmission via Wi-Fi have much larger deviations,
as Figure 3.8 shows. For example, in the case of ten repetitions, the time until the
verifier gets a response from the prover varies between 110 ms and 303 ms. These
results clearly show that such a Wi-Fi setup is inadequate to be directly used for
traditional software-based attestation.

The values in Table 3.1 can be used to find optimal parameters for the attestation.
To select suitable parameters, the minimum and maximum values of the attestation
can be compared to find the optimal compromise between the runtime and the delay
until a compromise is detected. These parameters directly influence the required
number of communication events for the attestation. These parameters can also
be used to configure the timeout thresholds for the verifier to detect delays in the
attestation. All attestation runs have about the same execution time, and the
variance between the executions is negligible. In contrast, the time until the verifier
actually receives the attestation response varies widely. A software-based attestation
without the RealSWATT continuous attestation approach is not feasible under
these circumstances. Based on these results, it is possible to determine the adequate
number of repetitions for the given use case. In the case of the syringe pump, we
opted for 100 repetitions, yielding attestation reports in about 1 s intervals. These
measurements are also required to configure the verifier to detect malicious behavior
resulting in timeouts as the response time varies. The measurements show that
RealSWATT is capable of working on IoT devices with wireless communication in
practice.

3.6.2 Power Consumption

The second important aspect for real-world deployment of RealSWATT is power
consumption. Continuous attestation causes constant additional computational tasks
for the attestation core, which results in increased power consumption. Often, IoT
devices are battery-powered and are expected to have long battery lifetimes. For
instance, a smoke detection sensor in the corner of the ceiling runs years without
battery replacement. Therefore, power consumption is also a concern of such IoT
devices.

Consequently, we conducted a case study and measured the power consumption of
the syringe pump with and without the attestation running. Without attestation, we
have measured an average consumption of 46.2 mA. With attestation, we measure a
slightly increased power consumption of 46.8 mA. So, attestation accounts for an
increase in power consumption of 0.6 mA in this case, about 1.3%.

In order to evaluate the measured power consumption, we have checked the
corresponding data sheet [103] of our ESP32 evaluation board. The data sheet
provides the expected power consumption with respect to the operating mode of

52

3.6 Evaluation

the chip for both the processor and wireless module. The wireless communication
module dominates the power consumption of the ESP32. Its power consumption
varies depending on the transmission mode. It ranges from 95 mA and 130 mA to
receive and transmit via Bluetooth; up to 100 mA to receive and 240 mA to transmit
via Wi-Fi IEEE 802.11b/g/n. However, this power consumption is only present
during the regular send and receive intervals and thus needs to be treated as a peak
power consumption.

The power consumption of the CPU depends on its operating frequency and
overall usage of the CPU. We have configured the syringe pump to operate at
the full CPU clock of 240 MHz for test purposes. This CPU frequency has the
highest difference between no CPU usage (30 mA) and full CPU usage (68 mA). The
naive assumption would be at least a 50% usage of the CPU (full utilization of the
second core) for attestation, resulting in significantly higher power consumption.
However, our implementation used the integrated hardware hashing unit, which is
more power-efficient compared to a software-based calculation of the hashes.

We furthermore observed that the additional network traffic for the attestation
is negligible for devices that already communicate on a regular basis. The syringe
pump in our case study provides a remote command interface. Thus, the wireless
communication module of this device is already in use. So sending and receiving
attestation messages only slightly increases the overall power consumption.

3.6.3 Communication Overhead

Another important aspect is the amount of communication required for the attesta-
tion. First, IoT devices often use wireless communication, which is a shared resource
with a limited frequency spectrum. With multiple devices communicating via the
same channel, the network latency, as well as package drops, increase. Wireless
communication is similar to traditional bus communication in that regard. Packets
sent simultaneously collide and need to be retransmitted. Each wireless transmission
takes a portion of the available bandwidth. For the RealSWATT remote attesta-
tion protocol, we only require the transmission of the hash value with 32 byte for
the attestation reports and 4 byte nonce as attestation request. The transmission
frequency can be configured, as discussed above, between several attestation requests
per second to one every few seconds. These low demands make RealSWATT
attestation suitable for working with low-bandwidth transmission protocols. For
example, the popular IoT wireless protocols Zigbee and Z-Wave have transfer speeds
ranging from 20 kbit/s up to 250 kbit/s [251]. Even the lowest transfer speed is
sufficient to successfully run RealSWATT attestation with reasonable attestation
frequencies.

53

Chapter 3 Attestation for Real-Time Applications

3.6.4 Race Conditions

Attestation and real-time operation run in parallel on two dedicated cores. However,
the attestation process requires access to the application memory to check for
malicious activity. Thus, even when both operations are executed on a separate
core, resources still need to be shared, which could lead to a potential race condition.
In practice, race conditions between real-time operation and attestation rarely
occur. This is because most embedded applications focus on GPIO (General-Purpose
Input/Output) and thus have little memory interaction. Memory access can be
prioritized depending on the attestation goals and type of real-time application. Most
embedded devices in the domain of soft real-time systems will tolerate infrequent
deadline misses. Thus, the attestation can potentially be prioritized in these cases.
Hard real-time systems are usually strongly tight to the outside world and very
GPIO intensive. As a result, memory accesses on hard real-time systems are very
short. The acceptable delay for the attestation can be set to a value that will detect
malicious activity but allow short delays caused by the real-time application. This
value trtdelay is distinct for each embedded device and application context and should
satisfy: tattack ≥ thash + trtdelay. The delay trtdelay is determined by the longest
operation the real-time application would perform on the flash memory: These are
often quick reads of configuration data (for example, the amount of medicine for
injection on the syringe pump).

We have implemented RealSWATT into systems with hard real-time requirements
like medical devices (syringe pump) and common IoT devices like smart plugs, see
Section 3.6.5. We evaluated the impact of race conditions in these settings and found
that they are highly unlikely and do neither influence the real-time requirements nor
the attestation.

3.6.5 Implementation on Real-World Devices

To show the applicability of our approach to real-world applications and deployments,
we applied RealSWATT to a medical device with strict real-time requirements and
integrated RealSWATT attestation into an open-source firmware for IoT devices.

The first use-case is a syringe pump [285], a medical device that injects medication
into a patient at a defined time interval. Hence, a syringe pump provides critical
functionality and has strict real-time requirements. This open-source implementation
of a syringe pump has already been used in previous works (see C-FLAT [3] and HERA
in Chapter 6) to show the feasibility of control flow attestation and hotpatching of
real-time devices.

In addition, we implemented RealSWATT on top of ESPEasy. ESPEasy is
an alternative popular open-source firmware that allows replacing the firmware of
existing IoT devices like smart plugs or temperature sensors. ESPEasy supports a

54

3.6 Evaluation

Listing 3.1: Default ESP32 partition layout without over-the-air updates [102]
1 # ESP -IDF Partition Table
2 # Name , Type , SubType , Offset , Size ,Flags
3 nvs , data , nvs , 0x9000 , 0x6000 ,
4 phy_init , data , phy , 0xf000 , 0x1000 ,
5 factory , app , factory , 0x10000 , 1M,

Listing 3.2: Internal configuration of the syringe pump
1 typedef struct {
2 uint16_t syringe_volume_ml ;
3 uint16_t syringe_barrel_length_mm ;
4 float threaded_rod_pitch ;
5
6 } internal_settings ;

wide range of different devices and even extends their functionality. By implementing
RealSWATT on ESPEasy, we proved that a wide range of legacy IoT devices can
be easily secured through our attestation method.

In the following, we explain real-world details of the attestation based on the
syringe pump use case implemented on the ESP32. The ESP32 allows for the custom
creation of partitions. A developer can define memory sections on the chip in a
data structure called partition table [102]. The partition structure depends on the
implemented application and the required functionalities. For example, additional
partitions are needed if an update mechanism such as over-the-air (OTA) update [100]
is used. A simple application with no OTA update functionality consists of the three
partitions as listed in Listing 3.1.

By default, the ESP32 uses three partitions, which contain the program and
configuration data. In particular, the partitions are used for the following tasks.

factory. This partition contains the application code, that is, the executable.

phy_init. The second partition contains data required for the physical initialization
process of the device.

nvs. The third partition stores the actual configuration of the application.

55

Chapter 3 Attestation for Real-Time Applications

Listing 3.3: Medical configuration of the syringe pump
1 typedef struct {
2 uint32_t injections_ms ;
3 uint16_t dosage_ml ;
4 uint8_t bolus_step_index ;
5 } medical_settings ;

The syringe pump is implemented with this default partition mapping. The
code is saved on the factory-partition, and the configuration data is included in
the nvs-partition. The syringe pump comes with multiple internal and external
configuration options. Listing 3.2 shows the internal configurations that cover the
physical characteristics of the syringe pump, such as the length of the syringe barrel.
The internal configuration is required to transpose configured information, such as
the amount of medicine, into the precise amount of rotation steps of the stepper
motor driving the threaded rod of the pump. The syringe pump also has its usual
medical settings available to the medical personnel, such as injection intervals and
amount of medicine, as shown in Listing 3.3.

In order to attest the syringe pump, the data from all three partitions factory,
phy_init, and nvs is read and concatenated. Then, we append the nonce and feed
this data into the hardware hashing module of the ESP32. The resulting hash value
is then repeatedly rehashed and sent to the verifier. Since the verifier knows the
original syringe pump code as well as the physical initialization parameters and the
configured options, it can verify the correct state of the syringe pump. The verifier
can either integrate a device configuration manager or be notified by an external
one about legitimate configuration changes. In our use case, we have integrated this
functionality into the verifier.

The verifier sends the next nonce so that it arrives at the prover just before the end
of the expected attestation time, even with worst-case network latency. As explained
in Section 3.4.2, we have chosen 100 repetitions, such that tatt = 1000ms ≫ trtt as
Table 3.1 shows. The verifier is configured to send the second nonce 750 ms after the
previous nonce.

3.6.6 End-to-End Case Study
To show the full capabilities of RealSWATT, we developed a full end-to-end
example: a vulnerable real-time device that is being monitored. The vulnerability
is used to compromise the device. This is then detected by the verifier. To do
so, we have integrated a common vulnerability into the syringe pump: an insecure
configuration interface, as the most common attack vectors of IoT devices are weak,

56

3.7 Security Discussion

guessable, or hard-coded passwords and insecure network interfaces and services [208].
In the case of ESPEasy, the web interface is only reachable via plain HTTP. Hence a
passive man-in-the-middle (MitM) attack can easily be used to obtain passwords or
authentication tokens [72]. Especially the usage of wireless interfaces further eases
MitM attacks. Furthermore, per default, the login process of the web interface does
not have any rate limiting, allowing efficient brute-force or dictionary attacks, for
example, using hydra8.

For our proof-of-concept (PoC), we hijack the command interface of our medical
device and send a malicious configuration to the unit. This could trigger a buffer
overflow and launch a more sophisticated attack or just manipulate the configuration.
In the case of the syringe pump, even a configuration change could lead to lethal
consequences for the patient: With our attack, it is possible to arbitrarily modify the
amount of injected medicine. As soon as these changes are applied, the configuration
on the nvs-partition is updated. At the latest, in the next attestation run, the hash
value of the nvs-partition changes, which is sent in the attestation report to the verifier.
The verifier determines that the configuration differs from the intended configuration
and raises an alarm. For more details on the partitions and the implementation of
the attestation, see Section 3.6.5.

3.6.7 Summary
In our practical evaluation of RealSWATT, we have shown that the attestation
runtime can be adjusted by hash repetitions to dominate the variances in network
response times of heavily used wireless networks. Consequently, our proposed
attestation method for legacy devices is feasible for wireless IoT networks. In addition,
we have measured only a slightly increased power consumption from 46.2 mA to
46.8 mA per hour for attestation. The increase is so small due to the commonly
available hardware hashing unit’s use, which reduces the second core’s workload.
Furthermore, as most IoT devices already use the wireless communication module
on a regular basis, the additional power consumption for wireless communication is
also minimal. Concluding, RealSWATT is suitable for application in real-world
IoT devices.

3.7 Security Discussion
The RealSWATT attestation framework uses several new techniques to perform
reliable software-based attestation of critical real-time embedded devices. The security
of software-based attestation is based on multiple premises, which all have to be
fulfilled in order to guarantee the integrity of the attested device. In the following,

8https://github.com/vanhauser-thc/thc-hydra

57

https://github.com/vanhauser-thc/thc-hydra

Chapter 3 Attestation for Real-Time Applications

Variable Definition
ts Threshold time
tm Message response time
trtt Round trip time
tatt Attestation runtime (all runs)
thash Hashing runtime (single run)
tattack Minimal runtime for attack
twrite Time of the flash to write to the sector

Table 3.2: Definition of times for security analysis.

we discuss the formal criteria for the attacker to stay undetected as well as possible
attack scenarios, including mitigations.

Attack Model. To prevail against malicious activity, attackers must perform their
attack and hide all traces before the attestation can detect those changes by means
of hashing the memory. We define the different time variables to analyze diverse
attack scenarios in Table 3.2.

A successful attack must satisfy tattack < thash, which translates to a scenario
where an attacker completes the attack before a check can be performed (single hash
iteration with time thash). Further, an attack is only successful if the attacker is
able to either manipulate the program code or configuration data stored in the flash
memory (given the threat model defined in Section 3.3.2). As a result, the attacker
needs to rewrite at least one flash page, which takes twrite time.

The attack scenario is depicted in Figure 3.9. thash denotes the runtime of the
hashing of the complete memory. Every n repetitions, the result is sent to the verifier
in the attestation report. One hash iteration covers all n flash memory blocks b, that
is, b0 − bn, starting at a random location r. To prevent replay attacks, we integrate
a nonce nonce provided by the verifier: hash = {nonce, br...bn, b0...br−1}. Multiple
hash iterations are concatenated so that instead of the nonce, the hash result of the
previous iteration is used as the starting point: hashi = {hashi−1...}.

Attack Requirement. Within the Attack Model (see Section 3.2), we have reca-
pitulated the attestation procedure from the security viewpoint and introduced
variables to describe the attacker’s success conditions formally. The attacker’s goal
is to stay undetected. Obviously, the only feasible strategy for the attacker is to
perform the attack before the attestation can detect it. As described above, this
requires tattack < thash. The time of an attack (tattack) depends on the concrete
attack scenario and cannot be exactly determined. However, a lower bound of tattack

58

3.7 Security Discussion

New nonce

thash thash thash thash thash

Response

t
write

t
attack

Figure 3.9: Attack scenario of RealSWATT. The device is attested in the back-
ground. The minimum attack duration is longer than the attestation
runtime.

can be given due to hardware limitations such as the flash write time (twrite). We
will elaborate on this in the following.

3.7.1 Hardware Restrictions

Embedded devices have hardware restrictions such as fixed times to write and read
memory that the adversary cannot change (see Section 3.3.2). Since the attacker
is not able to replace physical hardware, the attacker is bound by the hardware;
especially, slow write operations to flash memory. This allows us to derive a lower
bound for attacks (tattack).

In case the device features a hardware hashing module, the attacker has to deal
with fast hashing, thus short intervals in which the memory is attested. In addition,
embedded devices provide flash memory as their main memory, and embedded devices
such as the ESP32 typically rely on the external flash. Flash memory has to be
written sector-wise, and flash typically uses a sector size of 4 kbyte. To erase one
sector of a commonly used and quick flash chip takes about 50 ms. A similar fast
flash chip is also deployed on our ESP32 boards [93]. Other flash chips require even
100 ms to erase a sector [92]. Since a successful attack requires at least one write,
the minimal duration of any attack is twrite, so tattack ≥ twrite. The availability of
hashing modules and flash speeds differ. Hence, hardware restrictions, in particular
twrite, need to be considered for every device. In the specific case of our ESP32
board a sector write to the flash requires 50 ms [93] but a single hash iteration only
takes 10 ms (see Table 3.1). As such, memory manipulation attacks are detected by
RealSWATT for all modern embedded devices shipped with a hashing module.

59

Chapter 3 Attestation for Real-Time Applications

3.7.2 Common Attack Scenarios
Remote attestation schemes and, in particular, software-based attestation schemes
are vulnerable to several attack techniques.

Compressing Data on the Device. A compression attack is a typical technique
to undermine software-based attestation [241]. The idea is to use compression
mechanisms on the attested device to free up memory that is not covered by the
attestation so that it can be used to store software that remains undetected from the
attestation. In the worst case, the attacker decompresses malicious data on-the-fly at
attestation time. Since RealSWATT targets multi-core processor architectures, the
attacker has the capability to perform the attestation and decompression in parallel.
However, a compression attack requires rewriting parts of the memory. Moreover,
these writes are relatively slow. As these write accesses take more time than the
interval thash, twrite > thash still holds. Hence, we conclude that it is not possible to
rewrite parts of the memory by means of a compressed version without detection.

In addition, RealSWATT deploys further techniques to prevent compression
attacks. Since it is challenging to compress random data [241, 291], we fill free
memory with random data provided and controlled by the verifier. The attestation
reports include the random data, thereby allowing the verifier to detect modifications
easily. Furthermore, due to continuous attestation, the device is attested frequently
(every 10 ms as shown in Table 3.1). Thus, the attacker can only guess whether a
data segment is currently being attested, reducing chances of success drastically.

Time-of-Check/Time-of-Use. It is a well-known problem that existing attestation
schemes are susceptible to time-of-check/time-of-use (TOCTOU) attacks [254]. An
adversary capable of restoring the memory in a given time frame before the next
attestation will remain undetected. In contrast to known attestation schemes Real-
SWATT significantly reduces the adversary’s success by leveraging the following:

1. The attestation continuously runs in the background, checking the complete
memory regularly while the device operates normally.

2. The attestation starts from an arbitrary memory position (derived from the
nonce). The attacker can neither predict nor influence this starting point.
Halting the attestation core or process will be detected by timing thresholds.

Existing software-based attestation techniques like SWATT [241] interrupt normal
operation for attestation. This is not an option for real-time systems, as these
interruptions conflict with real-time requirements. As RealSWATT attestation
runs in the background, the TOCTOU problem is limited to the interval in which
each memory area is attested. This time span thash is very short due to the optimized

60

3.7 Security Discussion

implementation (see Section 3.7.1), so that manipulations of the flash memory can
be detected. This also implies that no pseudorandom memory traversal is required,
as used in SWATT [241].

Memory Manipulation. Another strategy to avoid detection is to use, create, or
find unmonitored memory, for example, the RAM memory. The attacker could also
try to change the memory layout by manipulating the partition table. However,
in general, moving malicious code to RAM is not feasible. Code usually resides
in flash memory, and RAM is therefore typically marked as non-executable [101].
Furthermore, manipulating the partition table is also a highly challenging task [102].
In the case of the ESP32, several preconditions must be met: first, SPI Dangerous
Write must be enabled. Second, an entire flash page would need to be rewritten.
Third, OTA (Over-the-air) updating typically implements partition changes and
rewrites [100], which inevitably causes a reboot. Thus, manipulating the partition
table is unfeasible for an attacker. Note that runtime reconfiguration of memory
permissions is also not possible because the memory management unit (MMU) is
privileged and set during boot.

3.7.3 Attacks on Attestation Protocol

There are two attack strategies to undermine the underlying security assumptions of
the protocol used by RealSWATT:

1. Using multiple processor cores to accelerate the attestation function.

2. Optimization of the attestation loop accelerates the attestation process.

We discuss how RealSWATT addresses both techniques and ensures the security of
the software-based attestation.

Using Multiple Cores to Break Attestation. The attacker can use the full com-
puting power of the device, while RealSWATT has to obey strict limitations due
to real-time critical jobs. The attacker could ignore real-time jobs and try to use
more than a single core for hash calculations. In case hash calculation can be ac-
celerated through parallelization, the attacker gains an attack window. However,
the attestation process still cannot be accelerated using multiple processor cores
since we use a Merkle–Damgård construction for hashing (such as SHA-1 or SHA-2).
This method sequentially hashes each block and requires the previous block as input.
Thus, an attacker cannot use multiple processor cores to parallelize this process. The
Merkle–Damgård hash construction is strictly sequential.

61

Chapter 3 Attestation for Real-Time Applications

Optimizing the Implementation of the Attestation Loop. Software-based attesta-
tion (SWATT) [241] is based on the assumption that an attacker cannot accelerate
the implementation of the attestation algorithm. Thus, an optimal implementation of
the attestation function and its main component, the hash function, is required. Al-
gorithms are complex, and alternative ways exist to implement the same functionality.
Castelluccia et al. demonstrated that SWATT [241] can be undermined using a faster
implementation of the attestation function [57]. As described in Section 3.2, this
gives an attacker a time slot where the attestation does not run, although the verifier
assumes the prover is currently running the attestation function. RealSWATT
addresses this issue using standard hash functions like SHA-256, for which optimized
implementations or even hardware acceleration exist, as elaborated in Section 3.4.1.
However, as these hash functions are widely used and have been well-studied in the
past [193], it is unlikely that there exist implementations that significantly improve
the execution speed, especially compared to hardware-assisted hash functions as
we use in RealSWATT. Since we use global and standardized hashing algorithms
(SHA-2) [193], highly optimized software implementations are available in case the
target platform features no hardware hashing module.

3.7.4 Network-based Attacks
Connected devices are inherently prone to network-based attacks. Common practical
issues in remote attestation, such as offloading the attestation process, have been
considered in the design as discussed in Section 3.4. In the following, we explain
which network-based attacks remote attestation faces and how these issues have been
addressed in RealSWATT.

Shifting the Attestation to Another Device. One main problem in software-based
attestation is offloading attacks. This means shifting the attestation task to an
external entity. However, the IoT gateway prevents external communication. Hence,
it is neither possible to leak attestation data (for example, the nonce) to a remote
party nor to receive attestation reports from outside the network. Furthermore,
all IoT devices in the network are covered by the attestation, so there are no free
resources to perform an attestation on behalf of another device.

Delaying Communication. The attacker can delay the communication between
the prover and the verifier. As some variation in the transmission time is normal,
this would remain undetected to the verifier. While this would be a critical problem
in traditional software-based attestation, RealSWATT attestation is designed to
work with delays as imposed by communication, for example, using standard Wi-Fi
networks. The concept of continuous attestation ensures that even if communication
is delayed, the attestation process remains unaffected. Continuous attestation sends

62

3.8 Related Work: Attestation for Real-Time Systems

a second nonce before the previous attestation process has finished. The verifier
times the second nonce such that it should arrive in time even under the worst
expected network latency (see Section 3.4.1). All attestation runs on the prover
are continuously running and have constant attestation time tatt. If the attacker
intentionally delays communication, the verifier will detect the shift in communication
delay, and the attestation time will exceed the threshold ts.

3.8 Related Work: Attestation for Real-Time Systems

In the related work, we compare different approaches for remote attestation of
embedded systems with real-time constraints. As discussed, such devices have special
timing requirements that remote attestation schemes have to obey.

Remote attestation is often implemented as an atomic process that cannot be
interrupted. Thus, this approach induces reduced responsiveness to external events
such as interrupts. This is particularly difficult in real-time environments, as this
conflicts with real-time constraints. All remote attestation architectures face this
issue, including software-based [240, 241], hardware-based [3, 199] as well as hybrid [90,
91, 112, 144, 201, 202] architectures. So either the attestation process delays time-
critical tasks, or the attestation process is being interrupted [200]. Both options are
problematic.

Interrupting real-time tasks is not an option, as this is similar to a defect of the
device. The other way round, a malicious or compromised prover could even hinder
such a device from normal operation by regularly triggering attestation runs [50].
Attackers could exploit this behavior by regularly triggering events that interrupt
the attestation, preventing any attestation run from completion. The attacker can
also use this time to hide malware or cover the traces from a compromise.

Hence, remote attestation schemes for devices with real-time constraints have to
consider the specific needs of these devices. There exist several attestation schemes
that address these issues and fulfill the needs of devices with real-time constraints. One
solution to this problem is to allow the attested device to schedule the attestation run
by itself instead of invocation by the verifier. ERASMUS implements this approach
by splitting the attestation phase into two separate parts. The prover performs
the self-measurements for the attestation function according to a pre-established
schedule. The verifier can collect these measurements later on. This takes advantage
of the fact that the measurement itself requires a lot of computational power while
transmitting the results to the verifier requires nearly no computations [55].

SMARM addresses the problem of the roving malware that hides itself by moving
around on the attested device to evade detection by making the attestation process
random and unpredictable [54]. So, the attestation function can be interrupted at any
time. Even though the attacker can stop the attestation function, the attacker cannot

63

Chapter 3 Attestation for Real-Time Applications

predict which part of the device will be attested next. This way, malware cannot
hide effectively from being detected by the attestation function by interrupting the
attestation function and moving around the device.

TYTAN is a security platform for inexpensive embedded devices under real-time
constraints [49]. It implements hardware-based code separation and communication
between protected modules. It uses the FreeRTOS real-time operating system to
ensure proper real-time scheduling. Furthermore, secure boot ensures the integrity
of the code and data while loading. In contrast to the similar TrustLite [159]
it allows dynamic reconfiguration of tasks and gives real-time guarantees. PAtt
is an attestation scheme specifically designed to attest industrial control systems,
considering the specific requirements of such devices. It does not require any custom
hardware extensions or modifications and is designed to work on embedded devices
that run fast control loops [121].

APEX is a hybrid remote attestation for embedded devices that allows proof
of execution [203]. That is, APEX can guarantee that a specific functionality has
been executed. It builds upon the VRASED architecture, which ensures static
integrity [201], and the APEX attestation scheme [203], which also guarantees proof
of execution. However, both VRASED and APEX are not suited for devices with
real-time constraints [201, 203]. In contrast, the ASAP hybrid attestation scheme
allows proof of execution of embedded real-time devices [58].

Real-time tasks are also problematic in hardware-based attestation schemes using
a Trusted Execution Environment (TEE) such as TrustZone [24]. Switching into
the secure environment, such as the secure world in TrustZone causes overhead and
interrupts other processes [3]. One solution to implement secure hardware-based
attestation is to integrate the attestation into the device’s schedule. To prevent
attackers from manipulating this schedule, moving the scheduling into a secure
environment is also necessary. RT-TEE proposes a framework to run the scheduler of
a real-time system inside a TrustZone TEE [282]. This approach has the advantage
that attackers cannot maliciously manipulate the schedule.

Another solution is to implement the attestation functionality in hardware com-
pletely. This way, the normal execution is not impaired. Furthermore, changes to the
attested software, such as instrumentation, are not required. However, this approach
requires custom hardware. For instance, LO-FAT implements control flow attestation
by extending the processor with a module that monitors the processor pipeline and
monitors branches within the execution [85]. LiteHAX extends this approach. [84].
It can detect control flow as well as data flow attacks by monitoring both branch
events and load/store instructions. In both approaches, attestation reports consist
of a hash of the monitored execution. This hash is calculated in a hardware hashing
module so that the normal operation of the attested device is not impaired.

64

3.9 Summary and Conclusions

3.9 Summary and Conclusions
In this chapter, we presented RealSWATT, a purely software-based remote at-
testation framework that allows to attest even systems with real-time constraints.
RealSWATT is designed to work on legacy devices in real-world IoT scenarios.
We achieve this by introducing continuous attestation, which constantly performs
attestation in the background without interfering with the normal operation of the
system by using a dedicated processor core. In the evaluation, we showed that Re-
alSWATT attestation actually has predictable and constant runtime, a mandatory
requirement for software-based attestation. We implemented RealSWATT into a
syringe pump, a critical medical device with real-time requirements. In an end-to-end
experiment, we successfully detected a compromise of the syringe pump via an
insecure configuration interface. To show practicability, we integrated RealSWATT
into ESPEasy, an open-source framework to use on commercial off-the-shelf IoT
devices.

65

CHAPTER 4

User-Understandable Remote Attestation

Up to now, we focused on embedded devices with real-time constraints in corporate
environments. But also in private households, there are many existing legacy devices.
Therefore, in this chapter, we specifically target consumer IoT devices in home
networks. The Internet of Things (IoT) enhances previously unconnected devices
with Internet access. Popular examples are smart lamps, household appliances,
security cameras, smart TVs, and smart speakers. Nowadays, IoT devices are
ubiquitous: in 2019 the number of connected IoT devices already reached 35.7
billion [226]. IoT devices often perform important security-critical tasks, for example
in a smart door lock, or operate in privacy-sensitive areas, such as a security camera
or as a smart speaker [253].

Those IoT devices are worthwhile targets as typical IoT devices are black box sys-
tems to the user with a limited understanding of threats to security and privacy [299].
Especially from the perspective of end users, IoT devices behave like a black box: As
long as they work as intended, users will not suspect or even detect any compromise.
Typically, a user does not have any direct control over the software running on the
IoT device, but solely configures and maintains IoT devices using a web interface
or a companion app [12]. Hence, it is very likely that the user misses that illegal
recordings and transmissions occur if a security camera or a smart speaker is hacked.
Malware can be deployed before the device was purchased by the user or afterwards
through backdoors and vulnerabilities. A compromise with malware will most likely
not be detected if the functionality does not fail [11]. For instance, 48% of companies
reported they are unable to detect whether an IoT device on their network suffers
from a breach or is part of a botnet [119].

Remote attestation is a popular method to verify the integrity of a remote and
untrusted device. Many attestation methods have been proposed for embedded
and IoT devices [18, 54, 73, 87, 163, 164]. As discussed, the main challenge of
remote attestation is to obtain trustworthy measurements from an untrusted device.
However, many IoT devices neither feature trusted computing components for required
for hardware-based attestation nor the necessary hardware extensions for hybrid
attestation. Replacing or extending these legacy IoT devices to enable hardware-

67

Chapter 4 User-Understandable Remote Attestation

based or hybrid attestation protocols is often not an option in practice; especially
considering that the computing hardware is deeply integrated into the respective IoT
device. Consequently, software-based attestation is often the only viable approach.

For hardware-based and hybrid attestation schemes, the attested devices feature
secret keys to authenticate themselves. However, as there is no secure key storage in
software-based attestation, there is no root of trust that allows authentication of the
attested device. In fact, any information on the attested device is accessible to the
attacker. Hence, an attacker can relay attestation requests to a different or even a
simulated device without being noticed by a remote verifier. Such so-called offloading
attacks, that is, forged attestation reports from other devices, are an inherent and
one of the most significant problems in software-based attestation due to the lack of
a secure root of trust.

To address this lack of device identification due to the missing root of trust, we
proposed for the RealSWATT attestation framework in Chapter 3 to use an IoT
gateway to limit the communication with other, unattested devices and detect
so-called offloading attacks. While this approach is adequate for usage in industry and
other centrally managed environments like hospitals and companies, this is infeasible
for private and home setups. In these environments, there are often many devices,
of which many are vulnerable [12]. Assuming that users have a secure IoT home
setup and are continuously monitoring all Internet traffic is unrealistic for home users.

Contributions. In this chapter, we propose SCAtt-man, the first remote attestation
scheme specifically designed to allow user-observable attestation, thereby solving the
problem of missing device authentication in software-based attestation. For the first
time, we exploit side-channel information such as light or sound that are observable
by the user to evaluate the attestation result allowing the user to identify the device
that is being attested and detect offloading attacks.

Although it has been popular to use side-channels such as sound [305], ambient
sound [129, 179, 236], or acceleration [134, 289] for context-based authentication,
that is, key exchange or device pairing, we are not aware of any remote attestation
scheme that leverages such side-channels. We give an overview of context-based
authentication schemes in Section 4.8. Using such aforementioned communication
side-channels for attestation is not straightforward, as implementing a secure software-
based attestation scheme involves tackling manifold challenges, as we elaborated in
Chapter 2.

The usage of side-channels allows secure deployment of software-based attestation
on legacy IoT systems without unrealistic hardware requirements and changes. In
fact, we demonstrate that users can use their smartphones together with built-in
sensors and actuators to attest the IoT device.

68

Attestation via side-channels has the following advantages:

1. Communication is user-observable.

2. Communication is limited to short distances, limiting a remote attacker.

3. The Internet connectivity of the attested device can be interrupted to prevent
offloading attacks.

4. The transmission time can be predicted precisely, which is a crucial requirement
for software-based attestation.

The missing device authentication in software-based attestation is being replaced
by the user, who can manually identify the device that is currently being attested.
This approach offers users an intuitive way to identify IoT devices and the devices’
integrity. It makes SCAtt-man the first framework for user-friendly software-based
attestation. SCAtt-man does not require complex profiling or measurements during
installation. If the users’ smartphone already knows the correct configuration of the
attested device, for example because it was used to initially configure the device, the
smartphone can confirm the correctness of the attested device’s configuration, the
integrity of the device’s software, and detect unwanted modifications or malware.
In practice, this attestation functionality can also be integrated into the vendor’s
companion app that is often used to configure or use the IoT device [12].

In summary, we provide the following contributions:

• We propose SCAtt-man, a new attestation scheme that leverages side-channels
for software-based attestation that the user can observe, thereby efficiently
solving the root of trust problem in software-based attestation.

• SCAtt-man works on legacy hardware avoiding the need for additional hard-
ware modules or actuators. Instead, it uses built-in hardware features, such
as the built-in microphone and speaker of a smart speaker and a standard
smartphone as a verifier.

• We implemented SCAtt-man in a smart speaker based on the popular ESP32
microcontroller and implemented a verifier as an Android app.

• We implement an audio communication protocol which is used for the attesta-
tion. In a measurement study, we show the reliability of the communication
using this protocol. Furthermore, we profile the runtime of the attestation
function, crucial to software-based attestation.

69

Chapter 4 User-Understandable Remote Attestation

• In the evaluation, we show, based on a full end-to-end example, how SCAtt-
man detects a real-world attack on a smart speaker via an insecure configuration
interface (Section 4.6.4). In extensive experiments, we verified that SCAtt-man
ran without any false positives and negatives, allowing a reliable attestation.

• We performed a user study to evaluate the usability and user experience of
SCAtt-man (Section 4.6.5). Our user study not only showed that SCAtt-man
provides good usability, but participants also stated that they actually believe
that attestation can detect a device’s compromise and that they would use this
functionality if their own devices featured such an attestation functionality.

4.1 Background: Smart Speakers

In this section, we explain the foundations and concepts required to understand
SCAtt-man.

Smart speakers are IoT devices that take natural spoken language as input and
react appropriately by responding using synthesized voices or performing tasks. These
tasks range from the supply of information such as the current time or weather,
telling jokes, playing music, over the setting of timers and creation of lists, up to
sending messages and controlling other connected IoT devices such as lights or
smart locks [138]. Smart speakers are very popular; In 2020, more than 150 million
units have been sold worldwide [51]. Studies have shown that users are especially
concerned about the security of smart speakers. Although users often do not see
threats in devices that do not record audio or video, such as smart plugs or light
bulbs, they are aware of the privacy risks of smart speakers and IP cameras [299,
306]. Smart speakers feature microphones, audio-processing hardware, and speakers
and constantly listen for a so-called ‘wake word’ [288]. This wake word starts the
interaction with the smart speaker: the device then records the user’s voice and
sends it to a cloud service for further processing [89].

Smart speakers suffer from a large attack surface as they incorporate a complex
architecture [89]. That is, they combine an IoT device with a combination of local and
cloud features, including natural language processing techniques. The functionality
of smart speakers can often be enhanced with third-party extensions developed
by external vendors. For example, there are more than 18,000 English extensions
available for Google Assistant [158]. For Amazon’s Alexa speech assistant, more than
80,000 so-called skills are available in the US [157]. Malicious extensions can illegally
access sensitive user data [67, 131, 264, 304], eavesdrop on private conversations [131],
or even take over the smart speaker and connected smart home devices, including a
door lock and the home security system [186].

70

4.2 Challenges

4.2 Challenges

Remote attestation allows the detection of attacks on remote systems, such as
malware and other software attacks, even on compromised devices. Therefore,
attestation is capable of enhancing trust in connected systems. However, obtaining
reliable self-measurements on untrusted and potentially compromised devices involves
tackling several challenges. It is especially challenging to secure devices that lack
hardware security modules like trusted computing components, for example, a trusted
platform module (TPM) or a trusted execution environment (TEE). However, such
components are often unavailable on IoT devices due to cost reasons. Enhancing
legacy devices with trusted computing techniques is not an option due to the nature
of embedded and IoT devices. The hardware is specially adapted to its needs and
deeply integrated into the device so that the hardware cannot be replaced. This is
a general challenge for embedded devices, but is especially true for consumer IoT
devices, where a hardware replacement would rather involve a complete replacement
of the device. Hence, software-based attestation is the only possibility to allow remote
attestation of legacy IoT devices.

IoT devices are often integrated into complex ecosystems, where multiple devices
are working together, communicating over the Internet, and relying on the vendor’s
cloud services. This poses challenges towards timing measurements and reliably
identifying devices in software-based attestation, that is, precise timing measure-
ments require uninterrupted and direct communication. An unexpected distortion
in communication, for example, an unexpectedly long delay will make the attes-
tation fail [241]. Often, software-based remote attestation even requires one-hop
communication [255]. The lack of reliable device authentication allows attackers to
shift attestation tasks to other devices or emulate devices without being detected.
To solve this problem, communication with other devices has to be restricted. For
example, to allow software-based attestation for IoT devices, the usage of a dedicated
IoT gateway has been proposed to prevent the attested device to communicate
with other, unattested devices, as laid out in Chapter 3. This approach relies on
successfully detecting all offloading attacks, in which the attested device relays at-
testation requests to an external party over the Internet, and on all devices in the
local network being benign to prevent collusion attacks. While this is a solution for
managed environments such as companies, this is not a practical solution for home
deployments. In home environments, many devices are not centrally managed. This
includes both IoT devices which are often vulnerable [12], as well as more powerful
devices like PCs and smartphones.

Besides these technical challenges, for actual, practical usage by end users also other
aspects come into place. For many users, IoT devices are black box systems. The
computer systems are deeply integrated into these IoT devices, users are supposed
to use these devices as-is, not modifying or changing the software of these devices.

71

Chapter 4 User-Understandable Remote Attestation

While this circumstance eases the usage of such devices, this also limits the user’s
understanding of the actual functionality of such devices. Designing systems so
that the user can actually verify a device’s integrity, and hence put trust into this
particular device, is a difficult task combining technical soundness and usability.

Based on the general challenges for secure remote attestation that we described in
Chapter 2.5, we derive the requirements for the software-based attestation of IoT
devices, considering the specific circumstances in home environments. Implementing
such a secure attestation scheme for IoT devices poses the following challenges to
the design and implementation:

Challenge 1: Secure Self-Measurement. Secure software-based attestation requires
careful implementation. The security of software-based attestation relies on its
deterministic minimal runtime. As discussed in Section 2.7.2, an attacker may not
be able to speed up the execution. If an attacker can find a faster implementation
of the attestation function, the saved time can be used to compromise the attested
device or alter attestation reports.

Challenge 2: Authenticity and Offloading Attacks. In software-based attestation,
attested devices do not feature a hardware root of trust, but the security solely
relies on timing properties. Hence, the verifier cannot securely authenticate the
attested device and detect if an attested device is replaced by a different device or a
simulation, or if an attestation request is relayed to another instance.

Challenge 3: Precise Response Times. IoT devices often use indirect communica-
tion through cloud services. They do not operate on their own but are integrated
into ecosystems consisting of multiple different devices and are closely operating
with their vendor’s cloud services. Indirect communication is susceptible to relay
attacks and increases round trip times and makes response times more fluctuating,
complicating software-based attestation. Recall that precise prediction of response
times is crucial for software-based attestation, as discussed in Section 2.7.2.

Challenge 4: Usability. For the user, IoT systems behave like a black box. Crypto-
graphic functions, Internet communication, and attestation protocols, in particular,
are abstract and unintuitive concepts. Therefore, developing user-understandable
attestation protocols that users intuitively understand is crucial to gain the user’s
trust in IoT devices, especially in critical security and privacy domains.

72

4.3 Assumptions and Threat Model

Internet

Wi-Fi

Attested device

Attestation

Request

Response

observes

Context, e.g., Room

AttackerVerifier, e.g.

Smartphone

User

Figure 4.1: Threat model of SCAtt-man. The attested device and the user’s smart-
phone are in the same context, in this case in one room. The attacker is
outside the room and has no access to the context.

Challenge 5: Legacy Devices. There are billions of legacy IoT devices that do not
feature trusted computing components. Security solutions for these systems must
not require additional hardware extensions, extra sensors, or new communication
technologies.

SCAtt-man addresses these challenges by developing a user-observable communi-
cation channel to perform software-based attestation. As we will show, this effectively
solves the root of trust problem in software-based remote attestation and results in a
user-comprehensible attestation process.

4.3 Assumptions and Threat Model
Figure 4.1 shows the general threat model of SCAtt-man. The verifier and the
attested device share the same context, for example, because they are in the same
room. The user can observe both devices. We assume a remote attacker outside of
the context, typically connected via the Internet. This is a standard scenario for
consumer IoT devices such as smart speakers or IP cameras.

4.3.1 Assumptions

We consider an untrusted IoT device that features a suitable sensor and actuator to be
used as a side-channel for communication. The following relates to the implementation

73

Chapter 4 User-Understandable Remote Attestation

of SCAtt-man on a smart speaker. In this case, we leverage a microphone and a
speaker, as they are always available in smart speakers. Note that other combinations
are also possible, for example, a light sensor or camera and a lamp or display [234].
Furthermore, we assume that the user is close to the IoT device and within reach of
this side-channel. The user has a trusted device for verification with suitable sensors
and actuators. In our implementation, we use a standard a smartphone with built-in
speaker and microphone.

We furthermore assume that there are no ambient disturbances. In particular, we
assume that the attacker is not in range of the sensors, that is, we consider a remote
attacker. Finally, we assume that the Internet connectivity of the attested device
can be interrupted, for example, by using a switch. Alternatively, we also propose
a solution to limit the Internet connectivity of the attested device using the user’s
smartphone. To do so, both the smartphone and the IoT device feature a Wi-Fi
interface.

4.3.2 Threat Model
The threat model is depicted in Figure 4.1. We assume that a remote attacker can
remotely compromise the smart speaker and for example, alter the configuration
or install malware. This can be achieved by the exploitation of typical software
vulnerabilities, such as memory errors [12], or insecure or insufficiently protected
interfaces, a common problem in IoT devices [208]. Similar to all existing software-
based attestation proposals, we do not consider physical attacks [241, 254]. This
means the attacker cannot alter the hardware of the attested device, and for instance,
replace or modify it. Furthermore, the attacker is not in range of the sensors used
for the communication side-channel, that is, in the hearing range. We assume the
user’s smartphone to be trusted. This is a typical scenario for IoT devices, where the
attacker is located outside the home and hence has no direct access to the device.

4.4 Concept of SCAtt-man
The goal of SCAtt-man is to make communication observable by the user,
allowing the user to oversee the attestation process and identify the device
being attested, thereby solving the inherent problem of missing authentication in
software-based remote attestation. We achieve this goal by using a side-channel
for the communication between the verifier and the prover. While in traditional
attestation schemes communication is assumed to take place via wires or wireless,
such as Ethernet or Wi-Fi, we explicitly opt for alternative means of communication.
The limited reach of such transmissions reduces possible attacks. Furthermore, in
contrast to radio communication, attacks will be noticed by the user.

74

4.4 Concept of SCAtt-man

Internet

Wi-Fi

Smart speaker

observes

Context, e.g., Room

Attacker

IoT devices

Backend server

Smartphone

User

Attestation

via sound

Figure 4.2: Concept of SCAtt-man attestation: The user can observe the communi-
cation between the prover and the verifier.

A suitable communication channel fulfills two properties:

1. It is user-observable and

2. It can be sent and received with built-in sensors in both the attested device
and the device used for verification, such as a standard smartphone.

For example, well-suited communication channels are sound and light. A standard
smartphone features a microphone and speaker, as well as a camera and a display or
a LED (Light-emitting diode) used as a flash.

In this section, we explain how we addressed the challenges described in Section 4.2
and developed a proof-of-concept of SCAtt-man into a smart speaker. Figure 4.2
illustrates the concept of a smart speaker enhanced with SCAtt-man attestation. As
explained in Section 4.1, smart speakers are a good example to show the applicability
of SCAtt-man attestation. First, smart speakers are a typical and popular type
of IoT device. Second, users are particularly concerned about the security of those
devices [299, 306]. This is an important aspect, as the user needs to initiate the
SCAtt-man attestation manually.

The communication between the prover, that is the the attested device, such as
a smart speaker, and the verifier, in this case the user’s smartphone, is performed
via audible sound. This makes the attestation process user-observable. The commu-
nication consists of digital data encoded into sounds. The user doesn’t need to be
able to decode the data, it is sufficient that the user is able to identify the devices
that are communicating. This way, offloading attacks, that is, when another device

75

Chapter 4 User-Understandable Remote Attestation

responds to the attestation request, are effectively prevented. Furthermore, a remote
attacker is not able to influence this local communication.

Due to this communication channel, the attestation cannot be run in the back-
ground but requires interaction with the user. Therefore, users manually run the
attestation process. To do so, we provide a smartphone app that guides users through
the attestation process. The app explains the necessary steps, runs the attestation,
and shows the result. We explain the functionality of the app in Section 4.5.2 and
show details of the attestation process in Section 4.5.5.

Although using side-channels for attestation seems like a straightforward concept,
the development of a secure software-based attestation scheme using side-channels
needs tackling specific challenges such as developing a suitable communication
protocol and coping with the manifold attacks on software-based attestation. In the
following, we explain how we developed a reliable audio transmission protocol, a
secure attestation function, and restrict Internet access for the attested device to
prevent offloading attacks.

4.4.1 Audio Protocol
Data-over-sound describes the concept of sending digital data via sound waves.
Sending data over sound is a well-established concept. For example, it was used in
acoustic coupling to connect computers via the telephone network [287]. To send
data over sound, the sending device encodes the data into sound patterns. These are
then sent by a speaker and received by a microphone [195].

For SCAtt-man, we need a transmission protocol that is user-observable meaning
that it works within frequencies of standard microphones and speakers of smartphones
and smart speakers and is within the human hearing range. A strict requirement for
software-based attestation are predictable execution and transmission times. Hence,
the protocol should feature a fixed message length and do not have error-correction
codes such as parity bits. Otherwise, an attacker could exploit this circumstance to
gain a timing advantage by starting the attestation process before the transmission has
been completed by using the error correction to complete incomplete transmissions.

So, on the one hand, reliable audio communication between the attested device
and the verifier is crucial for a secure attestation: The user cannot determine whether
a communication error or a compromised device causes a failed attestation run. On
the other hand, the audio protocol may not allow speedup by omitting parts of the
transmission such as checksums or parity bits to allow an attacker to accelerate the
communication. As the security of software-based attestation relies on a predictable
execution time, this restricts the usage of error corrections. For example, the original
SoniTalk protocol [300] repeats after each transmission the inverse data. As this
redundant information is not strictly necessary in most cases, an attacker could
already start the attestation run before the audio transmission is complete, leaving

76

4.4 Concept of SCAtt-man

a gap in which the smart speaker could be compromised. Therefore, we removed
this feature to ensure that the audio communication cannot be accelerated, Data-
over-sound protocols have many parameters, for example, frequencies, encoding of
bits, and duration of the transmission. We perform a detailed explanation of the
implementation of the data-over-sound protocol in Section 4.5.3. In Section 4.6 we
extensively tested and optimized the data-over-sound communication by fine-tuning
these transmission parameters to ensure a reliable attestation.

4.4.2 Attestation Function
The main component of any attestation scheme is the attestation function. The
attestation function takes the self-measurement of the attested device which is then
transmitted to the verifier. However, as elaborated in Section 4.2, performing a
trustworthy self-measurement on an untrusted device without specialized hardware
is a challenging task.

SCAtt-man attests the integrity of software and configuration of the attested
device. However, we restrain SCAtt-man to static attestation due to the infrequent
attestation runs: The user must manually initiate every attestation run. Furthermore,
the attestation cannot be performed in the background as it plays audio and fully
utilizes computing resources of the attested device, forcing one to pause the usage of
the speech assistant while the attestation is executed. More sophisticated attestation
schemes like runtime such as control flow attestation [3] and data flow attestation [4,
84] need to be run in the background during normal operation of the attested device,
and rely on frequent communication with the verifier during attestation. Running
attestation without sending the results to the verifier does not give any security
benefit as a compromise will not be detected.

There are several aspects to be considered when designing an attestation function:

Optimal Implementation. The security of software-based attestation solely relies
upon the computational capabilities of the attested device and timing threshold, that
is, measurements of the execution time of the attestation function. This induces that
an attacker cannot significantly accelerate the execution speed of the attestation
function. We solve this problem by using built-in hardware modules to run the
attestation function. The hardware-accelerated execution of the attestation function
is faster than any software-based implementation on the same device. In case no
hardware-based acceleration is available, we use standard and widely-used hashing
functions. To prevent acceleration using parallelization, we chose a hashing function
that use the Merkle–Damgård scheme, which does not allow parallelization [182].

Replay Attacks. In replay attacks, the attacker responds to an attestation request
with pre-computed or old attestation reports. SCAtt-man prevents such attacks by

77

Chapter 4 User-Understandable Remote Attestation

including a random nonce into the attestation request. This nonce, chosen by the
verifier and hence out of control of the attacker, ensures freshness of the attestation
reports.

Empty Memory. An attacker can use any memory not covered by the attesta-
tion. Therefore, it must be ensured that the attestation function actually covers
all executable memory and that the attacker cannot compress any memory to ob-
tain unattested memory which can be used to store malicious code. SCAtt-man
addresses this problem by closely monitoring execution times of the attestation
function. Deviations of the runtime of the attestation functions due to the on-the-fly
decompression of data, while the attestation is running in parallel, will be detected.

Runtime. Determining the correct runtime of the attestation function is crucial for
the security of software-based attestation. Therefore, we designed the SCAtt-man
attestation function such that its runtime can be configured by increasing the
number of iterations. This feature can be used to obtain a runtime that can be
clearly distinguished from compromised ones within the attestation process. In
Section 4.6.1, we investigate in detail the runtime of the attestation function to
determine strict thresholds and distinguish between correct and compromised runs
of the attestation function.

The attestation function of SCAtt-man uses a hash function to obtain a mea-
surement of all software and configuration data on the attested device. For example,
a device can have multiple partitions where executable code and data are stored.
We hash all of these memory areas. More information about implementing the
attestation function can be found in Section 4.5.2.

4.4.3 Limitation of the Internet Access

Preventing offloading to an external party is crucial for secure software-based at-
testation. Offloading means relaying the attestation request sent by the verifier to
another device. Because there is no physical security in software-based attestation,
there is no way to authenticate the device being attested besides using response
times. Furthermore, the runtime of the SCAtt-man attestation function on the
attested device is longer than transmission to an external party, like a cloud service
or another IoT device takes. Thus, external transmission must be prevented. There
are two possibilities to achieve this. First, use a hardware-based method that disables
communication like a hardware kill switch. In case of a wired connection, it would
also be sufficient to unplug the network connection. Alternatively, we propose a
software-based solution to limit the Internet connection via Wi-Fi of the attested

78

4.4 Concept of SCAtt-man

Internet

Smart speakerSmartphone

Access point
Wi-Fi Wi-Fi

Figure 4.3: Limiting Internet access in SCAtt-man attestation: The attested device
and the verifier initiate a direct Wi-Fi connection, so that the attested
device cannot connect to any other network, thereby preventing an
Internet connection.

device. This is particularly suitable for legacy devices that do not feature alternative
methods to deactivate the Wi-Fi connection.

Hardware Kill Switch. Integrating a hardware kill switch to deactivate network
functionality is an elegant solution as it is a simple, user-understandable concept.
Furthermore, the usage of such a button is not limited to SCAtt-man attestation.
For instance, there are smartphones for privacy-aware users that feature a hardware
kill switch to deactivate Wi-Fi and radio communication [80, 216, 220]. Keep in
mind that research found that even encrypted traffic of IoT devices can be used to
monitor actions [6]. As discussed earlier, users are privacy-sensitive about devices
that process speech and pictures, therefore such a button would be beneficial to give
users control over the device. Many smart speakers already feature a button to mute
the microphone [170].

Software-Based Locking. Alternatively, for the case that there is no possibility to
physically prevent an Internet connectivity of the attested device, we also provide a
software-based solution. It does not have any hardware requirements, but works
solely in software. We achieve this by configuring the attested device as a Wi-Fi
access point. The smartphone then connects to this access point and continuously
checks the availability of the attested device to ensure that the attested device
cannot connect to a third party. This prevents the attested device from connecting
to the original Wi-Fi network, and thereby the access to the Internet. Figure 4.3
shows this case. However, some Wi-Fi chips can keep connections to multiple
simultaneous connections. For example, the ESP32 supports a combined ‘station
and access point’ mode, which allows the ESP32 to open a Wi-Fi access point while
being connected to another Wi-Fi network [105, 197]. However, this is limited to
the same channel as the radio can only listen to a single channel. Consequently, if
the verifier maintains a continuous connection to the attested device on a channel

79

Chapter 4 User-Understandable Remote Attestation

different from the regular Wi-Fi connection. Hence, the attested device cannot
connect to any other Wi-Fi network to obtain a connection to the Internet. Thus,
Internet access of the attested device is effectively prohibited.

Summing up, the nonces that initiate the attestation as well as the attestation
reports are transmitted via audio between the attested device and the verifier. During
attestation, the attested device is disconnected from the Internet to prevent offloading
attacks by prohibiting communication with the attacker. The attestation function is
designed such that the execution cannot be accelerated without altering the hardware.
In Section 4.5 we show how we combined these techniques into a secure attestation
scheme and implemented them into a smart speaker.

4.4.4 Attestation without Human Interaction
SCAtt-man was primarily designed to address attestation in IoT home installations
allowing end users to verify the integrity and trustworthiness of their devices. By
design, SCAtt-man requires the user to start and observe the attestation process.
But SCAtt-man attestation can also be adapted to work without human interaction.

To do so, two things have to be considered. First, the manual steps need to
be automatized, and second the verifier app that currently runs on the user’s
smartphone needs to be replaced. For example, the button to trigger the attestation
could be replaced by a timer automatically starting the attestation. Furthermore,
the attestation could be performed either by a dedicated trusted attestation device
or another nearby smart speaker. This way, these devices could implement a mutual
attestation protocol using our proposed sound side-channel.

4.5 Implementation
In this section, we describe the implementation of the key components of SCAtt-
man. Figure 4.4 gives an overview of our implementation. While SCAtt-man is also
suitable for legacy devices, as it does not require special hardware, the implementation
on state-of-the-art smart speakers such as Amazon Echo is not easily feasible. The
hardware of these devices is locked down, hindering the replacement of the software.
Furthermore, the software of these devices is closed-source, so that modifications are
not easily possible. Therefore, we developed a custom smart speaker enhanced with
SCAtt-man attestation, basing on publicly available web services and hardware
that is commonly used in IoT devices. The implemented attestation scheme allows
to verify both the program code as well as configuration data. For the verifier,
we built an Android application that implements the verifier logic and guides the
user through the attestation process. In the following, we explain the attestation
functionality and the data-over-sound protocol in detail. Furthermore, we show how

80

4.5 Implementation

Internet

Smart speaker:

M5Stack ATOM Echo

Context, e.g., room

Android smartphone

with attestation app

Data-over-sound:

SoniTalk

Watson TTS

web service

Baidu STT

web service

Access point

Figure 4.4: Implementation of a smart speaker with SCAtt-man attestation.

the user experiences the attestation process. In Section 4.6, we verify the attestation
functionality and show SCAtt-man can detect compromises. Furthermore, we
evaluate the reliability of the data-over-sound transmissions.

4.5.1 Smart Speaker
To implement the smart speaker, we used an M5Stack ATOM Echo module1 shown
in Figure 4.5, that combines the popular ESP32 microcontroller with an integrated
microphone, a speaker, and a configurable RGB status LED as well as a button.
The ESP32 microcontroller is deployed in various IoT devices [96], it features a
dual-core processor, and a Wi-Fi module [103]. On this platform, using the popular
FreeRTOS [116], we integrated basic smart speaker functionality, that is, recording
voice commands, sending them to a cloud service, as well as receiving and playing
back the response via the integrated speaker. Note that the usage of FreeRTOS or
other operating systems is not mandatory to integrate SCAtt-man, as SCAtt-man
does not require complex process structures or scheduling. When the button is
pressed, the smart speaker records the voice command and directly streams the
voice command via an HTTP connection to a speech-to-text (STT) cloud service2.
This service determines the spoken text from the recorded sound and sends it back
to the smart speaker. The smart speaker then processes the command. Using the
text-to-speech (TTS) functionality of the IBM Watson REST (Representational

1https://docs.m5stack.com/en/atom/atomecho
2https://fanyi-api.baidu.com/

81

https://docs.m5stack.com/en/atom/atomecho
https://fanyi-api.baidu.com/

Chapter 4 User-Understandable Remote Attestation

Figure 4.5: The M5Stack ATOM Echo.

state transfer) API3, the voice assistant can convert any text to spoken word. The
speech assistant sends a string and receives wave audio, which is played back later.
This is a similar operating mode as for standard commercial voice assistants. More
information on smart speakers in general can be found in Section 4.1. The current
status of the smart speaker is indicated by the color of the status LED, allowing the
user to always check the current execution mode of the smart speaker, for example,
recording, speaking, or the current step within the attestation process.

4.5.2 Attestation Process

With a long button press, the smart speaker switches to attestation mode, which
is confirmed by a red LED light. In attestation mode, the ESP32 microcontroller
switches from Wi-Fi station mode to Wi-Fi access point mode. The verifier application
then connects to the access point of the ESP32. However, the connection of the
smartphone on a different radio channel, other than the home Wi-Fi network, disables
the ESP32’s capability to maintain an Internet connection during attestation. Once
the smartphone connects to the access point, a sound listener is started, which
receives the nonce from the smartphone. The received nonce is then passed to the
attestation process, which computes the attestation report. The attestation report is
then transmitted back to the smartphone. Lastly, the ESP32 switches back to the
Wi-Fi station mode and connects to the Internet to resume normal operation.

For the attestation process, we suspend all tasks not related to the attestation using
the FreeRTOS API (vTaskSuspend) [115]. Thus, we ensure that all resources are

3https://www.ibm.com/cloud/watson-speech-to-text

82

https://www.ibm.com/cloud/watson-speech-to-text

4.5 Implementation

available for the attestation. Furthermore, we use a hardware-accelerated SHA-256
for hashing. SHA-256 is a Merkle–Damgård [182] construction [214], that follows a
strictly sequential process: Each hash block is used as input for the subsequent block.
Therefore, the hashing process cannot be parallelized. Our attestation includes all
code and data sections of the ESP32. This is because the ESP32 organizes its code
and data sections as partitions, which are all covered by the attestation function.
The received nonce initializes the hashing. Since the RAM of the ESP32 cannot fit
the entire code and data space, we split the code data and partitions into blocks of
256 byte each. Other block sizes are possible but will lead to different attestation
runtimes. The choice of block size has no impact on the integrity of the attestation
itself. We use the hash of each block as input for the next one, thus different block
sizes will yield different hashes. We loop the hashing of the entire memory of the
ESP32 to achieve a suitable attestation runtime. Finally, the resulting hash is
transmitted to the smartphone, and we resume all suspended tasks.

4.5.3 Data-Over-Sound

As already explained in Section 4.4, we use a short-range side-channel for the
attestation process. This allows the user in proximity to the IoT device, in our case
the smart speaker, to perform remote attestation without the risk of a remote attacker
hijacking the communication channel. In fact, the attestation can be performed on
an IoT device with network connections completely turned off. For example, such a
short-range side-channel would be sound. In addition, this side-channel is perceptible
by users. Therefore, only devices in short physical proximity (for example, the same
room) can interfere with the communication. In order to transmit data between the
smartphone application and the smart speaker, we implemented a data-over-sound
protocol based on SoniTalk [300, 301]. We introduced the following changes to the
SoniTalk protocol to adapt it to the requirements for software-based attestation. (1)
We introduced a fixed message length, (2) reduced the number of frequencies to
increase reliability, and (3) removed the transmission of inverted message blocks.

We have chosen the fixed message length of 32 bit, as it corresponds to the chosen
length of the transmitted data (that is, nonces and hashes). A single message is split
into eight blocks (m = 8) each with a length of 4 bit (n = 4) each. Those n bits
are encoded by the presence of a corresponding carrier frequency. We reduced the
number of carrier frequencies to four since we implemented the entire attestation
process on a low-end device (M5Stack ATOM Echo) with low quality sensors (speaker
and microphone). A reduced number of carrier frequencies makes the transmission
process more robust. This is crucial for software-based attestation, as the user
cannot distinguish between a failed attestation due to a transmission error and a real
compromise. In order to avoid attestation ahead of time, we completely removed
the inverted message blocks. Hence, an attacker is required to wait until the data

83

Chapter 4 User-Understandable Remote Attestation

transmission is finished. As our evaluation in Section 4.6 shows, our chosen protocol
parameters allow reliable communication such that the redundant information (that
is, inverted message blocks) is not needed. Each message consists of one start block
MS , followed by m message blocks Mm. Through an empirical study as shown in
Section 4.6.2, we set the transmission time of a message block to 240 ms. Thus, the
transmission of a message takes 9 · 240 ms = 2160 ms.

Our protocol’s generic data transmission process is visualized in Figure 4.6. We
use four carrier frequencies. The presence of a carrier frequency indicates a bit value
of 1, and the absence of a frequency indicates a bit value of 0. The message blocks
are transmitted in sequence. The message block is always present for the time span
of d = 240 ms. Figure 4.6 shows also an optional pause p between message blocks,
which has been set to zero in our implementation.

Data-Over-Sound on the Smartphone We have implemented the verifier as a user-
friendly Android application. Since a smartphone has a good quality microphone
and speaker, it is well suited to communicate with the IoT device over the sound
side-channel. Furthermore, it offers a familiar and well-known interface for the user.
The verifier application implements a sending and receiving module according to the
used data-over-sound protocol (see Section 4.5.3). The sending module has two main
components: Encoder and ToneGenerator.

The Encoder is responsible for splitting the message (fixed length of 32 bit) into
message blocks (each 4 bit). The ToneGenerator generates the sounds for each
message block. The sound is generated by resampling the active frequencies. The
resampling is conducted using a high-resolution sinus lookup table. Afterwards, the
active frequencies are stacked by adding the sampled values. In order to avoid clipping
in the audio playback, the stacked tone is normalized to a common gain. Once all
tones are sampled and normalized, the message blocks are played sequentially.

Receiving takes a little more effort, therefore there are more components in the An-
droid application: Recorder, AudioCalculator, FrequencyCalculator, RealDoubleFFT
and Decoder. We based these components on the Android Audio Sample Project4.
The Recorder component records and stores sound. The application needs about
60 ms to record, which yields four samples per interval. On the sending side, each tone
is played for 240 ms. After recording the audio samples, we perform a Fast Fourier
Transform (FFT) with the three components AudioCalculator, FrequencyCalculator
and RealDoubleFFT. The Fast Fourier Transform (FFT) yields the frequencies from
which the sound is composed. After the frequency decomposition, the Decoder can
determine the start block and convert each message block to 4 bit integers. In order
to properly receive messages over sound, the recording of message blocks must be

4https://github.com/lucns/Android-Audio-Sample

84

https://github.com/lucns/Android-Audio-Sample

4.5 Implementation

Time

MS M0 M1 M2 M3

1 1

1

1 1

11

1

1 11

11

0

0

0

0

0

0

0

d p

b0: f0=1010Hz

b1: f1=1210Hz

b2: f2=1410Hz

b3: f3=1610Hz

Δf

F
re

q
u
en

cy
 f

Figure 4.6: Example of a data-over-sound transmission: Transmitting 01011111
11101001 after starting with the Ms signal.

synchronized with the playback of the message. Thus, the application waits until
a specific volume threshold is exceeded and begins recording the message. If the
start block MS is not received, the application waits until the next time the volume
threshold is exceeded.

Data-Over-Sound on the ESP32 In contrast to integrating the data-over-sound
protocol on a smartphone, implementing a resource-constraint device such as the
ESP32 is more challenging. Typical commercial smart speakers like Alexa5, Google
Nest6, or Apple Homepod7 offer more specialized audio hardware and resources.
However, if we implement data-over-sound on the ESP32, which is a generic and
popular IoT device, we show the feasibility of our side-channel attestation scheme
for a broader range of devices. Sending data via the data-over-sound protocol
is straightforward as the ESP32 can encode data on-the-fly. This process can be
implemented similarly to the sending process on the smartphone application. However,
the receiving component on the ESP32 is challenging due to resource constraints,
especially memory constraints on the device. For example, recording and storing
large sound blocks is infeasible. Furthermore, the ESP32 provides only a limited
number of hardware-accelerated Fast Fourier Transform (FFT) functions. We solved
this challenge by analyzing only the subframes (fraction of 32 ms) of each transmitted
tone. We also limited the number of frequencies and separated those frequencies
by at least 100 Hz. Therefore, the FTT can detect the active frequencies in each
tone more easily. Those optimizations to the SoniTalk protocol enable reliable data
transmission over audio on resource-constraint devices such as the ESP32.

5https://www.amazon.com/smart-home-devices/b?node=9818047011
6https://store.google.com/product/nest_audio
7https://www.apple.com/de/homepod-mini/

85

https://www.amazon.com/smart-home-devices/b?node=9818047011
https://store.google.com/product/nest_audio
https://www.apple.com/de/homepod-mini/

Chapter 4 User-Understandable Remote Attestation

success failure

Open app
Connect

smartphone to

access point

Run attestation

Attestation

successful

Start access point

Wi-Fi

disconnection

Timeout

Incorrect hash

1 2 3 4

65

Figure 4.7: The usage of SCAtt-man. The user is guided through the attestation
process. In the end, the smartphone displays whether the attested device
was verified successfully or if the attestation failed.

86

4.5 Implementation

4.5.4 Design of the Attestation App

To assure that the app is usable for most users, the implementation process followed
the guidelines from existing literature [48, 196, 217]. To use the screen space efficiently,
the user is guided through the attestation process in several steps. Each step describes
a single task in large font size with an additional picture or icon to aid the user’s
understanding and lower the threshold to use the app. To navigate to the next step,
a button is provided at the bottom of each instruction labeled with the purpose of
the next step. The color design supports the attestation process by changing the
background color during the steps. The instructions are presented on a neutral light
blue background while the results are shown on backgrounds with signal colors green
for a successful attestation and red indicating a compromised device. For color-blind
persons, the final result is accompanied by the icon of a lock signaling the integrity
of the system or a broken lock indicating a tampered system or a failed run.

4.5.5 Usage Process of SCAtt-man Attestation

The usage process is depicted in Figure 4.7 with screenshots. Furthermore, we provide
a video showing the full functionality8. The SCAtt-man attestation app guides the
attestation process. To start the attestation, the user opens the attestation app.

1. The app shows a welcome screen explaining the functionality. The user presses
‘Setup attestation’ to start the attestation.

2. The app asks the user to press the button on the smart speaker for 3 s. The
status LED on the smart speaker changes to red to indicate the start of the
attestation process. Now, the attested device starts an access point.

3. The app asks the user to connect the smartphone with the newly started Wi-Fi
access point of the smart speaker. As soon as the smartphone is connected,
the status LED of the smart speaker switches to green. In the background, the
attestation app now checks the continuous connectivity with the smart speaker.

4. With a click on ‘Start attestation’ the user starts the attestation process. The
smartphone sends the nonce via sound to the attested device. The attested
device receives this nonce and then runs the attestation function. As soon
as the attestation function is completed, the result is sent via sound to the
smartphone. The smartphone app receives this response and then compares
this attestation response with the benign state. Furthermore, the app checks
the time until the result is received.

8https://youtu.be/HEbm7crMCU8

87

https://youtu.be/HEbm7crMCU8

Chapter 4 User-Understandable Remote Attestation

5. If the response contains the correct measurements and arrived within the time
threshold ts, then the green screen with a closed lock is shown, signaling a
successful attestation.

6. If the response took longer than a threshold value ts, the app shows an error
message on a red screen with a broken lock. This indicates a failed attestation.
An error message is also shown if the result of the attestation function does
not match the expected value or if the Wi-Fi connection to the smart speaker
was interrupted.

If the attestation fails, the user can restart the attestation function. Attestation
failure may be caused by transmission error, loss of Wi-Fi-connection, or actual
compromise. The error message explains the potential reason for the failure. Further-
more, since the user perceives the communication, the user can detect distortions,
such as loud noises, and restart the attestation process. In case of transmission errors
or connection problems, users just need to repeat the attestation process. However,
in our experiments, transmission errors and connection problems rarely occurred,
as shown in Sections 4.6.2 and 4.6.4. Repeated failures indicate a real compromise.
The app should then guide the user through a restoration process, for example, by
resetting the device to resolve a compromise.

4.5.6 Integration Guidelines

The integration of SCAtt-man is straightforward. The most important task is
to select a suitable side-channel for the communication and use this channel to
implement a data transmission protocol. This side-channel can be sound, as used in
our implementation, but for instance, also light. Smartphones typically feature a
camera and a LED as a flash to brighten up photos which can be used to implement
the communication with a smart light bulb that features a brightness sensor. Similar
to Section 4.6.2, optimizing this new transmission protocol to achieve high reliability
is necessary. The attestation function in SCAtt-man is similar to RealSWATT.
Likewise, it is possible to configure its runtime to dominate the transmission time of
the attestation request and response as demonstrated in Section 4.6.1.

We opt for the real-time operating system (RTOS) FreeRTOS for the implementa-
tion. This system allows management of the different tasks on the attested device,
including all attestation and data transmission tasks. It is also possible to Integrate
SCAtt-man on devices that do not feature an operating system, so-called bare metal
systems. However, because one cannot rely on the abstraction and functionality
given by a real-time operating system, the integration will need to be significantly
more rigorous.

88

4.6 Evaluation

Table 4.1: Runtime of attestation function depending on the number of repetitions.
All measurements are taken in ms.

Rep. Min./Max. Median Average Var. SD
1 812.4/812.9 812.433 812.453 0.006 0.080
2 1624.8/1624.9 1624.927 1624.898 0.003 0.051
3 2437.2/2437.4 2437.372 2437.347 0.005 0.070
4 3249.6/3249.9 3249.769 3249.800 0.016 0.126
5 4062.0/4062.4 4062.152 4062.247 0.023 0.153
6 4874.4/4874.0 4874.559 4874.737 0.058 0.241
7 5686.9/5687.6 5686.980 5687.108 0.045 0.212
8 6499.2/6499.8 6499.398 6499.569 0.066 0.256
9 7311.7/7312.4 7311.824 7312.061 0.113 0.336
10 8124.0/8124.7 8124.249 8124.401 0.074 0.272

In the next section, we show the applicability of SCAtt-man in an end-to-end
example and show how we optimized the parameters of the data transmission via
sound.

4.6 Evaluation
In this section, we show that SCAtt-man is capable of performing a secure and
reliable attestation. Furthermore, we explain how we determined the parameters for
the data-over-sound protocol. In Section 4.6.4 we show how SCAtt-man can detect
real-world attacks in a case study.

4.6.1 Runtime of Attestation Function
The runtime of the attestation function is the main security feature of SCAtt-man
attestation, as elaborated in Section 4.4. Therefore, we performed a measurement
study on our implementation of SCAtt-man on the smart speaker to obtain the
runtime of the attestation function. These measurements are crucial in determining
the timing thresholds for software-based attestation. The attestation function can be
tuned to adapt its runtime to requirements by changing the number of iterations. Each
additional iteration increases the runtime of the function. Due to the construction
of the attestation function the implementation cannot be parallelized. More details
on the design and the implementation of the attestation function can be found in
Section 4.4.2. We conducted an extensive measurement study on the runtime of
the attestation function and report the results in Table 4.1. We tested one to ten
repetitions, yielding an average runtime of 0.81 to 8.1 s; repeating each test 158

89

Chapter 4 User-Understandable Remote Attestation

times. Our measurement shows that the variance of the runtime of the attestation
function is marginal, with a maximum at nine repetitions and a variance of 113 µs.
This experiment shows that the attestation function is well-suited for performing
software-based attestation.

4.6.2 Designing a Reliable Audio Protocol

As alluded to earlier, the communication protocol must allow reliable communication
between the prover and the verifier. When the attestation fails, the user cannot
determine the cause of this failure: The user cannot distinguish between a failure
due to a compromised device and a failure due to a communication error. Thus,
it is important to carefully develop the audio protocol such that it allows reliable
attestation. The data-over-sound protocol has many parameters that have to be
tuned to fit this use case. We conducted an extensive study to determine the optimal
values for these parameters. In particular, these parameters are (1) the block length,
i.e., the duration of each tone, (2) the base frequency, i.e., the frequency of each
tone, and (3) the frequency separation, i.e., the difference in the frequency between
simultaneously transmitted bits.

Based on our experiences from the implementation, we limited the state space to a
block size of 100–600 ms (steps of 100 ms) and a frequency separation of 100–800 Hz
(steps of 100 Hz). We observed that a slight offset of the base frequency by 10 Hz
improves the transmission quality mainly because it reduces conflicting overtones.
Therefore, we chose a base frequency of 510–2010 Hz (steps of 250 Hz). In this test,
the smart speaker sends random messages to the smartphone, as this is the most
tricky part due to the speaker of the ATOM Echo. As receiving device we used a
Xiaomi Redmi Note 10. We found that transmissions work best with a block length
of 240 ms. We extensively tested the transmission quality between the smartphone
and the smart speaker.

Parameters for Audio Protocol

We performed an extensive parameter study to find the optimal audio protocol
parameters. In the first round, we tested the base frequency and separation frequency.
We chose a fixed block length of 500 ms to reduce the initial state space and limit
the number of tests to be performed, assuming that a longer block length increases
quality. The smart speaker sends ten random messages to the smartphone for each
configuration. Figure 4.8 shows the number of correctly transmitted messages. We
observed that a base frequency of less than 1010 Hz does not work.

In a second round, we evaluated the seven best configurations of the first round.
In each of these cases, at least 70% of the messages were transmitted correctly. We
increased the number of iterations of every configuration to 20. Thus, for each of the

90

4.6 Evaluation

100 200 300 400 500 600 700 800
Separation frequency

51
0

76
0

10
10

12
60

15
10

17
60

20
10

B
as

e
fre

qu
en

cy

Su
ce

ss
fu

l t
ra

ns
m

iss
io

ns

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 7 6 6 0 6 0 3

0 5 7 6 6 6 5 6

6 7 5 5 7 6 6 5

0 6 6 6 6 2 6 7

0 6 5 5 6 6 5 8

5

6

7

8

9

10

Figure 4.8: Evaluation of the base- and separation frequency.

100 200 300 400 500 600
Block length in ms

1010/100

1010/200

1260/300

1510/200

1510/500

1760/800

2010/800

B
as

e
fre

qu
en

cy
/s

ep
ar

at
io

n
fre

qu
en

cy

8 16 17 17 16 15

5 15 18 14 15 15

5 14 16 13 15 15

4 14 16 17 15 17

3 12 14 15 14 16

3 11 12 11 15 16

5 14 14 15 14 15

13

14

15

16

17

18

19

20
Su

ce
ss

fu
l t

ra
ns

m
iss

io
ns

Figure 4.9: Evaluation of the base- and separation frequency and block length.

91

Chapter 4 User-Understandable Remote Attestation

Table 4.2: Transmission success rate.
Direction Success rate

ATOM Echo → Smartphone 96.5%
Smartphone → ATOM Echo 99.9%
Smartphone → Smartphone 100.0%

Figure 4.10: Modifications of the ATOM Echo. Left: The original ATOM Echo.
Center: The ATOM Echo without casing. Right: ATOM Echo with the
new speaker. Note the coin for scale.

seven configurations, we tested six block lengths with 20 transmissions each, a total
of 840 messages. The results in Figure 4.9 show that short transmissions with 100 ms
do not work well. We obtained the best results with a base frequency of 1010 Hz, a
frequency separation of 200 Hz, and a block length of 300 ms. In further tests, we
systematically analyzed the transmission of all possible bit patterns. We found that
transmissions work best with a block length of 240 ms. In the following, we check
the transmission quality between the smartphone and the smart speaker in extensive
tests.

4.6.3 Further Audio Optimizations
During our experiments, we found the speaker of the M5Stack ATOM Echo to be a
limiting factor. Its small form factor and low maximum volume frequently caused
transmission faults. So we performed an experiment to verify this assumption,
comparing the successful transmission in both directions between the ATOM
Echo and the smartphone. In addition, we tested the transmission between two
smartphones, a Xiaomi Redmi Note 10 and a Samsung Galaxy A6. In total, we sent

92

4.6 Evaluation

100 transmissions, consisting of eight blocks with 4 bit each, systematically testing all
24 bit possibilities. Table 4.2 shows the results: while all transmissions between the
two smartphones were correct, and only one message received by the ATOM Echo
was incorrectly transmitted. However, only 96.5% blocks sent by the ATOM Echo
were correctly received. In total, 23% of all sent messages, each consisting of four
blocks, were corrupted during transmission from the ATOM Echo to the smartphone.
This confirms our assumption that the speaker of the ATOM Echo is the limiting
factor. Hence, we first removed the microcontroller and the speaker from the plastic
casing. As this did not sufficiently increase the transmission quality, we replaced
the speaker with a larger model. Note that we did not change any hardware on the
microcontroller. The amplifier, microphone, and processor stayed the same. Using
the larger speaker, we yielded a success rate of 100% for the transmission between
the smart speaker and the verifier. Figure 4.10 shows the changes to the ATOM
Echo. Note the coin for comparison. The ATOM Echo has a small form factor of
24 × 24 × 17 mm3. In further evaluation, we used this larger speaker.

All of our tests were conducted in a typical office environment. We found that
noise disturbances, such as people speaking or traffic noises through the window,
did not influence our processes. We attribute this to the use of specific frequencies.
We conclude that our attestation method works reliably in typical home and office
environments.

4.6.4 End-to-End Case Study

We performed a case study to evaluate the full functionality of SCAtt-man. We
used a Google Pixel 3 to run the verifier app and the ATOM Echo with the improved
speaker. To show how SCAtt-man detects real-world compromises, we integrated
a vulnerable configuration web interface into the smart speaker. The web interface
allows to change the configuration of the smart speaker. This is a typical vulnerability,
as the most common weaknesses in IoT devices are weak, guessable, or hard-coded
passwords and insecure network interfaces and services [208]. The web interface
allows one to change the URL for the speech-to-text service, that is, the service
to which the user’s voice commands are being sent. This poses a serious risk to
the user’s security and privacy. An attacker-controlled speech-to-text service allows
recording a user’s voice commands or arbitrarily altering the commands that the
smart speaker executes. This URL is stored in the NVS partition, where all the smart
speaker configuration data is kept. As soon as the user starts a speech command,
the HTTP client reads this information, which performs the communication with
the speech-to-text service. However, as soon as the URL is updated, this changes
the content of the NVS partition. Hence, this is detected by the attestation. To
check this, after altering the URL via the web interface, we start an attestation run

93

Chapter 4 User-Understandable Remote Attestation

Table 4.3: Results of end-to-end case study.
Attestation result

Benign Compromised

System state Benign 50 0
Compromised 0 10

which correctly detects the modifications. We repeated the attestation run ten times.
Every time the attestation failed correctly, that is, the compromise was detected.

This full end-to-end example shows how SCAtt-man successfully checks the
integrity of the smart speaker’s configuration and is able to detect compromises like
malware or altered configurations. To show the reliability of this attestation, we
manually repeated the attestation multiple times with the benign and the compro-
mised device. In total, we performed the attestation 50 times on the benign device
and ten times on the compromised device. Table 4.3 shows the result. All benign
and compromised states were successfully identified. There were no false positives or
negatives.

4.6.5 User Study
To ensure a sufficient usability of SCAtt-man we conducted a qualitative user
study consisting of two parts. First, the users were asked to interact with the
SCAtt-man smart speaker and perform the attestation process using a Pixel 3
smartphone. Second, the users completed a set of questionnaires. The full results
of the questionnaire are shown in Table 4.4. We recruited 20 participants among
company personnel and university students for the study, of which 6 identified as
female and 14 as male. The age of the participants ranged from 20 to 65 years
with a mean of 37.7. All of them participated voluntarily and no compensation was
paid. Each participant was informed about the study objective before the study and
signed an informed consent explaining which data was collected and how it would be
processed.

Literature indicates that 20 participants are sufficient to identify at least 95%
(mean 98.4%) of all usability problems [108]. Our results did not show a large
deviation between users’ responses, indicating that saturation was reached. The lack
of new input from users signals a sufficient sample size for qualitative studies [52].

Since all participants were recruited among company staff and on the university
campus, participants were also tasked with filling out the ATI-Scale (Affinity for
Technology Interaction) [113] questionnaire, in order to make this sample comparable
to other studies. The results show that a mean of 4.43 was reached with a standard
error of the mean of 1.01 and a Cronbach’s alpha of 0.8. To assess the users’
previous knowledge regarding smart home technology, a set of seven questions was

94

4.6 Evaluation
Ta

bl
e

4.
4:

Fu
ll

re
su

lts
of

th
e

qu
es

tio
nn

ai
re

.

Questionnaire

A
ge

(y
ea

rs
)

27
26

25
34

32
27

20
27

31
30

36
51

37
48

46
47

49
53

43
65

G
en

de
r

(f
/m

)
m

m
m

f
f

m
m

m
m

m
m

m
f

m
m

f
m

m
f

f
I

us
ed

sm
ar

t
sp

ea
ke

rs
be

fo
re

.
3

1
6

6
2

2
4

1
4

1
1

2
1

1
6

1
1

6
6

1
I

tr
us

t
Io

T
de

vi
ce

s
lik

e
sm

ar
t

sp
ea

ke
rs

.
5

2
3

6
1

1
3

2
1

3
3

3
5

4
3

2
1

4
3

2
I

tr
us

t
m

y
sm

ar
tp

ho
ne

.
5

3
3

4
3

5
2

3
2

4
4

4
4

6
4

3
4

5
5

6
A

dd
it

io
na

ls
ec

ur
ity

m
ea

su
re

s
ca

n
in

cr
ea

se
m

y
tr

us
t

in
Io

T
de

vi
ce

s.
6

6
5

6
4

5
5

6
4

5
6

6
6

6
6

6
6

6
6

2

Ib
el

ie
ve

th
at

at
te

st
at

io
n

ca
n

de
te

ct
m

an
ip

-
ul

at
io

ns
in

de
vi

ce
s.

4
6

5
6

0
5

5
6

4
5

5
4

4
5

5
6

6
5

6
4

T
he

au
di

o
co

m
m

un
ic

at
io

n
in

cr
ea

se
s

m
y

tr
us

t
in

at
te

st
at

io
n.

4
4

4
5

6
5

3
5

4
5

4
4

2
6

5
3

6
5

5
3

W
he

n
an

Io
T

de
vi

ce
s

ha
s

an
in

te
gr

at
ed

at
te

st
at

io
n

m
et

ho
d

I
w

ou
ld

us
e

th
is

fu
nc

-
tio

na
lit

y.

5
5

5
6

0
6

6
6

6
6

5
3

4
6

6
6

6
6

4
6

ATI

Il
ik

e
to

oc
cu

py
m

ys
el

fi
n

gr
ea

te
rd

et
ai

lw
ith

te
ch

ni
ca

ls
ys

te
m

s.
5

5
6

4
4

6
4

4
6

5
6

4
3

6
5

5
5

5
4

4

I
lik

e
te

st
in

g
th

e
fu

nc
tio

ns
of

ne
w

te
ch

ni
ca

l
sy

st
em

s.
4

6
6

5
5

6
4

5
6

6
6

6
3

6
5

5
6

6
3

2

Ip
re

do
m

in
an

tly
de

al
w

ith
te

ch
ni

ca
ls

ys
te

m
s

be
ca

us
e

I
ha

ve
to

.
4

4
1

4
3

1
4

5
1

3
3

5
4

6
3

3
5

6
4

5

W
he

n
I

ha
ve

a
ne

w
te

ch
ni

ca
l

sy
st

em
in

fr
on

t
of

m
e,

I
tr

y
it

ou
t

in
te

ns
iv

el
y.

4
5

6
5

5
6

5
4

5
5

6
6

4
6

5
4

6
6

3
2

Ie
nj

oy
sp

en
di

ng
tim

e
be

co
m

in
g

ac
qu

ai
nt

ed
w

ith
a

ne
w

te
ch

ni
ca

ls
ys

te
m

.
3

5
6

4
3

6
4

4
6

5
6

5
3

6
5

5
6

6
3

2

It
is

en
ou

gh
fo

r
m

e
th

at
a

te
ch

ni
ca

ls
ys

te
m

w
or

ks
;I

do
n’

t
ca

re
ho

w
or

w
hy

.
2

2
2

3
1

1
3

3
2

1
2

3
4

2
1

4
2

1
6

6

I
tr

y
to

un
de

rs
ta

nd
ho

w
a

te
ch

ni
ca

ls
ys

te
m

ex
ac

tly
w

or
ks

.
4

2
5

4
5

6
4

2
5

6
6

4
3

5
5

4
6

5
2

1

It
is

en
ou

gh
fo

r
m

e
to

kn
ow

th
e

ba
sic

fu
nc

-
tio

ns
of

a
te

ch
ni

ca
ls

ys
te

m
.

5
3

2
4

1
1

3
3

1
2

5
4

5
5

2
4

2
1

4
6

I
tr

y
to

m
ak

e
fu

ll
us

e
of

th
e

ca
pa

bi
lit

ie
s

of
a

te
ch

ni
ca

ls
ys

te
m

.
4

4
6

5
6

6
5

4
5

5
5

2
5

4
5

5
5

6
3

3

UEQ-S

ob
st

ru
ct

iv
e

—
su

pp
or

tiv
e

5
6

7
7

7
7

5
6

5
6

7
5

4
5

6
5

6
6

5
7

co
m

pl
ic

at
ed

––
ea

sy
6

7
7

7
7

6
7

7
5

6
4

4
5

3
7

5
7

7
3

7
in

effi
ci

en
t

—
effi

ci
en

t
5

5
7

7
7

6
6

7
4

5
6

6
5

5
7

5
6

7
4

7
co

nf
us

in
g

—
-c

le
ar

6
7

7
7

7
5

7
7

6
6

6
6

3
4

6
5

5
7

5
7

bo
rin

g
—

-e
xc

iti
ng

7
4

5
7

7
6

5
5

4
4

6
7

4
4

4
5

5
6

4
6

no
t

in
te

re
st

in
g

—
in

te
re

st
in

g
6

5
5

7
7

7
7

7
5

4
7

5
5

6
6

5
6

7
5

6
co

nv
en

tio
na

l—
-i

nv
en

tiv
e

4
5

6
7

7
6

5
5

5
7

5
5

5
6

7
5

7
6

5
6

us
ua

l—
le

ad
in

g
ed

ge
5

4
7

7
7

7
5

5
4

6
5

7
4

5
5

6
7

6
4

6

95

Chapter 4 User-Understandable Remote Attestation

Table 4.5: Responses to the questionnaire on SCAtt-man. Answers range from
(1) Completely disagree to (6) Completely agree.

Question Average Median SD
Q1 I used smart speakers before. 2.80 2 2.11
Q2 I trust IoT devices like smart speakers. 2.85 3 1.42
Q3 I trust my smartphone. 3.95 4 1.15
Q4 Additional security measures can increase my trust in IoT

devices.
5.40 6 1.05

Q5 I believe that attestation can detect manipulations in devices. 4.80 5 1.36
Q6 The audio communication increases my trust in attestation. 4.40 4.5 1.10
Q7 When an IoT device has an integrated attestation method I

would use this functionality.
5.15 6 1.50

included in the questionnaire. Table 4.5 shows those questions and the answers. In
addition, participants were asked to indicate the degree to which they agree/disagree
with the statements on a 6-point Likert-scale and a “not applicable”-option, so
choosing from the following options: (1) Completely disagree, (2) Largely disagree,
(3) Slightly disagree, (4) Slightly agree, (5) Largely agree, (6) Completely agree,
(7) Not applicable.

The results showed that more than half of the participants had little or no experience
with smart speakers (mean 2.8) and that they trusted these devices less than their
smartphones (2.85 compared to 3.95). The four items about trust in attestation and
its use were significantly positive (5.4; 4.8; 4.4 and 5.15). In particular, the value
of 5.4 shows that trust in smart speakers can be enhanced using additional security
techniques. The participants stated that attestation techniques detect manipulations
in devices with a rating of 4.8. In particular, the users think that the observable
audio communication further increases the trust in the attestation scheme (4.4).
When an IoT device would have an attestation function, the participants would use
it (5.15).

During the interaction with SCAtt-man the users should speak out their thoughts
according to the ‘think-aloud’ method to identify possible problems in the usage
process. Our study demonstrates that the participants considered our app highly
usable. However, users tend to always click the button to proceed to the next
step, ignoring the task (for example, pressing the button on the smart speaker,
connecting the Wi-Fi), resulting in a failed attestation, even though they read the
instructions. Often, they realized their mistake afterwards and used the back-function
of the attestation app to repeat the previous step. Furthermore, we observed that
manually changing the Wi-Fi configuration is tricky due to the many vendor-specific
implementations. To further increase the usability of the SCAtt-man app, we plan
to integrate checks preventing continuation before completing the respective task.

In order to assess the usability of the system, the UEQ-S questionnaire (User

96

4.7 Security Discussion

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

2,50

Pragmatic Quality Hedonic Quality Overall

Excellent
Good
Above Average
Below Average
Bad
Mean

Figure 4.11: Results of the UEQ-S questionnaire.

Experience Questionnaire, short version) [235] was filled out after the hands-on
experiment. Figure 4.11 shows our results. The results show that the usability of
the system was rated positively: the overall score was 1.719, the pragmatic quality
was rated 1.875, and the hedonic quality with 1.563. Since all three values lie above
the threshold of 0.8, the usability of SCAtt-man was evaluated positively.

4.6.6 Summary

We conclude that SCAtt-man fulfills the most significant requirements towards a
usable attestation scheme. SCAtt-man has both good usability and users trust the
attestation. Furthermore, if devices featured an attestation method, users would use
it. In an end-to-end example, we showed how SCAtt-man is able to reliably detect
a real-world attack on a smart speaker.

4.7 Security Discussion

A secure software-based attestation scheme requires careful design and implementa-
tion. In the following, we discuss typical attacks on software-based attestation and
explain how SCAtt-man addresses these.

97

Chapter 4 User-Understandable Remote Attestation

Time-of-Check/Time-of-Use. Existing attestation schemes are vulnerable to time-
of-check/time-of-use (TOCTOU) attacks [254]. The key idea of this attack is to
restore a benign state before the next attestation run, allowing the attacker to stay
undetected. However, in SCAtt-man, the attacker cannot predict the attestation.
The user randomly triggers attestation runs through physical interaction (for example,
a button press). Since the attacker cannot predict the user’s attestation request, the
attacker cannot restore the benign state in time. Thus, the malicious behavior will
be detected over time.

Network Delays. For software-based attestation, it is crucial that the transmission
time can be predicted precisely [241]. As such, software-based attestation is usually
limited to one-hop settings [32]. When using shared communication channels such as
Wi-Fi or other radio transmissions, the attestation needs to deal with network delays,
for example, due to interference with concurring transmissions, devices, or other
disruptions. Short-distance communication over light or sound has a predictable
transmission time due to the direct communication from device to device. The user is
able to observe the transmission and identify disturbances, for example, background
noise that disturbed the transmission.

Offloading Attacks. As communication happens directly over a side-channel such
as light or sound, there is no need for a remote network connection. Therefore,
the smart speaker can implement a network disconnection, for example through a
physical hardware kill switch or other mechanisms, which efficiently prevent any
network connection during attestation as described in Section 4.4.3. Thus, there is
no network connection to a third party to which the attested device can relay its
communication. Consequently, attestation reports cannot be forged.

Compression Attacks. A compression attack uses a compression mechanism to
free up memory on the attested device, which is not covered by the attestation and
may store malicious code [241]. The attacker can perform this attack on-the-fly,
compressing and decompressing memory segments on demand to avoid detection.
However, this strategy only works if three preconditions are met: (1) The attacker
knows that attestation has started. (2) The attacker can predict which memory
region is currently being attested in order to copy from one region to another. (3) The
attacker has sufficient resources to move the data during attestation.

SCAtt-man addresses such compression attacks as follows. (1) The user randomly
chooses to perform the attestation. However, cutting off network communication
may be regarded as a signal of the start of the attestation. (2) In order to make
compression attacks more difficult we adopted several techniques from previous work,
see Chapter 3. First, we start the attestation process at a random location, derived

98

4.7 Security Discussion

from the nonce. Second, we fill the empty memory with random data to make
compression itself difficult. (3) Writing data on embedded devices has a high latency
since write operations need to rewrite entire pages (sections) of memory. Those
hardware limitations are described in Chapter 3. Furthermore, the ESP32 and most
IoT devices offer hardware acceleration for hashing. Standard hashing algorithms
such as SHA-256 use a Merkle–Damgård [182] construction [214]. The output of
the previous block is used as the input of the next block. Due to the high speed
of hashing (using hardware acceleration) and the hardware restrictions on write
operations (rewriting flash pages is slow), compression attacks become infeasible for
the attacker.

Memory Manipulation. Compression attacks are more sophisticated than simple
memory manipulations. In a memory manipulation attack, the attacker uses unmoni-
tored memory such as the RAM to avoid detection. However, due to already existing
countermeasures and embedded hardware characteristics, this kind of attack has
often become infeasible on embedded devices. For example, RAM is typically marked
as non-executable memory [101]. Therefore, no code can be executed from this
memory region. Furthermore, manipulating the memory layout, such as the partition
table is highly challenging [102]. The ESP32, which we use for our proof-of-concept
smart speaker implementation, enforces several preconditions to change the existing
memory layout. First, SPI Dangerous Write must be explicitly enabled. Second,
such changes are typically implemented by OTA (Over-the-air) updates [100]. This
would require a full reboot, and in addition it would change the stored partition
information [102]. Thus, the user-invoked attestation will fail.

Attacks on the Attestation Mechanism. Since SCAtt-man uses a side-channel for
attestation, the network communication is completely turned off during attestation as
already described in Section 4.3.2. Thus, leaving only direct attacks on the attestation
protocol. Since the attacker can only start attestation once the nonce is received, the
critical point is the time span between the reception of the last message containing
the nonce and the beginning of the transmission of the response to the verifier. A
malicious actor will likely try to speed up the recognition of the last message to gain
some time for malicious code execution, as the attestation function by itself cannot be
accelerated: The attestation function consists of a non-parallelizable hashing function
with an optimized or even hardware-accelerated implementation. More details on
the implementation of the hashing function can be found in Section 4.5.2. The
verifier transmits each message for 240 ms, thus the attacker may try to recognize
the last message earlier. In Section 4.5.3 we already described that our ESP32
implementation listens for 32 ms due to resource constraints. Furthermore, we
evaluated the time needed for fast Fourier Transformation (FFT) to analyze the

99

Chapter 4 User-Understandable Remote Attestation

recorded sound fragments. In order to avoid speedup of the nonce recognition, we
have considered the minimal recording and processing time to receive the complete
nonce. Based on those recording and processing times we carefully set the threshold
for attestation. Consequently, there is no usable time gap in the data-over-sound
transmission. The threshold needs to be adjusted on a per-device basis, based on
the available resources and sound processing capabilities of the device.

4.8 Related Work: Context-Based Authentication

Context-based authentication is complementary to SCAtt-man attestation.
Secure key exchange and device authentication is a hard problem, especially for

large settings with many devices, and embedded devices that do not have a user
interface. The goal of context-based authentication is to automatize the paring
process of devices using measurements of the environment. It bases on the general
assumption that devices that belong to each other are close together and share the
same context.

Context-based authentication allows different parties within the same context, such
as devices within the same room, to identify and authenticate each other and negotiate
a shared key, for example, to establish a secure connection. Similar to SCAtt-man
attestation, context-based authentication uses short-range communication channels
to pair devices or negotiate keys with nearby devices. While SCAtt-man uses a data-
over-sound protocol there are numerous systems for context-based authentication
that work with ambient noise. Context-based authentication schemes describe which
context features are measured and how shared keys are derived from these features.
Research proposed a wide variety of such schemes.

PINtext is a context-based authentication scheme based on ambient sound. Devices
send each other a pairing request and negotiate a start time for the audio recording.
The devices then derive a fingerprint from this audio sequence [236]. GAB-IoT is
a group-based authentication scheme based on sound. It uses ambient sound to
exchange keys, but users can provide additional sound to enhance the process. The
focus of GAB-IoT is on usability and user interaction. Users can control the pairing
process and confirm devices using a smartphone app [129]. Another approach is
Listen!. It uses a similar setup as GAB-IoT, but adds additional noise to speed up
the pairing process [179].

Gait-Key has a different setting. It uses gait patterns of users to pair personal
devices, such as body sensors [289]. Instead of using sound, Gait-Key uses a person’s
walking style to authenticate devices. This makes Gait-Key suitable to pair devices
on the body of a user, for instance, biomedical sensors in a body-area network [135].

There is a major limitation of all of these context-based authentication schemes:
All devices require the same sensor type to take measurements. Therefore, pairing

100

4.9 Summary and Conclusions

between devices with different sensor types is not possible. In contrast, Perceptio
allows pairing between devices with different sensor types, for example microphones,
accelerometers, and a motion detectors. This is achieved by basing pairing on events
that can be perceived between different types of sensors. Similar to traditional
context-based authentication schemes, services outside of the shared context cannot
consistently monitor these events. Inside the same context, events can be monitored
and related to each other. Events are typically caused by the environment, such as
household members. To reduce the pairing time also a signal injection device may
be introduced [134].

These context-based authentication techniques have also been adapted to other use
cases. For instance, Sound-Proof allows two-factor authentication with smartphones
based on ambient sound. It compares ambient sound between devices where users are
logging in, such as a notebook, and a second device, such as a smartphone. Compared
to other two-factor-authentication approaches, Sound-Proof does not require any
user interaction with the phone [153].

4.9 Summary and Conclusions
In this paper we presented SCAtt-man, a solution to perform secure software-based
attestation on IoT devices. SCAtt-man solves the inherent problem of missing device
authentication in software-based attestation by using user-observable side-channels.
This approach allows the user to identify the attested device. We implemented
SCAtt-man into a smart speaker and developed an app for Android smartphones
to perform the attestation. The Android app guides the user through the attestation
process. Our evaluation shows that SCAtt-man can reliably perform attestation
without failures. In a full end-to-end example, we showed how SCAtt-man can be
used to detect a compromise caused through a typical real-world vulnerability. In a
user study, we found not only that SCAtt-man has a good usability, but also that
people trust attestation solutions in general and would use them if their devices had
such a feature. This makes novel attestation solutions for customer IoT devices a
worthwhile research target.

The concept of side-channel-based authentication can also be applied to other
side-channels beyond sound. For example, light could be used on IoT devices that
feature a lamp and a brightness sensor, in combination with the flash and camera
of a smartphone. For future work, we will perform further extensive user studies to
investigate the usability and user experience as well as understanding of SCAtt-man
attestation. In particular, the trust in tools like SCAtt-man and the understanding
of the underlying process are crucial for deployment into practice and have to be
investigated beforehand. Therefore, integrating end users into the design process of
attestation tools is a promising approach to avoid reluctance by potential customers.

101

CHAPTER 5

DMA-Based Remote Attestation

As shown, remote attestation enables validating the integrity of a remote device,
thereby establishing trust in the device. But existing attestation techniques either rely
on trusted computer components, rigid temporal constraints, or hardware modifica-
tions. Hardware-based approaches require trusted computing modules such as ARM
TrustZone to perform secure measurements of the attested device [3, 4], which are
often not available on small and embedded devices. Hybrid approaches need custom
hardware extensions that are expensive for initial implementation and unavailable
on legacy devices [49, 201]. However, also software-only attestation schemes are only
a partial solution. Software-based approaches do not have hardware requirements
but rather rely on precise measurements of execution time and therefore have strict
requirements towards their implementation and communication, limiting their prac-
tical applicability. However, the implementation is complex and error-prone [57].
Determining the correct timing threshold is a delicate task, and implementation flaws
can undermine all security assumptions of the attestation scheme. Implementing such
attestation schemes requires deep knowledge of the attested system and a specific
implementation for each device and its corresponding configuration. This limits the
applicability of software-based attestation on legacy devices, which have varying
hardware and software configurations. In addition, the complex implementation
typically also demands access to the device’s source code, which is often unavailable
for such devices. These aspects hinder the practical application of software-based
remote attestation.

Furthermore, software-based solutions have conceptual limitations. For instance,
they have the inherent problem of a lacking root of trust that allows a reliable
device identification. There are different solutions to solve this. RealSWATT (see
Chapter 3), for example, requires a dedicated processor core as well as a separate
network and IoT gateway. In Chapter 4, we presented SCAtt-man, which uses
side-channels to make the attestation process user-observable and enable the user to
identify the attested device.

Summing up, while remote attestation is a viable solution to enhance legacy
systems, integrating such techniques is often challenging because of missing hardware

103

Chapter 5 DMA-Based Remote Attestation

features, unavailable source code, and real-time constraints. During the development
of real-time applications, their timing behavior has been extensively tested in a
profiling phase. Any changes to these applications, even to introduce instrumentation
for control flow integrity [1], influences the timing behavior, hence requiring this
profiling phase to be repeated [79, 277].

Another challenge is the verification: A remote instance must decide whether the
attested device is in a benign state or whether it has been compromised. Typical
attestation protocols use hash methods to perform a measurement of the attested
device. Verifying these hashes requires prior knowledge of all states, as a hash does
not allow reconstruction of the input data. Depending on the complexity of the
attested device, obtaining all benign states is an exhaustive task [2]. Furthermore,
this exploration of valid states must be repeated upon changes to the device, making
this approach inefficient and hindering practical application and updates of the
attested device.

In remote attestation, the verifier typically continuously monitors the attested
device. This leads to performance issues [3, 4, 201] and race conditions like the
well-known time-of-check/time-of-use problem [83, 139]. In practice, verification of
devices is desired, but continuous checking is not required. For example, Stuxnet was
undetected for a long time and thereby able to cause severe damage [169]. Botnets
like the Mirai botnet [7] inherently rely on undetected infections to maintain a
large network of bots to fulfill tasks [25, 47]. When remaining undetected, these
botnets can perform severe attacks. For instance, the Mirai botnet, which infected
more than a million IoT devices, was responsible for one of the largest distributed
denial-of-service (DDoS) attacks ever.

The relaxation of the verification time has many advantages in practice. Verifying
the attestation reports of attested devices induces a great demand for communication
to send these reports to the verifier. It poses a computational load on the verifier to run
the actual verification process. Drastically reducing the number of verification runs
allows for extending remote attestation to areas where this was not possible before.
For example, in the case of a car or an autonomous drone, a continuous attestation of a
large fleet of vehicles is impractical due to computing and communication limitations.
Autonomous drones and cars are designed to operate independently without a
permanent connection to another instance. Introducing a centralized attestation
scheme removes this property. In addition, complex integrity checks require significant
computing resources on the verifier side. However, more importantly, it is an
impractical assumption that each vehicle always has uninterrupted communication.
If the communication is disturbed or unavailable, attestation cannot take place. So,
attestation requires reliable communication. Reliable communication is typically
available in fixed locations. So, good moments for integrity checks are during existing
service times or in the garage or hangar in case of vehicles, drones, or planes. In
the case of industrial devices, attestation can be done by service technicians during

104

regular maintenance. This way, the integrity of devices can be verified, and if a
compromise is detected, it can be reacted immediately.

Besides the software itself, IoT devices also feature critical configuration data.
Alterations of such configurations can have a severe impact. For example, in drones,
often no-fly zones are configured [145]. In so-called data-only attacks, minimal
changes of data in memory can have severe consequences, even without altering the
program’s control flow [64]. Therefore, it is essential to include this configuration
data in the attestation.

All of these aspects limit the applicability of remote attestation on legacy
embedded devices. A practical, universal solution for remote attestation to use
on legacy devices would need to work without many changes to the device’s
firmware, ideally without requiring source code knowledge. The verifier should be
straightforward to implement. Furthermore, the attestation scheme should offer a
method for device identification.

Contributions. In this chapter, we present a novel remote attestation approach,
called DMA’n’Play, that tackles the described practical limitations by leveraging
DMA (direct memory access). Since DMA does not require CPU time, DMA’n’Play
even allows attestation of devices with real-time constraints. To prevent the ex-
ploitation of side-channels which potentially could determine if the attestation is
running, we developed another option called DMA’n’Play To-Go. This is a small,
mobile attestation device that can be plugged into the attested device. We evaluated
DMA’n’Play on two real-world devices, namely, a syringe pump and a drone. Our
evaluation shows that DMA’n’Play adds negligible performance overhead and
detects data-only attacks by validating critical data in memory.

DMA’n’Play allows verifying the integrity of devices during operation without
requiring any trusted computing modules, hardware modification, or changes to the
software of embedded applications. The general idea of DMA’n’Play is to enable
the verifier to monitor the memory of the attested device using DMA directly. In
traditional attestation schemes, trusted computing components or custom hardware
extensions are used to perform a secure self-measurement. However, in the case of
legacy embedded systems that do not feature such components, integrating these
attestation schemes implies replacing the components of the embedded system. This is
a costly and impractical process, as eluded earlier in Chapter 2. Here, DMA’n’Play
is a viable solution: Instead of replacing the hardware components, we add a dedicated
tiny, low-cost device to perform the attestation.

In addition, this also has a second advantage: DMA allows direct access to a
system’s memory without the involvement of the processor. DMA is typically used
to speed up memory access of external devices and reduce the utilization of the

105

Chapter 5 DMA-Based Remote Attestation

processor. As the DMA controller is independent of the attested device, DMA enables
trustworthy self-reports even on compromised systems. It is a standard feature of
microcontrollers and is widely available in embedded devices as used in industry;
supported by all major vendors including STMicroelectronics [258], NXP [206], and
Infineon [147].

In contrast to traditional pure software-based attestation solutions, including
SWATT [241], RealSWATT (see Chapter 3), and SCAtt-man (see Chapter 4),
integrating the DMA’n’Play framework into existing applications is straightforward,
as no complex runtime requirements have to be considered and no extensive
execution time thresholds have to be provided. Moreover, DMA’n’Play is also
suitable for timing-critical devices, for example, real-time or medical devices, where
any change in hardware or software implies re-validation of the timing behavior. The
implementation of DMA’n’Play does not change the software on the attested device.
This makes the DMA’n’Play attestation framework also suitable for legacy devices
as neither hardware modifications nor source code of the attested devices are required.

In DMA’n’Play, we use DMA to give an external device direct access to the main
memory. This way, the external device can examine the main memory of another
device during runtime. Using this direct access to main memory, the actual data in
memory can be monitored, for example, variables and data structures. This enables
DMA’n’Play to detect malicious manipulations on data in memory, detecting
data-only attacks that traditional security techniques like control flow integrity
cannot cover. We present a format for configuration that allows specifying the data
structures to monitor and define constraints for valid states. The attested device
cannot influence this investigation, as the DMA controller completely handles the
memory access.

In contrast to traditional remote attestation schemes, DMA’n’Play requires the
verifier to be directly connected to the attested device. In practice, depending on the
setting, the verifier can either be a standard computer system, for example, a personal
computer, smartphone, tablet, or an embedded device like a diagnostics terminal
in a repair workshop. Additionally, we propose a tiny embedded device, dubbed
DMA’n’Play To-Go, that can be used to relay the attestation measurements
to a remote verifier or that can also be used directly as a verifier. For instance,
DMA’n’Play To-Go can forward attestation measurements to an external verifier,
for example, via a wireless transmission. This way, mobile devices like drones or
vehicles can also be attested during operation.

In summary, we provide the following contributions:

• We propose DMA’n’Play, a novel remote attestation framework that uses
DMA to monitor the attested device and specifically the content of its memory,

106

5.1 Background: U(S)ART, SPI, and DMA

thereby detecting manipulations and illegal states without requiring changes to
either hardware or software, for example, reprogramming or instrumentation
of the attested device.

• We show how the DMA’n’Play attestation framework uses a binary file of the
attested device and a configuration file to define benign states of the attested
device, allowing integration into both new and existing legacy devices.

• With DMA’n’Play To-Go, we present an external verification device that
can be attached to attested devices to check their integrity continuously.

• We provide integration guidelines that show the necessary steps to implement
DMA’n’Play attestation into devices.

• Following these guidelines, we integrated DMA’n’Play into two real-world
systems, a medical device, and a drone, to show the general applicability.

• In a case study, we use DMA’n’Play to detect attacks on these devices: a
manipulation of the injection rate of a syringe pump and modifications to the
drone control system.

5.1 Background: U(S)ART, SPI, and DMA
In this section, we explain direct memory access (DMA) and give background on
the standard serial communications protocols U(S)ART and SPI, that are used for
DMA’n’Play.

5.1.1 U(S)ART and SPI
Microcontrollers usually interact with external peripherals such as sensors, displays,
and control units. Hence, they need standardized interfaces such as UART (Universal
asynchronous receiver-transmitter) [172] and SPI (Serial peripheral interface) [82] to
exchange data.

The UART interface has two communication lines: one for transmitting data (TX)
and one for receiving data (RX). UART is asynchronous, that is, it operates on
a fixed clock cycle, which the receiver needs to be aware of to interpret the data
correctly. USART (Universal synchronous and asynchronous receiver-transmitter)
offers an additional clock signal, which is used to synchronize the transmitter and
receiver. UART and USART communication is designed for direct bilateral device
communication [82].

In contrast, SPI is designed for the communication of one single device (master)
to multiple peripherals (slaves) like displays or sensors. SPI allows full duplex and

107

Chapter 5 DMA-Based Remote Attestation

RAM CPU Flash

UART1

SPI USB

I2C

Peripherials

Figure 5.1: Architecture without DMA support.

RAM

CPU Flash

Peripherials

DMA

B
u
s

IBus

Bridge

Figure 5.2: Architecture with DMA support.

synchronous communication using four lines: a serial clock provided by the master,
data output from the master (MOSI), data output from the slave (MISO), and slave
select (SS) to indicate the master and slave configuration [187].

5.1.2 Direct Memory Access (DMA)
Direct memory access (DMA) is a common feature of microcontrollers that allows
directly copying of memory contents from or to external peripherals. With DMA,
the CPU does not need to manage data copying between RAM and peripherals.
The purpose of DMA is to unburden the processor of the time-consuming task of
moving data over the memory bus between places. The CPU does not need to poll
for incoming or outgoing data transfers actively, and the CPU is not frequently
interrupted (for example, by CPU interrupts) to move small bits of data [207].

DMA is a common and widespread feature on standard microcontrollers as used
in the industry, supported by all major vendors, including STMicroelectronics [258],
NXP [206], and Infineon [147]. Typically, the CPU is responsible for listening for

108

5.2 Challenges

incoming data from external peripherals (either through polling or interrupts) and
copies the data into RAM. However, the DMA controller can be configured to directly
copy data from or to an external peripheral like UART. The CPU now only needs
to be notified, for example, by an interrupt once the copy routine has terminated.
Note that a memory controller typically features multiple parallel DMA streams and
offers precise predictability of execution times for real-time applications.

5.2 Challenges

As introduced at the beginning of this chapter, assuring the integrity of a remote
system is a challenging task. The attested system itself is untrusted, so obtaining
trustworthy reports from such a system is a complex problem. In Chapter 2.5 we
explain the general challenges for secure remote attestation. From these, we derive
the challenges that we need to tackle for secure attestation using DMA.
In particular, for the DMA’n’Play attestation scheme we need to tackle the following
specific challenges:

Challenge 1: Secure Self-Measurement. As in any attestation scheme, we must
guarantee that the attested device is not able to manipulate or delay the self-
measurement.

Challenge 2: Detectability. When using an attestation approach that is not
constantly running it is important that the attacker cannot detect whether the device
is currently being attested. Otherwise, the attacker could hide or stop any attacks
while the attestation is being executed. This includes both direct observations as well
as side-channels, for example, monitoring other events that indicate an attestation.

Challenge 3: Root of Trust. In software-based remote attestation, any secret key
on the attested device can be obtained upon full system compromise. The lack of a
root of trust results in the problem that the verifier cannot distinguish between the
genuine device, other devices, or simulations.

Challenge 4: Side-Effects and Real-Time Operation. Attestation may not nega-
tively influence the normal operation of the attested system, especially when perform-
ing tasks with real-time constraints. This is especially important when integrating
attestation into existing legacy devices, whose timing behavior have already been
validated and hence may not be altered.

109

Chapter 5 DMA-Based Remote Attestation

Serial connection

Attested device

Trust boundary

DMA controller
Verifier

Attacker

Figure 5.3: Threat model of DMA’n’Play with the verifier directly connected to
the attested device. The adversary can fully compromise the attested
device but cannot modify the verifier or the DMA controller.

Challenge 5: Efficient Verification. Implementing an efficient and effective verifier
is a challenging task. Typical attestation protocols send hashes of the system’s
current state, from which the actual state cannot be reconstructed directly. The
verifier requires a full lookup table of all benign states. Generating such a table is a
complex task and requires a large amount of memory.

In the following, we will show how DMA’n’Play allows remote attestation while
addressing these challenges by utilizing a standard DMA interface.

5.3 Assumptions and Threat Model
Figure 5.3 shows our threat model for DMA’n’Play as well as the trust assumptions.
The attacker can fully compromise the attested device. However, the attacker cannot
compromise the external verifier or the DMA’n’Play To-Go and cannot alter the
configuration of the DMA controller.

5.3.1 Assumptions
We assume an embedded device that features a DMA controller that allows copying
memory content to an external bus, such as a serial bus like UART or SPI. The
ability to copy memory content to an external bus is a common feature of DMA
controllers deployed on various embedded devices [147, 206, 258]. Furthermore, we
assume that the configuration of the DMA controller can be locked, for example,
by utilizing a memory protection unit (MPU), preventing the DMA configuration
from being changed even when the entire system is compromised. This is also a
widespread feature on existing microcontrollers [142, 146, 261]. We describe in detail
how this can be achieved in Section 5.4.4.

110

5.3 Assumptions and Threat Model

DMA'n'Play ToGo
Serial connection

Wireless transmission

Attested device

Trust boundary

Verifier
DMA controller

Attacker

Figure 5.4: Threat model of DMA’n’Play with DMA’n’Play To-Go. The ad-
versary can fully compromise the attested device but cannot attack the
verifier, DMA’n’Play To-Go, or the DMA controller.

Second, as in any remote attestation scheme, we require a trusted verifier. During
attestation, the verifier must be attached to the serial bus. This case is sketched
in Figure 5.3. The verifier device does not have to be connected all the time but
is only required during attestation time. The role of the verifier can be taken
over by a commodity computer system, such as a notebook or workstation. The
verifier can also be integrated into a diagnostics system typically used for repair and
maintenance in the automobile space. Alternatively, we developed DMA’n’Play
To-Go, a dedicated, small, low-cost embedded device to take over the role of the
verifier and either perform the verification directly or relay the information to a
remote verifier. Figure 5.4 shows this scenario: DMA’n’Play To-Go is directly
attached to the attested device and transmits the measurements to the external
verifier via a wireless communication channel. This communication can be encrypted,
for example using TLS (Transport Layer Security). Both devices, the verifier and
DMA’n’Play To-Go are trusted.

The third requirement is the knowledge of the firmware of the attested device
and its benign states. For this, the verifier needs to access the firmware in the ELF
(Executable and Linkable Format) binary format. Note that DMA’n’Play does not
necessarily require source code. When compiled with debugging symbols, the verifier
can identify the addresses of variables and data in memory by their names in the
source code. To check the content of variables and identify illegal states, the verifier
requires information about benign states, for example, valid ranges of variables. We
provide a configuration file format in which this information can be provided along
with integration guidelines that describe how to integrate DMA’n’Play into new or
existing applications, see Section 5.5.4.

111

Chapter 5 DMA-Based Remote Attestation

Memory

DMA controller

1 2 3 n 1 2... ...

Serial connection

Verifier

Figure 5.5: The DMA controller sends all relevant memory sections to the verifier in
a circular process.

5.3.2 Threat Model

We assume a remote adversary. The adversary can compromise the attested device
at any point in time and is able to modify program data or configuration data, for
example, by means of typical software vulnerabilities like memory errors or insecure
or insufficiently protected interfaces. However, highly privileged operations like
changes to the MPU (Memory Protection Unit) are not possible. In Section 5.4.4,
we show how this can be achieved on standard commodity microcontrollers.

Similar to other remote attestation approaches, we exclude physical attacks on
the devices [3, 4, 201, 241]. Thus, the attested device and particularly its hardware,
cannot be tampered with, including the serial connection between the prover and the
external verification device. Furthermore, also along with other remote attestation
approaches, we assume that attacks on the verifier are out of scope.

5.4 Concept of DMA’n’Play

Our concept of DMA’n’Play is to use direct memory access (DMA) to enable
an external device, called verifier, to observe the memory of the attested device.
Figure 5.5 shows the high-level idea of our approach. In an infinite loop, the DMA
controller sends relevant memory content to the verifier, allowing the verifier to
monitor memory contents such as configuration data, measurements, and other static
and variable memory content. We use a one-way serial connection to send the data
of the attested device to the verifier, so there are no interdependencies between these
devices. Furthermore, since there is no feedback from the verifier, the attested device
cannot determine whether the verifier device is present.

112

5.4 Concept of DMA’n’Play

5.4.1 Using DMA for Attestation

For DMA’n’Play, we configure the DMA controller in such a way that it shifts
memory contents for attestation to an external peripheral via a serial connection, for
example, UART. The verifier receives the raw memory contents from the attested
device and verifies its integrity. Serial communications like UART use two separate
lines for sending and receiving (see Section 5.1.1). By only connecting the pins
for sending on the attested device with the receiving pin of the verifier, a one-way
transmission is ensured. This gives two security benefits in contrast to traditional
attestation schemes. First, the attested device does not get any feedback from the
verifier. Hence, the attested device cannot determine whether it is currently being
attested. Second, in case of implementation flaws in the verifier, the attested device
faces significant limitations to exploit these flaws as there is no feedback from the
verifier.

DMA tasks are usually configured once on set up and are typically not required to
change during runtime. We set up the DMA controller to frequently push memory
contents (SRAM, configuration data, content of variables) over UART for attestation.
Since DMA does not need to be reconfigured, access to the DMA controller can be
blocked by the memory protection unit (MPU). Consequently, the external device will
always receive untampered memory contents. As the DMA controller is independent
of the processor and the software operating on the device, this does not influence the
normal operation of the attested system. This makes DMA’n’Play also suitable for
attesting devices with real-time constraints, that is, where the correct operation also
requires maintaining strict timing thresholds.

5.4.2 DMA’n’Play Attestation

The DMA’n’Play attestation scheme takes advantage of its full memory access to
ensure runtime constraints on specific variables. This is unlike traditional attestation
schemes, in which memory is being hashed and then sent to the verifier for verification,
which makes reconstructing the original content a challenging and complex task. For
instance, in these schemes, the verifier compares the hash values to a list of known
hash values of benign states, requiring a database of hash values of all valid states.

This approach has several drawbacks. It requires a pre-computation of valid states,
an extensive task, leading to the well-known state explosion problem [276]. Changes
to the attested device require updates of these states, even upon small changes such
as modifications of individual parameters or updates to the attested application.
Furthermore, the database of valid states requires significant memory on the verifier’s
side.

On the contrary, in DMA’n’Play attestation, the verifier has access to the raw
data in the memory of the attested device. By mapping the memory content to

113

Chapter 5 DMA-Based Remote Attestation

relevant information like data or control variables, the verifier can monitor the
attested device’s internal state. With DMA’n’Play, we recommend a model-based
approach to avoid the state explosion. That is, the behavior of a model of the
attested device is compared to its actual behavior. Direct access to the raw memory
content allows the verifier to perform complex checks on state data, for example,
assuring that variables are within specific ranges or validating specific dependencies
between variables.

To attest a device, the verifier solely requires the binary of the attested device and
a configuration file that specifies benign states (see Section 5.5.2). If the attested
device is modified or updated, only the binary has to be replaced. If the configuration
changes, only the rules in the configuration file have to be adapted. This allows simple
updates of the attestation rules, when the attested system changes, for example, due
to a new software version.

By mapping the memory content to relevant information like sensor or control
variables, the verifier can reconstruct the state and behavior of the attested device.
Relations between sensor information and output variables allow detecting com-
promises and manipulations, creating a deviation between the actual and expected
behavior. However, creating such a behavior model is challenging without source
code and deep knowledge of the device. Reverse engineering is helpful, but often
requires significant effort as states and interdependencies are hard to reconstruct.

However, when the binary is enhanced with debugging symbols or even the full
source code is available, the verifier can identify variables and data structures by
their names. With DMA’n’Play and application knowledge, it is then also possible
to implement sophisticated verification logic and rules for device behavior. The
more details about the behavior of the attested device are available, the more details
DMA’n’Play is able to monitor. With a full knowledge about the application,
also fine-grained monitoring is possible. Furthermore, the verifier can also monitor
changes over time or access sensor input. This can be used to validate plausibility of
sensor readings or match sensor input with device behavior. In embedded devices,
communication with external peripherals, such as sensors, typically takes place
through special memory areas, which can also be covered by DMA’n’Play. In
addition, the verifier can use sensor information from other attested devices, for
example, drones in a swarm, and compare it with the currently attested device.

Summing up, the complete availability of the attested system’s memory and
unrestricted access to it allow straightforward implementation of checks of the attested
system to verify its integrity and detect manipulations. While DMA’n’Play does not
necessarily require the source code of the attested system, developing sophisticated
rules for the verifier requires insight into the precise functionality of the attested
system, which is typically only given via source code.

114

5.4 Concept of DMA’n’Play

Serial connection

DMA'n'Play ToGo
Serial connection

Wireless transmission

Attested device

Local Verifier

Configuration

ELF

Remote Verifier

Attested device

1

2

Configuration

ELF

Figure 5.6: The verifier uses the compiled binary and a configuration file to attest
the device. The verifier can either be directly connected to the attested
device (Case 1), or communicate via DMA’n’Play To-Go (Case 2).

5.4.3 Conception of the DMA’n’Play Verifier
The verifier checks the correctness of the attested device based on the raw memory
content data provided via DMA. This data is automatically sent in a circular process
by the memory controller of the attested device. For the attestation, the verifier
needs to interpret these raw values. To do so, the verifier takes the compiled binary
ELF file and analyzes it to obtain the memory regions to be attested. Note that
DMA’n’Play does not need the source code of the firmware of the attested device.
Embedded devices typically have a static memory configuration. Therefore, the exact
memory layout can be initially determined using the binary firmware.

If the binary is compiled with debugging symbols, the verifier can identify variables
and data in memory by their respective names, find their location in the data stream,
and reconstruct the content of the memory in the attested device. This makes it
possible to perform complex checks on the memory of the attested device.

DMA’n’Play requires the verifier device to be close to the attested device due
to the communication channel. The verifier can be implemented on any commodity
computer system as long as it can be equipped with a serial interface, such as personal

115

Chapter 5 DMA-Based Remote Attestation

computers, mobile devices such as smartphones or tablets, or specialized systems
like a diagnostics terminal for cars or planes.

For the attested device, it does not matter whether a verifier is attached or not.
As there is no input from the receiving verifier device, the attested device is unable
to ascertain whether a verifier is present. Therefore, the attacker cannot determine
whether the device is being attested or identify the memory locations that are
currently being transmitted. However, an attacker could use other information on
the device to determine if it is likely that the device is being attested: For example,
in the case of a plane or a car, if it is flying or driving. For instance, it is unlikely
that an external verifier integrated in a diagnostics system, that is usually used
in a garage, is attached while a car is moving. To counter this, we developed a
verification solution called DMA’n’Play To-Go that can be integrated into other
devices to continuously attest devices also during operation. DMA’n’Play To-Go
is a small embedded device that is being connected to the serial interface and can
either directly perform the verifier task or relay the data via a wireless interface,
for example, Bluetooth or Wi-Fi, to a remote verifier. In practice, DMA’n’Play
To-Go will be used to forward the attestation measurement to an external verifier,
as this allows the integration of more complex attestation tasks and also the usage
of configuration files for verification, which a small embedded device is not able to
process.

Figure 5.6 shows the general architecture of DMA’n’Play and its two operating
modes: The verifier can either be directly connected to the attested device (Case 1) or
communicate via DMA’n’Play To-Go (Case 2). In the latter case, DMA’n’Play
To-Go is directly connected to the attested device and relays the data to the verifier,
for example, over Wi-Fi or Bluetooth. The attested device in Figure 5.6 is represented
by a drone. In Section 5.6.1 we provide a case study on a syringe pump and a drone.

5.4.4 Locking of DMA Controllers

The DMA controller sends the content of the attested memory to the verifier. The
security of DMA’n’Play attestation is based on the assumption that the attacker
cannot change the configuration of the DMA controller. Otherwise, the attacker could
alter the DMA controller such that critical memory areas are not being reported,
thereby hiding modifications and attacks.

Embedded devices in general feature a memory controller, which allows restricting
access to arbitrary memory regions. The most basic form of such a controller is the
Memory Protection Unit (MPU). It is a common and widespread feature on standard
controllers [142, 146, 261]. A properly configured MPU will define protected memory
areas and block unprivileged access. It is possible to lock the DMA configuration, by
restricting unprivileged access to the memory section that contains the corresponding
configuration.

116

5.4 Concept of DMA’n’Play

Devices with an MPU should provide at least two privilege modes. The basic
configuration has one privileged mode with access to all resources, and one unpriv-
ileged mode with limited capability. In order to ensure the memory access rights,
the code is run either in privileged or unprivileged mode. Within the unprivileged
mode, all memory restrictions defined in the MPU are strictly enforced. Once the
processor operates in unprivileged mode, switching back to privileged access is only
possible through a Super Visor Call (SVC). This triggers an interrupt that checks the
legitimacy of the request and either allows or denies the mode switch. Since MPU
restrictions are only enforced in unprivileged modes, it is important to avoid critical
bugs in privileged code. Therefore, firmware analysis [181] and fuzzing [110] are
performed. Furthermore, the amount of privileged code is minimized by separating
tasks based on their required permission level. This is often implemented in software,
for instance, by the operating system of the microcontroller. TockOS [173], for
example, divides the OS kernel into a trusted core for critical tasks and untrusted
capsules for peripheral drivers and other noncritical tasks. EPOXY [70] uses the
MPU to provide two domains and requires manual annotations by the developer.
Sometimes ISA properties, such as unprivileged memory instructions, are used to
enable execute-only memory protection schemes (uXOM [167]).

While privilege separation has been neglected in the past it is now a critical
task for the software developer. Recently, frameworks such as EPOXY [70] have
emerged in academic research, applying a technique called privilege overlaying to
only execute the necessary operations in privileged mode. This considerably advances
the protection of hardware configurations including the DMA controller. Some
frameworks such as D-Box [180] explicitly address the topic of DMA locking and
DMA security. D-Box [180] allows the compartmentalization of the DMA controller
on embedded devices like ARMv7-M boards, using a software reference architecture
and the capability of the MPU. Thus, the DMA configuration can be sufficiently
protected from a potential attacker. EPOXY [70] and D-Box [180] enable us to
provide a secure channel over DMA to the external verifier. Thus, we are able to
add remote attestation to devices, that had no feasible attestation option until now
(either due to hardware or system limitations). Some microcontrollers even feature
more sophisticated protection solutions, such as a complete memory management
unit (MMU), for example, the ARM Cortex-A family [31], up to a full trusted
execution environment (TEE) such as TrustZone. TEEs guarantee authenticity
of the executed code, integrity of runtime states, and confidentiality of code and
data [228]. For example, TrustZone is an optional, but common extension of the
new and more sophisticated ARMv8-M [27] and ARMv8-A [28] microcontroller
architecture. Unfortunately, as of now, TrustZone has very limited availability on
existing microcontrollers [180]. In the RISC-V architecture such memory restrictions
are enabled using the Physical Memory Protection (PMP) features included in the
RISC-V instruction set [222]. Furthermore, for RISC-V there exist TEE solutions

117

Chapter 5 DMA-Based Remote Attestation

such as Keystone [171]. However, as of now, Keystone requires the privilege modes
S, U, and M [171]. Unfortunately, these privilege modes are also optional and
hence often not implemented. For example, the new and popular ESP32-C3 only
implements the unprivileged U (user) and privileged M (machine) mode [104].

5.4.5 Hardware Requirements & Target Platforms
In summary, DMA’n’Play requires three hardware properties:

1. A DMA controller with a peripheral such as SPI or UART to directly output
memory contents to the external attestation device.

2. An MPU, which locks the DMA configuration.

3. Privilege separation with at least two modes to prevent reconfiguration of the
DMA controller by the attacker.

Numerous hardware platforms fulfil these requirements. We focus on the ARMv7-M
architecture, which we also use in our case study in Section 5.6.1. This architecture is
in widespread use in the industry with many legacy devices. The successor ARMv8-M
is also suitable for DMA’n’Play. It even has optional support for TrustZone [228].
However, TrustZone support is purely optional and there will be new boards without
TEE. Recently, the RISC-V architecture became popular, especially in the embedded
domain. As discussed in Section 5.4.4, DMA’n’Play can also be used on RISC-V
devices.

5.4.6 Devices Without Source Code
The DMA’n’Play framework can also be used on applications where there is no
source code, but only the compiled binary is available. For example, the source code
of legacy devices is often either missing, incomplete, or unavailable. In particular,
there is a huge amount of legacy devices in machinery designed for a long service
life, for example, in power plants, factories, professional equipment, and vehicles. In
these environments, there are often embedded devices with discontinued software
support, leading to critical security risks [161, 218]. If no source code is available,
DMA’n’Play can be integrated with the help of binary rewriting. Binary rewriting
describes the modification of a given compiled and possibly (dynamically) linked
binary in such a way that it remains executable [283]. Binary rewriting can either be
done dynamically (during execution) or statically (on a binary that is not currently
being executed) [283]. Due to the added complexity of runtime execution, dynamic
rewriting is more challenging than static rewriting. In static rewriting, all binary
transformation steps can be executed in a row, while dynamic rewriting requires an
iterative algorithm [283]. Furthermore, a persistent dynamic binary transformation

118

5.5 Implementation

will induce time and memory overhead during runtime [283]. For most IoT devices
static rewriting will be sufficient to integrate DMA’n’Play, as devices can be usually
re-flashed with a new binary during maintenance.

In order to integrate DMA’n’Play into a binary the following steps are required:

1. Integrate a DMA configuration into the binary, to output the entire memory
through DMA.

2. Integrate an MPU-based lock.

3. Set up the verifier with information on the memory content and data of interest
for the attestation process.

Depending on the amount of information available regarding the memory structure
and the variables of interest, the verifier can be configured appropriately. The
integration guidelines described in Section 5.5.4 apply. The only difference is that
the DMA output and MPU lock on the attested device are integrated and configured
with the help of binary rewriting techniques, rather than directly added to the source
code and recompiled.

The integration of the DMA output (Step 1) and MPU-based locking (Step 2)
are straightforward on the binary level. Both steps represent a reconfiguration of
the hardware. On the software side, this reconfiguration is equivalent to privileged
write operations on registers and memory positions (Memory Mapped I/O [221]).
DMA’n’Play performs this configuration step once during device startup and drops
all privileges afterward. Thus, steps 1 and 2 can be achieved by adding a static code
block to the part of the binary executed at the end of the device startup.

5.5 Implementation
To show the applicability of DMA’n’Play for different computing architectures,
we integrated DMA’n’Play into a syringe pump and a drone. A syringe pump is
a medical device that automatically injects medicine into a patient’s body. Drones
are manually controlled or autonomous flying devices. First, the attested device
(syringe pump or drone) must be modified to send its memory contents to the verifier.
Second, the verifier has to be provided with information on the benign states of the
attested device. Next, the verifier needs to check the validity of the received data
and report manipulations. In Section 5.5.4 we provide detailed integration guidelines
that describe how DMA’n’Play can be integrated into devices.

5.5.1 Attested Device
To implement DMA’n’Play on the attested device, we first determine the relevant
memory content. These memory contents typically include variables that represent

119

Chapter 5 DMA-Based Remote Attestation

Figure 5.7: The ARMv7 architecture features two DMA controllers [262].

the state and configuration of the device. To reduce the amount of transmitted data,
we modify the linker file to create a dedicated memory section containing all the
data to be included in the attestation. We call this section the ‘attestation section’.
This is an optional step, it is also possible to attest the complete memory of the
attested device. We use the built-in source code annotation capability of the gcc
compiler, called attributes [124], to assign variables to the ‘attestation section’. Such
functionality is also available in other compilers such as clang [271].

In Section 5.4.1, we briefly describe the DMA feature that we use to transfer
memory content to an external device. As shown in Figure 5.7, the DMA controller is
independent of the main CPU and has direct access to memory as well as peripherals
such as SPI, UART, or I2C. We configure the DMA controller on the chip to output
the contents of the attestation section over a peripheral interface. We set the DMA
controller to circular mode and configure a direct DMA stream from memory to
peripheral. Thus, the attested device sends the memory content in an endless loop.

To enable the verifier to determine the current position in memory, the attested
memory features a so-called attestation header, which is a static string at a known
position in the attested memory. The attestation header is placed in the attested

120

5.5 Implementation

Verifier

.. .. n1 2 3

Memory sent via DMA

t

Verifier is connected

Data received by verifier

Attestation header

Verifier is disconnected

Attested device

Figure 5.8: The verifier uses the attestation header to identify the position in the
data stream.

memory while developing the verifier rules. As embedded devices typically have
a static memory configuration, this attestation header has a fixed position in the
memory that does not change during runtime and also remains at the same position
during restarts of the device. The content of all variables and data structures in the
attestation section can be identified using the attestation header as a reference point.
This is especially relevant as the verifier can be attached at any time. Thus, the data
stream of the attested device can be at any random position. Figure 5.8 illustrates
this scenario.

To secure the DMA controller from malicious access, we utilize the Memory
Protection Unit (MPU) as described in Section 5.4.4. Since the configuration of the
DMA is handled through memory-mapped I/O, we restrict access to the memory area
that contains the DMA configuration. We drop the privilege level that is required to
reconfigure DMA after startup. Thus, a remote attacker cannot alter or influence
the data transmitted to the external verifier via DMA. Even if the remote attacker
gains arbitrary code execution on the device, the attacker still misses the required
privilege level to alter the DMA configuration.

Typically, the source code of the attested device is available and can be recom-
piled with our modifications, that is, the dedicated attestation memory section,
modified DMA configuration, and MPU-based lock. However, source code is un-
available for some legacy devices for various reasons. In case the source code is not
available, we output the entire memory content for attestation and leverage binary
rewriting techniques. We provide further details on this in Section 5.4.6. In the
integration guidelines in Section 5.5.4 we explain all the steps necessary to integrate
DMA’n’Play.

121

Chapter 5 DMA-Based Remote Attestation

5.5.2 Verifier
The verifier receives and validates the data from the attested device. To do so,
the verifier requires an ELF file, that is, the binary of the software running on the
attested device. With this file, the verifier automatically reconstructs the memory
layout of the attested device, to determine the locations of variables and identify data
structures. Using this information, the verifier determines the location and values of
these variables in the data stream from the attested device. When compiled with
debugging symbols, the verifier can identify the addresses of variables and data in
memory by their names in the source code. Otherwise, manual mapping of variable
names to memory addresses is required. Embedded devices typically feature a static
memory configuration. So, this memory layout does not change during runtime.

We implemented the verifier in Python with pySerial1 for serial communication
and the pyelftools2 to handle the ELF file. There are two possibilities for the verifier
to validate the received information. First, the configuration file format can be used
to define constraints and rules that are checked. This allows for straightforward
implementation of the verifier. Alternatively, complex checks can be manually
implemented into the DMA’n’Play framework.

In a configuration file, the developer can provide constraints for these vari-
ables. With this configuration file and the ELF file of the attested device,
the verifier automatically checks the received data stream. No further manual
implementation steps are required. The format of the configuration is simple:
Variables are identified by their name in the source code. Furthermore, the
developer has to provide the variable type and the constraints to be checked.
Listing 5.1 shows an example of such a configuration that describes the data structure
of the attested memory. In Listing 5.2, restrictions and logical constraints are defined.

DMA’n’Play supports the following checks:
• Static checks that have to be fulfilled, i.e., values that may not change.
• Lists of alternatives i.e., different valid values.
• Arbitrary values, i.e., any value is valid.
• Ranges, i.e., specific ranges of valid values.
This functionality can be flexibly adapted to further use cases and checks. Alter-

natively, complex checks can also be implemented. As the verifier is developed in
Python, adding further checks or developing more complex rules is simple. Even
integration into other systems, such as back-end and management systems or web
services is possible. In contrast to traditional attestation schemes, no preliminary
exploration of possible states is required, easing implementation and modifications
to existing systems. In remote attestation schemes that use a precomputed list of

1https://github.com/pyserial/pyserial
2https://github.com/eliben/pyelftools

122

https://github.com/pyserial/pyserial
https://github.com/eliben/pyelftools

5.5 Implementation

Listing 5.1: Example configuration file for verifier
1 layout = cstruct . Struct (
2 " p_settings " / p_settings ,
3 " dosage_ml " / cstruct .Int16ul ,
4 " bolus_steps_ml " / cstruct .Array (9, cstruct .

Float32l),
5 " attestation_header " / cstruct .Array (3, cstruct . Int8ul)
6)

Listing 5.2: Example for valid ranges of variables for verifier
1 varmap = {
2 " p_settings : syringe_volume_ml ":(DataModel . VarType .

STATIC , DataModel . VarStatic (30)),
3 " dosage_ml ":(DataModel . VarType .RANGE , DataModel .

VarRange (0 ,6)),
4 " bolus_step_index ":(DataModel . VarType . ALTERNATIVES ,

DataModel . VarAlternatives ([0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8])),
5 " attestation_header " : (DataModel . VarType .ANY ,

DataModel . VarAny (None))
6 }

valid states as hashes, this list has to be recomputed on every change of the attested
system. The usage of a memory-safe language like Python for the verifier prevents
a compromise of the verifier due to memory corruption. Note that the input the
attested device provides should be considered untrusted during development.

5.5.3 DMA’n’Play To-Go
The verifier is an external device that has to be directly connected to the attested
device. To compensate for limitations induced by this design, we developed an
external device called DMA’n’Play To-Go that can relay attestation data to a
different verifier. DMA’n’Play To-Go is an embedded device with a small form
factor, little power consumption, and is available at a low price so that it can be
integrated into the attested systems. In particular, we used an ATmega328P 8-Bit
microcontroller with 16 MHz clock frequency and 2 kbyte of SRAM [35]. It consumes
2 to 10 mA at full load depending on frequency [184].

Figure 5.9 shows a picture of our prototype implementation. The gray cable
connects the attested device with the receiving pin (RX) on the microcontroller.
The transmission pin (TX) of the microcontroller remains unconnected. A one-way

123

Chapter 5 DMA-Based Remote Attestation

Figure 5.9: Photo of the DMA’n’Play To-Go prototype.

connection is ensured by only connecting the attested device with the receiving pin
(RX) on the microcontroller, leaving the transmission pin (TX) of the microcontroller
unconnected.

Our implementation used Bluetooth Low Energy (LE) to transmit the data stream.
Bluetooth LE is well-suited for this use case as it has a low power consumption and a
reach of up to 100 meters. Alternatively, also a microcontroller with Wi-Fi function-
ality such as the ESP8266 [98] or the ESP32 [97] can be used to send the attestation
data to a remote server or cloud service. Alternatively, these microcontrollers can
also be used as a verifier, even though they do not have enough computational
capabilities to analyze the binary of the attested device. Therefore, the verification
logic has to be manually implemented on these microcontrollers.

5.5.4 Integration Guidelines
In this section, we show the steps required to integrate DMA’n’Play into a new
application and set up the corresponding verifier.

1. Identify the memory areas to be attested. When compiling the attested
application, all relevant memory areas can be moved into a dedicated memory
section. In case no source code is available, also the complete memory can be
attested.

2. Integrate an attestation header, that is, a unique, identifiable string of bits,
into the attested memory, for example, the attested memory section. Note that
the attestation header does not need to be placed in a specific position as long
as it is inside the attested memory region. In case no source code is available,

124

5.6 Evaluation

choose an existing and unique bit string within the attested memory to serve
as the attestation header.

3. Configure the DMA controller to output the attested memory to the bus used
for the attestation, for example, the serial bus. Take care of the respective bus
configuration, for example, transmission speeds.

4. Define valid states of the attested device and develop a configuration file
containing a rule set. When using a binary with debug symbols, the verifier
can identify variables by their names. For more information on how to build a
configuration file, see Section 5.5.2.

5. Set up the verifier. This includes configuring the bus used for the attestation
and providing the binary of the attested device along with the configuration
file.

These steps allow integrating DMA’n’Play into new as well as legacy devices.
Note that no source code of the attested device is required. Changing the configuration
or updating the binary requires only a subset of these steps, for example, replacing
the binary, or modifying or updating rules in the configuration file.

5.6 Evaluation
We implement DMA’n’Play into the syringe pump and a drone and attest numerous
variables of different types to show the capabilities of the verifier. For each device,
we design and execute a typical practical attack to show that DMA’n’Play is able
to detect the compromise of configuration data. We performed timing measurements
to show that DMA’n’Play has no timing influence on normal operation. This shows
that DMA’n’Play is even suitable for systems with real-time constraints.

5.6.1 End-to-End Case Study
For the evaluation, we integrated the DMA’n’Play attestation into two real-world
devices, a syringe pump, and a drone, using our integration guidelines. Both devices
perform safety-critical tasks and operate under real-time constraints. We then
developed full end-to-end examples and integrated a typical vulnerability in each
device. Next, we created a configuration file, defining valid states and ranges for both
devices. Upon exploiting the vulnerabilities and applying the respective attack, these
were immediately detected. There are different methods to respond to a detected
compromise. In traditional attestation schemes the verifier has no influence on the
attested device, and can for instance solely raise an alarm. In contrast, in the case
of DMA’n’Play, the verifier can also interact directly with the attested device.

125

Chapter 5 DMA-Based Remote Attestation

Figure 5.10: Photo of the Bitcraze Crazyflie 2.1 drone.

For example, the verifier could power off the syringe and alert a doctor in case of a
compromised syringe pump. In the case of an autonomous drone, the compromised
drone could be excluded from an autonomous swarm, shut down, or set into a secure
configuration. In any case, this requires an adequate connection between the verifier
and the attested device.

Syringe Pump. A syringe pump is a medical device that injects medicine into
the body of a patient. We enhanced an open-source syringe pump [285] with
DMA’n’Play and implemented it using a Nucleo-F446RE development board that
features an ARM Cortex-M4 processor. DMA’n’Play continuously monitors the
devices’ configuration so that any illegal operations are detected. To do so, we
wrote the corresponding configurations for DMA’n’Play. Then, we integrated a
common vulnerability into the syringe pump: an insecure configuration interface.
This configuration interface allows changing the amount of medicine being injected.
The attack can have potentially lethal consequences for the patient if too much or
too little medicine is being injected. As stated, such an attack vector is typical for
IoT devices: the most common vulnerabilities are weak, guessable, or hard-coded
passwords, as well as insecure network interfaces and services [208].

Drone. We integrated DMA’n’Play into a Bitcraze Crazyflie 2.1 drone [41].
Figure 5.10 shows a photo of the drone. Drones feature many safety-critical
components that are crucial for correct operation. A malfunction or compromise of
one of these components can have severe consequences. For the attack, we use the
remote control channel of the drone that is used to send new commands and fly the
drone directly. For a remote adversary, this is the primary attack vector. Using
this channel, we compromised the device and changed multiple critical values: The

126

5.6 Evaluation

configuration of the state estimator determines the flight position and stabilization
of the drone. This critical component processes the sensor data from the drone
and provides the position and movement of the drone. Changing the parameters
of the estimator directly influences the flight behavior of the drone. Moreover, as
the control and navigational system of the drone are dependent on this system,
these modifications allow controlling the drone without directly interfering with
its navigational system. In the case of autonomous drones, this attack will be
undetected as the autonomous control system remains unmodified. However, this
is only an example of an attack: any flight parameters or configurations could be
manipulated, resulting in arbitrary attacker-controlled behavior. It would also be
possible to directly control the drone by altering its navigational and way-finding
system, or compromising the collision warning system so that the drone collides and
crashes.

We integrated the DMA’n’Play framework into both devices and configured it to
monitor critical components and data. To do so, we defined valid states and ranges
for variables in a configuration file. We provided this configuration file to the verifier
together with the binary of the software running on the attested device. Then, we
monitored the normal operation of the device. Upon exploiting the vulnerabilities and
applying the respective attack, the verifier immediately detected these by raising an
alarm. In practice, there are different methods to respond to a detected compromise,
for example, by raising an alert, or, in autonomous settings with multiple devices,
isolating a compromised device. As mentioned before, in the case of DMA’n’Play,
the verifier can also interact directly with the attested device, for example by powering
it off in the case of the syringe pump or excluding a drone from a swarm in the case
of autonomous drones.

5.6.2 Real-Time Capabilities

By using DMA and an external verification device, which are independent of the
processor’s normal operation, DMA’n’Play can even be applied to hard real-time
applications. Such systems have strict responsiveness requirements that limit the
integration of new security techniques.

The data transmission on the DMA controller does not consume any CPU time,
because DMA is a dedicated hardware unit with its own access to the memory
bus and peripheral interfaces. In general, the CPU and the DMA controller both
act as master devices on the memory bus [258, 260]. Since the DMA and the
CPU could potentially compete for the memory bus usage, round-robin arbitration
mechanisms are implemented in hardware [258, 260]. Memory buses can be optimized
for either bandwidth or low latency in sharing. For microcontrollers, such as the
ARM Cortex-M family, memory buses are optimized for low latency in sharing [260].

127

Chapter 5 DMA-Based Remote Attestation

Low sharing latency means that very fast switches occur between memory access
tasks. In addition, DMA latencies can be precisely predicted [258]. Since peripheral
interfaces are relatively slow compared to the speed of the memory bus, the additional
operations on the memory bus are limited. Furthermore, due to the low latency
sharing (round-robin arbitration on the memory bus) implemented between CPU and
DMA, as well as the relatively low speed of peripheral interfaces, there is negligible
impact on the operations performed by the processor.

5.6.3 System Performance View

The attestation mechanism via DMA can potentially compete for memory bandwidth
with the CPU. As mentioned in Section 5.6.2, the hardware implements round-robin
arbitration: Thus, DMA can only occupy up to 50% of the memory bandwidth,
but would not starve the CPU on memory accesses. The overall utilization of the
memory bandwidth varies from application to application. However, the memory
usage of DMA’n’Play will be far below the maximum bandwidth usage of 50%
as the transmission speeds of typical peripheral buses such as UART or SPI are
much less than the memory bus speed. Figure 5.12 shows the transmission speed of
standard UART and SPI configurations.

A typical UART data rate of 115,200 baud is approximately 11.25 kbyte/s, and
an SPI connection clocked with 40 MHz can transfer up to 5000 kbyte/s. The total
capacity of the memory bus is much higher than those achievable over peripherals
such as UART and SPI. The Cortex-M4 core used in our case study in Section 5.6.1
features a 32-bit AHB Lite Bus for the memory interface [29]. According to the
bus specification [23] the transfer consists of one address cycle and at least one or
multiple data cycles. Due to the 32-bit bus width, 4 byte (32 bit) can be transferred
per cycle.

In contrast, SPI is only capable of a single-bit transfer per clock cycle. Therefore,
the SPI peripheral is usually not clocked at full processor speed, but rather at 1

2 or
1
4 of the processor clock. Assuming the drone use case from Section 5.6.1 we used a
processor clock of 160 MHz on the Cortex-M4, the AHB bus clocked at 160 MHz is
capable of transmitting 640 Mbyte/s. The 40 MHz SPI connection (5 Mbyte) would
only take 1

128 and UART at 115,200 baud would only take 1
56888 of the available

memory bandwidth. Therefore, the memory impact of DMA’n’Play is limited and
can be configured by selecting adequate transmission speeds.

5.6.4 Feasibility of Full Memory Attestation

Full memory attestation is feasible, but the attested memory portion and transfer
speed always need to be carefully chosen to avoid the well-known time-of-check/time-
of-use problem (TOCTOU, see also Section 5.7). Attesting 128 kbyte of memory with

128

5.6 Evaluation

Syringe pump Drone
0

2

4

6

8

10

12

With attestation
Without attestation

Po
we

r c
on

su
m

pt
io

n
in

 m
A/

h

Figure 5.11: Power consumption of DMA’n’Play in the case study.

40 MHz SPI takes about 25 ms. On embedded flash memory chips, there is typically
a huge speed difference between reads, which are fast, and writes, which are very
slow. Since flash memory has to be written sector-wise, to write any data, at least
one entire sector must first be erased and re-written. Erasing a sector of a common
chip requires around 50 ms [93]. Slower flash chips even take up to 100 ms [92]. In
practice, this circumstance eases attestation as it effectively mitigates the TOCTOU
problem.

5.6.5 Power Consumption

Power consumption is an important aspect, especially in embedded systems, which are
often battery-operated. We measured the power consumption of our two prototype
implementations for 7 min and measured the total energy consumption. Figure 5.11
shows the results. The drone consumed 50 mW h, the syringe pump 46 mW h, adding
up to 10 mA h and 9.2 mA h respectively. In summary, we could not measure an
increase in the power consumption of the devices running DMA’n’Play compared to
the default implementation. Hence, DMA’n’Play is suitable for mobile applications
and small embedded devices. However, integration of DMA’n’Play can slightly
increase the power consumption of a system due to the influence on the deep-sleep
behavior of the processor [270].

Although the integration of DMA’n’Play does not influence the power con-
sumption of the attested device, the verifier also requires power. Depending on the
processor frequency DMA’n’Play To-Go consumes between 2 and 10 mA at full
load [184]. While in absolute numbers this seems low, depending on the attested
device, the power consumption can be significant. However, the actual power con-

129

Chapter 5 DMA-Based Remote Attestation

0 200 400 600 800 1000
Attestation data in bytes

0

200

400

600

800

Ti
m

e
in

 m
s

9,600 baud
19,200 baud
38,400 baud
57,600 baud
115,200 baud

(a) UART.

0 20 40 60 80
Attestation data in kilobytes

0

2

4

6

8

10

12

14

Ti
m

e
in

 m
s

10 MHz
20 MHz
30 MHz
40 MHz
50 MHz

(b) SPI.

Figure 5.12: Trade-off between bus speed, amount of attested data, and transmission
time.

sumption of the verifier depends on the actual implementation, the microcontroller,
and transmission technologies.

5.6.6 Summary

This evaluation showed the applicability of DMA’n’Play using two real-world
examples, a syringe pump, and a drone. In our practical evaluation, we showed how
DMA’n’Play is able to detect attacks. Furthermore, we showed that DMA’n’Play
does neither increase power consumption nor influence the runtime behavior of the
attested device. This allows a wide usage of DMA’n’Play, including devices with
real-time constraints.

5.7 Security Discussion
The novel approach of DMA’n’Play to remote attestation has several advantages
in practicability compared to traditional remote attestation schemes. But several
security aspects have to be considered when using DMA’n’Play.

Attack Model. For a successful attack, the adversary has to modify memory content,
such as variables, without being detected. The DMA controller, which is independent
of the software running on the attested device, sends the memory content to the
external verifier in a circular process. The verifier continuously monitors this memory
content. As discussed in Section 5.3, the attacker cannot influence which memory is

130

5.7 Security Discussion

being monitored, interrupt this process, or falsify the reported data. Therefore, it is
crucial that the adversary cannot change or influence the configuration of the DMA
controller. In the following, we discuss possible attacks on attestation and show how
DMA’n’Play circumvents these.

Time-of-Check/Time-of-Use. The time-of-check/time-of-use problem (TOCTOU)
describes the circumstance that in remote attestation schemes, there is a delay between
the attestation time when the integrity of the device is checked and execution later on.
An attacker can exploit this time span to carry out an attack without detection. Also,
DMA’n’Play suffers from this problem: The memory is copied in a circular process
to the verifier, leaving a time span between each time a specific memory location is
copied. The length of this interval is dependent on two variables: The amount of
data that is being verified and the bus transmission speed. Figure 5.12 shows this
dependency for typical bus speeds of serial interfaces. The faster the transmission
speed, the shorter the interval between two attestation runs. Note that the graph
does not start at 0 byte. For DMA’n’Play an attestation header is required to
identify the memory layout in the data stream. So, the attestation header has to
be included in all transmissions, even the smallest ones. In our implementation,
this attestation header takes 3 byte. While this time span between two attestation
runs can be exploited in theory, the attacker does not know which memory parts
are currently being attested in practice. As eluded in Section 5.4 the transmission
of the memory content to the verifier is performed by the DMA controller, which is
completely independent of the processor and the software running on it.

Device Authenticity and Offloading. The DMA’n’Play device is physically con-
nected to the attested device, therefore the attacker is not able to trick DMA’n’Play
into attesting a different device (offloading). In order to change the input data to the
DMA’n’Play device, the attacker has to reconfigure the DMA controller. However,
such highly privileged operations like changes to the MPU (Memory Protection Unit)
are not possible according to our threat model in Section 5.3. We show how this can
be achieved on standard commodity microcontrollers in Section 5.4.4.

Limitations. DMA’n’Play does only detect deviations from predefined behavior.
Therefore, modifications to static code in flash will not be discovered. To ensure
integrity of static code, secure boot mechanisms can be implemented. Secure boot
mechanisms are widely available and often already used in many microcontrollers.

Presence of Attestation. The attested device and the verifier are connected via a
one-way serial connection, so there is no feedback channel from the verifier to the
attested device. To change this, a new physical connection between the attested

131

Chapter 5 DMA-Based Remote Attestation

device and the verifier has to be established, a task that has to be performed manually.
According to our threat model, physical attacks are out of scope. Therefore, the
attested device cannot get any response from the verifier. It makes no difference to
the attested device whether a verifier is connected or not. Thus, the attested device
cannot check whether it is currently being attested.

Side-Channels. However, the attested device could use heuristics to determine if it
is attested: Due to the necessity for an external verifier device, in many application
areas, an attacker can use side-channels or heuristics to determine whether it is
likely that a verifier is present. For example, in the case of a vehicle, the integrity is
probably being checked in a garage during maintenance. A drone is unlikely to be
attested during flight with a large verifier. Therefore, we developed DMA’n’Play
To-Go, a small, embedded device that can be used as an external verifier and
be integrated in case a larger external verifier cannot be used. More details on
DMA’n’Play To-Go can be found in Sections 5.4.3 and 5.5.3. So the attestation
can also run during normal operation, identifying attackers during runtime. Attackers
cannot use side-channels to predict whether the device is being attested and which
sections are currently being attested.

Security of DMA Controllers. The security of DMA’n’Play attestation is based
on the assumption that the attacker cannot alter the data that the DMA controller
sends as eluded in Section 5.4.4. Therefore, we must ensure the integrity of the
DMA controller’s configuration. Protection mechanisms for DMA are different with
respect to the targeted platform, and the use case of DMA. DMA is used for fast
communication across peripherals such as network and graphic cards in servers
and workstations, usually over PCI(E). Thus, servers and workstations feature
specific protections like the input-output memory management unit (IOMMU) [5,
15]. However, such protections are not present on MCUs. MCUs have different
architectures and requirements. They are used for embedded applications (for
example, vehicles such as cars and trains, industrial facilities, or IoT deployments) and
require lower communication speeds between peripherals than servers or workstations.
The DMA controller in embedded contexts unburdens the CPU from wasting scarce
CPU time on managing data transfers, such as UART or SPI data transmissions.
For example, a heavy CPU load can limit the system’s ability to meet scheduled
deadlines, which is important in the embedded context. We extensively elaborate
on how to securely lock DMA controllers in Section 5.4.4. We also summarize all
requirements and targeted platforms for DMA’n’Play in Section 5.4.5.

Manipulations of the Attestation Header. The attestation header is a crucial
component in identifying the components of the attested memory region. This

132

5.8 Related Work: DMA Security

attestation header is controllable by the attacker. This means the attacker can fully
manipulate and shift the attestation header. However, the attacker cannot change
the location and amount of the memory being attested, as this requires modifying the
configuration of the DMA controller. If the attestation header is changed, the verifier
does not recognize it, resulting in a failed attestation. If the attestation header is
moved, this is detected during attestation as the positions in the data stream change.
Furthermore, changes to the position of the attestation header cause a misalignment
of the attested data, which also causes the attestation to fail.

Attacks on the Verifier. The security of the verifier is crucial for DMA’n’Play
attestation. Although attacks on the verifier are out of scope, we will briefly discuss
the security aspects of the verifier. Successful attacks from the attested device to the
verifier are unlikely: The attested device and verifier are connected using a one-way
serial connection as eluded before. Interrupting this connection or sending modified
content will make the attestation fail. The verifier receives a known amount of
memory content at a constant rate in a circular process. In this constant process, no
complex data structures have to be parsed, and no new memory areas have to be
allocated. This makes runtime vulnerabilities caused by typical memory errors highly
improbable. The verification process consists of simple comparisons against known
information. As the data rate of the serial connection is fixed at a constant rate,
denial-of-service (DoS) attacks that jam the verifier are impossible. As explained
in Section 5.4 there exists no feedback channel from the DMA’n’Play To-Go to
the attested device. Hence, the attacker cannot exfiltrate any information from the
verifier, such as, cryptographic keys or configurations. In total, there is no realistic
attack scenario on the verifier.

Security of DMA’n’Play To-Go. DMA’n’Play To-Go is a low-end embedded
device that receives data from the attested device and relays it to the external verifier.
This simple process offers little to no attack surface as the input data is not processed.
The fixed transmission rate of the serial connection prevents denial-of-service attacks
(DoS) on DMA’n’Play To-Go. If the attacker increases the transmission speed
unilaterally, not only will data be incorrectly received by DMA’n’Play To-Go,
but the amount of data received will also stay the same. Similar to the verifier,
no feedback channel exists from the DMA’n’Play To-Go to the attested device,
making data exfiltration impossible.

5.8 Related Work: DMA Security
In the related work, we investigate the security of DMA, as this is a crucial component
of DMA’n’Play attestation.

133

Chapter 5 DMA-Based Remote Attestation

DMA allows direct access to memory by external devices without involving the
main processor, thereby increasing the overall system performance. On the downside,
this also facilitates a wide range of attacks, compromising the integrity of a system
or reading critical parts of main memory [177]. Well-known examples are attacks
via Firewire [38, 86], PCIe [117], and Thunderbolt [227]. This attack vector can,
for example, be used to obtain the key of the full disk encryption [43, 86]. It is
particularly critical in case of external interfaces, such as Firewire and Thunderbolt,
which attackers can easily access when they have physical access to the device.

DMA controllers can also host malware [257]. Furthermore, external devices
can be untrusted or contain bugs. To counter attacks with external peripheral
devices, IOMMU has been introduced [5, 15, 26], enabling memory management for
such external devices. However, this has not been proved sufficient [177]. To find
vulnerabilities in devices connected via DMA, both, fuzzing [249] and static analysis
methods [36] have been proposed.

In addition to direct exploitation, DMA access can also be used for indirect attacks.
Network interfaces are a worthwhile target as they enable remote access. Research
found that DMA enables remote Rowhammer-style attacks [268], which, in contrast
to normal Rowhammer attacks, do not need local code execution on the victim [156].
On Intel processors, network cards can even manipulate and observe the processor’s
last level cache (LLC), allowing remote Prime+Probe [175] attacks to leak critical
information [165].

Recent research found side-channel attacks using DMA [45]. An untrusted DMA
device was used to measure subtle timing differences on the shared DMA bus. These
timing differences allowed to leak behavior, such as executed instruction, of trusted
environments such as VRASED [201] and SANCUS [198, 199]. Both systems have also
been used to implement remote attestation [83, 201, 202, 203]. To prevent such attacks,
MicroProfiler has been proposed [46]. MicroProfiler allows the identification of the
exact timing behavior of all instructions by systematically profiling all instructions of
an instruction set architecture (ISA). This information is then used to verify whether
a particular program leaks information over side-channels.

5.9 Summary and Conclusions

In this chapter, we presented the DMA’n’Play framework, that leverages direct
memory access (DMA) to directly monitor the memory of the attested device. Instead
of using trusted hardware components or complex software-based attestation schemes,
we leverage DMA to give a tiny embedded device access to the memory.

In contrast to traditional remote attestation schemes, DMA’n’Play is capable of
directly monitoring the attested device instead of comparing hash values of known
benign states. This has multiple advantages: A preliminary investigation of all valid

134

5.9 Summary and Conclusions

states is not needed, and more complex checks are possible, for example, bounds
checks. Furthermore, the DMA’n’Play framework is also suitable for existing
legacy devices as neither specialized hardware components nor the source code of
the attested application is required. In contrast to software-based attestation, the
implementation of DMA’n’Play is straightforward. In fact, the changes to the
software of the attested device to integrate DMA’n’Play are minimal as the attested
device only needs to send its raw memory contents.

We implemented DMA’n’Play in two real-world examples, a medical device, and
a drone, and showed in full end-to-end examples how DMA’n’Play can be used to
detect compromises of configurations. Furthermore, we provide integration guidelines
that explain how DMA’n’Play can be integrated into new or existing devices and
how to develop configuration files for the verifier to define benign states. In addition,
we propose DMA’n’Play To-Go, a tiny low-cost embedded device that can be
used instead of the verifier. It can either take over the role of the verifier but also
allows to relay the data from the DMA bus to an external verifier. This allows to
attest mobile devices during operation, such as vehicles or drones.

135

CHAPTER 6

Hotpatching of Real-Time Applications

By design, remote attestation has a significant limitation. It solely allows the
detection of attacks or compromises of devices. When remote attestation detects
a compromise, an adequate reaction is required, for example by restoring a benign
state, stopping the affected device, or removing compromised devices from a swarm
or network of devices. However, remote attestation is not able to prevent the actual
attack of a device. To prevent an attack its root cause needs to be resolved. This
is typically done by means of a patch or update that corrects the underlying error,
thereby eliminating the root cause of the attack.

Updating software is a standard feature of computer systems and applications and
has become a standard task in IT. In fact, today, patch management and distribution
of patches belong to the main and common tasks of IT departments [120]. Patching is
also an important measure to increase the security of IoT deployments [12]. The widely
recognized MITRE ATT&CK1 framework [281] describes regular software updates as
mitigation for industrial control systems (ICS), addressing a wide range of attacks,
including the severe drive-by attacks, privilege escalation, and the exploitation of
remote services [272]. Patching is not only important for commodity computer
systems such as servers and desktop computers, and embedded devices such as IoT
devices, but also for highly safety-critical systems like medical devices. Recall that
embedded devices often suffer from manifold vulnerabilities, as eluded in Chapter 1,
including industrial robots [218], vehicles [161], and drones [13].

A recent study showed that even medical devices, in particular pacemakers are
vulnerable [133]. Pacemakers are medical devices permanently implanted in patients’
bodies to regulate the heartbeat when the heart is beating too slowly or irregularly.
The devices send electrical signals to the heart to stimulate it to beat at a regular
rhythm. Modern pacemakers are programmable and can be adjusted to the patient’s
needs and monitor parameters of the heart. While these devices are life-sustaining, a
malfunction can be life-threatening. Patching these devices is possible but challenging
as it can interrupt the functionality or cause unwanted side effects.

1https://attack.mitre.org/

137

https://attack.mitre.org/

Chapter 6 Hotpatching of Real-Time Applications

For instance, in 2017 the FDA (Food and Drug Administration) approved a firmware
update for a pacemaker to fix severe security vulnerabilities that affected more than
450,000 patients [275]. The exploitation of these vulnerabilities allowed an attacker
to obtain unauthorized access and issue commands or modify the settings of the
pacemaker [78]. The update itself was non-invasive. However, it came with side effects.
During the reprogramming of the device, there was a fallback to ventricular demand
pacing. For some patients, this may cause temporary symptoms. Furthermore, the
vendor stated that the update will cause some unpredictable failures and device
resets. These unpredictable events could have severe consequences, and even be
fatal [162]. The manufacturer advised, that patients dependent on pacemaker should
consider having this upgrade performed in a location where temporary pacing and
pacemaker generator can be readily provided [275].

The pacemaker is only an example of a whole class of devices that fulfill safety-
critical tasks that cannot be interrupted, often because they interact with the physical
world. As shown in Chapter 2, there are many areas in which such devices perform
highly critical tasks, and where device failure has severe consequences, such as in
vehicles, industrial machines, robotics, and medical devices.

While the installation of updates is a standard procedure, this process usually
requires a reboot or restart of patched services, thereby interrupting the service of
the patched device or application. In general, the rate and speed of patch deployment
are significantly affected by the update method used [191]. Patches for IoT devices
are usually relatively large as they typically contain the device’s full firmware, and
need to be applied in a single step without interruptions due to the architecture
of the devices. This typically results in system downtime due to the need for an
interruption of the normal operation to apply the update and a loss of state due
to a reboot. As a result, updates must be planned. For instance, it is necessary
to wait for acceptable downtime or patching windows, thereby delaying the patch
application. Sometimes, devices even do not accept any downtime as they need to
operate continuously, for example in control units in plants [95] or medical devices
such as the aforementioned pacemakers [162].

However, this creates a window of opportunity for attackers to exploit unpatched
devices, even when patches have already been released. Although this may initially
seem like a minor issue due to the limited time window, recent studies have shown
that exploits for a given vulnerability are often publicly available within a day of
the patch being released [243]. So, this presents a serious security concern for IoT
systems, especially considering devices with safety-critical tasks, where a compromise
can have serious consequences.

A solution to this problem is hotpatching. Hotpatching is the application of
patches during runtime. This way, the system remains fully available at all times
during the patching process, as the normal operation of the system is not interrupted,
no processes are stopped, and the system state is preserved. Research focused on

138

hotpatching of traditional service [238] and in particular server applications [63, 122,
213]. However, hotpatching of embedded devices and, in particular, systems with
real-time constraints, have not been given much consideration. Hotpatching is a
complex process as it is performed while the system remains running in parallel.
Thus, it must be ensured that there are no interactions between the patching process
and the normal operation, so that the patched system remains functional at all times.

Hotpatching of systems with real-time constraints faces additional challenges.
While in hotpatching of commodity computer systems, the timing behavior is less
relevant [238], for real-time systems the timing behavior is crucial. As hotpatching
influences the operation of the patched system, typically by adding code fragments,
it must be ensured that the timing behavior of the patched system remains
within all thresholds. During the development of real-time systems, the timing
behavior is verified in the so-called profiling phase. So, a hotpatching solution for
real-time systems must have a small and deterministic overhead. Large delays or
unpredictable behavior of the patching process can result in missed deadlines of
the real-time system and hinder profiling during patch development. Despite all
these challenges, hotpatching remains the only solution to apply patches to resolve
security vulnerabilities during runtime, when downtime is not an option.

Contributions. In this chapter, we present a new hotpatching framework called
HERA (Hotpatching for Embedded Real-time Applications). HERA leverages a
common debug feature of commercial off-the-shelf processors to activate newly
applied updates in real-time with predictable and minimal overhead. Using hardware
breakpoints, we can activate patches in a single processor instruction, without the
need to modify the installed firmware. This way, the timing behavior of the patching
process remains precisely predictable, so that no real-time constraints are violated.
Unlike existing methods such as Katana [219] and Kitsune [136], our approach does not
require dynamic linking or prior modifications to the target program. Furthermore,
we do not need to modify the installed firmware. Firmware modifications during
runtime are challenging to the monolithic architecture of the firmware, and the
block-writable flash memory of embedded devices.

In the HERA hotpatching process, the patch is prepared in the background during
idle time, without interfering with real-time critical tasks. Once the patch has been
applied, it is activated using a single processor instruction using the breakpoint unit
that is implemented in hardware. The overhead to switch to the patched section is
minimal, as this is done using a hardware-based processor feature and a trampoline
to jump to the corresponding code section.

There are two methods to develop hotpatches for HERA. The first method is to
develop the patches in higher programming languages and then derive the hotpatch

139

Chapter 6 Hotpatching of Real-Time Applications

from the compiled binary using binary diffing. This approach is preferred when the
source code is available. The second method involves creating patches directly on
the assembly level. This allows the development of patches for closed-source devices
when no source code is available.

We show how to implement the HERA framework and give detailed integration
guidelines. In a comprehensive evaluation, we implement HERA in two critical
embedded devices, a syringe pump and a heart rate sensor to show its applicability.
In addition, to show its practicability, we use HERA to patch a real-world
vulnerability in the popular FreeRTOS real-time operating system. Furthermore,
we perform extensive measurements to verify the runtime properties of the HERA
hotpatching strategy. Using an oscilloscope, we measure the runtime overhead
during patch application and show that HERA is even applicable to systems
with hard real-time constraints. This is the class of the most critical real-time systems.

In summary, we provide the following contributions.

• We propose HERA, the first hotpatching framework that uses internal hardware
debugging features to apply patches instantaneously, which is suitable for
real-time devices, even with hard real-time constraints. HERA considers
the architecture of embedded devices, such as block-writable memory, and a
monolithic, static software architecture. HERA does neither require hardware
changes nor source code of the patched system.

• In addition, we line out detailed implementation guidelines that explain how
to integrate the HERA framework into existing applications and how to adapt
existing patches to create suitable hotpatches.

• We show the applicability of HERA. Using the HERA framework, we patched
two real-world medical devices with real-time constraints, namely a syringe
pump and a heartbeat sensor. Furthermore, we used HERA to patch a
vulnerability in the FreeRTOS operating system.

• In an extensive measurement study, we verified that HERA is suitable for
systems with hard real-time constraints due to its predictable behavior as well
as its deterministic, minimal overhead when applying the patch.

6.1 Background: Hotpatching Strategies
Hotpatching means applying a patch during runtime, without disrupting the normal
operation. One main challenge in hotpatching is activating the patch while maintain-
ing the program state. In any scheme, eventually, the execution of the application

140

6.1 Background: Hotpatching Strategies

needs to be altered during runtime to activate the patch. There exist three different
approaches to implementing hotpatching on embedded systems.

6.1.1 Relocatable Executables

One approach to hotpatching is to modify the links between program components.
Dynamically linked applications reference code that is not included in the compiled
library. During runtime, these links are dereferenced and then loaded. This is in
contrast to statically linked libraries, which are included during compile-time and
therefore are a fixed part of the compiled binary. Dynamic linking is a common
concept for shared libraries in modern operating systems such as Windows and Linux.
The operating system holds a data structure containing symbolic links to the shared
code and resolves those links during runtime. These dynamic links can be used
for hotpatching: To replace application components, only the references have to
be changed. This allows the exchange of whole components while maintaining an
unlimited number of total active patches. This is a popular approach to implementing
hotpatching. For example, the frameworks Katana [219] and Kitsune [136] require
dynamic linking. While dynamic linking is common for commodity computer systems,
embedded devices are often statically linked. Especially embedded systems with
real-time constraints are typically linked statically due to the need for predictable
runtime and reduced overhead. Dynamic linking can create overhead and may reduce
predictability, a key property of a real-time system. For example, the FreeRTOS
real-time operating system is statically linked [137]. Consequently, such systems
cannot use patching frameworks that necessitate dynamic linking.

6.1.2 Instrumentation

Another approach to implement hotpatching is directly modifying the program during
runtime. In the case of embedded devices, this implies changing the device’s firmware.
This is often implemented using so-called trampolines [303]. Trampolines are simple
instructions such as branch or jump that allow the insertion of complex changes
without many modifications to the original application. However, on embedded
devices, this approach is limited by architectural properties. Embedded devices often
feature block-writable memory, so whole blocks must be written at once, resulting
in large overhead, see Section 3.7. While these constraints on the one hand allow
implementing the attestation schemes in Chapter 3 and 4, on the other hand this
is a limitation when performing patching during runtime. Especially in the case
of systems with guaranteed responsiveness, the delays incurred by writing whole
blocks in the flash memory make the patching process inadequate for systems with
real-time constraints. While in this approach instructions are inserted into the
application before being executed, this can alternatively also be done during runtime.

141

Chapter 6 Hotpatching of Real-Time Applications

In dynamic binary translation, the application is executed in a translator component
that is capable of replacing or adding instructions on-the-fly [212]. The hardware
architecture of embedded devices does not limit this approach, as it does not need
to modify the firmware. However, dynamic binary translation generates overhead
and requires additional system resources, which are limited to embedded devices.
Furthermore, the profiling must be repeated when implementing dynamic binary
translation into legacy systems with real-time constraints due to the added overhead.
This is to ensure that all timing deadlines are met at all times, even though the
original binary has not been altered.

6.1.3 A/B Hotpatching

A/B patching requires maintaining two instances of the patched system: one instance
that is currently active and running, and another instance that is available for
updates. The general idea is that the updates can be performed on the inactive
instance, independent of the running instance. When the update process is finished,
a switchover is made from the active instance to the newly updated instance [168,
190]. The main advantage of this approach is that it reduces downtime, as the switch
can be made quickly and seamlessly without interrupting the system’s operation.
The duration of the patching process itself does not influence the normal operation,
as it is done on the inactive instance. However, the A/B patching method incurs
significant overhead: It requires twice the amount of memory to hold both instances,
as well as a dedicated management mechanism to perform the update and the
switchover. A/B patching is commonly used in practice for over-the-air updates
on embedded and mobile devices. For example, the ESP32 uses an A/B updating
scheme [100], and system updates of modern Android smartphones also use an A/B
method [20]. However, both systems require a full reboot to perform the switchover
to the patched instance and thereby activate the update, thereby interrupting the
normal operation. When using A/B patching for hotpatching, the state of the active
and the patched system need to be synchronized to allow a seamless switchover,
making the implementation of the switchover a complex task compared to the reboot-
based approach. Furthermore, due to cost reasons, embedded devices usually have
minimal hardware and memory capabilities, making maintaining two copies of the
system infeasible. The A/B hotpatching approach can be extended further by using
multiple instances of the same system in parallel. This way, it is possible to take
a single instance offline, apply the patch, and take it back online, while the other
instances continue to operate normally [62]. But, this method requires even more
resources as these instances have to be executed in parallel.

142

6.2 Challenges

6.2 Challenges
Hotpatching is patching a system during runtime. This is a complex process that
requires careful implementation to avoid interference with normal operation. It
is crucial to ensure that the changes are applied correctly and do not cause any
unintended behavior or system instability. Especially in the realm of systems
with safety-critical constraints, the patching process may not impair the correct
functionality of the device in any way. In systems with real-time constraints, all timing
constraints have to be met before, while, and after applying the patch. Especially
in systems with hard real-time constraints, there may not be any circumstances
in which the deadlines are missed. Thus, the behavior of the patching process
must be deterministic, to guarantee compliance to functional and timing constraints.
Integrating hotpatching into legacy devices poses further challenges, as these devices’
software and hardware architecture is predefined and cannot be changed easily.

Despite these challenges, hotpatching is the only solution to react to newly discov-
ered critical vulnerabilities when regular patches cannot be applied due to the need
for downtimes or system reboots. Because hotpatches are applied during runtime,
it is important to consider the state of the patched system. This is in contrast to
traditional patching, where the state is reset to a determined condition with a restart
of the module, application, or whole system.

In particular, hotpatching embedded systems with real-time constraints poses the
following challenges.

Challenge 1: Continuous Operation. The patched system must continue to op-
erate normally. Neither the application of the patch, that is, the downloading and
integration of it into the system, nor the activation of the patch may interrupt or
impair the operation of the system.

Challenge 2: Predictable Timing and Real-Time Constraints. The correct opera-
tion of a real-time system also includes its timing behavior. So, a hotpatching scheme
for real-time systems must obey all timing deadlines of the patched system. This
means that tasks related to applying the patch, but also activating and running the
patched components, may not negatively impair the timing behavior of the patched
system. Even under worst-case conditions, timing deadlines may not be missed.

Challenge 3: Deterministic Behavior. Systems with safety-critical tasks and hard
real-time requirements must fulfill these constraints under all circumstances. This is
verified during development in the so-called profiling phase. Thus, these devices need
a deterministic behavior to ensure these constraints. This is especially challenging in
complex systems with many parallel tasks, all possible states must be considered to
prevent concurrency issues.

143

Chapter 6 Hotpatching of Real-Time Applications

Challenge 4: State Preservation. Hotpatches are applied on a running system.
During runtime, the state of the system, which includes the memory content and the
currently executed commands, constantly changes. When hotpatches are developed,
this state must be preserved and may not be corrupted to ensure constant availability
and no service interruption. Moreover, when a patch requires state changes, the
hotpatching scheme needs to perform these without interrupting the system’s normal
operation.

Challenge 5: Legacy Devices. Developing a patching method for legacy devices
induces challenges on both the software and hardware level. The patching scheme
needs compatibility with existing hardware, as hardware changes in legacy devices are
often not an option as we showed in Chapter 2. In addition, the patching process must
work with few hardware requirements. Embedded devices are used in large numbers;
therefore, they are optimized to use minimal hardware. They are also designed to
consume little energy, because embedded devices often operate in environments with
a limited energy supply, for instance, when they are battery-powered. As a result,
existing embedded devices often have little spare hardware resources and memory.
Thus, approaches such as A/B patching are not applicable on this type of device. In
addition, during runtime, changes in the software architecture of legacy devices are
often infeasible. Embedded devices typically feature a single monolithic firmware
block. Furthermore, this firmware is statically linked to ensure a deterministic
behavior due to real-time constraints. Often, source code of these applications is
even not available. In these cases, patching based on binary firmware is the only
option.

Challenge 6: Patch Development. Ideally, a hotpatching scheme allows applying
existing normal patches as hotpatches, thereby reducing the effort for developing,
implementing, and testing the patches. Especially in safety-critical systems where
the correct functionality is an important aspect, testing and verification require a
significant amount of work. Hotpatching schemes that require additional development
are less likely to be adopted.

To the best of our knowledge, there does not exist a hotpatching solution for
embedded devices that addresses all of these challenges. Prior research focuses on
the correctness and safety properties of the patch application, reducing downtime
and resource usage, or requiring dynamic linking which embedded devices often
do not feature. For instance, the Cetratus framework [190] uses a quarantine
mode to initialize, test, and monitor a live patch. The hotpatching frameworks
Katana [219] and Kitsune [136] both require dynamic linking and thus cannot be
used on real-time embedded devices that are statically linked. We review further

144

6.3 Assumptions and Threat Model

hotpatching approaches in the related work in Section 6.9.

Our solution HERA addresses all of these challenges. HERA uses widely avail-
able hardware debugging features of typical embedded system processors to apply
hotpatches during runtime to replace instructions on-the-fly. Furthermore, in con-
trast to other hotpatching schemes, such as A/B patching, the memory overhead
is minimal as the active instance is patched directly. Therefore, HERA is also
suited for legacy devices. Finally, the usage of these hardware features that allow
predictable instruction replacement minimizes overhead for the patch application
while maintaining deterministic behavior, a crucial requirement for systems with
hard real-time constraints.

6.3 Assumptions and Threat Model
In the following, we describe the prerequisites to implement HERA hotpatching on
embedded devices.

6.3.1 Assumptions
We assume an embedded device with real-time constraints. The device features a
real-time operating system (RTOS) architecture that accommodates different types
of deadlines, including hard, firm, and soft deadlines. The RTOS correctly schedules
all tasks and ensures that all deadlines are met. The system has a vulnerability
that needs to be patched. We assume that a patch is available and that the system
has sufficient resources to run the patched system. So, the patched system must
still be able to function correctly, including meeting all deadlines of time-critical
tasks. In addition, the embedded device features a hardware-based method to
perform instruction replacement, as described in Section 6.4, to implement the
atomic switchover, such as the Flash Patch and Breakpoint (FPB) unit of ARM
M3/M4 processors.

We assume a secure updater that is capable of performing the update process.
The system has idle time or low-priority tasks that can be rescheduled to allow the
download and processing of the patch in the background, as well as the memory
required to do so. Therefore, a secure updater module is able to check for an update,
as well as download, verify its integrity, and apply the patch in the background
without violating real-time constraints. Furthermore, the updater can trigger the
switchover of the HERA framework. As the updater needs to be adapted to its
use case, the updater itself is not part of the HERA framework. Such updaters
are a common feature of IoT devices [12]. For instance, FreeRTOS already features
an updater that allows over-the-air (OTA) updates [114] and includes functionality
to (1) receive, parse, and validate the update request, (2) download and verify the

145

Chapter 6 Hotpatching of Real-Time Applications

file according to the information in the update request, (3) run a self-test before
activating the received update to ensure the functional validity of the update, and
(4) update the status of the device. This updater service can be adapted to the
requirements of HERA.

6.3.2 Threat Model

We assume that the device has a security vulnerability, caused, for example, by a pro-
gramming flaw. A remote attacker is able to exploit this vulnerability. Furthermore,
we assume that a patch is available to fix the vulnerability and mitigate the root
cause. The patch may be available as a binary file or as source code. Typically, such
patches are simple and featureless [14]. We assume that this patch can be applied
by adding or replacing code blocks, for instance, to change statements, add checks,
or validate inputs. We exclude complex feature updates, that change large parts of
the firmware. We assume the update process to be secure. The attacker is unable
to compromise the updater service. So, we assume that the updater itself does not
have any vulnerabilities, and all updates are checked for integrity and authenticity
before being applied. We exclude physical attacks on the device.

6.4 Concept of HERA

The main concept of HERA is to use common hardware debugging features of
embedded devices to implement hotpatching on these systems. We use these de-
bugging features to perform the switchover to patches with minimal overhead while
maintaining deterministic behavior. In particular, we use an instruction replace-
ment functionality to perform dynamic trampoline insertion in the execution of
the program binary. This way, we can jump to arbitrary code sections within a
single processor instruction. Thus, we do neither need to modify the program binary
to apply patches nor introduce overhead due to dynamic translation or additional
memory for A/B patching schemes. This design makes HERA suitable for embedded
devices with timing requirements, including the most critical systems with hard
real-time constraints.

The instruction replacement feature that HERA uses is widely available in com-
mercial of-the-shelf processors, such as the ARM Cortex-M3/M4 and the ESP8266,
and its successor ESP32. Hence, HERA can also be implemented on legacy devices,
as HERA only requires changes to the software. HERA works on standard real-time
operating systems (RTOS) and can be integrated into the updater services of com-
modity embedded devices. This makes HERA a suitable solution for legacy devices,
as neither their hardware nor their software architecture needs to be changed.

146

6.4 Concept of HERA

Microcontroller

Cortex-M3/M4 processor

Processor core

Flash

Internal bus

SRAM Peripherals

Breakpoint unit (FPB)

Instrumentation (ITM)

trace

Data watchpoint &

trace unit (DWT)

ETM (program) trace Trace point interface

unit (TPIU)

Figure 6.1: The FPB unit in ARM Cortex-M3/M4 processors is connected to the
CPU via a bus [293].

In the following, we discuss the functionality of the hardware debugging unit. Then,
we explain the design of HERA. After that, we describe the different components of
the HERA framework and the complete patching process.

6.4.1 Hardware Debugging Units

Commodity microcontrollers in embedded devices have several debugging features.
One widespread feature allows inserting breakpoints for debugging purposes. Devel-
opers can set breakpoints to halt and resume the execution of the processor. This
way, developers can examine the state of the processor, memory, and peripherals
at specific moments during execution. This method is typically used during devel-
opment to identify bugs. Hardware debugging units can also have other features.
Another widespread feature is an instruction replacement functionality that allows
the replacement of a single instruction.

147

Chapter 6 Hotpatching of Real-Time Applications

For example, the ARM Cortex-M3 and M4 processors feature a so-called flash
patch and debugging (FPB) unit, which has such an instruction replacement func-
tionality [25]. Figure 6.1 shows the architecture of such processors [293]. The FPB
unit is connected with the processor core via a bus. The FPB unit can interrupt
the normal execution of the processor, drop the fetched instruction, and replace it
with a different instruction. During execution, a comparator checks for breakpoints.
When a breakpoint is reached, the execution is halted or instructions are replaced.
This functionality is implemented in hardware. A full FPB unit can handle up to six
breakpoints [292]. The Cortex-M3/M4 processors are good examples of typical pro-
cessors in embedded devices. ARM is the most popular processor architecture. More
than 100 billion processors with an ARM architecture have been shipped [30]. The
ARM processor architecture is especially popular for embedded and IoT devices [30,
88]. Many devices with real-time constraints are built using such processors. For
example, many programmable logic controllers (PLC) that are used for control tasks
in industrial applications use ARM processors [237].

In HERA, we use the instruction replacement functionality integrated in commod-
ity processors to apply patches during runtime. We redirect the control flow to the
patches without impairing the systems’ performance. As the instruction replacement
is performed in hardware, the overhead is minimal and constant. This functionality is
not limited to the FPB unit of ARM Cortex processors but is a widespread feature of
hardware debugging units. For instance, the Tensilica Xtensa processor architecture
has a similar debug functionality [269]. Tensilica Xtensa processors are used in
Espressif ESP8266 and its successor ESP32 microcontrollers, which are a popular
basis for IoT devices due to their integrated Wi-Fi functionality [99, 103]. Espressif
shipped more than 100 million of such chips [96].

6.4.2 Patching Process

The HERA hotpatching framework uses the onboard debugging unit of embedded
processors to apply hotpatches. Using the instruction replacement functionality,
HERA is able to modify the binary during runtime without actually modifying the
binary. HERA uses breakpoints to insert trampolines into the application during
runtime. With these trampolines, the execution is redirected to patches. As the
jumps to the patches are done in hardware, these instructions are atomically and
cannot be interrupted. The number of different trampolines is dependent on the
number of breakpoints available in the debugging unit.

Figure 6.2 shows the general architecture of HERA. The HERA patching process
consists of two phases. In the first step, the patch is prepared. The updater process
fetches the update, verifies its integrity, unpacks and copies it to the correct memory
sections. This is done during idle time when no tasks are scheduled, or by rescheduling
low-priority tasks. In the second step, after successfully preparing the patch, the

148

6.4 Concept of HERA

Hotpatch

System

Real-time operating system

Task 1

High priority

Low priority

Software

Hardware

Task 2
(patched)

Task n...

FPB unit

Download

HERA

Atomic

switchover

Trampoline

insertion
Updater Task

Figure 6.2: Concept of HERA hotpatching. After the updater has downloaded and
prepared the patch, the hardware-based flash patch and breakpoint unit
(FPB) triggers a switchover to the patched region using a trampoline.

updater activates the patch. This is done in an atomic switchover using the hardware
breakpoint unit. Once the breakpoint unit has been configured, the hotpatch is active.
The processor inserts a jump to the patch section when the breakpoint is reached
using the corresponding trampoline function. HERA works on standard real-time
operating systems (RTOS) that schedule all tasks according to their priorities and
deadlines. The RTOS also schedules the HERA updater process that fetches and
prepares the patch to run in the background without impairing the real-time tasks.
Note that this patch preparation step is not time-critical and hence can be interrupted
at any time as it does not influence the normal operation.

Figure 6.3 shows an example of the execution of the patching process. The
system runs tasks of different priorities. When no tasks are running, the processor
is in idle state. During this time, the patch can be prepared. This process is
interrupted multiple times to execute other tasks with low and high priorities. The
RTOS performs the scheduling of these tasks. After the patch preparation has been
completed, the hotpatch is activated. When the breakpoint is reached, a jump to

149

Chapter 6 Hotpatching of Real-Time Applications

Low-priority task

Updater task/IDLE

High-priority task

Jump to patch code

Jump back

Time

Figure 6.3: Sequence view of the patching process. The updater runs in the back-
ground during idle time. When the patch is activated, there is an atomic
jump to the patched code.

the patched code is inserted using a trampoline. This process seems like a standard
patching process with trampoline injection [303], as described in the background
in Section 6.1.2. In HERA however, this insertion is done on the hardware level,
inducing minimal and predictable overhead, in contrast to software-based approaches.

In the following, we describe the two steps of the patching process in detail.

Patch Preparation. The updater task performs the patch preparation step. The
updater task fetches the update, typically by checking for new updates in regular
intervals and then downloading the updates as soon as they are available. The patch
consists of two parts: First, the actual hotpatch, which consists of pre-compiled code
for the target architecture. Second, the meta-information on the hotpatch, which
contains all information necessary to apply the code of the patch, such as insertion
points and code sizes. Typically, both parts are packed together in a container format
and signed to allow the verification of the integrity and authenticity of the patch.
The updater unpacks the patch and copies the patch code to a patch slot in RAM.
Then, the updater configures the breakpoint unit using the meta-information of the
patch and prepares the trampoline code for the jump to the patch. On some system
architectures, it is not possible to redirect the control flow directly to the RAM,
where the patch is stored. For such cases, HERA features predefined trampolines in
ROM. A dispatcher selects the correct trampoline using the control flow information
on the stack. In summary, the patch preparation process covers the following steps:

1. Checking for updates and download of the patch.

2. Verification of the authenticity and integrity of the patch.

3. Extraction of the meta-information from the patch.

150

6.4 Concept of HERA

Processor
CPU interrupt

and instruction

replacement

Memory

<Instruction>0x00

<Instruction>0xff

...

Patch Table

BL JUMP_SECTIONBreakpoint 1

Breakpoint n

...

BL JUMP_SECTION

...

FPB Unit

Figure 6.4: The processor is able to insert trampolines using the instruction replace-
ment function of the FPB unit.

4. Copying the patch into a patch slot in the memory and performing the patch
preparation.

5. Setting up the trampoline for the patch. Alternatively, if direct jumps from
ROM to RAM are not possible, the addition of an entry to the dispatcher.

6. Configuration of the breakpoint unit with the insertion point and branching
instruction.

7. Activation of the patch by triggering the atomic switchover.

In the following, we explain how the patch is activated using the atomic switchover
and how these breakpoint units work in detail.

Patch Activation Using the FPB. When the patch preparation is completed, the
patch can be activated using an atomic switchover. This switchover is atomic, as it
only requires writing one register, which is done with a single assembly instruction.
By definition, a single assembly instruction is atomic as it cannot be split in software.
To insert a patch, a breakpoint needs to be configured. Breakpoints are typically
used for debugging purposes. These breakpoints can be configured using specific
hardware registers. HERA uses these breakpoints to insert patches during runtime.
Figure 6.4 shows the functionality of the breakpoint unit. The breakpoint unit
monitors all the instructions that the processor executes. For each breakpoint, the
breakpoint unit has a comparator. In this way, the breakpoint unit can perform

151

Chapter 6 Hotpatching of Real-Time Applications

FPB unit:

Replace instruction with

entry of patch table

RAM

Monitoring of execution

Fetch next instruction

Execute instruction

Instruction

address in patch

table?

YesNo

1

2

3

4

5

6

Jump_section:

Jump to dispatcher

Dispatcher:

Identify patch location

Jump to patch

Patch:

Execute patch

Jump back

ROM

RAM

RAM

RAM

Hotpatching process

Memory

<Instruction>

<Instruction>

...

<Instruction>

Figure 6.5: The process flow of the trampoline insertion using the dispatcher.

152

6.4 Concept of HERA

hardware-based identification of breakpoints. Breakpoints are identified by memory
addresses. When a breakpoint is reached, the breakpoint unit can interrupt the
execution, for example, to enable debugging. In HERA, we use this breakpoint to
insert trampoline instructions to jump to a patch. These replacement instructions are
stored in the patch table. Each breakpoint references one instruction that is replaced.
During this process, the system continues to operate normally; the execution is not
delayed as the debugging unit is implemented in hardware. Furthermore, because
these interrupts are handled in hardware, this hotpatching process is transparent to
the patched system. Breakpoints are independent of each other, thus it is possible
to reconfigure breakpoints to add or modify hotpatches without impairing other
hotpatches.

The process of replacing instructions and applying patches is depicted in detail in
Figure 6.5, focusing on the switches between RAM and ROM. These switches are
crucial for patch application, as modifying the firmware of embedded devices during
runtime is challenging, as eluded earlier. Often, the firmware is only block-writable,
or even not writable at all during runtime. Therefore, HERA uses RAM to store
hotpatches, which is fast to write with fine granularity. The programming models for
debugging units differ between processors, although they have the same instruction
replacement functionality. Therefore, in the following we focus on the flash patch and
breakpoint (FPB) unit of ARM processors, which we also use for our implementation
of HERA.

1. The breakpoint unit continuously monitors the instruction that the processor
executes by comparing the respective memory addresses with the configured
breakpoints

2. When a breakpoint is triggered, the current instruction is aborted and replaced
with the corresponding entry from the patch table.

3. The dispatcher is called using a branch-and-link instruction.

4. The ARM Cortex processor does not support direct branching from ROM,
where the original application is stored, to the hotpatch in RAM. Because of
these range limitations, we use a dispatcher in RAM that allows us to perform
this switch indirectly.

5. Then, the patch is actually executed.

6. After the execution of the patch, the control flow finally returns to the original
location and continues the normal execution of the application.

153

Chapter 6 Hotpatching of Real-Time Applications

6.4.3 Limitations
The goal of HERA is patching critical security vulnerabilities during runtime without
interrupting the normal operation, and while maintaining all timing constraints.
These vulnerabilities are for example caused by common memory errors. To mitigate
them, typically additional checks need to be introduced, or code segments must be
replaced. Nevertheless, HERA can also be used to add additional functionality, for
instance by adding new code parts. However, hotpatches should remain simple, as
complex changes need a verification that the state of the application is not corrupted.
During runtime, the internal state, that is, the program state and memory contents,
are constantly changing. So, modifying this state is a sensitive task, which should
be kept as simple as possible. In practice, this is no limitation, as security patches
are typically small and do not contain new features [14]. But to support complex
changes to the memory layout the HERA framework needs to be extended to ensure
consistent state changes.

By design, HERA hotpatches are not persistent. This means, that these patches
are removed upon reboot. This is an intentional design, as writing to non-volatile
memory on embedded devices is often not feasible and, in addition, typically incurs
significant overhead due to the usage of block-writable flash memory. In order to
keep HERA hotpatches during reboots, the updater service needs to be adapted
such that it loads and applies the hotpatches upon start of the device. However, if
writable permanent memory is available, HERA can also be modified to use this
memory to implement permanent hotpatches.

Another limitation of HERA is the number of active patches. For each patch,
the processor needs to maintain a separate breakpoint. The number of active
breakpoints a processor can keep is limited by its hardware. For instance, the
flash patch and breakpoint unit of the ARM Cortex-M3/M4 processor features six
slots for breakpoints [292]. However, not every patch needs a dedicated breakpoint.
Combining multiple patches into one breakpoint or addressing multiple vulnerabilities
in one patch is possible. The breakpoint is only the entry point to the patch and
does not limit the size of the patch. In addition, HERA focuses on hotpatching.
As HERA hotpatches are non-permanent, the hotpatches should be replaced by
permanent, traditional patches at the earliest convenience, freeing up breakpoints
for new hotpatches. In practice, on typical embedded devices a full firmware update
will be applied during the next patching window or planned reboot of the system.
After this, all breakpoints are available again.

6.5 Implementation
To show the applicability of HERA, we performed an extensive case study. We
integrated HERA into two real-world medical devices that have strict real-time

154

6.5 Implementation

constraints and used HERA to patch a critical real-world vulnerability in the popular
FreeRTOS real-time operating system. We implemented HERA using the popular
ARM Cortex-M4 processor that features a flash patch and breakpoint unit. In
the following, we focus on the implementation of HERA on such processors. The
programming model of other debug units may differ, so porting HERA to other
platforms may require adaptations. However, only the hardware-specific parts of the
framework need to be changed. For the implementation, we used a STMicroelec-
tronics NUCLEO-F446RE development board, that features a Cortex-M4 processor,
128 kbyte RAM, and 512 kbyte of flash memory. This is a typical hardware config-
uration of embedded devices. First, we describe the main functions of the HERA
hotpatching framework. Second, we explain how to develop compatible hotpatches.
Then, we show how this hotpatch is applied. To illustrate the functionality of HERA,
we show how we developed a patch for a critical vulnerability in the FreeRTOS
real-time operating system as an example. In the evaluation in Section 6.7 we give
more details on the integration in the medical devices.

6.5.1 HERA Library
The main component of HERA is the HERA library. This library is implemented
in C and supports the implementation of hotpatching on embedded devices using
common hardware debugging features as eluded earlier. To integrate a hotpatch,
besides the actual patch, three things are required: A hardware breakpoint to perform
the trampoline insertion, the trampoline to deviate the control flow to the hotpatch,
and the insertion point, that is the location in the original application where the patch
is integrated. The HERA library provides functions to configure the flash patch
and breakpoint (FPB) unit, loads patches, integrates a dispatcher, and activates the
patch by performing an atomic switchover. In particular, the HERA library has the
following main functions:

fpb_init. First, the fpb_init function is called. It checks whether a compatible
FPB unit is available. If so, it initializes the FPB unit by preparing and referencing
the necessary data structures and then confirms a successful initialization.

fpb_enable. This function enables the FPB unit by setting the corresponding
configuration bit. It can be used to enable or disable HERA globally.

enable_single_patch. This function can enable a patch. First, the function
creates a trampoline to a hotpatch. The trampoline consists of a branch instruction.
There are two options to specify the target of the branch instruction. Either, a patch
can be supplied. Alternatively, the target can be calculated based on given offsets.
Furthermore, the function configures the breakpoint to insert the hotpatch. After

155

Chapter 6 Hotpatching of Real-Time Applications

completing these preparation steps, the function performs an atomic switchover to
activate the hotpatch. This is done by setting the register of the breakpoint.

load_patch_and_dispatcher. This function loads and prepares the patch. First,
the function loads a simple dispatcher to allow indirect jumps to the hotpatch in
RAM. This dispatcher is then configured according to the meta-information provided
with the patch. Finally, the patch is copied to the correct location in RAM.

The resulting patch application process has the following steps.

1. The availability of a suitable FPB unit is checked.

2. The FPB unit is initialized

3. The dispatcher is loaded into the RAM

4. The patch itself is also loaded into the RAM.

5. Now, the optional dispatcher can be configured accordingly. The dispatcher is
only needed if required due to architectural limitations, as in our case study.

6. Finally, the hardware breakpoints can be configured.

This patching process is integrated in a single, low-priority task. The task is
interruptible at any time and can be scheduled by the operating system. The
operating system ensures that all deadlines are met, and interrupts the patching
process when required. All critical sections during the HERA hotpatching process
are atomic assembly instructions and hence cannot be interrupted by the operating
system. In this way, HERA does not influence critical real-time tasks.

6.5.2 HERA Patch Development
Hotpatching requires a dedicated patch format. As discussed in Section 6.1, firmware
updates on embedded devices are typically large due to their monolithic software
architecture. However, HERA hotpatches must be small so that they can be applied
during runtime. Furthermore, in addition to the actual patch, meta-information
on processing and applying the patch needs to be provided. In the following, we
describe how hotpatches for the HERA framework can be derived from traditional
patches.

In HERA, we focus on patching security vulnerabilities. In contrast to feature
updates, these patches are small and featureless. The application of security patches
is time-critical to prevent exploitation of the patched vulnerabilities. So-called
zero-day vulnerabilities are vulnerabilities that become public before patches are

156

6.5 Implementation

available. Furthermore, by making a patch available, also the vulnerability is made
public so that exploitation is likely [183]. However, patch application comes at a
risk: the patch could break the application. To prevent this, patches need to be
tested, or even scheduled to maintenance windows, where interruption due to patch
application is acceptable. Therefore, it is good practice in software development to
separate security patches from feature updates to minimize the risk when applying
time-critical patches [256]. This is similar to the motivation for hotpatching, which
allows the application of patches without interrupting the patched service.

Hotpatches for HERA can be derived from traditional patches. So, when a
traditional patch for a vulnerability is available, also a hotpatch can be developed
without significant additional effort. To develop a hotpatch, the compiled version
of the patched and unpatched firmware are compared using standard static code
comparison techniques. In the case of security patches, this process is simple and
straightforward. Popular tools for this task are for example IDA Pro2 and Radare23.
These tools can also be used to determine the insertion points for the hotpatch as
well as the location to store the hotpatch in the RAM. This approach to develop
hotpatches also works when no source code of the firmware is available, as this is
often the case for embedded and IoT devices. Furthermore, this step fits neatly into
traditional software development processes. After a patch has been developed and
tested, the hotpatch can be directly derived from the updated firmware without
modifying the source code. So developers solely determine the changes on the
assembly level and use this result to build the hotpatch, determining the patch
insertion and storage locations. Developers may also perform changes to the patch,
such as restoring stack values and registers. Currently, these changes are necessary
due to the dispatcher that we implemented as on our prototype platform no direct
jumps between ROM and RAM are possible. This is no limitation using HERA in
practice. On other hardware platforms, these steps are not necessary. Furthermore,
if a dispatcher is needed, in a full-featured updater these steps can be automatized
as they are generic for every hotpatch.

6.5.3 Patch Development Guidelines

Summing up, to develop a new hotpatch to patch a vulnerability, the developer has
to perform the following steps. We assume that there already exists a traditional
patch that can be used to derive a hotpatch. Thus, the HERA hotpatching process
fits in existing patch development processes.

1. Compile the patched version of the application.

2https://www.hex-rays.com/products/ida/
3https://rada.re/n/

157

https://www.hex-rays.com/products/ida/
https://rada.re/n/

Chapter 6 Hotpatching of Real-Time Applications

2. Compare the original firmware with the patched version on assembly level using
binary diffing techniques.

3. Extract the differences between both files. If needed, add modifications or
further instructions.

4. Determine the breakpoint where to insert the hotpatch in the original applica-
tion.

5. Combine the patch and this information into an update package.

The compilation in the first step can be done using the normal development workflow.
The operations on the binary files can be done with standard tools such as Radare2
or IDA Pro. Finally, the resulting update package can then be tested and finally
deployed to the vulnerable devices.

Example: Developing a Hotpatch for FreeRTOS

As an example, we show how we developed a hotpatch for a real-world vulnerabil-
ity of the popular FreeRTOS real-time operating system. We followed the patch
development guidelines in Section 6.5.3.

CVE-2018-16601 [194] describes a vulnerability in FreeRTOS that affects up to
version 10.0.1. In these versions, the TCP/IP stack had a flaw that could cause
memory corruption, allowing remote attackers to execute code or conduct a denial-
of-service (DoS) attack that could disable the device. This attack works via a remote
connection and does not require authentication. Therefore, the severity of this
vulnerability was rated high with a CVSSv3 score of 8.1. Hence, it was urgent to
patch this error to prevent exploitation, but updating a device would disrupt its
service. So in practice, the patch application is delayed, even if the patches are highly
critical. Therefore, we followed our previously outlined guidelines and developed a
hotpatch that could function without interfering with the normal operation of the
device.

The root cause of this buffer overwrite vulnerability was a lack of boundary checks,
as the size of the IP header was not verified at any point [154]. So, crafting a
special IP packet made it possible to write outside the reserved memory location. As
FreeRTOS is an open-source application, its source code is freely available. Therefore,
we compare the vulnerable version 9.0.0 with the current version 10.0.3, which
gives us the mitigation for this vulnerability. In the file FreeRTOS_IP.c in function
prvProcessIPPacket a check of the size of the IP header is added. The source code for
this patch is shown in Listing 6.1. In the following, we show how we developed the
hotpatch for this vulnerability. We backported the mitigation for CVE-2018-16601
from version 10.0.3 to version 9.0.0. Then, we compiled the original and the patched
versions of FreeRTOS 9.0.0. Next, we used Radare2 to obtain a diff of the two binaries

158

6.5 Implementation

Listing 6.1: Source code of the patch for CVE-2018-16601
1 if ((uxHeaderLength >
2 (pxNetworkBuffer -> xDataLength
3 - ipSIZE_OF_ETH_HEADER))
4 (uxHeaderLength < ipSIZE_OF_IPv4_HEADER))
5 { return eReleaseBuffer ; }

Listing 6.2: Assembly code of the patch for CVE-2018-16601
1 lsls r3 , r3 , 2
2 and r3 , r3 , 0x3c
3 str r3 , [r7 , 0x24]
4 + ldr r3 , [r7]
5 + ldr r3 , [r3 , 0x1c]
6 + subs r3 , 0xe
7 + ldr r2 , [r7 , 0x24]
8 + cmp r2 , r3
9 + bhi 0 x801619a

10 + ldr r3 , [r7 , 0x24]
11 + cmp r3 , 0x13
12 + bhi 0 x801619e
13 + movs r3 , 0
14 + b 0 x80162ca
15 ldr r3 , [r7 , 4]

that resulted in the assembly instructions for the bounds check. Listing 6.2 shows
these instructions. In a diff, a ‘+’ or ‘-’ symbol indicates that the line was added
or removed. So, the hotpatch needs to add the lines 4–14 to implement the bounds
check. Using this listing, we can also determine the insertion point for the trampoline
to the hotpatch. To overcome the limitations of the FPB unit, the insertion point is
moved to the first preceding instruction located at a 4-byte aligned memory address.
Due to the system architecture, we needed some additional modification, as described
in Section 6.5.2. If the patch proceeds directly after the trampoline, a return to
the dispatcher and the ‘jump_section’ is necessary. However, if the branch target
is beyond the patch, the offset between the RAM and ROM is usually too large to
be included directly in a branch instruction. This control flow redirection involves
manipulating the program counter register, which stores the memory location of
the upcoming instruction to execute. So, it is the opposite case of the control flow
redirect in the ‘jump_section’.

159

Chapter 6 Hotpatching of Real-Time Applications

6.5.4 Patch Application

Now that we have the source code of the hotpatch, we need to apply it on the device.
This updater task is preemptable and runs at low priority so that the operating
system schedules it without impairing time-critical tasks. The updater task performs
the tasks described in Section 6.4.2. This includes downloading the patch, verifying
its integrity, and extracting its contents. The patch consists of the actual patch,
as well as additional meta-information required for patch application, such as the
trampoline and the insertion point. Then the updater copies the hotpatch and the
trampoline code to suitable memory locations and configures the FPB unit. Finally,
the updater task triggers the atomic switchover. As the hotpatch activation is atomic,
the patch can be activated anytime. When adapting this for practical usage, the
patch can be a simple binary format or plain text files storing this information.
Updating is a common feature of embedded and IoT devices [12]. The updater task
can be integrated into an existing updater service, thereby reusing its methods to
check for updates, downloading, and unpacking them. The patch format can also be
reused. This way, HERA hotpatching can be integrated into existing systems and
infrastructure.

Example: Application of Hotpatch for FreeRTOS.

For this case study, we implemented an updater service. First, the updater downloads
the patch and verifies its integrity. Then, the updater copies the hotpatch and the
trampoline to the correct memory locations. Afterwards, it configures the dispatcher
and the FPB unit using the functions in the HERA library. Eventually, the updater
enables the patch using the ‘enable_single_patch’ function. Now, when a breakpoint
is hit, the FPB unit replaces the current instruction with a jump to the trampoline.
Then, the hotpatch is executed. Afterwards, the control flow returns to the original
location. Listing 6.3 shows the instruction replacement. The instruction in Line 4
is replaced with a branch-and-link instruction to the ‘jump_section’. The ‘jump_-
section’ directly modifies the program counter to redirect the control flow to the
dispatcher. This section is necessary as no direct branch from ROM to RAM is
possible due to architectural limitations. Listing 6.4 shows the assembly code of the
dispatcher. The dispatcher verifies the source of each control flow redirection using
the LR register. This register stores the return address, which is automatically saved
by every branch-and-link (BL) instruction. This branch-and-link was previously
inserted by the FPB unit. The dispatcher compares the current origin (LR) with all
possible origins in the dispatcher to find the correct patch to execute.

160

6.6 Integration Guidelines

Listing 6.3: Instruction replacement on breakpoint hit
1 push {r7 , lr}
2 [...]
3 ldrb r3 , [r3]
4 lsls r3 , r3 , 2 bl jump_section
5 and r3 , r3 , 0x3c
6 [...]

Listing 6.4: Dispatcher for hotpatching FreeRTOS
1 push {r3}
2 ldr.w r3 , [0 x20000052]; dispatcher entry
3 cmp lr , r3
4 beq 0 x20000074 ; patch location
5 [...]
6 pop {r3}
7 pop {r7 , pc}

6.6 Integration Guidelines
Integrating HERA hotpatching takes three straightforward steps.

1. Integrating the HERA library into the device to be patched.

2. Modifying the updater to handle HERA hotpatches according to Section 6.5.4.

3. Developing a suitable hotpatch according to the Patch Development Guidelines
in Section 6.5.3.

After this, the newly developed hotpatch can be applied using the HERA hotpatch-
ing. In the following, we show how we integrated HERA into different real-world
devices using these guidelines.

6.7 Evaluation
The HERA framework allows hotpatching of embedded systems. In contrast to
traditional patching, HERA does directly influence the control flow of the patched
system to apply patches during runtime. To show the practicability of this approach,
we conduct an extensive case study. We implement HERA into two real-world
embedded devices that operate under real-time constraints. We show how HERA
can hotpatch vulnerabilities in these devices. Furthermore, we perform measurements
to verify the timing behavior of the HERA patching process.

161

Chapter 6 Hotpatching of Real-Time Applications

Power supplyPower supply

Stepper motor
for syringe pump

Power supplyHeartbeat sensor

LCD

Driver for
stepper motor

NUCLEO-F446RE
development board

Figure 6.6: Photo of the implemented setup.

6.7.1 Implementation on Real-World Devices
We implemented HERA on two open-source real-world medical devices, a syringe
pump, and a heartbeat sensor, using the STMicroelectronics NUCLEO-F446RE
development board. In our setup, we also added the hardware peripherals such
as the stepper motor for the syringe, the heart rate sensor, and the LC display to
demonstrate the full functionality of these devices. Figure 6.6 shows the complete
setup. Since there are no known vulnerabilities in the open-source implementation
of both devices, we incorporated two typical memory corruption vulnerabilities that
enable a remote attacker to compromise the devices. This is a common attack
technique. The software on embedded devices is often programmed in memory-unsafe
languages, just like the medical devices that we use for our example. Memory errors
are widespread due to manual memory management, and they often result in severe

162

6.7 Evaluation

software vulnerabilities [266]. Programming errors are among the most frequent
causes of vulnerabilities with code execution capability for devices with local, remote,
or internet access [211].

The vulnerabilities that we implemented allowed us to perform an out-of-bounds
write due to improper input validation in the configuration interface. Using these
vulnerabilities, we developed exploits for both devices using return-oriented program-
ming (ROP) techniques [223]. Such out-of-bounds read and write vulnerabilities are
typical for embedded devices. For instance, the aforementioned FreeRTOS CVE-
2018-16601 allowed an out-of-bounds write. Another recent example is the Ripple20
vulnerabilities [152]. This is a series of vulnerabilities in a TCP/IP stack widely used
in embedded devices. These vulnerabilities are also caused by improper memory
handling or a lack of input validation. Ripple20 affected a wide range of different
devices, including medical devices, industrial control systems, and home IoT devices,
adding up to hundreds of millions of vulnerable devices.

Medical Devices

In the following, we describe the two medical devices, that we use in this case study.
Commercial medical devices such as syringe pumps are usually costly. Hence, there is
a growing interest in creating open-source alternatives that replicate such commercial
medical devices [285]. This facilitates the production of such essential, potentially
life-saving medical equipment, particularly in cases where industrial made medical
devices are unavailable due to financial constraints or unforeseen events such as
catastrophes. Both medical devices are based on the popular Arduino platform. The
Arduino platform is widely used for open-source projects, due to its low cost and
extensive software support [166]. Furthermore, the medical devices are well-suited
candidates for our evaluation due to their stringent adherence to hard deadlines in
order to maintain the patient’s health and safety.

Syringe Pump. A syringe pump is a medical device that automatically injects
medicine into a patient’s body. Injecting the accurate amount of the substance, at
the correct injection rate and precise time points is crucial. A malfunction that
leads to incorrect dosing can have fatal consequences. As the syringe pump directly
controls the stepper motor that performs the injection, a correct timing behavior
is essential. We use the open syringe pump, an open-source implementation of a
syringe pump. Abera et al. already used this project to demonstrate the feasibility
of control flow attestation for embedded devices [3].

Heartbeat Sensor. The second device we will be discussing is a heartbeat
sensor [151]. A heartbeat sensor is a device that measures a patient’s heart rate.
Accurate measurements require a precise timing. The sensor’s real-time sampling

163

Chapter 6 Hotpatching of Real-Time Applications

rate is crucial in obtaining reliable measurements, as variations in timing can
significantly impact the quality of the results. Consistent sampling is necessary to
avoid unreliable measurements resulting from noise, spikes, or fluctuating signals. In
addition to high availability, security is equally important. Malicious manipulations
may lead to incorrect medication dosage or a false measurement of the heart rate.
This can have fatal consequences for patients who rely on the accurate functioning
of these devices such as in pacemakers.

We ported both applications from the Arduino platform to the ARM Cortex-M4
platform for our case study. While the original applications work on bare metal, we
adapted them to work on the FreeRTOS operating system. As eluded earlier, we
added the peripherals required for both devices, so that we yielded fully functional
prototype devices for further evaluation. The resulting setup is shown in Figure 6.6.

Exploit Development

Both devices have a buffer overwrite/read vulnerability due to a lack of bounds
checking in the configuration interface. This configuration interface is reachable
remotely to control the devices. In our scenario, an attacker can exploit a buffer-
overwrite/read error through this interface. Configuration interfaces are a common
feature of embedded and IoT devices [208]. As discussed in the threat model, we
assume a remote attacker with no direct physical access. We use these vulnerabili-
ties to start an attack using return-oriented programming (ROP). The Cortex-M4
microcontroller has a Harvard architecture, but also a unified memory space. This
modified Harvard architecture has a bus architecture, which allows to perform data
and instruction access in parallel. Consequently, the same memory space is utilized
by program code, data, and peripherals [292]. Typically, a Harvard architecture
prevents the direct insertion of code. However, since it is implemented only at the
microarchitecture level, the shared memory space still permits conventional code
injection [10], as well as return-oriented programming (ROP) [242]. So, we are still
able to implement an attack using return-oriented programming (ROP) on these
devices.

For each of the devices we developed ROP exploits to manipulate the normal
operation of the devices. These can have fatal consequences: We manipulated the
syringe pump in a way that it injects a large amount of medicine without showing it
on its display. In the case of the heartbeat sensor, we altered its measurements to
arbitrary values. These examples demonstrate the critical importance of securing
these devices.

164

6.7 Evaluation

Patch Development

We developed patches for both previously described applications to address the
vulnerabilities caused by missing bounds checks. The patches ensure that any
message exceeding the buffer size is dropped, given the fact that the applications
utilize commands of fixed length. The patch development process followed the
guidelines outlined in Section 6.5.3. First, we patched the vulnerability by adding
the missing bounds checks. Then, we generated a diff at the assembly level between
the compiled unpatched and patched versions. Minor modifications were necessary
to reconstruct the stack frame pointer and adjust the jump instructions.

Hotpatching

Now, we show how we use the updater task to apply the hotpatch. First, the updater
task directly loads the patch into RAM. In our implementation, the press of a button
starts the transfer to RAM and the patch activation.

Updater Task. The updater task implements the features described in Section 6.7.1.
It is based on a preemptable task that can be interrupted by the scheduler of
FreeRTOS at any time. First, the updater task receives the hotpatch and copies it to
a dedicated patch region in RAM. The updater task then initializes the trampoline
and configures the FPB unit. Eventually, the patch is activated by means of an
atomic switch, which is a single assembly instruction.

Atomic Switch using the FPB. The atomic switch to activate the hotpatch is
one of the main concepts in the HERA framework. This atomic switch consists
of a single assembly instruction, namely a register write, and therefore cannot
be interrupted. This way, the critical patch activation situation does not require
dedicated handling to prevent inconsistencies, for example, using atomic sections,
as known from classical concurrent programming. Disassembling the binaries from
this case study confirms that this register is accessed only once with a store instruction.

Summing up, in this case study we showed that HERA can be used to apply
security patches on real-world embedded devices that operate under strict timing
constraints. Before the patch application, the devices were vulnerable due to a typical
memory corruption bug. We showed how these vulnerabilities could be exploited
using return-oriented programming techniques to make the devices malfunction. We
developed hotpatches for these vulnerabilities. These were then applied using the
HERA framework. We showed that these patches successfully mitigated the attack
by resolving the underlying memory corruption bug.

165

Chapter 6 Hotpatching of Real-Time Applications

6.7.2 Measurements of the Overhead

In this series of experiments, we measure the overhead induced by HERA hotpatching.
Responsiveness is a functional requirement of real-time devices. Hence, incorrect
timing behavior of such devices is akin to device failure. Therefore, it is crucial to
determine the exact timing behavior.

Since trampoline insertion is done on-the-fly and entirely in hardware, the overhead
incurred by adding more code is minimal. The patching method relies on a small
number of assembly instructions that are directly inserted. Hence, there are no
compilers or intermediate software layers that can interfere with the systems’ behavior.
However, as the jump target cannot be directly addressed within a jump instruction,
a trampoline to the dispatcher code is necessary, which is an additional small block
of assembly instructions.

At the system level, the patch is executed as any other code, scheduled by the
real-time operating system. Hence, the code can also be preempted if necessary. The
overhead resulting from the FPB unit is deterministic, limited to only the instruction
fetch or literal load for the replaced instruction [25]. This predictability enables the
patching of real-time critical code sections. Furthermore, as the replaced instructions
are defined during development, the developer can accurately calculate the necessary
time for instruction fetch by considering the microarchitecture and CPU frequency.
Next, we will further investigate the time required for switches using the FPB unit.

In order to determine the exact overhead, we measured the exact switching time
using an oscilloscope 4, and taking the processor clock as a reference. We use the two
medical devices described in Section 6.5 for our measurements. For the external pins,
we inserted triggers to identify which instruction is being executed. These general-
purpose input/output pins allow direct interaction between the processor and the
oscilloscope. The technical reference manual confirms that the GPIO bus is directly
linked to the CPU [259]. We set the bus frequency of the external pins to the same
speed as the CPU clock, to minimize interference and obtain constant switch times.
This way, the delay to switch the pins is only caused by the necessary instructions
to change the pin state without waiting for the next switch cycle. To identify the
switching time of the GPIO pins, we performed reference measurements without
any FPB actions for comparison. As GPIO switches are also individual assembly
instructions, these actions should also have the same constant timing properties as
the atomic switch and the redirect to the patch. We repeated all measurements five
times to identify possible variances in the results. However, we did not measure
any deviation in any case. This is not surprising because our patch strategy fully
controls execution and relies on hardware features that are executed atomically. As
a consequence, in the following evaluation, we do not give any numbers on variances.

4Siglent SDS1104X-E [248]

166

6.7 Evaluation

Case Switch Time Pin Overhead Difference
Syringe pump 1.524 µs 1.288 µs 236 ns
Heartbeat sensor 1.524 µs 1.288 µs 236 ns

Table 6.1: Measurement of the atomic switch time.

Case Duration Pin Overhead Difference
While-Loop 1.624 µs 1.384 µs 240 ns
Syringe pump 1.456 µs 1.26 µs 196 ns
Heartbeat sensor 1.476 µs 1.288 µs 188 ns

Table 6.2: Time to abort instructions and switch to the jump-section.

We focus on two aspects of the hotpatching system. Real-time hotpatching requires
predictability and minimal overhead to meet the deadlines. First, the time it takes
to activate a single patch without interruption, called atomic switching time. Second,
the time required to abort the execution of the current instruction and then insert
and execute the trampoline. This is the control flow redirection. We have already
discussed the runtime of these functions in theory. Now, using the oscilloscope, we
verify that these properties hold in practice.

Atomic Switch Time

The atomic switch time is the time required for the atomic switchover that activates
a patch. This takes place after the hotpatch has been prepared by the updater
task. After the atomic switchover, the FPB unit inserts the patch every time a
breakpoint is hit. Table 6.1 shows the results of the measurements. We measured
the same times in both use cases, the syringe pump and the heartbeat sensor. The
switch time including the time overhead to switch the GPIO pins is 1.524 µs. GPIO
overhead, that is the time to directly switch the pins without the atomic switch is
1.288 µs. From these measurements, we can calculate the duration of 236 ns for the
atomic switch. With the CPU clocked at 42 MHz, we can calculate that the 5 switch
instructions take less than 10 clock cycles (236 ns · 42 MHz ≈ 10 clock cycles), with
only one of them needing to be atomic. We repeated these measurements five times,
but did not observe any deviation. Therefore, we conclude that the time required to
activate the patch is small and constant, regardless of the patch and the patched
application.

167

Chapter 6 Hotpatching of Real-Time Applications

Instruction Cycles Duration
NOP 1 1.644 µs
PUSH {lr} 2 1.644 µs
LDR 2 1.644 µs
B.n 2 1.644 µs
UDIV 2–12 1.644 µs

Table 6.3: Time required to abort different instructions.

Control Flow Redirection

The second important timing property is the time required for trampoline insertion.
This involves the dynamic replacement of one instruction and the execution of the
corresponding trampoline. According to the datasheet, the expected overhead is
the time to abort a single instruction [25]. However, since direct measurements
of single instructions are not feasible, we included the time required to jump to
the trampoline’s target address in the measurement. To achieve this, we added a
function called ‘jump_section’ as the target of the trampoline. The measurement
starts before the replaced instruction and ends within the ‘jump_section’ for both
the syringe pump and the heartbeat sensor applications. Table 6.2 shows the results
of this experiment.

Similar to the previous experiment, we perform each measurement with and without
the switch to determine the pin overhead and repeat all measurements multiple times
to determine possible variances. First, we measure the time to branch into the
‘jump_section’ and return directly using a while-loop. In total, this takes 1.624 µs.
Without the jump, it takes 1.384 µs, hence the switch itself takes 240 ns. The switch
is slightly faster in the two medical devices, where the switches take 196 ns in the
case of the syringe pump and 188 ns in the case of the heartbeat sensor, respectively.
This is within our expectations, as the measurements of the while-loop include the
instructions to return to the trampoline. Our ARM Cortex-M4 processor is clocked
at 42 MHz. We can use this number to determine the number of clock cycles the
switch requires. The while-loop takes 240 ns · 42 MHz ≈ 10 cycles. The syringe pump
is faster and takes only 196 ns · 42 MHz ≈ 8.2 cycles, and the heartbeat sensor takes
188 ns · 42 MHz ≈ 7.9 cycles. However, since instructions take at minimal one cycle
to execute [25], a difference of only two cycles is minimal. Overall, the measured
times suggest that the overhead for the control flow redirection is negligible.

Instruction Abort

Next, we investigate the overhead due to the instruction abort. Upon a breakpoint
hit, the FPB unit aborts and replaces the current instruction. This results in an

168

6.7 Evaluation

0 1 2 3 4 5
0

1

2

3

4

Total duration

Duration per
breakpoint

of breakpoints

T
im

e
in

 µ
s

Figure 6.7: The duration of the patching depends on the number of breakpoints.

additional instruction fetch. While instructions may take multiple processor cycles
to execute [25], this instruction fetch takes constant time and is independent of the
execution time of the aborted instruction. We verify this in an experiment using
different instructions. The results are shown in Table 6.3, the numbers of CPU cycles
are taken from the reference manual [25]. The selected instructions are common and
represent a broad range of execution costs. The no-operation (NOP) instruction
requires a single CPU cycle, the PUSH instruction takes two cycles, and division
can take up to 12 cycles to complete. Notably, the execution time has not changed
when exchanging different instructions. Independent of the instruction, the time to
abort the instruction is 1.384 µs including the pin overhead. For this measurement
setup, we determined the pin overhead to remain constant at 1.384 µs. Thus, it can
be concluded that the transaction abort is constant and independent of the replaced
instruction.

6.7.3 Further Measurements

We performed two additional experiments. First, we verify the timing behavior of
HERA with multiple active breakpoints. Furthermore, we performed a complete
end-to-end example in which we monitored the operation of the syringe pump during
hotpatch application.

169

Chapter 6 Hotpatching of Real-Time Applications

Time

Injection

Duration

Task Injection Waiting

patchedunpatched

Injection Injection Waiting Injection Waiting

12.93s 1.00s 12.93s 12.93s 1.00s 12.93s 1.00s1.00s

Patch application

Waiting

Figure 6.8: Measurements of the full end-to-end experiment on the syringe pump.

Multiple Breakpoints

In this experiment, we measure the overhead of multiple active breakpoints. Using
HERA it is possible to have multiple active breakpoints simultaneously. First, it
may be necessary to patch more than one vulnerability. Second, hotpatches may
consist of more than one part, thereby requiring multiple breakpoints to activate the
patch correctly. Using HERA, this is straightforward to implement by using multiple
trampolines. The only limitation is the number of physically available breakpoints in
the FPB unit. The ARM Cortex-M4 processor supports up to six breakpoints [25].
However, in our experiment, we were only able to evaluate up to five simultaneous
breakpoints due to the requirement of one breakpoint for the measurement setup.
The setup involved a while-loop containing NOP instructions, which were replaced
step-by-step with trampolines by configuring the FPB breakpoints. Furthermore, we
added one case with zero breakpoints to obtain a reference baseline, indicating the
overhead due to pin triggering. The measured times for each number of breakpoints
are shown in Figure 6.7. Using the baseline measurement, we were able to determine
the duration per breakpoint for all numbers of breakpoints. We repeated each
measurement five times, and as expected, we did not observe any deviation as the
FPB unit switches are atomic instructions with a fixed execution time. It is safe to
conclude that the duration per breakpoint is constant, and multiple trampolines can
be inserted with a known and fixed overhead.

End-to-End Case Study

To show the full functionality of HERA hotpatching practice, we conducted a full
end-to-end experiment using the syringe pump. Using an oscilloscope, we monitored
the operation of the syringe pump before, during, and after the hotpatching process.
The results are shown in Figure 6.8. In 1 s intervals, the syringe pump injects 1 mL.

170

6.8 Security Discussion

We first measured the operation of the unpatched syringe pump. Then, we applied
and activated the patch. The operation continued without interruption. With the
oscilloscope, we verified that the timings were not impacted by the patching process
or the patch application by monitoring the process continuously. The patch did
not cause any delay and the syringe pump remained fully functional during the
hotpatching process.

6.7.4 Summary

Summing up, our case studies on real-world devices demonstrate that HERA provides
an efficient and effective mechanism to hotpatch resource-constrained embedded
devices with real-time constraints. Through the case study of medical devices, we have
demonstrated that HERA can be used to perform hotpatching on critical embedded
systems. Furthermore, we used HERA to hotpatch CVE-2018-16691, a vulnerability
in the popular FreeRTOS, thereby showing how also real-world vulnerabilities can
be patched. In the evaluation, we used HERA to patch two real-world medical
devices. We verified the timing behavior of HERA in a comprehensive measurement
study. The measurements show that the performance overhead induced by HERA is
negligible both in theory and practice. The control flow redirection overhead is on a
sub-instructional level, while the time for the atomic switch is only a single assembly
instruction that is either executed completely or not executed at all. The trampolines
are designed with the minimum number of instructions required to jump to the
patch, and it is possible to insert multiple trampolines with predictable and negligible
overhead, as verified by a full end-to-end experiment. Therefore, we conclude that
HERA is highly practical for patching systems with hard real-time properties, which
have the most strict requirements.

6.8 Security Discussion
The novel approach of HERA allows practical hotpatching of embedded devices
with real-time constraints. However, several security aspects have to be considered
when using HERA.

Attacks on the Updater Service. As in any patching scheme, in HERA hotpatching
the updater service inhibits a crucial role. The updater service by design is able to
modify the system in order to apply the patch. Hence, a malicious or compromised
updater service is able to modify the system and thereby further compromise it. The
patched system cannot prevent this. Therefore, the security of the updater service
is of utmost importance for HERA hotpatching as well as in any other patching
process.

171

Chapter 6 Hotpatching of Real-Time Applications

Updater services are a standard feature of embedded systems and hence widespread.
Therefore, we assume the updater service to be secure. In addition, before applying
the update, we assume that the updater service checks the integrity and authenticity
of the update package using cryptographic functions.

Security of Patches. By design, patches cause changes in the patched applications.
As HERA is able to reuse existing patches as hotpatches, the application of hotpatches
using the HERA framework does not cause additional security issues compared to
traditional patching. The updater service verifies the integrity and authenticity of
the hotpatch, typically using hash sums and digital signatures so that an adversary
cannot modify existing hotpatches as any changes to the hotpatches will be detected
by the updater service.

Side-effects on Normal Operation. When applying hotpatches, the patch may
not interfere with the normal operation of the patched system. In particular, in
real-time systems, the patch may not cause timing violations of real-time tasks. As
HERA uses a hardware feature to guarantee patch activation within one processor
instruction, the patch activation process is fully deterministic. The preparation of
the patch is done before patch activation in a low-priority background task that does
not interfere with normal operation. Hence, HERA hotpatching does not cause any
unplanned side-effects or interdependencies with the patched system and is therefore
also suitable for highly critical systems with hard real-time and safety constraints.

Exploitation of HERA. To implement hotpatching, HERA introduces a dedicated
patch region to store hotpatches. By design, this memory region has to be writable
and executable during runtime and can therefore be used by an attacker to load and
execute malicious code. To prevent this, the critical memory area can be protected.

Embedded devices often feature memory management techniques such as memory
protection units (MPUs) or the more sophisticated memory management units
(MMUs). MPUs are a widespread feature of embedded devices and can be used
to implement permission control on memory. MPUs allow splitting the memory
into different regions, each with its own set of access permissions. The MPU then
enforces these memory protection rules on these regions. This way, MPUs can prevent
unauthorized access or modifications of the memory, for instance, to protect memory
areas that store sensitive information from being read by unauthorized processes.

The ARM Cortex-M also features such an MPU. This MPU can be used to limit
access to the patch region to the updater service, so that other processes cannot
exploit this memory area for malicious purposes.

Furthermore, HERA does not offer any external interfaces besides the updater
service. The updater service is assumed to be secure and checks the integrity and

172

6.9 Related Work: Hotpatching

authenticity of patches prior to application. Therefore, we conclude that HERA
hotpatching does not increase the attack surface of the system.

Summary. Summing up, HERA enhances embedded devices with real-time con-
straints with hotpatching capability without increasing their attack surface compared
to traditional patching. Hotpatches can be derived from traditional patches on a
binary level. The updater service for HERA verifies the integrity of the hotpatch
similar to normal patches. The patch region that HERA uses for the hotpatch can
be secured for example using an MPU. The HERA hotpatching approach prevents
interdependencies with the normal operation of the patched system. This makes
HERA also suitable for systems with real-time constraints.

6.9 Related Work: Hotpatching
The motivation for utilizing hotpatching arises from the need to fulfill high availability
requirements. The concept of hotpatching or dynamic software updates, thus patching
software during runtime, is an old idea and has been primarily directed towards
conventional software [238]. Hotpatching is popular for server applications that
need to run continuously [63, 122, 213]. In traditional patching, services need to be
restarted, resulting in a downtime of the patched system. This downtime must be
dealt with, for instance, by scheduling patches, planning maintenance windows, or
switching over to secondary instances. The different hotpatching methods can be
classified based on the model used and the impact of the software update [123].

Javelus is a modified Java virtual machine that reduces the latency when dynami-
cally applying updates on Java applications. They proposed a lazy update approach,
where objects are only updated when they are used, thereby reducing the latency
when applying the patch during runtime [128]. There are multiple approaches to
implementing hotpatching on Android devices. KARMA allows live patching of
Android kernels to fix security vulnerabilities on Android systems without having to
wait for official updates from the vendor [66]. InstaGuard extends this approach and
allows applying generic rule-based patches instead of executable code [65]. Vulmet is
a tool to automatically generate hotpatches for Android devices [290].

Traditional updates, which typically involve restarting programs or systems, erase
the system’s current state. However, hotpatching requires to maintain this state.
Therefore, when developing hotpatching schemes, one of the main challenges is
implementing changes while also preserving and transferring the current system
state [132]. This is especially challenging in concurrent systems. Many applica-
tions run concurrent threads, for instance, server applications. Hotpatching such
applications poses additional challenges due to the complexity of their states [225].

173

Chapter 6 Hotpatching of Real-Time Applications

UpStare is a hotpatching framework for server applications that uses a special stack
reconstruction algorithm to update active functions [176]. Another approach is to
bring the application to a defined state before applying the update. The Kitsune
framework uses so-called update points to apply hotpatches. However, programmers
have to determine these update points manually [136]. In contrast, Giuffrida et al.
propose an automated approach that synchronizes the states of processes over time
to apply hotpatches instead of focusing on a single specific point in time [122]. The
POLUS framework also performs state synchronization to automatically update
server applications without update points. POLUS involves running the new and
old data structures side by side, while gradually transitioning to the new structure
through synchronization [63].

However, not all hotpatching schemes need to incorporate a complex state transfer.
Although standard software updates can be arbitrarily complex, replacing large
parts of the application or even introducing new functionality, security patches
are typically “small, isolated and featureless” [14]. Thus, a popular approach to
implement hotpatching is using relocatable executables [136, 150, 219].

With the upcoming of the Internet of Things, thus embedded devices enhanced with
Internet connectivity, patching and hotpatching of these devices became important to
address security issues. Moreover, as eluded earlier, there are many embedded devices
that have high availability constraints. On these devices hotpatching is the only
solution to apply timely updates during runtime. Felser et al. presented an approach
to implement hotpatching on sensor nodes using a special architecture. Patching
sensor nodes is challenging because of their limited computational resources. The
process automatically calculates the differences and creates an image to incrementally
link new code to the existing application [109]. In sensor nodes, the need for low
energy consumption often also is a significant limitation. Zhang et al. propose
a hotpatching scheme for energy-harvesting embedded devices that performs in-
place replacement using trampolines [303]. Cetratus is a hotpatching framework for
safety-critical systems, such as in the industrial Internet of Things. This framework
introduces a quarantine mode to set up and monitor hotpatches [190]. The Cetratus
framework was also extended for the usage in the energy management of smart
cities [189]. Another hotpatching framework is Piston. This is a framework to
hotpatch devices that were not designed for hotpatching by exploiting the devices
and then modifying their code on-the-fly [231].

Hotpatching of real-time systems presents additional challenges [278, 279, 280].
Wahler, Richter, and Oriol presented a framework that allows for hotpatching of
real-time systems entirely in software. The update process builds upon update points.
These are points in time that are suitable to apply hotpatches. However, they focus
on systems with a cyclic architecture, such as control systems that base upon a
control loop or systems with measurement tasks. In addition, they assume that
the update fits in one cycle. Furthermore, the critical update process needs to take

174

6.10 Summary and Conclusions

a linear amount of time. To overcome these limitations, Wahler et al. propose a
state synchronization algorithm to synchronize old and new components, allowing for
updates with arbitrarily large states [279]. For practical usage, this component-based
hotpatching model has been extended, verified, and integrated into FASA framework
(Future Automation System Architecture) [278].

Another crucial aspect when applying patches during runtime is fault tolerance.
In high-availability systems, fault tolerance is often as important as availability.
Replication or redundancy is a common approach to achieve fault tolerance, and
several replication schemes can also be used for applications with hard real-time
constraints [68]. Implementing hotpatching on replicated systems is often straightfor-
ward, as such systems can be patched one at a time, as they usually substitute each
other during downtime. Although there are multiple solutions to achieve replica-
tion [130], redundancy is not always a practical solution, as it is costly and requires
hardware and resources that are not present in embedded systems with minimal
hardware. Especially for enhancing legacy embedded devices, such schemes are not
an option. Thus, direct hotpatching remains the only practical solution for these
systems.

6.10 Summary and Conclusions

In this chapter, we presented HERA, a novel framework for hotpatching legacy
embedded devices under hard real-time constraints. To date, the challenges of
applying hotpatches on embedded devices that have low resource availability due
to the need for low cost and low energy consumption, guaranteed availability, and
hard real-time capabilities have not been addressed by current research. HERA uses
hardware debugging features of commercial off-the-shelf hardware to activate patches
within one processor instruction, thereby allowing an atomic switchover that cannot
be interrupted, minimizing the time overhead when patching, and guaranteeing
deterministic behavior and timing. The prior preparation of the patch was done
during idle time, without interfering with the normal operation of the patched device.
In summary, HERA is able to apply patches with negligible and predictable overhead.

In the evaluation, we verified the behavior and showed the practicability of HERA.
In a case study, we integrated HERA into two real-world medical devices, a syringe
pump, and a heartbeat sensor, using the flash patch and breakpoint unit of a
standard ARM Cortex-M4 processor. Furthermore, we used HERA to patch a
real-world vulnerability in the widely used real-time operating system FreeRTOS,
demonstrating the effective and efficient applicability of HERA to hotpatch real-time
critical embedded systems. In our implementation guidelines, we explain the usage of
the HERA framework and the development of suitable hotpatches. We conducted an
extensive measurement study to determine the overhead due to hotpatching. Using

175

Chapter 6 Hotpatching of Real-Time Applications

an oscilloscope, we verified that HERA actually activates patches with predictable
and negligible overhead. In a full end-to-end example, we verified the functionality of
HERA by patching a vulnerability and verifying that it has been correctly patched
while monitoring the timing behavior of the patched device. This showed that HERA
is a practical solution to hotpatch even the most critical embedded devices that
operate under hard real-time constraints.

HERA, by design, is only able to reliably patch uncompromised systems. The
attacker can stop or manipulate the patching process on a compromised system
without being detected. Remote attestation on the other hand allows reliable
detection of compromises even on fully compromised systems. A combination of
hotpatching and remote attestation would allow verifying whether hotpatches have
been successfully applied, even on untrusted systems.

176

CHAPTER 7

Summary and Conclusions

In the modern world, more and more functions are relying on embedded devices.
These embedded devices ease daily life, for example, in the manifold Internet of
Things (IoT), but also often take over critical functions, for example, in vehicles,
industrial machinery, or medical devices. Despite their criticality, they suffer from the
same security vulnerabilities as commodity computer systems while at the same time
having less security features and significant more technical restrictions. A solution to
address vulnerabilities is to replace or patch these devices. However, a replacement is
in most cases not feasible because IoT devices are often deeply integrated into other
systems or consist of specialized hardware. Alternatively, software-based security
solutions do not require any hardware modifications and, therefore, are a worthwhile
solution for dealing with the security issues of such legacy embedded devices. This
dissertation shows different software-based approaches to enhancing existing devices
with new security features based on remote attestation without modifying the existing
hardware. As remote attestation can only detect but not prevent a compromise, in
addition, we propose a novel, interruption-free hotpatching framework, since patching
is the only solution to solve the underlying root cause for a compromise.

Certainly, there is no universal solution to integrate remote attestation into existing
devices due to the complex nature of the problem and the diversity of the embedded
devices. Therefore, we propose different solutions to common problems. This
dissertation shows how typical features of existing devices can be reused to enhance
security and enable remote attestation. The focus is on practical solutions that can
be used in practice. For each solution, we explained in detail the prerequisites for
implementation and how it can be integrated into existing devices. Furthermore,
we showed in real-world examples the applicability of the proposed solution to
demonstrate the full functionality and practicability.

7.1 Dissertation Summary
In Chapter 1 we motivated the use of remote attestation and gave an overview of this
dissertation. In the background in Chapter 2 we provided structured information

177

Chapter 7 Summary and Conclusions

on different types of embedded devices, especially real-time systems, which are the
most critical class of such devices. Then, we gave an overview of different attestation
schemes, focusing on the differences in their architectures and security guarantees.

In Chapter 3, we presented RealSWATT, the first software-based attestation
scheme that is also applicable to devices with real-time constraints. It utilizes
a dedicated processor core and an IoT gateway to allow secure software-based
attestation in standard IoT settings, such as wireless networks of IoT devices. This
is achieved by introducing continuous attestation, a concept where devices are
continuously attested in the background. This allows compromising between the
attestation interval and the communication overhead between the verifier and the
attested device.

SCAtt-man, presented in Chapter 4 provides user-understandable remote attes-
tation, while solving the root of trust problem in software-based attestation. This
is achieved by using side-channels for the attestation that users can observe. This
way, users can identify the device that is currently being attested. We integrated
SCAtt-man into a smart speaker that users can attest with an Android app on their
smartphone. The communication was performed via audible sound. This concept
represents a realistic and user-friendly setting. For the attestation, we implemented
a data-over-sound protocol and optimized its reliability to ensure a dependable
attestation. In a user study, we found that SCAtt-man is easy to use and that users
would use it in practice if their devices featured such an attestation method.

In Chapter 5, we presented DMA’n’Play, which uses direct memory access to
perform remote attestation of embedded devices. With DMA’n’Play, the verifier
can directly monitor the memory of the attested device and detect manipulations.
In contrast to traditional remote attestation schemes, this approach eases the im-
plementation of the verifier logic and allows the integration of complex checks of
the attested device. We achieve this by connecting a tiny embedded device to the
attested system, which can directly monitor the attested device’s memory. This
low-cost device can then either relay the data from the attested device or take over
the role of the verifier. In order to do so, the DMA controller of the attested device
then directly sends the memory content to the verifier via a serial connection. Hence,
to implement DMA’n’Play, only the configuration of the DMA controller has to be
adapted. This architecture makes DMA’n’Play especially suitable for embedded
devices in which the software cannot be altered.

Chapter 6 presents HERA, a hotpatching framework for devices under real-time
constraints. HERA allows to hotpatch embedded devices with minimal timing
overhead. This hotpatching is achieved by leveraging common hardware debugging
features to apply patches, thereby providing exact predictability. Thus, even devices
under hard real-time constraints can be patched during normal operation. We verified
this behavior in an extensive measurement study. While we implemented HERA
using the flash patch and breakpoint unit of an ARM Cortex-M3/4 processor, such a

178

7.2 Comparing Remote Attestation with Other Security Enhancements

breakpoint functionality is in fact a widespread feature of commodity processors for
embedded systems.

To show the broad applicability, all of these new solutions have been integrated
into adequate applications and devices, such as medical systems, drones, and IoT
devices. Detailed descriptions of the implementation show how we integrated these
new security solutions into existing devices. Integration guidelines give a quick
overview of how to implement these techniques into other devices and applications,
focusing on legacy devices where no source code is available. When integrated into
systems with real-time constraints, additional measurements and experiments showed
that the timing behavior was not impaired and that the timing constraints were still
met.

In summary, this dissertation presents four new, different, and entirely software-
based security solutions for embedded devices. They can also be used on existing
legacy devices, as they do not require any hardware modifications. These solutions
are specifically designed to tackle shortcomings of existing approaches and provide
practical solutions to real-world problems, thereby enhancing the security of embedded
devices.

7.2 Comparing Remote Attestation with Other Security
Enhancements

There exist many security enhancements to hinder the exploitation of vulnerabilities,
such as ASLR, non-executable memory, control flow integrity, and stack canaries.
All of these techniques can only be implemented on the device itself. Remote
attestation by design requires an external entity to verify the attestation reports
of the monitored device. This aspect has a significant impact on the practical
application of remote attestation. Without a verifier, remote attestation does not
give any security guarantees. The necessity of a remote verifier can cause scalability
issues when applying remote attestation to large fleets of devices. Depending on the
attestation scheme and the complexity of the attested device, the computing power
required for the verifier may be significant: While static attestation of a device’s
firmware is straightforward to verify as attestation reports are simple and stateless,
extensive configuration and runtime properties are complex to verify due to the large
state space. In devices with many valid states the verification of attestation reports
becomes a complex task requiring significant resources, especially when the validity
checks require state information of every individual attested device. Furthermore,
remote attestation requires continuous communication with a verifier to verify the
attestation reports.

On the one hand, these requirements impose significant limitations on the practical
applicability of remote attestation. However, on the other hand, remote attestation

179

Chapter 7 Summary and Conclusions

also offers unique advantages. With remote attestation, security enhancements can be
implemented at a central instance without altering the targeted device. Furthermore,
remote attestation by design provides a monitoring solution that allows one to
continuously check a device’s state and detect attacks, causing deviations from
normal behavior. Usually, new security techniques always need to be implemented
directly on the device. With remote attestation, these checks are instead implemented
at the verifier, making it possible to add or change these checks without changing
the targeted device. This aspect is especially relevant for devices that are hard to
change, such as embedded devices that are deeply integrated into other systems or
real-time systems with strict timing constraints. So there is no need to change the
attested device to integrate additional checks or security mitigations. The inherent
communication to the verifier in remote attestation schemes has significant advantages
in systems with central management, as it inherently allows monitoring of the attested
devices. This makes it possible to monitor devices and their behavior, thereby
detecting compromises and other deviations from expected states and behavior.

In practice, monitoring and verification functionality can be integrated into existing
devices and hence does not require new, dedicated verifier devices. For instance,
verifier logic can be integrated into existing network components, like the configu-
ration manager, as proposed in RealSWATT in Chapter 3. Furthermore, remote
attestation allows for building trust in remote systems by checking integrity. Devices
often operate in untrusted environments. Embedded and IoT devices are deployed
in homes, factories, or vehicles. In contrast to security enhancements that are only
working on a single device, remote attestation sends self-measurements to a remote
verifier. When attackers circumvent certain security mitigations, such as ASLR,
they receive direct feedback when their exploit is working. In contrast, in remote
attestation, the attackers are not aware of the exact checks and are not able to
determine whether the compromise is detected.

In conclusion, in the first place, developing secure software and patching vulner-
abilities in a timely manner is preferable over mitigations or detection techniques
such as remote attestation. Remote Attestation, however, is a viable solution for
specific use cases, such as highly critical systems, where a compromise can have
severe consequences, or to enhance trust in remote devices by checking their integrity.

7.3 Future Research Directions

In this thesis, we developed remote attestation techniques for legacy embedded
devices. In addition to the proposed solutions, we identified the following worthwhile
directions for future research.

180

7.3 Future Research Directions

Software-Based Runtime Attestation of Real-Time Systems. Integrating runtime
attestation into any existing application inherently changes its execution and timing
behavior due to the necessary measurements. Even integrating instrumentation into
an existing application changes its timing behavior. This change in timing behavior
is especially relevant for real-time applications that have been developed to meet
strict timing deadlines. Changing the timing behavior requires extensive checks,
which is impractical for legacy devices. How to develop an attestation solution that
solves this fundamental problem and allows runtime attestation of existing devices
without negatively impacting their timing behavior is still an open problem.

Attestation of Complex Software. In this thesis, the focus is on small, embedded
devices with a relatively small code base. However, the code size of embedded
devices, as well as their computational capabilities, tend to increase. When extending
attestation on larger, more complex systems and including dynamic properties like
control flow or data, then the resulting complexity and frequent attestation tasks will
drastically reduce the performance when using traditional approaches. Therefore,
these systems demand for more sophisticated approaches to implement practical
remote attestation.

Efficient Verification. Until now, little attention has been paid to the implementa-
tion of the verifier. Usually, it is assumed that the verifier has unlimited resources.
Therefore, the verifier can have prior knowledge of all benign states of the attested
system and check the attestation reports at any rate. Although this is a reasonable
assumption in academia, this is a significant limitation for practical usage.

Especially when attesting runtime properties and frequently changed data and
configuration, the complexity of the verifier must be considered. For example, complex
checks, large databases, or extensive state exploration, even upon small changes to
the attested system, make remote attestation impractical. The effort and computing
power of the verifier must be in proportion to the attested system and the security
benefits that the remote attestation gives. This is particularly relevant considering
large-scale attestation, which includes both systems with a large software base, as
well as large networks of devices, such as in autonomous vehicles, IoT systems, or
medical devices. Therefore, it is a worthwhile goal to investigate and optimize the
efficiency of verifiers. This includes both the runtime as well as the initial effort to
compile the information required for the attestation.

Usability Aspects of Attestation. Another aspect which has paid Little attention
to are the usability aspects of remote attestation. In Chapter 4, we investigated the
usability of an attestation scheme and found that users generally trust and would
use it. However, we did not consider important aspects. For instance, it remains

181

Chapter 7 Summary and Conclusions

an open question of how to resolve a compromise that has been detected by remote
attestation. In addition, a restoration process for a compromised device is yet to be
designed. Furthermore, it is unclear whether users trust a previously compromised
device that is proven benign again by attestation.

182

Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-flow
Integrity Principles, Implementations, and Applications”. In: ACM Transac-
tions on Information and System Security (TISSEC) 13.1 (2009), pp. 1–40.
doi: 10.1145/1609956.1609960.

[2] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. “Challenges in
Designing Exploit Mitigations for Deeply Embedded Systems”. In: Proceedings
of the 2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE. 2019, pp. 31–46. doi: 10.1109/EuroSP.2019.00013.

[3] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman,
Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. “C-FLAT: Control-
Flow Attestation for Embedded Systems Software”. In: Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security (CCS
16). ACM, 2016, pp. 743–754. doi: 10.1145/2976749.2978358.

[4] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-
Reza Sadeghi, and Matthias Schunter. “DIAT: Data Integrity Attestation for
Resilient Collaboration of Autonomous Systems”. In: Proceedings of the 2019
Network and Distributed Systems Security Symposium (NDSS 19). Internet
Society. 2019.

[5] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg
Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and
John Wiegert. “Intel Virtualization Technology for Directed I/O”. In: Intel
Technology Journal 10.3 (2006), pp. 179–192. issn: 1535864X.

[6] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus
Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk
Uluagac. “Peek-a-boo: I see your smart home activities, even encrypted!” In:
Proceedings of the 13th ACM Conference on Security and Privacy in Wireless
and Mobile Networks. ACM, 2020. doi: 10.1145/3395351.3399421.

[7] Airbus. Operating life. 2022. url: https://www.airbus.com/en/products-
services/commercial- aircraft/the- life- cycle- of- an- aircraft/
operating-life (visited on 08/31/2022).

183

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1109/EuroSP.2019.00013
https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/3395351.3399421
https://www.airbus.com/en/products-services/commercial-aircraft/the-life-cycle-of-an-aircraft/operating-life
https://www.airbus.com/en/products-services/commercial-aircraft/the-life-cycle-of-an-aircraft/operating-life
https://www.airbus.com/en/products-services/commercial-aircraft/the-life-cycle-of-an-aircraft/operating-life

Bibliography

[8] Panagiotis Aivaliotis, Z Arkouli, Konstantinos Georgoulias, and Sotiris Makris.
“Degradation curves integration in physics-based models: Towards the predic-
tive maintenance of industrial robots”. In: Robotics and Computer-Integrated
Manufacturing 71 (2021). issn: 0736-5845. doi: 10.1016/j.rcim.2021.
102177.

[9] Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan,
and Matei Ripeanu. “StoreGPU: Exploiting Graphics Processing Units to
Accelerate Distributed Storage systems”. In: Proceedings of the 17th Interna-
tional Symposium on High-Performance Distributed Computing (HPDC-17
2008). ACM, 2008, pp. 165–174. doi: 10.1145/1383422.1383443.

[10] One Aleph. “Smashing the stack for fun and profit”. In: Phrack Magazine
(1996). url: http://www.shmoo.com/phrack/Phrack49/p49-14.

[11] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Ryan Court, Kevin Z. Snow,
Fabian Monrose, and Manos Antonakakis. “The Circle Of Life: A Large-
Scale Study of The IoT Malware Lifecycle”. In: Proceedings of the 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association,
2021. isbn: 978-1-939133-24-3. url: https://www.usenix.org/conference/
usenixsecurity21/presentation/alrawi-circle.

[12] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. “SoK:
Security Evaluation of Home-Based IoT Deployments”. In: Proceedings of the
IEEE Symposium on Security and Privacy (SP). IEEE. 2019, pp. 1362–1380.
doi: 10.1109/SP.2019.00013.

[13] Riham Altawy and Amr M Youssef. “Security, Privacy, and Safety Aspects of
Civilian Drones: A survey”. In: ACM Transactions on Cyber-Physical Systems
1.2 (2016). doi: 10.1145/3001836.

[14] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. “OPUS:
Online Patches and Updates for Security”. In: Proceedings of the USENIX
Security Symposium (USENIX Security 05). USENIX Association, 2005. url:
https://www.usenix.org/conference/14th-usenix-security-symposiu
m/opus-online-patches-and-updates-security.

[15] AMD. AMD I/O Virtualization Technology (IOMMU) Specification. 2021.
url: https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
(visited on 04/20/2022).

[16] Mahmoud Ammar and Bruno Crispo. “Verify&Revive: Secure Detection and
Recovery of Compromised Low-End Embedded Devices”. In: Proceedings of
the Annual Computer Security Applications Conference (ACSAC). ACM, 2020,
pp. 717–732. isbn: 9781450388580. doi: 10.1145/3427228.3427253.

184

https://doi.org/10.1016/j.rcim.2021.102177
https://doi.org/10.1016/j.rcim.2021.102177
https://doi.org/10.1145/1383422.1383443
http://www.shmoo.com/phrack/Phrack49/p49-14
https://www.usenix.org/conference/usenixsecurity21/presentation/alrawi-circle
https://www.usenix.org/conference/usenixsecurity21/presentation/alrawi-circle
https://doi.org/10.1109/SP.2019.00013
https://doi.org/10.1145/3001836
https://www.usenix.org/conference/14th-usenix-security-symposium/opus-online-patches-and-updates-security
https://www.usenix.org/conference/14th-usenix-security-symposium/opus-online-patches-and-updates-security
https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
https://doi.org/10.1145/3427228.3427253

Bibliography

[17] Mahmoud Ammar, Bruno Crispo, Ivan De Oliveira Nunes, and Gene Tsudik.
“Delegated Attestation: Scalable Remote Attestation of Commodity CPS by
Blending Proofs of Execution with Software Attestation”. In: Proceedings
of the 14th ACM Conference on Security and Privacy in Wireless and Mo-
bile Networks. ACM, 2021, pp. 37–47. isbn: 9781450383493. doi: 10.1145/
3448300.3467818.

[18] Mahmoud Ammar, Bruno Crispo, and Gene Tsudik. “SIMPLE: A Remote
Attestation Approach for Resource-constrained IoT devices”. In: Proceedings
of the 11th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS 2020). IEEE, 2020, pp. 247–258. doi: 10.1109/ICCPS48487.2020.
00036.

[19] Mahmoud Ammar, Wilfried Daniels, Bruno Crispo, and Danny Hughes.
“SPEED: Secure Provable Erasure for Class-1 IoT Devices”. In: Proceed-
ings of the Eighth ACM Conference on Data and Application Security and
Privacy (CODASPY 18). 2018, pp. 111–118. doi: 10.1145/3176258.3176337.

[20] Android Open Source Project. A/B (Seamless) System Updates. 2020. url:
https://www.arm.com/products/silicon-ip-cpu (visited on 07/09/2020).

[21] Anna-senpai. GitHub - Mirai Source Code. 2017. url: https://github.com/
jgamblin/Mirai-Source-Code (visited on 04/09/2021).

[22] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian
Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. “Un-
derstanding the Mirai Botnet”. In: Proceedings of the 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, 2017, pp. 1093–
1110. isbn: 978-1-931971-40-9. url: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis.

[23] ARM Limited. AMBA 3 AHB-Lite Protocol Specification. 2006. url: https:
//www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_
AMBA_AHB-Lite_SPEC.pdf (visited on 11/21/2022).

[24] ARM Limited. Security Technology Building a Secure System Using TrustZone
Technology (White Paper). 2009. url: https://documentation-service.
arm.com/static/5f212796500e883ab8e74531 (visited on 07/20/2023).

[25] ARM Limited. “Cortex-M4 Processor Technical Reference Manual”. In: Revi-
sion: r0p1, ARM 100166_0001_00_en (2015). url: https://static.docs.
arm.com/100166/0001/arm_cortexm4_processor_trm_100166_0001_00_
en.pdf (visited on 12/16/2020).

185

https://doi.org/10.1145/3448300.3467818
https://doi.org/10.1145/3448300.3467818
https://doi.org/10.1109/ICCPS48487.2020.00036
https://doi.org/10.1109/ICCPS48487.2020.00036
https://doi.org/10.1145/3176258.3176337
https://www.arm.com/products/silicon-ip-cpu
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
https://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
https://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://static.docs.arm.com/100166/0001/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
https://static.docs.arm.com/100166/0001/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
https://static.docs.arm.com/100166/0001/arm_cortexm4_processor_trm_100166_0001_00_en.pdf

Bibliography

[26] ARM Limited. ARM System Memory Management Unit Architecture Spec-
ification. 2016. url: https://documentation-service.arm.com/static/
5f900d34f86e16515cdc08fb (visited on 04/20/2022).

[27] ARM Limited. TrustZone Technology for Armv8-M Architecture. 2018. url:
https://developer.arm.com/documentation/100690/latest/ (visited on
04/19/2022).

[28] ARM Limited. TrustZone for Armv8-A. 2019. url: https://documenta
tion-service.arm.com/static/602167b6873dd96c4deaf49b (visited on
04/19/2022).

[29] ARM Limited. Arm Cortex-M4 Processor Technical Reference Manual. 2020.
url: https://developer.arm.com/documentation/100166/0001 (visited
on 04/19/2022).

[30] ARM Limited. Arm Processors for the Widest Range of Devices–from Sensors
to Servers. 2020. url: https://www.arm.com/products/silicon-ip-cpu
(visited on 07/08/2020).

[31] ARM Limited. Configuring and enabling the MMU. 2022. url: https://
developer.arm.com/documentation/den0024/a/The-Memory-Manageme
nt-Unit/Translating-a-Virtual-Address-to-a-Physical-Address/
Configuring-and-enabling-the-MMU (visited on 04/19/2022).

[32] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian
Wachsmann. “A Security Framework for the Analysis and Design of Software
Attestation”. In: Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS 13). ACM, 2013, pp. 1–12. doi:
10.1145/2508859.2516650.

[33] N Asokan, Thomas Nyman, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi,
and Gene Tsudik. “ASSURED: Architecture for Secure Software Update of
Realistic Embedded Devices”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37.11 (2018), pp. 2290–2300. doi:
10.1109/TCAD.2018.2858422.

[34] AspenCore. 2019 Embedded Markets Study. online. EETimes, 2019. url:
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_
Embedded_2019_Embedded_Markets_Study.pdf (visited on 05/07/2021).

[35] Atmel Corporation. ATmega328P 8-bit AVR Microcontroller with 32K Bytes
In-System Programmable Flash Datasheet. 2015. url: https://ww1.microch
ip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontro
llers-ATmega328P_Datasheet.pdf (visited on 02/15/2022).

186

https://documentation-service.arm.com/static/5f900d34f86e16515cdc08fb
https://documentation-service.arm.com/static/5f900d34f86e16515cdc08fb
https://developer.arm.com/documentation/100690/latest/
https://documentation-service.arm.com/static/602167b6873dd96c4deaf49b
https://documentation-service.arm.com/static/602167b6873dd96c4deaf49b
https://developer.arm.com/documentation/100166/0001
https://www.arm.com/products/silicon-ip-cpu
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit/Translating-a-Virtual-Address-to-a-Physical-Address/Configuring-and-enabling-the-MMU
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit/Translating-a-Virtual-Address-to-a-Physical-Address/Configuring-and-enabling-the-MMU
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit/Translating-a-Virtual-Address-to-a-Physical-Address/Configuring-and-enabling-the-MMU
https://developer.arm.com/documentation/den0024/a/The-Memory-Management-Unit/Translating-a-Virtual-Address-to-a-Physical-Address/Configuring-and-enabling-the-MMU
https://doi.org/10.1145/2508859.2516650
https://doi.org/10.1109/TCAD.2018.2858422
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

Bibliography

[36] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. “Static Detection of Unsafe
DMA Accesses in Device Drivers”. In: Proceedings of the 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, 2021, pp. 1629–
1645. isbn: 978-1-939133-24-3. url: https://www.usenix.org/conference/
usenixsecurity21/presentation/bai.

[37] Glynn Bartlett. Extending the Industrial Robot Life Cycle. 2021. url: https:
//www.swri.org/industry/industrial- robotics- automation/blog/
extending-the-industrial-robot-life-cycle (visited on 08/31/2022).

[38] Michael Becher, Maximillian Dornseif, and Christian N Klein. “FireWire: All
Your Memory Are Belong to Us”. In: Proceedings of CanSecWest 67 (2005).

[39] Ivan Cibrario Bertolotti. “Real-Time Embedded Operating Systems:
Standards and Perspectives”. In: Embedded Systems Handbook (2005). issn:
9781315217598.

[40] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. “Address obfuscation:
An efficient approach to combat a broad range of memory error exploits”. In:
Proceedings of the 12th USENIX Security Symposium (USENIX Security 03).
USENIX Association, 2003. url: https://www.usenix.org/conference/
12th- usenix- security- symposium/address- obfuscation- efficient-
approach-combat-broad-range.

[41] Bitcraze AB. Datasheet Crazyflie 2.1 - Rev 3. 2021. url: https://www.
bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-
datasheet.pdf (visited on 02/16/2022).

[42] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. “Jump-
Oriented Programming: A New Class of Code-Reuse Attack”. In: Proceedings
of the 6th ACM Symposium on Information, Computer and Communications
Security (ASIACCS 11). ACM, 2011, pp. 30–40. isbn: 9781450305648. doi:
10.1145/1966913.1966919.

[43] Benjamin Böck. “Firewire-based Physical Security Attacks on Windows 7,
EFS and BitLocker”. In: Secure Business Austria Research Lab (2009). url:
http://www.securityresearch.at/publications/windows7_firewire_
physical_attacks.pdf.

[44] Kaitlin Boeckl, Michael Fagan, William Fisher, Naomi Lefkovitz, Katerina
Megas, Ellen Nadeau, Benjamin Piccarreta, Danna O’Rourke, and Karen
Scarfone. Considerations for Managing Internet of Things (IoT) Cybersecurity
and Privacy Risks. 2019. doi: 10.6028/NIST.IR.8228.

187

https://www.usenix.org/conference/usenixsecurity21/presentation/bai
https://www.usenix.org/conference/usenixsecurity21/presentation/bai
https://www.swri.org/industry/industrial-robotics-automation/blog/extending-the-industrial-robot-life-cycle
https://www.swri.org/industry/industrial-robotics-automation/blog/extending-the-industrial-robot-life-cycle
https://www.swri.org/industry/industrial-robotics-automation/blog/extending-the-industrial-robot-life-cycle
https://www.usenix.org/conference/12th-usenix-security-symposium/address-obfuscation-efficient-approach-combat-broad-range
https://www.usenix.org/conference/12th-usenix-security-symposium/address-obfuscation-efficient-approach-combat-broad-range
https://www.usenix.org/conference/12th-usenix-security-symposium/address-obfuscation-efficient-approach-combat-broad-range
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf
https://doi.org/10.1145/1966913.1966919
http://www.securityresearch.at/publications/windows7_firewire_physical_attacks.pdf
http://www.securityresearch.at/publications/windows7_firewire_physical_attacks.pdf
https://doi.org/10.6028/NIST.IR.8228

Bibliography

[45] Marton Bognar, Jo Van Bulck, and Frank Piessens. “Mind the gap: Studying
the insecurity of provably secure embedded trusted execution architectures”.
In: Proceedings of the IEEE Symposium on Security and Privacy (SP). IEEE.
2022, pp. 1638–1655. doi: 10.1109/SP46214.2022.9833735.

[46] Marton Bognar, Hans Winderix, Jo Van Bulck, and Frank Piessens. “Mi-
croProfiler: Principled Side-Channel Mitigation through Microarchitectural
Profiling”. In: Proceedings of the 8th IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2023.

[47] Carsten Bormann, Mehmet Ersue, and Ari Keranen. “RFC 7228: Terminology
for constrained-node networks”. In: Internet Engineering Task Force (IETF)
7228 (2014). doi: 10.17487/RFC7228.

[48] Amani Braham, Félix Buendía, Maha Khemaja, and Faiez Gargouri. “User
interface design patterns and ontology models for adaptive mobile applica-
tions”. In: Personal and Ubiquitous Computing (2021), pp. 1318–1328. doi:
10.1007/s00779-020-01481-5.

[49] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian
Wachsmann, and Patrick Koeberl. “TyTAN: Tiny Trust Anchor for Tiny
Devices”. In: Proceedings of the 52nd Annual Design Automation Conference
(DAC). ACM, 2015. doi: 10.1145/2744769.2744922.

[50] Ferdinand Brasser, Kasper Bonne Rasmussen, Ahmad-Reza Sadeghi, and Gene
Tsudik. “Remote Attestation for Low-end Embedded Devices: the Prover’s Per-
spective”. In: Proceedings of the 53rd Annual Design Automation Conference
(DAC). ACM, 2016. doi: 10.1145/2897937.2898083.

[51] Business Wire. Strategy Analytics: Global Smart Speaker Sales Cross 150
Million Units for 2020 Following Robust Q4 Demand. 2021. url: https:
//www.businesswire.com/news/home/20210303005852/en/Strategy-
Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-
for-2020-Following-Robust-Q4-Demand (visited on 07/16/2023).

[52] Kelly Caine. “Local Standards for Sample Size at CHI”. In: Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems. ACM,
2016. doi: 10.1145/2858036.2858498.

[53] Todd Campau. Average Age of Vehicles in the US Increases to 12.2 years,
according to S&P Global Mobility. 2022. url: https://ihsmarkit.com/
research-analysis/average-age-of-vehicles-in-the-us-increases-
to-122-years.html (visited on 08/31/2022).

188

https://doi.org/10.1109/SP46214.2022.9833735
https://doi.org/10.17487/RFC7228
https://doi.org/10.1007/s00779-020-01481-5
https://doi.org/10.1145/2744769.2744922
https://doi.org/10.1145/2897937.2898083
https://www.businesswire.com/news/home/20210303005852/en/Strategy-Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-for-2020-Following-Robust-Q4-Demand
https://www.businesswire.com/news/home/20210303005852/en/Strategy-Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-for-2020-Following-Robust-Q4-Demand
https://www.businesswire.com/news/home/20210303005852/en/Strategy-Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-for-2020-Following-Robust-Q4-Demand
https://www.businesswire.com/news/home/20210303005852/en/Strategy-Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-for-2020-Following-Robust-Q4-Demand
https://doi.org/10.1145/2858036.2858498
https://ihsmarkit.com/research-analysis/average-age-of-vehicles-in-the-us-increases-to-122-years.html
https://ihsmarkit.com/research-analysis/average-age-of-vehicles-in-the-us-increases-to-122-years.html
https://ihsmarkit.com/research-analysis/average-age-of-vehicles-in-the-us-increases-to-122-years.html

Bibliography

[54] Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. “Remote
attestation of IoT devices via SMARM: Shuffled measurements against roving
malware”. In: Proceedings of the 2018 IEEE international symposium on
hardware oriented security and trust (HOST). IEEE. 2018, pp. 9–16. doi:
10.1109/HST.2018.8383885.

[55] Xavier Carpent, Gene Tsudik, and Norrathep Rattanavipanon. “ERASMUS:
Efficient remote attestation via self-measurement for unattended settings”. In:
Proceedings of the 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE. 2018, pp. 1191–1194. doi: 10.23919/DATE.2018.
8342195.

[56] Javier Carrillo-Mondéjar, Hannu Turtiainen, Andrei Costin, José Luis
Martínez, and Guillermo Suarez-Tangil. “HALE-IoT: Hardening Legacy
Internet of Things Devices by Retrofitting Defensive Firmware Modifica-
tions and Implants”. In: IEEE Internet of Things Journal (2022). doi:
10.1109/JIOT.2022.3224649.

[57] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.
“On the Difficulty of Software-based Attestation of Embedded Devices”. In:
Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS 09). ACM, 2009, pp. 400–409. doi: 10.1145/1653662.1653711.

[58] Adam Caulfield, Norrathep Rattanavipanon, and Ivan De Oliveira Nunes.
“ASAP: Reconciling Asynchronous Real-Time Operations and Proofs of Exe-
cution in Simple Embedded Systems”. In: Proceedings of the 59th ACM/IEEE
Design Automation Conference. ACM, 2022, pp. 721–726. isbn: 9781450391429.
doi: 10.1145/3489517.3530550.

[59] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. “Return-Oriented Programming with-
out Returns”. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS 10). ACM, 2010, pp. 559–572. isbn:
9781450302456. doi: 10.1145/1866307.1866370.

[60] Chien-Ying Chen, Monowar Hasan, and Sibin Mohan. “Securing Real-Time
Internet-of-Things”. In: Sensors 18.12 (2018). doi: 10.3390/s18124356.

[61] Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. “OPERA: Open Remote
Attestation for Intel’s Secure Enclaves”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (CCS 19).
ACM, 2019, pp. 2317–2331. doi: 10.1145/3319535.3354220.

189

https://doi.org/10.1109/HST.2018.8383885
https://doi.org/10.23919/DATE.2018.8342195
https://doi.org/10.23919/DATE.2018.8342195
https://doi.org/10.1109/JIOT.2022.3224649
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1145/3489517.3530550
https://doi.org/10.1145/1866307.1866370
https://doi.org/10.3390/s18124356
https://doi.org/10.1145/3319535.3354220

Bibliography

[62] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung Yew.
“Live Updating Operating Systems Using Virtualization”. In: Proceedings
of the International Conference on Virtual Execution Environments (VEE).
ACM, 2006. doi: 10.1145/1134760.1134767.

[63] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. “POLUS:
A POwerful Live Updating System”. In: Proceedings of the International
Conference on Software Engineering (ICSE). IEEE. 2007. doi: 10.1109/ICSE.
2007.65.

[64] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer.
“Non-Control-Data Attacks Are Realistic Threats”. In: Proceedings of the
14th USENIX Security Symposium (USENIX 05). USENIX Association, 2005.
url: https://www.usenix.org/conference/14th- usenix- security-
symposium/non-control-data-attacks-are-realistic-threats.

[65] Yaohui Chen, Yuping Li, Long Lu, Yueh-Hsun Lin, Hayawardh Vijayakumar,
Zhi Wang, and Xinming Ou. “InstaGuard: Instantly Deployable Hot-patches
for Vulnerable System Programs on Android”. In: Proceedings of the 2018
Network and Distributed System Security Symposium (NDSS). Internet Society.
2018. doi: 10.14722/ndss.2018.23141.

[66] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia, Chenfu Bao, and Tao
Wei. “Adaptive Android Kernel Live Patching”. In: Proceedings of the 26th
USENIX Security Symposium (USENIX Security 16). USENIX Association,
2017, pp. 1253–1270. isbn: 978-1-931971-40-9. url: https://www.usenix.o
rg/conference/usenixsecurity17/technical-sessions/presentation/
chen.

[67] Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and
Hongxin Hu. “Dangerous Skills Got Certified: Measuring the Trustworthiness
of Skill Certification in Voice Personal Assistant Platforms”. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS 20). ACM, 2020. isbn: 9781450370899. doi: 10.1145/3372297.
3423339.

[68] Pascal Chevochot and Isabelle Puaut. “Scheduling Fault-Tolerant Distributed
Hard Real-Time Tasks Independently of the Replication Strategies”. In: Pro-
ceedings of the International Conference on Real-Time Computing Systems
and Applications (RTCSA). IEEE. 1999. doi: 10.1109/RTCSA.1999.811280.

[69] Boheung Chung, Jeongyeo Kim, and Youngsung Jeon. “On-demand security
configuration for IoT devices”. In: Proceedings of the 2016 International
Conference on Information and Communication Technology Convergence
(ICTC). IEEE. 2016, pp. 1082–1084. doi: 10.1109/ICTC.2016.7763373.

190

https://doi.org/10.1145/1134760.1134767
https://doi.org/10.1109/ICSE.2007.65
https://doi.org/10.1109/ICSE.2007.65
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://doi.org/10.14722/ndss.2018.23141
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chen
https://doi.org/10.1145/3372297.3423339
https://doi.org/10.1145/3372297.3423339
https://doi.org/10.1109/RTCSA.1999.811280
https://doi.org/10.1109/ICTC.2016.7763373

Bibliography

[70] Abraham A. Clements, Naif Saleh Almakhdhub, Khaled S. Saab, Prashast
Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer. “Protecting
Bare-Metal Embedded Systems with Privilege Overlays”. In: Proceedings of
the IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 289–303.
doi: 10.1109/SP.2017.37.

[71] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan
Millen, Brian O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and
Brian Sniffen. “Principles of Remote Attestation”. In: International Journal
of Information Security 10.2 (2011). doi: 10.1007/s10207-011-0124-7.

[72] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. “A Survey of Man In The
Middle Attacks”. In: IEEE Communications Surveys & Tutorials 18.3 (2016),
pp. 2027–2051. doi: 10.1109/COMST.2016.2548426.

[73] Mauro Conti, Edlira Dushku, and Luigi V Mancini. “RADIS: Remote At-
testation of Distributed IoT Services”. In: Proceedings of the 2019 Sixth
International Conference on Software Defined Systems (SDS). IEEE, 2019,
pp. 25–32. doi: 10.1109/SDS.2019.8768670.

[74] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. “Inception:
System-Wide Security Testing of Real-World Embedded Systems Software”.
In: Proceedings of the 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, 2018, pp. 309–326. isbn: 978-1-939133-04-5. url:
https://www.usenix.org/conference/usenixsecurity18/presentation
/corteggiani.

[75] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: IACR Cryp-
tology ePrint Archive, Paper 2016/086 (2016). url: http://eprint.iacr.
org/2016/086.

[76] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. “A
Large-Scale Analysis of the Security of Embedded Firmwares”. In: Proceedings
of the 23rd USENIX Security Symposium (USENIX Security 14). USENIX
Association, 2014, pp. 95–110. isbn: 978-1-931971-15-7. url: https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/prese
ntation/costin.

[77] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry Wagle,
and Erik Walthinsen. “Protecting systems from stack smashing attacks with
StackGuard”. In: Linux Expo. 1999.

[78] Cybersecurity and Infrastructure Security Agency. Abbott Laboratories’ Ac-
cent/Anthem, Accent MRI, Assurity/Allure, and Assurity MRI Pacemaker
Vulnerabilities. 2017. url: https://www.cisa.gov/news- events/ics-
medical-advisories/icsma-17-241-01 (visited on 03/15/2023).

191

https://doi.org/10.1109/SP.2017.37
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1109/COMST.2016.2548426
https://doi.org/10.1109/SDS.2019.8768670
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
http://eprint.iacr.org/2016/086
http://eprint.iacr.org/2016/086
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.cisa.gov/news-events/ics-medical-advisories/icsma-17-241-01
https://www.cisa.gov/news-events/ics-medical-advisories/icsma-17-241-01

Bibliography

[79] Sanjeev Das, Wei Zhang, and Yang Liu. “A Fine-Grained Control Flow
Integrity Approach Against Runtime Memory Attacks for Embedded Systems”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24.11
(2016), pp. 3193–3207. doi: 10.1109/TVLSI.2016.2548561.

[80] Corbin Davenport. This smartphone has physical kill switches for its cameras,
microphone, data, Bluetooth, and Wi-Fi. 2020. url: https://www.androidpo
lice.com/2020/08/22/this-smartphone-has-physical-kill-switches-
for-its-cameras-microphone-data-bluetooth-and-wi-fi/ (visited on
03/07/2022).

[81] Robert I. Davis and Alan Burns. “A survey of hard real-time scheduling for
multiprocessor systems”. In: ACM Computing Surveys 43.4 (2011), 35:1–35:44.
doi: 10.1145/1978802.1978814.

[82] Dawoud Shenouda Dawoud and Peter Dawoud. Serial Communication Proto-
cols and Standards RS232/485, UART/USART, SPI, USB, INSTEON, Wi-Fi
and WiMAX. River Publishers, 2020.

[83] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon,
and Gene Tsudik. “On the TOCTOU Problem in Remote Attestation”. In:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS 21). ACM, 2021, pp. 2921–2936. doi: 10.1145/
3460120.3484532.

[84] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi.
“Litehax: lightweight hardware-assisted attestation of program execution”. In:
Proceedings of the 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE. ACM, 2018. doi: 10.1145/3240765.3240821.

[85] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas
Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. “LO-FAT: Low-
Overhead Control Flow ATtestation in Hardware”. In: Proceedings of the 54th
Annual Design Automation Conference (DAC). ACM, 2017, 24:1–24:6. doi:
10.1145/3061639.3062276.

[86] Maximillian Dornseif. “Owned by an ipod: Firewire/1394 issues”. In: 2005.
[87] Edlira Dushku, Md Masoom Rabbani, Mauro Conti, Luigi V Mancini, and

Silvio Ranise. “SARA: Secure Asynchronous Remote Attestation for IoT
Systems”. In: IEEE Transactions on Information Forensics and Security 15
(2020), pp. 3123–3136. doi: 10.1109/TIFS.2020.2983282.

[88] Eclipse Foundation. IoT & Edge Developer Survey Report. 2021. url: https:
//outreach.eclipse.foundation/iot-edge-developer-2021 (visited on
01/21/2023).

192

https://doi.org/10.1109/TVLSI.2016.2548561
https://www.androidpolice.com/2020/08/22/this-smartphone-has-physical-kill-switches-for-its-cameras-microphone-data-bluetooth-and-wi-fi/
https://www.androidpolice.com/2020/08/22/this-smartphone-has-physical-kill-switches-for-its-cameras-microphone-data-bluetooth-and-wi-fi/
https://www.androidpolice.com/2020/08/22/this-smartphone-has-physical-kill-switches-for-its-cameras-microphone-data-bluetooth-and-wi-fi/
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/3460120.3484532
https://doi.org/10.1145/3460120.3484532
https://doi.org/10.1145/3240765.3240821
https://doi.org/10.1145/3061639.3062276
https://doi.org/10.1109/TIFS.2020.2983282
https://outreach.eclipse.foundation/iot-edge-developer-2021
https://outreach.eclipse.foundation/iot-edge-developer-2021

Bibliography

[89] Jide S Edu, Jose M Such, and Guillermo Suarez-Tangil. “Smart Home Personal
Assistants: A Security and Privacy Review”. In: ACM Computing Surveys
(CSUR) 53.6 (2020). doi: 10.1145/3412383.

[90] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. “HYDRA:
hybrid design for remote attestation (using a formally verified microkernel)”.
In: Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec 2017). ACM, 2017. doi: 10.1145/
3098243.3098261.

[91] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito.
“SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root
of Trust”. In: Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2012. url: https://www.
ndss-symposium.org/ndss2012/smart-secure-and-minimal-architectu
re-establishing-dynamic-root-trust.

[92] ELM Technology. GD25Q32 Datasheet. 2014. url: https://datasheetspdf.
com/pdf-file/861582/ELM/GD25Q32/1 (visited on 12/01/2022).

[93] ELM Technology. GD25Q32C Datasheet. 2020. url: http://www.elm-tech.
com/en/products/spi-flash-memory/gd25q32/gd25q32.pdf (visited on
12/01/2022).

[94] Mohammed Faisal Elrawy, Ali Ismail Awad, and Hesham F. A. Hamed.
“Intrusion detection systems for IoT-based smart environments: a survey”. In:
Journal of Cloud Computing 7 (2018). doi: 10.1186/s13677-018-0123-6.

[95] Göran N Ericsson. “Cyber Security and Power System Communica-
tion—Essential Parts of a Smart Grid Infrastructure”. In: IEEE Transactions
on Power Delivery (2010), pp. 1501–1507. doi: 10 . 1109 / TPWRD . 2010 .
2046654.

[96] Espressif Systems. Espressif Achieves the 100-Million Target for IoT Chip
Shipments. 2018. url: https://www.espressif.com/en/news/Espressif_
Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments (visited
on 05/07/2021).

[97] Espressif Systems. ESP32 Technical Reference Manual. 2020. url: https:
//www.espressif.com/sites/default/files/documentation/esp32_
technical_reference_manual_en.pdf (visited on 02/16/2022).

[98] Espressif Systems. ESP8266 Technical Reference Manual. 2020. url: https:
//www.espressif.com/sites/default/files/documentation/esp8266-
technical_reference_en.pdf (visited on 02/16/2022).

193

https://doi.org/10.1145/3412383
https://doi.org/10.1145/3098243.3098261
https://doi.org/10.1145/3098243.3098261
https://www.ndss-symposium.org/ndss2012/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
https://www.ndss-symposium.org/ndss2012/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
https://www.ndss-symposium.org/ndss2012/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
https://datasheetspdf.com/pdf-file/861582/ELM/GD25Q32/1
https://datasheetspdf.com/pdf-file/861582/ELM/GD25Q32/1
http://www.elm-tech.com/en/products/spi-flash-memory/gd25q32/gd25q32.pdf
http://www.elm-tech.com/en/products/spi-flash-memory/gd25q32/gd25q32.pdf
https://doi.org/10.1186/s13677-018-0123-6
https://doi.org/10.1109/TPWRD.2010.2046654
https://doi.org/10.1109/TPWRD.2010.2046654
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf

Bibliography

[99] Espressif Systems. ESP8266EX Datasheet. 2020. url: https://www.espressi
f.com/sites/default/files/documentation/0a-esp8266ex_datasheet_
en.pdf (visited on 07/23/2023).

[100] Espressif Systems. Over The Air Updates (OTA). 2020. url: https://docs.
espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
system/ota.html (visited on 07/09/2020).

[101] Espressif Systems. ESP-IDF Programming Guide: Memory Capabilities. 2021.
url: https://docs.espressif.com/projects/esp- idf/en/latest/
esp32/api-reference/system/mem_alloc.html (visited on 07/06/2021).

[102] Espressif Systems. ESP-IDF Programming Guide: Partition Tables. 2021. url:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
api-guides/partition-tables.html (visited on 05/06/2021).

[103] Espressif Systems. ESP32 Series Datasheet. 2021. url: https://www.espress
if.com/sites/default/files/documentation/esp32_datasheet_en.pdf
(visited on 05/03/2021).

[104] Espressif Systems. ESP32-C3 Technical Reference Manual. 2022. url: https:
//www.espressif.com/sites/default/files/documentation/esp32-
c3_technical_reference_manual_en.pdf (visited on 06/21/2022).

[105] Espressif Systems. Wi-Fi Driver - ESP32 - ESP-IDF Programming Guide
latest documentation. 2022. url: https://docs.espressif.com/projects/e
sp-idf/en/latest/esp32/api-guides/wifi.html (visited on 03/16/2022).

[106] Nicolas Falliere, Liam O Murchu, and Eric Chien. “W32. Stuxnet Dossier”.
In: White paper, Symantec Security Response 5.6 (2011).

[107] James P Farwell and Rafal Rohozinski. “Stuxnet and the future of cyber war”.
In: Survival 53.1 (2011), pp. 23–40.

[108] Laura Faulkner. “Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing”. In: Behavior Research Methods, Instruments,
& Computers 35.3 (2003), pp. 379–383. doi: 10.3758/BF03195514.

[109] Meik Felser, Rüdiger Kapitza, Jürgen Kleinöder, and Wolfgang Schröder-
Preikschat. “Dynamic Software Update of Resource-Constrained Distributed
Embedded Systems”. In: Embedded System Design: Topics, Techniques and
Trends (IFIP TC10). Springer, 2007. doi: 10.1007/978-0-387-72258-0_33.

[110] Bo Feng, Alejandro Mera, and Long Lu. “P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling”.
In: Proceedings of the 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, 2020, pp. 1237–1254. isbn: 978-1-939133-17-5. url:
https://www.usenix.org/conference/usenixsecurity20/presentation
/feng.

194

https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/mem_alloc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/mem_alloc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/wifi.html
https://doi.org/10.3758/BF03195514
https://doi.org/10.1007/978-0-387-72258-0_33
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://www.usenix.org/conference/usenixsecurity20/presentation/feng

Bibliography

[111] Wei Feng, Yu Qin, Shijun Zhao, Ziwen Liu, Xiaobo Chu, and Dengguo Feng.
“Secure Code Updates for Smart Embedded Devices based on PUFs”. In:
Proceedings of the 16th International Conference on Cryptology and Network
Security (CANS 2017). Springer. 2018, pp. 325–346.

[112] Aurélien Francillon, Quan Nguyen, Kasper B Rasmussen, and Gene Tsudik.
“A minimalist approach to Remote Attestation”. In: Proceedings of the 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2014, pp. 1–6. doi: 10.7873/DATE.2014.257.

[113] Thomas Franke, Christiane Attig, and Daniel Wessel. “A Personal Resource
for Technology Interaction: Development and Validation of the Affinity
for Technology Interaction (ATI) Scale”. In: International Journal of Hu-
man–Computer Interaction 35.6 (2019). doi: 10 . 1080 / 10447318 . 2018 .
1456150.

[114] FreeRTOS. Over the Air (OTA) Updates. 2020. url: https://www.freertos.
org/ota/index.html (visited on 07/09/2020).

[115] FreeRTOS. API Reference. 2022. url: https://www.freertos.org/a00106.
html (visited on 03/17/2022).

[116] FreeRTOS. GitHub - FreeRTOS. 2022. url: https://github.com/FreeRTOS/
FreeRTOS/tree/master (visited on 03/22/2022).

[117] Ulf Frisk. “Direct Memory Attack the Kernel”. In: Proceedings of DEFCON
24 (2016).

[118] David Geer. “Industry Trends: Chip Makers Turn to Multicore Processors”.
In: Computer 38.5 (2005), pp. 11–13. doi: 10.1109/MC.2005.160.

[119] Gemalto. The State of IoT Security. 2018. url: https://www.infopoint-
security . de / media / gemalto - state - of - iot - security - report . pdf
(visited on 02/16/2022).

[120] Thomas Gerace and Huseyin Cavusoglu. “The critical elements of the patch
management process”. In: Communications of the ACM 52.8 (2009), pp. 117–
121. doi: 10.1145/1536616.1536646.

[121] Hamid Reza Ghaeini, Matthew Chan, Raad Bahmani, Ferdinand Brasser,
Luis Garcia, Jianying Zhou, Ahmad-Reza Sadeghi, Nils Ole Tippenhauer,
and Saman A Zonouz. “PAtt: Physics-based Attestation of Control Systems”.
In: Proceedings of the 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID). USENIX Association, 2019, pp. 165–180.

[122] Cristiano Giuffrida, Calin Iorgulescu, Giordano Tamburrelli, and Andrew S.
Tanenbaum. “Automating Live Update for Generic Server Programs”. In:
IEEE Transactions on Software Engineering (2017). doi: 10.1109/TSE.2016.
2584066.

195

https://doi.org/10.7873/DATE.2014.257
https://doi.org/10.1080/10447318.2018.1456150
https://doi.org/10.1080/10447318.2018.1456150
https://www.freertos.org/ota/index.html
https://www.freertos.org/ota/index.html
https://www.freertos.org/a00106.html
https://www.freertos.org/a00106.html
https://github.com/FreeRTOS/FreeRTOS/tree/master
https://github.com/FreeRTOS/FreeRTOS/tree/master
https://doi.org/10.1109/MC.2005.160
https://www.infopoint-security.de/media/gemalto-state-of-iot-security-report.pdf
https://www.infopoint-security.de/media/gemalto-state-of-iot-security-report.pdf
https://doi.org/10.1145/1536616.1536646
https://doi.org/10.1109/TSE.2016.2584066
https://doi.org/10.1109/TSE.2016.2584066

Bibliography

[123] Cristiano Giuffrida and Andrew S Tanenbaum. “A Taxonomy of Live Updates”.
In: Proceedings of the 16th Annual Conference of the Advanced School for
Computing and Imaging (ASCI). 2010.

[124] GNU Project - GNU Compiler Collection. Specifying Attributes of Variables.
2022. url: https://gcc.gnu.org/onlinedocs/gcc-11.3.0/gcc/Variable
-Attributes.html#Variable-Attributes (visited on 04/28/2022).

[125] Dan Goodin. Brace yourselves—source code powering potent IoT DDoSes
just went public. 2016. url: http://arstechnica.com/security/2016/10/
brace-yourselves-source-code-powering-potent-iot-ddoses-just-
went-public/ (visited on 04/21/2022).

[126] Google. Overview of the Play Integrity API. 2022. url: https://developer.
android.com/google/play/integrity/overview (visited on 11/10/2022).

[127] Google. SafetyNet Attestation API. 2022. url: https://developer.android.
com/training/safetynet/attestation (visited on 11/10/2022).

[128] Tianxiao Gu, Chun Cao, Chang Xu, Xiaoxing Ma, Linghao Zhang, and Jian
Lu. “Javelus: A Low Disruptive Approach to Dynamic Software Updates”. In:
Proceedings of the Asia-Pacific Software Engineering Conference (APSEC).
IEEE. 2012. doi: 10.1109/APSEC.2012.55.

[129] Zhonglei Gu and Yang Liu. “Scalable Group Audio-Based Authentication
Scheme for IoT Devices”. In: Proceedings of the 2016 12th International
Conference on Computational Intelligence and Security (CIS). IEEE. 2016,
pp. 277–281. doi: 10.1109/CIS.2016.0070.

[130] Rachid Guerraoui and André Schiper. “Software-Based Replication for Fault
Tolerance”. In: Computer (1997). doi: 10.1109/2.585156.

[131] Zhixiu Guo, Zijin Lin, Pan Li, and Kai Chen. “SkillExplorer: Understanding
the Behavior of Skills in Large Scale”. In: Proceedings of the 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 2020,
pp. 2649–2666. isbn: 978-1-939133-17-5. url: https://www.usenix.org/
conference/usenixsecurity20/presentation/guo.

[132] Deepak Gupta, Pankaj Jalote, and Gautam Barua. “A formal framework
for on-line software version change”. In: IEEE Transactions on Software
engineering 22.2 (1996), pp. 120–131. doi: 10.1109/32.485222.

[133] Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane
S. Clark, Benessa Defend, Will Morgan, Kevin Fu, Tadayoshi Kohno, and
William H. Maisel. “Pacemakers and Implantable Cardiac Defibrillators: Soft-
ware Radio Attacks and Zero-Power Defenses”. In: Proceedings of the IEEE
Symposium on Security and Privacy (SP). IEEE. 2008, pp. 129–142. doi:
10.1109/SP.2008.31.

196

https://gcc.gnu.org/onlinedocs/gcc-11.3.0/gcc/Variable-Attributes.html#Variable-Attributes
https://gcc.gnu.org/onlinedocs/gcc-11.3.0/gcc/Variable-Attributes.html#Variable-Attributes
http://arstechnica.com/security/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
http://arstechnica.com/security/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
http://arstechnica.com/security/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://developer.android.com/google/play/integrity/overview
https://developer.android.com/google/play/integrity/overview
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
https://doi.org/10.1109/APSEC.2012.55
https://doi.org/10.1109/CIS.2016.0070
https://doi.org/10.1109/2.585156
https://www.usenix.org/conference/usenixsecurity20/presentation/guo
https://www.usenix.org/conference/usenixsecurity20/presentation/guo
https://doi.org/10.1109/32.485222
https://doi.org/10.1109/SP.2008.31

Bibliography

[134] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Madhumitha Harishankar,
Shijia Pan, Hae Young Noh, Pei Zhang, and Patrick Tague. “Do You Feel
What I Hear? Enabling Autonomous IoT Device Pairing Using Different
Sensor Types”. In: Proceedings of the 2018 IEEE Symposium on Security and
Privacy (SP). IEEE. 2018. doi: 10.1109/SP.2018.00041.

[135] Khalid Hasan, Kamanashis Biswas, Khandakar Ahmed, Nazmus S Nafi, and
Md Saiful Islam. “A comprehensive review of wireless body area network”. In:
Journal of Network and Computer Applications 143 (2019), pp. 178–198. doi:
10.1016/j.jnca.2019.06.016.

[136] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks,
and Jeffrey S. Foster. “Kitsune: Efficient, General-Purpose Dynamic Software
Updating for C”. In: Proceedings of the 2012 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA). ACM, 2012. doi: 10.1145/2384616.2384635.

[137] Simon Holmbacka, Wictor Lund, Sébastien Lafond, and Johan Lilius.
“Lightweight Framework for Runtime Updating of C-Based Software in
Embedded Systems”. In: Proceedings of the 5th Workshop on Hot Topics in
Software Upgrades (HotSWUp 13). USENIX Association, 2013.

[138] Matthew B Hoy. “Alexa, Siri, Cortana, and More: An Introduction to Voice
Assistants”. In: Medical Reference Services Quarterly 37.1 (2018), pp. 81–88.
doi: 10.1080/02763869.2018.1404391.

[139] Stefan Hristozov, Moritz Wettermann, and Manuel Huber. “A TOCTOU
Attack on DICE Attestation”. In: Proceedings of the 12th ACM Conference
on Data and Application Security and Privacy (CODASPY 22). ACM, 2022,
pp. 226–235. doi: 10.1145/3508398.3511507.

[140] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. “Data-Oriented Programming: On the Expres-
siveness of Non-control Data Attacks”. In: Proceedings of the 2016 IEEE
Symposium on Security and Privacy (SP). IEEE. 2016, pp. 969–986. doi:
10.1109/SP.2016.62.

[141] Wen Hu, Hailun Tan, Peter Corke, Wen Chan Shih, and Sanjay Jha. “Toward
trusted wireless sensor networks”. In: ACM Transactions on Sensor Networks
(TOSN) 7.1 (2010), pp. 1–25. issn: 1550-4859. doi: 10 . 1145 / 1806895 .
1806900.

[142] James Huang. NXP Microcontrollers Overview. 2017. url: https://www.nxp.
com/docs/en/supporting-information/BL-Micro-NXP-Microcontroller
-Overview-James-Huang.pdf (visited on 04/19/2022).

197

https://doi.org/10.1109/SP.2018.00041
https://doi.org/10.1016/j.jnca.2019.06.016
https://doi.org/10.1145/2384616.2384635
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1145/3508398.3511507
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1145/1806895.1806900
https://doi.org/10.1145/1806895.1806900
https://www.nxp.com/docs/en/supporting-information/BL-Micro-NXP-Microcontroller-Overview-James-Huang.pdf
https://www.nxp.com/docs/en/supporting-information/BL-Micro-NXP-Microcontroller-Overview-James-Huang.pdf
https://www.nxp.com/docs/en/supporting-information/BL-Micro-NXP-Microcontroller-Overview-James-Huang.pdf

Bibliography

[143] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene Tsudik. “US-AID: Unat-
tended Scalable Attestation of IoT Devices”. In: Proceedings of the 2018
IEEE 37th Symposium on Reliable Distributed Systems (SRDS). IEEE. 2018,
pp. 21–30. doi: 10.1109/SRDS.2018.00013.

[144] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Shaza Zeitouni. “SeED: Secure
Non-Interactive Attestation for Embedded Devices”. In: Proceedings of the 10th
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec 17). 2017, pp. 64–74. isbn: 9781450350846. doi: 10.1145/3098243.
3098260.

[145] Zineeddine Ould Imam, Marc Lacoste, and Ghada Arfaoui. “Towards a Mod-
ular Attestation Framework for Flexible Data Protection for Drone Systems”.
In: Proceedings of the 17th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob). IEEE, 2021, pp. 96–
102. doi: 10.1109/WiMob52687.2021.9606269.

[146] Infineon. MPU_Memory_Protection for KIT_AURIX_TC297_TFT. 2020.
url: https://www.infineon.com/dgdl/?fileId=5546d46274cf54d50174d
a37dc1d222e (visited on 04/19/2022).

[147] Infineon. How to use direct memory access (DMA) controller in TRAVEO II
family. 2021. url: https://www.infineon.com/dgdl/Infineon-AN220191_
How_to_Use_Direct_Memory_Access_(DMA)_Controller_in_Traveo_II_
Family-ApplicationNotes-v07_00-EN.pdf (visited on 04/19/2022).

[148] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
“Block Oriented Programming: Automating Data-Only Attacks”. In: Proceed-
ings of the 2018 25th ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS 18). ACM, 2018, pp. 1868–1882. isbn: 9781450356930.
doi: 10.1145/3243734.3243739.

[149] ITU-T. Overview of the Internet of things. Recommendation Y.2060. Interna-
tional Telecommunication Union, 2012.

[150] Haegeon Jeong, Jeanseong Baik, and Kyungtae Kang. “Functional level hot-
patching platform for executable and linkable format binaries”. In: Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE. 2017. doi: 10.1109/SMC.2017.8122653.

[151] Joy-IT. Heartbeat Sensor KY-039. 2018. url: http : / / anleitung . joy -
it.net/wp-content/uploads/2018/11/SEN-KY039-Manual.pdf (visited on
07/23/2020).

[152] JSOF-Tech. Ripple20 - 19 Zero-Day Vulnerabilities Amplified by the Supply
Chain. 2020. url: https://www.jsof- tech.com/ripple20/ (visited on
07/14/2020).

198

https://doi.org/10.1109/SRDS.2018.00013
https://doi.org/10.1145/3098243.3098260
https://doi.org/10.1145/3098243.3098260
https://doi.org/10.1109/WiMob52687.2021.9606269
https://www.infineon.com/dgdl/?fileId=5546d46274cf54d50174da37dc1d222e
https://www.infineon.com/dgdl/?fileId=5546d46274cf54d50174da37dc1d222e
https://www.infineon.com/dgdl/Infineon-AN220191_How_to_Use_Direct_Memory_Access_(DMA)_Controller_in_Traveo_II_Family-ApplicationNotes-v07_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-AN220191_How_to_Use_Direct_Memory_Access_(DMA)_Controller_in_Traveo_II_Family-ApplicationNotes-v07_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-AN220191_How_to_Use_Direct_Memory_Access_(DMA)_Controller_in_Traveo_II_Family-ApplicationNotes-v07_00-EN.pdf
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1109/SMC.2017.8122653
http://anleitung.joy-it.net/wp-content/uploads/2018/11/SEN-KY039-Manual.pdf
http://anleitung.joy-it.net/wp-content/uploads/2018/11/SEN-KY039-Manual.pdf
https://www.jsof-tech.com/ripple20/

Bibliography

[153] Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srdjan Capkun.
“Sound-proof: Usable two-factor authentication based on ambient sound”. In:
Proceedings of the 24th USENIX Security Symposium (USENIX Security 15).
USENIX Association, 2015, pp. 483–498. url: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/kar
apanos.

[154] Ori Karliner. FreeRTOS TCP/IP Stack Vulnerabilities - The Details. 2018.
url: https://blog.zimperium.com/freertos-tcpip-stack-vulnerabil
ities-details/ (visited on 07/23/2020).

[155] Chongkyung Kil, Emre C Sezer, Ahmed M Azab, Peng Ning, and Xiaolan
Zhang. “Remote attestation to dynamic system properties: Towards providing
complete system integrity evidence”. In: Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks. IEEE. 2009,
pp. 115–124. doi: 10.1109/DSN.2009.5270348.

[156] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping Bits in Memory
without Accessing Them: An Experimental Study of DRAM Disturbance
Errors”. In: ACM SIGARCH Computer Architecture News 42.3 (2014). doi:
10.1145/2678373.2665726.

[157] Bret Kinsella. Alexa Skill Counts Surpass 80K in US, Spain Adds the Most
Skills, New Skill Rate Falls Globally. 2021. url: https://voicebot.ai/
2021/01/14/alexa- skill- counts- surpass- 80k- in- us- spain- adds-
the-most-skills-new-skill-introduction-rate-continues-to-fall-
across-countries/ (visited on 03/16/2022).

[158] Bret Kinsella. Google Assistant Actions Grew Quickly in Several Languages
in 2019, Matched Alexa Growth in English. 2022. url: https://voiceb
ot.ai/2020/01/19/google- assistant- actions- grew- quickly- in-
several-languages-in-2019-match-alexa-growth-in-english/ (visited
on 03/16/2022).

[159] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadhara-
jan. “TrustLite: A Security Architecture for Tiny Embedded Devices”. In:
Proceedings of the 9th European Conference on Computer Systems (EuroSys
14). ACM, 2014. doi: 10.1145/2592798.2592824.

[160] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. “A practical
attestation protocol for autonomous embedded systems”. In: Proceedings of
the 2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE. 2019, pp. 263–278.

199

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/karapanos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/karapanos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/karapanos
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://doi.org/10.1109/DSN.2009.5270348
https://doi.org/10.1145/2678373.2665726
https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://doi.org/10.1145/2592798.2592824

Bibliography

[161] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak N. Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, and Stefan Savage. “Experimental Security Analysis of a
Modern Automobile”. In: Proceedings of the IEEE Symposium on Security
and Privacy (SP). IEEE. 2010. doi: 10.1109/SP.2010.34.

[162] Daniel B Kramer and Kevin Fu. “Cybersecurity Concerns and Medical Devices:
Lessons From a Pacemaker Advisory”. In: JAMA 318.21 (2017), pp. 2077–2078.
issn: 0098-7484. doi: 10.1001/jama.2017.15692.

[163] Boyu Kuang, Anmin Fu, Shui Yu, Guomin Yang, Mang Su, and Yuqing Zhang.
“ESDRA: An Efficient and Secure Distributed Remote Attestation Scheme for
IoT Swarms”. In: IEEE Internet of Things Journal 6.5 (2019), pp. 8372–8383.
doi: 10.1109/JIOT.2019.2917223.

[164] Boyu Kuang, Anmin Fu, Lu Zhou, Willy Susilo, and Yuqing Zhang. “DO-RA:
Data-oriented runtime attestation for IoT devices”. In: Computers & Security
97 (2020), p. 101945. issn: 0167-4048. doi: 10.1016/j.cose.2020.101945.

[165] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. “NetCAT: Practical Cache Attacks from the Network”.
In: Proceedings of the IEEE Symposium on Security and Privacy (SP). IEEE.
2020, pp. 20–38. doi: 10.1109/SP40000.2020.00082.

[166] David Kushner. “The Making of Arduino”. In: IEEE Spectrum 26 (2011).
[167] Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungyoung Lee, Yeongpil

Cho, and Yunheung Paek. “uXOM: Efficient eXecute-Only Memory on ARM
Cortex-M”. In: Proceedings of the 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, 2019, pp. 231–247. isbn: 978-1-939133-
06-9. url: https://www.usenix.org/conference/usenixsecurity19/
presentation/kwon.

[168] Jisu Kwon, Jeonghun Cho, and Daejin Park. “Function Block-Based Robust
Firmware Update Technique for Additional Flash-Area/Energy-Consumption
Overhead Reduction”. In: Proceedings of the International Symposium on
Intelligent Signal Processing and Communication Systems (ISPACS). IEEE.
2019. doi: 10.1109/ISPACS48206.2019.8986373.

[169] Ralph Langner. “Stuxnet: Dissecting a Cyberwarfare Weapon”. In: IEEE
Security & Privacy 9.3 (2011), pp. 49–51. doi: 10.1109/MSP.2011.67.

[170] Josephine Lau, Benjamin Zimmerman, and Florian Schaub. “Alexa, Are You
Listening?: Privacy Perceptions, Concerns and Privacy-seeking Behaviors
with Smart Speakers”. In: Proceedings of the ACM on Human-Computer
Interaction 2.CSCW (2018). doi: 10.1145/3274371.

200

https://doi.org/10.1109/SP.2010.34
https://doi.org/10.1001/jama.2017.15692
https://doi.org/10.1109/JIOT.2019.2917223
https://doi.org/10.1016/j.cose.2020.101945
https://doi.org/10.1109/SP40000.2020.00082
https://www.usenix.org/conference/usenixsecurity19/presentation/kwon
https://www.usenix.org/conference/usenixsecurity19/presentation/kwon
https://doi.org/10.1109/ISPACS48206.2019.8986373
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1145/3274371

Bibliography

[171] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. “Keystone: An Open Framework for Architecting Trusted Execution
Environments”. In: Proceedings of the 15th European Conference on Computer
Systems (EuroSys 20). ACM, 2020. doi: 10.1145/3342195.3387532.

[172] Frédéric Leens. “An introduction to I2C and SPI protocols”. In: IEEE Instru-
mentation & Measurement Magazine 12.1 (2009), pp. 8–13.

[173] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pan-
nuto, Prabal Dutta, and Philip Levis. “Multiprogramming a 64kB Computer
Safely and Efficiently”. In: Proceedings of the 26th Symposium on Operating
Systems Principles (SOPS 17). ACM, 2017. doi: 10.1145/3132747.3132786.

[174] Fuchun J Lin, PM Chu, and Ming T Liu. “Protocol Verification Using Reacha-
bility Analysis: The State Space Explosion Problem and Relief Strategies”. In:
Proceedings of the ACM Workshop on Frontiers in Computer Communications
Technology (SIGCOMM ’87). ACM, 1987, pp. 126–135. isbn: 0897912454. doi:
10.1145/55482.55496.

[175] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. “Last-
Level Cache Side-Channel Attacks are Practical”. In: Proceedings of the IEEE
Symposium on Security and Privacy (SP). IEEE. 2015, pp. 605–622. doi:
10.1109/SP.2015.43.

[176] Kristis Makris and Rida A. Bazzi. “Immediate Multi-Threaded Dynamic
Software Updates Using Stack Reconstruction”. In: Proceedings of the USENIX
Annual Technical Conference (USENIX ATC 09). USENIX Association, 2009.
url: https://www.usenix.org/conference/usenix-09/immediate-mult
i-threaded-dynamic-software-updates-using-stack-reconstruction.

[177] Theo Markettos, Colin Rothwell, Brett F Gutstein, Allison Pearce, Peter
G Neumann, Simon Moore, and Robert Watson. “Thunderclap: Exploring
Vulnerabilities in Operating System IOMMU Protection via DMA from Un-
trustworthy Peripherals”. In: (2019).

[178] Peter Marwedel. Embedded System Design: Embedded Systems Foundations
of Cyber-Physical Systems, and the Internet of Things. Springer Nature, 2021.

[179] Shijia Mei, Zhihong Liu, Yong Zeng, Lin Yang, and Jian Feng Ma. “Listen!:
Audio-based Smart IoT Device Pairing Protocol”. In: Proceedings of the 2019
IEEE 19th International Conference on Communication Technology (ICCT).
IEEE. 2019, pp. 391–397. doi: 10.1109/ICCT46805.2019.8947178.

[180] Alejandro Mera, Yi Hui Chen, Ruimin Sun, Engin Kirda, and Long Lu. “D-
Box: DMA-enabled Compartmentalization for Embedded Applications”. In:
Proceedings of the 2022 Network and Distributed Systems Security Symposium
(NDSS). Internet Society. 2022.

201

https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/55482.55496
https://doi.org/10.1109/SP.2015.43
https://www.usenix.org/conference/usenix-09/immediate-multi-threaded-dynamic-software-updates-using-stack-reconstruction
https://www.usenix.org/conference/usenix-09/immediate-multi-threaded-dynamic-software-updates-using-stack-reconstruction
https://doi.org/10.1109/ICCT46805.2019.8947178

Bibliography

[181] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda. “DICE: Automatic
Emulation of DMA Input Channels for Dynamic Firmware Analysis”. In:
Proceedings of the 42nd IEEE Symposium on Security and Privacy (SP).
IEEE. 2021. doi: 10.1109/SP40001.2021.00018.

[182] Ralph Charles Merkle. Secrecy, authentication, and public key systems. Stan-
ford University, 1979.

[183] Kathleen Metrick, Jared Semrau, and Shambavi Sadayappan. Think Fast:
Time Between Disclosure, Patch Release and Vulnerability Exploitation —
Intelligence for Vulnerability Management, Part Two. Mandiant, 2021. url:
https : / / www . mandiant . com / resources / blog / time - between - discl
osure - patch - release - and - vulnerability - exploitation (visited on
04/05/2022).

[184] Microchip Technology Inc. ATmega48A/PA/88A/PA/168A/PA/328/P. 2018.
url: https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-
PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf (visited on 02/15/2022).

[185] Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered Passen-
ger Vehicle. 2015. url: https://illmatics.com/Remote%20Car%20Hacking.
pdf (visited on 11/09/2022).

[186] Richard Mitev, Markus Miettinen, and Ahmad-Reza Sadeghi. “Alexa Lied
to Me: Skill-based Man-in-the-Middle Attacks on Virtual Assistants”. In:
Proceedings of the ACM Asia Conference on Computer and Communications
Security (AsiaCCS). ACM, 2019. doi: 10.1145/3321705.3329842.

[187] Motorola, Inc. “SPI Block Guide V03.06”. In: Document number S12SPIV3/D
(2003).

[188] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. “What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices.” In: Proceedings of the 2019 Network and Distributed
Systems Security Symposium (NDSS). Internet Society. 2018.

[189] Imanol Mugarza, Andoni Amurrio, Ekain Azketa, and Eduardo Jacob. “Dy-
namic Software Updates to Enhance Security and Privacy in High Availability
Energy Management Applications in Smart Cities”. In: IEEE Access (2019).
doi: 10.1109/ACCESS.2019.2905925.

[190] Imanol Mugarza, Jorge Parra, and Eduardo Jacob. “Cetratus: A framework
for zero downtime secure software updates in safety-critical systems”. In:
Proceedings of the International Symposium on Industrial Embedded Systems
(SIES). IEEE. 2018. doi: 10.1002/spe.2820.

202

https://doi.org/10.1109/SP40001.2021.00018
https://www.mandiant.com/resources/blog/time-between-disclosure-patch-release-and-vulnerability-exploitation
https://www.mandiant.com/resources/blog/time-between-disclosure-patch-release-and-vulnerability-exploitation
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://illmatics.com/Remote%20Car%20Hacking.pdf
https://illmatics.com/Remote%20Car%20Hacking.pdf
https://doi.org/10.1145/3321705.3329842
https://doi.org/10.1109/ACCESS.2019.2905925
https://doi.org/10.1002/spe.2820

Bibliography

[191] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor
Dumitras. “The Attack of the Clones: A Study of the Impact of Shared
Code on Vulnerability Patching”. In: Proceedings of the IEEE Symposium on
Security and Privacy (SP). IEEE. 2015. doi: 10.1109/SP.2015.48.

[192] National Institute of Standards and Technology. Secure Hash Standard (FIPS
180-3). 2008. url: https://csrc.nist.gov/publications/detail/fips/
180/3/archive/2008-10-31 (visited on 09/14/2021).

[193] National Institute of Standards and Technology. Secure Hash Standard (SHS).
2015. url: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-
4.pdf (visited on 09/12/2021).

[194] National Institute of Standards and Technology. CVE-2018-16601. 2018.
url: https://nvd.nist.gov/vuln/detail/CVE-2018-16601 (visited on
03/29/2023).

[195] James Nesfield. “Sending Data Over Sound: How and Why?” In: Electronic
Design (2019). url: https://www.electronicdesign.com/industrial-
automation/article/21808186/sending- data- over- sound- how- and-
why (visited on 03/09/2022).

[196] Erik G Nilsson. “Design patterns for user interface for mobile applications”. In:
Advances in engineering software 40.12 (2009). doi: 10.1016/j.advengsoft.
2009.01.017.

[197] NodeMCU Documentation. WiFi Module. 2022. url: https://nodemcu.
readthedocs.io/en/release/modules/wifi/ (visited on 03/16/2022).

[198] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van
Herrewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and
Frank Piessens. “Sancus: Low-cost Trustworthy Extensible Networked Devices
with a Zero-software Trusted Computing Base”. In: Proceedings of the 22nd
USENIX Security Symposium (USENIX Security 13). USENIX Association,
2013, pp. 479–498. isbn: 978-1-931971-03-4. url: https://www.usenix.org/
conference/usenixsecurity13/technical-sessions/presentation/noo
rman.

[199] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter
Maene, Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo Müller,
and Felix Freiling. “Sancus 2.0: A Low-Cost Security Architecture for IoT
Devices”. In: ACM Transactions on Privacy and Security (TOPS) 20.3 (2017),
pp. 1–33. issn: 2471-2566. doi: 10.1145/3079763.

203

https://doi.org/10.1109/SP.2015.48
https://csrc.nist.gov/publications/detail/fips/180/3/archive/2008-10-31
https://csrc.nist.gov/publications/detail/fips/180/3/archive/2008-10-31
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvd.nist.gov/vuln/detail/CVE-2018-16601
https://www.electronicdesign.com/industrial-automation/article/21808186/sending-data-over-sound-how-and-why
https://www.electronicdesign.com/industrial-automation/article/21808186/sending-data-over-sound-how-and-why
https://www.electronicdesign.com/industrial-automation/article/21808186/sending-data-over-sound-how-and-why
https://doi.org/10.1016/j.advengsoft.2009.01.017
https://doi.org/10.1016/j.advengsoft.2009.01.017
https://nodemcu.readthedocs.io/en/release/modules/wifi/
https://nodemcu.readthedocs.io/en/release/modules/wifi/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://doi.org/10.1145/3079763

Bibliography

[200] Ivan De Oliveira Nunes, Ghada Dessouky, Ahmad Ibrahim, Norrathep Rat-
tanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik. “Towards Systematic
Design of Collective Remote Attestation Protocols”. In: Proceedings of the
39th International Conference on Distributed Computing Systems (ICDCS).
IEEE. 2019, pp. 1188–1198. doi: 10.1109/ICDCS.2019.00120.

[201] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. “VRASED: A Verified Hardware/Software Co-
Design for Remote Attestation”. In: Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, 2019, pp. 1429–
1446. isbn: 978-1-939133-06-9. url: https://www.usenix.org/conference/
usenixsecurity19/presentation/de-oliveira-nunes.

[202] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and
Gene Tsudik. “PURE: Using Verified Remote Attestation to Obtain Proofs of
Update, Reset and Erasure in low-End Embedded Systems”. In: Proceedings
of the International Conference on Computer-Aided Design (ICCAD). ACM,
2019, pp. 1–8. doi: 10.1109/ICCAD45719.2019.8942118.

[203] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and
Gene Tsudik. “APEX: A Verified Architecture for Proofs of Execution on
Remote Devices under Full Software Compromise”. In: Proceedings of the 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association,
2020, pp. 771–788. isbn: 978-1-939133-17-5. url: https://www.usenix.org/
conference/senixsecurity20/presentation/nunes.

[204] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. “DIALED:
Data Integrity Attestation for Low-end Embedded Devices”. In: Proceedings
of the 58th ACM/IEEE Design Automation Conference (DAC). IEEE. 2021.
doi: 10.1109/DAC18074.2021.9586180.

[205] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. “Tiny-CFA:
Minimalistic Control-Flow Attestation Using Verified Proofs of Execution”. In:
Proceedings of the 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE. 2021. doi: 10.23919/DATE51398.2021.9474029.

[206] NXP. Examples of Setting the DMA Controller on the Power Architecture
MPC5675K Family of Microcontrollers. 2012. url: https://www.nxp.com/
docs/en/application-note/AN4522.pdf (visited on 04/19/2022).

[207] Adam Osborne. Introductions to Microcomputers: Volume One, Basic Con-
cepts. McGraw-Hill Osborne Media, 1980.

[208] OWASP. Internet of Things (IoT) Top 10 2018. 2018. url: https://owasp.
org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf (visited on
02/23/2022).

204

https://doi.org/10.1109/ICDCS.2019.00120
https://www.usenix.org/conference/usenixsecurity19/presentation/de-oliveira-nunes
https://www.usenix.org/conference/usenixsecurity19/presentation/de-oliveira-nunes
https://doi.org/10.1109/ICCAD45719.2019.8942118
https://www.usenix.org/conference/senixsecurity20/presentation/nunes
https://www.usenix.org/conference/senixsecurity20/presentation/nunes
https://doi.org/10.1109/DAC18074.2021.9586180
https://doi.org/10.23919/DATE51398.2021.9474029
https://www.nxp.com/docs/en/application-note/AN4522.pdf
https://www.nxp.com/docs/en/application-note/AN4522.pdf
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf

Bibliography

[209] OWASP. About the OWASP Foundation. 2023. url: https://owasp.org/
about/ (visited on 02/01/2022).

[210] OWASP. OWASP Top Ten. 2023. url: https://owasp.org/www-project-
top-ten/ (visited on 02/01/2023).

[211] Dorottya Papp, Zhendong Ma, and Levente Buttyán. “Embedded systems
security: Threats, vulnerabilities, and attack taxonomy”. In: Proceedings of
the Annual Conference on Privacy, Security and Trust (PST). IEEE. 2015.
doi: 10.1109/PST.2015.7232966.

[212] Mathias Payer, Boris Bluntschli, and Thomas R Gross. “DynSec: On-the-fly
Code Rewriting and Repair”. In: Proceedings of the 5th Workshop on Hot
Topics in Software Upgrades (HotSWUp 13). USENIX Association, 2013.

[213] Mathias Payer and Thomas R. Gross. “Hot-patching a web server: A case study
of ASAP code repair”. In: Proceedings of the Annual Conference on Privacy,
Security and Trust (PST). IEEE. 2013. doi: 10.1109/PST.2013.6596048.

[214] Wouter Penard and Tim van Werkhoven. “On the secure hash algorithm
family”. In: Cryptography in context (2008).

[215] Daniele Perito and Gene Tsudik. “Secure Code Update for Embedded Devices
via Proofs of Secure Erasure”. In: Proceedings of the 15th European Symposium
on Research in Computer Security (ESORICS). Springer. 2010, pp. 643–662.
isbn: 978-3-642-15497-3.

[216] Pine Store ltd. PinePhone. 2022. url: https://pine64.com/product-
category/pinephone/ (visited on 03/07/2022).

[217] Lumpapun Punchoojit and Nuttanont Hongwarittorrn. “Usability Studies
on Mobile User Interface Design Patterns: A Systematic Literature Review”.
In: Advances in Human-Computer Interaction (2017). doi: 10.1155/2017/
6787504.

[218] Davide Quarta, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea
Maria Zanchettin, and Stefano Zanero. “An Experimental Security Analysis
of an Industrial Robot Controller”. In: Proceedings of the IEEE Symposium
on Security and Privacy (SP). IEEE. 2017. doi: 10.1109/SP.2017.20.

[219] Ashwin Ramaswamy, Sergey Bratus, Sean W. Smith, and Michael E. Locasto.
“Katana: A Hot Patching Framework for ELF Executables”. In: Proceedings of
the International Conference on Availability, Reliability and Security (ARES).
IEEE. 2010. doi: 10.1109/ARES.2010.112.

[220] Kyle Rankin. Lockdown Mode on the Librem 5: Beyond Hardware Kill Switches.
2019. url: https://puri.sm/posts/lockdown-mode-on-the-librem-5-
beyond-hardware-kill-switches/ (visited on 03/07/2022).

205

https://owasp.org/about/
https://owasp.org/about/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2013.6596048
https://pine64.com/product-category/pinephone/
https://pine64.com/product-category/pinephone/
https://doi.org/10.1155/2017/6787504
https://doi.org/10.1155/2017/6787504
https://doi.org/10.1109/SP.2017.20
https://doi.org/10.1109/ARES.2010.112
https://puri.sm/posts/lockdown-mode-on-the-librem-5-beyond-hardware-kill-switches/
https://puri.sm/posts/lockdown-mode-on-the-librem-5-beyond-hardware-kill-switches/

Bibliography

[221] Edwin D. Reilly. “Memory-Mapped I/O”. In: Encyclopedia of Computer
Science. John Wiley and Sons Ltd., 2003, p. 1152. isbn: 0470864125.

[222] RISC-V. The RISC-V Instruction Set Manual Volume II: Privileged Archi-
tecture. 2017. url: https://riscv.org/wp-content/uploads/2017/05/
riscv-privileged-v1.10.pdf (visited on 04/19/2022).

[223] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. “Return-
Oriented Programming: Systems, Languages, and Applications”. In: ACM
Transactions on Information and System Security (TISSEC) 15.1 (2012),
pp. 1–34. issn: 1094-9224. doi: 10.1145/2133375.2133377.

[224] Roman Rogowski, Micah Morton, Forrest Li, Fabian Monrose, Kevin Z Snow,
and Michalis Polychronakis. “Revisiting Browser Security in the Modern
Era: New Data-Only Attacks and Defenses”. In: Proceedings of the 2017
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE. 2017,
pp. 366–381. doi: 10.1109/EuroSP.2017.39.

[225] Florian Rommel, Lennart Glauer, Christian Dietrich, and Daniel Lohmann.
“Wait-Free Code Patching of Multi-Threaded Processes”. In: Proceedings of
the Workshop on Programming Languages and Operating Systems, (SOSP).
ACM, 2019. doi: 10.1145/3365137.3365404.

[226] Markus Rothmuller and Sam Barker. IoT – the Internet of Transformation
2020. Juniper Research Ltd, 2020. url: https://www.juniperresearch.
com/whitepapers/iot-the-internet-of-transformation-2020 (visited
on 02/23/2022).

[227] Björn Ruytenberg. Breaking Thunderbolt Protocol Security: Vulnerability
Report. Eindhoven University of Technology. 2020. url: https://thund
erspy.io/assets/reports/breaking- thunderbolt- security- bjorn-
ruytenberg-20200417.pdf (visited on 08/31/2022).

[228] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
“Trusted Execution Environment: What It is, and What It is Not”. In:
Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1. IEEE.
2015. doi: 10.1109/Trustcom.2015.357.

[229] Ahmad-Reza Sadeghi and Christian Stüble. “Property-Based Attestation
for Computing Platforms: Caring about Properties, Not Mechanisms”. In:
Proceedings of the 2004 Workshop on New Security Paradigms (NSPW 04).
ACM, 2004, pp. 67–77. isbn: 1595930760. doi: 10.1145/1065907.1066038.

206

https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1109/EuroSP.2017.39
https://doi.org/10.1145/3365137.3365404
https://www.juniperresearch.com/whitepapers/iot-the-internet-of-transformation-2020
https://www.juniperresearch.com/whitepapers/iot-the-internet-of-transformation-2020
https://thunderspy.io/assets/reports/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://thunderspy.io/assets/reports/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://thunderspy.io/assets/reports/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1145/1065907.1066038

Bibliography

[230] Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benoît Dupont de
Dinechin. “The Shift to Multicores in Real-Time and Safety-Critical Systems”.
In: Proceedings of the 2015 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS). IEEE, 2015. doi: 10.1109/
CODESISSS.2015.7331385.

[231] Christopher Salls, Yan Shoshitaishvili, Nick Stephens, Christopher Kruegel,
and Giovanni Vigna. “Piston: Uncooperative Remote Runtime Patching”.
In: Proceedings of the Annual Computer Security Applications Conference
(ACSAC). ACM, 2017. doi: 10.1145/3134600.3134611.

[232] Samsung. Samsung Knox Developer Communication: Attestation. 2021. url: h
ttps://docs.samsungknox.com/dev/knox-sdk/attestation.htm (visited
on 02/03/2023).

[233] M Angela Sasse and Ivan Flechais. “Usable security: Why do we need it? How
do we get it?” In: O’Reilly, 2005.

[234] Nitesh Saxena, J-E Ekberg, Kari Kostiainen, and N Asokan. “Secure Device
Pairing Based on a Visual Channel”. In: Proceedings of the 2006 IEEE
Symposium on Security and Privacy (SP). IEEE. 2006. doi: 10.1109/SP.
2006.35.

[235] Martin Schrepp, Andreas Hinderks, and Jörg Thomaschewski. “Design and
Evaluation of a Short Version of the User Experience Questionnaire (UEQ-S)”.
In: International Journal of Interactive Multimedia and Artificial Intelligence
4.6 (2017). doi: 10.9781/ijimai.2017.09.001.

[236] Dominik Schürmann and Stephan Sigg. “Secure Communication Based on
Ambient Audio”. In: IEEE Transactions on Mobile Computing 12.2 (2011).
doi: 10.1109/TMC.2011.271.

[237] Moses D Schwartz, John Mulder, Jason Trent, and William D Atkins. “Control
system devices: Architectures and supply channels overview”. In: Sandia
Report SAND2010-5183, Sandia National Laboratories (2010). doi: 10.2172/
993312.

[238] Mark E. Segal and Ophir Frieder. “On-the-Fly Program Modification: Systems
for a Dynamic Updating”. In: IEEE Software (1993). doi: 10.1109/52.
199735.

[239] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert Van Doorn, and Pradeep
Khosla. “SCUBA: Secure Code Update By Attestation in Sensor Networks”.
In: Proceedings of the 5th ACM Workshop on Wireless Security. ACM, 2006,
pp. 85–94. isbn: 1595935576. doi: 10.1145/1161289.1161306.

207

https://doi.org/10.1109/CODESISSS.2015.7331385
https://doi.org/10.1109/CODESISSS.2015.7331385
https://doi.org/10.1145/3134600.3134611
https://docs.samsungknox.com/dev/knox-sdk/attestation.htm
https://docs.samsungknox.com/dev/knox-sdk/attestation.htm
https://doi.org/10.1109/SP.2006.35
https://doi.org/10.1109/SP.2006.35
https://doi.org/10.9781/ijimai.2017.09.001
https://doi.org/10.1109/TMC.2011.271
https://doi.org/10.2172/993312
https://doi.org/10.2172/993312
https://doi.org/10.1109/52.199735
https://doi.org/10.1109/52.199735
https://doi.org/10.1145/1161289.1161306

Bibliography

[240] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert Van Doorn,
and Pradeep Khosla. “Pioneer: Verifying Code Integrity and Enforcing Un-
tampered Code Execution on Legacy Systems”. In: Proceedings of the 20th
ACM Symposium on Operating Systems Principles 2005, SOSP. ACM, 2005,
pp. 1–16. doi: 10.1145/1095810.1095812.

[241] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla.
“SWATT: SoftWare-based ATTestation for Embedded Devices”. In: Proceed-
ings of the IEEE Symposium on Security and Privacy (SP). IEEE. IEEE
Computer Society, 2004, pp. 272–282. doi: 10.1109/SECPRI.2004.1301329.

[242] Hovav Shacham. “The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86)”. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS 07). 2007,
pp. 552–561. isbn: 9781595937032. doi: 10.1145/1315245.1315313.

[243] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X Liu. “A Large
Scale Exploratory Analysis of Software Vulnerability Life Cycles”. In: Pro-
ceedings of the 34th International Conference on Software Engineering (ICSE
12). IEEE. 2012. doi: 10.1109/ICSE.2012.6227141.

[244] Zach Shelby, Klaus Hartke, and Carsten Bormann. RFC 7252: The constrained
application protocol (CoAP). Tech. rep. 2014. doi: 10.17487/RFC7252.

[245] Weidong Shi, Hsien-Hsin S. Lee, Laura Falk, and Mrinmoy Ghosh. “An
Integrated Framework for Dependable and Revivable Architectures Using
Multicore Processors”. In: Proceedings of the 33rd International Symposium on
Computer Architecture (ISCA 2006). IEEE, 2006. doi: 10.1109/ISCA.2006.8.

[246] Devu Manikantan Shila, Penghe Geng, and Teems Lovett. “I can detect you:
Using intrusion checkers to resist malicious firmware attacks”. In: Proceedings
of the 2016 IEEE Symposium on Technologies for Homeland Security (HST).
IEEE. 2016. doi: 10.1109/THS.2016.7568958.

[247] Kang G. Shin and Parameswaran Ramanathan. “Real-Time Computing: A
New Discipline of Computer Science and Engineering”. In: Proceedings of
IEEE, Special Issue on Real-Time Systems. IEEE, 1994. doi: 10.1109/5.
259423.

[248] Siglent. Siglent SDS1104X-E 100MHz Four channel oscilloscope. 2023. url:
https : / / www . siglent . eu / product / 1139249 / siglent - sds1104x - e -
100mhz-four-channel-oscilloscope (visited on 04/03/2023).

208

https://doi.org/10.1145/1095810.1095812
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/ICSE.2012.6227141
https://doi.org/10.17487/RFC7252
https://doi.org/10.1109/ISCA.2006.8
https://doi.org/10.1109/THS.2016.7568958
https://doi.org/10.1109/5.259423
https://doi.org/10.1109/5.259423
https://www.siglent.eu/product/1139249/siglent-sds1104x-e-100mhz-four-channel-oscilloscope
https://www.siglent.eu/product/1139249/siglent-sds1104x-e-100mhz-four-channel-oscilloscope

Bibliography

[249] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na,
Stijn Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert,
and Michael Franz. “PeriScope: An Effective Probing and Fuzzing Framework
for the Hardware-OS Boundary”. In: Proceedings of the 2019 Network and
Distributed Systems Security Symposium (NDSS). Internet Society. 2019.

[250] Spectra Industrie-PC und Automation. Embedded Configuration Manager
(ECM). 2021. url: https://www.spectra.de/cms/splash/embedded-
configuration-manager/ (visited on 07/13/2021).

[251] Embedded Staff. Catching the Z-Wave. 2006. url: https://www.embedded.
com/catching-the-z-wave/ (visited on 04/28/2021).

[252] John A. Stankovic and Raj Rajkumar. “Real-Time Operating Systems”. In:
Real Time Systems 28.2-3 (2004). doi: 10.1023/B:TIME.0000045319.20260.
73.

[253] Smiljanic Stasha. An In-Depth View into Smart Home Statistics. 2021. url:
https://policyadvice.net/insurance/insights/smart-home-statisti
cs/ (visited on 02/25/2022).

[254] Rodrigo Vieira Steiner and Emil Lupu. “Attestation in Wireless Sensor Net-
works: A Survey”. In: ACM Computing Surveys (CSUR) 49.3 (2016). doi:
10.1145/2988546.

[255] Rodrigo Vieira Steiner and Emil Lupu. “Towards more practical software-
based attestation”. In: Computer Networks 149 (2019). doi: 10.1016/j.
comnet.2018.11.003.

[256] Meghan Stewart and Angela Fleischmann. Update release cycle for Windows
clients. Microsoft, 2023. url: https://learn.microsoft.com/en- us/
windows/deployment/update/release-cycle (visited on 03/28/2023).

[257] Patrick Stewin and Iurii Bystrov. “Understanding DMA Malware”. In: Pro-
ceedings of the 9th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA 12). Springer. 2013, pp. 21–
41. isbn: 978-3-642-37300-8.

[258] STMicroelectronics. Using the STM32F2, STM32F4 and STM32F7 Series
DMA controller. 2016. url: https://www.st.com/resource/en/applicatio
n_note/dm00046011-using-the-stm32f2-stm32f4-and-stm32f7-series-
dma-controller-stmicroelectronics.pdf (visited on 04/19/2022).

[259] STMicroelectronics. STM32F446xC/E Technical Reference Manual. 2019.
url: https://www.st.com/resource/en/data_brief/nucleo-f446re.pdf
(visited on 12/16/2020).

209

https://www.spectra.de/cms/splash/embedded-configuration-manager/
https://www.spectra.de/cms/splash/embedded-configuration-manager/
https://www.embedded.com/catching-the-z-wave/
https://www.embedded.com/catching-the-z-wave/
https://doi.org/10.1023/B:TIME.0000045319.20260.73
https://doi.org/10.1023/B:TIME.0000045319.20260.73
https://policyadvice.net/insurance/insights/smart-home-statistics/
https://policyadvice.net/insurance/insights/smart-home-statistics/
https://doi.org/10.1145/2988546
https://doi.org/10.1016/j.comnet.2018.11.003
https://doi.org/10.1016/j.comnet.2018.11.003
https://learn.microsoft.com/en-us/windows/deployment/update/release-cycle
https://learn.microsoft.com/en-us/windows/deployment/update/release-cycle
https://www.st.com/resource/en/application_note/dm00046011-using-the-stm32f2-stm32f4-and-stm32f7-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00046011-using-the-stm32f2-stm32f4-and-stm32f7-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00046011-using-the-stm32f2-stm32f4-and-stm32f7-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/data_brief/nucleo-f446re.pdf

Bibliography

[260] STMicroelectronics. Using the STM32F0/F1/F3/Gx/Lx Series DMA con-
troller. 2020. url: https://www.st.com/resource/en/application_note/
cd00160362 - using - the - stm32f0f1f3gxlx - series - dma - controller -
stmicroelectronics.pdf (visited on 04/19/2022).

[261] STMicroelectronics. Managing memory protection unit in STM32 MCUs. 2021.
url: https://www.st.com/resource/en/application_note/dm00272912-
managing-memory-protection-unit-in-stm32-mcus-stmicroelectroni
cs.pdf (visited on 04/19/2022).

[262] STMicroelectronics. STM32F101xx, STM32F102xx, STM32F103xx,
STM32F105xx and STM32F107xx advanced Arm®-based 32-bit MCUs
- Reference manual. 2021. url: https : / / www . st . com / resource / en /
reference_manual/CD00171190-.pdf (visited on 04/20/2022).

[263] Keith Stouffer, Victoria Pillitteri, Suzanne Lightman, Marshall Abrams, and
Adam Hahn. “Guide to Industrial Control Systems (ICS) Security”. In: (2015).
doi: 10.6028/NIST.SP.800-82r2.

[264] Dan Su, Jiqiang Liu, Sencun Zhu, Xiaoyang Wang, and Wei Wang. “"Are you
home alone?" "Yes" Disclosing Security and Privacy Vulnerabilities in Alexa
Skills”. In: arXiv preprint arXiv:2010.10788 (2020).

[265] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. “OAT: Attesting Opera-
tion Integrity of Embedded Devices”. In: Proceedings of the IEEE Symposium
on Security and Privacy (SP). IEEE. 2020. doi: 10.1109/SP40000.2020.
00042.

[266] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK: Eternal War
in Memory”. In: Proceedings of the IEEE Symposium on Security and Privacy
(SP). IEEE. 2013. doi: 10.1109/SP.2013.13.

[267] Hailun Tan, Wen Hu, and Sanjay Jha. “A TPM-Enabled Remote Attestation
Protocol (TRAP) in Wireless Sensor Networks”. In: Proceedings of the 6th
ACM Workshop on Performance Monitoring and Measurement of Heteroge-
neous Wireless and Wired Networks (PM2HW2N 11). ACM, 2011, pp. 9–16.
isbn: 9781450309028. doi: 10.1145/2069087.2069090.

[268] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. “Throwhammer: Rowhammer
Attacks over the Network and Defenses”. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 18). 2018. isbn: ISBN 978-1-939133-01-4.

[269] Tensilica, Inc. “Xtensa Instruction Set Architecture (ISA) Reference Manual”.
In: RC-2010.1 Release (2010).

210

https://www.st.com/resource/en/application_note/cd00160362-using-the-stm32f0f1f3gxlx-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00160362-using-the-stm32f0f1f3gxlx-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00160362-using-the-stm32f0f1f3gxlx-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00272912-managing-memory-protection-unit-in-stm32-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00272912-managing-memory-protection-unit-in-stm32-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00272912-managing-memory-protection-unit-in-stm32-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/CD00171190-.pdf
https://www.st.com/resource/en/reference_manual/CD00171190-.pdf
https://doi.org/10.6028/NIST.SP.800-82r2
https://doi.org/10.1109/SP40000.2020.00042
https://doi.org/10.1109/SP40000.2020.00042
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/2069087.2069090

Bibliography

[270] Texas Instruments Incorporated. Direct Memory Access (DMA) Controller
Module. 2018. url: https://www.ti.com/lit/ug/slau395f/slau395f.pdf
(visited on 04/28/2022).

[271] The LLVM Compiler Infrastructure Project. Attributes in Clang. 2022. url:
https://clang.llvm.org/docs/AttributeReference.html#variable-
attributes (visited on 04/28/2022).

[272] The MITRE Corporation. Update Software, Mitigation M0951 – ICS | MITRE
ATT&CK. 2022. url: https://attack.mitre.org/versions/v12/mitigat
ions/M0951/ (visited on 03/07/2023).

[273] Chin-Wei Tien, Tsung-Ta Tsai, Yi Chen, and Sy-Yen Kuo. “UFO - Hidden
Backdoor Discovery and Security Verification in IoT Device Firmware”. In:
Proceedings of the 2018 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE. 2018, pp. 18–23. doi: 10.1109/
ISSREW.2018.00-37.

[274] Sven Türpe, Andreas Poller, Jan Steffan, Jan-Peter Stotz, and Jan Truken-
müller. “Attacking the BitLocker Boot Process”. In: Proceedings of the Second
International Conference on Trusted Computing (Trust 2009). Springer. 2009,
pp. 183–196.

[275] US Food and Drug Administration. Firmware Update to Address Cybersecurity
Vulnerabilities Identified in Abbott’s (formerly St. Jude Medical’s) Implantable
Cardiac Pacemakers: FDA Safety Communication. 2017. url: https://www.
fda.gov/medical-devices/safety-communications/firmware-update-
address-cybersecurity-vulnerabilities-identified-abbotts-former
ly-st-jude-medicals (visited on 06/25/2020).

[276] Antti Valmari. “The state explosion problem”. In: Advanced Course on Petri
Nets. Springer. 1996.

[277] Victor Van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel
Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. “Practical
context-sensitive CFI”. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS 15). ACM, 2015. doi:
10.1145/2810103.2813673.

[278] Michael Wahler and Manuel Oriol. “Disruption-free software updates in au-
tomation systems”. In: Proceedings of the IEEE Emerging Technology and Fac-
tory Automation (ETFA). IEEE. 2014. doi: 10.1109/ETFA.2014.7005075.

[279] Michael Wahler, Stefan Richter, Sumit Kumar, and Manuel Oriol. “Non-
disruptive large-scale component updates for real-time controllers”. In: Pro-
ceedings of the Workshops of the IEEE International Conference on Data
Engineering (ICDE). IEEE. 2011. doi: 10.1109/ICDEW.2011.5767631.

211

https://www.ti.com/lit/ug/slau395f/slau395f.pdf
https://clang.llvm.org/docs/AttributeReference.html#variable-attributes
https://clang.llvm.org/docs/AttributeReference.html#variable-attributes
https://attack.mitre.org/versions/v12/mitigations/M0951/
https://attack.mitre.org/versions/v12/mitigations/M0951/
https://doi.org/10.1109/ISSREW.2018.00-37
https://doi.org/10.1109/ISSREW.2018.00-37
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1109/ETFA.2014.7005075
https://doi.org/10.1109/ICDEW.2011.5767631

Bibliography

[280] Michael Wahler, Stefan Richter, and Manuel Oriol. “Dynamic Software Up-
dates for Real-Time Systems”. In: Proceedings of the Workshop on Hot Topics
in Software Upgrades (HotSWUp). ACM, 2009. doi: 10 . 1145 / 1656437 .
1656440.

[281] Arielle Waldman. Mitre AT&CK: How it has evolved and grown. 2020. url:
https://www.techtarget.com/searchsecurity/news/252491169/Mitre-
ATTCK-How-it-has-evolved-and-grown (visited on 03/15/2023).

[282] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and Ning Zhang. “RT-TEE:
Real-time System Availability for Cyber-physical Systems using ARM Trust-
Zone”. In: Proceedings of the 2022 IEEE Symposium on Security and Privacy
(SP). IEEE. 2022, pp. 352–369. doi: 10.1109/SP46214.2022.9833604.

[283] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl.
“From Hack to Elaborate Technique - A Survey on Binary Rewriting”. In:
ACM Computing Surveys (CSUR) 52.3 (2019). doi: 10.1145/3316415.

[284] Jos Wetzels. The RTOS Exploit Mitigation Blues. 2017. url: https : / /
hardwear.io/document/rtos- exploit- mitigation- blues- hardwear-
io.pdf (visited on 08/31/2022).

[285] Bas Wijnen, Emily J Hunt, Gerald C Anzalone, and Joshua M Pearce. “Open-
Source Syringe Pump Library”. In: PloS one 9.9 (2014). doi: 10.1371/
journal.pone.0107216.

[286] Reinhard Wilhelm and Jan Reineke. “Embedded systems: Many cores - Many
problems”. In: Proceedings of the 7th IEEE International Symposium on
Industrial Embedded Systems (SIES 2012). IEEE, 2012. doi: 10.1109/SIES.
2012.6356583.

[287] Edgar Wolf and Francis C Marino. Acoustic coupler. US Patent 3,553,374.
1971.

[288] Minhua Wu, Sankaran Panchapagesan, Ming Sun, Jiacheng Gu, Ryan Thomas,
Shiv Naga Prasad Vitaladevuni, Bjorn Hoffmeister, and Arindam Mandal.
“Monophone-Based Background Modeling for Two-Stage On-Device Wake
Word Detection”. In: Proceedings of the 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018. doi:
10.1109/ICASSP.2018.8462227.

[289] Weitao Xu, Chitra Javali, Girish Revadigar, Chengwen Luo, Neil Bergmann,
and Wen Hu. “Gait-Key: A Gait-Based Shared Secret Key Generation Protocol
for Wearable Devices”. In: ACM Transactions on Sensor Networks (TOSN)
13.1 (2017). doi: 10.1145/3023954.

212

https://doi.org/10.1145/1656437.1656440
https://doi.org/10.1145/1656437.1656440
https://www.techtarget.com/searchsecurity/news/252491169/Mitre-ATTCK-How-it-has-evolved-and-grown
https://www.techtarget.com/searchsecurity/news/252491169/Mitre-ATTCK-How-it-has-evolved-and-grown
https://doi.org/10.1109/SP46214.2022.9833604
https://doi.org/10.1145/3316415
https://hardwear.io/document/rtos-exploit-mitigation-blues-hardwear-io.pdf
https://hardwear.io/document/rtos-exploit-mitigation-blues-hardwear-io.pdf
https://hardwear.io/document/rtos-exploit-mitigation-blues-hardwear-io.pdf
https://doi.org/10.1371/journal.pone.0107216
https://doi.org/10.1371/journal.pone.0107216
https://doi.org/10.1109/SIES.2012.6356583
https://doi.org/10.1109/SIES.2012.6356583
https://doi.org/10.1109/ICASSP.2018.8462227
https://doi.org/10.1145/3023954

Bibliography

[290] Zhengzi Xu, Yulong Zhang, Longri Zheng, Liangzhao Xia, Chenfu Bao, Zhi
Wang, and Yang Liu. “Automatic Hot Patch Generation for Android Kernels”.
In: Proceedings of the 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, 2020, pp. 2397–2414. isbn: 978-1-939133-17-5. url:
https://www.usenix.org/conference/usenixsecurity20/presentation
/xu.

[291] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. “Distributed Software-
based Attestation for Node Compromise Detection in Sensor Networks”. In:
Proceedings of the 26th IEEE Symposium on Reliable Distributed Systems
(SRDS 2007). IEEE Computer Society, 2007. doi: 10.1109/SRDS.2007.31.

[292] Joseph Yiu. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4
Processors. Elsevier Science, 2013. isbn: 9780124079182.

[293] Joseph Yiu. ARM Cortex-M for Beginners. 2016. url: https://community.
arm.com/cfs-file/__key/telligent-evolution-components-attachmen
ts/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-
for- Beginners- _2D00_- 2016- _2800_final- v3_2900_.pdf (visited on
01/21/2023).

[294] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, and Lui Sha.
“Learning Execution Contexts from System Call Distribution for Anomaly
Detection in Smart Embedded System”. In: Proceedings of the Second Interna-
tional Conference on Internet-of-Things Design and Implementation (IoTDI).
ACM, 2017. doi: 10.1145/3054977.3054999.

[295] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. “Se-
cureCore: A Multicore-based Intrusion Detection Architecture for Real-Time
Embedded Systems”. In: Proceedings of the 19th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, RTAS 2013. IEEE Computer
Society, 2013. doi: 10.1109/RTAS.2013.6531076.

[296] Man-Ki Yoon, Lui Sha, Sibin Mohan, and Jaesik Choi. “Memory Heat Map:
Anomaly Detection in Real-Time Embedded Systems Using Memory Be-
havior”. In: Proceedings of the 52nd Annual Design Automation Conference
(DAC). ACM, 2015. doi: 10.1145/2744769.2744869.

[297] Bruno Bogaz Zarpelão, Rodrigo Sanches Miani, Cláudio Toshio Kawakani,
and Sean Carlisto de Alvarenga. “A survey of intrusion detection in Internet
of Things”. In: Journal of Network and Computer Applications 84 (2017). doi:
10.1016/j.jnca.2017.02.009.

213

https://www.usenix.org/conference/usenixsecurity20/presentation/xu
https://www.usenix.org/conference/usenixsecurity20/presentation/xu
https://doi.org/10.1109/SRDS.2007.31
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf
https://doi.org/10.1145/3054977.3054999
https://doi.org/10.1109/RTAS.2013.6531076
https://doi.org/10.1145/2744769.2744869
https://doi.org/10.1016/j.jnca.2017.02.009

Bibliography

[298] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad
Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. “ATRIUM: Runtime Attestation
Resilient Under Memory Attacks”. In: Proceedings of the 2017 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2017. IEEE,
2017. doi: 10.1109/ICCAD.2017.8203803.

[299] Eric Zeng, Shrirang Mare, and Franziska Roesner. “End User Security and
Privacy Concerns with Smart Homes”. In: Proceedings of the 13th Symposium
on Usable Privacy and Security (SOUPS 2017). 2017.

[300] Matthias Zeppelzauer, Alexis Ringot, and Florian Taurer. SoniTalk – an open
ultrasonic communication protocol. 2019. url: https://sonitalk.fhstp.ac.
at/ (visited on 03/07/2022).

[301] Matthias Zeppelzauer, Alexis Ringot, and Florian Taurer. SoniTalk. 2022.
url: https://github.com/fhstp/SoniTalk (visited on 03/07/2022).

[302] Kim Zetter. A Cyberattack Has Caused Confirmed Physical Damage for the
Second Time Ever. 2015. url: https://www.wired.com/2015/01/german-
steel-mill-hack-destruction/ (visited on 04/09/2021).

[303] Chi Zhang, Wonsun Ahn, Youtao Zhang, and Bruce R. Childers. “Live Code
Update for IoT Devices in Energy Harvesting Environments”. In: Proceedings
of the Non-Volatile Memory Systems and Applications Symposium (NVMSA).
IEEE. 2016. doi: 10.1109/NVMSA.2016.7547182.

[304] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and
Feng Qian. “Dangerous Skills: Understanding and Mitigating Security Risks
of Voice-Controlled Third-Party Functions on Virtual Personal Assistant
Systems”. In: Proceedings of the 2019 IEEE Symposium on Security and
Privacy (SP). IEEE. 2019, pp. 1381–1396. doi: 10.1109/SP.2019.00016.

[305] Shaohu Zhang and Anupam Das. “HandLock: Enabling 2-FA for Smart Home
Voice Assistants using Inaudible Acoustic Signal”. In: Proceedings of the 24th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID). ACM, 2021. isbn: 9781450390583. doi: 10.1145/3471621.3471866.

[306] Serena Zheng, Noah Apthorpe, Marshini Chetty, and Nick Feamster. “User
Perceptions of Smart Home IoT Privacy”. In: Proceedings of the ACM on
Human-Computer Interaction 2, Issue CSCW (2018). doi: 10.1145/3274469.

214

https://doi.org/10.1109/ICCAD.2017.8203803
https://sonitalk.fhstp.ac.at/
https://sonitalk.fhstp.ac.at/
https://github.com/fhstp/SoniTalk
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://doi.org/10.1109/NVMSA.2016.7547182
https://doi.org/10.1109/SP.2019.00016
https://doi.org/10.1145/3471621.3471866
https://doi.org/10.1145/3274469

Eidesstattliche Erklärung
Ich gebe folgende eidesstattliche Erklärung nach §14 Abs. 1 Nr. 6 der Promotions-
ordnung ab:

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig ohne unzulässige
Hilfe Dritter verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt und alle wörtlich oder inhaltlich übernommenen Stellen unter der Angabe
der Quelle als solche gekennzeichnet habe. Die Grundsätze für die Sicherung guter
wissenschaftlicher Praxis an der Universität Duisburg-Essen sind beachtet worden.
Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde
vorgelegen.

Essen, den 14. März 2024

Sebastian Erasmus Raphael Josef Surminski

215

	Introduction
	Goal and Scope of this Dissertation
	Contributions and Outline
	Additional Publications

	Background
	Embedded Systems
	Classification of Embedded Systems
	Typical Vulnerabilities in Embedded Systems

	Real-Time Systems
	Classification of Real-Time Systems
	Scheduling and Real-Time Operating Systems

	Overview on Remote Attestation
	Threat Model of Remote Attestation
	Challenges in Remote Attestation
	Attestation Types
	Static Attestation
	Control Flow Attestation
	Data Flow Attestation
	Other Properties

	Attestation Architectures
	Hardware-Based Attestation
	Software-Based Attestation
	Hybrid Attestation

	Comparison of Attestation Schemes

	Attestation for Real-Time Applications
	Background: Software-Based Attestation
	Challenges
	Assumptions and Threat Model
	Assumptions
	Threat Model

	Concept of RealSWATT
	Design Considerations
	Attestation Scheme
	IoT Network Architecture

	Implementation
	Prover
	Verifier
	Test Bed
	Integration Guidelines

	Evaluation
	Timing Behavior of the Attestation Function
	Power Consumption
	Communication Overhead
	Race Conditions
	Implementation on Real-World Devices
	End-to-End Case Study
	Summary

	Security Discussion
	Hardware Restrictions
	Common Attack Scenarios
	Attacks on Attestation Protocol
	Network-based Attacks

	Related Work: Attestation for Real-Time Systems
	Summary and Conclusions

	User-Understandable Remote Attestation
	Background: Smart Speakers
	Challenges
	Assumptions and Threat Model
	Assumptions
	Threat Model

	Concept of SCAtt-man
	Audio Protocol
	Attestation Function
	Limitation of the Internet Access
	Attestation without Human Interaction

	Implementation
	Smart Speaker
	Attestation Process
	Data-Over-Sound
	Design of the Attestation App
	Usage Process of SCAtt-man Attestation
	Integration Guidelines

	Evaluation
	Runtime of Attestation Function
	Designing a Reliable Audio Protocol
	Further Audio Optimizations
	End-to-End Case Study
	User Study
	Summary

	Security Discussion
	Related Work: Context-Based Authentication
	Summary and Conclusions

	DMA-Based Remote Attestation
	Background: U(S)ART, SPI, and DMA
	U(S)ART and SPI
	Direct Memory Access (DMA)

	Challenges
	Assumptions and Threat Model
	Assumptions
	Threat Model

	Concept of DMA'n'Play
	Using DMA for Attestation
	DMA'n'Play Attestation
	Conception of the DMA'n'Play Verifier
	Locking of DMA Controllers
	Hardware Requirements & Target Platforms
	Devices Without Source Code

	Implementation
	Attested Device
	Verifier
	DMA'n'Play To-Go
	Integration Guidelines

	Evaluation
	End-to-End Case Study
	Real-Time Capabilities
	System Performance View
	Feasibility of Full Memory Attestation
	Power Consumption
	Summary

	Security Discussion
	Related Work: DMA Security
	Summary and Conclusions

	Hotpatching of Real-Time Applications
	Background: Hotpatching Strategies
	Relocatable Executables
	Instrumentation
	A/B Hotpatching

	Challenges
	Assumptions and Threat Model
	Assumptions
	Threat Model

	Concept of HERA
	Hardware Debugging Units
	Patching Process
	Limitations

	Implementation
	HERA Library
	HERA Patch Development
	Patch Development Guidelines
	Patch Application

	Integration Guidelines
	Evaluation
	Implementation on Real-World Devices
	Measurements of the Overhead
	Further Measurements
	Summary

	Security Discussion
	Related Work: Hotpatching
	Summary and Conclusions

	Summary and Conclusions
	Dissertation Summary
	Comparing Remote Attestation with Other Security Enhancements
	Future Research Directions

	Bibliography
	Eidesstattliche Erklärung

